+ + + + +

IDENTIFYING OPTIMAL METHODS FOR CLINICAL QUANTITATIVE FLOW CYTOMETRY

+ + + + +

FRIDAY, APRIL 11, 2003

+ + + + +

The meeting was convened in the Hunter Woods Room of the Hyatt Regency Hotel, 1800 Presidents Street, Reston, Virginia, at 8:00 a.m., DR. GERALD MARTI presiding.

PRESENT:

RAUL BRAYLAN KENNETH COLE JEAN-LUC D'HAUTCOURT BRUCE DAVIS KEN DAVIS RANDY FISCHER ROBERT HOFFMAN BURT HOUTZ ERIC HSI LANCE HULTIN LARRY LAMB RODICA LENKEI GERALD MARTI PHIL McCOY KATHY MUIRHEAD ALBERTO ORFAO NORMAN PURVIS JORGE QUINTANA LEA REICH ABRAHAM SCHWARTZ HOWARD SHAPIRO MARY ALICE STETLER-STEVENS KAREN TAMUL KATHLEEN THOMPSON-DAVIS ROBERT VOGT JEFFREY WANG JAMES WOODS YU-ZHONG ZHANG

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

...... ===|----

AGENDA ITEM

Clinical Trials

Session III: Data Analysis, Quality Assessment, Reporting Results QC for Instruments QC for Reagents QC for Sample Prep Standardizing Data Analysis / Path Interpretation Reporting QFCM Results Identifying and Reporting Sample-Specific Anomalies Workgroup Assignments and Breakouts QA / Standardizing Data Analysis Reporting Results Session IV: Summary Plans for Experiments to be performed Prior to Follow-Up Meeting Sample/Calibrator Exchanges Reagent Development (companies)

NEAL R. GROSS
COURT REPORTERS AND TRANSCRIBERS
1323 RHODE ISLAND AVE., N.W.

...... ===|-----

P-R-O-C-E-E-D-I-N-G-S

1	P-R-O-C-E-E-D-I-N-G-S
2	(8:28 a.m.)
3	DR. MARTI: Good morning. Good
4	morning, everyone. Welcome to the second day of
5	this conference to try and define what the problems
6	are and some appropriate solutions for clinical
7	quantitative flow cytometry or quantitative flow
8	cytometry in a clinical setting.
9	We thought that in order to start the
10	session today, we would start out with
11	compensation, have part of the discussion about
12	compensation.
13	DR. VOGT: As opposed to
14	decompensation?
15	DR. MARTI: As opposed to
16	decompensation. Recently we had a couple of
17	experiments in our lab, one involving the CE79D.
18	As you came acutely aware that this particular
19	reagent I don't remember whose company it was or
20	was. I don't remember what the fluorochrome is.
21	We realized that the nonspecific background was
22	pretty high, that the t-cells were staining more
23	than we were used to. And it reminded us that we
24	hadn't titered that reagent. When we titered it,

it behaved very nicely.

The second thing in this series of experiments, as we were moving from four-color to six-color, we carried out an experiment on the LSR2. We dutifully were doing a comparison between manual compensation and automated compensation. We constructed for this experiment all of our single tube controls using CD3: CD3 FITC, CD3 PE, CD3 PE 5.5, APC, the six reagents that we were using.

And when we did it, we ran those. And we were comparing the six-color to the four-color. We essentially had such terrible overcompensation on the FITC PE that we actually didn't know whether we had made a mistake in the sense that the fluorescence intensity of our controls was the same or lower than the test panel or that conceivably that it might be above or failure in the software. That is an easily testable problem, and we are looking into it hopefully this week.

However, in the process of this, it made me think once again about compensation controls. When we were discussing this with Steve Perfetto in Mario Roederer's lab, he mentioned to us that he had received some microbeads from BD.

I don't know what division, whether it was the West Coast or Europe or somewhere in this

2.2

BD operation. We tracked down these microbeads that contained I think goat anti-mouse kappa. And, as you know, most murine monoclonals are kappa, kappa Verity. And we thought, "Gosh, that's a wonderful idea to make a compensation control."

And we thought that, you know, we have had a little experience with antibody capture beads. So the first word out of my mouth was, "Well, how long did you incubate?" Oh, 15-20 minutes. And what else did you do? Did you keep buying them? Well, no. We fixed them.

And, you know, all the time we used the antibody capture beads, I don't think it ever occurred to us to fix them. We looked at them over an hour, four hours, one day, one week.

So we got a sample of these microbeads and stained them. When we stained the first set of these microbeads, we were kind of surprised to see that with the FITC fluorochrome PE and PE-Cy7 that it wasn't quite the homogeneous peak that we thought we were going to get.

We didn't know quite what this represented. I mean, is the antibody coming off of the beads? Apparently you have to be very careful with some of these tandem conjugates. They

2.2

actually form end-to-end dimers. In fact, 1 you know, there is a very ancient procedure 2 in immunology where when you take your reagent out of 3 4 the refrigerator, you are supposed to take 5 aliquot of it and walk over to the microcentrifuge and do three minutes or something. 6 7 In this area, these colors, when you get up above four or six, I think we are going to 8 9 have to really pay attention to that. 10 DR. LENKEI: The picture is still very 11 It's not a clean picture. DR. MARTI: I couldn't agree with you 12 13 So we got a fresh sample. That is four or more. six of the eight, four of the six. I overlapped it 14 15 this morning because we just did this experiment. 16 Ι similarly impressed with Now was these antibody-coated beads because the first thing 17 18 was they looked awfully bright to me, which 19 suggested that that might guarantee more often that 20 the brighter your antibody in your control, compensation control, the better chance you had of 21 not having it be the same level of fluorescence 2.2 intensity or, God forbid, less. 23

through the automated algorithms, and you are going

I think if it's less and you put

24

1	to be in big trouble, big trouble.
2	The second thing and I haven't had a
3	chance to look at the statistics. It sure seems
4	like an awfully tight CV to me for an
5	antibody-captured bead.
6	The difference between this sample and
7	the previous sample was two months in terms of
8	sitting in the refrigerator. So I suspect that
9	there may be some shelf life in and out of the
10	refrigerator, et cetera.
11	DR. QUINTANA: Can you do it the same
12	way, this one and the previous one?
13	DR. MARTI: Well, you tell me. I mean
14	
15	DR. MUIRHEAD: There is or isn't.
16	DR. MARTI: You can take your pick. I
17	mean, we thought that was the most representative
18	of what was there. I think there is a lot more
19	aggregation in the over-sample compared to this.
20	DR. SCHWARTZ: Actually not. The
21	bigger peak is a doublet peak.
22	DR. MARTI: Well, nice that you should
23	point that out, but walk your eye up from the lower
24	one to the top one. That doublet has disappeared.
25	And I would say that the side scatter signal has

Τ	increased slightly.
2	What's the only difference between
3	these three or, actually, between these two and
4	that one is that this required a different laser
5	excitation. So I think some of this scatter
6	difference is wavelength-dependent or it's a
7	different optical pathway of the second laser
8	through the optics.
9	Howard?
LO	DR. SHAPIRO: What's that little peak
l1	below the main peak in the PECy7? That's what I'm
L 2	saying. The problem is basically I think what you
L3	are looking at there is that the gating is not the
L 4	same for that because you can see if you look,
15	there is a lower side scatter peak to the left of
L6	your gating region in there.
L 7	And my impression would be that those
L8	would be the singlets and that you are basically
L9	discriminating orientations of doublets.
20	DR. MARTI: You think that all
21	represents doublets?
22	DR. SHAPIRO: Yes, because what do you
23	have, sperm beads, in there? I mean, how do you
24	get

DR. SCHWARTZ: Have you looked at it in

1	the microscope?
2	DR. MARTI: Not yet. Well, not so much
3	shame on me. It's that we didn't have time to set
4	up to do the I do want to photograph these
5	because we've always photomicrographed beads that
6	we've used, and it's always very enlightening to
7	see poikilocytosis and variation of hypochromia.
8	DR. SHAPIRO: If it will break
9	streptococcus and staphylococcus, we may have more
10	than a vested interest in staying together of the
11	beads.
12	DR. MARTI: We just took these out of
13	the bead bottle. You drip them out into the tube
14	and "stain them like cells." I only brought these.
15	We have hardly had time to think about this
16	experiment. But I thought and perhaps you will
17	correct me that it might be a good way to
18	introduce the topic of compensation.
19	DR. SCHWARTZ: How are you going to
20	compensate with one population?
21	DR. MARTI: Well, that's a good
22	question. The fact is the Purists chided us and
23	I haven't shown it here to you chided us for
24	even thinking about mixing these individual ones
25	together as a task at the end.

1	DR. SCHWARTZ: You cannot. It's true.
2	DR. MARTI: Why?
3	DR. SCHWARTZ: Because you have
4	overlaps in things, but you should have two
5	populations if intensities could be able to
6	DR. PURVIS: You've got to know what
7	the background of the bead is.
8	DR. SCHWARTZ: No, not background. A
9	second population of the same label fluorochrome.
LO	And if you have two of them that look like they're
l1	compensated
12	DR. HOFFMAN: This is not in the same
L3	tube for this software.
L 4	DR. SCHWARTZ: It doesn't have to be,
L 5	but it won't hurt it because there is no mixing of
L6	fluorochromes. There are just two separate
L 7	populations at different intensities.
18	DR. SHAPIRO: If you actually run two
L9	or more of those populations, you could basically
20	do a regression line so you get a much more
21	accurate measure of the contribution. You
22	basically need to define a single number, but you
23	probably can define it somewhat more precisely if
24	you have two intensity levels or more intensity
) E	lovola

1	DR. SCHWARTZ: No, that is not the way
2	this
3	DR. SHAPIRO: Yes, I understand that,
4	but how do you solve the problem overall? I mean,
5	the software that we were playing with years ago to
6	do this, we actually did regression lines and
7	DR. HOFFMAN: This doesn't improve the
8	matrix, the actual compensation. Basically you
9	measure the spillover of every fluorochrome or
10	DR. SCHWARTZ: Right. But the space
11	from one population is more comfortable if it's on
12	two or more, I would say.
13	DR. HOFFMAN: Well, it takes software
14	to do that. It's a measure of each reference of
15	each fluorochrome with all of the other
16	fluorochromes in the map.
17	DR. MARTI: I don't think it's
18	DR. SHAPIRO: Actually, for purposes of
19	compensation, it doesn't matter what you deem are
20	doublets because what you really want to see there
21	is to what extent the fluorescence from the
22	individual is bleeding to the other.
23	And, yes, if you want a single value,
24	you probably are better off having your
25	compensation sample as bright as you can.

1 DR. SCHWARTZ: As a matter of fact, put a gate around both of them. You do have your two 2 populations. You can solve it. 3 4 DR. MARTI: So, again, I brought this 5 map not to be definitive or anything. It's just I grew used to having a mixture of MESM, FITC, PE 6 7 beads. And Ι like the opportunity do 8 compensation across the whole scale. So it 9 wouldn't be impossible to use this system, but I do 10 think, as Bob pointed out, that the algorithm 11 requires or works with just a single peak. 12 with that peak being brighter than your 13 reagent, you should be okay. Now, I understand there are further 14 15 discussions about which type of algorithm is being But obviously since we can't discriminate 16 used. 17 singlets or doublets, we're not ready to look at 18 differences between algorithms. 19 One would hope if that were necessary 20 -- and, actually, it has become necessary because, 21 said, our first experiment 2.2 disappointing nothing turned out right except the FITC PE. 23 24 So, anyway, what kind of controls

you were running your lab for compensation would

1	you use or recommend? If you were doing a CLIA
2	inspection and you walked in, what would you want
3	to see in the SOP?
4	DR. HOUTZ: Biologicals and set of
5	beads.
6	DR. MARTI: Biologicals?
7	DR. HOUTZ: Biologicals and set of
8	beads, yes. The spectral difference between beads
9	themselves is pretty low.
10	DR. QUINTANA: We have a fluorescence
11	issue also with the FITC.
12	DR. HOUTZ: A lot of fluorescence
13	differences.
14	DR. QUINTANA: There is a little bit of
15	difference on the FITC, not on the longer
16	wavelengths but on the FITCs, you see some
17	difference between the beads themselves. It
18	depends on the prep method, too.
19	DR. HOFFMAN: I think you should be
20	able to set up the compensation with beads as well
21	as a test method using the full matrix. But what
22	is really important is that, especially for any
23	tandem fluorescence, it be the same lot of the
24	reagent that you're going to be using in the
25	sample.

Especially in the PE, I am not sure how 1 it could affect the FITC too much, 2 if you compensated with a different antibody or 3 4 different lot of antibody for any of the tandems, 5 PE tandems, that could affect your spillover matrix in every --6 7 DR. MARTI: Every dimension. 8 QUINTANA: But we are looking at 9 the issue with the tandems because there is a type. 10 It depends on the anti-bacterium specter when you 11 prepare the tandem dye in terms of the bleed-over. 12 You have to have a very tight specification. 13 And we did a study looking at full different 14 matrix comp looking at tandem 15 degradations. And we find still the full matrix 16 system we have been using gives us a little wiggle room that it's about a five percent difference in 17 18 the bleed-over that really has very little effect 19 on the compensation at all in terms of moving the 20 populations. 21 I agree with Bob. You can use the 2.2 exact dye lot. It's the same. What happens is 23 over time, some of the tandem dye lots do degrade 24 from time zero to, let's say, eight or nine months.

So it's one of the things that you have to stay on

1	top of, especially even mixing manufacturers'
2	tandem dyes. You really can't because there are
3	different specifications.
4	DR. MARTI: I think the bottom line is
5	and I think you folks said it more eloquently
6	than I probably will whatever you stain yourself
7	with and whether you use cells as a compensation
8	control or bead, it has to be stained not only with
9	the same antibody but with the same antibody,
LO	particularly tandem conjugate.
11	If you have the same lot of monoclonal
12	antibody but the conjugate was prepared at two
13	different times and, therefore, two different
L 4	sublots, we got burned in a lot of these things in
L5	a big hurry. It didn't take long. It just jumped
L 6	out at us and kind of beat us up.
L 7	DR. FISCHER: So, Bob, I have a
L 8	question for you. You say you prefer beads because
L9	of the automated software.
20	DR. HOFFMAN: I didn't say I preferred
21	beads, but
22	DR. FISCHER: Well, that's what I
23	heard. And so I guess that's what I
24	DR. MARTI: No. He said there would be
25	no reason why beads shouldn't work.

1	DR. HOFFMAN: And they do. The
2	software works about the same as
3	DR. FISCHER: My question is, how are
4	we in the clinical labs running the new software
5	with the compensation?
6	DR. HOFFMAN: They're doing one or
7	two-color. And they have the option of using the
8	automated, fully automated. I sure wouldn't do it.
9	Doing two-color compensation actually is pretty
LO	easy.
11	DR. FISCHER: What's the software that
L 2	does that automatically?
L 3	DR. HOUTZ: Fax Comp.
L 4	DR. FISCHER: Well, Fax Comp works on
L 5	calibrated beads. My understanding is it doesn't
L 6	work on NESF beads.
L 7	DR. LENKEI: No. In the preliminary
L 8	means, still there are some variations among
L9	colorblind beads.
20	DR. FISCHER: It's close, but it's
21	still not best. From everything you just said,
22	it's got to be the right dioxin. It's got to be
23	the right things for you to
24	DR. SCHWARTZ: It has to be the right
25	intensities for their compensation.

1	DR. FISCHER. RIGHT. THAT'S WHAT I
2	mean. So
3	DR. HOFFMAN: Less right, correct
4	intensities. But with calibrated beads, they don't
5	have to be exactly the same intensity as antibody
6	clonal beads. We tried putting the correction
7	factor in there that will get you close. And that
8	actually is I think the right bead.
9	DR. FISCHER: So to come back to the
10	question of who in here will have the automated
11	software, I have seen them on the SR2. It looks
12	really nice, but my calendar doesn't run that.
13	So we have to go back to the question
14	Jerry posed at the beginning of how do we do our
15	compensations when we're doing them essentially by
16	eye. You're still adjusting it with your eye and
17	looking at the numbers a lot of times
18	DR. MARTI: Randy, you can collect
19	uncompensated data on the fax calendar and then
20	analyze it with flowcharts. I don't know about
21	Winlist. I assume you can. I would assume you
22	can.
23	I think that the whole idea of
24	collecting uncompensated list mode data in the
25	clinical lab and people correct me if I am

wrong. There is nothing wrong with doing that, and 1 I think there is some experimental data to support 2 that that is a pretty good idea. 3 4 I think that they have to understand 5 that the clinical budget is going to go up because all of those reagents that are being used will have 6 7 to be run as single color controls. 8 DR. PURVIS: Not only that. Also, you 9 have multiple instruments, and you're doing 10 You've got to know which instrument it samples. 11 came off of. I mean, you've got to look at the 12 serial number embedded each time that you pull up a file. 13 14 DR. FISCHER: Let's talk to someone 15 like Mary Alice who runs a clinical lab. Are you 16 going to want your people to be taking all of their 17 data uncompensated onto the FlowJo and doing all of 18 this --19 DR. STETLER-STEVENS: We're considering 20 I've wanted to do it for quite a while. Wе haven't been able to move the force to do 21 2.2 because, first of all, they're saying, "Oh, God, no." 23 24 Another thing, what about the Coulter's 25 FC500? They have a different setup

19 compensation. We bought one, and it seems to work 1 pretty nicely. I'd like to hear about --2 DR. QUINTANA: The FC500 do 3 can So all 4 compensation that points at data.

compensation assistance is done in linear. It's not done on log. It's displayed with a lot of echoes with a front log look-up table.

this ability to has The FC500 post-acquisition compensation, where you can actually take all of your data uncompensated, you can run your compensation setup any time during the day as long as it is the same setting, and then you can apply that compensation to the linear data.

It also gives you the capability to reanalyze the data to manually compensate it. It's not something recommend, but using we the compensation setup, it allows you to go back. application for that would be to say you've looked at it and you have a concern.

We use CD45 single colors along with a control cell as setup for the compensation. we found is that with the control cells and running those control cells, it gets us a lot closer of a fluorescence measure to at least the samples that we have run through our light systems.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

close as it is of any of the other systems that we have looked at.

We can go back and actually set up setup panels and go back. You can reanalyze the data by rerunning a different lot of CD45, let's say one of the tandem dyes. If there is a different manufacturer, you can actually re-create a panel and reanalyze the data and apply the compensation to it. That offers a lot οf flexibility, but it still keeps the operators from having to do any manual compensation because you will apply the standard auto-setup panel to run the data.

DR. LAMB: You know, I've got a real problem with post-acquisition compensation, especially in a clinical setting, because you can make things what you want them to be. What's the difference?

I mean, you get your instrument setup parameters that you use. If you're doing a leukemia, for instance, you set up your instrument according to manufacturer's instructions, which basically you are tied to if you are going to have the same thing from day to day to day and pass your CAT inspection.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

Τ	Maybe I am living in the past, but "It
2	is what it is," to quote Popeye. This is a problem
3	I had with people at one point in time who bought a
4	Becton Dickinson instrument and didn't like to buy
5	PerCP. So they bought the other manufacturer,
6	Coulter's or Caltag or somebody like that, or
7	FACSCalibur. And then they ran all of their
8	leukemias uncompensated and came back to Winlist
9	and fixed it later that day.
10	DR. MARTI: Okay. He had his hand up
11	for a while.
12	DR. SCHWARTZ: This is ten years ago.
13	I remember one of the same concerns about doing
14	this is should we have list mode files at all. You
15	should just get what it is is what it is. And we
16	are going to take that histogram, and that is all
17	we need.
18	And now I don't think there is anybody
19	here who does approach it like that.
20	DR. QUINTANA: The post-acquisition
21	color comp is not something that we would intend
22	for the clinical labs.
23	DR. SCHWARTZ: But it can be
24	DR. QUINTANA: When you have the
25	clinical setup software, it is going to run through

1	the algorithms and do what it needs to do.
2	DR. STETLER-STEVENS: Although there
3	are situations when you have
4	DR. SCHWARTZ: You want to tweak.
5	DR. STETLER-STEVENS: a very small
6	specimen that are patients who have been treated
7	and you have weird autofluorescence and you have
8	funny findings and the compensation comes out bad.
9	But we have like 10,000 cells in the
10	whole system. We can't adjust the compensation.
11	You can, but if you run it, it's gone. It's done
12	with.
13	And sometimes it would be nice well,
14	I compensate with my eyes on that point. I go,
15	"All right. I know what that is. And I figure it
16	out." But sometimes I think there would be a place
17	where post-acquisitions could go in and toggle
18	their little
19	DR. WOOD: I think that there needs to
20	be a clarification here, and that is what it is
21	that we are storing. We want to store data. We
22	don't want to store information. Once you have
23	compensated it, you are now storing information.
24	And you are imparting a bias field already. You
25	want to store the most unbiased version of what is

coming off the flow cytometer.

2.2

So ideally what you would like to have is raw linear data that hasn't even been transformed by any type of a log display, but not all instruments have that.

It's not unlike what was available with Electric Desk. I don't know if people remember that from way back where you could run a virtual flow cytometer at your desk that data was collected and then you could go back and rerun the experiment, adjust settings, and so forth, and deal with the fact that your operator didn't necessarily know how to set all of the fine adjustments. What you did there is you stored the data, not information.

So I think that we need to be aware of that and actually break away from the old paradigm of when you store histograms. The histogram and display are one and the same.

What we need to be looking at is there is data that is stored on the computer. And then there is a display that can be generated from the data, but the display is not the actual data. It's a way for you to visualize it on your standard. And the two of them are separate.

Т	DR. FISCHER: It's my understanding
2	and I can't speak to the Coulter's because I have
3	not it sounds to me like they are also now
4	saving it as uncompensated data, but I'm not
5	positive on that.
6	I know that certainly on the new
7	instrument, all of our data saved uncompensated.
8	It's just the way they designed the storage. And
9	then you come back and actually do the
10	compensations post-acquisition because the data now
11	is all saved.
12	I can't speak as to whether it's there.
13	I wish Gordon were here so he could speak to that.
14	Phil, you might know. I don't know.
15	DR. McCOY: I think it's log.
16	Actually, you can store both, store in one list
17	mode panel both compensated and uncompensated.
18	DR. QUINTANA: The FC500 does the same
19	thing. It saves a 10-bit compensated and a 20-bit
20	length of 20-bit linear data. You have both
21	models.
22	DR. FISCHER: And I know that mine does
23	the same thing. The Calibur does both. I'm
24	assuming at some point in time they may decide to
25	switch that to a clinical instrument. I am not

sure they are going to want to do that. 1 The research instruments obviously are all going to be 2 that way because the research --3 4 DR. HOFFMAN: Any future instruments 5 are going to be that way. Any future instruments are going to have digital high-resolution linear 6 7 data on that. DR. TAMUL: But that's the future. 8 9 think that we need to get back to the real world 10 here for a second. The majority of clinical labs 11 that are going to try to do this are not going to 12 use FlowJo. It's too complex to carry out in three 13 to five years. 14 But everyone in here is running 15 high-powered labs with really serious effects. rest of the world out there is not going to quite 16 be so sophisticated and able to do it. 17 18 The only other thing I wanted 19 mention was that perhaps a definition or a little 20 bit of change in semantics might help. When I was 21 in the lab, what we used to do is called instrument setup or calibration with beads and instrument 2.2 23 setup, then compensation adjustments and any other

adjustments with biological control as optimizing

for the samples in vivo. That might help clarify.

24

1	DR. STETLER-STEVENS: I have to say if
2	you're going to compensate online, you need to have
3	a really experienced tech doing it and that
4	DR. TAMUL: That CID up there.
5	DR. STETLER-STEVENS: Yes. Out in the
6	community, when you have people who don't know what
7	they are doing, compensate
8	DR. QUINTANA: The software system has
9	the
10	DR. STETLER-STEVENS: You have to go
11	with something that is automatic.
12	DR. HOUTZ: And you can do it automatic
13	after acquisition, post-acquisition to be
14	automatic.
15	DR. MARTI: Howard and then Bruce.
16	DR. SHAPIRO: I apologize for delaying
17	this, but I don't see any way around it. First of
18	all, when we say "post-acquisition compensation,"
19	we're really covering a moment to things because of
20	the different ways in which different instruments
21	process the data.
22	If we are talking about the instruments
23	that are in the majority of clinical labs and,
24	you know, there is a dichotomy here. We have got
25	Scans or FACSCaliburs, which are probably the most

old

style 2 instrument. That is, the Calibur has got, what, 3 4 10-bit A&D converters? So basically you've got 5 10-bit data. You have got 10-bit linear data. And if you want to do post-acquisition compensation to 6 7 that, you have to convert the log to linear and 8 back. And you lose data. The thing is kind of 9 granular. To make the data look halfway decent 10 when you display them, you've got to diddle and add random numbers and things like that. 11 12 So, in essence, on the other hand, if 13 you were doing a three-color measurement on a Scan 14 or Calibur, you could certainly compensate a 15 two-color measurement. Α lot of people can compensate a three-color measurement. 16 Four colors is dicey. I don't think 17 18 anybody can really compensate four colors 19 effectively by eye. When you go to more colors, 20 you can simply forget it. 21 if Now, you look at the 2.2 competitor of the Calibur, which is the XL, Coulter 23 XL, Coulter XL has done away with the log amps. It 24 is collecting 20-bit linear data, which until 25 recently was not accessible to the users.

recent clinical version of the

newest software of Coulter gets that data out there. And the FC500 has got the digital software.

So when you do that, when you collect 20-bit linear data, there is no log amplifier involved. You have got the raw data. So you can shift from linear log and back. You don't lose any precision in the measurement. And it's perfectly feasible to do post-acquisition compensation.

Remember, if you are doing more than four colors, you basically have to do matrix compensation if you really want to compensate the data, certainly if you are doing four or more. We could argue about three.

First of all, what we are talking about here, we are talking about doing quantitative, clinical quantitative, flow cytometry. It is not going to be possible to do that, certainly not on three-color instruments, probably on our four-color instruments, out there in labs in community institutions. it's just not going to happen.

We now are all pretty much used to doing four colors for CD4, CD8. We know that is an improvement. And yes, you can still get by the guidelines and do it with a two-color instrument. Some people are doing that.

2.2

But if you are trying to be on the cutting edge, you have got to be doing four colors. My guess is that to do what we need to do with the gating parameters that are involved, we are talking more than four colors. And almost all the instruments that are doing that are going to be doing digital processing.

Okay. I didn't mention Cytomation. Cytomation has got log amplifiers, but they convert the log data to 16-bit data, which allows them to move it back and forth between linear and log without screwing it up too much. And they also can compensate for their log amp response. And BD with the Vivo Electronics, again, it's got a high-resolution linear data.

So basically you can always store the raw data in a form in which you can shift back and forth between linear and log and which you can shift back and forth between compensated and uncompensated without degrading the number that you have. That is the important point.

By the time we actually get through -when we start doing this, if we set up a protocol
now, the labs that did it would all have the
wherewithal to do it the right way, even with the

2.2

high-resolution linear data.

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

25

And it wouldn't really matter. Ιt doesn't matter if you run the compensation samples first and you collect the data compensated. still have access to the uncompensated data. So whether post-acquisition you run pre or compensation is not going to make that difference.

DR. DAVIS: My only point is I think we haven't asked the basic question, if we're really going to do quantitative data, should we do any compensation?

