Exhibit 1

Coumadin® Tablets, USP Approved Package Insert (Rev. 06/02)

COUMADIN® TABLETS (Wartarin Sodium Tablets, USP) Crystalline

COUMADIN® FOR INJECTION

(Warfarin Sodium for Injection, USP)

DESCRIPTION

COUMADIN (crystalline warfarin sodium) is an anticoangiant which acts by inhibiting yitamin K-dependent coagu iation factors. Chemically, it is 3-to-actiony/benzyll-4-hydroxycourdarin and is a racemic mixture of the R- and S- enantiomers. Crystalline warfarin sodium is an isopropanol clathrate. The crystallization of warfarin sodium virtually eliminates trace importuse present in amorphous warfarin, its embirical formula is $C_{15} \, E_{15} \, NaO_4$, and its constituted formula may be a received with the following constitution of the properties of structural formula may be represented by the following

Crystalline warfarin sodium occurs as a white, odorless, crystalline powder, is discolored by light and is very soluble in water; freely soluble in alcohol; very slightly soluble in chloroform and in ether

COUMAGIN Tablets for oral use also contain

All strengths	Lactose, starch and magnesium stearate
1 mg	D&C Red No. 6 Barium Lake
2 mg	FD&C Blue No. 2 Aluminum Lake and FD&C Red No. 40 Aluminum Lake
2-1/2 mg	D&C Yellow No. 10 Aluminum Lake and FD&C Blue No. 1 Aluminum Lake
3 mg	FD&C Yellow No. 5 Aluminum Lake, FD&C Blue No. 2 Aluminum Lake and FD&C
	Red No. 40 Aluminum Lake
4 mg	FO&C Blue No. 1 Aluminum Lake
5 mg·	FD&C Yellow No. 6 Aluminum Lake
6 mg	FD&C Yellow No. 6 Aluminum Lake and FD&C Blue No. 1 Aluminum Lake
7-1/2 mg	D&C Yellow No. 10 Aluminum Lake and FD&C Yellow No. 6 Aluminum Lake

COUMADIN for Injection is supplied as a sterile, lyophilized powder, which, after reconstitution with 2.7 mL sterile

Wartann Sodium	2 mg/mL
Sodium Phosphate, Dibasic, Heptahydrate	4.98 mg/mL
Sodium Phosphate, Monobasic, Monohydrate	0 194 mg/mL
Sodium Chloride	0.1 ma/mL
Mannitol	38.0 mg/mL
Sodium Hydroxide as needed for pH adjustment to	8 1 to 8 3

CLINICAL PHARMACOLOGY

10 mg

COUMADIN and other cournain anticoagularis act by inhibiting the synthesis of vitamin K dependent clotting fac-tors, which include Factors II, VII, IX and X, and the anticoagularit proteins C and S Half-lives of these clotting fac-tors are as follows: Factor II - 60 hours, VII - 4-6 hours, IX - 24 hours, and X - 48-72 hours. The half-lives of proteins tors are as follows: Factor II - 60 hours, VII - 4-6 hours, IX - 24 hours, and X - 48-72 hours. The half-lives of proteins C and S are approximately 8 hours and 30 hours, respectively. The resultant m we flect is a sequential depression of Factors VII, IX, X and II activities. Vitamin K is an essential coractor for the post ribosomal synthesis of the vitamin K dependent clotting factors. The vitamin promotes the biosynthesis of α -carboxyglutamic acid residues in the proteins which are essential for biological activity. Warfann is thought to interfere with clotting factor synthesis by inhibition of the regeneration of vitamin K_1 epoxide. The degree of depression is dependent upon the lossage administered. Therapeutic doses of warfann decrease the total amount of the active form of each vitamin K dependent clotting factor made by the liver by approximately 30% to 50%.

An anticoagulation effect generally occurs within 24 hours after drug administration. However, peak anticoagulant effect may be delayed 72 to 96 hours. The duration of action of a single dose of racemic warfarin is 2 to 5 days The effects of COUMADIN may become more pronounced as effects of daily maintenance doses overlag. Anticoagulants have no direct effect on an established thrombus, nor do they reverse ischemic tissue damage. However, once a thrombus has occurred, the goal of anticoagulant treatment is to prevent further extension of the formed citof and prevent secondary thromboembolic complications which may result in serious and possibly fatal.

Pharmacokinetics: COUMADIN is a racemic mixture of the R- and S-enantiomers. The S-enantiomer exhibits 2-5 times more anticoagulant activity than the R-enantiomer in humans, but generally has a more rapid clearance.

Absorption: COUMADIN is essentially completely absorbed after trail administration with peak concentration generally attained within the first 4 hours

Distribution: There are no differences in the apparent volumes of distribution after intravenous and gral administration of single doses of warfarm solution. Warfarm distributes into a relatively small apparent volume of distribution of about 0.14 liter/kg. A distribution phase lasting 6 to 12 hours is distinguishable after rapid intravenous or oral administration of an aqueous solution. Using a one compartment model, and assuring complete bioavailability, estimates of the volumes of distribution of R- and S-warfarm are similar to each other and to that of the racemate. Concentrations in fetal plasma approach the maternal values, but warfann has not been found in human milk (see WARNINGS: Lactation). Approximately 99% of the drug is bound to plasma proteins

Metabolism: The elimination of warfarm is almost entirely by metabolism. COUMADIN is stereoselectively metabolized by hepatic microsomal enzymes (cytochrome P-450) to inactive hydroxylated metabolities (predominant route) and by reductases to reduced metabolites (warfarin alcohols). The warfarin alcohols have minimal anticoagulant activity. The metabolites are principally excreted into the unne, and to a lesser extent into the bile. The metabolites of warfarin that have been identified include dehydrowarfarin, two disastereoisomer alcohols, 4-, 6-, 7-, 8- and 10-hydroxywarfarin. The cytochrome P-450 isozymes involved in the metabolism of warfarin include 209, 2019, 208, 2018, 122, and 344, 205 is likely to be the principal form of human liver P-450 which modulates the axis an afficient and include a control of the principal form of human liver P-450 which modulates

Excretion: The terminal half-life of warfann after a single dose is approximately one week, however, the effective half-life ranges from 20 to 60 hours, with a mean of about 40 hours. The clearance of R-warfarin is generally half that of S-warfarin, thus as the volumes of distribution are similar, the naff-life of R-warfarin is generally flair for S-warfarin. The half-life of R-warfarin ranges from 37 to 89 hours, while that of S-warfarin ranges from 21 to 43 hours. Studies with radiolabeled drug have demonstrated that up to 92% of the orally administered dose is recovered to the orally administered dose is recovered to the orally administered. ered in urine Very little warfann is excreted unchanged in urine. Urinary excretion is in the form of metabolites

Elderly: Patients 60 years or older appear to exhibit greater than expected prothrombin time (PT)/International Normalized Ratio (INR) response to the anticoagulant effects of warfarin. The cause of the increased sensitivity to the anticoagulant effects of warfarn in this age group is unknown. This increased anticoagulant effect from war-farin may be due to a combination of pharmacokinetic and pharmacodynamic factors. Racemic warfarin clearance may be unchanged or reduced with increasing age. Limited information suggests there is no difference in the clearnce of S-warfann in the elderly versus young subjects, However, there may be a slight decrease in the clearance If R-warfann in the eldeny as compared to the young. Therefore, as patient age increases, a lower dose of war-farm is usually required to produce a therapeutic level of anticoagulation.

