
- Brush-Free Surgical Scrub
- Hand and Body Antiseptic

TECHNICAL BULLETIN

Table of Contents

Surgical Scrub In Vivo Efficacy Study
Hand and Body Antiseptic In Vivo Efficacy Study
In Vîtro Time-Kill Study
Resistant Organism Time-Kill Study
Virucidal Efficacy Test Results
Antimicrobial Spectrum Study9
Minimum Inhibitory Concentration (MIC) Study10
Development of Antimicrobial Resistance Study
Primary Skin Irritation Study (Human)
Buehler Test for Sensitization (Animal)

TRISEPTIN® Surgical Scrub

Surgical Scrub In Vivo Efficacy Study

Objective:

The test for a surgical scrub was designed to evaluate the degree of rapid and persistent reduction of normal resident and transient human flora.

Test criteria were established in the FDA Tentative Final Monograph (TFM) for Healthcare Antiseptic Drug Products, which described the ASTM "Standard Test Method for Evaluation of a Surgical Scrub."

	11 Washes over a 5-Day Period		
Day 1	1 wash	1-log ₁₀ reduction of microbial flora within 1 minute after application	
Day 2	3 washes	2-log ₁₀ reduction of microbial flora within 1 minute after application	
Day 3	3 washes	No test	
Day 4	3 washes	No test	
Day 5	1 wash	3-log ₁₀ reduction of microbial flora within I minute after application	

Test Method:

- 1. A statistically relevant number of subjects underwent a two-week period of "wash-out" (no use of antimicrobial products, internally or externally, for two weeks).
- 2. Baseline populations must meet or exceed 1 x 10⁵ CFU/hand at a minimum.
- 3. The product was applied according to label directions and sampling was performed (subject sites randomized, used once) 10 minutes, 3 hours and 6 hours after application. Additional longer time points may be added.
- 4. Sampling was performed using the "glove juice method." After product application per label directions, sterile gloves were donned. A 75 ml neutral medium was inserted into the gloves and the hands were massaged for 1 minute. The antimicrobial action in the sample was neutralized. The fluid was collected, the wash repeated and the samples pooled.
- 5. Samples were plated and enumerated, and the log₁₀ difference between baseline and sample time was determined.

Test Results:

Subjects scrubbed with TRISEPTIN Brush-Free Alcohol Surgical Scrub per the label directions. The test demonstrated superior results exceeding the FDA TFM testing criteria for the surgical scrub classification and surpassed performance of 4% Chlorhexidine Gluconate (CHG) and 7.5% PVP-I scrub brush solutions, as shown in Figure 1.

TRISEPTIN® Surgical Scrub

FIGURE 1: FDA Tentative Final Monograph for Healthcare Antiseptic Drug Products *in Vivo* Testing Criteria for Surgical Scrub Classification

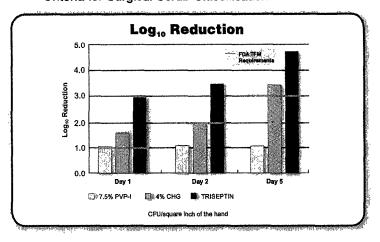
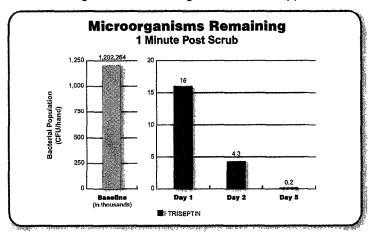



FIGURE 2: Microorganisms Remaining 1 Minute Post Application

Conclusions:

- · TRISEPTIN Brush-Free Alcohol Surgical Scrub demonstrated rapid reduction of resident and transient flora.
- TRISEPTIN demonstrated superior persistence, maintaining microbial reduction at all three test points, with efficacy that exceeds that required of a surgical scrub as outlined by the FDA TFM testing criteria.
- TRISEPTIN reduced microorganisms from 1,202,264 CFU/hand to only 0.2 CFU/hand on the Day 5 test point.
- TRISEPTIN demonstrated superior efficacy compared to 4% Chlorhexidine Gluconate (CHG) and 7.5% PVP-I at all three test points.

3

TRISEPTIN® Hand and Body Antiseptic

Hand and Body Antiseptic In Vivo Efficacy Study

Patient Preoperative Skin Preparation

Objective:

The test for a patient preoperative skin preparation was designed to evaluate the degree of rapid and persistent microbial reduction of normal resident human flora.

Test criteria were established in the FDA Tentative Final Monograph for Healthcare Antiseptic Drug Products, which described the ASTM "Standard Test Method for Evaluation of a Patient Preoperative Skin Preparation."

Inguinal Test Site	3-log ₁₀ reduction of microbial flora per cm ² within 10 minutes after application	
Abdominal Test Site	2-log ₁₀ reduction of microbial flora per cm ² within 10 minutes after application	
Suppression of bacterial growth below baseline for 6 hours after application		

Test Method:

- 1. A statistically relevant number of subjects underwent a two-week period of "wash-out" (no use of antimicrobial products, internally or externally, for two weeks).
- 2. Baseline populations must be sufficient to demonstrate, at a minimum, a 3-log₁₀ reduction (inguinal or axilla area as a moist site) and a 2-log₁₀ reduction (abdominal area as a dry site). Subjects demonstrating the minimum baseline population of 4.5 log₁₀/cm² (moist site) and 3.5 log₁₀/cm² (dry site) were included in the study.
- 3. Sampling was performed using the "cup scrub method." An open ended cup was placed securely over the sample site, a small amount of sampling fluid was placed within the cup and the skin surface rubbed with a rubber spatula for 1 minute. The fluid was collected, the wash repeated and the samples pooled.
- 4. The product was applied according to label directions and sampling was performed 10 minutes and 6 hours after application.
- Samples were collected as above, plated and enumerated, and the log₁₀ difference between baseline and sample time was determined.

Test Results:

The test demonstrated superior results exceeding the FDA TFM testing criteria for the Patient Preoperative Skin Preparation classification, as shown in Figure 3 and Figure 4.

