June 2. 2000

FINAI. REPORT $\# 000302$

EVALUATION OF THREE TEST PRODUCTS FOR THEIR ANTIMICROBIAL PROPERTIES WHEN CHALLENGED WITH VARIOUS MICROORGANISM STRAINS USING AN IN-VITRO TIME-KILL METHOD

Prepared for:
BECTON DICKINSON (SPONSOR)
9450 South State Street
Sandy, Utah 84070-3213

Prepared by

BIOSCIENCE LABORATORIES, INC. (COMPANY)
P.O Box 190

Bozeman, Montana 59771-0190
(406) 587-5735

Copy \# \qquad

TABLE OF CONTENTS

TITLE 3
SPONSOR 3
COMPANY 3
STUDY DIRECTORS 3
PURPOSE 3
SCOPE 3
TEST PRODUCTS 3
EQUIPMENT 4
SUPPLIES 4
MEDIA 4
NEUTRALIZATION STUDY 5
METHODOLOGY 5
TABLEI 6
CALCULATIONS 7
RESULTS 7
ACCEPTANCE 14
INDEX OF ADDENDA 15

June 2, 2000

FINAL REPORT \#000302

1.0 TITLE: Evaluation of Three Test Products For Their Antimicrobial Properties When Challenged With Various Microorganism Strains Using an In-Vitro Time-Kill Method
2.0 SPONSOR: BECTON DICKINSON

9450 South State Street
Sandy, Utah 84070-3213
3.0 COMPANY: BIOSCIENCE LABORATORIES, INC.
P.O. Box 190

Bozeman, Montana 59771-0190
4.0 STUDY DIRECTORS:

Terri Eastman - Principal Study Director
James McDowell - Associate Study Director

5.0 PURPOSE:

This study evaluated the antimicrobial efficacy of three (3) products when challenged with ten (10) different microorganism strains using an In-Vitro Time-Kill method. All testing was performed in accordance with Good Laboratory Practices as specified in 21 CFR, Part 58.

6.0 SCOPE:

This study determined by means of an In-Vitro Time-Kill method the antimicrobial efficacy of three (3) products when challenged with ten (10) different microorganism strains utilizing fifteen (15) second, thirty (30) second, one (1) minute, and five (5) minute exposure times. The Percent and $\log _{10}$ reductions from the initial populations were determined for each organism versus each product. The antibacterial properties of each test product were evaluated at a concentration of $99 \%(\mathrm{v} / \mathrm{v})$. Responsibility for the identity, strength, purity, composition, and stability of the test products remained with Sponsor.

7.0 TEST PRODUCTS:

Product \#1: 4\% CHG Solution
Lot Number: 000323
Manufacture Date: 3/20/00
Product \#2: 3\% PCMX Solution
Lot Number: 000181
Expiration Date: 2002-01
Product \#3 - Ultradex Solution (3\% PCMX)
Lot Number: 000247
Expiration Date: 03/02
8.0 EQUIPMENT:
8.1 Steam Autoclaves: BSLI 91113 and BSLI 91127
8.2 Laminar Biological Flowhood (certified): BSLI 91119
8.3 Water Bath, $47^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 91123
8.4 Water Bath Thermometer: BSLI TI-971012
8.5 Continuously Adjustable Pipetters, $100 \mu \mathrm{~L}$ - $1000 \mu \mathrm{~L}$ Capacity: BSLI 961001 and BSLI 991001
8.6 Continuously Adjustable Pipetter, $20 \mu \mathrm{~L}-200 \mu \mathrm{~L}$ Capacity: BSLI 981201
8.7 Microman ${ }^{\circledR}$ Positive Displacement Pipetter, $100 \mu \mathrm{~L}-1000 \mu \mathrm{~L}$ Capacity: BSLI 971104
8.8 Environmental Chamber, $30^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 930214
8.9 Environmental Chamber Thermometers: BSLI TI-960111 and BSLI TI-960611
8.10 Incubators, $30^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 930712 and BSLI 930905
8.11 Incubator Thermometers: BSLI TI-930712A and BSLI TI-971003
8.12 Incubator, $35^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 91101
8.13 Incubator Thermometers: BSLI TI-960109 and BSLI TI-971006
8.14 Incubator, $55^{\circ}-60^{\circ} \mathrm{C}$: BSLI 91059
8.15 Incubator Thermometer: BSLI TI-2064
8.16 Vortex Mixer: BSLI 980103
8.17 Calibrated Minute/Second Timer: BSLI 961010
8.18 Orion pH Meter Model 720: BSLI 931104
8.19 Mettler BB240 Balance: BSLI 930409
8.20 A \& D Balance Model EK-2000G: BSLI 960801
8.21 Troemner Weights: BSLI 930408
8.22 Ohaus Weights: BSLI 961011
8.23 Hewlett-Packard HP-15C Hand Calculator
8.24 Texas Instruments T1-35X Hand Calculator
8.25 Texas Instruments TI-36X Hand Calculator
8.26 MiniTab ${ }^{*}$ Statistical Software (PC Version, Release 8.2 and 10xtra)
9.0 SUPPLIES:
9.1 Sterile Disposable Pipettes
9.2 Inoculating Loops
9.3 Sterile Disposable Petri Dishes, $100 \mathrm{~mm} \times 15 \mathrm{~mm}$.
9.4 Test Tubes, Sterilized
9.5 Universal 1.0 and 0.2 mL Pipette Tips, Sterilized
9.6 Sterile 1.0 mL Positive Displacement Tips: Gilson Batch Number B0025922S
9.7 Sterile 20 cc Syringes: Becton-Dickinson Lot Number 9281282
9.8 Hand-Tally Counters
10.0 MEDIA:
10.1 Tryptic Soy Broth (TSB): TSB000628E
10.2 Tryptic Soy Agar (TSA): TSA000711B
10.3 Sabouraud Dextrose Agar (SDA): SDA000727B
10.4 Tryptic Soy Agar with product neutralizers (TSA+): TSA+000524B, TSA+000718A,TSA +000719 A , and TSA +000719 B
10.5 Sabouraud Dextrose Agar with product neutralizers (SDA +): SDA+000517E
10.6 Phosphate Buffered Saline (PBS): PBS000608E and PBS000727C
10.7 Butterficld's Phosphate Buffer solution with product neutralizers ($\mathrm{BBP}++$): BBP ++000711 D andBBP ++000718 D

11.0 NEUTRALIZATION STUDY:

A neutralization study (SOP L-2007) was performed using Staphylococcus aureus (ATCC \#25923) to ensure that the neutralizing solution employed ($\mathrm{BBP}++$) was effective in neutralizing the antimicrobial properties of each test product. This neutralization procedure followed guidelines set forth in ASTM E-1054-91, "Standard Practices for Evaluating Inactivators of Antimicrobial Agents Used in Disinfectant, Sanitizer, Antiseptic, or Preserved Products."

12.0 METHODOLOGY:

Inoculum Preparation

12.1 Approximately forty-eight (48) to seventy-two (72) hours prior to initiating the study, sterile tubes of Tryptic Soy Broth were inoculated from stock cultures, cryogenic cultures, or lyophilized vials containing the challenge microorganisms. The broth cultures were incubated for the times and at the temperatures appropriate for each species (reference Table I) for approximately twenty-four (24) hours, or until sufficient growth was observed.
12.2 Approximately twenty-four (24) to forty-eight (48) hours prior to initiating the study, the broth cultures prepared as described in Section 12.1 were inoculated onto the surface of the solid medium appropriate for the microorganisms and incubated at the temperature appropriate for each species (reference Table I) until sufficient growth was observed. This produced a lawn of microorganisms on the surface of the agar which was used to prepare the challenge suspensions.

Challenge Suspensions

12.3 Immediately prior to initiating the test procedure, a challenge suspension of each microorganism was prepared in Phosphate Buffered Saline solution by suspending the challenge microorganisms from the solid media prepared as described in Section 12.2. Suspension concentrations of approximately $1.0 \times 10^{9} \mathrm{CFU} / \mathrm{mL}$ were prepared.