I mean, my data with what we do is if you compensate, there is no way you are going to get the same value from different instruments. And if the whole idea is to do quantitation where one lab gets the same answer as another, you should at least start with a base protocol where you understand the effect of compensation between instruments and all of that because if somebody --

DR. SHAPIRO: I agree with you that if the channel that you use for your quantitative measurement is one in which you don't expect any cross-talk, then a quantitative measurement is going to be cleaner.

But that is a separate issue from the fact that in the context in which we are talking about doing quantitative measurements, we are almost certainly going to have to use enough gating parameters that we have got to compensate to get the population on which you are going to do the quantitative measurement.

DR. MARTI: Bob, then Jim.

DR. HOFFMAN: First of all, there are not that many. With the existing instruments, your situation is limited to what accommodations of fluorochromes you can use for specifically reliable quantitation.

So like with the BD Systems -- people are going to ask. They're going to say like "Who's this?" You set up a system that is robust and reliable. We would use a PE. If we are going to quantitate with PE, we would use PerCP or PerQM. ABC doesn't have any. So you use accommodations other than FITC that don't have any cost docked in the PE.

The only two fluorochromes that Billy talked about, at least in the near future, quantitating, are FITC and PE. Those actually are the two that you can pretty reliably compensate for

2.2

Τ	on any system.
2	DR. LENKEI: But you have to
3	compensate.
4	DR. HOFFMAN: So you're just more
5	limited to what fluorochromes can be compensated on
6	and what combinations of fluorochromes you would
7	use in multi colors, for instance.
8	DR. MARTI: Jim?
9	DR. WOOD: Well, one of the things I
10	just wanted to bring up in terms of doing your
11	post-acquisition compensation; that is, some
12	instruments only have what I have called
13	subtractive compensation.
14	With that type of compensation, the
15	only thing you can do is two colors. Those two
16	colors are sought exactly by subtractive
17	compensation. Three-color cannot be. Four-color
18	can be if you have, for example, colors 1 and 2
19	interacting and colors 3 and 4 interacting, but you
20	can't have 2 and 3 interacting.
21	So taking that into mind, then some of
22	the older instruments really can't do compensation
23	at all beyond two colors. So you have to do
24	post-acquisition unless you choose the colors real

carefully, in which case, say, for example, if you

are doing three colors, the third color didn't need compensation to begin with.

Then in terms of choosing colors, one of the things to keep in mind is trying to minimize the cross-terms that exist. If, for example, you can keep one and two so that they are only interacting, three and four interacting, you don't have much two and three, then the compensation matrix will be very simple. And the instrument or the map won't be working quite as hard trying to compensate.

DR. MARTI: Kathy?

DR. MUIRHEAD: To get back to Jerry's original question, which is what do we need to worry about, I think the answer is if you under-compensated in your sample, it probably doesn't matter. If you, without realizing, over-compensated, you're going to lose data, and you're not going to know it, you're not going to --

stuff come through from other laboratories. They've sent it through me and asked and said, "Well, you know, we are having a problem. We know you do a lot of flow. Could you tell us what is wrong with this thing?" And I look at them and

DR. FISCHER: I've actually seen that

2.2

1	say, "It's compensated. Where is your data?"
2	My Calibur saves all my data
3	compensated. It's gone, which is why I think they
4	went to the uncompensated because now if you screw
5	it up when you do the printout, you can just simply
6	go back
7	DR. MUIRHEAD: It's arguably more time,
8	especially if you have got a system that enables
9	DR. SCHWARTZ: What takes more time,
10	doing that or another sample?
11	DR. MUIRHEAD: Not being able to get
12	the sample.
13	DR. FISCHER: The sample is not
14	available.
15	DR. SCHWARTZ: That is even worse.
16	DR. FISCHER: Compensated, you have a
17	chance of going back and doing things with the
18	data.
19	DR. SCHWARTZ: Yes.
20	DR. LENKEI: Compensation can be
21	dangerous because then you don't see. If you gate
22	on subsets of cells and aren't interested in double
23	positive cells, then if you type the compensation,
24	I don't see the double positive.
25	If you type the compensation, then I

...... ---|-----

1	see application of double positive cells. So it
2	depends from the clinical point of view. If we
3	send a Branch Lodicom to measure and the others
4	forget, then it is important. Otherwise, probably
5	to look at one pair and one a cell, there's a lot
6	being compensated, but it's not because it's not
7	effective.
8	But we studied that, and I checked both
9	sets. I think we have a very good compensation,
10	even checking on the negatives.
11	DR. HOFFMAN: The Calibur doesn't do
12	full-matrix compensation, but PerPC or PerPC10,
13	which doesn't have any spillover back into the FL3,
14	what we don't compensate is so it's really the
15	FL3 channel that will never be perfectly
16	compensated by most
17	DR. LENKEI: And the problem is that
18	you are inferencing Calibur. And then if you use
19	Calibur as compensation, sometimes you can get into
20	trouble. It happens.
21	So from this point of view, if you have
22	CD3 concomitantly with Calibur, then it's no risk.
23	Then you know how Calibur is looking, but you see
24	still that it's a good compensation.
25	DR. SCHWARTZ: Let me ask a question

1	that is kind of rhetorical. When you compensate,
2	do new populations appear or what is the
3	uncompensated is still the compensated, but it
4	looks pretty because it is
5	DR. SHAPIRO: The only pseudo new
6	populations are the ones on the bottom of the
7	scale. There is some work being done to deal with
8	that. I don't know. Maybe this would be an
9	appropriate time to show that slide.
10	DR. SCHWARTZ: I mean, the compensation
11	doesn't make things appear that weren't there
12	before. So other than making it look pretty, why
13	bother? You can do gates.
14	DR. HOFFMAN: That's actually not quite
15	true. I mean, the example I used of being very
16	densely stained, double stained, CD45, FITC, and a
17	very dim DE. In a normal dot plot, in that
18	example, you have to resolve those uncompensated.
19	DR. SCHWARTZ: So things do appear when
20	they're compensated?
21	DR. HOFFMAN: Resolution of the
22	DR. SHAPIRO: No, they don't really.
23	DR. MUIRHEAD: Well, I think he's
24	asking, do they become more discrete?
25	DR. SCHWARTZ: Could you

...... ---!----- ----

1	DR. SHAPIRO: The mathematical distance
2	between those in the linear space
3	DR. SCHWARTZ: But could you find the
4	population so you can do quantitation on it? That
5	is the question.
6	DR. FISCHER: The answer is no
7	sometimes.
8	DR. MUIRHEAD: But if you I think don't
9	
10	DR. WOOD: That's not really true.
11	DR. LENKEI: Yes, you can, but it
12	depends on the
13	DR. MUIRHEAD: You can.
14	DR. WOOD: If it's not distinguishable
15	when it's uncompensated, it will not become
16	distinguishable.
17	DR. FISCHER: The problem is if you
18	have the bleed-over, how can you tell if bleed-over
19	if you're looking at it from the quantitation,
20	until we get to the point where we can do two-color
21	quantitation
22	DR. WOOD: Compensation is a crutch.
23	Okay? Once you understand what the problem is and
24	understand what the clusters are, then you car
25	actually solve the problem on a routine basis with

uncompensated data.

2.2

DR. SHAPIRO: Yes, but compensation isn't a crutch for a human in the sense that when we are working, we start working. The data that we collect are collected in what I will call a color space. So just you use a three-color thing.

We're basically using green fluorescence and yellow fluorescence and orange fluorescence. What we want to get from the green fluorescence -- or let's say green, yellow, and red. What we want to get from green, yellow, and red is fluorescein, phycoerythrin, and PerCP or PECy5 or something like that.

The green signal is mostly fluorescein, but it's got some PE and maybe a -- well, it probably doesn't have very much PerCP or PECy5. The yellow signal is mostly PE, but it's got the chain and probably maybe some of the other things. The red signal is probably going to have a little PE in it, probably not very much fluorescein.

The compensation gets us closer to the numbers that we expect to quantify the individual labels, which, in turn, is what we need to quantify the antibodies found per cell.

And so in that sense, the compensation

is not a crutch. The compensation is necessary to get us the information. Compensation was basically invented at Stanford to be able to sort cells using that kind of a gate.

DR. STETLER-STEVENS: Can I make a comment about observations on compensation that it is not perfect when you are doing it manually? I have someone really good doing compensation, and I have really intelligent people. But it's not perfect. And you have a range of fluorescence that you're looking at.

One of the cases I showed you early on was when we were looking at an antigen trying to quantitate it, when we kappa in one tube and lambda in another tube, we see differences. We see a difference when we have an extremely high level of bright staining with the light chain in the one tube and it's negative in the other.

The antigen that we're quantitating changes. It shifts. And this has to do with compensation issues. Yet, it looks well-compensated. Yet, it's enough of a shift to change the numbers. If you're not interested in quantitating, you say, "Look, it's positive." And that is your answer.

2.2

So if we're doing clinical, you know, leukemia immunophenotyping, it is perfect. But when it comes to quantitate, you see shifts in the numbers of the fluorescence. It has to do with it has to be compensation because it is another antigen that is either positive in one tube and negative in another. You see differences.

DR. SHAPIRO: I think the summary compensation is -- we were talking about English majors the other day. This is not who wrote Shakespeare. Compensation is a mathematical process. You know, there is an equation to solve, and there is a right answer. And that is the way it's done.

In terms of what we need to do if we are going to do quantitative flow cytometry, clinical or otherwise, you have to use matrix compensation for just the reason that you said. Manual compensation will give you data with which you feel comfortable, but you have no guarantee that you have the right numerical answers.

So we don't need to discuss this anymore because basically if you want to do this right, then you have to do it on an instrument which allows you to do matrix compensation,

2.2

1	preferably on one that keeps high-resolution
2	digital data.
3	I would venture to say that the labs
4	that pilot this are all going to have access to
5	that equipment. And the labs that want to prove
6	this in the clinic are going to have to acquire
7	that equipment.
8	It would be very nice if the
9	manufacturers made the software, made the use of
10	those instruments as easy as possible, but, as
11	Einstein said, no easy.
12	DR. HOFFMAN: Just a small correction.
13	You have to do correct compensation. Okay? Like
14	in the case of the
15	DR. SHAPIRO: Okay. Yes, yes.
16	DR. HOFFMAN: It does not have to be
17	matrix as long as you are correctly compensating
18	the channel fluorescence that you are compensating.
19	DR. STETLER-STEVENS: Which is
20	DR. HOFFMAN: But it does have to be
21	corrected, and it can't be to whatever your taste
22	is as to what the data should look like.
23	DR. LENKEI: But it just may take you
24	to use adjust to correct for this type of
25	high-intensities in some because you make the

1	compensation adjusting to one tube which you run.
2	So it would be the same problem.
3	DR. SHAPIRO: No, no. There would be a
4	right way to do it. I wouldn't worry about that.
5	I don't think the intensity is as big an issue as
6	
7	DR. LENKEI: No because you titrate the
8	in-tube art. Then you cannot
9	DR. HOFFMAN: No. There is only one
10	correct setting. If you don't change your PMTs and
11	you are using the MPE, there is only one correct
12	setting. The data may not look the way you want it
13	to look. If they would be broad for I agree,
14	but that is the way it should work.
15	DR. MARTI: And then I would like to
16	try and summarize this so we can move on to the
17	next comment.
18	DR. D'HAUTCOURT: I will make one more
19	distinction. It is not only manual versus
20	automatic compensation, but it is also hardware
21	versus software.
22	In my opinion, we must agree with the
23	finding about three-color. There is no art work
24	possibility. So there is only one way to do
25	multi-color. It is to do the inverted matrix.

1	This is only done with software.
2	DR. SHAPIRO: You can actually
3	implement that matrix in hardware.
4	DR. D'HAUTCOURT: Yes.
5	DR. SHAPIRO: So yes, you're right.
6	That's correct. Basically hardware compensation is
7	going the way
8	DR. MARTI: You know, several years ago
9	Carlton wrote a paper on compensation and pointed
10	out very well the application that you get in
11	hardware if you try to do that subtraction first.
12	Of course, there was an exchange of
13	letters between him and Mario over exactly what
14	that meant. Then Mario published three papers back
15	to back in <i>Cytometry</i> dealing with not only
16	compensation but data exploration.
17	I think that you have all been in the
18	field long enough that you must have seen
19	publications in the New England Journal of Medicine
20	and <i>Blood</i> that have lousy histograms.
21	When you start looking at four-color
22	data, it is frightening. I mean, it sends
23	shudders. I mean, there is probably only ten
24	percent of four-color that is probably just going
2.5	to be gorrout

1	DR. SHAPIRO: The question I wonder
2	about is clearly you said a journal. A good
3	journal sends something out to maybe three
4	referees. A paper these days, it's got gels. It's
5	got microarrays. It's got flow. It's got this.
6	It's got that and the other thing.
7	So I don't think flow is isolated. I
8	think there is a lot of crappy array data out there
9	and a lot of crappy gel stuff.
10	DR. VOGT: Yes, right.
11	DR. MARTI: If you think standardizing
12	flow is great, you ought to try 18,500 spots on the
13	microscope.
14	DR. VOGT: Gridlock is right. There
15	is, by the way, an NCCLS microarray committee,
16	which is moving quite expeditiously or they
17	exchange e-mails regularly. I have seen them. I
18	haven't looked at them, but we hope to have some
19	forum for discussing that at the CCS meeting in
20	November.
21	DR. MARTI: Just to see if I have
22	interpreted or heard correctly, at some level, at
23	perhaps three but certainly four and more, this
24	group would recommend automated compensation inside
25	if that's possible.

And ideally somebody made a comment 1 that the clinical labs that want to move toward 2 quantitation in the setting of three or four or 3 4 more colors is going to have to acquire --5 DR. SHAPIRO: Let's say high-resolution because, in fact, I think that if you talk about 6 7 the accuracy of present methods, that the Coulter pulse 8 approach, which does not do digital 9 processing but which gets a 20-bit number, is 10 probably slightly more accurate than the digital 11 pulse processing approaches. 12 And as we are able to convert more bits 13 worth of data, the distinctions will go because ultimately full digital is better once you 14 15 get enough resolution, but we don't need to argue 16 about that because you can get high-resolution 17 linear data. 18 And, actually, as I said, even with 19 cytomation, with log amplifiers, if you digitize 20 log data to high resolution, then you also get to 21 the point where you can convert to linear log and 2.2 back. Ultimately what we really need is for 23 24 the instruments to have the gains calibrated so you

can change the gain and figure out what the new

Т	compensation settings are going to be. That is
2	doable, but how soon it will take to implement
3	that, I don't know.
4	DR. HOFFMAN: I agree with that
5	statement. If what you're saying is that you want
6	to have the capability, the flexibility to
7	quantitate on any of your fluorochromes, that is
8	true.
9	In any of the existing systems, even
10	with four colors, if you choose the right
11	combination of fluorochromes and the right
12	fluorochrome is quantitated on
13	DR. LENKEI: Yes.
14	DR. HOFFMAN: I mean, you can do that
15	perfectly well within your equipment.
16	DR. LENKEI: If I had been stuck, you
17	told me that after four colors, the matrix
18	compensation was really good. I think on my
19	Calibur, that is the best I can do, quantitation.
20	DR. MARTI: The fact is that's where
21	you can automatically start looking for bad data in
22	the literature.
23	DR. LENKEI: Yes.
24	DR. MARTI: The PECy monitor.
25	DR. LENKEI: Yes. And I don't think
	1

Τ	that any contents would be recommended for
2	quantitation because too many subsets of data.
3	DR. QUINTANA: What about correct
4	compensation? Correct compensation can be
5	correctly set with the lower-level instruments if
6	it's done properly and it's the right fluorochrome.
7	Is there any other form of algorithm that has a
8	different name matrix? Coulter is using a matrix.
9	So that seems to be what is
LO	DR. QUINTANA: It's available in the XI
11	now as well as the FC500.
L 2	DR. MARTI: Are there any other
L3	mathematical methods?
L 4	DR. HOFFMAN: The correct compensation
L 5	actually covers
L 6	DR. QUINTANA: The XL software
L 7	DR. HOFFMAN: It does either what we
L 8	call conventional
L9	DR. QUINTANA: Right.
20	DR. MARTI: Okay. On that note, I am
21	going to conclude that
22	DR. SHAPIRO: There's something I want
23	to show related to compensation. And it's also
24	related to log scales. I think it's important. So
25	it's in a late-breaking news section of the fourth

1	edition.
2	DR. VOGT: Does compensation work if
3	you don't have the cables hooked up?
4	DR. SHAPIRO: I think there are some
5	people in my lab who think so.
6	DR. VOGT: Maybe it works better.
7	DR. SHAPIRO: Here it is.
8	DR. VOGT: Good.
9	DR. SHAPIRO: One of the problems that
10	you run into, one of the problems that you run
11	into, with high-resolution digital data or not
12	quite high enough resolution digital data, at the
13	bottom end of the log scale when you do a
14	conversion is that you run into what we call the
15	picket fence, in fact. And they just start to get
16	kind of grainy. This is particularly bad with
17	compensated data.
18	With compensated data, you have an
19	additional problem. The problem is whenever you
20	see a cluster, you always tend to draw data around
21	it. So we tend to say, "This is different from
22	these guys," but, actually, these are all the
23	negatives.
24	It's hard to see them on a dot slide

because you have got a substantial chunk of the

negatives clustered against your axes. The reason for that is that when you do this subtraction, we are taking a deterministic number and subtracting it from a random number.

Down in this neck of the woods is where all the noise lives. So every so often when you do the subtraction, you end up with a negative number because you're really looking down around zero. And it's a fluctuation on that zero.

So you can see this in uncompensated data. And it typically gets worse when you compensate data. So what happens is that things fail ungracefully. If you draw a contour around it, it looks like you have three clusters here when there is actually one only cluster.

One of the problems here is that the log of the negative numbers is undefined. The log of zero is minus infinity. So when you try to display this stuff on a log scale, there is no place to go.

The log scale is just a convenient dualization. The advantage of having high-resolution data is that you can do your statistics on the linear numbers. The log scale is very nicely displayed, but it has this failure in

2.2

that if you have got numbers that go down below 1 2 zero, it chokes up. So the question is, is there another 3 4 scale that you can use that has the advantage of 5 compressing the high-end data and expanding the low-end data but not blowing up when you hit zero. 6 7 There are a few. At the cytometry 8 development workshop, which is an annual event for 9 serious hardware jocks and software jocks, that is 10 held in Asilomar, California every fall, this subject has been kicked around for a couple of 11 12 years. 13 There were several approaches that were suggested. Jim Woods suggested that we do what 14 15 in audio and use what is called a they do The compander turns out to have the 16 compander. 17 same problems as a log amp when you get to zero. 18 Mario Roederer, who is now at NIH, and 19 Dave Parks and Wayne Moore and some other folks at 20 the Herzenberg lab and Adam Treister and Tree Star, 21 who was also in the Herzenberg lab, were kicking 2.2 around a biexponential transform. This is a transform that has got a lot 23 24 of coefficients. And it basically uses hyperphonic

science and you don't want to know. If you take

this transform and apply that -- so the reservation I had about this is that, you know, if you give people access to these coefficients, they are going to want to tweak them the way they tweak the knobs out of a machine. That's bad.

For sure, at least half the people who want to do the tweaking shouldn't be doing it. So if you can make a one size fits all or one size fits nearly all version of this thing, then this is good.

So this is actually done with a beta version of FlowJo. I think Dave Novo is working to put the same stuff into MCS Express. I don't know about Winlist. And logical is Wayne Moore's term for this transformation.

When you get here, you get the scale where you can accommodate a broad range of data. And your negatives now are from one cluster. The dotted lines show you where the negative values are, zero points. So everything looks good, looks like the kind of cluster you want to see. And we should all live happily ever after.

Now, whether it some weird things start happening on higher ends of the scale, I don't know. My approach, my counter-proposal to this is

2.2

if, for some reason, we can't get this out in the 1 field, my counter-proposal is when you see a picket 2 fence, just remember that that picket fence has a 3 sign on it. And it says, "Beware of the data." 4 5 If this doesn't work out, then I think what we need is a data that grays out everything. 6 You can put the numbers there, but you can't show 7 the dots. That way nobody is tempted to gain on 8 9 junk. 10 Bob? 11 DR. HOFFMAN: Joe Hart has been working 12 with the guys at Stanford University. 13 DR. SHAPIRO: Okay. 14 DR. HOFFMAN: And they have been 15 trying, basically tweaking the knots on that 16 algorithm and see maybe what setting of that 17 transformation works best and doesn't give you 18 artificial sort of looking data on all sorts of different situations. 19 20 next I think version of The the 21 software that comes out will have a compromised 2.2 algorithm in it like this. So we won't have the 23 picket fence or at least you will have the option 24 of using a different axis to do this transform

display.

1	DR. PURVIS: This is really, though,
2	just an axis.
3	DR. HOFFMAN: It's just a display.
4	DR. PURVIS: So you're still collecting
5	linear data, displaying the linear results on a
6	transformed axis, correct?
7	DR. SHAPIRO: Yes. What this means,
8	what this reflects is that the linear values at the
9	low end, some of them are negative. And that is
LO	more so in compensated than uncompensated.
L1	DR. HOFFMAN: But it's not just them.
L 2	You're displaying data on a log scale. It can give
L 3	you artificial peaks,
L 4	DR. SHAPIRO: Yes, yes.
L 5	DR. HOFFMAN: even if there is no
L6	peak
L 7	DR. SHAPIRO: Right.
L 8	DR. VOGT: It is true that that is
L9	still for the I mean, that still log scale in
20	terms of the peak recognition would be the same.
21	DR. HOFFMAN: No, it's not a log scale.
22	DR. SHAPIRO: It's not a log scale. I
23	mean, you notice that.
24	DR. VOGT: Well, that's not trying to
25	go to 100. It is quite different than

1	DR. SHAPIRO: It's a compressed scale,
2	but the idea, the point is half the time until we
3	had digital processing, the log scale reflected
4	the log scale wasn't really a log scale because the
5	log amp was not really linear along that entire
6	scale. So the log data were always a little bit
7	bent out of shape.
8	The point is that this is a display.
9	This facilitates visualization. All data
10	processing is done on a linear
11	DR. HOFFMAN: What I am getting at is
12	peaks wilt and look different than they would
13	DR. SHAPIRO: The numbers are all the
14	same. The data
15	DR. HOFFMAN: No. The data is not what
16	I am talking about. No. All I am saying is with
17	beautifully normally distributed in log space and,
18	you know
19	DR. SHAPIRO: It will still log
20	DR. HOFFMAN: They disappear. And it
21	may be shouldered.
22	DR. SHAPIRO: As you know, it is really
23	not
24	DR. VOGT: Holding the low end.
25	DR. WOOD: It is kind of what you are

doing is you are moving in the low channels from something that is more linear looking to something that is exponential as you go further out.

Actually, in the histogram over here on the left, the buildup on the axes is really a function of the fact that the channels are varying in width. That is, any time you have a histogram where the channel width goes from something that is infinitesimally small up to larger and larger values.

Your peaks out in the middle, which looks like a separate population, is really the second part of the distribution. That is, half is on the axis. Half is out in the second population. And, practically speaking, that peak occurs about one SD away from the point where -- one SD away from the mean because your mean is actually there at zero on your noise.

And so that is really a -- the reason that you have the split there is because of the fact that the channels closest to the axis are so narrow. They're infinitesimally small. And then as you go away from the axis, as you usually go out, they become broader and broader so that they collect more --

2.2

Т	DR. FISCHER: We understand that. Try
2	telling that to somebody who is not used to it.
3	DR. VOGT: Well, I guess my question is
4	I would be inclined to agree with Howard that it's
5	better to not play these tricks and get I mean,
6	if you look at that nice little cluster at the
7	right end there, you really are not getting a good
8	picture of the measurement process.
9	DR. SHAPIRO: No. You're getting a
10	fine picture of the measurement process. The
11	linear data are the same. This is a display scale.
12	What we are saying is that these are the optical
13	illusions. I mean, that is closer to the real
14	state of affairs than either of the distributions
15	on the left.
16	DR. VOGT: Because it is not bounded by
17	zero?
18	DR. SHAPIRO: Well, because it shows
19	the bad because it does not make a distinction that
20	shouldn't be there.
21	DR. WOOD: If you think of the
22	DR. MARTI: It establishes they're
23	negative. I think this is a wonderful improvement,
24	Howard.
25	DR. SHAPIRO: Well, I had nothing to do

1	with it.
2	DR. VOGT: But they're negative because
3	the compensation algorithm is
4	DR. SHAPIRO: They're negative.
5	DR. MARTI: Well, they're negative.
6	DR. SHAPIRO: The compensation
7	DR. VOGT: They are negative.
8	DR. SHAPIRO: The compensation
9	algorithm this happens with uncompensated data.
10	You are more likely to end up with negative values
11	with compensated data than with uncompensated data.
12	But if you have values that are down near zero
13	DR. WOOD: But negative values are
14	real.
15	DR. SHAPIRO: Yes.
16	DR. WOOD: Once it restores, is this
17	trying to take the baseline level of noise and put
18	it at zero, which means there is stuff on the other
19	side? You're trying to set your zero at the center
20	of the
21	DR. SHAPIRO: Bear in mind that if you
22	are dealing with a scale of well, this goes from
23	100 to 10^5 . If you know of an analysis that goes
24	from a 4-decade window, a million modules down to

100 modules, this stuff is down in models. I mean,

1	there aren't that many instruments that are going
2	to take care of 100 models.
3	DR. MUIRHEAD: Is it fair to say that
4	this is a way of trying to visualize populations
5	that are there without creating artificial ones?
6	It's not really important for gating but that in
7	terms of how you are going to quantify it, you're
8	going to have an effect because you're not
9	quantifying based on that transformer. You are
10	quantifying based on the underlying data.
11	DR. FISCHER: Mostly for reporting out
12	to people who aren't used to looking at the data
13	and understanding where the problems lie.
14	DR. WOOD: It's a display function
15	solely.
16	DR. VOGT: Right, but it will be used
17	for data. I mean, that's I think
18	DR. FISCHER: Yes, that is the
19	DR. VOGT: That's how it could
20	influence your results. It would in that case not
21	be just a display tool. It's actually part of the
22	analytical process.
23	DR. FISCHER: What we are dealing with
24	here, I call it
25	DR. WOOD: What this is is cluster

...... ---|-----

knowns for the human being. Okay? That is, the 1 human being is expecting certain clusters to occur 2 based on the antibodies that are being used. So if 3 4 you orthogonalize everything, then you can think in 5 antibody space. And a human can then do clustering group things based what they feel 6 and on 7 intuitively is going to happen. 8 Now, as far as a computer is concerned, 9 it doesn't matter what the real orientation is. 10 The computation on the raw data can be done in any 11 space. 12 DR. VOGT: Given that the pathologist 13 or cytometrist is used to looking at certain clustering displays and that's actually -- I have 14 15 compared it to looking at tissue through 16 microscope. I mean, you see these patterns, and it 17 is very important. 18 So is it true that this display would 19 not too much disturb or perturb the people, that 20 they will still be able to pick out their leukemic 21 clusters in the --2.2 DR. WOOD: Yes because what. is happening here is if, say, for example, you were to 23 24 have the luxury of having a full linear display and

you could actually look at the big wraparound

display and pick out the clusters. You would see 1 2 what you, too, want to see there. What this does is it goes from at the 3 4 lower channels to something that is linear because 5 if you take the log function at the low channels, it's almost linear. And then it starts taking off 6 7 and doing its bends, as do the compression. 8 And so at the low channels here, you 9 are almost linear in your approach or your display. 10 And then as you go further and further out, it starts compressing it. It actually goes according 11 to the amount of information that is out there 12 based on the standard deviation. 13 So at the low channel, where you need 14 15 the fine resolution to see the small clusters, you have it; whereas, out at the far end, at the high 16 17 end with high gate, the high values, you don't need 18 the resolution out there. And so, therefore, you 19 can start bidding things in bigger groups. 20 And so in this sense, it goes based 21 upon close to the information content, if you will, of what is out there. 2.2 What about the sources of 23 DR. LENKEI: error when it's from the clinical diagnosis? 24 25 will be the cost for us to know the process and

	it s correct:
2	DR. VOGT: Well, that's sort of what I
3	was asking. I mean, if you found that you have to
4	pick out these clusters in order to
5	DR. SCHWARTZ: It's going to look the
6	same.
7	DR. SHAPIRO: Zoom display. At the
8	bottom, you look in at 100 channels. At the top,
9	you can see every data point is on the channels.
10	DR. VOGT: Right. I understand that.
11	I'm just stating an operational question. Okay.
12	Well, that's interesting.
13	DR. MARTI: Howard, thank you for that.
14	I wonder if before we take a coffee
15	break, if we could get started on what was the next
16	topic, which is QC. How are you doing now? How
17	are you going to go about QC in your laboratories
18	for clinical quantitative blood? Don't everybody
19	speak at once.
20	DR. PURVIS: QC3 bead setup standard
21	sessions.
22	DR. MARTI: Maybe this would be a good
23	time for you
24	DR. PURVIS: I would like to hear what
25	everybody else has to say, instead of standing up

1	and saying what I do.
2	DR. SCHWARTZ: I think somebody should
3	know what you do.
4	DR. MARTI: Everybody in favor of
5	having Norm lead the discussion?
6	DR. SCHWARTZ: That's it. Yea, Norm.
7	DR. MUIRHEAD: Somebody has to start.
8	Go for it.
9	DR. SCHWARTZ: Show us how it should be
10	done.
11	DR. PURVIS: I would like to have heard
12	some of your comments before
13	DR. MUIRHEAD: You will. You will.
14	DR. PURVIS: I did all of this on the
15	plane Wednesday night flying in here. So
16	essentially what I did was took a bunch of my other
17	presentations that I have given at other times,
18	compiled them all, and they're up here now. So
19	some of this is probably not going to fit right in
20	with just QC. So we will scan through them real
21	quick.
22	This is comments that I have had
23	before. Why do we have to standardize? I think it
24	is pretty self-explanatory. We want to be able to
25	do it intra-laboratory as well as inter-laboratory

standardization.