TRISEPTIN® Hand and Body Antiseptic

FIGURE 3: FDA Tentative Final Monograph for Healthcare Antiseptic Drug Products *in Vivo* Testing Criteria for Patient Preoperative Skin Preparation Classification

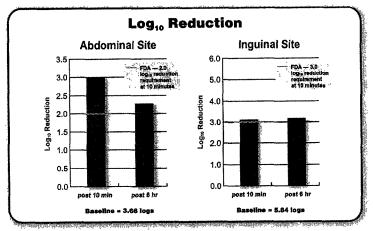
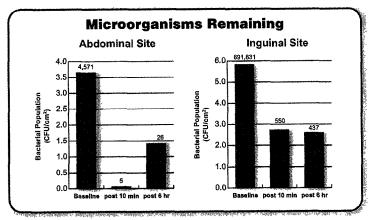



FIGURE 4: Baseline Cultures and Microorganisms Remaining Following TRISEPTIN Hand and Body Antiseptic Application as an Antiseptic Patient Skin Preparation and Subsequent in Vivo Testing per the FDA Tentative Final Monograph for Healthcare Antiseptic Drug Products

- TRISEPTIN Hand and Body Antiseptic used as an antiseptic patient preoperative skin preparation demonstrated rapid reduction of resident and transient flora. Such flora on the surface of the skin can lead to surgical site infections.
- TRISEPTIN demonstrated persistence, maintaining microbial reduction at 6 hours, with efficacy exceeding that of a preoperative site preparation as outlined by the FDA TFM testing criteria.
- TRISEPTIN reduced microorganisms in the inguinal site from 691,831 CFU/cm² to only 9 CFU/cm² 10 minutes post prep.

In Vitro Time-Kill Study

Objective:

To determine how rapidly a 1:10 dilution of TRISEPTIN achieves its antimicrobial effect.

Test Method:

A 1:10 dilution of TRISEPTIN was tested against the following species of ATCC microorganisms and corresponding clinical isolates at three minutes.

Test Results:

- The 1:10 dilution of TRISEPTIN reduced the ATCC microorganisms and corresponding clinical isolates.
- For the ATCC strains listed below, greater than 4-log₁₀ reduction at three minutes was observed for most organisms.

TRISEPTIN Time-Kill Data, Log ₁₀ Reduction				
Organism	3 min	Organism	3 min	
Acinetobacter sp., CI 317 (-)	5.2304	Micrococcus roseus, ATTCC 186 (+)	6.5052	
Acinetobacter sp., ATCC 15308 (-)	6.6902	Moraxella catarrhalis, CI 326 (–)	6.2304	
Bacteroides fragilis, ATCC 25285 (-)	6.2788	Proteus mirabilis, ATCC 7002 (-)	6.8921	
Candida albicans, ATCC 10231 (yeast)	6.6385	Proteus mirabilis, CI 312 (-)	3.2175	
Candida albicans, CI 304 (yeast)	6.2553	Pseudomonas aeruginosa, ATCC 15442 (-)	3.0022	
Candida krusei, CI 302 (yeast)	6.6232	Pseudomonas aeruginosa, ATCC 27853 (-)	6.7243	
Candida sp., CI 327 (yeast)	6.1139	Pseudomonas aeruginosa, CI 309 (-)	2.9542	
Candida tropicalis, ATCC 750 (yeast)	6.1271	Serratia marcescens, ATCC 14756 (-)	6.8692	
Candida tropicalis, CI 303 (yeast)	6.5682	Serratia sp., CI 320 (-)	5.8808	
Citrobacter freundii, CI 306 ()	5.1761	Staphylococcus aureus, CI 301 (+)	6.0792	
Enterobacter aerogenes, CI 308 (-)	4.5399	Staphylococcus aureus, ATCC 29213 (+)	6.4914	
Enterobacter aerogenes, ATCC 13048 ()	6.8124	Staphylococcus aureus, ATCC 6538 (+)	5.4590	
Enterobacter sp., CI 318 (-)	6.5563	Staphylococcus Coag. Neg., CI 319 (+)	6.7243	
Enterobacter sp., CI 325 (-)	6.8976	Staphylococcus Coag. Neg., CI 323 (+)	6.7324	
Enterococcus faecalis, ATCC 29212 (+)	6.2989	Staphylococcus epidermidis, ATCC 12228 (+)	6.2304	
Enterococcus faecium, ATCC 6569 (+)	6.7243	Staphylococcus haemolyticus, ATCC 29970 (+)	5.2041	
Enterococcus sp., CI 322 (+)	6.7243	Staphylococcus hominis, ATCC 29885 (+)	6.3010	
Escherichia coli, CI 307 (-)	6.7482	Staphylococcus saprophyticus, ATCC 15305 (+)	6.7709	
Escherichia coli, ATCC 11229 (-)	6.5911	Streptococcus bovis, CI 313 (+)	6.6021	
Escherichia coli, ATCC 25922 (-)	6.2356	Streptococcus Group B, CI 321 (+)	6.6721	
Escherichia colı, CI 310 (-)	6.2553	Streptococcus Group D, CI 324 (+)	6.7559	
Hemophilus influenzae, ATCC 19418 (-)	5.3802	Streptococcus pneumoniae, ATCC 6303 (+)	5.0414	
Klebsiella pneumoniae, ATCC 29995 (-)	6.1761	Streptococcus pneumoniae, CI 305 (+)	6.5315	
Klebsiella sp., CI 316 (-)	6.6435	Streptococcus pyogenes, ATCC 19615 (+)	6.7993	
Micrococcus luteus, ATCC 7468 (+)	6.6384	Streptococcus pyogenes, CI 314 (+)	6.6732	

CI = clinical isolate

- TRISEPTIN rapidly kills ATCC microorganisms at a 1:10 dilution.
- TRISEPTIN is a fast-acting and broad-spectrum antimicrobial agent.

⁽⁺⁾ gram positive

⁽⁻⁾ gram negative

Resistant Organism Time-Kill Study

Objective:

To determine how rapidly TRISEPTIN achieves its antimicrobial effect.

Test Method:

Several clinically important antibiotic resistant organisms were exposed to TRISEPTIN to measure \log_{10} reduction over time.

Test Results:

TRISEPTIN showed strong bactericidal activity against the following antibiotic-resistant organisms.

Organism	% Kill Log ₁₀ Reduction at 15 Seconds	
Enterococcus faecalis, ATCC 51575 (VRE)	>99.9984	
Enterococcus faecium, ATCC 51559 (VRE)	>99.9956	
Enterococcus faecium, Clinical Isolate (VRE)	>99.9918	
Staphylococcus aureus, ATCC 33592 (MRSA)	>99.9937	
Staphylococcus aureus, Clinical Isolate (VISA)	>99.9704	
Staphylococcus epidermidis, ATCC 51642 (MRSE)	>99.9854	

Conclusion:

TRISEPTIN demonstrated exceptional bactericidal action.

Virucidal Efficacy Test Results

Objective:

To determine how rapidly TRISEPTIN achieves its antiviral effect.

Test Method:

TRISEPTIN was tested against several clinically important viruses.

Test Results:

TRISEPTIN was proven effective at reducing the following viruses.

Virus	Initial PFU*	Level of Virucidal Reduction
Herpes Simplex 1 Virus	≥10 ^{6.33}	>10 ³ (>99.9%)
Hepatitis A Virus	10 ^{5.77}	>10 ² (>99%)
Human Immunodeficiency Virus	10 ^{6.0}	>10 ³ (>99.9%)

^{*} Test limits reached at $>3 \log_{10}$ reduction. PFU is the viral counterpart to CFU. PFU represents plague-forming units.