Asiand, Asian patiento may require lower initiation and maintenance doses of warfarin. One non-controlled study conducted in 151 Chinese outpatients reported a mean daily warfarin requirement of 3.3 ± 1.4 mg to achieve an MR of 2 to 2.5. Those patients were stabilized on warfarin for various indications. Patient age was the most impor-

tant determinant of warrann requirement in Chinese patients with a progressively lower warrann requirement with

Renal Dysfunction: Renal clearance is considered to be a minor determinant of anticoagulant response to wattann. No dosage adjustment is necessary for patients with renal failure

hepatic Dystunction: Hepatic dystunction can potentiate the response to warrann through impaired synthesis of clotting factors and decreased metabolism of warfaring

The administration of COUMADIN (Wartarin Sogium) via the intravenous (IV) route should provide the patient with the same concentration of an equal oral dose, but maximum plasma concentration will be reached earlier however the full anticoagulant effect of a dose of warrarin may not be achieved until 72-96 hours after dosing, indicating that the administration of IV COUMADIN should not provide any increased biological effect or earlier onset of action

Atrial Fibrillation (AF): In five prospective randomized controlled clinical trials involving 3711 patients with nonrheumatic AE warfarin significantly reduced the risk of systemic thromboembolism including stroke (See Table 1) The risk reduction ranged from 60% to 86% in all except one trial (GAFA 45%) which stopped early due to pub-ished positive results from two of these trials. The incidence of major bleeding in these trials ranged from 0.6 to 2.7% (See Table 1). Meta-analysis findings of these studies revealed that the effects of warfarin in reducing thromboembolic events including stroke were similar at either moderately high INR (2 0-4 5) or low INR (1 4-3 0). There was a significant reduction in minor bleeds at the low INR, Similar data from clinical studies in valvular arral fibriliation patients are not available

TABLE 1. CLINICAL STUDIES OF WARFARIN IN NON-RHEUMATIC AF PATIENTS*

Study		n			Thromboembolism		% Major Bleeding	
	Wartann- Treated Patients	Control Patients	PT Ratio	INF	% Risk Reduction	p-value	Warfarin- Treated Patients	Control Patients
AFASAK	335	336	1 5-2.0	2 8-4.2	60	0 027	0.6	0.0
SPAF	210	211	1.3-1.8	2 0-4.5	67	0.01	19	1.9
BAATAF	212	208	1 2-1.5	15-27	8 6	<0.05	0.9	0.5
CAFA	187	191	1.3-1.6	2.0-3.0	45	0.25	27	0.5
SPINAF	260	265	12-15	1 4-2.8	79	0.001	2.3	1.5

*All study results of warfann vs. control are based on intention-to-treat analysis and include ischemic stroke and systemic thromboembolism, excluding hemorrhage and transient ischemic attacks

Myocardial Infarction: WARIS (The Warfarm Re-infarction Study) was a double-blind, randomized study of 1214 patients 2 to 4 weeks post-infarction treated with warfann to a target INR of 2.8 to 4.8. [But note that a lower INR was achieved and increased bleeding was associated with INR's above 4.0; (see DOSAGE AND ADMINISTRATION)] The primary endpoint was a combination of total mortality and recurrent infarction. A secondary endpoint of ce brovascular events was assessed. Mean follow-up of the patients was 37 months. The results for each endpo separately, including an analysis of vascular death, are provided in the following table:

Event	Warfarın (N≈607)	Placebo (N=607)	RR (95% CI)	% Risk Reduction (p-value)
Total Patient Years of Follow-up	2018	1944		
Total Mortairty Vascular Death	94 (4.7/100 py) 82 (4.1/100 py)	123 (6.3/100 py) 105 (5.4/100 py)	0.76 (0.60, 0.97) 0 78 (0.60, 1.02)	24 (p=0.030) 22 (p=0.068)
Recurrent MI	82 (4.1/100 py)	124 (6.4/100 py)	0.66 (0.51, 0.85)	34 (p=0.001)
Cerebrovascular Event	20 (1.0/100 py)	44 (2.3/100 py)	0.46 (0 28, 0.75)	54 (p=0 002)

RR= Relative risk; Risk reduction=(I - RR); Cl=Confidence interval, Ml=Myocardial infarction; py=patient years

Mechanical and Bioprosthetic Heart Valves; in a prospective, randomized, open label, positive-controlled study (Mok et al. 1985) in 254 patients, the thromboembolic-free interval was found to be signifwith mechanical prosthetic heart valves treated with warfarin alone compared with dipyridamole-aspirin (p-0.005) and pentoxifylline-aspirin (p-0.05) treated patients. Rates of thromboembolic events in these groups were 2.2, 8.6, and 7.9/100 patient years, respectively. Major bleeding rates were 2.5, 0.0, and 0.9/100 patient years, respectively.

in a prospective, open label, clinical trial (Saour et al, 1990) comparing moderate (INR 2.65) vs. high intensity (INR 9.0) warfann therapies in 258 patients with mechanical prosthetic heart valves, thromboembolism occurred with similar frequency in the two groups (4.0 and 3.7 events/100 patient years, respectively). Major bleeding was more common in the high intensity group (2.1 events/100 patient years) vs. 0.95 events/100 patient years in the moder

in a randomized that (Turple et al, 1988) in 210 patients comparing two intensities of warfarin therapy (INR 2.0in a randomized trial (Turple et al., 1968) in 210 patients comparing two intensities of warfarin therapy (INK 2.0-225 vs. IRK 2.5-4.0) for a three-month period following tissue heart valve replacement, bromboemobism occurred with similar frequency in the two groups [major embolic events 2.0% vs. 1.9%, respectively and minor embolic events 10.8% vs. 10.2%, respectively). Major bleeding complications were more frequent with the higher intensity (major hemorrhages 4.6%) vs. none in the lower intensity.