Initial Population Determinations

12.4 An initial population was determined for each challenge suspension by making ten-fold dilutions ($10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}$, and 10^{-7}) in Butterfield's Phosphate Buffer solution with product neutralizers, mixing thoroughly using a vortex mixer between dilutions. 0.1 mL aliquots of the $10^{-5}, 10^{-6}$, and 10^{-7} dilutions were pour-plated, in duplicate, producing final plated dilutions of 10^{-6}, 10^{-7}, and 10^{-8} in the appropriate agar with product neutralizers (reference Table I). These plates were incubated for the times and at the temperatures appropriate for each species (reference Table I).

Testing Procedure

12.5 A 0.1 mL aliquot of a challenge suspension containing approximately $1.0 \times 10^{9} \mathrm{CFU} / \mathrm{mL}$ of challenge suspension was inoculated into a sterile test tube containing 9.9 mL of test product to achieve the $99 \%(\mathrm{v} / \mathrm{v})$ concentration of each product and mixed thoroughly using a vortex mixer and/or positive displacement pipetter. The microorganisms were exposed to each test product for fifteen (15) seconds, thirty (30) seconds, one (1) minute, and five (5) minutes, timed using a calibrated minute/second timer.
12.6 After each designated exposure time had elapsed, 1.0 mL was removed from each tube containing product and inoculum, placed into a sterile test tube containing 9.0 mL of Butterfield's Phosphate Buffer solution with product neutralizers (10^{-3}), and mixed thoroughly using a vortex mixer. Appropriate ten-fold dilutions $\left(10^{-4}, 10^{-5}\right.$, and 10^{-6}) were made in Butterfield's Phosphate Buffer solution with product neutralizers, mixing thoroughly using a vortex mixer between dilutions.
$12.7 \quad 1.0 \mathrm{~mL}$ aliquots of the 10^{-3} dilution and 0.1 mL aliquots of the $10^{-3}, 10^{-4}, 10^{-5}$, and 10^{-6} dilutions of the product/neutralizer/inoculum suspension were pour-plated, in duplicate, using the appropriate solid medium with product neutralizers (reference Table I). These plates were incubated for the times and at the temperatures appropriate for each species (reference Table I).

Data Collection

12.8 After incubation, the colonies on the plates were counted manually using a hand-tally counter. Counts in the thirty (30) to three-hundred (300) CFU range were preferentially used in the data calculations.

TABLE I

Microorganism Species	ATCC $\#$	Incubation Time (Test Plates)	Incubation Temperature	Media
Enterobacter cloacae	23355	40 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA+
Enterococcus faecalis	29212	40 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA+
Escherichia coli	25922	40 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA+
Klebsiella pneumoniae	13883	40 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA +
Proteus vulgaris	13315	40 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA+
Pseudomonas aeruginosa	27853	$42.25-42.75$ Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA+
Serratia marcescens	8100	42.25 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA+
Staphylococcus aureus	25923	$42.25-42.75$ Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA +
Staphylococcus epidermidis	12228	$42.25-42.75$ Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/TSA +
Candida albicans	10231	42.25 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/SDA/SDA +

13.0 CALCULATIONS:

13.1 The $\log _{10}$ Average and the CFU/mL of the average of the duplicate plate counts for the initial population and the population after exposure to each product were calculated as follows:
$\log _{10}$ Average $=\log _{10}\left(C_{i} \times 10^{-D}\right)$
$\mathrm{CFU} / \mathrm{mL}=\left(\mathrm{C}_{1} \times 10^{-\mathrm{D}}\right)$
Where:

C_{1}	$=$	Average of the Two (2) Plates Counted
D	$=$	Dilution Factor of the Plates Counted

13.2 The $\log _{10}$ Reduction was calculated for each product and each time exposure as follows:
$\log _{10}$ Reduction $=I P-P_{E X}$
Where:
$I P \quad=\log _{10}$ of the Initial Population of Challenge Microorganism
$P_{E X} \quad=\quad \log _{10}$ of the Average Population after Exposure to each Product
13.3 The Percent Reduction was calculated for each product and each time exposure as follows:

Percent Reduction $=\frac{\mathrm{IP}-\mathrm{P}_{\mathrm{EX}}}{\mathrm{IP}} \times 100$
Where:

$$
\begin{array}{ll}
\mathrm{IP} & = \\
P_{\mathrm{EX}} & = \\
\text { Initial Population of Challenge Microorganism (CFU/mL) } \\
\text { Average Population after Exposure to each-Product (CFU/mL) }
\end{array}
$$

14.0 RESULTS - TABLES II to IV:

Table II lists the $\log _{10}$ Reductions and Percent Reductions for Test Product \#1 ($4 \% \mathrm{CHG}$ Solution - Lot Number: 000323) at a $99 \%(\mathrm{v} / \mathrm{v})$ concentration versus each of the ten (10) microorganisms tested. Table III lists the $\log _{10}$ Reductions and Percent Reductions for Test Product $\# 2$ (3% PCMX Solution - Lot Number: 000181) at a $99 \%(\mathrm{v} / \mathrm{v})$ concentration versus each of the ten (10) microorganisms tested. Table IV lists the $\log _{10}$ Reductions and Percent Reductions for Test Product \#3 (Ultradex Solution [3\% PCMX] Lot Number: 000247) at a 99% (v/v) concentration versus each of the ten (10) microorganisms tested.

TABLE II
Product \#1-99\% (v/v) concentration 4\% CHG Solution, Lot \#000323

Microorganism Species	ATCC \#	Exposure Time	$\log _{10}$ Reduction	Percent Reduction
Enterobacter cloacae	23355	15 seconds	> 6.8893	> 99.9999\%
		30 seconds	> 6.8893	> 99.9999\%
		1 minute	> 6.8893	> 99.9999\%
		5 minutes	> 6.8893	> 99.9999\%
Enterococcus faecalis	29212	15 seconds	> 6.8228	> 99.9999\%
		30 seconds	> 6.8228	> 99.9999\%
		1 minute	> 6.8228	> 99.9999\%
		5 minutes	>6.8228	>99.9999\%
Escherichia coli	25922	15 seconds	> 6.6767	> 99.9999\%
		30 seconds	> 6.6767	> 99.9999\%
		1 minute	> 6.6767	> 99.9999\%
	\because	5 minutes	> 6.6767	> 99.9999\%
Klebsiella pneumoniae	13883	15 seconds	> 6.5441	> 99.9999\%
		30 seconds	>6.5441	> 99.9999\%
		1 minute	> 6.5441	> 99.9999\%
		5 minutes	> 6.5441	> 99.9999\%
Proteus vulgaris	13315	15 seconds	> 6.9191	> 99.9999\%
		30 seconds	> 6.9191	> 99.9999\%
		1 minute	> 6.9191	> 99.9999\%
		5 minutes	>6.9191	>99.9999\%

TABLE II - continued Product \#1-99\% (v/v) concentration 4\% CHG Solution, Lot \#000323

Microorganism Species	ATCC \#	Exposure Time	$\log _{10}$ Reduction	Percent Reduction
Pseudomonas aeruginosa	27853	15 seconds	> 6.7202	> 99.9999\%
		30 seconds	> 6.7202	> 99.9999\%
		1 minute	>6.7202	> 99.9999\%
		5 minutes	>6.7202	> 99.9999\%
Serratia marcescens	8100	15 seconds	> 6.7404	> 99.9999\%
		30 seconds	> 6.7404	> 99.9999\%
		1 minute	> 6.7404	> 99.9999\%
		5 minutes	> 6.7404	>99.9999\%
Staphylococcus aureus	25923	15 seconds	2.7853	99.8361\%
		30 seconds	6.7853	> 99.9999\%
		1 minute	> 6.9614	> 99.9999\%
		5 minutes	>6.9614	> 99.9999\%
Staphylococcus epidermidis	12228	15 seconds	>6.2418	> 99.9999\%
		30 seconds	> 6.2418	> 99.9999\%
		1 minute	> 6.2418	> 99.9999\%
		5 minutes	> 6.2418	> 99.9999\%
Candida albicans	10231	15 seconds	5.1680	99.9993\%
		30 seconds	> 6.1222	> 99.9999\%
		1 minute	> 6.1222	> 99.9999\%
		5 minutes	>6.1222	>99.9999\%