2.2

Here is an example of why. CD8 FITC and CD4 PE measured on two different instruments. Can you tell me whether that is the same sample? Can you make any kind of assessment off of that? Quantitative? I mean, we could say something about percentages probably, but could we directly prepare the intensities off of this?

I think this is all about consensus here. Basically I base my decisions and my interpretations on the historic data that I have seen, what my personal experience is. Yours is going to be different. So it's a group of people sitting around a slide looking at the scope and, yes, all in favor.

Next one. Well, here is the data we distributed from those same two sets of plots in a quantitative space. It's putting it on a quantitative scale: a, b, c's.

What we have there is the same sample run on two different instruments with two drastically different instrument setups. So it kind of goes back to what we were talking about with Jerry's stuff the other day. His ended up that we had different samples. And I didn't catch

that in his introduction to the data. 1 This one 2 truly was an instrument setup issue. Just by running MESF beads to knowing 3 4 what that piece of these antibodies were, I can do 5 this. Okay? And that's what we want to be able to get to so we can compare data. 6 7 DR. VOGT: So, Norm, then the blue data was set up with presumably a lower PMT so that the 8 9 resolution --10 PURVIS: What we lost was DR. the 11 information. negative What we lost the 12 negative. Therapeutic capabilities, this is why we 13 looking at quantitation. And we have 14 therapeutic monoclonals, cell signal, drug 15 pathways. I think we just need to be focused on 16 surface markers, but there is also a distinct need 17 18 to be able to do quantitation for cytoplasma as 19 well and nuclear. So there are a number of 20 important issues. You have got to standardize. 21 I would go so far as to say we need to 2.2 standardize how we do our instrument setup, but if we are going to go to absolute quantitation, as I 23 24 showed you a while ago, if what we are interested 25 in is the positive expression and not so much

negative, then, even by applying 1 negative is 2 quantitation, we can standardize. I am going to go back and say this over 3 4 and over again. There has to be agreement in the 5 standards. I know that we can dead with bias. has a bias in one direction for PE and Bangs has a 6 7 bias in the other direction for the PE, but I think that 8 there needs to be the true absolute 9 quantitative value that we are working with so that 10 apples are apples. This here, well, I don't know. Yes, it 11 12 would be great if we could define what the lower 13 limit of quantitation needs to be and then set up our instruments and standards capable of resolving 14 15 that. That is into the future. Okay? But, Norm, suppose I said, 16 DR. VOGT: 17 actually, the lower one were closer to the last one 18 and getting closer to the middle one and furthest 19 away from the top one. 20 is DR. MARTI: Yes. Why that? 21 Everyone wants to set up their -- well, you know, 2.2 from a regulatory standpoint, it is the old issue. The minute you mention the word "standardize," 23 24 then you take flexibility out of the system. 25 that is what people don't even know that they are

2	DR. VOGT: I think that is a major part
3	of it. I think those are three very good pullout
4	points from this conference.
5	DR. PURVIS: So, as I've given some
6	other talks, essentially what we have got to do is
7	concentrate in this one. Set up standardization,
8	quality control and quality assurance programs,
9	quantitative reagent quality control and
LO	standardization. The standardization there is
11	something. It's not absolute standardization. It
L 2	is how we are going to evaluate it; and then
L 3	procedural standardization. We have discussed that
L 4	numerous times already.
15	DR. VOGT: As in preps and that kind of
L6	thing?
L 7	DR. PURVIS: I put this slide up mainly
L8	to get across the point that we are a laboratory
L9	that has seriously been performing standardization
20	for a long time. We have multiple sites. We have
21	multiple instrument platforms that we are working
22	with.
23	We are in a process. Currently we have
24	got 15 Epics going, but we have 6 FC500 installed.
25	And we're in the process of replacing the XLs with

opposed to.

the FC500s for a number of reasons that have already been pointed out here with the digital processing, the 20-bit linear data access. There's a number of reasons that we wanted to be able to go onto this platform, not to mention resolution, sensitivity issues that we have got.

Anyway, the other thing that we do and that I have been required to do is to go out to principal investigator sites, go in and set up their instruments, and allow them to participate in some of the clinical trial work that we do.

So I have got to set up their instrument and also train them on the procedures that we use in the actual processing of the samples because it is not just instrument standardization. You have to standardize the procedures. I think that is what we are going to have to do here.

But not all assays are standardized the same way. So we are going to have to look at a number of variables. So it does become experimental. It is an experimental process, each one.

DR. VOGT: Just to stop there for a second, where do people learn how to prep? I mean, basically in the laboratory they happen to start

2.2

working in, I would guess.

2.2

We haven't talked at all in this conference about there are a lot of didactic exercises in instrumentation and setup and none in preparation.

DR. QUINTANA: What happens, Bob, for some of the training -- BD does the same thing -- is that they have customers like that would be running the automated CD4 systems. And they come for training. They get trained on those processes, what they do. They might get training in general but then on the individual.

So I would imagine when clinical assays, clinical quantitative assays, come out, that we will be training people, purchasing or using, starting to get new instruments and stuff like that, that they are going to be trained at the manufacturers also on the specific methods that they use for setup.

DR. VOGT: I think that would be very important for deliberations of this type of thing to have communications or some impact on those training programs. And then also the people who already have prep training and buy a new instrument probably don't either get that much or get trained

1	that much when they come to learn about their new
2	instruments.
3	DR. PURVIS: And I think one of the
4	other things that needs to be pointed out and I
5	normally do this I can't use your automated
6	instrument setup. Because I have BD, I have
7	Coulter, they don't give me the same instrument
8	setup. So I have to go to another program.
9	DR. HOFFMAN: You use the BD kit to set
10	up the instrument and try to use the same kit to
11	set up Coulter.
12	DR. PURVIS: And you're automated, your
13	compensation, everything that you all are doing,
14	I've got one over here and one over here. How am I
15	going to make these instruments look the same?
16	DR. FISCHER: Is that because we don't
17	have one uniform standard that everybody should be
18	using for setup of instruments?
19	DR. QUINTANA: They are different
20	protocols.
21	DR. PURVIS: And there's a number of
22	differences within instruments.
23	DR. QUINTANA: They're optimized
24	reagent systems and software, other systems.
25	DR. PURVIS: I am not going to take

credit for it. The man sitting right back there is 1 2 the one. DR. HOFFMAN: I didn't take credit. 3 4 The fact that you set up systems for each of their 5 instruments, you need to set up a system that is probably --6 7 DR. PURVIS: It covers everything that 8 I can possibly go into. So there are still some 9 other instruments that are sitting out there that I 10 have to go into principal investigator sites and set them up as well. So we have had a tremendous 11 12 challenge in doing this. 13 We will go on to the next slide. DR. MARTI: I don't think I would hold 14 15 my breath waiting for the manufacturers in their training courses to do much about standardization 16 17 procedure. I would think about going to the lab 18 where the procedure is being done and seeing if I 19 could transport it from that lab back to mine. 20 I think given the experience that we 21 have had with Abe's course, both in this country 2.2 and internationally, that the kind of stuff that 23 you are talking about, when I am in the setting for 24 those courses, the questions I get from the users

those questions

would certainly suggest that

1	weren't answered when they went to the
2	manufacturer's course, such as "What is the
3	difference between a log scale and a relative log
4	scale, relative fluorescence scale? Which scale
5	are you using?"
6	DR. PURVIS: Which scale am I using?
7	DR. MARTI: No, no. When you just ask,
8	most people don't know. I mean, 60 percent of the
9	AIDS cohort that was a factor that emerged
10	did not know which scale they were using. They
11	still don't know. They use whatever the default
12	one is.
13	DR. PURVIS: There is so much
14	terminology that is used there, RCI
15	DR. MARTI: Oh, yes. They keep
16	inventing new ones.
17	DR. PURVIS: I think we have got to
18	come up with a name so that we know whether we are
19	talking about channel numbers, log channel numbers,
20	or actual fluorescence intensity, I think,
21	simplifying those terms down so that we are at
22	least talking about either intensity or channel
23	number.
24	When you're in the linear scale,
25	they're one and the same. It's a relative

...... ---|-----

	lincensity. When you're in a rog, rog chaimer
2	numbers do not reflect the actual relative
3	intensity, fluorescence intensity. We have got to
4	come up with some consistent terminology to use.
5	DR. HOFFMAN: I think we should stop
6	using the term "log channel number." It's really
7	outdated. We don't need it anymore. We know that
8	in the current software, if you are going to be
9	using log amplifiers, the data is as linear units.
10	DR. PURVIS: We still use log channel
11	numbers in doing our QC.
12	DR. HOFFMAN: We do, too.
13	DR. VOGT: Well, Bob, I think this will
14	be an unnecessary conversation in two years or so,
15	but back when everything was analogued, I objected
16	to the use of linearization because it made this
17	presumption in channeling.
18	I thought the raw data is how many
19	events fell in this particular bin after it had
20	been log-amplified and that was the real data. And
21	it's all coming out on this convenient
22	linearization is misleading.
23	Now we have gone through a transition
24	point here where some analog, some digital. When
25	we come out the other end in full digital, then I
	1

Τ	think you would be exactly right. And I guess
2	we're not far away from that now. And that may
3	make things a lot easier.
4	From the standpoint of fluorescence
5	intensity, the definition of fluorescence intensity
6	that is in the NCCLS guideline is the reading on
7	the instrument. I mean, that is actually what you
8	get. It can be a needle going from zero to
9	whatever.
10	DR. PURVIS: But that's some relative
11	intensity.
12	DR. VOGT: They're all intensities.
13	DR. PURVIS: That needs to be pointed
14	out, though.
15	DR. VOGT: Well, the fluorescence
16	intensity is
17	DR. PURVIS: If I could change that
18	number that you've given in the result by changing
19	the voltage
20	DR. VOGT: Right, but the fluorescence
21	intensity still is the instrument reading. The
22	fluorescence radiance is the actual amount of
23	fluorescence. And how the two of them relate is
24	the subject of quantification. That is what you
25	are trying to establish.

1	Any reading off any instrument is a
2	fluorescence intensity. And you don't use the term
3	"relative," but they are all relative. The log
4	scale is relative, too. It's just that it's
5	probably quicker.
6	So all fluorescence readings are
7	relative. And they're all fluorescence intensity.
8	And then the way that relates to the actual amount
9	of fluorescence is
10	DR. PURVIS: What did you call it?
11	DR. VOGT: The radiance.
12	DR. SHAPIRO: Actually, most of the
13	scales of optical measurements are really
14	photoelectron scales because they're what comes out
15	of the detectors.
16	DR. VOGT: Right, but that is still
17	considered fluorescence intensity.
18	DR. SHAPIRO: Yes, yes.
19	DR. VOGT: The equations that put those
20	things into
21	DR. SHAPIRO: That's true, but we are
22	not getting into figuring out how many watts or
23	even how many photons there were because there is a
24	quantum efficiency thing there that we
25	DR. VOGT: Right, but there

1	DR. SHAPIRO: Well, yes. What we know
2	is coming out, we know that somewhere in the
3	detector, there are photoelectrons coming out. And
4	everything proceeds from that.
5	DR. VOGT: Right, right.
6	DR. SHAPIRO: I do think it would be
7	I mean, when I took a Coulter course years ago,
8	there was no discussion whatsoever of the scale per
9	se, what is it that you are measuring. And I know
10	that none of the manufacturers have time with new
11	users particularly to train them in optical physics
12	and electronics and so on and so forth. There was
13	no discussion of what this scale means.
14	DR. HOUTZ: I think with the methods in
15	the software dissertation, you see the educational
16	benefits. I mean, it's a whole week's worth, and
17	it's pretty intense. But it's still much more
18	basic than what we are talking about here.
19	DR. VOGT: Well, is it all basic or is
20	it just more useful? See, I have always argued
21	DR. HOUTZ: Specific to the product,
22	too, though.
23	DR. VOGT: And it's completely to the
24	product. I think this stuff can be presented in an
25	hour, the basics of what it is. I don't think

1	people even know when they come to this course what
2	the I don't think they think of it as a
3	fluorimeter. They think of it as a flow cytometer.
4	I think one hour would be plenty of
5	time to explain the flow cytometer as a
6	fluorimeter. That would include and probably end
7	with a discussion of the scale.
8	DR. HOUTZ: To a basic user?
9	DR. VOGT: Yes, yes. I think people
10	are unnecessarily afraid of this. You know, it
11	ain't the question of the origin of the universe.
12	It's just a tool.
13	DR. HOFFMAN: I was really talking
14	about the physics, about what is laser, what is NP.
15	There are some slides. We can introduce those.
16	DR. VOGT: Right.
17	DR. FISCHER: The thing is that most of
18	the education programs, and I have been through
19	several of BD's, one of Cytomation the main
20	focus is on how can you get back to your lab and
21	plug a sample on that instrument and get data out.
22	Whether you understand how it is doing it or not
23	is not the big thing.
24	I would argue from a lot of the users I
25	have worked with I don't want them to understand a

...... ---|-----

1	lot of this stuff because they are going to want to
2	start monkeying around with instruments they have
3	no business even touching.
4	DR. VOGT: That becomes a
5	self-fulfilling prophecy. And you wind up with a
6	dumbed-down group of people operating your
7	instruments. I argued against that 15 years ago,
8	and I will argue against it now.
9	DR. STETLER-STEVENS: We talked about
10	details of education
11	DR. VOGT: Wait. Mary Alice, I think
12	it is a forum to talk about it because this is what
13	you are trying to do. And it can start with the
14	pathologists would be my suggestion, that they
15	don't know what they are doing either.
16	DR. STETLER-STEVENS: I think that the
17	place to discuss it we do need more education in
18	so many areas, period. But are we going to solve
19	this problem right now?
20	DR. VOGT: No, but here's the thing,
21	that it's all quantitative flow.
22	DR. STETLER-STEVENS: Then let it be
23	more in education.
24	DR. VOGT: Everyone is saying, "Oh,
25	God." It's all quantitative. I mean, we're

it's

quantitative. If it 2 wasn't quantitative, wouldn't have clusters. 3 4 And I'm saying that you can begin there 5 and in an hour, you can get it over with. And if you did that, you would have a community that 6 7 understood that the cluster doesn't appear there 8 because it's a cluster. It appears there because 9 this is brighter than this and it was measured by 10 the instrument that way. It doesn't matter if it is PMT or an 11 12 I would spend no time discussing PMTs. 13 DR. FISCHER: Yes. We're not arquing with that. 14 15 DR. VOGT: Right. But I never heard it 16 presented that way. And, actually, I still don't, 17 you know. And in the NCCLS process, we kind of 18 pick through it, that, you know, this isn't that 19 hard. It should fall out. As Jerry always said, 20 the instrument should fall out of the equation. SHAPIRO: Well, at this meeting 21 DR. 2.2 that you very nicely got me sent to in Belgium last week, this is a meeting to try and define standards 23 24 for biomedical metrology of all kinds, flow 25 cytometry being a relatively minor thing here.

putting these clusters in places because

1

What is metrology? Metrology is measurement science. The answer is that everybody who is doing research is measuring something. They all think of what they're measuring, but they don't think of the common measurement issues. So nobody knows what metrology is, but everybody is measuring something.

DR. FISCHER: All the metrology we did when we worked for a prior company, everything got traced back. Whether we measured temperature, whether we measured weight, whether we measured volume, everything went back to the standard that is kept at the National Institute of Standards and Technology.

Somewhere back along the line, someone made the decision that this is what we are going to measure everything by. Time is involved in that as well. If you look certainly in any GOP laboratory, it ought to have the little stickers on things that say that they can back to a NIST-traceable standard.

There is nothing for setting up our instrument that goes back to a NIST. This is instrument qualification and operational qualification, instrument and operational

2.2

qualification for these instruments. We don't have that for a flow cytometer, although I understand from BD that they're now going to be putting one of those out.

We don't have that. And that is why a lot of the differences that we have come up with now are theirs because we don't have any standards that have already been set up with the instruments.

DR. STETLER-STEVENS: Can I say that for education purposes, why don't we, you and whoever else wants to, come up with a list of what you think needs to be addressed in education, maybe not the first week? When you're just starting to learn how to turn the flow cytometer on might not be the best time, but maybe at the cytometry meetings, we should suggest manufacturers to courses that we think would be beneficial or we could even within the format of the society, the Clinical Cytometry Society. They have educational workshops. We could address this issue forwarding it to these groups what we think needs to be addressed in education.

DR. FISCHER: There's a lot of enough local user groups out there that they could run a half-day educational meeting. Instead of always

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

1	having Howard come down and present data to us,
2	they would have Howard come down and teach us some
3	of this stuff.
4	DR. SHAPIRO: The idea is that the book
5	has always been designed to include pretty damn
6	near everything you would want to know.
7	DR. FISCHER: Yes, but, you know,
8	Howard, an awful lot of people won't pick up a
9	book.
10	DR. SHAPIRO: Well, I suppose education
11	
12	DR. FISCHER: I hate to say it. I love
13	to read, but I hate to say it. I pick your book up
14	mostly when I'm sitting in the lab going, "I don't
15	remember that." Then you go find Howard's book.
16	I'm not taking it home with me to read.
17	And a lot of these people, that's the
18	only time. They're going to pick up the journal
19	article that is concerned with their science before
20	they are going to pick up the book to figure out
21	how to make their science work right.
22	DR. SHAPIRO: There were a few people
23	who wanted it to be an electronic book, but most
24	people didn't. So in the introduction there, I
25	said, "The bottom line is you can still read it in

1	the bathroom."
2	DR. STETLER-STEVENS: So, Randy, you
3	are on the Education Subcommittee. Let's move on.
4	DR. VOGT: See how easy this is, Norm,
5	for you to stand there.
6	DR. SHAPIRO: Who else needs to check
7	out?
8	DR. STETLER-STEVENS: Should we put
9	Howard on it, too?
10	DR. VOGT: All right.
11	DR. SHAPIRO: Well, balance me with
12	Alice.
13	DR. MARTI: Let's take a break.
14	(Whereupon, the foregoing matter went
15	off the record at 10:08 a.m. and went
16	back on the record at 10:40 a.m.)
17	DR. VOGT: This is it, Norm, is that
18	right?
19	DR. PURVIS: Yes, sir.
20	DR. VOGT: And so where did we want to
21	go on this? I've forgotten. Yes. We have gotten
22	through what, four slides? Is that right? Eight?
23	Hey, we're really moving here.
24	DR. PURVIS: I guess continuing now, I
25	agree that education is something we need to work

with. There are a number of different setup options available to us. BD has one. Immunotech has one. I'm sure Tri-Dimension has one. Ortho had their own. So everybody has their own idea about how you are going to set up.

One of the problems is that they are going to teach you their method, but that doesn't work when you have multiple instruments, multiple assays that you are working on.

Dr. Schwartz came up with QC Windows -how long ago was that? -- as a way of standardizing
our flow cytometers. I think it is a very good
approach, an approach that we have been using
forever now. We have modified it some, but for the
most part, it is the same general idea that Abe was
putting forth two years ago.

So we do an initial instrument setup using QC Windows now from Bangs as well as other labeled beads and stained normal donor leukocytes, healthy volunteers. I won't claim that I'm normal or anybody else in my lab is normal.

We go through an initial setup. We lock everything in. We don't set up our instrument unless it's -- we develop a very good QC program around our instruments to verify that our

2.2

specifications,

performing properly. And that is all based on our 2 daily OC. 3 We use here a combination of QC3 beads. 4 5 full spectrum beads, CalBRITE APC beads depending on whether we are doing a Calibur where we use APC 6 7 signals; FC500s, where we are using the flow set 660s and 8 beads, Flow Set 770s. So it is 9 customized, but everything is truly being based on 10 the standardized setup in many of the different 11 channels as I possibly can get a standardization 12 problem. 13 We do multi-color staining and do our compensation on that, verify our compensation on a 14 15 daily basis. So not only are we looking at our 16 beads and knowing that our compensation is turned 17 on when we are looking at the beads and they should 18 be falling in a certain range, but we also go back 19 and multi-color the same sample so we can verify 20 that that is good. 21 Then we also took --2.2 DR. STETLER-STEVENS: Do you approach 23 this --24 DR. PURVIS: A combination of both. 25 combination of both. For the most part, we found

are within

our

1

instruments

1	in our clinical area the samples that are
2	because those are in PECy5, Cy7, our procedure was
3	to the clinical trials area is essentially
4	freshly stained samples that they're doing the
5	basis off of because the samples are generally
6	DR. LENKEI: Stained for five days. We
7	stain always on a Monday, but it's for the
8	four-color. It's four colors. I would check
9	repeatedly. It's no change for this type.
10	DR. PURVIS: And I've seen that with
11	this. I would say you could do that without any
12	problems. To tandems, no. Even after they have
13	been put into a fixative and run, for the most
14	part, 24 hours later, you can still run them in the
15	compensation that you see initially compared to the
16	24 hours. It doesn't change.
17	But you will start seeing that tandem
18	degradation occur once you go beyond. So there we
19	do make sure that we are dealing with fresh stained
20	samples or something that is no more than 24 hours
21	old.
22	DR. TAMUL: Norman, do you use normal
23	leuko cells or do you do any of the commercial
24	controls?
25	DR. PURVIS: The clinical lab does run

1	some commercial controls.
2	DR. TAMUL: Like CD checks?
3	DR. PURVIS: Yes, CD checks or the
4	what are they called?
5	DR. TAMUL: Immunotrope.
6	DR. PURVIS: Immunotrope. Primarily,
7	it really goes with our lymphocyte cell-setting
8	stuff that we're doing for the leukemia/lymphoma.
9	There is really not something that is available for
10	us in that.
11	There are some stem cell controls that
12	we do use as well that are standardized. They have
13	a percentage that we ought to be hitting. We are
14	using those, but that kind of goes along with the
15	assay QC and not really the instrument QC.
16	DR. TAMUL: Okay.
17	DR. PURVIS: Okay. The other part of
18	what we do is our linear characterization. We can
19	do that either with quantitative or qualitative
20	beads. So I've listed those up here. And I've put
21	Quantum 1000, but you can also use the QuantiBRITE
22	beads, trying not to just show what I do but give
23	you all your different options.
24	That's essentially our setup in a

nutshell. So here is our modified QC Window setup.

So here is our modified QC window setup, pros and cons. What we are trying to get here is a common window of analysis on all of our instruments and as many of the different detectors as we possibly can.

We are going to base our compensation on biologic samples. I have a problem with using beads to base my compensation. I think for the most part they work all the time or they work most of the time, but there are cases where I have seen the bead compensation methods not work. So I tend to stay away from that.

We do one instrument setup from all biologic samples. And DNAs fall outside of this because you have to run DNAs special. Some of the cell line works that we are working with, you can't run cell lines at this high setting. Your cells' auto-fluorescence will be up on the second decade, and everything else is off-scale.

So in some cases, we do have stuff that we will run at some other settings, but for the most part, we establish our settings. We do our QC at those settings, verify our compensation is working at those settings, and that is what everything is being on that.

DR. LAMB: Where are your -- when you

2.2

say, "follow-up samples," that thing that comes to 1 mind is that --2 DR. PURVIS: That's what we use. 3 4 DR. LAMB: You have it done every day? 5 DR. PURVIS: Yes. And then we also use some of the patient samples that we do. We process 6 7 some 20,000 LL beads a year just in the clinical lab. And then we have other patient samples coming 8 9 in through all of the other labs. So we have a 10 steady source of samples that we go to. also go back and reconfirm by re-staining them the 11 12 next day if we needed to. It begins to address this approach. 13 14 The modified approach, using the beads, 15 linearity beads, begins to address our resolutions. I think that Jim and Bob have both worked out a 16 spreadsheet for actually looking at this in a much 17 18 better way using the rainbow beads or some other 19 beads to be able to characterize it. 20 So that is something that I would like 21 to incorporate in my QCs to look at that and see if 2.2 maybe not on a daily basis but at least on a 23 frequent basis, go to it and see if my instrument 24 is changing because your low-end resolution is very

important as well. So we want to be able to go

towards that, but we haven't at this time.

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

25

It allows us to do four-color instrument setup. Actually, that is moving to five-color now that we have moved to the FC500s. We're doing seven-color on our Altra. So this does work. We just have to have all of the materials.

Colors. It does not standardize your You can have an instrument -background. Okay? The XL is the Ortho instrument was one of them. one of them. The low-end resolution, sometimes we're pulling the negative cells out because we have really standardized on the high fluorescence intensity and tried to hit a mark there. And it will pull it out. That is something that you have to be aware of and look at. If your instrument is address it. it's bad, you need to And time-consuming.

The good thing is we do it once. And I have instruments that have stayed in this QC setup for over three years without having to go back and make other changes, even after having a major PM.