Conclusion:

TRISEPTIN inactivates RNA and DNA viruses.

Antimicrobial Spectrum Study

Objective:

To test the efficacy of TRISEPTIN against a broad spectrum of microorganisms as listed in the Tentative Final Monograph for Antiseptic Drug Products.

Test Method:

The active ingredient, the vehicle and TRISEPTIN were tested against the following species of ATCC microorganisms and corresponding clinical isolates.

Test Results:

TRISEPTIN provided greater than a 3-log₁₀ reduction after 30 seconds of exposure.

Organism				
Acinetobacter sp., CI 317 (-)	Micrococcus roseus, ATTCC 186 (+)			
Acinetobacter sp., ATCC 15308 (-)	Moraxella catarrhalis, CI 326 (-)			
Bacteroides fragilis, ATCC 25285 (-)	Proteus mirabilis, ATCC 7002 (-)			
Candida albicans, ATCC 10231 (yeast)	Proteus mirabilis, CI 312 (-)			
Candida albicans, CI 304 (yeast)	Pseudomonas aeruginosa, ATCC 15442 (-)			
Candida krusei, CI 302 (yeast)	Pseudomonas aeruginosa, ATCC 27853 (-)			
Candida sp., CI 327 (yeast)	Serratia marcescens, ATCC 14756 ()			
Candida tropicalis, ATCC 750 (yeast)	Serratia sp., CI 320 (-)			
Candida tropicalis, CI 303 (yeast)	Staphylococcus aureus, CI 301 (+)			
Citrobacter freundii, CI 306 (-)	Staphylococcus aureus, ATCC 29213 (+)			
Enterobacter aerogenes, CI 308 (-)	Staphylococcus aureus, ATCC 6538 (+)			
Enterobacter aerogenes, ATCC 13048 (-)	Staphylococcus Coag. Neg., CI 319 (+)			
Enterobacter sp., CI 318 (-)	Staphylococcus Coag. Neg., CI 323 (+)			
Enterobacter sp., CI 325 (-)	Staphylococcus epidermidis, ATCC 12228 (+)			
Enterococcus faecalis, ATCC 29212 (+)	Staphylococcus haemolyticus, ATCC 29970 (+)			
Enterococcus faecium, ATCC 6569 (+)	Staphylococcus hominis, ATCC 29885 (+)			
Enterococcus sp., CI 322 (+)	Staphylococcus saprophyticus, ATCC 15305 (+)			
Escherichia colı, CI 307 (-)	Streptococcus bovis, CI 313 (+)			
Escherichia coli, ATCC 11229 (-)	Streptococcus Group B, CI 321 (+)			
Escherichia coli, ATCC 25922 (-)	Streptococcus Group D, CI 324 (+)			
Escherichia coli, CI 310 (-)	Streptococcus pneumoniae, ATCC 6303 (+)			
Hemophilus influenzae, ATCC 19418 (-)	Streptococcus pneumoniae, CI 305 (+)			
Klebsiella pneumoniae, ATCC 29995 (–)	Streptococcus pyogenes, ATCC 19615 (+)			
Klebsiella sp., CI 316 (-)	Streptococcus pyogenes, CI 314 (+)			

CI = clinical isolate

- TRISEPTIN kills ATCC microorganisms and corresponding clinical isolates.
- TRISEPTIN is an effective, fast-acting and broad-spectrum antimicrobial.

⁽⁺⁾ gram positive

⁽⁻⁾ gram negative

Minimum Inhibitory Concentration (MIC) Study

Objective:

To determine the minimum concentration level at which TRISEPTIN solution inhibits bacterial growth of the following ATCC microorganisms and corresponding clinical isolates.

Test Method:

The following ATCC microorganisms and corresponding clinical isolates were exposed to various dilutions of TRISEPTIN and tested to determine the highest dilution factor (lowest product concentration) which inhibits growth of the microorganisms.

Test Results:

TRISEPTIN showed strong inhibition activity against ATCC organisms and clinical isolates, including the antibiotic-resistant organisms as follows:

Organism	Percentage Concentration of TRISEPTIN	Organism	Percentage Concentration of TRISEPTIN
Acinetobacter sp., CI 317 (-)	0.0195	Micrococcus luteus, ATCC 7468 (+)	0.0195
Acinetobacter sp , ATCC 15308 (-)	0.0195	Micrococcus roseus, ATTCC 186 (+)	0.0195
Candida albicans, ATCC 1023 (yeast)	0.0195	Moraxella catarrhalis, CI 326 (-)	0.0195
Candida albicans, CI 304 (yeast)	0.0195	Proteus mirabilis, ATCC 7002 (-)	0.0195
Candida krusei, CI 302 (yeast)	0.0195	Proteus mirabilis, CI 312 (-)	0.0195
Candida sp, CI 327 (yeast)	0.0195	Pseudomonas aeruginosa, ATCC 27853 (-)	0.0781
Candida tropicalis, ATCC 750 (yeast)	0.0195	Pseudomonas aeruginosa, CI 309 (-)	0.1563
Candida tropicalis, CI 303 (yeast)	0.0195	Serratia marcescens, ATCC 14756 (-)	0.1563
Citrobacter freundii, CI 306 (-)	0.0195	Serratia sp , CI 320 (-)	0.0781
Enterobacter aerogenes, CI 308 (-)	0.0195	Staphylococcus aureus, Cl 301 (+)	0.0195
Enterobacter aerogenes, ATCC 13048 (-)	0.0195	Staphylococcus aureus, ATCC 29213 (+)	0.0781
Enterobacter sp., CI 318 (-)	0.0195	Staphylococcus aureus, ATCC 6538 (+)	0.0195
Enterobacter sp., CI 325 (-)	0.0195	Staphylococcus Coag. Neg., CI 319 (+)	0.0195
Enterococcus faecalis, ATCC 29212 (+)	0.0195	Staphylococcus Coag. Neg., CI 323 (+)	0.0195
Enterococcus faecium, ATCC 6569 (+)	0.0195	Staphylococcus epidermidis, ATCC 12228 (+)	0.0195
Enterococcus sp., CI 322 (+)	0.0195	Staphylococcus haemolyticus, ATCC 29970 (+)	0.0195
Escherichia coli, CI 307 (-)	0.0195	Staphylococcus hominis, ATCC 29885 (+)	0.0195
Escherichia coli, ATCC 11229 (-)	0.0195	Staphylococcus saprophyticus, ATCC 15305 (+)	0.0195
Escherichia coli, ATCC 25922 ()	0.0195	Streptococcus Group B, CI 321 (+)	0.0195
Escherichia coli, CI 310 (-)	0.0391	Streptococcus Group D, CI 324 (+)	0.0195
Hemophilus influenzae, ATCC 19418 (-)	0.0391	Streptococcus pneumoniae, ATCC 6303 (+)	0.6250
Klebsiella pneumoniae, ATCC 29995 (-)	0.0195	Streptococcus pyogenes, ATCC 19615 (+)	0.0391
Klebsiella sp., CI 316 (-)	0.0195	Streptococcus pyogenes, CI 314 (+)	0.0195

CI = clinical isolate

Conclusion:

TRISEPTIN is an effective antimicrobial agent that inhibits growth of a broad spectrum of microorganisms.