INDICATIONS AND USAGE
COUMADIN is indicated for the prophylaxis and/or treatment of venous thrombosis and its extension, and pulmonary embolism

COUMADIN is indicated for the prophylaxis and/or treatment of the thromboembolic complications associated with

COUMADIN is indicated to reduce the risk of death, recurrent myocardial infarction, and thromboembolic events such as stroke or systemic embolization after myocardial infarction

Anticoaquiation is contraindicated in any localized or general physical condition or personal circumstance in which the hazard of hemorrhage might be greater than the potential clinical benefits of anticoagulation, such as:

Pregnancy COUMADIN is contraindicated in women who are or may become pregnant because the drug passes through the placental barner and may cause tatal hemorrhage to the fetus in the placental barner and may cause tatal hemorrhage to the fetus in the placental barner and may cause tatal hemorrhage to the fetus in the placental barner and may cause tatal hemorrhage to the fetus in the placental barner and may cause tatal hemorrhage to the fetus in the placental barner.

Embryopathy characterized by nasal hypoplasia with or without stippled epiphyses (chondrodysplasia punctata) has been reported in pregnant women exposed to warfann during the first trimester. Central nervous system abnormalities also have been reported, including dorsal midline dysplasia characterized by agenesis of the corpus callosum, Dandy-Walker malformation, and midline cerebellar atrophy. Ventral midline dysplasia, characterized by optic atrophy, and eye abnormalities have been observed. Mental retargation, blindness, and other central nervous system abnormalities have been reported in association with second and third trimester exposure. Although rare, reactiogen; reports following in utero exposure to wartarin include unitary tract anomalies such as single kidney, asplenia, anencephaly, spina brida cranial nerve palsy, hydrocephalus, cardiac defects and congenital heart disease, polydactivly, deformibes of toes diaphragmatic hernia comeal leukoma cleft palate cleft lip schizencephaly. and microcephaly

Spontaneous abortion and stillbirth are known to occur and a higher risk of fetal mortality is associated with the use of warfamin Low birth weight and growth retardation have also peem resource

Women or childbearing potential who are candidates for anticoagulant therapy should be carefully evaluated and the indications critically reviewed with the patient. If the patient becomes pregnant while taking this snould be should be apprised of the potential risks to the fetus, and the possibility of termination of the pregnancy should be discussed in light of those risks

Hemorrhapic tendencies or blood gyscrasias

Recent of contemplated surgery of [11] central nervous system, [2] eye, [3] traumatic surgery resulting in target

Bleeding tendencies associated with active diceration or overfibleeding of (1) gastrointestinal, genitourinary or respiratory tracts, (2) cereprovascular hemorrhage, (3) aneurysms-cerepral, dissecting aorta, (4) pericarditis and pencardial effusions, (5) bacterial endocarditis

Unsupervised patients with senifity, alcoholism, or psychosis or other lack of patient cooperation

Spinal puncture and other diagnostic or therapeutic procedures with potential for uncontrollable bleeding

Miscellaneous, major regional, lumbar block anesthesia, malignant hypertension and known hypersensitivity to warfann or to any other components of this product

WARNINGS

The most serious risks associated with anticoagulant therapy with warfarin sodium are hemorrhage in any tissue or organ and, less frequently (<0.1%), necrosis and/or gangrene of skin and other tissues. The risk of hemorrhage is related to the level of intensity and the duration of anticoagulant therapy. Hemorrhage and necrosis have in some cases been reported to result in death or permanent disability. Necrosis appears to be associated with local throm-bosis and usually appears within a few days of the start of anticoagulant therapy. In severe cases of necrosis, treat-ment through debridement or amputation of the affected bissue, limb, breast or penis has been reported. Careful diagnosis is required to determine whether necrosis is caused by an underlying disease. Warfarin therapy should be discontinued when warfarn is suspected to be the cause of developing necrosis and hepann therapy may be con-sidered for anticoagulation. Although vanous treatments have been attempted, no treatment for necrosis has been considered uniformly effective. See below for information on predisposing conditions. These and other risks associared with anticoaquiant therapy must be weighed against the risk of thrombosis or embolization in untreated cases

it cannot be emphasized too strongly that treatment of each patient is a highly individualized matter COUMADIN (Warfann Sodium), a narrow therapeutic range (index) drug, may be affected by factors such as other drugs and dietary Vitamin K. Dosage should be controlled by periodic determinations of PT/INR or other suitable coagulation tests. Determinations of whole blood clotting and bleeding times are not effective measures for control of therapy Heparin prolongs the one-stage PT. When heparin and COUMADIN are administered concomitantly, refer below to CONVERSION FROM HEPARIN THERAPY for recommendations

Caution should be observed when COUMADIN is administered in any situation or in the presence of any predis-posing condition where added risk of hemorrhage, necrosis, and/or gangrene is present.

Anticoagulation therapy with COUMADIN may enhance the release of atheromatous plaque emboli, thereby increasing the risk of complications from systemic cholesterol microembolization, including the "purple toes syndrome: Discontinuation of COUMADIN therapy is recommended when such phenomena are observed.

Systemic atheroemboli and cholesterol microemboli can present with a variety of signs and symptoms including bysician authorized and consistent microstromic large period of a purple to syndrome, livedo reticulars, rash, gangrene, abrupt and intense pain in the leg, foot, or loes, foot ulcers, myaigia, penile gangrene, abdominal pain, flank or back pain, hematuria, renai insufficiency, hypertension, cerebral ischemia, spinal cord infarction, pancreatius, symptoms simulating polyarterius, or any other sequelae of vascular se due to embolic occlusion. The most commonly involved visceral organs are the kidneys followed by the pancreas, spieer, and liver. Some cases have progressed to necrosis or death.

Purple toes syndrome is a complication of oral anticoagulation characterized by a dark, purplish or mottled color of the toes, usually occurring between 3-10 weeks, or later, after the initiation of therapy with wariann or related compounds. Major features of this syndrome include purple color of plantar surfaces and sides of the toes that blanches on moderate pressure and fades with elevation of the legs; pain and tendemess of the toes; waxing and waning of the color over time. While the purple toes syndrome is reported to be reversible, some cases progress to gangrene or necrosis which may require debridement of the affected area, or may lead to amputation

Heparin-induced thrombocytopenia: COUMADIN should be used with caution in patients with heparin-induced thrombocytopenia and deep venous thrombosis. Cases of venous limb ischemia, necrosis, and gangrene have occurred in patients with heparin-induced thrombocytopenia and deep venous thrombosis when heparin treatment was discontinued and warfarm therapy was started or continued. In some patients sequelae have included amputation of the involved area and/or death (Warkentin et al., 1997).