As long as the alignment has been put back in, they come right back into place. As long as you are keeping your instrument good and clean, you don't have flow problems, you don't have

_	liturates issues that are arrecting it, this does
2	work. So I am not running an automated system.
3	Yes?
4	DR. ORFAO: Do you also mean that they
5	remain stable for three years for a standard
6	DR. PURVIS: Our standard is
7	standardized as well. We standardize our scatter
8	off of the lymphocytes and
9	DR. LENKEI: Even when you have an
10	instrument service?
11	DR. PURVIS: Yes. If the engineers do
12	their jobs properly, yes.
13	DR. LENKEI: Yes, they do that.
14	DR. HOFFMAN: Do you leave it the same
15	and then you monitor what the
16	DR. PURVIS: No, I do not adjust. So I
17	am expecting it to fall into an acceptable range.
18	And as long as it is doing that and my compensation
19	is also working properly based on our verification,
20	then I am confident that the instrument is good to
21	go.
22	You will have some slight variations,
23	but for the most part, from those slight variations
24	and drops, temperature can have effects. There are
25	a number of things that can have an effect here.

The absolute change that it causes into 1 the compensation is not enough to warrant going 2 through and resetting it up for our clinical 3 4 applications without a doubt. 5 Some of our more quantitative assays, there have been some questions as to whether we 6 7 should be adjusting that. DR. DAVIS: How do you define your 8 9 acceptable range? 10 DR. PURVIS: This was something that we 11 defined years ago. I being an engineer would like 12 to tighten up our acceptable range more than 13 everybody else, but it was based on looking at the 14 variance in the instruments, a very good 15 instrument, and then defining it. I think we are using plus or minus 15 channels right now, but that 16 17 is log channels. 18 think that at bright intensities, 19 those log channels are problematic. So I would 20 rather go to the intensities and say, "We are going to allow this much of a variance." I would like to 21 2.2 tighten it up. I would vote for five or ten. 23 Well, that is going to DR. HOFFMAN: 24 depend on whether the manufacturer can actually 25 make the instrument and has designed it to be that

stable over whatever you are offering. 1 DR. PURVIS: That has been a problem, 2 but I would still think that tightening up probably 3 for me would be something that I would suggest I 5 would like to see immediately. DR. DAVIS: So you can look at it 6 7 statistically in of establishing 2SD terms 8 replicates. 9 DR. PURVIS: We have data that we can 10 go back and do that and actually tighten it up based on our historic data. And if I were to do 11 12 that based on my historic data and call it a 2SD cutoff, then we would probably be down around a 13 14 five range. 15 The clinicians really felt like I was tightening it up and taking an instrument off line, 16 17 that from their perspective, they weren't seeing 18 enough variance in the data or they couldn't even 19 see the variance in the data to warrant it. 20 So on the quantitation side, 21 there is a need to tighten it up and expect it to 2.2 be more stringent than that, but we are probably talking about 2SDs at the five-channel range. 23 Ιt 24 depends on which channels you are looking at

well.

Τ	If you're multi-laser and time-delayed,
2	that has been problematic. I definitely couldn't
3	expect that on my sorters, I don't think, multiple
4	laser sorting.
5	DR. HOFFMAN: Just one other question.
6	DR. PURVIS: Sure.
7	DR. HOFFMAN: Do you also leave the
8	compensation setting the same or do you change that
9	each day?
10	DR. PURVIS: Don't be silly. It's all
11	kept. It's locked in.
12	DR. HOFFMAN: So then you just check
13	that you have got appropriate compensation after?
14	DR. PURVIS: Right. Now
15	DR. SCHWARTZ: In fact, if it meets his
16	criteria, most likely the compensations are okay
17	because if the compensations weren't, it would
18	screw it severely. And then he checks it again
19	with cells to make absolutely sure.
20	DR. PURVIS: And we're going to go
21	through these quickly. If you want me to comment
22	more, than I will. But the initial instrument
23	setup is truly based on a fluorescence PMT setting
24	using QC Windows, where I have a target channel for
25	a bead that has been given to me in a COA. So this

...... ---|-----

is where I will still be setting this instrument up to.

One of the things that we do in our lab is when we get in a set of beads, we compare it to the old set of beads that we have been running with to make sure that we are not changing our instrument setup based on the manufacturer has made a mistake or something has occurred during transportation, which has happened in the past. So we verify compared to the old lot as well as our historical values.

We know that we should be running very consistent. So we adjust the voltage to obtain a target channel. And this is initially done with the compensation turned off. So this is the initial instrument setup.

We have done the fluorescence intensities now. We need to get the scatter detector settings standardized as well so we base that on our lymphocytes. Here we are using healthy volunteer whole blood. So for the most part, we are sitting in a very consistent pattern here. Most everybody's lymphocytes are good enough for us to work with.

We have our PMT voltage gain settings.

2.2

1	We have our scatter. Now we need to go through
2	and look at compensation. Now, this is where I
3	will differ from Mario Roederer and some of the
4	other people that are out there because I have
5	pathologists that I have to make happy.
6	When we do compensation, for the most
7	part, they don't want to see the flare at the end
8	resulting in sales in a second decade or third
9	decade or whatever it ends up being at. So they
10	won't need to bring it down so that it looks
11	orthogonal and everything has a flat top to it.
12	DR. HOFFMAN: So you're
13	overcompensating
14	DR. PURVIS: I am overcompensating to a
15	certain extent, yes. I walk a fine line with them.
16	I try to still have some events moving up into the
17	second decade. And then realizing that for the
18	most part, my actual test antibodies are going to
19	be much dimmer than what I set up here, I don't
20	have to worry about that, seeing that flare.
21	But I want to make sure that if I did
22	get something biologically, plasma cell or
23	whatever, that really jumps out there, that I am
24	not going to make the pathologists panic because

they have seen something that is like a 56-positive

or whatever we have got, the combinations, going in 1 there. They chase their tail, and then they come 2 after me. 3 4 All right. We do а biologic 5 compensation. I have listed here how we approach that is to get a biologic continuum. Each tube has 6 7 CD3, CD4, CD8 in it, ECD, PECy7, combinations that are Ortho combinations that we 8 9 might be using. 10 What you end up with, b-cells, 11 cells, and RT-cells, it makes it a very nice 12 biologic continuum there. So as we start to adjust 13 down here, I can see what my compensation is actually doing. Okay? 14 15 Some kinds of ideas of what we were 16 talking about before. You need two peaks or two 17 populations to base it on. I've got essentially a 18 continuum that I can base it on. 19 Go down again. The previous one I was 20 under-compensating. This one here I have overcompensated. I know all of you are saying, 21 2.2 "Why did he make it so bright that they're going out in the last channel and piling up out there? 23 24 That is causing all kinds of problems."

I want to see them out there. I want

to know what is going on out in that last channel or the channel before I hit the last channel so 1,022, I want to know what is going on out there.

I have to ignore those that have piled up in the last chapter. I don't know what their intensity is. The instrument doesn't know what the intensity is. It can't properly compensate. So I ignore those from the standpoint of looking at mediums or whatever and trying to get my compensation set up perfectly.

Next one. This would be fairly close to what I would call our compensation. I have gotten my team pass to accept that if they get something out there at this end, there is going to be a tail up there. They are really looking for a distinct population above that now. So they are accepting it.

You can see here what it is in the last channel. They are tailing way up there. They have to be aware of it also because that population, if you did something like a plasma cell that goes off-scale, it will look over in another.

If you are just looking at single-parameter histograms, it will look like you have got a population sitting out there. And you

2.2

1	have to go back and look and see if it is truly a
2	compensation issue where something has gone
3	off-scale and you haven't properly compensated it.
4	That's essentially how we go through the
5	compensation.
6	Next slide. I put this one in here
7	because I think there is a lot of confusion on the
8	users as to, man, let's use this log bias. Let's
9	put this artificial signal in here and use that
10	while we are setting up a compensation because it
11	makes it look so much better.
12	DR. HOFFMAN: Is that an offset that
13	you put in your software?
14	DR. PURVIS: Well, you could actually
15	do it on the Coulter software. You can turn on a
16	log bias. It's not stayed down into the list mode
17	file.
18	DR. HOFFMAN: Is that an offset on the
19	
20	DR. PURVIS: Yes. You can also do it
21	in Winlist. And it's just essentially they're
22	taking and redisplaying it into the events that are
23	down on the axis. They're redisplaying up into
24	this first decade. So this is our normal display.
25	This is with the log bias turned on.

If I start compensating down, you can 1 see that here, all of a sudden, I started getting 2 events that had gone on to the axis but are being 3 4 redisplayed back out. So it's showing a double 5 population there that really doesn't make sense. 6 7 Here that looks beautiful. I mean, I 8 would love to see compensation that looked that 9 way. If you look at it, really, what has happened 10 is I have got a huge number of events down onto the 11 axis so we don't see them there any more. And they 12 have been redisplayed here. probably 13 Same here. I still 14 significantly overcompensated there based on what I 15 am seeing. This is probably getting pretty close. So it is somewhere in between this one and this 16 17 one is what I would really be -- these are slides I 18 made a long time ago, before my pathologists kind 19 of loosened up a little bit. 20 Next slide. Data QC. At this point, 21 we have got everything set. I can go through this 2.2 setup in about a two-hour process. Now I would 23 average what my daily targets need to be for my 24 daily OC program.

So now I am going to start running with

my voltages set on, turned on, compensation turned on, everything set up the way it needs to be, or how I am going to be actually running the instrument.

I am going to start running my bead sets back through. I am going to do this over multiple days. And I may even make multiple measurements each day. When I establish what my target range needs to be, what my mean of that needs to be, and then we allow that plus or minus range to deal with, it is essentially just running those through and then also running our biologic samples and verifying that we have a consistent compensation that is going to work, there are not any problems. this going to be And then establishes our daily OC specifications that we have to be on a particular instrument.

One of the things that I think a lot of people have made a mistake of doing -- and I know that this is the case in some of the principal investigator labs that we have gone into -- is they will see this. They have a target range that they want to hit.

All of a sudden, something happens one day. They come in. They turn on their instrument,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

let it warm up, and it doesn't hit the numbers that it is supposed to hit. Automatically because we told them, "You are going to follow this if this is outside of this, you have got to reset up your instrument." They are going to go through some simple troubleshooting issues to see if that is what is going on.

Most times or one of the big problems that we were having was bleach was left in the line or something else. And the beads would hit that bleach before they made it into the flow cell, and things were all messed up.

So there is some simple troubleshooting that you can do. In 99 percent of the time, just by going back through and flushing the system, doing a prime, clearing any bubbles that might have gotten in the flow cell or maybe it was our sheath tank cap wasn't screwed down tight enough and we weren't pressurizing to the same extent.

Simple troubleshooting, 99 percent of the time, will get us right back in our range, and we can keep going. So that is why I am saying if we clean our instruments and stuff, there is no problem getting this to run for a long term.

Next slide. We will go over it. We

2.2

	don't need to go over this. Tou all know the
2	differences.
3	Next slide. Okay. Resolution and
4	sensitivity. This is just a comparison. One of
5	the things, when you are setting up an instrument,
6	you have got to know what you are dealing with and
7	what you are trying to be able to measure.
8	So here are some rainbow beads run on
9	the primary instruments that are out there. I know
10	that LSRN and LSRII are out there, but I don't have
11	access to those. So I ran the ones that I had
12	access to minus the FACScan.
13	You can see FACSCalibur results, the
14	populations. XL has a real big problem down here
15	in the low end resolving the populations. FC500 is
16	actually doing a better job than the Calibur for
17	this particular caliber, but this is very nice
18	resolution. I am very happy.
19	So when we are talking about
20	quantitative, I want to be working on this
21	instrument or this instrument. Low-level I don't
22	want to be trying to do it on the XL here.
23	DR. HOFFMAN: Have you cross-Calibured
24	the rainbow beads to I mean, those differences
25	in filters can give you because of the rainbow

1	beads
2	spectrum, especially in
3	DR. PURVIS: We see the same with
4	Quantum beads, the FITC. I don't think he calls
5	them Quantum anymore. I think they're going by the
6	catalog number or something.
7	That can have a problem. That can
8	introduce some
9	DR. HOFFMAN: I wouldn't necessarily
10	call it a problem, but just for making comparisons,
11	especially across instruments that are
12	DR. PURVIS: I know that I would have
13	the same filters in these two. Correct me if I am
14	wrong. Jorge is here.
15	DR. HOFFMAN: Is it 30/30?
16	DR. QUINTANA: It's 525, I think, times
17	10 ¹⁵ , yes.
18	DR. PURVIS: I'm not sure what the
19	caliber is. It's been such a long time.
20	DR. HOFFMAN: 30/30.
21	DR. PURVIS: So you're actually picking
22	up a little bit broader ranger here.
23	DR. SCHWARTZ: That's when you get a
24	better resolution on some of them.
25	DR. PURVIS: All right. But, anyway,

there are other routines that we can actually look at and can actually calculate. That will give us the A and B value that the two of you all have worked out. I would love to be able to start implementing that as part of my initial instrument setup and QC programs.

Next slide. Log linearity. I think it's important to know what you are working with and how well you can use it for quantitation. Here I have taken the rainbow beads and just used the old technique that I want to start with a low voltage and I want to increment my voltage up over and over again.

It should have eight peaks here. I've gated it, each of those peaks, off of one of the other detectors. Now I am looking at it over here in FL2. So I don't adjust this, and I am only adjusting FL2 up. So I can identify each of these eight populations based on the one detectors and then follow it on the other detector as I walk it up.

So I get very, very good information as to the median values on those as I walk it up. And at some point, I am going to start going off-scale.

I will be walking some of the populations off.

2.2

1	Next slide. Doing this on these three
2	instruments, this is the type of information that
3	you will see. This is one of the problems that we
4	have with the old log amplifiers. It approximates
5	a linear process, but it is not linear.
6	What I am displaying here is the delta
7	between those peaks, Peak 1 and Peak 2. In fact,
8	this one was Peak 8 minus Peak 7, 7 minus 6, or 6
9	minus 5, 5 minus 4. I did it on each one of them.
10	So I have got multiple plots here, and I can see
11	what they are doing as they walk through.
12	The XL has a problem. Down here when
13	they were in that first decade and a half where I
14	had problems with resolution, you can see that I
15	have got some weird behaviors going on. Sometimes
16	I would come across XLs that bode down. Other
17	times I would find ones that bode up. So it just
18	depends on what is going on in that calibration
19	that they have on the detectors.
20	Here on the FC500, you are getting
21	pretty good linearity across the entire range.
22	DR. SCHWARTZ: When you did that
23	walking, was it like one volt? At every volt you
24	made an increment? It almost looks like that.

DR. PURVIS: No, no.

25

This was five

volts. 1 2 DR. SCHWARTZ: Five volts? Yes, worked it up. DR. PURVIS: 3 4 think it was 5 volts, may have been 25. There was 5 a lot more on this one, but I did very small increments so I could actually see what I 6 7 getting there. This here causes a problem with our 8 9 quantitation because our four bead types that we 10 are using to get our calibration line, where you 11 are on that log scale can affect, give you a little bit of a wobble in, your calibration curve. 12 13 So you may get one set of beads that will give you this but have a different set of 14 15 beads that when you have different values, they fall a little differently on the scale, it causes 16 17 problems. 18 You have the same problem going on on 19 the XL if you have a peak that is falling in that 20 lower second decade. It's getting in there. Ιt 21 causes some problems. 2.2 The FC500 so far I haven't been able to

really see that. I do have this as being shown

where I was in that first decade and whether I was

And I think that is more a function of

slightly.

23

24

really resolving that population, I was getting a mass measure of the median channels, yes.

Next slide.

2.2

DR. VOGT: Norm, before you leave that one, that's an old technique and looks really good.

I just am curious about whether the folks here, particularly engineer types, would agree that this still may be the state of the art or way too preliminary.

We did guideposts. How do you do linearity? Of course, we use neutral density filters because you can get them, and they literally have eight or ten decimal places with beautiful density value. And they are NIST-certified. So there is reference material for that.

And you can put those new Kolinsky filters in front of you, Dector door in front of your expectation energy. But then the discussions with Bob pointed out that you are also filtering out the noise, the optical noise, that you would get from the particle in the flow cytometer. I guess especially toward the lower end of the curve, that will show you a linear response, but it won't have an anomaly there caused by a noise

Т	contribution. Is that correct?
2	DR. HOFFMAN: Also, to do the whole
3	scale, you need an awfully expensive instrument,
4	and I don't know if you necessarily want people
5	going in and trying to
6	DR. SHAPIRO: It filters a degree or
7	two. Generally speaking, when the stuff is with
8	the optical elements in the back
9	DR. VOGT: Then you screen things out.
10	DR. SHAPIRO: Even though you may have
11	many decimal places
12	DR. VOGT: Okay. So that's
13	DR. SHAPIRO: This is a nice method.
14	When you start getting down to the low end of
15	things, you may actually get back
16	DR. VOGT: That was going to be my next
17	question. Are there some PMTs that you can have
18	responses that your PMT is constant across your
19	different voltages you are studying?
20	DR. SHAPIRO: We are looking at it.
21	Essentially, the channel's difference on the log
22	scale is a ratio between fluorescence intensities
23	of the two peaks on a linear scale.
24	DR. VOGT: Right.
25	DR. SHAPIRO: That is going to be

1	constant. So that is what should be constant
2	across the board. The ideal response curve is one
3	of the most horizontal lines.
4	The thing is that there are different
5	kinds of log amps. The kind of log amps that are
6	in Calibur are basically the modules. One takes
7	over from another. That's why you have the waves
8	across the top.
9	On the FC500, where the whole process
10	is digital, then that's pretty close to the
11	horizontal line.
12	DR. VOGT: So we, then, agree that if
13	we are evaluating linearity response on a flow
14	cytometer, this is probably still the best
15	available method?
16	DR. SHAPIRO: The way I see it. And
17	the thing is that some log amp response curves are
18	stable and some are not. So if you have a stable
19	log amp response, having done that curve, you can
20	calibrate the log amp on a channel by channel
21	basis. And that is simply the way standardization
22	is going to the whole issue of calibration and
23	correction curve for the log amps.
24	DR. PURVIS: Are they doing that

digitally up at the software collection site?

1	DR. SHAPIRO: Well, I think what
2	happens is that somewhere in the digital
3	processing, they have the correction factor built
4	in. I can't give you the details for that, but I
5	know that they tend to do that.
6	Otherwise if you are doing digital
7	processing, you will be better off over the range
8	you are going to use. You still want to check the
9	amps.
10	DR. HOFFMAN: The only thing that I
11	would differently is in the plot, plot the mean
12	channel of, say, the lowest to the highest bead
13	versus the delta, rather than versus
14	DR. PURVIS: Sorry. Plot the what?
15	DR. SHAPIRO: Plot the mean.
16	DR. HOFFMAN: Then you can see where
17	your actual variation is on your scale.
18	DR. PURVIS: Okay.
19	DR. VOGT: So then the lines will no
20	longer be horizontal.
21	DR. SHAPIRO: No.
22	DR. MUIRHEAD: No it should be flat if
23	you have been reading it out on your intensity
24	scale, instead of on a
25	DR. HULTIN: My assignments are pretty

1	uniform assignments around a flat line for delta
2	between the peaks. They don't generally go up at
3	an angle like that. They're fairly horizontal.
4	DR. HOFFMAN: I am wondering why it's
5	falling off so quickly.
6	DR. HULTIN: Probably where the place
7	is running together and then when it's coming off
8	scale or
9	DR. PURVIS: It's not actually running
10	together because the way I gave it, it went back to
11	the previous slide. I am using one of the other
12	detectors holding it constant and getting a region
13	around it and explaining that region into another
14	histogram all by itself. So there is nothing in
15	that region or that population showing up there.
16	So what you are actually getting into
17	is that there is something going on once you get
18	out to the very end on the FC500 and XL. I will do
19	that in the future, put it on the
20	DR. HULTIN: The future will be halfway
21	through the last decade. After that, you have to
22	well, you just can't use the quantitation.
23	DR. VOGT: The other point Norm made
24	but I just want to emphasize this is that you can
25	have properly calibrated standards. And depending

...... ---|-----

1	on where you put your standard curve, you might see
2	shifts in the slope because if they fall into one
3	of the bumps or wells along that
4	DR. PURVIS: What happens if your
5	residuals are affected.
6	DR. VOGT: Your residuals are affected.
7	And then imagine what it is like when those
8	standards themselves were calibrated on instruments
9	with some misbehavior of this sort because
10	depending on whether that standard in that batch
11	fell into a bump or a well on that instrument that
12	was used to translate values, that can have the
13	effect of
14	DR. HOFFMAN: With what's there and
15	that's the delta channel. If you drew a sort of
16	best fit straight line through there, the variation
17	with what you're seeing is what I've seen. Usually
18	it's like plus or minus five channels, which is
19	about five percent. So that is the extreme
20	variation with the mean log amps.
21	I looked at 40-some calibers coming
22	through the back gate at one point, just comparing,
23	at least as they left the factory, how the log amps
24	were set up, basically doing the same thing,

comparing the means or channels of rainbow beads.

1	I was surprised how consistent they were.
2	DR. VOGT: And then two operational
3	questions. How far apart should these be ideally?
4	And I forget the second question. First, how far
5	apart should these
6	DR. SHAPIRO: A factor of two would be
7	okay, one and a half.
8	DR. VOGT: So a factor of two would
9	give you about 3.5.
10	DR. SHAPIRO: You don't want them to be
11	much more than a factor of two.
12	DR. VOGT: Right. You don't want a
13	real broad range because then you will miss bumps
14	or things in between. Shoot, I forget my last
15	question.
16	DR. SHAPIRO: For the stereo bands
17	here, you might could say 20 hertz with 20
18	kilohertz plus or minus half a decibel. That
19	usually sounds like a pretty good spec. But if you
20	do the math, a half a decibel is about six percent.
21	That, in fact, is the variability that you get on
22	the decibel log amps.
23	So if you try and quantify and you want
24	to quantify to two percent, then six percent could
25	be unacceptable. It sounds great in stereo.

...... ---|-----

1	DR. WOOD: At the low end here, the
2	reason that there are variations is that the
3	offsets either from background noise or actual
4	linear offsets in the amplifiers, if you are taking
5	the difference.
6	The amount of signal that you are
7	getting is asymptotically with an approach someday.
8	So you will at least actually get the XL. It will
9	either flare up or go down based on the offsets
LO	that are there at the low end.
11	DR. VOGT: That is a true non-linearity
L2	in measurement, then? Is that right, Jim?
L3	DR. WOOD: No. Actually, the
L 4	measurement is linear. The amplifiers are fully
15	linear. When you take a log of the magnet that has
L 6	an offset, the log transformation can't handle the
L 7	offset. Remember what I showed you before?
L8	DR. VOGT: Right, right, right.
L9	DR. WOOD: You end up asymptotically
20	approaching the offset value. Now, if you did it
21	in linear space, all you would have to do is the
22	shift in the lines from the offset. So if you
23	plotted these
24	DR. VOGT: As ratios in linear space.
25	DR. WOOD: in linear space, you did

1	it as ratios in linear space, they would be
2	perfectly straight up and down.
3	DR. SHAPIRO: I had some curves here
4	that are done on the channel scale and on the
5	voltage scale.
6	DR. VOGT: So that is a better way to
7	approach the machines that are doing digital
8	processing now, rather than
9	DR. WOOD: Right.
10	DR. VOGT: using their
11	DR. WOOD: Right, using the linear
12	space, all of your values. Then you will see that
13	the instruments are indeed linear all the way up
14	and down the scale. Your log transformation is
15	what is confusing you because you handled the
16	offset, but if everything was like MX^1
17	DR. MUIRHEAD: So your prediction is
18	that if you plotted this data, instead of taking
19	the delta on the log
20	DR. PURVIS: I can take the same data.
21	DR. MUIRHEAD: the ratio and the
22	linear scale, that it would go away?
23	DR. PURVIS: If what you did is use
24	real linear data, don't take the log numbers
25	DR. MUIRHEAD: Re-transformed, yes.

1	DR. PURVIS: not take the log
2	numbers but actually go back to the linear data,
3	what you will get is a line directly, a flat line.
4	The ratio will be the same, go up and down.
5	And, actually, I take that back. You
6	can't do the ratio because, again, the ratio won't
7	deal with the offset. You actually have to
8	DR. MUIRHEAD: You actually have to
9	plot it through the ratio of the slopes?
10	DR. WOOD: No. You have to actually
11	plot it and show that it is just going straight.
12	You take a particle and show that it gives two
13	lines. If you take two particles and they are
14	going to
15	DR. MUIRHEAD: The slopes.
16	DR. WOOD: The slopes are the same.
17	DR. MUIRHEAD: It would go
18	DR. WOOD: What you did is used real
19	linear data?
20	DR. VOGT: Oh, so a non-parallelism is
21	such a divergent slope, that could be a
22	non-linearity.
23	DR. WOOD: If you just think of
24	DR. PURVIS: If the slopes are the
25	same, then the ratio should also be in a straight

_	11116.
2	DR. WOOD: No, no. You have got MX
3	plus B1 and MX plus B2. If you take the ratio
4	back, then what will happen is as this goes to
5	zero, you will approach that ratio. And it will do
6	the same thing here.
7	But if you took these two lines and
8	plotted them, then you should see two lines that
9	are absolutely parallel, with the difference
LO	between them being related to your difference in
11	offsets.
L 2	DR. HOFFMAN: For two different
L 3	amplifiers, you mean?
L 4	DR. WOOD: That's right. Well, the
L 5	beads. The beads are different intensities. And
L 6	this works fine as long as the offsets are minimal
L 7	because what you are assuming here is that this is
L 8	all you have to look at. The problem is as this
L9	goes to zero, these don't.
20	DR. VOGT: But, Jim, from the
21	standpoint that the fluorescence intensities are
22	reading on the instrument, then the reading that we
23	get off really does become nonlinear because of the
	1

offset, because of the defect.

DR. WOOD: Right.

24

1	DR. VOGT: So the bottom line is that
2	
3	DR. WOOD: But it's only if you are
4	doing log transforming.
5	DR. VOGT: But it doesn't work in
6	DR. SHAPIRO: It becomes nonlinear on
7	the linear scale, but it's usually
8	DR. WOOD: No, no. It's still linear.
9	I can go back and reanalyze the data.
10	DR. SHAPIRO: Okay. But if you have an
11	offset, you have, let's say, a ten-volt offset in
12	your amplifier, then your signal should be one volt
13	or two volts.
14	DR. WOOD: Right.
15	DR. SHAPIRO: If you get a ten-volt
16	offset, 1.1 and 2.1.
17	DR. PURVIS: Okay. It's linear, but
18	it's not proportional.
19	DR. SHAPIRO: Right, right.
20	DR. PURVIS: Okay. What people are
21	assuming is that it should be proportional, which
22	is different from being linear. The upper parts
23	are linear. That is, it's
24	DR. SHAPIRO: Yes, but if you are
25	talking about linearity, where you want G2 would be

1	plus G1
2	DR. PURVIS: That is a requirement to
3	be forced but not linear.
4	DR. VOGT: Well, you see, that is what
5	I am getting at. I think maybe we are talking
6	about from the standpoint of quantitative flow, we
7	don't want to make measurements in a range where
8	that kind of behavior getting back to the
9	practical question, if we did it in linear space
10	with the ratio and we want to see that offset
11	effect occurring, we would not want to use values
12	that were in that range where we started departing
13	from linearity.
14	DR. WOOD: This is proportional here.
15	It is not proportional here. It is linear all the
16	way across. Linearity and proportionality are two
17	different things. That is, anything that is
18	proportional is liner, but all things that are
19	linear are not proportional.
20	DR. SHAPIRO: Wait a minute. A linear
21	system is defined as proportional, as a system
22	where the a linear system is vaguely defined as
23	a system where the output is proportional to the

In the definition, if you talk about

input.