⁽⁺⁾ gram positive

⁽⁻⁾ gram negative

Development of Antimicrobial Resistance Study

Objective:

To determine the development of resistance to TRISEPTIN. For patient preoperative skin preparations, the Tentative Final Monograph for Antiseptic Drug Products proposes that the formulations be tested for development of antimicrobial resistance via point mutation.

Test Method:

TRISEPTIN was tested against *Escherichia coli* ATCC 8739, *Staphylococcus* species ATCC 6538, and *Pseudomonas aeruginosa* ATCC 15442 in a series of ascending two-fold dilutions, using repeated subculturing of the last solution demonstrating growth.

Test Results:

No growth was observed in increasingly concentrated solutions from the initial inoculation.

Organism	Outgrowth Demonstrated In Subsequent Challenge	Evidence of Resistance
Escherichia coli, ATCC 8739	No	No
Staphylococcus aureus, ATCC 6538	No	No
Pseudomonas aeruginosa, ATCC 15442	No	No

Conclusion:

Organisms, when challenged with TRISEPTIN, do not demonstrate resistance to the product.

Primary Skin Irritation Study (Human)

Objective:

To determine by repetitive epidermal contact the primary or cumulative irritation and/or allergic contact sensitization potential of a test material.

Test Method:

- TRISEPTIN was applied to intact skin and abraded skin sites.
- Sites were covered with a 2.5 x 2.5 cm non-occlusive dressing and then wrapped with a semi-occlusive bandage.
- Dressings were removed and the application sites graded.
- Sites were observed for signs of erythema and edema at 24 and 72 hours. Observations were scored according to the "Classification System for Scoring Skin Reactions."

Test Results:

TRISEPTIN meets the guidelines as a non-irritating preparation.

Conclusion:

TRISEPTIN is a non-irritating preoperative skin preparation.

Buehler Test for Sensitization (Animal)

Objective:

To determine by repetitive epidermal contact the primary or cumulative irritation and/or allergic contact sensitization potential of a test material to guinea pigs.

Test Method:

- Skin sites were treated repeatedly with occluded applications of TRISEPTIN at 50% strength for three weeks.
- After a cessation of applications for two weeks, TRISEPTIN was applied to virgin sites.
- Observations were scored for irritation and other effects at the application sites and a determination was made regarding sensitization.

Test Results:

TRISEPTIN-treated sites demonstrated no reactions.

Conclusion:

TRISEPTIN is not a topical sensitizer as demonstrated under the conditions of this test.

HEALTHPOINT®

1-800-441-8227 www.healthpoint.com

Printed in the U.S.A.
© Healthpoint, Ltd. 2003
All rights reserved.

136593-0303

TECHNICAL BULLETIN

HEALTHPOINT®

Table of Contents

Surgical Scrub In Vivo Efficacy Study
In Vitro Time-Kill Study
Virucidal Efficacy Test Results
Antimicrobial Spectrum Study6
Resistant Organism Time-Kill Study
Minimum Inhibitory Concentration (MIC) Study8
Primary Skin Irritation Study (Rabbits)9
Exaggerated Hand Exposure Tests10
21-Day Cumulative Irritation Study in Humans
Ingredient Description
References

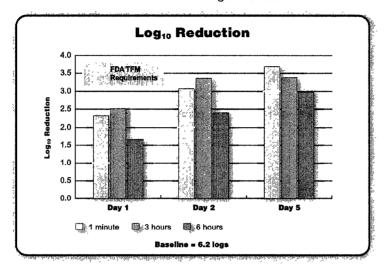
Surgical Scrub In Vivo Efficacy Study

Objective:

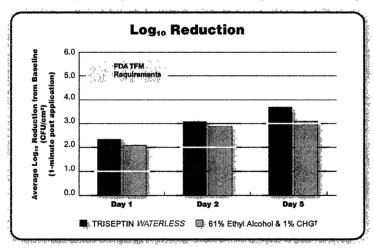
The test for a surgical scrub was designed to evaluate the degree of rapid and persistent reduction of normal resident and transient human flora.

Test criteria are established in the FDA's Tentative Final Monograph (TFM) for Healthcare Antiseptic Drug Products¹, which relies upon the ASTM² "Standard Test Method for Evaluation of a Surgical Scrub."

11 Washes over a 5-Day Period			
Day 1	1 wash	1-log ₁₀ reduction of microbial flora within 1 minute after application	
Day 2	3 washes	2-log ₁₀ reduction of microbial flora within 1 minute after application	
Day 3	3 washes	No test	
Day 4	3 washes	No test	
Day 5	l wash	3-log ₁₀ reduction of microbial flora within 1 minute after application	


Test Method:

- A statistically relevant number of subjects underwent a two-week period of "wash-out" (no use of antimicrobial products, internally or externally, for two weeks).
- Baseline populations must meet or exceed 1 x 10⁵ CFU/hand at a minimum.
- The product was applied according to label directions and sampling was performed (subject sites randomized, used once) at 1 minute, 3 hours and 6 hours after application.
- Sampling was performed using the "glove juice method." Soon after product application per label directions, sterile gloves were donned, and a 75 ml sampling medium was inserted into the gloves. The hands were massaged for 1 minute. The antimicrobial action in the sample was neutralized. The fluid was collected, the wash repeated and the samples pooled.
- Samples were plated and enumerated, and the log₁₀ difference between baseline and sample time was determined.


Test Results:

Subjects applied TRISEPTIN WATERLESS brush-free surgical scrub per the label directions. The test demonstrated superior results compared to the FDA's TFM testing criteria for the surgical scrub classification.

FIGURE 1: Testing Results for the FDA's Tentative Final Monograph for Healthcare Antiseptic Drug Products in Vivo Testing Criteria for Surgical Scrub Classification for TRISEPTIN WATERLESS Surgical Scrub

FIGURE 2: Comparison of TRISEPTIN *WATERLESS* Surgical Scrub to 61% Ethyl Alcohol with 1% CHG Waterless Scrub Agent to the FDA's Tentative Final Monograph for Healthcare Antiseptic Drug Products *in Vivo* Testing Criteria for Surgical Scrub Classification

- TRISEPTIN WATERLESS brush-free surgical scrub demonstrated rapid reduction of resident and transient flora.
- TRISEPTIN WATERLESS brush-free surgical scrub demonstrated superior persistence, maintaining microbial reduction at all three test points, with efficacy that exceeds that required of a surgical scrub as outlined by the FDA's TFM testing criteria.
- TRISEPTIN WATERLESS brush-free surgical scrub reduced the microorganisms from a baseline of 6.2 logs (1,584,893 CFU/cm²) to an average of 2.52 logs (331 CFU/cm²) remaining on the Day 5 1-minute post application test point.