TABLE III
Product \#2-99\% (v/v) concentration
3\% PCMX Solution, Lot \#000181

Microorganism Species	ATCC\#	Exposǔre Time	Log_{10} Reduction	Percent Reduction
Enterobacter cloacae	23355	15 seconds	>6.8893	> 99.9999\%
		30 seconds	>6.8893	> 99.9999\%
		1 minute	>6.8893	> 99.9999%
		5 minutes	>6.8893	> 99.9999\%
Enterococcus faecalis	29212	15 seconds	0.3843	58.7218\%
		30 seconds	1.0099	90.2256\%
		1 minute	3.2100	99.9383\%
		5 minutes	>6.8228	> 99.9999\%
Escherichia coli	25922	15 seconds	>6.6767	$>99.9999 \%$
		30 seconds	>6.6767	> 99.9999\%
		1 minute	>6.6767	> 99.9999\%
		5 minutes	>6.6767	> 99.9999\%
Klebsiella pneumoniae	13883	15 seconds	4.5507	99.9972\%
		30 seconds	>6.5441	$>99.9999 \%$
		1 minute	>6.5441	> 99.9999\%
		5 minutes	>6.5441	> 99.9999\%
Proteus vulgaris	13315	15 seconds	>6.9191	> 99.9999\%
		30 seconds	> 6.9191	$>99.9999 \%$
		1 minute	>6.9191	> 99.9999\%
		5 minutes	>6.9191	>99.9999\%

TABLE III - continued
Product \#2-99\% (v/v) concentration
3\% PCMX Solution, Lot \#000 181

Microorganism Species	ATCC \#	Exposure Time	$\log _{10}$ Reduction	Percent Reduction
Pseudomonas aeruginosa	27853	15 seconds	>6.7202	> 99.9999\%
		30 seconds	>6.7202	> 99.9999\%
		1 minute	>6.7202	> 99.9999\%
		5 minutes	>6.7202	> 99.9999\%
Serratia marcescens	8100	15 seconds	>6.7404	> 99.9999\%
		30 seconds	>6.7404	> 99.9999\%
		1 minute	>6.7404	> 99.9999%
		5 minutes	>6.7404	> 99.9999\%
Staphylococcus aureus	25923	15 seconds	0.4422	63.8798\%
		30 seconds	0.5557	72.1858\%
		I minute	0.7956	83.9891\%
		5 minutes	1.9381	98.8470\%
Staphylococcus epidermidıs	12228	15 seconds	0.4898	67.6218\%
		30 seconds	0.5472	71.6332%
		1 minute	0.8661	86.3897\%
		5 minutes	1.4157	96.1605\%
Candida albicans	10231	15 seconds	1.0540	91.1698\%
		30 seconds	1.1179	92.3774\%
		1 minute	1.4365	96.3396\%
		5 minutes	2.4787	99.6679\%

TABLEIV
Product \#3-99\% (v/v) concentration Ultradex Solution (3\% PCMX), Lot \#000247

Microorganism Species	ATCC \#	Exposure Time	Log_{10} Reduction	Percent Reduction
Enterobacter cloacae	23355	15 seconds	>6.8893	> 99.9999\%
		30 seconds	>6.8893	> 99.9999\%
		1 minute	> 6.8893	> 99.9999\%
		5 minutes	> 6.8893	> 99.9999\%
Enterococcus faecalis	29212	15 seconds	3.3109	99.9511\%
		30 seconds	5.2605	99.9995\%
		1 minute	>6.8228	> 99.9999\%
		5 minutes	>6.8228	> 99.9999\%
Escherichia coli	25922	15 seconds	> 6.6767	> 99.9999\%
		30 seconds	> 6.6767	> 99.9999\%
		1 minute	> 6.6767	> 99.9999\%
		5 minutes	> 6.6767	> 99.9999\%
Klebstella pneumoniae	13883	15 seconds	2.5641	99.7271\%
		30 seconds	>6.5441	>99.9999\%
		1 minute	>6.5441	> 99.9999\%
		5 minutes	> 6.5441	> 99.9999\%
Proteus vulgaris	13315	15 seconds	> 6.9191	>99.9999\%
		30 seconds	> 6.9191	> 99.9999\%
		1 minute	>6.9191	>99.9999\%
		5 minutes	>6.9191	> 99.9999\%

TABLE IV - continued
Product \#3-99\% (v/v) concentration Ultradex Solution (3\% PCMX), Lot \#000247

Microorganism Species	ATCC\#	Exposure Time	Log $_{10}$ Reduction	Percent Reduction
Pseudomonas aeruginosa	27853	15 seconds	> 6.7202	>99.9999\%
		30 seconds	> 6.7202	> 99.9999\%
		1 minute	> 6.7202	> 99.9999\%
		5 minutes	> 6.7202	> 99.9999\%
Serratia marcescens	8100	15 seconds	4.9275	99.9988\%
		30 seconds	> 6.7404	> 99.9999\%
		1 minute	> 6.7404	> 99.9999\%
		5 minutes	> 6.7404	> 99.9999\%
Staphylococcus aureus	25923	15 seconds	0.9702	89.2896\%
		30 seconds	1.0749	91.5847\%
		1 minute	1.4631	96.5574\%
		5 minutes	- 3.1761	99.9333\%
Staphylococcus epidermidis	12228	15 seconds	0.6186	75.9312\%
		30 seconds	0.8202	84.8711\%
		1 minute	1.2375	94.2120\%
		5 minutes	2.8439	99.8567\%
Candida albicans	10231	15 seconds	2.4410	99.6377\%
		30 seconds	2.2273	99.4075\%
		1 minute	2.4020	99.6038\%
		5 minutes	2.6531	99.7777\%

BIOSCIENCE LABORATORIES, INC. (COMPANY)

P.O. Box 190

Bozeman, Montana 59771-0190

President and CEO:

Manager of In-Vitro
Laboratory/
Principal
Study Director:

Associate
Study Director:

$$
\begin{aligned}
& \text { Jayme Ballantyne* } \\
& \text { * No longer in the employ of BioScience Laboratories, Inc. }
\end{aligned}
$$

Date

QUALITY ASSURANCE STATEMENT:

This study was inspected by the Quality Assurance Unit, and reports were submitted to the Study Director and Management in accordance with Standard Operating Procedures, as follows:

Phase
Product Testing 05/04/00
Data Audit 06/01/00
Final Report Review 06/01/00 \& 06/02/00
Reports to Study Director and Management

05/04/00

This study was conducted in compliance with Good Laboratory Practices standards, as described by the FDA (21 CFR Part 58), with the following exception: test article preparations were not analyzed at BioScience Laboratories, Ing, to confirm concentration, stability, or homogeneity.

Director of
Quality Assurance:

BioScience
LABORATORIES-INC

September 27, 2000

FINAL REPORT \#000608

DETERMINATION OF THE MINIMUM INHIBITORY CONCENTRATIONS (MIC) OF TWO PRODUCTS WHEN CHALLENGED WITH FIFTY MICROORGANISM STRAINS USING THE MACRODILUTION BROTH METHOD

Prepared for:
BECTON DICKINSON (SPONSOR)
9450 South State Street
Sandy, Utah 84070-3213

Prepared by:
BIOSCIENCE LABORATORIES, INC. (COMPANY)
P.O. Box 190

Bozeman, Montana 59771
(406) 587-5735

Copy \# \qquad

Mailing Address • P.O. Box 190 - Bozeman, MT 59771-0190

TABLE OF CONTENTS

TITLE 3
SPONSOR 3
COMPANY 3
STUDY DIRECTORS 3
PURPOSE 3
SCOPE 3
TEST PRODUCTS 3
EQUIPMENT 4
SUPPLIES 4
MEDIA 5
METHODOLOGY 5
TABLE I 8
TABLE II 10
RESULTS 11
REFERENCE 14
ACCEPTANCE 15
INDEX OF ADDENDA 16

FINAL REPORT \#000608

1.0	TITLE:	Determination of the Minimum Inhibitory Concentrations (MIC) of Two Products When Challenged with Fifty Microorganism Strains Using the Macrodilution Broth Method
2.0	SPONSOR:	BECTON DICKINSON 9450 South State Street Sandy, Utah 84070-3213
3.0	COMPANY:	BIOSCIENCE LABORATORIES, INC. P.O. Box 190 Bozeman, Montana 59771
4.0	STUDY DIRECTORS:	
	Terri Eastman - Principal Study Director James McDowell - Associate Study Director	
5.0	PURPOSE:	

This study evaluated the Minimum Inhibitory Concentrations (MIC) of two (2) test products when challenged with fifty (50) different microorganism strains. All testing was performed in accordance with Good Laboratory Practices as specified in 21 CFR, Part 58.