A severe elevation (>50 seconds) in activated partial thromboplastin time (aPTT) with a PT/INR in the desired range has been identified as an indication of increased risk of postoperative hemo

The decision to administer anticoagularits in the following conditions must be based upon clinical judgment in which the risks of anticoagularit therapy are weighed against the benefits.

on. Based on very limited published data, warfarin has not been detected in the breast milk of mothers treated with warfarin. The same limited published data reports that some breast-fed infants, whose mothers were treated with warfarm, had prolonged prothrombin times, although not as prolonged as those of the mothers. The decision to breast-leed should be undertaken only after careful consideration of the available alternatives. Women who are breast-feeding and anticoagulated with warfarin should be very carefully monitored so that recommended PT/INR values are not exceeded, it is prudent to perform coagulation tests and to evaluate vitamin K status in infants at risk for bleeding tendencies before advising women taking warfarin to breast-feed. Effects in premature infants have not

Severe to moderate hepatic or renal insufficiency.

infectious diseases or disturbances of intestinal flora: sprue, antibiotic therapy

Trauma which may result in internal bleeding.

Surgery or trauma resulting in large exposed raw surfaces

indwelling catheters

Severe to moderate hypertension

Known or suspected deficiency in protein C mediated anticoagulant response: Hereditary or acquired deficiencies of protein C or its cofactor, protein S, have been associated with tissue necrosis following warfarin administration Not all patients with these conditions develop necrosis, and tissue necrosis occurs in natients without these defired all patients with these conditions develop necrosis, and classic necrosis pocurs in patients without these deti-ciencies inherited resistance to activated protein C has been described in many patients with venous thromboem-boild disorders but has not yet been evaluated as a nsk factor for tissue necrosis. The risk association with these conditions, both for recurrent thrombosis and for adverse reactions, is difficult to evaluate since it does not appear to be the same for everyone. Decisions about testing and therapy must be made on an individual basis. It has been reported that concomitant amticoagulation therapy with hepain for 5 to 7 days during initiation of therapy with COUMADIN may minimize the incidence of tissue necrosis. Warfarin therapy should be discontinued when warfarin is suspected to be the cause of developing necrosis and hepain therapy may be considered for anticoagulation.

Miscellaneous: polycythemia vera, vasculitis, and severe diabete.

Minor and severe altergic/hypersensitivity reactions and anaphylactic reactions have been reported

In patients with acquired or inherited warfann resistance necreased therapeutic responses to COUMADIN have peen reported. Exaggerated therapeutic responses have been reported in other patients

Patients with congestive heart failure may exhibit preater than expected PT/INR response to COUMADIN, thereby requiring more frequent laboratory monitoring, and reduced doses of COUMADIN (Warrann Sopium)

Concomitant use of anticoaquiants with streptokinase or urokinase is not recommended and may be hazardous (Please note recommendations accompanying these preparations.)

PRECAUTIONS

Periodic determination of PT/INR or other suitable coaquiation test is essential

Numerous factors, alone or in combination, including travel, changes in diet, environment, physical state and medications, including botanicals, may influence response of the patient to anticoagulants, it is generally good practice to monitor the patient's response with additional PT/INR determinations in the period immediately after discharge from the hospital, and whenever other medications, including botanicals, are initiated, discou brued or taken irregularly. The following factors are listed for reference; however, other factors may also affect the anticoaquiant response

Drugs may interact with COUMADIN through pharmacodynamic or pharmacokinetic mechanisms. Pharmaco-dynamic mechanisms for drug interactions with COUMADIN are synergism (impaired hemostasis, reduced clot-ting factor synthesis), competitive antagonism (vitamin K), and altered physiologic control loop for vitamin K metabolism (hereditary resistance). Pharmacokinetic mechanisms for drug interactions with COUMADIN are mainly enzyme induction, enzyme inhibition, and reduced plasma protein binding. It is important to note that some drugs may interact by more than one mechanism.

following factors, alone or in combination, may be responsible for INCREASED PT/INR response.

ENDOGENOUS FACTORS:

blood dyscrasias — diarrhea see CONTRAINDICATIONS elevated ter cancer hepatic disc collagen vascular disease infectious congestive heart failure jaundice	rs steatorrhea
---	----------------

EXOGENOUS FACTORS:

Potential drug interactions with COUMADIN are listed below by drug class and by specific drugs.

Classes of Drugs						
5-ipoxygenase Inhibitor Adrenergic Stimulants, Central Alicohol Abuse Reduction Preparations Analgesics Analgesics Anationidation Antiandrogen Antiantrythmics' Antibiotics' Aminoglycosides (oral) Cephalosporins, parenteral Macrolides Miscellaneous Penicillinis, intravenous, high dose Ounolones (fluoroquinolones) Sulfonamides, iong acting Tetracyclines Anticorivulsants' Antidepressants' Antidepressants' Antidepressants' Antimelanal Agents	Antiparastic/Antimicrobials Antiparastic/Antimicrobials Antipiatelet Drugs/Effects Antityroid Drugs' Beta-Adrenergic Blockers Cholelitholytic Agents Diabetes Agents, Oral Diaretics' Fungal Medications, Intravaginal, Systemic' Gastric Acidity and Peptic Ulicer Agents' Gastrointestinal Prokinetic Agents Ulicerative Colitis Agents Gout Treatment Agents Hemorrheologic Agents Hemorrheologic Agents Hyperglicemic Agents Hyperglicemic Agents Hypertensive Emergency Agents Hypertensive Emergency Agents Hypolipidemics' Bile Acid-Binding Resins' Fibric Acid Denvatives	HMG-CoA Reductase inhibitors' Leukotriene Receptor Amagonist Monoamine Oxidase inhibitors Narcotics, prolonged Nonsteroidal Anti-Inflammatory Agents Psychostimulants Pyrazolones Salicylates Selective Serotonin Reuptake Inhibitors Steroids, Adrenocortical' Steroids, Anabolic (17-Alkyl Testosterone Derivatives) Thrombolytics Thyroid Drugs Tuberculosis Agents' Uncosunic Agents Vaccines Vitamins'				