24

Т	linear systems, you put twice as much in, you get
2	twice as much out. That is the systems definition,
3	engineering definition, of a linear system as far
4	as I can remember. That means that that system is
5	nonlinear.
б	DR. VOGT: Actually, throughout the
7	whole range, but you just don't see it until you
8	get down to where the offset value is starting to
9	influence your
10	DR. SHAPIRO: Yes. I mean, it seems to
11	me that that is sort of intriguing. And the whole
12	simple processing will the way you define a
13	linear system, a real linear system, is one with no
14	offset, one where output is proportional to input.
15	DR. MUIRHEAD: You mean to be linear,
16	you have to go through series is what I am hearing
17	you say. Is that correct? Is that what you are
18	saying? That is what I am hearing you say.
19	DR. SHAPIRO: Yes.
20	DR. MUIRHEAD: That is different than
21	what, for instance, I would think of
22	DR. SHAPIRO: What we are looking at
23	essentially is anyway, those are there where
24	temperature is stabilized. Actually, two of them
25	are from Stanford, and the crappy one is from my
	i

	121
1	lab.
2	DR. MARTI: That's this one, the bottom
3	one.
4	DR. SHAPIRO: That's the crappy one,
5	right. I think I did not identify the
6	manufacturer. The top curve is from a different
7	kind of log amp. There is one kind of log amp that
8	you can make with a single log amplifier. It
9	doesn't have the multiple stages.
10	You can get a fairly flat response
11	curve on that one. So it gets deviant at the top
12	and at the bottom. It's fairly forgiving, although
13	if you plotted the response curve, it is not the
14	parallel to the horizontal line.
15	Those modules, I have actually used
16	those modules, have to use those modules in the
17	machines that they built. The company that makes
18	them stopped making them. So I can do that. And,
19	clearly enough, the high-resolution peak detectors
20	that I use replacing my log amps from that company
	1

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. MARCHINICTONI DO COCCE CZCA

come from the same company cost just about the

sectors use multi-stage log amp modules. That is a

PD instrument, that or a BD instrument. I don't

Meanwhile, most of the commercial

same.

21

22

23

24

1 know which one.

2.2

So, again, you can see the effect of the multiple staging. But if you've got the curve, it oscillates around the line. So it's pretty stable. Overall, the others and those two are about even.

Now, if you get a single-stage output module to work well, it's tricky. And this is a single-stage output module. It doesn't work well.

You can see that they are -- you know, this is not too bad.

Here there is a notch. That notch will translate itself into tieing the little distributions where there should be unimodal distributions if you are at the wrong point on the measurement scale.

So once I discovered and actually sent the thing off to Stanford to get it measured and they said, "Boy, that sucks," you know, once I learned these tricks, I started buying more expensive log amp modules.

But you're still okay if you can find them. I mean, this is easy to do. This basic technique was worked out by I guess Dave Parks and Wayne Moore and Marty at Stanford. They presented

1	it. It went back to the 1988 ISAC meeting. And it
2	had some antecedents and some stuff that was done
3	in Jonassey's lab.
4	DR. MARTI: We found slight ones, too.
5	DR. VOGT: The reason I am asking these
6	questions is people will try to push anything too
7	far. I will, for instance. And what I am trying
8	to get at is how can we define a lower limit,
9	lowest limit of quantification on cytometry?
LO	DR. SHAPIRO: Go look in the first
11	decade.
L 2	DR. HOFFMAN: First, you have to say
L 3	what the acceptable error in your quantitation is.
L 4	Then you can look at all the contributions to
15	error and figure it out.
L6	DR. VOGT: For the practical end-user,
L 7	is there a way that you can say doing what Norm is
L 8	doing here, for instance, I would say that where
L9	his curves start to go out of the linear range, if
20	you plot it the way you all are suggesting, I would
21	no longer want quantitative measurements from that
22	point down or that point up.
23	DR. STETLER-STEVENS: However, in
24	clinical specimens, if you are going to have a
25	range of expressions, you are going to have most

1	probably who fall in the acceptable range, but some
2	are going to fall in an unacceptable range.
3	About the only thing you will be able
4	to do, then, is to say it's below the last
5	acceptable range determination, period.
6	DR. VOGT: Well, you can report the
7	less than or greater than figure or you can
8	adjustment your PMT, recalibrate your instrument,
9	and get a value, which is probably unnecessary.
LO	DR. STETLER-STEVENS: It was a
11	consensus item that we put on the list.
L 2	DR. SHAPIRO: On most instruments, you
L 3	will probably think you are learning between the
L 4	top half of the bottom decade and the bottom half
L 5	of the top decade.
L 6	DR. HOFFMAN: Good. That's a good rule
L 7	of thumb, but if you have actually measured your
L 8	response, then you would have to decide what is
L9	your acceptable error in your quantification. If
20	you say it's ten percent, you can go further into
21	the bad part of the log amp. If you say it's two
22	percent, then you can't do the log amp at all. If
23	you say it's five percent, then you work in a
24	fairly large
25	DR. SHAPIRO: Okay. But what would

...... ---|-----

Τ	that be
2	DR. PURVIS: I'll tell you. We found
3	this. We do quantitation off of this. And we have
4	gotten reliable, reproducible results on the
5	Caliburs that have this type of response.
6	I just brought this up so that we could
7	see that we need to be aware of it.
8	DR. SHAPIRO: The curve that I showed
9	represents the way the Calibur runs across the
10	range. And I think that you eschewed things
11	somewhere by using the multiple scale.
12	DR. PURVIS: And I will replot that so
13	that I can
14	DR. MARTI: It won't be scales. Each
15	one of those scans is
16	DR. SHAPIRO: It does span the range,
17	but there are some things. Voltage gain is not
18	linear. PMT is not linear with slight voltage. So
19	if he's got a linear voltage scale, he is going to
20	sort of play accordion numbers on this.
21	DR. WOOD: I think the answer to your
22	question is it depends on the complexity of the
23	analysis that you are willing to put into it. You
24	can remove offsets as long as the offsets are

non-random.

1	If you're dealing with just random
2	noise at the bottom, then you really can't ever get
3	rid of that. But if what you are dealing with is
4	something consistent as an offset, then you can't
5	start to be rid of it.
6	DR. HOFFMAN: Once you've got the
7	calibration curve of the log amp, basically, I
8	guess Cytomation does this in sort of an invisible
9	way. But, you know, Kathy, you have done this
10	decades ago.
11	DR. MUIRHEAD: You could cross it over.
12	Nobody wants to do it.
13	DR. VOGT: Now, again, is that also
14	true of these digital plots, that you could correct
15	the answer from an output of a digital machine by
16	
17	DR. SHAPIRO: FC500 is a digital
18	machine. And so is the XL.
19	DR. WOOD: Right, as long as what
20	you're dealing with is not a random drawing,
21	non-random contributions. You can take those
22	non-random contributions out.
23	DR. VOGT: And that's what we see on
24	those curves splaying others in the upper
25	right-hand.

1	DR. WOOD: Right, non-random
2	contributions.
3	DR. VOGT: Those are consistently
4	shaped because they are non-random.
5	DR. WOOD: Right.
6	DR. VOGT: And, therefore, you could
7	make adjustments to that.
8	DR. WOOD: Right.
9	DR. VOGT: Or you could say for the
10	practical user because this is probably down in the
11	range of auto-fluorescence and stuff like that. I
12	mean, I am just trying to get a sense here of where
13	we could advise people not to try to do this
14	without doing something special that we don't want
15	to go into here.
16	DR. SHAPIRO: You don't have to do this
17	with beads. We have used nuclear density pulses,
18	and we have used signal generators on the log amps.
19	
20	DR. VOGT: Right.
21	DR. SHAPIRO: The problem is whatever
22	you do on the circuit against the log amp almost
23	always has more offset than we had.
24	DR. PURVIS: The main point here is
25	you've got to be aware of it.

1	DR. STETLER-STEVENS: So we say that
2	there is a range you probably should be doing
3	quantitation within. If you've got to go outside
4	of that range, you have to do a whole set of pain
5	in the neck
6	DR. SHAPIRO: It's not being a pain in
7	the neck.
8	DR. STETLER-STEVENS: But it's not
9	going to be done in a clinical lab.
10	DR. SHAPIRO: It's not going to be
11	done. Look
12	DR. STETLER-STEVENS: So you've got to
13	let them know that they have to jump through the
14	hoops to do it.
15	DR. SHAPIRO: If you need to do this in
16	a clinical procedure, there are people out there
17	who do this. That is to say, first of all, you
18	have the manufacturers. They develop some
19	software. And then you have third party software
20	developers.
21	The third party software developers
22	were probably ahead of the manufacturers in
23	producing software and reported units and what you
24	do in the quantitation. The third party software
25	users will be out there and developing whatever you

Τ	need to calibrate and whatever you need to analyze.
2	DR. STETLER-STEVENS: At this point,
3	there is a range that you should be doing
4	quantitation in unless you have specific
5	modifications to your
6	DR. VOGT: You see, Mary Alice, that
7	doesn't work either. In Lance's data, a lot of his
8	measurements are down in that range because it is a
9	smear from the negative population going out.
LO	DR. STETLER-STEVENS: He does do the
11	extra steps. What I was saying is that we can have
L2	as a recommendation that there is an optimal area
L 3	for doing quantitation unless you go through
L 4	additional steps.
15	DR. VOGT: he doesn't really do
L6	anything to correct for that. None of us can.
L 7	DR. MUIRHEAD: No, but he verifies that
L 8	he is getting
L9	DR. HULTIN: That's why the normal
20	distribution is fairly aligned. It's because he
21	has a sloppy measurement down there.
22	DR. HOFFMAN: That really doesn't
23	matter.
24	DR. VOGT: So what we're saying is if
25	the median value of a distribution is greater than

1	the first half decade or so, then you're probably
2	safe.
3	DR. WOOD: Well, if you just look and
4	say that your noise is in the lower portion of the
5	first decade,
6	DR. VOGT: Right.
7	DR. WOOD: then you have to get up
8	into the first part of the second decade. No. If
9	you're at the bottom of the first and you move up a
10	decade, then you're dealing with roughly a ten
11	percent error. If you go up another decade, you're
12	dealing with a one percent.
13	So based on what your measurement can
14	tolerate, you can now look at even the bottom of
15	the second or the top of the first based on what
16	you can tolerate and then accordingly adjust from
17	there.
18	DR. PURVIS: Biologic error.
19	DR. HOFFMAN: Right. Ten percent is a
20	pretty
21	DR. SHAPIRO: Also, again, when we do
22	our analysis, it goes from 100 to a million
23	molecules. The first decade is 100 molecules to
24	1,000 molecules. A hundred molecules most of us
25	find a little

1	DR. HOFFMAN: Suspicious?
2	DR. SHAPIRO: So when you're talking
3	300 molecules, that begins to be credible. It
4	certainly is at 500 molecules.
5	DR. MARTI: We've got to move on.
6	DR. MUIRHEAD: Can I make one point?
7	The big benefit that Norm gets from standardizing
8	the window of analysis. Okay. If you do have a
9	curve that isn't absolutely flat, at least you know
10	you're in the same place on that curve and you're
11	not changing your calibration.
12	DR. SHAPIRO: There are ways of
13	analyzing this to fix it. And nobody is going to
14	make the clinical labs do it. If it needs to be
15	done, it needs to be done. Somebody will get the
16	job done.
17	DR. PURVIS: You all are right. I wish
18	I was as smart as you all. If I had moved to place
19	on channel numbers and each one of these curves was
20	lined up on top of one another, it would have been
21	in the same point, instead of looking like it was
22	all over the place.
23	Quantitative calibration. I am not
24	going to spend a lot of time. It's four peaks,
25	eight peaks, however many peaks you want to have.

Make	your	evaluation.
------	------	-------------

2.2

We have always or I have always done it off of the log channel numbers. I understand there are some issues with that. Basically, the calibration line that I get as far as the slope intercept, whether I do it off of linear values or the log channel numbers, I am getting the same curve. So I do understand what you're talking about at the low end. So that is true.

So, anyway, you are going to get a slope and intercept. Can we say anything about the threshold? I don't know if we truly can this way, but that was something that was defined before.

Next slide. There you go. There is my regression line.

Next slide. Accuracy, highly dependent on the manufacturers' assignments. This was a problem that we had defined a long time ago, showed that there was a big difference between BD and FCS, Flow Cytometry Standards Corporation. That was resolved in the PE or to some extent resolved. We still have some differences there.

We have relationships that we can use to define and use multiple standards or ways of calibrating our instruments, making sure that what

1	we have got is right. That is one of the things
2	that we do, compare back over.
3	A rainbow slope should be the same as
4	my QuantiBRITE slope. If they're not, then
5	something is not right. So that's when I call
6	Nathan up and say, "Look, my assignment don't seem
7	exactly right."
8	DR. MARTI: What about your MESF slope?
9	DR. PURVIS: That's what I'm saying.
10	If we are comparing the slope off of rainbow beads
11	
12	DR. HOFFMAN: What are you using for
13	your calibration? Why are you using the rainbow
14	beads?
15	DR. PURVIS: There are numbers that are
16	assigned to that. They are not MESF. I forget
17	exactly how you define your
18	DR. WANG: They are quantified on one
19	instrument using actually similar kinds of
20	procedures as what people normally use. And there
21	is just relative intensity between peaks. We need
22	to use a number. We cannot just say a ratio,
23	whatever.
24	You got actually a cross-particle rate.
25	Rainbow was whatever sets of particles you feel

2	DR. PURVIS: The reason I used rainbow
3	was because it's very stable. It's existent. The
4	slope that I get off of that corresponds to a
5	four-decade instrument, which I should have. If I
6	run my PE MESF beads, it should also give me four
7	decades. If it doesn't, then something is not
8	right.
9	DR. HOFFMAN: I think using the rainbow
10	beads or other hard value assessed to beads like
11	that is great. I use them all the time. As a rule
12	or with a scale, a relative scale, they are great,
13	but the values that are assigned
14	DR. PURVIS: I don't use those
15	assignments.
16	DR. SHAPIRO: What you do is you put
17	the rainbow beads on the same scale as your PE or
18	fluorescein beads. And these are the secondary
19	standards.
20	DR. HOFFMAN: You can cross-elevate.
21	DR. SHAPIRO: Yes.
22	DR. MARTI: The slope should be the
23	same.
24	DR. PURVIS: And that's all I'm saying.
25	The slope should be the same. I have a way of

comfortable with.

1

1	verifying that a new set of beads that I get in and
2	I can compare it to the old lot. I can compare it
3	back to the rainbow beads. I can do a lot of
4	things to verify it. What I am getting into the
5	manufacturers is good.
б	I am having to do a lot of that work,
7	and I wish the manufacturers were doing that work
8	for me so that I didn't have to verify it all the
9	time.
10	So we had the QuantiBRITES. We had the
11	PE MESF calibrations going.
12	Quantitative procedures. Do you want
13	me to keep going or do you want me to scan over to
14	the antibody QC?
15	DR. MARTI: Probably that. Go to the
16	antibody QC? Okay.
17	DR. PURVIS: Okay. One of the things
18	that we have done is that we go through a complete
19	antibody evaluation. And that's part of my group,
20	Analytical Systems, had done, has been doing now
21	for most of seven years.
22	The qualifications for all the CD
23	groups that we are using in the clinical lab, some
24	of the CD groups that we get to use in our clinical
25	trials because of the nature, they come to us two

weeks before they want to start the study. I don't have time to get all of my vendors to submit for qualification.

So I tried to go with the vendor that I have had the most success with in getting quality antibodies in the fluorochrome. It depends on the fluorochrome that we are talking about because just because they have good antibodies, if I need to go to FITC, their FITC may not be as good as somebody else's FITC. So we have to make some judgment calls on that occasionally.

We go through and titer all of the antibodies. That's done on a lot by lot basis but also on an order by order basis. So if I have received that same lot in the past, I don't necessarily assume that it is going to have the same performance.

There are all kinds of things that happen during shipment that I need to verify that it is still good. So we do a complete titration on those, multiple donors, multiple samples so that we are looking at the systems that we are actually using.

One of the main things is because we are doing it through one centralized look, I am

2.2

1	standardizing all of my labs. So nobody else gets
2	that choice. I am making that choice for them. I
3	am telling them this is the concentration we are
4	going to use this antibody at and this is how you
5	are going to do your process. I am saying the
6	procedure for them to use.
7	DR. HULTIN: When your next batch drops
8	and it's half this bright, how will you even notice
9	it on a log scale and you are quantitative with a
10	correction factor?
11	DR. PURVIS: We're going to talk about
12	that.
13	DR. FISCHER: Norm, do you buy bulk for
14	all of these different things and re-vial yourself
15	or do you buy them in individual vials and
16	DR. PURVIS: Most of everything that we
17	get is in individual vials. I may order 1,000
18	vials of an antibody so that I have a lot of it on
19	hand. We go through a lot of antibodies. It would
20	be great if I could get them all, say, hey,
21	provided to me in a big 500 ml bottle so that I can
22	do whatever I need to do, but then they have go
23	their labeling considerations, all of their GMF
24	considerations that they have to deal with.
25	So it's just easier for me to go ahead

1	and buy in bulk. I have to worry with having that
2	many vials that I have to try.
3	DR. FISCHER: So do you just track a
4	respective number of vials to make sure that the
5	whole lot that you get in is good?
6	DR. PURVIS: Multiple vials in those
7	situations. We will open a single vial, randomly
8	choose a vial, and we will mark it as our QC vial,
9	load it up and make sure.
10	As long as they were received in one
11	container, I am going to make the assumption that
12	they all went through the same conditions. If I
13	get them in different shipments, each shipment is
14	assigned a separate tracking number. We label each
15	of the vials with the tracking number. One of
16	those vials will be assigned to QC, and we will do
17	a titration on that.
18	DR. VOGT: And, Norm, when you titrate,
19	do you titrate to try to get the plateau?
20	DR. PURVIS: Looking for saturation.
21	You did your qualification. It was primarily to
22	look at intensities, quality of the antibody. Was
23	it signal to noise ratio, what kind of labeling of
24	the positive cells, what my background levels were?
25	Is it being provided to me in saturating

concentrations? A number of factors go into that 1 2 evaluation. So I am doing a direct comparison of 3 4 each vendor's antibody on the same sample processed 5 by the same person all in the same day. So I am removing as many of the processing variables as I 6 7 can. So if we get in six different vendors 8 9 for CD11B, we will get three samples. They will do 10 a five-point, two-focal serial dilution for each one of those antibodies on three donors 11 12 will all be processed through the same procedures 13 and running the same instrument at the same time. And I can get a direct comparison to see whose 14 15 antibody has the best performance. just mine. 16 it's not I will And 17 If it's an antigen system that I am not 18 very familiar with, of course, I have to consult 19 with people who have more experience with that. So 20 there are a number of things we have to look at. 21 Do you often see something DR. VOGT: 2.2 like PE20? We were talking about it yesterday 23 where you just cannot get saturation. 24 DR. PURVIS: What I will typically see 25 -- I think I have not a good one from one that

1	doesn't give a great saturation. Some of the
2	antibodies that as you do the titration here, you
3	are starting it neat and then titering it out
4	twofolds or 1 to 2, 1, 4, 1, 8, 1, 16, keep on
5	going. What we will see is a slope coming down.
6	And then, all of a sudden, there is a change that
7	will occur.
8	This here I think is something to do
9	with either nonspecific binding or a low-affinity
10	binding site that someone is continuing to bind
11	with the higher-concentration antibodies.
12	DR. MARTI: What happens if you five
13	percent positive parallel for that?
14	DR. PURVIS: Oh, it's a straight line.
15	As part of that, we look at the signal to noise
16	ratio. If it is truly a background issue and I
17	have a negative population, then what we will see
18	on the signal to noise is we will do something that
19	will be like this. Okay?
20	Can everybody in the back see that?
21	Essentially all I am doing is plotting C20. I've
22	got non-b-cells, lymphocytes. And I've got the
23	b-cells. The negative non-b-cells, probably too
24	much antibody being in there, they will have an

increased background.

1 As soon as I start removing some of that, the background will go down to whatever their 2 auto-fluorescence levels are if you're not having 3 4 t-binding while the b-cells remain at the upper 5 intensity levels. Once I start going below saturation on 6 7 this breakdown, then they will dropping off on a drastic basis. And it's like a 8 9 bell-shaped curve. 10 Typically this is what I am looking 11 for. So this is the concentration I am going to 12 use it at. 13 DR. LENKEI: What we were talking yesterday was that we would start with the other 14 15 procedure. We would start with that, and you go 16 up. The problem is that it never stops. 17 up and up and up. So the problem is that you can 18 choose --19 DR. PURVIS: But I'm also looking at 20 the signal to noise. I am also getting a high background on my other cells. So my opinion is 21 2.2 that if I am seeing this, optimizing my signal to 23 noise, as long as my optimization on my signal to 24 noise is in this area, not over here in this area,

then I have a good antibody that I can use.

Т	DR. LENKEI. Yes.
2	DR. PURVIS: I can get reliable
3	quantitation off of that antibody. I can get
4	consistent staining off of that antibody.
5	DR. DAVIS: Do you worry about FC
6	binding? I mean, that may be the
7	DR. PURVIS: That's one of the things
8	that here recently, I have gotten a number of
9	different lots of antibodies: CD3 FITC, CD8 FITC.
10	I've seen some binding that didn't make any sense.
11	So yes, there is FC that will get involved.
12	We see this in most we know that the
13	side guys have a receptor that gets picked up that
14	will stain on monocytes and neutrophils. That is
15	now being bought to some extent in some of the
16	additives that are being put in there.
17	FITC, though, I have seen here
18	recently. And if I go back with the CD64, CD16
19	unlabeled, stain the cells with that, and then
20	stain with that, I am blocking it. So I am
21	blocking a classic FC receptor type of binding.
22	So if I see that, then that is
23	something also I don't want to have. So here
24	lately we have had to change our vendor because we
25	were getting a lot of FC almost 2 antibodies.

1	DR. FISCHER: I don't see the problem
2	with CD cells. We get very little back. We have
3	very little FC body on that.
4	DR. DAVIS: Yes.
5	DR. FISCHER: It's mostly the 16.
6	DR. DAVIS: It's small numbers. That's
7	why. But it might explain some of this randomness
8	everybody is concerned about.
9	DR. PURVIS: I see what you're saying.
LO	So it will go in and block the FC receptor and see
11	if this flattens out some?
L2	DR. DAVIS: Yes.
L 3	DR. PURVIS: That's a good experiment.
L 4	I haven't tried that.
15	DR. HULTIN: I can see that same thing
L6	on 45RO titrated it. You get these twofold
L 7	maximums because you are under-saturated. And then
L 8	you go beyond there, and then you double it and
L 9	just keep it consistent. What else can you do?
20	DR. FISCHER: I think the signal to
21	noise that you pointed out is the biggest thing
22	because I can get a huge increase in the amount of
23	signal, but if I am also getting a huge increase in
24	the amount of noise, I mean, I gain nothing in the
25	long run. I might as well start with PMT.

1	DR. PURVIS: And many times I don't get
2	the bell-shaped curve on my signal to noise. What
3	I will get is a very flat line, kind of like what
4	you would expect from a saturation curve that then
5	falls off once I get below my saturation.
6	So, again, that kind of indicates that
7	this is just a background staining issue or a very
8	low-affinity binding site that somehow causes
9	problems.
LO	DR. MARTI: For lack of a better
L1	definition, it's nonspecific binding. And if you
L2	did, in addition, a reaction where you put in gold,
L 3	that's an expensive way to decide where that point
L 4	is, but that would be another way.
15	DR. PURVIS: So that's classically how
L6	we have approached our antibodies.
L 7	Go to the next slide. I'm sorry. This
L 8	all has the
L 9	DR. HULTIN: Do you do this titration
20	with whole blood or a fixed number of PBMC?
21	DR. PURVIS: It's done with whole
22	blood. It's done with bone marrow. It's done with
23	cell lines. It depends on what the system is that
24	we are working with and what the antigen is that we
25	are going to be trying to test. It's going to be

on tissues and bone marrow. So I am going to put 2 those into the process so that I am titering it on the appropriate --3 DR. HULTIN: In whole blood, do you fix 4 5 the number of lymphocytes, for instance, or do you just throw in these 100 microwaves you're saying by 6 7 throwing whole blood in? 8 DR. PURVIS: I understand what you are 9 getting at. What we typically will do with, say, a 10 CD20 is you have a very low percentage of b-cells 11 and whole blood. I will go back with rainbow cells 12 or a different cell line that has a very high 13 expression that I can then hold my cell number to a million cells per tube, and I will see what is 14 15 going on in the whole blood, look at what is going on in the cell line, which if I can keep the cell 16 17 line at a saturating level and I don't 18 problems in the whole blood with nonspecific 19 binding or background issues, then that is what I 20 am going to go with. 21 Your point is well-taken because --2.2 DR. MARTI: How would you control it? 23 And if you go to PDLs, you are going to have --24 DR. HULTIN: Well, just for 25 titration, I prefer a fixed number of PDNC.

Τ	then, of course, everything has got to work in its
2	optimal place for whole blood because that reflects
3	the patient. And that is just a philosophy.
4	DR. MARTI: Have you ever compared
5	whole blood to high-tech
6	DR. HULTIN: For what purpose?
7	DR. MARTI: Well, the fluorescence
8	intensity.
9	DR. HULTIN: Oh, absolutely.
LO	DR. MARTI: And are they the same?
l 1	DR. HULTIN: No. But you have got a
L 2	decision on how to make a titration. If you want,
L3	how are you going to use the same amount of blood
L 4	each time? It's just something I've
L 5	DR. MARTI: So you are going to
L 6	determine the saturation or ideal concentration on
L 7	PDLs but then apply it to whole blood?
L 8	DR. HULTIN: Verify it on whole blood
L9	and then optimize the staining for time and
20	temperature, et cetera. And then you just go with
21	it.
22	DR. PURVIS: In the leukemia lymphomas,
23	though, one of the things that we have to watch out
24	for is a number of times, the pathological sample
25	that we get is going to be primarily tumor.

1	So it may have 90 percent b-cells
2	there. We're using a million cells, and they are
3	all b-cells. If I haven't appropriately titered my
4	antibody to accommodate that high number, then my
5	intensity is going to be much less than what I
6	DR. MARTI: Has anybody ever seen
7	published data on a human tumor, live human tumor,
8	cell line and decreasing concentration of the
9	cells? Has it ever made a damn bit of difference
10	of any antibody? Going once, going twice.
11	DR. VOGT: I was about to ask the same
12	thing.
13	DR. MARTI: We don't say that. If you
14	have something that has 100,000 count, do you take
15	100 microliters, 150, or do you take 20 or do you
16	take 10?
17	DR. LENKEI: Can see the bone marrow.
18	DR. HULTIN: Keep the volume. I mean,
19	you're asking a question. To me, the volume and
20	the concentration, the effective concentration, in
21	the antibodies are what I want to keep the most
22	consistent after I have picked out my share of
23	antibody.
24	DR. DAVIS: But when I was publishing,
25	I mean, that was one of the required ways of also

_	making sure we would be nigher than the saturation
2	if you had enough. Eventually you are going to
3	absorb.
4	DR. VOGT: We've never seen samples
5	like you have all seen, but we did see some CLI
6	lights, some PL counts in the few tens of
7	thousands. I was never able to demonstrate any
8	diminution of staining caused by that compared to
9	the normal 200,000 t-cells.
10	It's my impression in the whole blood
11	that most of the antibody gets sucked up in
12	wherever. I don't know where but neutrophils, red
13	cells, wherever.
14	DR. HOFFMAN: A lot of antibody does
15	not go anywhere.
16	DR. PURVIS: You can see in the
17	background staining on that cell that you don't
18	expect it to be on.
19	DR. VOGT: Right. I mean, basically it
20	seems to me that in general, we are in huge excess
21	in a whole blood trap and for specific binding
22	because we have got such nonspecific sinks for the
23	antibody
24	DR. PURVIS: A good example in the
25	United States is for PNH, 55/59. Are you going to

1	stain whole blood? Are you going to stain isolated
2	cells? What are you going to stain there?
3	DR. MARTI: Which stem are you going to
4	analyze?
5	DR. PURVIS: Well, there is literature
6	that says that both are important to take a look at
7	it.
8	DR. MARTI: You said the lymphocyte is
9	worth
LO	DR. PURVIS: Oh, I don't. We will put
11	a co-stain in for identifying those. We put in the
L 2	55/59. You could put the glych 4na in for the red
L 3	blood cell. If you are looking at red blood, you
L 4	can have it just based on scattering.
15	The idea here is if you do a titration
L6	optimized on isolated cells and then your
L 7	technician goes and stains, putting whole blood in
18	there, guess what. You're not going to see 55/59.
L 9	So there's a number of things that you have to
20	consider here as to how you are going to approach
21	your staining, whether you are going to soak it up.
22	Kappa lambda is another example. If
23	you don't wash away the plasma, putting the kappa
24	or lambda antibody, guess what. You're not going
25	to see any b-cell staining.