6.0 SCOPE:

This study was a Minimum Inhibitory Concentration (MIC) evaluation for two (2) test products, performed following the methods outlined in NCCLS Document M7-A5, "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically," $5^{\text {th }}$ Edition. Each product was evaluated, in duplicate, against fifty (50) different microorganism strains - twenty-five (25) ATCC strains and twentyfive (25) Clinical Isolates of those same species - as specified in the Tentative Final Monograph, Federal Register, 17 June 1994, vol. 59:116, p. 31444.

7.0 TEST PRODUCTS:

The test products evaluated were provided to Company by Sponsor. Responsibility for the identity, strength, purity, composition, and stability of the test products remained with Sponsor.

Product 1-3\% PCMX Solution, Formula 351-J9DF
Lot Number: 000181
Expiration Date: 01/02
Product 2-3\% PCMX Solution (Ultradex)
Lot Number: 000247
Manufacture Date: 02/22/00
Expiration Date: 03/02
8.1 Steam Autoclaves: BSLI 91113 and BSLI 91127
8.2 Laminar Biological Flowhood (certified): BSLI 91119
8.3 Water Bath, $47^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 930611
8.4 Water Bath Thermometer: BSLI TI-971001
8.5 Continuously Adjustable Pipetters, $100 \mu \mathrm{~L}$ - $1000 \mu \mathrm{~L}$ Capacity: BSLI 970204, BSLI 991204, andBSLI 000504
8.6 Continuously Adjustable Pipetter, $20 \mu \mathrm{~L}-200 \mu \mathrm{~L}$ Capacity: BSLI 991205
8.7 Microman ${ }^{(2}$ Positive Displacement Pipetters, $100 \mu \mathrm{~L}$ - $1000 \mu \mathrm{~L}$ Capacity: BSLI 970203, BSLI971104, and BSLI 000503
8.8 Portable Pipetters: BSLI 971206 and BSLI 980902
8.9 Beckman Model TJ-6 Centrifuge, Serial Number 7408
8.10 Environmental Chamber, $30^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 930214
8.11 Environmental Chamber Thermometers: BSLI TI-960111 and BSLI TI-960611
8.12 Incubator, $30^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 930712
8.13 Incubator Thermometer: BSLI TI-930712A
8.14 Incubator, $35^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 91101
8.15 Incubator Thermometers: BSLI TI-960109 and BSLI TI-971006
8.16 Anaerobic Incubator, $35^{\circ} \pm 2^{\circ} \mathrm{C}$: BSLI 960802
8.17 Anaerobic Incubator Thermometer: BSLI TI-960602
8.18 Incubator, $55^{\circ}-60^{\circ} \mathrm{C}$: BSLI 91059
8.19 Incubator Thermometer: BSLI TI-2064
8.20 Refrigerators, $2^{\circ}-8^{\circ} \mathrm{C}$: BSLI 91109 and BSLI 991201
8.21 Refrigerator Thermometers: BSLI TI-960303 and BSLI TI-971004
8.22 Vortex Mixers: BSLI 980103 and BSLI 991002
8.23 Orion pH Meter Model 720: BSLI 931104
8.24 Mettler BB240 Balance: BSLI 930409
8.25 A \& D Balance Model EK-2000G: BSLI 960801
8.26 Troemner Weights: BSLI 930408
8.27 Ohaus Weights: BSLI 961011
8.28 Hewlett-Packard HP-15C Hand Calculator
8.29 Texas Instruments Tl-35X Hand Calculator
8.30 Texas Instruments T1-36X Hand Calculator
9.0 SUPPLIES:
9.1 Sterile 5 mL Disposable Pipettes: Kimble Lot Number N00080C
9.2 Sterile 25 mL Disposable Pipettes: VWR Lot Number W00103C and Kimble Lot Number 23099021
9.3 Sterile 20 cc syringes: Becton-Dickinson Lot Number 9281282
9.4 Sterile Disposable Petri Plates, $100 \mathrm{~mm} \times 15 \mathrm{~mm}$: American Precision Plastics Lot Number 00268906
9.5 Test Tubes, Sterilized
9.6 Universal 1.0 and 0.2 mL Pipette Tips, Sterilized
9.7 Sterile 1.0 mL Positive Displacement Tips: Gilson Batch Number B0030922S
9.8 Hand-Tally Counters
$9.9 \quad 125 \mathrm{~mL}$ Polypropylene Bottles, Sterilized
9.10 Inoculating Loops
9.11 GasPak ${ }^{\text {TM }}$ Anaerobic System
9.12 GasPak Plus ${ }^{\text {TM }}$ Hydrogen plus Carbon Dioxide Gas Generator Envelopes

10.0 MEDIA:

10.1 Tryptic Soy Broth (TSB): TSB001012A
10.2 Brain-Heart Infusion Broth (BHIB): BHIB001107A
10.3 Schaedler's Broth (SB): SB000914A and SB001020E
10.4 Mueller-Hinton Broth (MHB): MHB001109B
10.5 Mueller-Hinton Broth with Bacto Supplement B (MHB-VX): MHB001109B

Supplement VX: Bacto Control Number 140556KA, Expires 04/30/02
10.6 Cation-Adjusted Mueller-Hinton Broth with Lysed Horse Blood (CAMHB-B): CAMHB001020D and CAMHB001201C
SP Blood Supplement: Difco Lot Numbers 143115 KA , Expires 09/30/00 and 143812KA, Expires 10/31/00
10.7 Anaerobic MIC Broth (AMIC): AMIC001104E
10.8 Tryptic Soy Agar (TSA): TSA001013A, TSA001014A, TSA001017A, and TSA001122A
10.9 Brain-Heart Infusion Agar (BHIA): BHIA001020G and BHIA001104C
10.10 Sabouraud Dextrose Agar (SDA): SDA001020B
10.11 Schaedler's Agar with Lysed Horse Blood (SA-B): SA001020C SP Blood Supplement: Difco Lot Number 143812KA, Expires 10/31/00
10.12 Tryptic Soy Agar with 5\% Sheep Blood (SBA): PML Lot Numbers 66723-1, Expires 10/03/00 and 68375-1, Expires 10/25/00
10.13 Chocolate Agar with Enrichment (CAE): PML Lot Numbers 65383-1, Expires 08/29/00 and 68175-1, Expires 10/03/00
10.14 Mueller-Hinton Agar with Dextrose and Bacto Supplement B (MHAD-VX): MHAD000907B Supplement VX: Bacto Control Number 140556KA, Expires 04/30/02
10.15 Phosphate Buffered Saline Solution (PBS): PBS001013D and PBS001116E

11.0 METHODOLOGY:

Inoculum Preparation - Approximately 48-96 hours prior to testing

11.1 Separate sterile tubes of the broth medium appropriate for each of the challenge microorganisms (except Haemophilus influenzae [ATCC \#19418 and Clinical Isolate], Streptococcus pneumoniae [ATCC \#6303 and Clinical Isolate], and Streptococcus pyogenes [ATCC \#19615]) were inoculated from lyophilized vials or cryogenic cultures containing the microorganisms (reference Table I). The microorganism cultures were incubated at the temperatures and under the conditions appropriate for each species (reference Table I) for approximately twenty-four (24) hours, or until sufficient growth was observed.
11.2 For Haemophilus influenzae (ATCC \#19418 and Clinical Isolate), Streptococcus pneumoniae (ATCC \#6303 and Clinical Isolate), and Streptococcus pyogenes (ATCC \#19615), plates of the appropriate solid media (reference Table I) were inoculated from lyophilized vials, cryogenic cultures, or stock cultures containing these microorganisms. These plates were incubated at the temperatures and under the conditions appropriate for these species (reference Table I) for twentyfour (24) to forty-eight (48) hours, or until sufficient growth was observed.