In Vitro Time-Kill Study

Objective:

To determine how rapidly TRISEPTIN WATERLESS surgical scrub achieves its antimicrobial effect.

Test Method:

TRISEPTIN WATERLESS surgical scrub was tested against the following species of ATCC³ microorganisms and corresponding clinical isolates.

Test Results:

- TRISEPTIN WATERLESS surgical scrub killed the ATCC microorganisms and corresponding clinical isolates.
- For the ATCC strains listed below, greater than 4-log₁₀ reduction (>99.99%) at 15 seconds was observed for all organisms.

TRISEPTIN WATERLESS Surgical Scrub Time-Kill Data, Log ₁₀ Reduction					
Organism	15 seconds	Organism	15 seconds		
Acinetobacter baumannii, ATCC 19606	5.4564	Micrococcus luteus, CI	5.4624		
Acinetobacter baumannii, CI	5.4099	Proteus mirabilis, ATCC 7002	4.9934		
Bacteroides fragilis, ATCC 29762	6.1303	Proteus mirabilis, CI	5.0374		
Bacteroides fragilis, CI	5.7782	Pseudomonas aeruginosa, ATCC 15442	4.9058		
Candida albicans, ATCC 10231	5.1804	Pseudomonas aeruginosa, CI 0701	4.8692		
Candida albicans, CI	5.0354	Pseudomonas aeruginosa, ATCC 27853	4.9445		
Candida tropicalis, ATCC 750	4.1399	Pseudomonas aeruginosa, CI 0404	4.6580		
Candida tropicalis, CI	5,2529	Serratia marcescens, ATCC 14756	5.1319		
Enterobacter cloacae, ATCC 39979	5.1383	Serratia marcescens, CI	4.6445		
Enterobacter cloacae, CI	4.8543	Staphylococcus aureus, ATCC 6538	5.0607		
Enterococcus faecalis, ATCC 29212	6.0663	Staphylococcus aureus, CI (MRSA)	4.6628		
Enterococcus faecalis, CI	5.3243	Staphylococcus aureus, ATCC 29213	4.9217		
Enterococcus faecium, ATCC 51559	4.8976	Staphylococcus aureus (vancomycin-intermediate), CI	4.5315		
Enterococcus faecium, CI	5.3589	Staphylococcus epidermidis, ATCC 12228	4.9890		
Escherichia coli, ATCC 11229	5.0107	Staphylococcus epidermidis, CI (VISE)	4.9823		
Escherichia coli, CI 0601	4.6128	Staphylococcus haemolyticus, ATCC 19970	5.0755		
Escherichia coli, ATCC 25922	4.9085	Staphylococcus haemolyticus, CI	5.0107		
Escherichia coli, CI 0703	4.6721	Staphylococcus hominis, ATCC 51634	4.3636		
Haemophilus influenzae, ATCC 33929	5.2380	Staphylococcus hominis, CI	5.3560		
Haemophilus influenzae, CI	4.2355	Staphylococcus saprophyticus, ATCC 15305	5.1072		
Klebsiella oxytoca, ATCC 15764	4.6021	Staphylococcus saprophyticus, CI	5.0149		
Klebsiella oxytoca, CI	4.7924	Streptococcus pneumoniae, ATCC 33400	4.9638		
Klebsiella pneumoniae, ATCC 51504	4.4346	Streptococcus pneumoniae, CI	4.5250		
Klebsiella pneumoniae, CI	4.6180	Streptococcus pyogenes, ATCC 19615	5.7818		
Micrococcus luteus, ATCC 7468	4.1847	Streptococcus pyogenes, CI	5.4533		

CI = clinical isolate

- TRISEPTIN WATERLESS surgical scrub rapidly kills ATCC reference microorganisms and clinical isolates.
- TRISEPTIN WATERLESS surgical scrub is a fast-acting and broad-spectrum antimicrobial agent.

Virucidal Efficacy Test Results

Objective:

To determine the virucidal capacity of TRISEPTIN WATERLESS surgical scrub.

Test Method:

TRISEPTIN WATERLESS surgical scrub was tested against several clinically important viruses via a standard ASTM suspension test method with a 3-minute exposure.

Test Results:

TRISEPTIN WATERLESS surgical scrub was proven effective at killing the following viruses.

Challenge Virus	Initial CCID ₅₀ /mi	Log ₁₀ Virus Reduction
Herpes Simplex Virus	≥10 ^{6.67}	>3.0
Human Immunodeficiency Virus	≥10 ^{7.50}	≥4.0
Hepatitis A Virus	≥10 ^{6.50}	≥3.0
Human Rota Virus	≥10 ^{6.50}	≥3.0

Conclusion:

TRISEPTIN WATERLESS surgical scrub inactivates RNA and DNA viruses and meets or exceeds the ASTM requirements to be classified as a virucide.

Antimicrobial Spectrum Study

Objective:

To test the efficacy of TRISEPTIN WATERLESS surgical scrub against a broad spectrum of microorganisms as listed in the Tentative Final Monograph for Healthcare Antiseptic Drug Products.

Test Method:

The active ingredient, the vehicle and TRISEPTIN WATERLESS surgical scrub were tested against the following species of ATCC microorganisms and corresponding clinical isolates.

Test Results:

TRISEPTIN WATERLESS surgical scrub provided greater than a 4.0-log₁₀ reduction (>99.99%) after 15 seconds of exposure.

	Organisms
Acinetobacter baumannii, ATCC 19606	Micrococcus luteus, CI
Acinetobacter baumannii, CI	Proteus mirabilis, ATCC 7002
Bacteroides fragilis, ATCC 29762	Proteus mirabilis, CI
Bacteroides fragilis, CI	Pseudomonas aeruginosa, ATCC 15442
Candida albicans, ATCC 10231	Pseudomonas aeruginosa, CI 070199Pa
Candida albicans, CI	Pseudomonas aeruginosa, ATCC 27853
Candida tropicalis, ATCC 750	Pseudomonas aeruginosa, CI 040400Pa5
Candida tropicalis, CI	Serratia marcescens, ATCC 14756
Enterobacter cloacae, ATCC 39979	Serratia marcescens, CI
Enterobacter cloacae, CI	Staphylococcus aureus, ATCC 6538
Enterococcus faecalis, ATCC 29212	Staphylococcus aureus, CI 032301MMRSA13*
Enterococcus faecalis, CI	Staphylococcus aureus, ATCC 29213
Enterococcus faecium, ATCC 51559	Staphylococcus aureus, CI 042800VISA*
Enterococcus faecium, CI	Staphylococcus epidermidis, ATCC 12228
Escherichia coli, ATCC 11229	Staphylococcus epidermidis, CI 102599VISE*
Escherichia coli, CI 060199Ec	Staphylococcus haemolyticus, ATCC 29970
Escherichia coli, ATCC 25922	Staphylococcus haemolyticus, CI
Escherichia coli, CI 070399Ec	Staphylococcus hominis, ATCC 51624
Haemophilus ınfluenzae, ATCC 33929	Staphylococcus hominis, CI
Haemophilus influenzae, CI	Staphylococcus saprophyticus, ATCC 15305
Klebsiella oxytoca, ATCC 15764	Staphylococcus saprophyticus, CI
Klebsiella oxytoca, CI	Streptococcus pneumoniae, ATCC 33400
Klebsiella pneumoniae, ATCC 51504	Streptococcus pneumoniae, CI
Klebsiella pneumoniae, CI	Streptococcus pyogenes, ATCC 19615
Micrococcus luteus, ATCC 7468	Streptococcus pyogenes, CI