Those are the types of things that you 2 just have to keep in mind. DR. ORFAO: I think we are coming back 3 4 to a point that came yesterday. We need to know 5 the bio yield, the molecule. It's like a liter or two microglobulin. You have to look not only at 6 7 how much the cells are expressing the protein with b-cells but how much volume you also have to do 8 9 from how much soluble protein will be there. 10 DR. FISCHER: That's like a twist 11 between the wash, no wash, lyse wash, no wash. 12 becomes a major factor. A plot of b-cell markers that we work with, it was at least a sign. 13 So they just blocked the receptors, blocked the markers 14 15 with b-cells. So you pede them out with huge amounts 16 17 antibody if you're not or you 18 extensively watch the cells beforehand. And when 19 we remove the nonspecific error, actually specific 20 binding, but the non-antibody binding, to 21 specific marker you are interested in. We haven't 2.2 found a good antibody that goes around that yet. 23 DR. PURVIS: Okay. So we do this for 24 all of the antibodies that we get in. So we did

the extensive vendor quals. That is not something

25

that you want to just keep on doing. That takes a lot of time, a lot of effort.

And so we want to stay with our primary vendors at that point until we see a problem develop with that antibody. And I may say, "Hey, we've got a problem here. I'll contact the vendor."

They'll go up there and say, "Yes," they can identify it. They're resubmit their antibodies to me. If not, then I'll have the vendors, other vendors, resubmit to me and see if anything has changed.

Vendors do improve their antibodies with time. They also let them degrade with time depending on how long the culture has been going that they are working from. It may have moved and lost some of its affinity. So those are things that you have to keep in mind.

For a while there, every antibody that we got in that was FITC or PE, we determined the F to P ratio. We weren't doing the quantitation of these antibodies. It was just another quality control measurement that as an engineer, I went overboard, but it was nice to follow because it did show that you do get differences in F to P from lot

2.2

to lot, that if you are going to do quantitation, you have to be able to account for long-term studies, when you are going to be using multiple lots of antibodies, how that F to P changes.

we only do this with the So now antibodies that truly glued to we are do quantitation with. times when There are clinicians will come to me and say, "Hey, you titered this antibody out.

Actually, when we hand new products off to them because we combine all of our antibodies together and hand them a cocktail that they're going to use, we'll make a six-month batch of cocktail. They do a comparison to the previous lot that we have made.

Even though we have already done the QC release, they go ahead and do it to verify that we haven't messed up or missed something. And they will see a change in intensity between the old lot of a cocktail and the new lot of a cocktail. And they will call us up and say, "What is going on here? Why do we have this change? Have you changed the titration? What is going on?"

Previously, for the FITC and PE ones, I can go back and say, "No. This was truly a change

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2.2

23

24

1	in the antibody source that we got. We had an
2	F to P change." Now most of the time I can say
3	that that is what it is, but there are times when
4	we have to go back and do some checks to see if we
5	made a mistake. So there is a need for that.
6	Should an end-user have to determine
7	the F to P ratio? No. I think it is way too
8	difficult. Abe used to like me because I bought a
9	bunch of his Quantum simply cellulars all the time,
10	but it is very difficult.
11	It is not an easy process to go
12	through. You have to titer your antibodies onto
13	the beads. You have to do a timed analysis so you
14	end up with 42 tubes that you are setting up here
15	so that you can get one measurement that will work.
16	And then you are making a decision on whether the
17	data that you generated is giving you a good
18	F to P. Anyway, we go through a number of
19	qualitative and quantitative assays.
20	Next slide. Reagent cocktail
21	formulations. We have already gone through this.
22	Standardization. And I still have Cytometry

NEAL R. GROSS
COURT REPORTERS AND TRANSCRIBERS
1323 RHODE ISLAND AVE., N.W.

Associates. Boy, my boss would get mad at me for

That yellow doesn't show up very well.

that. We're in Esoterix, by the way.

23

24

Sorry about that. DR. VOGT: Oh, I am glad it is there. 2 I was worried I was hallucinating. 3 4 DR. PURVIS: And there's also a font 5 that I am using that isn't on your computer. So it won't display some of the mathematical symbols 6 7 But essentially Jim has already shown you 8 some of the equations up here that we use. I must 9 have had a duplicate in here. Like I said, I 10 brought in a bunch of slides. 11 Here is one antibody evaluation that 12 was done for a clinical trial. I can go to a 13 different slide if you all want to see some of the considerations that went into that clinical trial. 14 15 Here is CD11A. Initially the idea here was we wanted to look at both total and free sites. 16 17 So I needed two epitopes. I needed an epitope 18 that was the same as what the drug was going after 19 as well as epitope that was not blocked by the 20 presence of the drug. 21 Initially we were going to try to do it 2.2 off the MESF. Two vendors, both in FITC. We went through a number of extensive qualifications to 23 24 find out which antibodies of this once we reduced 25 it down because I don't want to show you all of the

different antibodies that we looked at.

2.2

We did calculate F to P's. You can see that vendor D, vendor F, there are some differences in the F to P's on the antibodies. This titration is also -- we got a saturation level. You can see that it is beginning to go through a break-off point. So how would I choose this? I would want to work up in this back up here as long as my signal to noise wasn't a problem.

You will also notice if I am comparing MESFs, we have got some PE up here as well. There is a big difference in the scales. How am I going to compare the binding in MESFs? I can't compare FITC to PE.

I really am going to have a hard time comparing this red and this blue -- those are two FITCs; those are these top two up here -- and being able to really state anything quantitative, do some real calculations for this clinical trial.

But if I use the F to P ratios that I have calculated here divided, the MESFs by the F to P, that kind of agreeance there is wonderful. This isn't the only system this works in. We have done it in multiple systems this way.

So antibodies, even though they are

different clones, as long as the epitopes aren't biologically masked in some way, I should be able to quantitatively get the same antibody-binding capacity as long as I have a good F to P ratio if I am using quality antibodies and if I do my job right to begin with.

Next slide. Tandems. We have already talked about that. Again, I don't know if this has any more. I apologize. I don't even know what slides we are coming into now.

Multiple antibodies against the desired antigen. This is what we were just talking about. If we are doing one of these studies, I have got to do my titrations of the antibodies first in the absence of drugs, see if there are saturatables, see how the antibody is going to react with no drug around.

And I have to go back and do my same titrations in the presence of different levels of drug to make sure that the antibody is going to behave the way it should with those drugs on board.

Is it going to mark the total, no matter how much antibody or drug is prevalent, or can I prevent any of my antibody from binding if I am looking at an epitope-sensitive location? That

2.2

is part of what we have to go through. 1 Again, those are just restating the same thing. 2 Antibody evaluations. This is on the 3 Quantum simply cellular. This is typically what 4 5 you would see. Essentially the F to P ratio, we are getting four measures of the F to P ratios with 6 7 these four peaks. Okay? know the a, b, c, the binding 8 9 capacity of that bead. Each one of those peaks, I 10 get MESFs, divide each of them by its binding capacity. Now I have four MESF to bead or protein 11 12 or probe, I quess, is the better word to use here. 13 DR. VOGT: It's hard selling that one, 14 It never seems to grow legs. 15 DR. PURVIS: Anyway, we do four of We take an average. Well, guess what. This 16 is how I can use this to tell me whether I am 17 18 getting a good F to P because if I have a high CV 19 in these four measurements, something is not right 20 here and I have got to go back and take a look at 21 it. 2.2 So we go ahead. I really need to know what my F to P is. We do a titer onto the beads. 23 24 I have four levels showing my titration. In most 25 cases, when they converge and you get all of them

1	having good agreeance, then that is your true
2	F to P ratio. And that is how we determined it.
3	Next one. I'll show you good and bad.
4	This is just how we do it.
5	I think that's it. I don't think we
6	really need to. So here are the important issues.
7	You've got to have absolute agreeance, then the
8	lower limits.
9	My opinion is many of the therapies
10	that we are going after now, you are not going to
11	give this therapy if the person is not showing CD20
12	or whatever the antigen is that you are trying to
13	block.
14	In most cases, what we are going to be
15	quantitating is for the higher levels outside of
16	that second decade. What is the expression? Let's
17	look at the disease states. Look at the
18	literature. Which ones have responded and
19	determine what ranges of expression we might want
20	to give the drugs or therapies.
21	The activation markers is where the
22	lower limits of quantitation actually come in.
23	That is something that is probably for a different
24	discussion. I know it is an important one.

I used to do platelets. I used to look

...... ---!----- ----

1	at platelet activation. But it is a decision that
2	you will have to discuss at a later point. Our
3	instrumentation is getting us there now. We are
4	getting better and better optimal collections. So
5	I will stop unless you want to see some of the
6	actual
7	DR. MARTI: Norman, if you were to take
8	our sites and examples of antigens that you have
9	made quantitatively, CD4, CD8, CD45, what is the
10	variation on that? It doesn't have to be any that
11	I just cited.
12	DR. PURVIS: Well, one of those slides
13	that I had to go on through showed CD4, CD5, and
14	CD19. If you are looking only at MESF, you have
15	some huge deviations that we were seeing there.
16	Part of it was due to the beads themselves at the
17	time.
18	MESF assignments would be off. Abe can
19	address this. At one time, our PE calibration was
20	really high. We made an adjustment to that, which
21	caused a step change. Even without that, I was
22	having some variation in the bead assignments, but
23	they were pretty minimal. So I was having
24	problems.

As long as my F to P was determined off

of the same set of beads and I accounted for 1 whatever my calibration was, it tightens things up. 2 And I will see on the order of five to ten percent 3 4 variance in the population, which is great. 5 are other ones that are much higher than that that may be 20 to 50 percent. It just depends on the 6 7 antigen systems. 8 Some of these are going to be -- a 9 number of them that we are going to want to look at 10 are going to work okay as long as we standardize 11 the use, consistent protocol. And we always use 12 We may have some biases if somebody else methodology, 13 different wants to use a but statisticians may be able to tell us how we can 14 15 correct for those bias measures. 16 DR. LENKEI: Speaking about one of the 17 antibodies, what is it to test the F to P ratio in 18 others who are not that good? How do you account 19 for that fact? 20 DR. PURVIS: Can you pull up my other 21 presentation? Repeat yourself. I'm sorry. 2.2 playing with the computer. 23 You are speaking about DR. LENKEI: 24 antibodies good to measure the fluorescein to

protein ratio, and others were not that good.

Τ	have said the same thing. For some antibodies, you
2	can get agreement; for others, not that good. So
3	how do you
4	DR. PURVIS: I really haven't had
5	there are some antibodies that from a particular
6	vendor, I cannot get a good F to P. There may be
7	something in their soup or whatever. Maybe there's
8	3 PE or whatever that is messing things up.
9	But for the most part, I can go to a
10	different vendor and get a good antibody from that,
11	get a good F to P. So I haven't really come into
12	cases
13	DR. LENKEI: So you don't know the
14	reason. You have not
15	DR. PURVIS: I have questions.
16	DR. MUIRHEAD: You're defining that as
17	agreement with the ratio obtained for each of those
18	four peaks. So how big is the standard deviation?
19	DR. PURVIS: You saw my blanks. My
20	blanks had disappeared with that one histogram
21	They weren't there anymore. Where did they go?
22	They had found antibody. And it shifted up into my
23	first peak.
24	What happened? What is going on there?
25	There is nothing good. I mean, it shouldn't be
	1

1	binding anything. So my antibody was somehow
2	binding the beads.
3	DR. VOGT: Where is it?
4	DR. PURVIS: This is it.
5	DR. VOGT: This is it?
6	DR. PURVIS: Yes.
7	DR. VOGT: Which slide is it on?
8	DR. PURVIS: If you all want to see
9	this thing, I can go through that one assay and
10	give you a couple of considerations. If you don't,
11	then I will sit down and shut up, and we can go on
12	with the rest of what Mary Alice had.
13	DR. STETLER-STEVENS: Actually, we have
14	a snack break. We are going to finish early today.
15	So you can have a late lunch and have a snack
16	right now. We can take a break now and have
17	something to eat, go to the bathroom, and then come
18	back.
19	(Whereupon, at 12:22 p.m., the
20	foregoing matter was recessed for
21	lunch, to reconvene at 1:00 p.m. the
22	same day.)
23	
24	
2 5	

1	A-F-T-E-R-N-O-O-N S-E-S-S-I-O-N
2	(1:05 p.m.)
3	DR. STETLER-STEVENS: We have got a lot
4	to accomplish, and we have a short period of time.
5	Alberto has got some additional comments to make
6	about compensation. We want to hear from him.
7	Then we will move into our action items.
8	DR. ORFAO: Actually, I had no
9	additional comments. I have just to summarize from
10	where there is clear agreement. I think that there
11	is clear agreement that you need multi-color
12	because biology is like that. So you need
13	multi-color.
14	I would just like to add a small
15	example of that. You might need quantitation of
16	more than one protein in these things. This is a
17	paper recently published in Blood showing that when
18	you were using anti-CD20, at least <i>in vitro</i> , it was
19	only given CLL cells if the number of CD9
20	complement regulatory molecules was below a certain
21	length. So then you need 20 and 59 for the same
22	cell.
23	So multi-color might even be necessary
24	to measure 2 different proteins simultaneously. I

think all of the issues that you pointed, where you

1	have to have a total protein and a certain epitope
2	of that protein, they also talk about quantifying
3	two different proteins simultaneously.
4	So the second issue I think it is
5	also clear is that data should be stored without
6	manipulation. So you should store the regional
7	data, so not already compensated data. So this I
8	think is also a very clear message and I think a
9	very clear consensus on at least what I understood.
10	DR. VOGT: As you may have masked over
11	in that regard, with the older instruments, are you
12	suggesting that people turn compensation off?
13	DR. ORFAO: What I am suggesting is,
14	let's say, that at least thinking of what you would
15	propose would be what people would be using. From
16	now on, at least they have to think about this.
17	DR. PURVIS: I will play devil's
18	advocate and tone that point up. Not everybody is
19	going to be a one-cytometer site and
20	DR. MARTI: How about when appropriate
21	with future instruments?
22	DR. PURVIS: Well, what I would like to
23	see happen is like what Coulter is now doing, where
24	you get 20-bit linear data files automatically
25	saved down with your compensated data as well. If

Τ	there is a compensation problem, you have the
2	ability to go back and
3	DR. MARTI: How about data stored with
4	and without it?
5	DR. SHAPIRO: Well, if you have the
6	matrix, if you've got the high-resolution linear
7	data, then you could store the compensated data
8	because if you have a matrix, you can
9	DR. D'HAUTCOURT: I will add something.
LO	If you don't have the capability to store the data
11	in linear mode in high resolution, I suggest you
L2	make the compensation during the acquisition and
L 3	not after.
L 4	DR. SHAPIRO: Yes, pretty much.
15	DR. D'HAUTCOURT: If you need to
L 6	transform the data in linear and come back, that
L 7	increases the problem.
L 8	DR. SHAPIRO: That's true. And if you
L9	have
20	DR. D'HAUTCOURT: So if you don't have
21	the new machine, don't use the technique of
22	non-compensated data.
23	DR. FISCHER: I think that without
24	compensation is going to have to apply to those of
25	us who have been fortunate enough to have the newer

	age institutents.
2	But I have the older one, too. And
3	that data all gets saved compensated because there
4	is no way around it. I mean, really, you can turn
5	the compensations off after you have checked it to
6	make sure that all the PMTs and everything were
7	going to balance out.
8	But we all know that occasionally with
9	the PMTs, you want to make sure you are going to be
10	able to compensate all of the data, especially with
11	the multiple-level fluorochromes that we have.
12	DR. STETLER-STEVENS: How about the
13	statement that it is optimal to have it stored as
14	uncompensated data with the appropriate, that you
15	have to have the appropriate machine?
16	DR. SHAPIRO: Well, that is
17	high-resolution data.
18	DR. STETLER-STEVENS: Yes. So there's
19	an optimum system.
20	DR. SHAPIRO: Yes.
21	DR. STETLER-STEVENS: I think we have
22	reached consensus. That is optimal. However, if
23	you can't do that, you have to compensate the best
24	you can and realize that compensation is a problem.
25	DR. WOOD: Another thing we could do is

_	score under-compensaced data/ chac is, accuarry go
2	ahead and do some of the compensation. And then
3	you could apply a correction to it.
4	You won't see as much artifacts of the
5	compensation if you have already done a fair
6	portion of it already. Typically you are only
7	dealing with just a very small change to go from
8	being under-compensated to being compensated.
9	So if you are always under-compensated,
10	then you can correct it. If you are
11	overcompensated, you can't bring it back.
12	DR. VOGT: Right. So, actually, part
13	of that is don't overcompensate. That would be
14	number one. Whatever you do, don't overcompensate.
15	
16	DR. SHAPIRO: If you overcompensate,
17	then you risk not being able to get it back.
18	DR. VOGT: Right, right.
19	DR. SHAPIRO: I don't know that we have
20	to
21	DR. STETLER-STEVENS: Maybe we should
22	
23	DR. SHAPIRO: micromanage that. I
24	don't think we have to micromanage this because
25	this comes up, and this really relates to a
	1

1	situation it is clearly better to have the newer
2	machine with the digital processing, where you
3	could shift back and forth from a linear log with
4	log amplifiers and their deviations from ideal
5	response, don't come into the picture. It is
6	clearly better to have that.
7	As Bob Hoffman pointed out, well, you
8	know if you have a four-color FACSCalibur and you
9	use fluorescein and PE and PerCP and APC, then
10	essentially the hardware compensation on that
11	instrument is adequate to the task and you can do
12	
13	DR. STETLER-STEVENS: Not all of it
14	DR. HOFFMAN: Are we expecting that
15	people in clinical labs are going to set up their
16	own? Are we trying to tell people how to set up
17	their own quantitative assays or are we assuming
18	that somebody knowledgeable is going to set up a
19	quantitative assay system that people are going to
20	use?
21	DR. STETLER-STEVENS: I would never
22	assume that somebody knowledgeable is going to set
23	up assays that people are going to use in clinical
24	laboratories.

DR. HOFFMAN: You would not?

1	DR. STETLER-STEVENS: No.
2	DR. SHAPIRO: Well, I think the point
3	is that
4	DR. FISCHER: The clinical people have
5	spoken.
6	DR. SHAPIRO: They have spoken. The
7	point is that going back to the process model of
8	CD4 counting, the knowledgeable people got together
9	and got their act together before they defined
LO	guidelines for everybody else.
11	If we envision following more or less
L2	the same process, then, in fact, the first
L3	successful attempts well, the first attempts at
L 4	quantitative flow have already been made. They
15	have been made in sophisticated laboratories.
16	And the next few attempts will probably
L 7	be made in sophisticated laboratories, at which
L 8	point we can start to figure out whether we can, in
L9	fact, export this stuff down to the level of
20	laboratories with less sophisticated
21	instrumentation. When you are doing less
22	sophisticated instrumentation on less sophisticated
23	users, it may be that you would have to transfer
24	the procedures.

DR. HOFFMAN: Or that you just work up

2	DR. SHAPIRO: Well, yes, but the
3	question is who is going to need to do these how
4	many times. When we start out, the likelihood is
5	that for clinical trial purposes, you are not just
6	going to go to every lab in the States to do the
7	quantitative analysis. You are going to have some
8	
9	DR. STETLER-STEVENS: Bruce's test is
10	one that may be done in every hospital. Sepsis is
11	a problem.
12	DR. HOFFMAN: Right, but Bruce has
13	developed a robust system.
14	DR. STETLER-STEVENS: And what about
15	juvenile diabetes, which is a problem, or Type 1
16	diabetes? If we start to get into more and more
17	applications, you are going to have to think
18	eventually they will be moving down.
19	And I think that stating an optimal
20	method and caveats of what you have to be aware of
21	for compensation
22	DR. SHAPIRO: Well, that's true, but I
23	think that a lot of that is going to be ad hoc.
24	There are some methods you are going to be using
25	DR. FISCHER: You will be able to apply

procedures that are robust and tolerate the --

1

guidance. You will not be able to apply specifics.
DR. VOGT: Two things on that. One is
that if we said that ideally data would be taken at
high resolution on compensation, that may give
people the opportunity to buy new instruments
because you do need a reason to buy a new
instrument in most cases, some justification.
The second thing is no, but I think
that is important. We have got to keep the
instruments being sold to keep this community
together.
And the other thing is well, to me
that is all kind of related, that you can't
DR. MARTI: I can see that you people
would be very useful in helping us write a
three-part justification for sole source
DR. VOGT: For sole source. Right.
And the second thing is that the NCCLS H42, I think
it is, the original guideline that was developed by
the committee that Alan Landay chaired, is now up
for renewal, up for review and refinement and
reissue.
My boss, who is a part of that, has put
me as a liaison on that committee. So I will be
following along with that. He would like to

1	discuss that at the CCS meeting. Mary Alice and we
2	are talking about how to do that. So this is stuff
3	that can be
4	DR. DAVIS: I chair that.
5	DR. VOGT: Oh, I'm sorry. Yes. Bruce
6	is in charge of that. That's right.
7	DR. DAVIS: More accurately stated, I
8	am looking for somebody else to do the work.
9	DR. MARTI: It sounds like a good
10	definition of a chair.
11	DR. VOGT: Bruce, is it fair to say
12	that these are some of the things that could be
13	considered in that meeting?
14	DR. DAVIS: Oh, yes. In fact, we are
15	hoping to add like CD34 counting and
16	DR. VOGT: Right.
17	DR. LAMB: We're the folks who wrote
18	the CD34 counting. It's a very small document. It
19	was deemed by the committee to be too controversial
20	because I mentioned the Ice Age method along with
21	the Milan method. Then they threw it at me.
22	DR. MARTI: Kathy?
23	DR. MUIRHEAD: Can I just put a big
24	plug in for that process because I think a lot of
25	what I am hearing from Mary Alice is possible

1	within that context. That process goes through not
2	telling people what the optimized method is because
3	there is no optimized method for every assay you
4	want to learn, but highlighting what are the issues
5	that have to be considered and controlled, what
6	example are there out there of things that have
7	worked or not worked in a given context, provide
8	references and examples, and then gives people a
9	process to go through in terms of identifying
10	whether they got it from the manufacturer or
11	whether they put it together in their own lab,
12	whether they have an optimized process. I think
13	that is an extremely good model.
14	DR. STETLER-STEVENS: I think that if
15	we do believe that there is an optimal method for
16	one specific question, there is one thing that is
17	the best way for compensated or uncompensated data,
18	if we feel that there is a best way, we shouldn't
19	be afraid to say what the best way is along with
20	the caveat you can do it by other ways, but you
21	have to be really careful and good about it.
22	So there are optimal methods. And
23	sometimes you just do what you can. But when there

DR. SHAPIRO: Of course, if you want to

...... ---|-----

24

25

is something that is best --

1	do quantitative flow cytometry, that implies that
2	you can't get the right answers if you don't have
3	correctly compensated data.
4	DR. MARTI: Some may even question
5	they're not sure whether you can get the answer if
6	it's properly compensated.
7	DR. WOOD: Still along the idea of this
8	micromanaging point of view, has anyone had an
9	encounter with a legal system getting involved
10	here? That is, if we start giving too many nooks
11	in specifications, then standard of care issues
12	will start coming up.
13	And if there is a misdiagnosis or
14	mistreatment based on a test, then what are they
15	going to define as being standard of analysis and
16	so forth, consolidation sorts, things of that sort?
17	So those are issues that once we get
18	very specific will probably come back and haunt
19	you.
20	DR. STETLER-STEVENS: But if you just
21	put out a document saying, "Be careful"
22	DR. SHAPIRO: You all be careful now,
23	you hear?
24	DR. STETLER-STEVENS: You said nothing.
25	DR. WOOD: That is what I am saying.

1	DR. STETLER-STEVENS: So you have got
2	to have a balance between them. If you just said,
3	"Be careful" or "This stuff is hard. So do it
4	well," I would do it well.
5	DR. HOFFMAN: For compensate, for a
6	compensation reference, one, two, three, whatever
7	
8	DR. STETLER-STEVENS: Norm, you
9	DR. PURVIS: I was just going to
10	comment that I think that compensation that we keep
11	bringing up here depends on the system that you are
12	compensating. If we are talking about something
13	that is right out of the third decade, fourth
14	decade, compensation that may be a little bit off
15	is not going to cause any problem.
16	I don't have a problem at all working
17	with compensated data because most of the systems
18	that we are going to be compensating, that is going
19	to result in a very minute error compared to just
20	the biologics in the system it will measure.
21	I think if you want to set some of
22	these qualifications, then you set it on the
23	low-end quantitation areas. These other ones I
24	think we are probably beating something to death

that doesn't need it.

1	DR. STETLER-STEVENS: So compensation
2	when you are dealing with low intensity, for
3	instance, you're saying that you have two different
4	sets of sort of rules.
5	In most cases, it's not a problem as
6	long as it's done appropriately. Hardware,
7	software, whatever, you can do it appropriately.
8	When we have a certain set of circumstances, the
9	compensation becomes an important issue. And it
10	may be extremely difficult to achieve accurate
11	compensation with hardware compensation. And this
12	may impact upon the values. That would be an
13	unusual circumstance, but
14	DR. PURVIS: At that time, you are
15	going to be choosing something that you don't have
16	to worry about compensation. Either you are going
17	to be setting up your system so that the other four
18	prongs are not going to impact, influence your
19	results by a foregone combination choice. I think
20	that is
21	DR. VOGT: I think that's one of the
22	useful things that is on here as you design your
23	analytical cocktails.
24	DR. STETLER-STEVENS: But when you are
25	dealing with kappa and lambda and being positive or

1	negative and you're comparing your two twos, I
2	mean, you do have an impact in some neoplastic
3	systems. The way you set it up, like, for example,
4	I see a difference in values in the tube where the
5	light chain is positive and the light chain is
б	negative. I know it is compensation. It has got
7	to be.
8	DR. PURVIS: So the choice there, where
9	you put in quantitating PE that is being influenced
10	by your FITC, then you quantitate on your FITC,
11	where you have got your kappa and lambda.
12	DR. STETLER-STEVENS: Yes. Only it's
13	pretty low intensity, and I can't use FITC. So
14	there are going to be areas where it may be a
15	problem, but it is not going to be in general a big
16	problem.
17	DR. PURVIS: I don't think so. I think
18	in most cases, you can choose the proper
19	fluorochrome combinations so that what we keep
20	discussing here is not going to be as many of an
21	influence or as much of a
22	DR. HOFFMAN: That would just be one of
23	the guideline checklists.
24	DR. SHAPIRO: The problem is how many
25	assays are we talking about here. In other words,

...... ---|-----

we're really talking about doing things one at a time. So there are some very general things you can say about quantitative flow cytometry in general, clinical and otherwise.