Specific Drugs Reported

		T
acetaminophen alcohol ¹	fluconazole	peniciliin G, intravenous
altoournol	fluorouracii	pentoxifylline
	fluoxetine	phenylbutazone
aminosalicylic acid	flutamide	phenytom ¹
	fluvastatin	piperacillin
aspirin	fluvoxamine	piroxicam
atorvastatm'	gemfibrozii	pravastatin [†]
azıthromycin	glucagon	prednisone'
capecitabine	halothane	propatenone
cetamandole	heparin	propoxyphene
cetazolin	ibuprofen	propranoio!
cefoperazone	rfostamide	propytthiouracil
cefotetan	indomethacin	quinidine
cefoxitin	influenza virus vaccine	quinine
cettraxone	itraconazole	rannidine ^r
celecoxib	ketoprofen	rofecoxib
cenvastatin	ketoroiac	sertraline
chenodiol	levamisole	sımvastatın
chioramphenicol	levofloxacın	stanozoloi
chioral hydrate!	levothyroxine	streptokinase
chiorpropamide	liothyronine	sulfamethizole
cholestyramine ^t	lovastatin	sulfamethoxazole
cimetidine	metenamic acid	sulfinpyrazone
ciproflexacin	methimazole ^t	suffisoxazole
cisapride	methyldopa	sulindac
ciarithromycin	methylphenidate	tamoxifen
ciofibrate	methylsalicylate ointment	tetracycline
COUMADIN overdose	(topical)	thyroid
cyclophosphamide'	metronidazole	ticarcilin
danazoi	miconazole	ticlopidine
dextran	(intravaginal, systemic)	bssue piasminogen
dextrothyroxine	moricizine hydrochlondet	activator (t-PA)
DIAZOXIDE	nalidixic acid	tolbutamide
diciofenac	naproxen	tramadol
dicumarol	neomycin	trimethoprim/sulfamethoxazole
artiunisai	nortioxacin	urokinase
disulfiram	offoxacin	valproate
doxycycline	pisalazine	vrtamin E
erythromycin	omeprazole	zafırlukası
ethacrynic acid	oxaprozin	zileuton
fenofibrate	axymetholone	
fenoproten	paroxetine	
		<u></u>

other medications affecting blood elements which may modify hemostasis dietary deficiencies

prolonged hot weather
unreliable PT/INR determinations

increased and decreased PT/INR responses have been reported.

The following factors, alone or in combination, may be responsible for DECREASED PT/INR response

ENDOGENOUS FACTORS

goema	nypothyroidism
hereditary coumarin resistance	nephrotic syndroms
hyperlipemia	

Potential drug interactions with COUMADIN (Warfarin Sodium) are listed below by drug class and by specific

Classes of Drugs					
Adrenai Cortical Steroid Inhibitors Antacids Antianxiety Agents Antiarrhythmics' Antiarrhythmics' Antiborius' Antiboriusiants' Antiboriusiants' Antiboristamines Antinepiastics' Antinepiastics' Antipsychotic Medications	Antithyroid Drugs' Barbiturates Diviretics' Enteral Nutritional Supplements Fungal Medications, Systemic' Gastric Acidity and Pepuc Uteer Agents' Hypnotics' Hypolipidemics' Bite Acid-Binding Resins'	HMG-CoA Reductase Inhibitors Immunosuppressives Oral Contraceptives, Estrogen Containing Selective Estrogen Receptor Modulators Steroids, Adrenocortical' Tuberculosis Agents' Vitamins'			

Specific Drugs Reported		
aicohol' amnoglutethumide amobarhital atorvastatin' azathiopine butabarbital butabarbital butabarbital butabarbital carbamazepine chlord hydrate' chlordiazepoxide chlordhaldone cholestyramine' clozapine cortisone	COUMADIN underdosage cyclophosphamide' dicloxacillin ethichrorynol glutethimide griseofulvin halopendol meprobamate 6-mercaptopume methimazole' moncizine hydrochlonde' narcillin paraldehyde pentobarbital phenobarbital	phenytoin' pravastatin' prednisone' prednisone' promidone propytthouracil' raloxifene ramtione' rifampin secobartital spironolactone sucralitate trazodone vitamin C (high dose) vitamin K

also: diet high in vitamin K

unreliable PT/INR determinations

fincreased and decreased PT/INR responses have been reported

Because a patient may be exposed to a combination of the above factors, the net effect of COUMADIN on PT/INR response may be unpredictable. More frequent PT/INR monitoring is therefore advisable. Medications of unk interaction with coursenants are best regarded with caution. When these medications are started or stopped, frequent PT/INR monitoring is advisable.

it has been reported that concomitant administration of warfarm and ticlopidine may be associated with cholesta

Botanical (Herbal) Medicines: Caution should be exercised when botanical medicines (botanicals) are taken conoutsinced (nerves) measurements valuation shows one exercised when botanical inequirings (outsides) are taken con-comitantly with CDUMADIN. Few adequate, well-combiled studies exist evaluating the potential for metabolic and/or pharmacologic interactions between botanicals and CDUMADIN. Due to a tack of manufacturing standardi-zation with botanical medicinal preparations, the amount of active ingredients may vary This could further con-found the ability to assess potential interactions and effects on anticoagulation. It is good practice to monitor the patient's response with additional PT/INR determinations when initiating or disconti

- Specific botanicals reported to affect COUMADIN therapy include the following:

 Bromelains, danshen, doing qual (Angelica sinensis), garlic, Ginkgo biloba, and ginseng are associated most often with an INCREASE in the effects of COUMADIN.
- Coenzyme Q₁₀ (ubidecarenone) and St. John's wort are associated most often with a DECREASE in the effects of COUMADIN

Some botanicals may cause bleeding events when taken alone (e.g., garlic and Ginkgo biloba) and may have anti-coagulant, antipitatelt, and/or fibrinoitytic properties. These effects would be expected to be additive to the antico-aquiant effects of COUMADIN. Conversely, other botanicals may have coagulant properties when taken alone or may decrease the effects of COUMADIN

Some botanicals that may affect coagulation are listed below for reference; however, this list should not be considered all-inclusive. Many botanicals have several common names and scientific names. The most widely recognized common botanical names are listed.

Botanticals that contain coumarins with potential ambcoagulant effects					
Alfalta	Cetery	Parsiev			
Angelica (Dong Quai)	Chamomile	Passion Flower			
Aniseed	(German and Roman)	Prickly Ash (Northern)			
Arnica	Dandelion'	Quassia			
Asa Foetida	Fenugreek	Red Clover			
Bogbean'	Horse Chestnut	Sweet Clover			
Boldo	Horseradish	Sweet Woodruff			
Buchu	Liconce ¹	Tonka Beans			
Capsicum ²	Meadowsweet ¹	Wild Carrot			
Cassia ¹	Nettle	Wild Lettice			

Miscellaneous botanticals with an	accagulant properties:	
Bladder Wrack (Fucus)	Pau d'arco	

Agnmony*	Dandelion ⁴	Meadowsweet ¹	
Aloe Gel	Fevertew	Oniou,	
Aspen	Garlic ^a	Policosanoi	
Biack Conosh	German Sarsapantia	Poplar	
Black Haw	Ginger	Senega	
Bogbean	Ginkgo Biloba	Tamaring	
Cassia-	Ginseng (Panax)	Willow	
Clove	Liconce-	Wintergreen	

Botanticals with fibrinolytic properties					
Bromeiaina Capsicum	Garin' Ginseng (<i>Panax</i>	inositol Nicotinats Onior	_		

Botanticals with coaquiant prope	rties	
Agnmonv* Goldensea*	Mistretoe	Yалтоw

- 1 Contains courtains and salicylate
- Contains coumarins and has fibrinolytic properties
- Contains couragins and has antiniatelet properties
- * Contains salicylate and has coagulant properties

 * Has antipiatelet and fibrinolytic properties

Effect on Other Drugs: Coumarins may also affect the action of other drugs. Hypoglycemic agents (chlorpropamide and toibutamide) and anticonvulsants (phenytoin and phenobarbital) may accumulate in the body as a result of interference with either their metabolism or excretion.