Inoculum Preparation - Approximately 24-48 hours prior to testing

11.3 The broth cultures prepared as described in Section 11.1 (except those for Bacteroides fragilis [ATCC \#25285 and Clinical Isolate]) were inoculated onto the surface of the solid medium appropriate for each microorganism and incubated at the temperatures and under the conditions appropriate for each species (reference Table I) for twenty-four (24) hours, or until sufficient growth was observed. This produced lawns of the microorganisms on the surface of the agar plates which were used to prepare the challenge suspensions.
11.4 For Bacteroides fragilis (ATCC \#25285 and Clinical Isolate), the broth cultures prepared as described in Section 11.1 were subcultured in additional tubes of Schaedler's Broth and incubated anaerobically at $35^{\circ} \pm 2^{\circ} \mathrm{C}$ for twenty-four (24) to forty-eight (48) hours, or until sufficient growth was observed. Following incubation, the challenge suspensions were prepared by centrifuging the broth culture tubes, combining the resulting pellets, and resuspending them in Schaedler's Broth.
11.5 For Haemophilus influenzae (ATCC \#19418 and Clinical Isolate), Streptococcus pneumoniae (ATCC \#6303 and Clinical Isolate), and Streptococcus pyogenes (ATCC \#19615), a suspension was prepared for each microorganism from the plates prepared as described in Section 11.2 by rinsing the plates with sterile Phosphate Buffered Saline. Aliquots of each suspension were then spread-plated onto the surface of additional plates of the solid medium appropriate for each microorganism (reference Table I). These plates were incubated at the temperature and under the conditions appropriate for these species (reference Table I) for twenty-four (24) to forty-cight (48) hours, or until sufficient growth was observed. This produced lawns of the microorganisms on the surface of the agar plates which were used to prepare the challenge suspensions.

Challenge Suspensions

11.6 Immediately prior to initiating the test procedure, an initial suspension of each microorganism (except Bacteroides fragilis [ATCC \#25285 and Clinical Isolate]) was prepared by inoculating a test tube of Phosphate Buffered Saline with microorganisms taken from the plates of solid media prepared as described in Sections 11.3 and 11.5. Suspension concentrations of approximately 1.0 $\times 10^{9} \mathrm{CFU} / \mathrm{mL}$ were prepared. The challenge suspensions of Bacteroides fragilis (ATCC \#25285 and Clinical Isolate) were prepared as described in Section 11.4.
11.7 Final challenge suspensions containing approximately $1.0 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$ were achieved for each microorganism by placing a 0.1 mL aliquot of the approximately $1.0 \times 10^{9} \mathrm{CFU} / \mathrm{mL}$ suspension into a sterile 125 mL polypropylene bottle containing 100 mL of the broth appropriate for each microorganism (reference Table I). The challenge suspensions were mixed thoroughly prior to use in testing.

Initial Population Determination

11.8 An initial population was determined for each challenge suspension by making ten-fold dilutions $\left(10^{-1}, 10^{-2}, 10^{-3}\right.$, and 10^{-4}) from the inoculum bottle into Phosphate Buffered Saline and pour- or spread-plating, in duplicate, 0.1 mL aliquots of the $10^{-2}, 10^{-3}$, and 10^{-4} dilutions using the solid medium appropriate for each microorganism (reference Table I). Hence, the final plated dilutions were $10^{-3}, 10^{-4}$, and 10^{-5}. These plates were incubated at the temperatures and under the conditions appropriate for each challenge microorganism (reference Table I) until sufficient growth was observed.

Testing Procedure

11.9 A series of $1: 2(\mathrm{v} / \mathrm{v})$ dilutions of each test product were prepared using the broth appropriate for each challenge microorganism (reference Table 1), resulting in product dilutions of $1: 2,1: 4,1: 8$, $1: 16,1: 32,1: 64,1: 128,1: 256,1: 512,1: 1,024,1: 2,048,1: 4,096,1: 8,192,1: 16,384$, and $1: 32,768$.
$11.10 \quad 1.0 \mathrm{~mL}$ aliquots of each product dilution prepared were transferred to separate sterile test tubes. A series of fifteen (15) tubes, each containing 1.0 mL of the appropriate product dilution $(1: 2,1: 4$, $1: 8,1: 16,1: 32,1: 64,1: 128,1: 256,1: 512,1: 1,024,1: 2,048,1: 4,096,1: 8,192,1: 16,384$, and $1: 32,768$), were prepared for each microorganism evaluated (reference Table I).
11.11 A 1.0 mL aliquot of challenge suspension containing approximately $1.0 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$ was introduced into each dilution tube in the series, thereby resulting in a final product dilution series of $1: 4,1: 8,1: 16,1: 32,1: 64,1: 128,1: 256,1: 512,1: 1,024,1: 2,048,1: 4,096,1: 8,192,1: 16,384$, $1: 32,768$, and $1: 65,536$, with each dilution containing approximately $5.0 \times 10^{5} \mathrm{CFU} / \mathrm{mL}$ of the challenge microorganism.
11.12 The test procedure outlined in Sections 11.10 and 11.11 was performed, in duplicate, for each of the microorganism species tested (reference Table I).

Controls

11.13 A positive control tube (growth control) containing a 1.0 mL aliquot of the broth medium appropriate for the microorganism (reference Table 1) and a 1.0 mL aliquot of the challenge suspension was prepared for each microorganism.
11.14 Negative (media) control tubes (no microbial inoculation) of the broth medium appropriate for each microorganism (reference Table I) were also prepared.

Incubation

11.15 The challenge suspension/product dilution tubes and the controls were incubated at $35^{\circ} \pm 2^{\circ} \mathrm{C}$ for sixteen (16) to twenty-four (24) hours, or until good growth was apparent in the positive control tubes.

Determination of Results

11.16 Following incubation, the tubes were examined for growth of the microorganism, as indicated by turbidity.
11.17 The Minimum Inhibitory Concentration (MIC) for each product versus each challenge microorganism was recorded as the highest dilution of test product that completely inhibited growth of the microorganism, as detected by the unaided eye. The MIC was also calculated in parts per million (ppm) of the active ingredient of the test product present at this product dilution. The results of the duplicate runs for each test product versus each microorganism were averaged together to provide the final reported values.

TABLE I

No.	Microorganism Species	ATCC or BSLI \#*	Incubation Time (MIC Tubes)	Incubation Temperature (Inoc. Prep. \& IP Plates Only)	Media
1	Acinetobacter baumannii	19606	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	BHIB/BHIA/MHB
2	Acinetobacter baumannii	061700Ab6*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	BHIB/BHIA/MHB
3	Bacteroides fragilis	25285	42.50 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$ (Anaerobic)	SB/SA-B/AMIC
4	Bacteroides fragilis	060700Bf2*	42.50 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$ (Anaerobic)	SB/SA-B/AMIC
5	Enterobacter cloacae	13047	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
6	Enterobacter cloacae	121799Ecl1*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
7	Enterococcus faecalis	29212	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
8	Enterococcus faecalis	121699Efs ${ }^{*}$	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
9	Enterococcus faecium	19434	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
10	Enterococcus faecium	061700Efml*	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
11	Escherichia coli	11229	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
12	Escherichia coli	010500Ec8*	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
13	Escherichia coli	25922	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
14	Escherichia coli	010500Ec6*	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
15	Haemophilus influenzae	19418	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	CAE/MHB-VX
16	Haemophilus influenzae	062900Hi9*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	CAE/MHB-VX
17	Klebsiella oxytoca	43165	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
18	Klebsiella oxytoca	060700K06*	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
19	Klebsiella pneumoniae	11296	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
20	Klebsiella pneumoniae	040400Kpn 12*	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
21	Micrococcus luteus	7468	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
22	Micrococcus spp.	060700Ms8*	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
23	Proteus mirabilis	7002	20.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
24	Proteus mirabilis	$062900 \mathrm{PmI}{ }^{*}$	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
25	Pseudomonas aeruginosa	15442	17.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB

[^0]Inoc. Prep. = Inoculum Preparation IP $=$ Initial Population

TABLE I (continued)