As you get toward the specific applications, then protocols are going to have to be defined. Whether or not there is a form of guideline, NCCLS may decide it's not worthwhile to issue a guideline for a test that is going to be done 500 times a year.

If people are very interested in the particular disease that is going to require that that test be done 500 or 1,000 times a year, they are going to get together and design a protocol.

Anybody who is really interesting in following that is probably going to become aware of the existence of that protocol and want to follow it. That's when you get into the ad hoc stuff.

Otherwise, things are too open-ended. We are telling everybody everything. We are telling people more than they need to know. Until you get down to some of the specifics of the biology, it is really hard to define what you need in the way of the technology to solve the problem because some stuff is easy.

2.2

1	DR. ORFAO: Well, I think that,
2	further, the FITC related to compensation, I think
3	there is also consensus that we need to do FITCs to
4	do compensation. I think at least in this area,
5	there are some types of facts that there is I think
6	agreement.
7	The first is that it should match with
8	your fluorochrome combination exactly. That way
9	your proposal was that you actually had your same
LO	antibodies staining beads.
L1	DR. PURVIS: Or cells.
L2	DR. ORFAO: Or cells.
L3	DR. PURVIS: So if you have 20
L 4	different antibodies, we are going to have 20
L 5	different compensation sets.
L6	DR. HOFFMAN: No. This wouldn't be 20
L 7	different ones. You can't have the fluorochromes.
L8	DR. PURVIS: Yes. I agree with you.
L9	Again, even with the tandems, if you are going from
20	one vendor in most cases, you can get reliable
21	compensations.
22	When you go across vendors, then that
23	causes problems, and you need to be very aware of
24	it. And within some of the vendors, you have to be
25	aware that from a CD group to another CD group,

1	it's required compensation.
2	For FITC PE, some of these common
3	antibodies
4	DR. MUIRHEAD: You have to verify
5	through your reagent sets that that assumption that
6	if I run the compensation setup with this pair of
7	antibodies and this set of antibodies and then I am
8	actually running my test samples with a different
9	set, that I am not going to bias the result if you
10	want to do quantitation.
11	Now, I mean, I would argue that like
12	you just did a minute ago, which is minimize any of
13	the compensation problems you can up front by your
14	reagent choice and don't get into it. If you don't
15	have to compensate, don't.
16	DR. ORFAO: The second thing I think
17	there is agreement that they should be bright and I
18	would say that probably should be important to have
19	at least two different intensities, which should be
20	in the positive branch, not like negatives and
21	strong
22	DR. VOGT: Three people.
23	DR. MARTI: And by that, you wouldn't
24	accept a negative bead or unstained cell.
25	DR. HOFFMAN: Is that for confirming

Т	compensation or for
2	DR. ORFAO: For setting.
3	DR. HOFFMAN: Compensation, where
4	basically you are measuring the mean, mean, median,
5	whatever you want, of the spillover of FITC and the
6	channel FL2 and the channel FL3, channel FL4,
7	whatever.
8	If you put two populations in there,
9	now you are measuring the mean of the population or
10	you can measure it because basically what the
11	mathematical matrix compensations come up with is
12	what percentage or based on what is a percentage of
13	green fluorescence from fluorescein is appearing in
14	channel 7. It needs a number. It is easier to get
15	that number with a single bright population than
16	with multiple bright populations.
17	DR. SCHWARTZ: But can it do it?
18	DR. VOGT: You would want that to be in
19	your linear range of measurement, right? You
20	wouldn't want something so bright that it was
21	nearly against the upper boundary. So can we
22	DR. PURVIS: The system can't handle
23	it.
24	DR. VOGT: Right. So can we say
25	something in the third decade? Is that

...... ---|-----

Т	DR. HOFFMAN. What I'm saying is that
2	if you're doing I don't like this terminology
3	visual compensation, then having multiple
4	populations is being useful if you are confirming
5	compensation that has been set by some methodology.
6	Otherwise, then multiple populations can be useful
7	as long as you are not looking for the quadrant so
8	that all of the compensated values are below a
9	quadrant because that is mathematically correct.
10	DR. VOGT: As long as you are not
11	trying to do what people try to do
12	DR. HOFFMAN: There will be patterns
13	you can see that you get used to where the
14	compensation will be below a quadrant and the
15	higher values will see this population. I just
16	want to make a general statement that for correct
17	compensation, we're going to need multiple
18	compilations.
19	DR. MARTI: I think I can see a problem
20	if you had two peaks. Would you get two peaks
21	spilling over into, say, the PE channel or would it
22	come as
23	DR. HOFFMAN: Yes.
24	DR. MARTI: So, then, that must just
25	drive that algorithm insane.
25	drive that algorithm insane.

1	DR. SCHWARTZ: It wouldn't because the
2	higher one is going to
3	DR. MARTI: Dominate. I see.
4	DR. PURVIS: That depends on how much
5	spillover there is and whether it's statistically
6	
7	DR. SCHWARTZ: But it will be
8	proportionally the same. It has to be.
9	DR. HOFFMAN: You will pick one peak or
10	the other.
11	DR. MARTI: No. Pick them all.
12	DR. HOFFMAN: It is going to depend on
13	which approach you are using for compensation.
14	DR. ORFAO: So the last I would say two
15	points regarding compensation. I think it is also
16	the compensation is a true ultimatum.
17	DR. FISCHER: You would like that,
18	actually, more. It's not on the you really like
19	to have it automated because it would certainly
20	make it a little more standardized for the folks so
21	they wouldn't have to come in and necessarily mess
22	around with setting.
23	And then it would eliminate the word
24	about whether the data you were setting was
25	properly compensated if the compensation, automatic

Τ	compensation, worked correctly every time.
2	DR. ORFAO: And the final issue is the
3	issue of validation. You need a biological sum.
4	DR. FISCHER: Yes, no argument there.
5	DR. VOGT: That validation, again,
6	might not necessarily be that it falls below your
7	horizontal data. What is the validation of good
8	compensation, I guess, to put it the other way?
9	DR. D'HAUTCOURT: I will say for the
10	validation, I find the double population very
11	important. Not for the compensation but for the
12	validation, it's more. If we have more than one
13	population, it's different intensities for what it
14	is.
15	DR. ORFAO: For the compensation?
16	DR. D'HAUTCOURT: I mean that in only
17	one is enough.
18	DR. MARTI: With the individual ones
19	that you used for the compensation?
20	DR. D'HAUTCOURT: Don't use line. It's
21	the reason why we use automatic compensation. We
22	don't use line or display of something. It's
23	DR. MARTI: The single cell or B that
24	you stain for each compensation control for each
25	fluorochrome

...... ---|-----

1	DR. D'HAUTCOURT: For each
2	fluorochrome.
3	DR. MARTI: For the mixture after you
4	got done running the individuals, if you put the
5	mixture together, would that satisfy validation?
6	DR. D'HAUTCOURT: No.
7	DR. MUIRHEAD: Not if he wants multiple
8	labeling of the cells.
9	DR. MARTI: Okay. That means you just
10	have to devise another control in your system.
11	DR. HOFFMAN: The other thing is that
12	using cells in the auto-fluorescence of whatever
13	you are using as your "negative" is not the same as
14	the auto-fluorescence of your stain population.
15	DR. VOGT: Right, right.
16	DR. HOFFMAN: I mean, your t-cells and
17	b-cells will be using CD3, whatever, for your stain
18	population. You know, do the t-cells have to be
19	the same auto-fluorescence t-cells?
20	DR. VOGT: No, they don't. No, I think
21	not.
22	DR. HOFFMAN: So, basically using CD45,
23	which is saying all white cells, and you have to
24	have another auto-fluorescence sample, at least
25	doing something so that you're comparing the

_	auco-fiuorescence of the stain sample with the same
2	population.
3	DR. MARTI: Would it be best, Bob,
4	under those conditions to have an unstained sample
5	that contained all populations represented?
6	DR. HOFFMAN: That's the ideal.
7	DR. MARTI: So that might be a useful
8	control, a completely unstained population.
9	DR. HOFFMAN: That happens in CD45 and
10	does in multiple populations.
11	DR. MARTI: Yes. So, then, if you ran
12	a CD45 and all your fluorochromes of interest in ar
13	unstained tube, then
14	DR. HOFFMAN: That would be your
15	positive control.
16	DR. VOGT: Those would be your
17	DR. ORFAO: You get more staining for
18	45 on your auto-fluorescence population.
19	DR. VOGT: Why would that be
20	DR. ORFAO: Because you have the sites
21	strong enough for 45. It would be less
22	auto-fluorescence for the neutrophils.
23	DR. MARTI: Randy, what's your
24	nine-color positive control?
25	DR. FISCHER: For which channel?

1	DR. MARII. You lind the single stained
2	cells for b for each of the nine channels. Now you
3	want to demonstrate that it is working properly.
4	You are going to run the unstained mixture and you
5	
6	DR. FISCHER: I never run unstained.
7	DR. MARTI: Okay. What is your
8	positive control so that if it runs properly, you
9	will have confidence in your test?
10	DR. FISCHER: I generally run one that
11	has monocyte, b-cell, t-cell markers, and nk
12	markers all in the same tube. Sixteen, 33, 56, 4,
13	8, 3, 19, 20, and I don't know how many that is.
14	I'm missing
15	DR. MARTI: Your positive control, the
16	complete immunophenotyping in one tube, and then
17	anything else that we wanted to examine. If we
18	didn't feel we could do that one right, then we had
19	little hope of doing anything else right. So I
20	guess that's what you mean by the positive control,
21	rather than just mixing individuals back together.
22	DR. HOFFMAN: About the control, you
23	are getting expected results. As long as you are
24	getting expected results, I guess that is I was
25	thinking maybe more about using the biological

1	cells in the purest sense and being able to check
2	if the set is correctly, in which case you would
3	measure the median of all of the cells.
4	DR. FISCHER: If I were going to do
5	that, I would pick one antigen and do all the
6	different colors.
7	DR. MARTI: But they just said I
8	couldn't do that. I mean, that is the same thigh.
9	DR. FISCHER: That is basic. I would
10	still do that because that is the only way you are
11	going to have any idea because, number one, you can
12	make sure all of your percentages are going to be
13	the same.
14	DR. MARTI: Well, okay. Let's
15	DR. FISCHER: You have got to have sort
16	kind of uniformity across here because you have the
17	standard because you are going to measure the
18	entire qualification of the instrument.
19	DR. MARTI: What is the difference,
20	then, between CD45 labeled in all nine colors? You
21	stain each one of those individually. So you are
22	going to have a CD45 FITC, a CD45 PE, and then you
23	mix those together after you have run them
24	individually. Is that what you are accepting as

...... ---!----- ----

your positive control or is it that you used those

1	nine reagents
2	DR. FISCHER: I would argue that
3	something similar in Mario's remote controls works
4	the best for fluorescence minus one. But I don't
5	necessarily follow this procedure.
6	DR. MARTI: I can tell you that in six
7	colors, we don't really see any difference in terms
8	of automated compensation if we use one antibody
9	with several different fluorochromes or if we use
10	the individual antibodies that are in our test
11	panel. We are not good enough to see a difference
12	if there is a difference.
13	DR. FISCHER: I have never seen a
14	difference in any of the four, six, or nine-color
15	stuff that I have done where I have set everything
16	on known cells that I have been using for God knows
17	how long with these antibodies that I have been
18	using.
19	The changes in my compensation from day
20	to day and my PMT settings from day to day are so
21	small that if you track them over time we're
22	talking a long time now for most of my other
23	instruments, not science. I've just had that about

But for those instruments, if you were

a month.

24

1	to look at that, you would plus or minus the error
2	of the machine probably for being able to detect
3	those things. There is just not a large,
4	significant change. And even after we have our
5	routine PMs done, for (a) repairs, if the equipment
б	is put back in the condition that the manufacturer
7	wants it in, I can call up my last seven spot.
8	It almost matches perfectly with
9	running a sample I have just stained so that the
10	changes are so minimal to where known antibodies
11	and that is the problem, of course, that you have
12	got to use known antibodies and cells that you are
13	used to working with.
14	DR. SCHWARTZ: If they're so small, why
15	make them?
16	DR. FISCHER: That would be the
17	argument, but I do that just as a matter of
18	history. Well, I also like to have the evidence
19	that yes, I actually did do this. So there was
20	nothing that also went wrong with the instrument
21	because somebody came in in the middle of the night
22	and a lot of people, rather than have this problem.
23	We have people who work almost 24 hours
24	in our lab running instruments. They come in. And

we get some people who run some of the damnedest

things in the world. They can only run one before 1 they have to clean the instrument because cells 2 begin to clog it up. 3 Well, that could make a difference if 4 5 they don't do a good enough job. We all know what happens when somebody leaves their instrument or 6 7 leaves any instrument not in the best shape. Ιt can affect your results dramatically. So that is 8 9 why we run --10 LENKEI: It's not like those DR. 11 such a -- instrument and use them as they want 12 because then it's really a problem. 13 DR. WOOD: In terms of automation, this was occurring to me. If people used at one other 14 15 point; that is, a double positive point, you could make sure that you had a full rectangular figure in 16 there because even though with explaining it out, 17 18 you have no idea of when you have gone necessarily 19 too far, guess when you have gone too far. 20 If you have that extra point up there, 21 then your populations will line up. And you will see the curvature in the data. 2.2 23 Would you maybe, say, do DR. MARTI: 24 stained cells with CD45 FITC and PE in the same 25 tube so that you would get 50/50 staining?

1	DR. WOOD: Well, especially the first
2	thing that popped up in my mind was back when we
3	had the CD4, CD8 sitting right up there. You could
4	actually with that system make a perfect rectangle.
5	If we had the perfect rectangle, everything would
6	evolve a little, the set limits. You would
7	actually see curvature like that.
8	DR. MARTI: I guess that comes back to
9	designing your system.
10	DR. HOFFMAN: Right.
11	DR. MARTI: If you can design that in,
12	that sounds like it might not be a bad idea. Okay.
13	Let's say that we have finished, beaten to death
14	compensation. I think we would now like to oh,
15	I'm sorry.
16	DR. HOUTZ: Just thinking about what
17	you said, compensation guidelines, it seems like
18	with analog versus digital, with maybe a new
19	algorithm with a bioexponential display, that
20	perhaps make some recommendation and then cite
21	references. I just think that being overly
22	detailed is not going to be able to adequately
23	cover everything for their purposes.
24	DR. MARTI: I am going to tend to agree

with you. So what is left are some action items.

1	We have listed them as protocol, phycoerythrin
2	problem, education, applications, and then looking
3	adequately to try to discuss what consensus we have
4	arrived at.
5	Now, for protocols, we talked about
6	what are the things that you need to look for, what
7	is this list of items, this checklist. Some of
8	those things, as I recall, are temperature, length
9	of incubation, the lyse, and the lyse to wash.
10	DR. SCHWARTZ: Fixation.
11	DR. MARTI: Fixation would be the
12	fourth.
13	DR. SCHWARTZ: Concentration of
14	antibodies.
15	DR. SHAPIRO: In terms of the protocol
16	definition, we were talking about particular things
17	in a sense, CD20, where we don't do saturation. Is
18	the C20 database and we have other things on the
19	database on the Web.
20	So it seems to me that, particularly if
21	you are looking at quantitation of CD antigens,
22	there is data there that can be folded in and
23	should be folded in to the design of any protocols
24	because that will give us the maximum information
25	about what we are looking for and how we might want

to look for it. 1 2 DR. SHAPIRO: What is that? There are protein reviews on the Web, which basically keeps 3 data on analog CD and other things. And so for 5 somebody to cite, "Gee, we ought to be quantifying this antigen" and have --6 7 DR. FISCHER: Is that through NCDI? 8 Yes, it's NCDI. Okay. 9 DR. STETLER-STEVENS: I think on these 10 items, if we have people who are willing to head a subgroup to do this, we should give them rein to do 11 12 it the way they are going to do it and report back 13 and not say, "I want you to do this, but I want to tell you what you have got to do." Bring it back, 14 15 and we can go over it. We did get an aide who has committed to 16 17 work on it and to get others to help do the work, 18 not to do all of the work, but to sort of spearhead this effort. 19 20 So what you need to look at, the other 21 thing is how do you optimize. What are a set of 2.2 instruments of how you can go about doing this. we are not just saying you have to specifically 23 24 direct x, y, or z, but how do you determine if it

is x or if it is y.

1	And then there was a lot of discussion
2	about doing a study to validate these concerns are
3	real. We will leave them to determine the study
4	that they want to do, but many people have
5	indicated that they are willing to participate.
6	Some people have told me that they want to
7	participate in this study. They think it is
8	important.
9	DR. LENKEI: I think it should not be
10	too complicated. It should be a first stage. We
11	get some information which is possible to be
12	statistically analyzed and proceed.
13	DR. SCHWARTZ: Understood.
14	DR. LENKEI: Understood.
15	DR. MARTI: Lance, you suggested a
16	focus protocol.
17	DR. HULTIN: No. You were talking
18	about CD20s. I offered that. I would just give it
19	a time, this time and temperature stuff. I will
20	send the data for distribution. You can review it
21	and see how it goes because you couldn't quite
22	decide all the factors. I'll just give it a shot,
23	and we will see where it goes.
24	DR. VOGT: The other thing, remember,
25	for that group I think is that CD38 is both an

1	important problem for you all as matotologists and
2	a problem that has been largely solved.
3	So all that you need to do there not
4	all, but you need to draw the link between the
5	solution to this problem in the HIV world and its
6	application in the b-cell malignancy world. That
7	is probably the shortest drive you have. That is
8	probably the par three on the course.
9	DR. MARTI: I would agree with that.
10	Move on to the
11	DR. STETLER-STEVENS: Next is the
12	beads.
13	DR. MARTI: An attempt to make some
14	kind of I may state this wrong because I don't
15	understand the problem, but getting some kind of
16	agreement between the F to P ratio on PE
17	conjugates. How would you define that problem?
18	DR. VOGT: I was suggesting that we
19	have a smaller group together and look at all three
20	I hope I have it right of the aspects. One
21	is the MESF microbead standards so that we can have
22	MESF units that are comparable. That would involve
23	looking at the ones that are currently available,
24	looking at their spectral characteristics, which we
25	can get Dolph to do, and that sort of thing.

1	The second component is the conjugates
2	and looking at, again, spectral characteristics of
3	the conjugates, the immunochemical characteristics
4	of the conjugates. By that I mean their molar F:P
5	ratio and their binding qualities.
6	And then the third thing would be to do
7	an actual laboratory exercise with a send-out, with
8	calibrators. folded down into that would be things
9	like could an Alexa dye serve as a stable surrogate
10	for assigning MESF units across different types
11	phycoerythrin preps.
12	DR. SCHWARTZ: The problem is you can't
13	because that excitation specter is not the same.
14	PE is excited by a lot of us at 488 and by Howard
15	at 535.
16	DR. SHAPIRO: Right, right.
17	DR. VOGT: I think those are things to
18	be discussed. We would like to move toward a PE
19	MESF particle that could be used to standardize any
20	PE conjugate, but that may not be possible. So
21	that is one of the conclusions we reach.
22	DR. MARTI: I'm just simple-minded
23	here. Is it possible that Alexa could be used as a
24	soluble fluorochrome to standardize a biological
25	fluorochrome?

1	DR. SCHWARTZ: Yes.
2	DR. VOGT: Well, that's what I said,
3	and you said no.
4	DR. MARTI: My PE
5	DR. SCHWARTZ: You said you were going
6	to use Alexa to assign PE beads, not Alexa beads.
7	DR. VOGT: Well, I don't know. What I
8	said was use Alexa as a stable surrogate standard
9	bead. That's all I said.
10	DR. SCHWARTZ: The answer is no because
11	the excitation specters are different. So on
12	different instruments using different
13	DR. VOGT: It says the variation. I am
14	not talking about the detail part.
15	DR. MARTI: Can't you use a solution of
16	the fluorochrome, of the appropriate Alexa
17	fluorochrome.
18	DR. SCHWARTZ: For?
19	DR. MARTI: To assign MESF units to PE.
20	DR. SCHWARTZ: No.
21	DR. HOFFMAN: As long as they are PE
22	units.
23	DR. SCHWARTZ: No because if you are
24	excited with two different lasers
25	DR HOFFMAN: You can say you know

Τ	for the excitation
2	DR. SCHWARTZ: You can do that, but
3	then you might make everything in fluorescein MESF
4	units for each
5	DR. SHAPIRO: I am not saying that is a
6	good idea. I am just saying it is possible.
7	DR. SCHWARTZ: Oh, it is possible, but
8	I agree. It's not
9	DR. MARTI: PE, if you think it is
10	complex on a bead or on a cell, I get the
11	impression that it is pretty complex in the
12	solution itself.
13	DR. SHAPIRO: Well, it is pretty
14	complex in the solution itself, but the point is
15	that solutions are a great way of assigning massive
16	units to low molecular weight guides. And they are
17	probably not the most wonderful or appropriate
18	methods for assigning units to, in fact, doing
19	proteins or cantons or, for that matter, GFP. You
20	can't use the same tool all the time. I mean, it's
21	
22	DR. MARTI: You can use fluorescein to
23	assign MESF to a particle. Why can't you use a
24	fluorochrome
25	DR. SHAPIRO: It's still fluorescein on

1	a particle. Yes, if you have got auto-fluorescence
2	in the fluorescein channel, you can record that
3	auto-fluorescence and fluorescein message units,
4	even though it's not from fluorescein.
5	So fluorescein goes into the PE
6	spectrum. So, as Abe said, you could use
7	fluorescein to assign PE, to measure PE fluorescein
8	message units, but it's not accomplishing the same
9	end.
10	DR. SCHWARTZ: So what if you said,
11	"Why don't we make Alexa beads and Alexa-labeled
12	antibodies?" Terrific.
13	DR. VOGT: Well, that would be one, but
14	it's another issue, though.
15	DR. SCHWARTZ: If you want something in
16	that area of the spectrum, that would be the way to
17	do it, not cross-fluorochromes so you can get
18	confused.
19	DR. SHAPIRO: Yes. But the point is
20	that there are other ways. I think the BD process
21	in producing the QuantiBRITE beads and reagents has
22	produced an acceptable, if not a NIST-traceable,
23	standard with PE.
24	DR. VOGT: Right. And that would be
25	certainly the starting point and also the Bangs

1	beads to look at what are the PE standards we have
2	got and how close are we and then what do we need
3	to do to close whatever gap exists.
4	DR. SHAPIRO: It was my recollection
5	that I have not seen a process way down in the
6	process that the Bangs would be analogous to the
7	published process to the BD beads. Maybe I missed
8	it.
9	Presumably if the steps are laid out,
10	if there is a discrepancy, then if there are two
11	processes, both of which are completely defined out
12	in the open and then you come up with different
13	numbers, then I worry about it.
14	If there is a process that gets defined
15	for one of the products but not for the others yet
16	and then there is a discrepancy, then let's define
17	the process for the second product. That is not
18	something that we should worry about.
19	DR. SCHWARTZ: We need to deal with the
20	process of assignment of MESFs, the beads, not
21	worry about the one-to-one antibody stuff yet.
22	DR. SHAPIRO: Right.
23	DR. SCHWARTZ: They are two different
24	things. Let's take care of the beads first and
25	make sure

Т	DR. SHAPIRO: Yes.
2	DR. SCHWARTZ: if you get a PE bead,
3	you get the same answer, no matter what your
4	subject, just like you have the CD4 labeling and
5	for the most part, everybody who makes a CD4 labels
6	about the same level of 50,000.
7	DR. PURVIS: I think that the main
8	difference there is coming from sources. It's
9	actually, even though it is RP
10	DR. SCHWARTZ: This when we came up
11	when we had the problem about I was way off on the
12	PEs on, all of a sudden, the batch was way off. It
13	was that I was assigning against a derivative of
14	PE, which is a disaster. When I got a whole bunch
15	of those lots of that derivative, I had an 80
16	percent CD or PE from six different sources. My
17	variation was only eight percent.
18	DR. HOFFMAN: This wasn't in a paper.
19	I didn't do it. Looking at lots of different PEs,
20	it was like a 30 percent.
21	DR. VOGT: It was 30 percent, yes.
22	That was what
23	DR. SCHWARTZ: But if you took out the
24	BD one, it drops. I am not saying that I mean,
25	it is just different because you were saying PE one

1	is much better, much purer, much more control,
2	which I believe.
3	But it doesn't agree with the other
4	ones. When I saw the data, it was like that. And
5	then the PE one was way up here. I also got the
6	same problem when I started choosing a blank bead.
7	I went. I had 20 lots. I picked my blankest one,
8	and I ran out of it. It was very embarrassing
9	after that.
LO	DR. HOFFMAN: But there are the same
11	issues with PE or any other fluorochrome. You need
L 2	a standard, and you find a solution of a certain
L3	purity.
L 4	DR. SCHWARTZ: All of these things need
15	to be addressed in this
L6	DR. STETLER-STEVENS: Who is going to
L 7	help you?
L 8	DR. MARTI: I still think you can
L9	explore the issue. Part of the subcommittee would
20	have the prerogative to explore whether or not the
21	appropriate Alexa dye could be used as a surrogate.
22	DR. D'HAUTCOURT: As a surrogate
23	DR. LENKEI: I think for this thing to
24	stand up, which is not kept there and it's passed
25	to some bank or other, how is your traceability for

1	this?
2	DR. VOGT: In order for them to call
3	something an NTRM, there is a process they have to
4	go through in showing how their values relate to
5	what was originally traceable and how that trace is
6	continuous from the lot.
7	That is a very good question, I think,
8	and I don't know the answer. That was a very vague
9	answer, you might have noticed, but I am presuming
LO	they cannot create something they call mistraceable
l1	without having a protocol to trace it.
L 2	DR. SCHWARTZ: But they will trace it
L 3	back from NIST. When that runs out, there is
L 4	nothing traceable.
15	DR. VOGT: Well, there has to be.
L6	There has to be some process. We can't
L 7	DR. SCHWARTZ: That needs to get back
L 8	that same kind of thing or have NIST do it.
L9	DR. VOGT: Right. It may be necessary
20	from time to time for NIST to make another RM.
21	Remember, Dolph is not intending even to try to
2.2	 make an SRM. So he is already dumbing it down a

NEAL R. GROSS
COURT REPORTERS AND TRANSCRIBERS
1323 RHODE ISLAND AVE., N.W.

level in order to keep from having to go to the

DR. SCHWARTZ: But they don't make any

Vatican to get a value assigned.