Special Risk Patients, COUMADIN (Warfarin Sodium) is a narrow therapeutic range (index) drug, and caution should be observed when warfarin sodium is administered to certain patients such as the elderly or debilitated or when administered in any situation or physical condition where added risk of hemorrhage is present.

intramuscular (I.M.) injections of concomitant medications should be confined to the upper extremities which pereasy access for manual compression, inspections for bleeding and use of pressure bandages

Caution should be observed when COUMADIN (or warfarin) is administered concomitantly with nonsteroidal anti-inflammatory drugs (NSAIDs), including aspirin, to be certain that no change in anticoagulation dosage is required, in addition to specific drug interactions that might affect PTINR, NSAIDs, including aspirin, can inhibit platelet aggregation, and can cause gastrointestinal bleeding, pentic ulcreation and/or perforation

Acquired or inherited warfarin resistance should be suspected if large daily doses of COUMADIN are required to aintain a patient's PT/INR within a normal therapeutic range

Information for Patients: The objective of anticoagulant therapy is to decrease the clotting ability of the blood so that thrombosis is preented, while avoiding spontaneous bleeding. Effective therapeutic levels with minimal complications are in part dependent upon cooperative and well-instructed patients who communicate effectivecomplications are in part dependent upon cooperative and well-instructed patients who communicate effectively with their physician, Patients should be advised: Strict adherence to prescribed dosage schedule is necessary.

Do not take or discontinue any other medication, including salicylates (e.g., aspirin and topical analgesics), other
over-the-counter medications, and botanical (herbal) products (e.g., bromelains, coerzyme Q₁₀, danshen, dong
qua, qartic, Ginkgo biloba, ginseng, and St. John's wortl except no advice of the physician Avid alcohol consumption. Do not take COUMADIN during pregnancy and do not become pregnant while taking it (see CONTRAINDICATIONS). Avoid any activity or sport that may result in traumatic injury, Protinging that the state and
regular visits to physician or clinic are needed to monitor therapy. Carry identification station that COUMADIN is
being taken. If the prescribed dose of COUMADIN is forgotten, notify the physician immediately. Take the dose as soon as possible on the same day but do not take a double dose of COUMADIN the next day to make up t soon as possible on the same day but do not take a double dose of COUMADIN the next day to make up for missed doses. The amount of vitamin K in food may affect therapy with COUMADIN. Eat a normal, balanced diet mantaining a consistent amount of vitamin K. Avoid drashic changes in dietary habits, such as estimp large amounts of green leafy vegetables. Contact physician to report any illness, such as diarrhea, intection or fever. Notify physician mediately if any unusual bleeding or symptoms occur. Signs and symptoms of bleeding include pain, swelling or discornfort, prolonged bleeding from cuts, increased menstrual flow or againal bleeding, nosebleeds, bleeding of gums from brushing, unusual bleeding or brusing, red or dark brown urne, red or tar black stools, headache, dizeziness, or weakness. If therapy with COUMADIN is discontinued, patients should be cautioned that all warfarm sodium, USP, products represent the same medication, and should not be taken concomitantly, as overdosage may result.

Carcinogenesis, Mutagenesis, Impairment of Fertility: Carcinogenicity and mutagenicity studies have not been performed with COUMADIN. The reproductive effects of COUMADIN have not been evaluated.

tise in Pregnancy: Pregnancy Category X - See CONTRAINDICATIONS

Pediatric Use: Safety and effectiveness in pediatric patients below the age of 18 have not been established, in ran-domized, controlled clinical trials. However, the use of COUMADIN in pediatric patients is well-documented for the prevention and treatment of thromboembolic events. Difficulty achieving and maintaining therapeutic PT/INR ranges in the pediatric patient has been reported. More frequent PT/INR determinations are recommended because of possible changing warrarin requirements.

Geriatric Use: Patients 60 years or older appear to exhibit greater than expected PT/INR response to the anticoagdertaint disc. Fatterits of years or order appear to exhibit greater than expected PTHMs it exponse to the anicoag-ulant effects of warfarin (see CLINICAL PHARMACOLOGY) COUMADIN is contraindicated in any unsupervised patient with senility Caution should be observed with administration of warfarin sodium to elderly patients in any situation or physical condition where added risk of hemorrhage is present. Lower initiation and maintenance doses of COUMADIN are recommended for elderly patients (see DOSAGE AND ADMINISTRATION)

ADVERSE REACTIONS

- Potential adverse reactions to COUMADIN may include
- Fatal or nonfatal hemorrhage from any tissue or organ. This is a consequence of the anticoagulant effect. The signs, symptoms, and severity will vary according to the location and degree or extent of the bleeding. Hemorrhagic complications may present as paralysis; paresthesia, headache, cleest, abdomen, joint, muscle or other pain, dizziness, shortness of breath, difficult breathing or swallowing, unexplained swelling; weakness; hypotension, or unexplained shock. Therefore, the possibility of hemorrhage should be considered in evaluating the condition of any anticoaguiated patient with complaints which do not indicate an obvious diagnosts Bleeding during anticoaguiant therapy does not always correlate with FT/NR (See OVERDOSAGE, Treatment.)

 Bleeding which occurs when the FT/NR is within the therapeutic range warrants diagnostic investigation since
- If may unmask a previously unsuspected lesion, e.g., tumor, uicer, etc.

 Necrosis of skin and other insues (See WARNINGS.)

 Adverse reactions reported unsuspected lesion.
- Adverse reactions reported infrequently include hypersensitivity/allergic reactions, systemic cholesterol microemolization, purple toes syndrome, hepatitis, cholestatic hepatic injury, jaundice, elevated liver enzymes, vasculitis, edema, fever, rash, dermatitis, including bullous eruptions, urricaria, abdominal pain including cramping, flatmence/floating, fatique, [ettargy, malase, asthenia, nausea, vomiting, diarrhea, pain, heapache dizziness, taste perversion, pruritus, alopecia, cold intolerance, and paresthesia including feeling cold and chilis

Rare events of tracheal or tracheobronchial calcification have been reported in association with long-term warfarin retapy. The clinical significance of this event is unknown nabism has been associated with anticoagulam administration, however, a causal relationship has not been

OVERDOSAGE

Signs and Symptoms: Suspected or overtabnormal bleeding (e.g., appearance of blood in stools or unne hema-turia, excessive menstrual bleeding, melena, petechiae excessive brussing or persistent obzing from superficial injuries) are early manifestations of anticoagulation beyond a sate and satisfactory level

Treatment Excessive anticoagulation with or without bleeding may be controlled by discontinuing COUMADIN therapy and if necessary, by administration of oral or parenteral vitamin κ . (Please see recommendations accompanying vitamin κ , preparations prior to use.)