No.	Microorganism Species	ATCC or BSLI \#*	Incubation Time (MIC Tubes)	Incubation Temperature (Inoc. Prep. \& IP Plates Only)	Media
26	Pseudomonas aeruginosa	040400Pa8*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
27	Pseudomonas aeruginosa	27853	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
28	Pseudomonas aeruginosa	040400Pa9*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
29	Serratia marcescens	14756	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
30	Serratia marcescens	060700Sm3*	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
31	Staphylococcus aureus	6538	17.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
32	Staphylococcus aureus	040400Sa4*	39.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
33	Staphylococcus aureus	29213	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
34	Staphylococcus aureus	040400Sa5*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
35	Staphylococcus epidermidis	12228	17.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
36	Staphylococcus epidermidis	061700Se13*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
37	Staphylococcus haemolyticus	29970	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
38	Staphylococcus haemolyticus	061700Sha5*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
39	Staphylococcus hominis	27844	39.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
40	Staphylococcus hominis	060700Sho4*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
41	Staphylococcus saprophyticus	15305	39.75 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
42	Staphylococcus saprophyticus	060700Ss3*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/TSA/MHB
43	Streptococcus pneumoniae	6303	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	SBA/CAMHB-B
44	Streptococcus pneumoniae	062900Spn6*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	SBA/CAMHB-B
45	Streptococcus pyogenes	19615	20.25 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	SBA/BHIA/CAMHB-B
46	Streptococcus pyogenes	040400Spy10*	20 Hours	$35^{\circ} \pm 2^{\circ} \mathrm{C}$	BHIB/BHIA/CAMHB-B
47	Candida albicans	10231	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/SDA/MHB
48	Candida albicans	$040400 \mathrm{Cal} *$	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/SDA/MHB
49	Candida tropicalis	750	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/SDA/MHB
0	Candida tropicalis	$121799 \mathrm{Ct}^{*}$	20 Hours	$30^{\circ} \pm 2^{\circ} \mathrm{C}$	TSB/SDA/MHB

[^1]FINAL REPORT \#000608
Page 9 of 16
BIOSCIENCE LABORATORIES, NC.

TABLE II
Origin of Clinical Isolates Supplied by Company

Organism	Date Isolated	Specimen	Patient Age/Sex	Source	BSLI ID No.
Acinetobacter baumannii	Unknown	Sputum	Unknown	MRL	061700Ab6
Bacteroides fragilis	Unknown	Unknown	Unknown	MRL	060700Bf2
Enterobacter cloacae	12/03/99	Wound	47/M	UW/HMC	121799 Ecll
Enterococcus faecalis	12/06/99	Blood	45/M	UW/HMC	121699Efs 1
Enterococcus faecium	Unknown	Rectal Swab	Unknown	MRL	061700Efm1
Escherichia coli	12/23/99	Unknown	Unknown	WMC	010500Ec8
Escherichia coli	12/22/99	Unknown	Unknown	WMC	010500Ec6
Haemophilus influenzae	Unknown	Eye	Unknown	MRL	062900Hi9
Klebsiella oxytoca	Unknown	Nares	Unknown	MRL	060700Ko6
Klebsiella pneumoniae	01/28/00	Sputum	60/M	U of U	040400Kpn 12
Micrococcus spp.	Unknown	Skin	Unknown	MRL	060700Ms8
Proteus mirabilis	Unknown	Nares	Unknown	MRL	062900 PmI
Pseudomonas aeruginosa	01/23/00	Sputum	35/M	U of U	040400Pa8
Pseudomonas aeruginosa	01/22/00	Urine	33/M	U of U	040400Pa9
Serratia marcescens	Unknown	Nares	Unknown	MRL	060700 Sm 3
Staphylococcus aureus	01/16/00	Blood	50/M	U of U	040400Sa4
Staphylococcus aureus	01/15/00	Blood	71/M	U of U	040400Sa5
Staphylococcus epidermidis	Unknown	Eye	Unknown	MRL	061700 Se 13
Staphylococcus haemolyticus	Unknown	Eye	Unknown	MRL	061700Sha5
Staphylococcus hominis	Unknown	Unknown	Unknown	MRL	060700Sho4
Staphylococcus saprophyticus	Unknown	Unknown	Unknown	MRL	060700Ss3
Streptococcus pneumoniae	Unknown	Sputum	Unknown	MRL	$062900 \mathrm{Spn6}$
Streptococcus pyogenes	Unknown	Throat	Unknown	U of U	040400Spyl0
Candida albicans	02/19/00	Sputum	33/M	U of U	040400 Cal
Candida tropicalis	10/21/99	Subhepatic Fluid	47/M	UW/HMC	121799 Ct

MRL $=$ MRL Research Laboratory in Cypress, CA
WMC $=$ Western Montana Clinic in Missoula, MT
U of $U=$ University of Utah Hospital and Clinics in Salt Lake City, UT
UW/HMC = University of Washington, WA / Harborview Medical Center

12.0 RESULTS - TABLES III \& IV:

Table III presents the Minimum Inhibitory Concentration, in dilution and parts per million (ppm), of the active ingredient for Product 1 (3\% PCMX Solution, Formula 351-J9DF - Lot Number: 000181) versus each of the fifty (50) microorganisms tested. Table IV presents the Minimum Inhibitory Concentration, in dilution and parts per million (ppm), of the active ingredient for Product 2 (3% PCMX Solution, Ultradex Lot Number: 000247) versus each of the fifty (50) microorganisms tested.

TABLE III
Formula 351-J9DF - Lot Number: 000181
(3\% [30,000 ppm] PCMX)

Microorganism Species	ATCC or BSLI \#*	Minimum Inhibitory Concentration	
		Product Dilution	Parts per Million (ppm)
Acinetobacter baumannii	19606	1:256	117.1875
Acinetobacter baumannii	061700Ab6*	1:512	58.5938
Bacteroides fragilis	25285	1:2,048	14.6484
Bacteroides fragilis	060700Bf2*	1:8,192	3.6621
Enterobacter cloacae	13047	1:128	234.3750
Enterobacter cloacae	121799Ecl1*	1:128	234.3750
Enterococcus faecalis	29212	1:128	234.3750
Enterococcus faecalis	121699Efs ${ }^{*}$ *	1:128	234.3750
Enterococcus faecium	19434	1:4	7,500.0000
Enterococcus faecium	$061700 \mathrm{Efm1}{ }^{*}$	1:128	234.3750
Escherichia coli	11229	1:128	234.3750
Escherichia coli	010500Ec8*	1:256	117.1875
Escherichia coli	25922	1:256	117.1875
Escherichia coli	010500Ec6*	1:192	156.2500
Haemophilus influenzae	19418	1:768	39.0625
Haemophilus influenzae	$062900 \mathrm{Hi} 9 *$	1:1,536	19.5313
Klebsiella oxytoca	43165	1:128	234.3750
Klebsiella oxytoca	060700Ko6*	1:128	234.3750
Klebsiella pneumoniae	11296	1:256	117.1875
Klebsiella pneumoniae	040400Kpn12*	1:64	468.7500
Micrococcus luteus	7468	1:128	234.3750
Micrococcus spp.	$060700 \mathrm{Ms} 8^{*}$	$\leq 1: 4$	$\geq 7,500.0000$
Proteus mirabilis	7002	1:128	234.3750
Proteus mirabilis	$062900 \mathrm{Pm} 1^{*}$	1:128	234.3750
Pseudomonas aeruginosa	15442	1:12	2,500.0000
Pseudomonas aeruginosa	040400Pa8*	1:4	7,500.0000

* = Clinical Isolate

TABLE III (continued)
Formula 351-J9DF - Lot Number: 000181
(3% [$30,000 \mathrm{ppm}]$ PCMX)

Microorganism Species	ATCC or BSLI \#*	Minimum Inhibitory Concentration	
		Product Dilution	Parts per Million
Pseudomonas aeruginosa	27853	1:6	5,000.0000
Pseudomonas aeruginosa	040400Pa9*	1:4	7,500.0000
Serratia marcescens	14756	1:96	312.5000
Serratia marcescens	060700Sm3*	1:128	234.3750
Staphylococcus aureus	6538	1:384	78.1250
Staphylococcus aureus	040400Sa4*	1:6,144	4.8828
Staphylococcus aureus	29213	1:512	58.5938
Staphylococcus aureus	040400Sa5*	1:256	117.1875
Staphylococcus epidermidis	12228	1:256	117.1875
Staphylococcus epidermidis	061700Sel3*	1:256	117.1875
Staphylococcus haemolyticus	29970	1:512	58.5938
Staphylococcus haemolyticus	061700Sha5*	1:128	234.3750
Staphylococcus hominis	27844	1:512	58.5938
Staphylococcus hominis	060700Sho4*	1:512	58.5938
Staphylococcus saprophyticus	15305	1:512	58.5938
Staphylococcus saprophyticus	060700Ss3*	1:1,024	29.2969
Streptococcus pneumoniae	6303	$1: 8,192$	3.6621
Streptococcus pneumoniae	062900Spn6*	1:512	58.5938
Streptococcus pyogenes	19615	1:2,048	14.6484
Streptococcus pyogenes	040400Spy10*	1:256	117.1875
Candida albicans	10231	<1:4	>7,500.0000
Candida albicans	$040400 \mathrm{Ca}{ }^{*}$	$<1: 4$	$>7,500.0000$
Candida tropicalis	750	< 1:4	$>7,500.0000$
Candida tropicalis	$121799 \mathrm{Ct}^{*}$	<1:4	>7,500.0000