23

24

Τ	of it. They get it from Molecular Probes or Bangs,
2	whatever. They just characterize it. That is all
3	they do.
4	DR. VOGT: I think one of the first
5	questions is, certainly the first question is, the
6	available PE standards are. How do they agree?
7	What are the sources of disagreement? How is their
8	spectrum matching? Nobody knows that.
9	How does the spectrum match on the
10	beads compare to the spectra of the conjugates?
11	Nobody knows that. So there are a number of easy
12	questions for us to answer.
13	Actually, all we have to do is wait for
14	Dolph. So the answer to the question is me. It
15	doesn't matter whether I am there or not, but Dolph
16	is the most important.
17	DR. FISCHER: I think you have to throw
18	Molecular Probe as a main source of a lot of these
19	fluorochromes in there
20	DR. VOGT: Right.
21	DR. FISCHER: because if you do
22	intend eventually on bringing in any of the Alexa
23	dyes, they obviously have to be in on it because I
24	know BD and some other people are licensing some of
25	these, but at the same time, they are the main

1	source of beads.
2	DR. VOGT: Right. So the other people
3	who are on this group and I have already talked
4	to them are Yu-Zhong from Molecular Probes,
5	Yu-Zhong Zhang; and Jorge Quintana from Coulter,
6	who is eager to do this; and Bob or his designated
7	alternate contact at BD; and Nathan at Bangs. And
8	then I wanted to suck Norm Purvis into this, too.
9	So, as I said, we will take an arm and
10	a leg of Norm. You all can have the other arm and
11	leg for your protocol group. And we will return
12	some fingers and toes.
13	DR. PURVIS: We may be only giving
14	fingers, though.
15	DR. STETLER-STEVENS: Maybe you have
16	something in your group you could sacrifice.
17	DR. MARTI: Okay. Moving on.
18	Education. I wanted to just throw out a comment.
19	Somewhere along here in planning for the scene in
20	November, on a couple of occasions, we have talked
21	about having some kind of quantitative tutorial the
22	day before that meeting. That may be tacking too
23	much onto that meeting because there is going to be
24	a day after the meeting, really, to continue this

meeting.

1	DR. STETLER-STEVENS: Before the
2	meeting, we have the course. Then the day right
3	before the meeting, we are going to have regulatory
4	affairs people meeting and also
5	DR. VOGT: We hope to piggyback. I
6	will talk to Bill Caldwell, who is running that.
7	Now, is that the day before the meeting?
8	DR. STETLER-STEVENS: Well, the meeting
9	starts at night, Coulter lecture on Sunday night.
LO	So Sunday.
11	DR. VOGT: Sunday is the meeting.
L 2	DR. STETLER-STEVENS: It's regulatory
L 3	affairs and the other.
L 4	DR. VOGT: Okay. Okay. So then the
15	NCC unless Ligand Immunology Committee would meet
L6	on that Sunday date.
L 7	DR. STETLER-STEVENS: Then we have the
L 8	meeting. Then we have quantitative flow follow-up
L9	meeting. So it
20	DR. VOGT: Yes. I would agree with you
21	tacking is too much.
22	DR. MARTI: Okay. Well, any other
23	suggestions?
24	DR. VOGT: Oh, on PE, I'm sorry. This
25	is staring right out. I wanted Lance also because

_	we don't need as many lingers and coes from nim,
2	but as a person who can speak most for how you do
3	this stuff, he should have been right after Dolph.
4	DR. MARTI: Does anybody else have any
5	comments on education?
6	DR. STETLER-STEVENS: Randy had
7	comments, Howard had comments, and Bob had
8	comments. So we put them on
9	DR. SHAPIRO: So if we are devising
LO	educational materials, what is the venue for
11	DR. STETLER-STEVENS: I think coming up
L2	with what needs to be presented in education
L3	DR. SCHWARTZ: You need to put Jerry on
L 4	it.
15	DR. STETLER-STEVENS: Jerry?
L6	DR. SCHWARTZ: He has been doing it for
L 7	six, seven years.
L 8	DR. STETLER-STEVENS: We can sort of
L9	liaison with I'll get Brent Wood on it, who is head
20	of education committee for CCS. I will liaison
21	with these people with ideas of we need to really
22	approach this. And, for example, we could have
23	the only thing I can think of is he would probably
24	be happy to have part of the flow course.
25	They have special lectures the last

1	half day, which they have had topics that are not
2	immunophenotype leukemia is a big one or minimal
3	disease, a big one. We have huge topics. There
4	are little topics like myelodysplastic syndrome,
5	immune studies in HIV.
6	It doesn't apply to everyone, but there
7	are important things that could have, for example,
8	a class about an hour long lecture from one of the
9	astute group to go into some of the issues we think
10	need to be addressed.
11	We have to decide not just quantitative
12	flow. You're talking about things that have got to
13	be standing that lead to an understanding of the
14	quantitative flow. So you're talking about the
15	crawling stage and then the walking stage. So what
16	are the principles you feel are not taught well
17	that allow one to understand to do quantitative
18	flow?
19	I can talk to Brent about this and try
20	to get this in as a special lecture, for example.
21	DR. MARTI: So you're saying that
22	what is it, the Saturday before the CCS meeting?
23	DR. SHAPIRO: What about the dusk to
24	dawn?
25	DR. STETLER-STEVENS: This meeting is

211 packed. We have a leukemia, lymphoma section that 1 is about two hours. We are having a computer room 2 set up with cases because people want a lot of case 3 4 work. 5 But I think that the course work -- and there is also some luncheon work. We have this 6 7 time about eight luncheon workshops, but that is something that is kind of long in the process for 8 9 that, but we could have a special topic session as 10 one place. 11 This is people are coming because they need to learn about flow. The flow course is 12 13 hugely popular. There is a waiting list always. 14 We give a date that you have to apply by, and we 15 close a couple of months, a month or two, earlier 16 because it is full. Then there are people who say, 17 "I will pay my money. Put me down first for the 18 next one." 19 So this is a good place to teach 20 So let's identify what they need to be people. 21 taught to have that --2.2 DR. HOUTZ: I would like to be involved 23

in that process, actually, but I'm thinking in terms of like a lesson plan, like let's try to organize exactly the --

24

1	DR. MUIRHEAD: Is this a basic
2	fluorescence limitation? I mean, I am still trying
3	to understand what you want.
4	DR. STETLER-STEVENS: Well, the
5	DR. VOGT: What I said originally was
6	
7	DR. STETLER-STEVENS: If you could do
8	it in an hour.
9	DR. VOGT: that if you began with
10	the premise that it is all quantitative flow, then,
11	instead of teaching quantitative flow
12	DR. SCHWARTZ: Flow is quantitative.
13	DR. VOGT: Flow is quantitative, right.
14	DR. MARTI: Whether you know it or not.
15	DR. VOGT: Right. Flow am ready. Mary
16	Alice, which flow course, now, did you mean?
17	DR. STETLER-STEVENS: It's the flow
18	courses attached to the Clinical Cytometry Society
19	meeting.
20	DR. VOGT: Okay.
21	DR. MARTI: I think the way I would
22	suggest that we leave that is that I
23	DR. VOGT: Abe and I have done this the
24	last couple of years together. He had been doing
2 5	it for gome time. He and I have done this the last

1	couple of years at Bowden. I think that is a
2	different thing to
3	DR. STETLER-STEVENS: It's a different
4	group.
5	DR. VOGT: Right.
6	DR. MARTI: I think what you are saying
7	is that this is an opportunity to
8	DR. STETLER-STEVENS: If you guys car
9	come up with multiple places to present, first you
10	have to come up with what do you need to teach,
11	what do you feel people do not know, especially
12	clinical laboratories. Then we find places we can
13	do it. Okay?
14	DR. MARTI: We have that already
15	outlined.
16	DR. STETLER-STEVENS: Okay.
17	DR. MARTI: We could maybe scrunch it
18	down, but I think the way to approach this is to
19	slowly integrate into the CCS course
20	DR. STETLER-STEVENS: Or other places.
21	There are many places to define what you have
22	talked about, what is missing in education. Does
23	everybody need to know quantitative, having to do
24	quantitative flow and use beads? No. Everybody
25	should understand the basics.

1	DR. VOGT: But I think those are
2	inexorably entwined. You can't go in and see a
3	pattern on a set of quantitative beads and
4	understand what it is telling you, then you don't
5	know what your flow cytometer is doing.
6	DR. STETLER-STEVENS: Right. But you
7	don't need to sit down and discuss do you want to
8	determine MESF values, do you want to do this. Do
9	you know what I mean?
LO	DR. VOGT: I agree.
11	DR. STETLER-STEVENS: So this group is
L2	to determine the fundamental knowledge that is
L 3	lacking in general.
L 4	DR. VOGT: Why don't we chart it, Mary
15	Alice? I was as loud as anyone about this, I
L6	guess. I don't know about one hour, but I would
L 7	say a maximum two-hour introductory level, what
L 8	fluorescence measurements in flow cytometry.
L 9	DR. MUIRHEAD: The Jim Gill lecture is
20	one.
21	DR. SHAPIRO: What is it, now?
22	DR. MUIRHEAD: The Jim Gill lecture.
23	DR. SHAPIRO: Well, where's Jim?
24	DR. MUIRHEAD: I don't know where he is
25	these days.

1	DR. STETLER-STEVENS: So you guys come
2	up with this. And then it's a matter of targeting
3	places to do it. Others can help you do that, but
4	you need to come up. This is a
5	DR. VOGT: But what I would say about
6	that I think is it would be very helpful to have
7	him involved in this. The place where this could
8	really have an impact is if we came up with
9	something that each of the companies would present
LO	in an hour of the time, of the week's time, that
11	they have for training so that everyone who was
12	trained on a flow cytometer would get the same
L 3	message about this, then that would probably change
L 4	the world.
L5	DR. STETLER-STEVENS: Not everybody
L6	gets trained on a flow cytometer.
L 7	DR. VOGT: Those we can pick up later
L 8	or at the same time or something, but
L9	DR. STETLER-STEVENS: Somebody gets
20	trained when you buy it. Then afterwards, they
21	train other people. And other people come in and
22	they learn. So that is why continuing education is
23	important.
24	What we need to convey and then we
25	have to target where it goes
	1

Τ	DR. VOGT: But, you see, the other
2	DR. LENKEI: What I wanted to say is
3	that, for example, they have a lot of courses for
4	the ethics courses and current events courses. So
5	I think it should be a collaboration with the
6	companies, with Coulter, with Becton Dickinson, and
7	to see exactly how these courses are because I know
8	they have a very good activity in place.
9	DR. STETLER-STEVENS: Yes. One site is
LO	not going to solve the problem. So that's why it
11	is targeting multiple areas. And you know what?
12	We don't have to tell you how to do it because
L 3	there is
L 4	DR. DAVIS: We might put a CD together
L5	and convince the world.
L6	DR. STETLER-STEVENS: Yes.
L 7	DR. HOUTZ: I think a lot of it, too,
L 8	involves identifying standards. What is a
L 9	standard, really, in flow?
20	DR. VOGT: Well, those we have. I
21	mean, those things are adversity counters.
22	DR. STETLER-STEVENS: A CD actually is
23	not a bad idea. Phil McCoy has put together a CD
24	that he gives to fellows on basic flow cytometry
25	principles.

1	And you can yap at them all day long.
2	Give them a CD. Some people English is a second
3	language. And you talk to them. And they don't
4	know what they're getting. But they're going to
5	take the CD. They look at it, and they play with
б	it. And it is helpful. So it's not actually a bad
7	idea.
8	I've got a copy of it, and I give it to
9	our key path scholars. So to have them to sit down
10	and you know, this is the Game Boy age group
11	coming into fellowships and residencies. And they
12	would much rather do that than read a book.
13	DR. VOGT: Oh, that's good news. Oh,
14	great. This is after a lifetime of '80s music?
15	Then they come in to
16	DR. STETLER-STEVENS: Okay.
17	DR. SCHWARTZ: Future brain surgeons.
18	DR. SHAPIRO: The surgery is all done
19	by remote control now. It's the Game Boy
20	generation there, too. You can take out a
21	gallbladder in Paris now. Of course, now we
22	DR. FISCHER: The problem is they went
23	in for a hernia operation.
24	DR. HOUTZ: Educational issues. To the
25	group as a whole, we do offer workshops on

1	quantitation tools in flow cytometry. We use
2	QuantiBRITE beads. It's a wet workshop. We
3	actually go through and we use CD4 and we use CD38.
4	We have been doing that for about a
5	year now. I developed it, and I teach it both here
б	in Mansfield, Massachusetts as well as in
7	California. So, I mean, I could certainly talk
8	with our trainers as far as how we could implement
9	an hour's worth in a week.
10	I think it's a great idea to make sure
11	that we are aware of this particular aspect of flow
12	cytometry. There is a lot of information here that
13	I think is fairly fundamental that we have been
14	talking about for flow cytometry, but I think that
15	without properly defining standards, calibrators,
16	controls, and so on, I think people just aren't
17	going to really understand what quantitative flow
18	cytometry is.
19	DR. VOGT: Do you have a good
20	marketplace for that course? People have been
21	DR. HOUTZ: I would like to see more of
22	a turnout, but we have had about 15 people attend.
23	DR. FISCHER: I didn't realize you guys
24	were offering that. The education of the community
25	as to its availability is not

1	DR. HOUTZ: Well, it's been on the Web
2	and
3	DR. STETLER-STEVENS: And another thing
4	
5	DR. HOUTZ: our newsletter. It is
6	advertised in our newsletter.
7	DR. STETLER-STEVENS: Randy brought up
8	this to have local groups, low flow users' groups.
9	And it may be you talking to Burt and saying about
LO	how to bring that to local groups and have people
11	come in and give talks.
L2	DR. SHAPIRO: And the Boston group.
L3	Well, there is the Boston users' group. And then
L 4	there is a group called EBG, the Boston users'
15	group, flow cytometry group, which is a subset of
L6	applicants together for happy hour every month.
L 7	From that group, everybody wants to have a big
L8	workshop on compensation, which we are now
L9	organizing. That could probably be readily
20	extended over to quantitative flow.
21	We get people. We certainly get people
22	from as far down as New York for some of our bigger
23	meetings. So that may be a fairly big shindig.
24	That is probably going to be sometime in early June
25	because they wanted me to do some of that. Then I

1	have to go to New Jersey. Then I have to go to Los
2	Alamos. But it looks as if we are going to have
3	something cooked up, something happening in early
4	June.
5	DR. FISCHER: The Chesapeake group does
6	some of the stuff. We are going to do another one
7	of our joint ones with the newer group. Again, it
8	is probably going to be in the fall this year.
9	That would certainly be a workshop.
10	Now, last time we had one of these
11	meetings, even though we sent repeated requests to
12	Becton Dickinson to do a workshop, they didn't
13	submit their payment for the thing and, in fact,
14	didn't even tell us they wanted to do a workshop
15	until we sent out the first copy of the itinerary.
16	And then they said, "Where are we on there?"
17	And we said, "Well, what did you send
18	us to do?" So it will be a case of I will make
19	sure Burt gets the first notice on that.
20	DR. STETLER-STEVENS: We need to have
21	people who are interested in it from the industry
22	to have
23	DR. FISCHER: We had offers from the
24	companies to do this. We only had like 150 people
25	at this meeting, but if you reach 150 of the flow

...... ---!----- ----

people in this area, you're doing a pretty good 1 2 job. DR. STETLER-STEVENS: We have 3 an 4 education group, another group to write up the 5 applications of quantitative flow lab work because our findings and what we write up and what we do 6 7 has already been accepted for publication. So anything we do is not wasted here, 8 9 even from a professional point of view, we are 10 going to get some benefits. And we are going to 11 reach people. Larry has volunteered to spear this 12 meeting, people to help him come up with 13 applications. I got a couple of 14 DR. LAMB: Fine. 15 people I want to draft. Okay. I want to draft 16 Burt because he runs around the country and talks 17 to people who ask him what they can do with 18 quantitative flow because he runs the workshops. 19 And I think, to balance the stick, we 20 will probably have to have another manufacturer as 21 well that has a lot of interest in that instrument 2.2 and reagent manufacturer, but I'll work on that. 23 The second one I want is Jerry because 24 Jerry can answer some regulatory concerns with 25 applications. And I think that that would be

1	helpful. Do we have anybody out there in the HLA
2	community that we liaison with who you might
3	suggest, somebody who is not here but might respond
4	to a draft?
5	Think of Brey. Brey is over-committed
6	at times about
7	DR. SCHWARTZ: What about Dan Cook?
8	DR. LAMB: Okay. I will talk to him.
9	DR. MARTI: Is Dan Cook in Chicago or
10	
11	DR. SCHWARTZ: He's in Cleveland.
12	DR. MARTI: Cleveland. Okay.
13	DR. LAMB: Yes. Brey is pretty much a
14	point person for all of flow and all of HLA and was
15	the president of Oxygen last year. Actually, this
16	year he is charged with the responsibility of
17	planning the meeting. So he is out of pocket a
18	lot.
19	I think a couple of manufacturers, one
20	regulatory person, and then I reserve the right to
21	tap Bob's work in diabetes or tap Bruce's work with
22	CD64 or to tap somebody like Brent Wood or Mary
23	Alice for some leukemia ideas to help us compile a
24	document that would start simple and work its way

up to more complex.

1	DR. FISCHER: Mary Alice, could I ask
2	you to put something else on there since Larry
3	brought this up, the regulatory concern. I mean,
4	there has got to be something done for the
5	regulatory concerns in this whole thing. What is
6	going to be the government's role in all of this?
7	DR. LAMB: See, that's why I picked
8	Jerry for this committee because I think that
9	before the nose wheel can even go up, we have got
10	to have some of those ideas.
11	DR. STETLER-STEVENS: Also, there is a
12	list who is really spearheading a lot in the CCS
13	regulatory committee and is working in that area to
14	help.
15	DR. FISCHER: Because we all know that
16	if the FDA issues a paper and says, "When you do
17	quantitative flow, you must use this bead to set
18	your machine up and you must use this bead to do
19	this or you must use this system to do that,"
20	everybody out there has to do it or they're not in
21	compliance with the FDA. And, therefore, a lot of
22	their data is considered not in compliance. And,
23	therefore, it can't be used for drug discovery or
24	treatment protocols.

DR. SCHWARTZ: Or reimbursement.

1	DR. FISCHER: Or reimbursement.
2	DR. MUIRHEAD: That's why you're much
3	better off to do it through things like NCCLS
4	documents because Jerry has already said
5	DR. FISCHER: Well, what I am saying is
6	
7	DR. MUIRHEAD: So is there going to be
8	don't get
9	DR. FISCHER: We want to know in
10	advance. Now, if some of the things we're doing
11	may end up running afoul of something that the FDA
12	would look at and say, "Oh, well, that's a place we
13	should control," rather than a place that we want
14	to keep them out of.
15	DR. MARTI: Even if there is a NCCLS
16	guideline or even if an FDA guideline, the Congress
17	permits you by law to use another procedure. We
18	just have to show that it's equivalent or better.
19	You have to validate it.
20	Yes?
21	DR. STETLER-STEVENS: Can I go back to
22	education? I think we should include Jean-Luc or
23	Alberto in education because we don't want to just
24	think
25	DR. VOGT: In English.

1	DR. STETLER-STEVENS: Yes. So unless I
2	hear
3	DR. VOGT: That's also
4	DR. STETLER-STEVENS: "No, I won't,"
5	I am going to put their names down.
6	DR. VOGT: Sure. And that is also true
7	of B. I mean, I thought of that, actually, just as
8	I moved on to C, but we don't want to do anything
9	unilaterally in flow cytometry. I don't have
10	anything to do with the State Department. So also
11	
12	DR. STETLER-STEVENS: We need to ask
13	some people. David Barnett and Jann are also
14	interested in being a part.
15	DR. VOGT: Sure.
16	DR. STETLER-STEVENS: But they couldn't
17	come. They had another meeting.
18	DR. VOGT: Right. In absentia here.
19	DR. STETLER-STEVENS: And Phillippe.
20	DR. LAMB: I'm going to see Jann next
21	month. He is in my session at the CCS meeting. So
22	I will talk with him a little bit about application
23	as well.
24	I wanted to go back to one question. I
25	think that it is a question that I asked yesterday

and sort of has still been grinding in my mind, which also says I am probably going to be tapping you as well, Lance, for some information.

As I said yesterday talking about

As I said yesterday talking about application, the CD4, CD38 system is probably the best defined system out there for quantitative flow and it's simple. So I asked a question.

I think it's one of the things the application needs to answer is why do people not write orders for it. Why is there not a system developed for it? The answer is, well, we don't know if we are going to get paid for it or something.

So if we are talking about an application where all of this wonderful engineering and technology that has been discussed is going to actually work out there in the clinical arena, some physician at the end of the line has got to make a decision that this is critical for patient care decisions or, else, it is better than something else as far as the economics are taken care of, patients are concerned, one or the other. Without that, you are a procedure looking for a home.

DR. DAVIS: Well, at least in the U.S., there is a process. You apply for a CPT code. And

2.2

I have done three of them. There is no reason why
CCS can't fit the American group for that one. I
mean, the European is different country by country.
DR. STETLER-STEVENS: So would that
come under regulatory concerns?
DR. DAVIS: Yes, it is a regulatory
DR. VOGT: What have you applied for?
What is one of the three you applied for?
DR. DAVIS: Reticulocytes, reticulated
platelets, and I guess the third one didn't make
it.
DR. VOGT: Was that an arduous process
or
DR. DAVIS: No. It's just paperwork.
Basically what you do is you say there ought to be
a CPT code for this and list the references showing
the medical utility. And you submit it to an AMA
committee charged with doing these codes.
It takes about a year and a half to go
through the process. And if your argument is
sound, you basically end up with a CPT code a year
and a half later.
DR. VOGT: I think that may be the most
single useful thing that can come out of this group
would be to get a set of submissions that relate to

1	quantifying expressions in through flow cytometry
2	onto that master list.
3	DR. FISCHER: So let me ask you a
4	question.
5	DR. STETLER-STEVENS: Name one to help
6	with the idea of CPT codes on CD38. I think that
7	
8	DR. FISCHER: I have a question. If
9	you get a CPT code and you use things like Lance's
10	CD38 thing or your CD64 thing, do you have to do
11	one for each one of those different ones or can you
12	do one for the quantitative overall or is it going
13	to
14	DR. DAVIS: Method-specific because
15	it's justified based on medical utility.
16	DR. LENKEI: Do you need in the
17	diagnostic, in the same application because I guess
18	clinical trials and separate saturations have some
19	different approaches
20	DR. MARTI: Well, in the U.S., I think
21	the vocabulary and language for that in the setting
22	of a clinical trial is whether or not you can get
23	at least cost reimbursement. Usually cost
24	reimbursement isn't talked about until Phase III

1	seen as in vitro diagnostics.
2	So I would hazard a guess. Now, this
3	is just a professional opinion after some 15 years
4	at the FDA. I can't imagine that we would get cost
5	recovery on <i>in vitro</i> diagnostic before it was
6	approved.
7	DR. VOGT: It's hard.
8	DR. MARTI: Yes. I'm just guessing. I
9	mean, that is my gut skin take from HIV testing
10	kits to anthrax. I think they actually
11	DR. FISCHER: Put Phil McCoy up there
12	on the regulatory. Phil does a wonderful talk on
13	CPT codes.
14	DR. MARTI: He actually wrote a paper
15	on it.
16	DR. FISCHER: Yes. He's probably good
17	at it.
18	DR. LAMB: Well, even if he did CD4,
19	34, 38 now, you could build a standard CPT code or
20	if you did CD64 now on neutrophil, you could fill
21	the standard, even on phenotyping costs per marker.
22	It's just that you wouldn't recover all of the
23	everything you put in for the quantitation.
24	DR. STETLER-STEVENS: But it would be
25	good to have a CPT code.

...... ---|-----

1	DR. LAMB: Oh, I agree. Yes. I'm just
2	saying that is how we have gotten around some of
3	this in the past when we go on and answer on
4	something, is bill for the immunophenotyping, heat
5	and arrest.
6	DR. DAVIS: Some of this you have to
7	look at cost. My approach to CD64 is that in the
8	U.S. at least, it is standard reimbursement for
9	88180. The code for each marker is fine to recover
10	the cost or quantitative CD38 or whatever. We have
11	multiple tubes, beads, or whatever.
12	Reimbursement of \$35 may not recover
13	the cost of doing the test. Under those
14	circumstances, you would need a new or different
15	CPT code to get linked to the different
16	reimbursement codes.
17	DR. VOGT: And we are talking here
18	about more expensive reagents and things like that.
19	So I think that
20	DR. HULTIN: And time.
21	DR. VOGT: And time, expertise.
22	DR. STETLER-STEVENS: Are there any
23	other areas? One idea I had was for the group was
24	when we get the description back, to go through and
25	try to glean out where we have agreement, write

Τ	down where we have agreement, send it out to the
2	crowd, and see if we
3	DR. VOGT: We tried that. And it took
4	an hour for them to get
5	DR. STETLER-STEVENS: But I think it's
6	very helpful. We send it out. We argue about it
7	by e-mail and fight about it. And certain things
8	we will never agree on. But there are things
9	think we have consensus on. So let's identify them
LO	and let's formalize it, that we reached consensus
11	on X based on what we have gone through. That
L2	would be the other
L 3	DR. TAMUL: Call it consensus after
L 4	review.
15	DR. MARTI: And basically that will
L 6	fall to those who are so moved.
L 7	DR. DAVIS: And we need to agree that
L 8	lack of a response is an affirmative.
L 9	DR. VOGT: Yes.
20	DR. STETLER-STEVENS: Lack of response
21	is an affirmative, yes.
22	DR. VOGT: The default is if you signed
23	up for this, if you don't want to be quoted, you
24	have to tell us what you don't want.
25	DR. STETLER-STEVENS: Right.

1	DR. VOGT: You know what, Mary Alice?
2	It occurs to me that could we possibly get a short
3	meeting report into Cytometry, maybe before the CCS
4	meeting, so that people would
5	DR. SHAPIRO: Are you kidding? You
6	can't get anything into <i>Cytometry</i> in less than six
7	months. You can give it a shot.
8	DR. MARTI: Well, I just know from
9	previous experience that the first thing that
10	happens when you see the transcript and start
11	reading it, you go, "Oh, my God. It's far from
12	finished."
13	DR. HULTIN: It's a long weekend.
14	DR. MARTI: It's usually very raw and
15	needs a lot of work because of the way we talk.
16	DR. VOGT: So we should write this
17	before we see the transcript so
18	DR. SCHWARTZ: And then validate it.
19	DR. MARTI: I mean I am obligated to
20	make some type of summary to CBER, FDA. However,
21	definitely I expect it was somewhere in the mid
22	range. I don't know exactly how it will work.
23	Chuck has been talking about something called
24	perspective in clinical quantitative flow.
25	Well, perhaps a special issue, maybe

1	later well, let's just see how it goes after we
2	get the transcript, hopefully in ten working days
3	from today, and get it up on our Web site. We
4	probably will take the liberty of just e-mailing it
5	to you. That way you all will have it.
6	Anything else?
7	DR. STETLER-STEVENS: Can we think of
8	anything else?
9	DR. MARTI: Well, you know what? The
10	other day I had promised people that I would bring
11	a list of FDA-approved monoclonal antibodies that
12	are in clinical use. I did make that list, but I
13	forgot to pass it out. It's at the place here if
14	anyone wants it.
15	I guess on that note, can we officially
16	adjourn this meeting, Mary Alice?
17	DR. STETLER-STEVENS: Yes.
18	DR. MUIRHEAD: I think we should thank
19	Mary Alice.
20	(Applause.)
21	(Whereupon, at 2:30 p.m., the foregoing
22	matter was adjourned.)
23	
24	
2 5	

NEAL R. GROSS
COURT REPORTERS AND TRANSCRIBERS

1323 RHODE ISLAND AVE., N.W.

(000) 004 4400