- TRISEPTIN WATERLESS surgical scrub kills ATCC microorganisms and corresponding clinical isolates, some of which are antibiotic-resistant strains. These are identified by an asterisk (*).
- TRISEPTIN WATERLESS surgical scrub is an effective, fast-acting and broad-spectrum antimicrobial.

Resistant Organism Time-Kill Study

Objective:

To determine how rapidly TRISEPTIN WATERLESS surgical scrub achieves its antimicrobial effect when tested against known drug-resistant bacteria.

Test Method:

Several clinically important antibiotic-resistant organisms were exposed to TRISEPTIN *WATERLESS* surgical scrub to measure \log_{10} reduction at 15 seconds.

Test Results:

TRISEPTIN WATERLESS surgical scrub showed strong bactericidal activity against the following antibiotic-resistant organisms.

Time-Kill Data for Antibiotic-Resistant Organisms Exposed to TRISEPTIN WATERLESS Surgical Scru			
No.	Microorganism Species	ATCC or Isolate #	Log ₁₀ Reduction at 15 Seconds
1	Acinetobacter baumannii	061700Ab16	5.41
2	Bacteroides fragilis	29762	6.13
3	Bacteroides fragilis	090800Bf	5.78
4	Enterobacter cloacae	39979	5.13
5	Enterobacter cloacae	070700Ec11	4.85
6	Enterococcus faecalis	061700Efs12	5.32
7	Enterococcus faecium	51559	4.90
8	Enterococcus faecium (VRE)	062999VRE	5.36
9	Escherichia coli	060199Ec	4.61
10	Escherichia coli	070399Ec	4.67
11	Haemophilus influenzae	33929	5.24
12	Haemophilus ınfluenzae	121699Ні3	4.23
13	Klebsiella oxytoca	15764	4.60
14	Klebsiella oxytoca	060199Ko	4.79
15	Klebsiella pneumoniae	51504	4.43
16	Klebsiella pneumoniae	040400Kpm2	4.62
17	Proteus mirabilis	121699Pm2	5.03
18	Pseudomonas aeruginosa	070199Pa	4.87
19	Pseudomonas aeruginosa	040400Pa5	4.66
20	Serratia marcescens	081499Sm	4.94
21	Staphylococcus aureus (MRSA)	032301MMRSA13	4.66
22	Staphylococcus aureus (VISA)	042800VISA	4.53
23	Staphylococcus epidermidis (VISE)	102599VISE	4.98
24	Staphylococcus hominis	51624	4.37
25	Staphylococcus hominis	060700Sho4	5.35
26	Staphylococcus saprophyticus	062900Ss	5.01

Conclusion:

TRISEPTIN WATERLESS surgical scrub demonstrated exceptional bactericidal action against known antibiotic-resistant organisms.

Minimum Inhibitory Concentration (MIC) Study

Objective:

To determine the minimum concentration level at which TRISEPTIN WATERLESS surgical scrub solution inhibits bacterial growth of the following ATCC microorganisms and corresponding clinical isolates.

Test Method:

The following ATCC microorganisms and corresponding clinical isolates were exposed to various dilutions of TRISEPTIN *WATERLESS* surgical scrub and tested to determine the highest dilution factor (lowest product concentration) which inhibits growth of the microorganisms.

Test Results:

TRISEPTIN WATERLESS surgical scrub showed strong inhibition activity against ATCC organisms and clinical isolates, including the antibiotic-resistant organisms as follows:

	Percentage Concentration		Percentage Concentration
Organism	of TRISEPTIN	Organism	of TRISEPTIN
Acinetobacter sp., ATCC 9957 (-) (DR)	0.0977%	Klebsiella pneumoniae, CI 081599Kp (-) (DR)	0.1953%
Acinetobacter baumannii, CI 121799Asp3 (-) (DR)	0.1953%	Micrococcus luteus, ATCC 15957 (+) (DR)	0.0977%
Bacteroides caccae, CI 090800Bc1 (DR)	0.0244%	Micrococcus sp., CI 070700Ms1 (+) (DR)	0.7813%
Bacteroides fragilis, ATCC 29762 (-9) (DR)	0.0488%	Proteus mirabilis, ATCC 29855 (-)	0.3906%
Bacteroides fragilis, CI 090800Bf (-9) (DR)	0.0244%	Proteus mirabilis, CI 121699Pm1 (-) (DR)	0.7813%
Candida albicans, ATCC 11651	<0.7813%	Pseudomonas aeruginosa, ATCC 9027 (-)	0.7813%
Candida albicans, CI 081599Ca	<0.7813%	Pseudomonas aeruginosa, CI 052299Pa (-) (DR)	0.7813%
Candida tropicalis, ATCC 750	<0.7813%	Pseudomonas aeruginosa, ATCC 15442	<0.7813%
Candida parapsilosis, CI 040400Cp5	0.7813%	Serratia marcescens, ATCC 43297 (-) (DR)	0.3906%
E. faecalis, ATCC 29212 (+)	0.1953%	Serratia marcescens, CI 081499Sm (-) (DR)	0.3906%
Enterobacter aerogenes, Cl 013100Ea (-) (DR)	0.1953%	Staphylococcus aureus, CI 051599MRSA (+) (DR)	0.0977%
Enterobacter aerogenes, ATCC 29940 (-)	0.1953%	Staphylococcus aureus, ATCC 33591 (+) (DR)	0.0488%
Enterobacter cloacae, CI 39979 (-) (DR)	0.1953%	Staphylococcus aureus, ATCC 27660 (+) (DR)	0.0977%
Enterococcus faecalis, CI 010500Efs (-) (DR)	0.1953%	Staphylococcus epidermidis, CI 060700Sel (+)	0.0488%
Enterococcus faecalis, ATCC 49533 (+) (DR)	0.1953%	Staphylococcus epidermidis, CI 061700Se14 (+)	0.0244%
Enterococcus faecium, ATCC 700221 (+) (DR)	0.0244%	Staphylococcus epidermidis, ATCC 51625 (+) (DR)	0.0244%
Enterococcus faecium, CI 071499VRE (+) (DR)	0.0977%	Staphylococcus haemolyticus, ATCC 15796 (+)	0.0012%
Escherichia coli, CI 051599Ec (-) (DR)	0.1953%	Staphylococcus hominis, ATCC 25615 (+)	0.0488%
Escherichia coli, ATCC 25253 (-) (DR)	0.1953%	Staphylococcus saprophyticus, ATCC 15305 (+)	0.0977%
Escherichia coli, ATCC 29214 (-) (DR)	0.1953%	Staphylococcus aureus, ATCC 6538 (+)	0.3906%
Escherichia coli, CI 070399Ec (-) (DR)	0.1953%	Streptococcus pneumoniae, ATCC 700674 (+)	0.0977%
Klebsiella oxytoca, ATCC 15764 (-) (DR)	0.1953%	Streptococcus pyogenes, ATCC 25663 (+)	0.0244%
Klebsiella pneumoniae, ATCC 51503 (-) (DR)	0.1953%	Streptococcus pyogenes, ATCC 12384 (+)	0.0488%