* $=$ Clinical Isolate

TABLE IV
Ultradex - Lot Number: 000247
(3% [$30,000 \mathrm{ppm}]$ PCMX)

Microorganism Species	ATCC or BSLI \#*	Minimum Inhibitory Concentration	
		Product Dilution	Parts per Million (ppm)
Acinetobacter baumannii	19606	1:256	117.1875
Acinetobacter baumannii	061700Ab6*	1:512	58.5938
Bacteroides fragilis	25285	1:8,192	3.6621
Bacteroides fragilis	060700Bf2*	1:12,288	2.4414
Enterobacter cloacae	13047	1:192	156.2500
Enterobacter cloacae	$121799 \mathrm{Ecl1} *$	1:128	234.3750
Enterococcus faecalis	29212	1:192	156.2500
Enterococcus faecalis	121699Efs I*	$\leq 1: 128$	≥ 234.3750
Enterococcus faecium	19434	< 1:128	>234.3750
Enterococcus faecium	061700Efm1*	<1:128	>234.3750
Escherichia coli	11229	1:256	117.1875
Escherichia coli	010500Ec8*	1:128	234.3750
Escherichia coli	25922	1:384	78.1250
Escherichia coli	010500Ec6*	1:128	234.3750
Haemophilus influenzae	19418	$1: 2,048$	14.6484
Haemophilus influenzae	$062900 \mathrm{Hi9}$ *	1:4,096	7.3242
Klebsiella oxytoca	43165	s 1:128	≥ 234.3750
Klebsiella oxytoca	060700Ko6*	$\leq 1: 128$	≥ 234.3750
Klebsiella pneumoniae	11296	1:512	58.5938
Klebsiella pneumoniae	040400Kpn12*	<1:128	> 234.3750
Micrococcus luteus	7468	1:192	156.2500
Micrococcus spp.	060700Ms8*	1:512	58.5938
Proteus mirabilis	7002	1:256	117.1875
Proteus mirabilis	062900 Pml *	1:128	234.3750
Pseudomonas aeruginosa	15442	<1:128	>234.3750
Pseudomonas aeruginosa	040400Pa8*	<1:128	>234.3750

*- Clinical Isolate

TABLE IV (continued)
Ultradex - Lot Number: 000247
(3\% [$30,000 \mathrm{ppm}]$ PCMX)

Microorganism Species	ATCC or BSLI \#*	Minimum Inhibitory Concentration	
		Product Dilution	Parts per Million
Pseudomonas aeruginosa	27853	< 1:128	>234.3750
Pseudomonas aeruginosa	040400Pa9*	< 1:128	>234.3750
Serratia marcescens	14756	<1:64	>468.7500
Serratia marcescens	$060700 \mathrm{Sm3}{ }^{*}$	1:64	468.7500
Staphylococcus aureus	6538	1:1,024	29.2969
Staphylococcus aureus	040400Sa4*	1:256	117.1875
Staphylococcus aureus	29213	1:512	58.5938
Staphylococcus aureus	040400Sa5*	1:256	117.1875
Staphylococcus epidermidis	12228	1:512	58.5938
Staphylococcus epidermidis	061700Se13*	1:256	117.1875
Staphylococcus haemolyticus	29970	1:512	58.5938
Staphylococcus haemolyticus	061700Sha5*	1:512	58.5938
Staphylococcus hominis	27844	1:384	78.1250
Staphylococcus hominis	060700Sho4*	1:4,096	7.3242
Staphylococcus saprophyticus	15305	1:512	58.5938
Staphylococcus saprophyticus	060700Ss3*	1:1,024	29.2969
Streptococcus pneumoniae	6303	1:6,144	4.8828
Streptococcus pneumoniae	062900Spn6*	1:256	117.1875
Streptococcus pyogenes	19615	1:2,048	14.6484
Streptococcus pyogenes	040400Spy10*	1:256	117.1875
Candida albicans	10231	<1:64	>468.7500
Candida albicans	$040400 \mathrm{Ca1}$ *	<1:64	>468.7500
Candida tropicalis	750	< 1:128	>234.3750
Candida tropicalis	$121799 \mathrm{Ct}^{*}$	$<1: 64$	> 468.7500

* - Clinical Isolate

13.0 REFERENCE:

NCCLS Document M7-A5, "Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically," ${ }^{\text {th }}$ Edition.

14.0 ACCEPTANCE:

BIOSCIENCE LABORATORIES, INC.
P.O. Box 190

Bozeman, Montana 59771-0190

President and CEO:

Manager of In-Vitro
Laboratory/
Principal
Study Director:
 $\frac{09 / 27 / 00}{\text { Study Completion Date }}$

QUALITY ASSURANCE STATEMENT:

This study was inspected by the Quality Assurance Unit, and reports were submitted to the Study Director and Management in accordance with Standard Operating Procedures, as follows:

Phase	$\underline{\text { Date }}$
Product Testing	$08 / 15 / 00 \& 08 / 31 / 00$
Data Audit	$09 / 26 / 00$
Final Report Review	$09 / 26 / 00$

Reports to Study Director and Management

08/15/00, 08/31/00 \& 09/26/00
This study was conducted in compliance with Good Laboratory Practices standards, as described by the FDA (21 CFR Part 58), with the following exception: test article preparations were not analyzed at BioScience Laboratories, Inc., to confirm concentration, stability, or homogeneity.

Director of Quality Assurance:

MicroBioTest, Inc.

Study Title
MINIMUM INHIBITORY CONCENTRATIONS FOR
ULTRADEX ${ }^{\text {© }} \mathbf{3 \%}$ PCMX
AS SURGICAL HAND SCRUB SOLUTION
Data Requirements
This report is designed to be used internally by the sponsor of the study

Author

Sherry C. Conlin
Final Report Written
1/23/95

Performing Laboratory

MicroBioTest, Inc. (MBT)
14280 Sullyfield Circle, \#200
Chantilly, Virginia 22021
Laboratory Project Identification
361-101

MICROBIOTEST, INC. COMPLIANCE STATEMENT

This study meets the requirements for 40 CFR Part 160 with the exception that information on the synthesis, purity analysis, composition and other characteristics of the test product remain with the sponsor.

Study Director: MICROBIOTEST, INC.

MICROBIOTEST QUALITY ASSURANCE UNIT STATEMENT

The Quality Assurance Unit of MicroBioTest, Inc. has inspected the final report of Project Number 361-101 entitled "MINIMUM INHIBITORY CONCENTRATIONS FOR ULTRADEX ${ }^{\oplus}$ 3\% PCMX AS SURGICAL HAND SCRUB SOLUTION"; in compliance with current Good Laboratory Practice regulations, (40 CFR Part 160).

DATE OF INSPECTION

10/05/94

01/18/95
01/30/95

DATE REPORTED TO STUDY DIRECTOR

10/06/94
01/18/95
01/30/95
01/30/95

OBJECTIVE:

The test procedure was designed to supply basic antimicrobial data before specific clinical testing is undertaken. The testing procedure conforms to the requirements of Federal Register, Vol. 59, No. 116 §333.470, June 17, 1994.

MATERIALS:

A. supplied by the sponsor

1. PCMX, lot M53509, received 09/20/94, assigned DS No. 1990.
2. ULTRADEX Solution without PCMX; lot M061240A, received 09/20/94, assigned DS NO. 1991, and lot M063350A, received 10/19/94, assigned DS No. 1997.
3. ULTRADEX Solution with 3\% PCMX, lot M061240, received 09/20/94, assigned DS NO. 1992, and lot M063350, received 10/19/94, assigned DS NO. 1998.