Such use of vitamin A. reduces response to subsequent COUMADIN therapy. Patients may return to a pretreatment thromostic status following the rapid reversal of a prolonged PT/IMR. Resumption of COUMADIN (Warfarn Socium) administration reverses the effect of vitamin N, and a therapeutic PT/IMR can again be obtained by careful dosage adjustment. It rapid anticoagulation is indicated, heparin may be preferable for initial therapy.

f minor bleeding progresses to major bleeding, give 5 to 25 mg (rarely up to 50 mg) parenteral vitamin k. In emer-gency smuations of severe hemormage clotting factors can be returned to normal by administering 200 to 500 mL of fresh whole blood or fresh frozen plasma, or by giving commercial Factor IX complex

A risk of henatris and other viral diseases is associated with the use of these blood products: Factor IX complex is also associated with an increased risk of thrombosis. Therefore, these preparations should be used only in exceptional or file-threatening bleeding episodes secondary to COUMADIN (Warfann Sodium) overdosage.

Purrhed Factor IX preparations should not be used because they cannot increase the levels of profitrombin. Factor VIII and Factor X which are also depressed along with the levels of Factor IX as a result of COUMADIN treatment. Packed red blood cells may also be given it significant blood loss has occurred. Intusions of blood or plasma should be monitored carefully to avoid precipitating pulmonary edema in elderly patients or patients with heart disease

DOSAGE AND ADMINISTRATION

DOSAGE AND ADMINISTRATION
The dosage and administration of COUMADIN must be individualized for each patient according to the particular patients PT/INR response to the drug. The dosage should be adjusted based upon the patient's PT/INR. (See LAB-ORATORY CONTROL below for full discussion on INR.)

Venous Thromboembolism (including pulmonary embolism): Available clinical evidence indicates that an INR of 2 0-3 0 is sufficient for prophylaxis and treatment of venous thromboembolism and minimizes the risk of hemor-20-30 is sometime for propriyates and realized of vehicles another before another the relative and instances and instances are task of telesciples in the second instances thromboembolism including venous instifficiency, inherited thrombophilia, idiopathic venous thromboembolism, and a history of thrombobic events, consideration should be given to longer term therapy (Schulman et al., 1995 and Schulman et al., 1997).

Atrial Fibriliation: Five recent clinical trials evaluated the effects of warfarn in patients with non-valvular atrial fibriliation (AF). Meta-analysis findings of these studies revealed that the effects of warfarn in reducing thromboembolic events including stroke were similar at either moderately high INR (2.0-4.5) or low INR (1.4-3.0). There was a significant reduction in minor bleeds at the low INR. Similar data from clinical studies in valvular atnal fibrillation pat are not available. The mais in non-valvular atrial fibrillation support the American College of Chest Ph recommendation that an INR of 2.0-3.0 be used for long term warfann therapy in appropriate AF pat valvular atrial fibrillation support the American College of Chest Physicians' (ACCP)

Post-Myocardial Infarction: In post-myocardial infarction patients, COUMADIN therapy should be initiated early (2-4 weeks post-infarction) and dosage should be adjusted to maintain an INR of 2.5-3.5 long-term. The recommendation is based on the results of the WARIS Study in which treatment was initiated 2 to 4 weeks after the infarction, in patients thought to be at an increased risk of bleeding complications or on aspirin therapy, maintenance of COUMADIN therapy at the lower end of this INR range is recommended.

Mechanical and Bioprosthetic Heart Valves: in patients with mechanical heart valve(s), long term prophylaxis with warfann to an INR of 2.5-3.5 is recommended. In patients with bioprosthetic heart valve(s), lead on limited data, the American College of Chest Physicians recommends warfarm therapy to an INR of 2.0-3.0 for 12 weeks after valve insertion, in patients with additional risk factors such as atrial fibrillation or prior thromboembolism, consideration should be given for longer term therapy

Recurrent Systemic Embolism: In cases where the risk of thromboembolism is great, such as in patients with recurrent systemic embolism, a higher INR may be required.

An INR of greater than 4.0 appears to provide no additional therapeutic benefit in most patients and is associ-

sage: The dosing of COUMADIN must be individualized according to patient's sensitivity to the drug as Intal losspe: The losing of CulmAbilis must be individualized according to patient's sensitivity to the noting as addicated by the FT/INR Use of a large loading dose may increase the incidence of hemorrhagic and other com-plications, does not offer more capid protection against thrombi formation, and is not recommended. Lower initia-tion and maintenance doses are recommended for elderly and/or debilidated patients and patients with potential to exhibit preater than expected PT/INR response to COUMADIN (see PRECAUTIONS). Based on intend data, Asian patients may also require lower initiation and maintenance doses of COUMADIN (see CLINICAL PHARMACOLOGY). It is recommended that COUMADIN therapy be initiated with a dose of 2 to 5 mg per day with dosage ad based on the results of PT/INR determinations.

Maintenance: Most patients are satisfactorily maintained at a dose of 2 to 10 mg daily. Flexibility of dosage is prowided by breaking scored tablets in half. The individual dose and interval should be gauged by the patitionibin response.

Duration of Therapy: The duration of therapy in each patient should be individualized. In general, anticoaquiant therapy should be continued until the danger of thrombosis and embolism has passed.