CI = clinical isolate

Conclusion:

TRISEPTIN WATERLESS surgical scrub is an effective antimicrobial agent that inhibits growth of a broad spectrum of microorganisms.

⁽⁺⁾ gram positive

⁽⁻⁾ gram negative

⁽DR) drug-resistant organisms

Primary Skin Irritation Study (Rabbits)

Objective:

The objective of the study was to compare TRISEPTIN WATERLESS surgical scrub to a marketed waterless, brushless, alcohol-based surgical scrub and to determine the irritation potential under occlusion.

Test Method:

- Both products were administered once daily for 4 consecutive days. A volume of 0.2 ml was applied to a four-site, 40-cm² area on the back of rabbits.
- · Observations were recorded for 8 days. Dosed sites were covered with an impervious material for 1 hour.
- Observations were scored for irritation and other effects at the site of application, and an irritation potential was evaluated.

Test Results:

TRISEPTIN WATERLESS surgical scrub proved to be comparable to the marketed waterless, brushless, alcohol-based surgical scrub.

Conclusion:

The irritation study was conducted on a species that is bred to be more sensitive than human subjects. These results were encouraging and served as a basis for further testing in humans.

Exaggerated Hand Exposure Tests

Objective:

The study design evaluates the potential of test products to produce irritation under exaggerated exposure. In this study, TRISEPTIN *WATERLESS* surgical scrub was compared to a 61% ethyl alcohol with 1% Chlorhexidine Gluconate (CHG) scrub agent[†] and a 4% Chlorhexidine Gluconate[‡] scrub agent.

Methodology:

A total of 29 subjects completed the study using the test materials identified above per the manufacturers label claim for directions for use. At baseline, subjects' hands were examined for inappropriate skin conditions and clinically graded for erythema and dryness. Qualified subjects participated in the following clinical grading and instrumental procedures:

- Expert Dermatological Grader: Subjects were clinically graded by an expert grader on the back of the right and left hands for dryness/scaling and erythema.
- Subject Self-Assessment: Subjects rated the backs of their right and left hands for overall conditioning and cracking.
- Transepidermal Water Loss (TEWL) Measurements: To determine the barrier function of the skin, measurements of the electrical conductance of the skin were taken on the back of each subject's right and left hand to measure transepidermal water loss (TEWL) through the skin using a DermaLab®.
- NOVA[™] Dermal Phase Meter (DPM) Measurements: Triplicate NOVA DPM measurements were taken on the back of each subject's right and left hand to measure the moisture content of the stratum corneum.

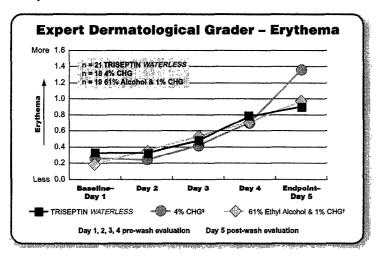
Test Method:

Washout	Day 1	Day 2	Day 3	Day 4	Day 5
1 week	Baseline				Endpoint
	Clinical Grading				
	5 washes				
	TEWL		TEWL		TEWL
	DPM		DPM		DPM
			Subject Grading		Subject Grading

After completion of baseline clinical grading and instrumental measurements, subjects washed both hands using Dove* liquid soap. After completion of the wash, subjects participated in five cycles of product applications (one test material per hand).

Subjects returned to the clinic for Day 2, Day 3, Day 4 and Day 5. Prior to beginning the wash cycle each day, subjects were clinically examined for inappropriate skin conditions and graded for erythema and dryness on the back of each hand. Subjects were disqualified from further study participation if they presented with an inappropriate skin condition or a score of 3 or greater for any of the graded parameters. Disqualified subjects participated in endpoint procedures (as described below). After initial (pre-wash) clinical grading at each visit, subjects participated in a hand wash and five product application procedures as described for baseline. At Day 3, subjects received clinical grading and instrumentation (TEWL and NOVA DPM) approximately 2 hours after completion of the last test material application.

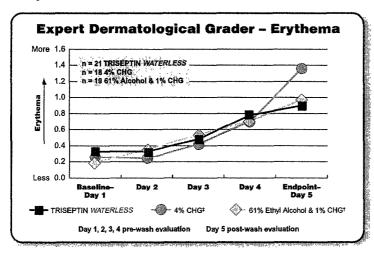
The endpoint procedures for all subjects took place 2 hours after final product application visit Day 5 or when a subject was disqualified according to specifications at an earlier time. At the endpoint, all subjects participated in the following procedures as described for baseline:


- · Clinical grading of dryness and erythema symptoms
- · Self-assessment of hand skin condition by subjects
- TEWL measurements on the back of each hand
- · NOVA DPM measurements on the back of each hand

Conclusion:

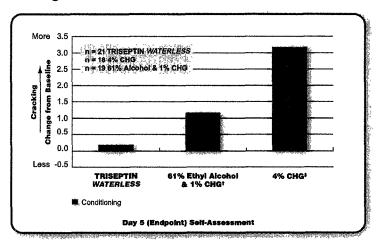
Overall, the results of the study strongly show that TRISEPTIN *WATERLESS* surgical scrub and the surgical hand scrub with 61% alcohol with 1% Chlorhexidine Gluconate[†] were superior to 4% Chlorhexidine Gluconate[‡] in nearly all parameters assessed.