The sponsor assures MicroBioTest, Inc. testing facility management that the test substance hes been appropriately tested for identity, strength, purity, stability, and uniformity as applicable. All unused test materials will be retained by MBT for a period of three months after completion of the test then discarded in a manner which meets the approval of the safety officer.
B. Materials supplied by MicroBioTest, Inc., including, but not limited to:

1. Media and reagents:
a. Trypticase Soya Agar.
b. Trypticase Soya Broth.
c. Sheep Blood Agar.
d. Sabouraud Dextrose Agar
e. Yeast Maltose Agar.
f. Sterile Saline solution blanks (SS).
g. Dimethyl Sulfoxide (DMSO).
2. Challenge organisms

All ATCC strains were acquired directly from the ATCC. All fresh clinical isolates (CI) were acquired from the Howard University Hospital, or MicroBioTest, Inc.
3. Laboratory equipment and supplies.

EXPERIMENTAL DESIGN:

A. Inocula preparation:

Bacteria and yeast were subcultured from stock cultures on agar, incubated at $37 \pm 2 \mathrm{C}$ in ambient air. Anaerobic bacteria were subcultured on pre-reduced media, incubating at $37 \pm 2 \mathrm{C}$ under anaerobic conditions. A 20-24 hr culture was used for the test procedure for all organisms except, Propionibacterium was five days old, the Candida and Bacteroides were $48 \pm 1 \mathrm{hr}$ old. On the day of the test, bacteria were harvested by swabbing the surface of the agar with a cotton-tipped swab previously dipped in sterile SS and dispersed in approximately 10 ml of SS. The suspension of the challenge organisms were adjusted with SS to contain approximately 1×10^{8} cfu/ml by using spectrophotometric methods extant in the laboratory.
B. Test material preparation:

The ULTRADEX with and without PCMX were tested as sent by the sponsor. The PCMX was prepared every test date by adding 1.5 g of the PCMX to 50 ml of filter sterilized DMSO or 0.75 g of the PCMX to 25 ml of DMSO.

C. Test :

1. Nine tubes containing two ml of broth medium each were prepared in duplicate for each challenge microorganism.
2. The first tube contained four-ml test material.
3. Doubling dilutions were performed for each set of ten tubes by transferring two ml from the first tube to the second tube, mixing thoroughly, then transferring two ml to the next tube up to the tenth tube. From the tenth tube two ml of mixture were discarded.
4. Each tube was inoculated with 0.05 ml of one of the challenge organisms. Tubes were incubated at $37 \pm 2 \mathrm{C}$ for the time appropriate for each organism, then scored for growth $(+)$ or no growth $(-)$.
5. After the incubation period, one loopful from each tube was streaked onto an agar plate. Plates were incubated and observed for growth (+) or no growth (-).
D. Controls:
6. Negative controls:

The plates and aliquots of broth media used in the test were incubated with the test.
2. Positive controls:

For each organism, duplicate tubes containing two ml of appropriate broth medium were inoculated with 0.05 ml of the appropriate challenge organism and incubated with the test tubes.

TEST ACCEPTANCE CRITERIA:

The test is acceptable for evaluation of the test results if the criteria listed below are satisfied.

The positive control must exhibit growth of the challenge organisms.
The negative control must exhibit no growth of any microorganism.

TESTING FACILITIES AND STUDY DATES:

The study was conducted at MicroBioTest, Inc, 14280 Sullyfield Circle, Suite 200, Chantilly, Virginia 22021. The Laboratory phase was conducted in the Applied Microbiology Laboratory at MicroBioTest, Inc. between the dates 10/12/94 and $1 / 27 / 95$. The study director signed the protocol on 10/03/94.

RECORDS:

All raw data, protocol, protocol modifications, test material records, final report, and correspondence relevant to this study, between MBT and the sponsor will be stored in the archives at MicroBioTest, Inc., 14280 Sullyfield Circle, Suite 200, Chantilly, VA 22021.

All changes or revisions of the approved protocol were documented, signed by the study director, dated and maintained with the protocol. The sponsor was notified of the change, resolution, and impact on the study as soon as practical.

INTERPRETATION OF RESULTS:

The endpoint or minimum inhibitory concentration (MIC) is defined as the concentration of test compound that completely inhibits growth of the challenge organism. In order to arrive at an MIC for the test compound, the growth control tubes must exhibit growth and the solvent used must show little or no effect upon the growth of the organisms. The titer for each test compound was determined.

CALCULATION:

The test compound concentrations (ppm) or dilution for each tube resulting from a two-fold dilution are shown below:
\(\left.\begin{array}{lclc}Tube \& 3 \% PCMX \& ULTRADEX \& ULTRADEX + 3\% PCMX

\& \& \&

1 \& 30,000 \& neat \& \ddots\end{array}\right]\)| |
| :--- |
| 2 |

RESULTS:

The results for all sterility controls were negative, and all organisms demonstrated growth for the positive control. The results are on pages seven and eight which describe the minimum inhibitory concentration, the 3% PCMX, and the ULTRADEX + 3% PCMX are described as the concentration of the active ingredient in parts per million (ppm). The ULTRADEX without PCMX is described as a dilution of the product.
m
FR: MIC Test

RESULTS MIC ATCC STRAINS
$\left.\begin{array}{|l|c|c|c}\hline \text { Organism } & \begin{array}{c}3 \% \text { PCMX } \\ \text { DS No. } 1990\end{array} & \begin{array}{c}\text { ULTRADEX } \\ \text { DS No. } \\ 1991,1997\end{array} & \begin{array}{c}\text { ULTRADEX } \\ \text { PCMX } \\ \text { DS } \\ \text { No. } \\ 1998\end{array} \\ \hline \text { Acinetobacter sp. ATCC 15308 }\end{array}\right]$

UTR - unable to read the first tube

MicroBioTest, Inc.

RESULTS MIC CLINICAL ISOLATES

Organism	3\% PCMX DS No. 1990	$\begin{aligned} & \text { ULTRADEX } \\ & \text { DS No. } \\ & 1991,1997 \end{aligned}$	$\begin{gathered} \text { ULTRADEX }+3 \% \\ \text { PCMX } \\ \text { DS No. 1992, } \\ 1998 \end{gathered}$
Bacillus sp. Cl 232	468.75	neat	937.5
Candida albicans Cl 224	3,750	1:2	1,875
Enterobacter cloacae Cl 207	58.59	1:2	937.5
Enterobacter cloacae Cl 208	468.75	1:2	937.5
Enterococcus faecalis Cl 216	468:75	1:2	468.75
Enterococcus faecalis CI 217	468.75	1:2	937.5 \%
Escherichia coli Cl 215	468.75	1:2	15,000
Klebsiella pneumoniae Cl 210	117.19 :	1:2	1,875 \because
Sicrococcus citreus Cl 230	234.38 :	1:2	468.75
sibacterium acnes Cl 221	234.38	1:2	468.75 .
Propionibacterium acnes Cl 222	234.38	1:2	468.75
Pseudomonas aeruginosa CI 204	468.75	1:2	30,000
Pseudomonas aeruginosa CI 205	351.56	1:2	1,406.25
Pseudomonas aeruginosa CI 206	234.38	1:2	3,750
Salmonella group D CI 209	58.59	1:2	234.38
Staphylococcus sp (coagulase negative) CI 211	468.75	1:2	15,000
Staphylococcus aureus CI 214	234.38	1:2	468.75
Staphylococcus aureus CI 225	468.75	1:2	937.5
Staphylococcus epidermidis Cl 212	468.75	1:2	15,000
itaphylococcus epidermidis Cl 213	468.75	1:2	15,000
itaphylococcus epidermidis Cl 226	468.75	1:2	703.12
itaphylococcus epidermidis Cl 227	468.75	1:2	2,812.5
itaphylococcus epidermidis Cl 228	1,406.25	1:2	937.5
treptacoccus pneumoniae Cl 220	468.75	1:2	937.5
sptococcus pyogenes Cl 218	117.19	1:2	58.59

MicroBioTest, Inc.

[^0]: * $=$ Clinical Isolate

[^1]: $*=$ Clinical Isolate \quad Inoc. Prep. $=$ Inoculum Preparation $\quad \mathrm{P}=$ Initial Population