Expert Dermatological Grader


Clinical Dryness

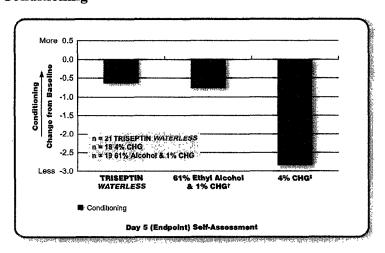
Conclusions:

- At the endpoint (Day 5) hands treated with 4% Chlorhexidine Gluconate (CHG) were shown to be significantly drier than both TRISEPTIN *WATERLESS* surgical scrub and the surgical hand scrub with 61% alcohol with 1% Chlorhexidine Gluconate.
- TRISEPTIN WATERLESS surgical scrub and the surgical hand scrub with 61% alcohol with 1% Chlorhexidine Gluconate were statistically equivalent; no difference was found.


Clinical Erythema

- At the endpoint (Day 5) hands treated with 4% Chlorhexidine Gluconate showed significantly more erythema
 than both TRISEPTIN WATERLESS surgical scrub and the surgical hand scrub with 61% alcohol with
 1% Chlorhexidine Gluconate.
- TRISEPTIN WATERLESS surgical scrub and the surgical hand scrub with 61% alcohol with 1% Chlorhexidine Gluconate were statistically equivalent; no difference was found.

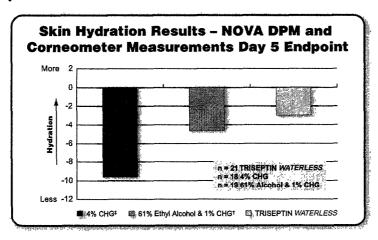
Subject Self-Assessment of Hand Skin


Skin Cracking

Conclusion:

At the endpoint (Day 5), hands treated with TRISEPTIN WATERLESS surgical scrub or 61% alcohol with 1% Chlorhexidine Gluconate demonstrated significantly less skin cracking than hands treated with 4% Chlorhexidine Gluconate.

Skin Conditioning

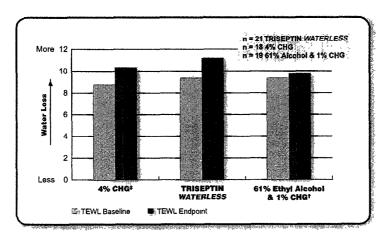


Conclusion:

At the endpoint (Day 5), hands treated with TRISEPTIN WATERLESS surgical scrub or 61% alcohol with 1% Chlorhexidine Gluconate demonstrated significantly less skin conditioning change than hands treated with 4% Chlorhexidine Gluconate.

NOVA™ Dermal Phase Meter (DPM) Measurements

Skin Hydration



Conclusion:

While all products tested had an impact on skin hydration, both TRISEPTIN WATERLESS surgical scrub and 61% alcohol with 1% Chlorhexidine Gluconate retained significantly more hydration compared to hand skin treated with 4% Chlorhexidine Gluconate.

Transepidermal Water Loss (TEWL) Measurements

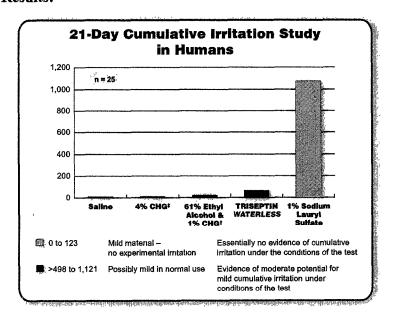
TEWL

Conclusions:

- No product tested caused a significant change in the transepidermal water loss measurements from baseline to the endpoint (Day 5).
- There were no statistical differences between TRISEPTIN *WATERLESS* surgical scrub, 61% alcohol with 1% Chlorhexidine Gluconate and 4% Chlorhexidine Gluconate from baseline to the endpoint (Day 5).

14 HEALTHPOINT

21-Day Cumulative Irritation Study in Humans


Objective:

To determine the cumulative irritation potential of a test product.

Test Method:

- Testing was done on 30 healthy subjects (male and female), between 23 and 61 years of age with Fitzpatrick Skin Type II to IV.
- Occlusive patches containing a defined amount of test product were placed on subjects' backs by laboratory professionals every day for a period of 21 days.
- Test sites were evaluated every day for irritation at least 2 hours after patch removal by the expert dermatological grader.
- · After clinical evaluation, a new patch with test material was re-applied to the same area of the back.

Test Results:

Conclusion:

After 21 days of exposure, TRISEPTIN *WATERLESS* surgical scrub, 4% Chlorhexidine Gluconate and the surgical hand scrub with 61% alcohol with 1% Chlorhexidine Gluconate were statistically equivalent and demonstrated essentially no evidence of cumulative irritation under the conditions of the test.

Ingredient Description

The table below provides the list of ingredients and their function in TRISEPTIN WATERLESS Surgical Scrub.

TRISEPTIN WATERLESS Surgical Scrub		
Ingredient	Function	
1. Alcohol (Ethanol) 61%	Active antimicrobial ingredient	
2. Glyceryl Laurate	Emollient	
3. Linoleic Acid	Emollient	
4. Lauryl Lactate	Emollient	
5. Capryl Glycol	Skin moisturizer	
6. Cyclomethicone	Silicone emollient	
7. Dimethicone Copolyol	Silicone emollient	
8. Isopropyl Myristate	Emollient	
9. Diisopropyl Sebacate	Emollient	
10. Glycerin	Humectant and skin moisturizer	
11. Poloxamer 124	Non-foaming surfactant	
12. Citric Acid	pH adjusting agent	
13. Purified Water	Vehicle	
14. Fragrance	Fragrance	
15. Zinc Pyrithione	Preservative	
 Ammonium Acryloyldimethyltaurate/VP Copolymer 	Thickener	

- TRISEPTIN *WATERLESS* surgical scrub uses a 61% ethyl alcohol active combined with a preservative to prolong persistence.
- TRISEPTIN WATERLESS surgical scrub was specially formulated with 9 different emollients and moisturizers and a humectant to help improve skin conditioning.

References

- 1. Tentative Final Monograph (TFM) for Healthcare Antiseptic Drug Products, Proposed Rule Federal Register Part III, Vol. 59, No. 116 (1994).
- 2. ASTM: American Society for Testing and Materials.
- 3. ATCC: American Type Culture Collection.
- † Avagard® was used as a comparator in the "Exaggerated Hand Exposure Test" and the "Cumulative 21-Day Irritation Test in Humans."
- ‡ Hibiclens® was used as a comparator in the "Exaggerated Hand Exposure Test" and the "Cumulative 21-Day Irritation Test in Humans."

TRISEPTIN is a registered trademark of Healthpoint, Ltd.

HEALTHPOINT is a registered trademark of Healthpoint, Ltd.

DermaLab is a registered trademark of Cortex Technology.

NOVA is a trademark of NOVA Technology Corporation.

Dove is a registered trademark of Unilever PLC.

Avagard is a registered trademark of 3M Health Care.

Hibiclens is a registered trademark of Astra Zeneca PLC.

HEALTHPOINT®

1-800-441-8227 www.healthpoint.com www.triseptin.com