Missed Dose: The anticoaguiant effect of COUMADIN persists beyond 24 hours. If the patient forgets to take the prescribed dose of COUMADIN at the scheduled time, the dose should be taken as soon as possible on the same day. The patient should not take the missed dose by doubling the daily dose to make up for missed doses, but

intravenous Boute of Administration: COUMADIN for Injection provides an alternate administration route for patients who cannot receive oral drugs The IV dosages would be the same as those that would be used orally if the patient could take the drug by the oral route. COUMADIN for loyection should be administered as a slow bolus injection over 1 to 2 minutes into a peripheral vein. It is not recommended for intramuscular anistration. The vial should be reconstituted with 2.7 mL of sterile Water for Injection and inspected for particulate matter and discoloration immediately prior to use Do not use if either particulate matter and/or discoloration is noted. After reconstitution, COUMADIN for injection is chemically and physically stable for 4 hours at room temperature. It does not contain any antimicrobial preservative and, thus, care must be taken to assure the sterility of the prepared solution. The vial is not recommended for multiple use and unused solution should be discarded

LABORATORY CONTROL The PT reflects the depression of vitamin K dependent Factors VII, X and II. There are several modifications of the one-stage PT and the physician should become familiar with the specific method used in his laboratory. The degree of anticoagulation indicated by any range of PTs may be altered by the type of throm-boplastin used, the appropriate therapeutic range must be based on the experience of each laboratory. The PT should be determined daily after the administration of the initial dose until PT/INR results stabilize in the thera-peutic range intervals between subsequent PT/INR determinations should be based upon the physician's judgment. of the patient's reliability and response to COUMADIN in order to maintain the individual within the therapeutor range. Acceptable intervals for PT/INR determinations are normally within the range of one to four weeks after a stable dosage has been determined. To ensure adequate control, it is recommended that additional PT tests are done when other warfarin products are interchanged with waifarin sodium tablets. USP, as well as whenever other medications are initiated, discontinued, or taken irregularly (see PRECAUTIONS)

Different thromboplastin reagents vary substantially in their sensitivity to sodium warfarin-induced effects on PT To define the appropriate therapeutic regimen it is important to be familiar with the sensitivity of the thrombo plastin reagent used in the laboratory and its relationship to the international Reference Preparation (IRP), a senstive thromboplastin reagent prepared from human brain

A system of standardizing the PT in oral anticoagulant control was introduced by the World health Organization in A system of standarduring the PT in oral anticoductant control was introduced by the whon hearth organization in 1983 in its based upon the determination of an international Normalized Rabo (INN) which provides a common basis for communication of PT results and interpretations of therapeutic ranges. The INR system of reporting is based on oganthinic relationship between the PT ratios of the test and reference preparation. The INR is the PT ratio by the test and reference preparation. The INR is the PT ratio that would be obtained if the international Reference Preparation (IRP), which has an ISI of 1.0, was used to perform set test. Early clinical studies of oral ambicoagulants, which formed the basis for recommended therapeutic ranges of 15 to 2.5 times control imean normal PT, used sensitive human brain thrombopiastin. When using the less sensitive human brain thrombopiastin. When using the less sensitive human brain thrombopiastin. stive rabbit brain thromboplastins commonly employed in PT assays today, adjustments must be made to the tar-geted PT range that reflect this decrease in sensitivity

The INR can be calculated as: INR = (observed PT rapp) where the ISI (International Sensitivity Index) is the conrection factor in the equation that relates the PT ratio of the local reagent to the reference preparation and is use of the sensitivity of a given thromboplastin to reduction of vitamin K-dependent coagulation factors; the ISI, the more "sensitive" the reagent and the closer the derived INR will be to the observed PT ratio."

The proceedings and recommendations of the 1992 National Conference on Antithrombotic Therapy ** review and evaluate issues related to oral anticoagulant therapy and the sensitivity of thromboplastin reagents and provide additional guidelines for defining the appropriate therapeutic regimen

The conversion of the INR to PT ratios for the less-intense (INR 2.0-3.0) and more intense (INR 2.5-3.5) therapeutic range recommended by the ACCP for thromboplastins over a range of ISI values is shown in Table

TABLE 3 Relationship Between INR and PT Ratios For Thromooplastins With Officent ISI Values (Sensitivities)

	PT RATIOS				
	1S1 1 0	ISI 1.4	1SI 1.8	ISI 2.3	IS! 2.8
INR=2.0-3.0	20-30	1.6-2.2	1.5-1.8	1 4-1 6	1 3-1.5
INR=2.5-3.5	25-35	1 9-2 4	1 7-2.0	1.5-1.7	1 4-1 6

TREATMENT DURING DENTISTRY AND SURGERY The management of patients who undergo dental and surgical procedures requires close liaison between attending physicians, surgeons and dentists. PT/NR determination is recommended just prior to any dental or surgical procedure. In patients undergoing minimal invasive procedures who must be anticoagulated prior to, during, or immediately following these procedures, adjusting the dosage of COUMADIN (Warfarin Sodium) to maintain the PT/NR at the low end of the therapeutic range may safely allow for continued anticoaguiation. The operative site should be sufficiently limited and accessible to permit the effective use of local procedures for hemostasis. Under these conditions, dental and minor surgical procedures may be performed. without undue risk of hemorrhage. Some dental or surgical procedures may necessitate the interruption of COUMADIN therapy. When discontinuing COUMADIN even for a short period of time, the benefits and risks should be

CONVERSION FROM HEPARIN THERAPY Since the anticoagulant effect of COUMADIN is delayed, begann is preferred initially for rapid anticoaguiation. Conversion to COUMADIN may begin concomitantly with heparin therapy or may be delayed 3 to 6 days. To ensure continuous anticoaguiation, it is advisable to continue full dose heparin therapy and that COUMADIN therapy be overlapped with heparin for 4 to 5 days, until COUMADIN has produced the desired therapeutic response as determined by PT/INR When COLIMADIN has produced the desired PT/INR or prothi activity, heparin may be discontinued

COUMADIN may increase the aPTT test, even in the absence of heparin. During initial therapy with COUMADIN, the interference with heparin anticoagulation is of minimal clinical significance

As heparin may affect the PT/INR, patients receiving both heparin and COUMADIN should have blood for

- PT/INR determination drawn at least:
 5 hours after the last IV bolus dose of heparin, or
- 4 hours after cessation of a continuous IV infusion of hepann, or
 24 hours after the last subcutaneous hepann injection

HOW SUPPLIED

Tablets: For oral use, single scored with one face impirited numerically with 1, 2, 2-1/2, 3, 4, 5, 6, 7-1/2 or 10 superimposed and inscribed with "CoUMADIN" and with the opposite face plain. CoUMADIN is available in bottles and Hospital Unit-Dose Blister Packages with potencies and colors as follows:

			HOSPITAL UNIT-VOSE
	100's	1000's	Blister Package of 100
1 mg pink	NDC 0056-0169-70	NDC 0056-0169-90	NDC 0056-0169-75
2 mg lavender	NDC 0056-0170-70	NDC 0056-0170-90	NDC 0056-0170-75
2-1/2 mg green	NDC 0056-0176-70	NDC 0056-0176-90	NDC 0056-0176-75
3 mg tan	NDC 0056-0188-70	NDC 0056-0188-90	NDC 0056-0188-75
4 mg blue	NDC 0056-0168-70	NDC 0056-0168-90	NDC 0056-0168-75
5 mg peach	NDC 0056-0172-70	NBC 0056-0172-90	NDC 0056-0172-75
6 mg teal	NDC 0056-0189-70	NDC 0056-0189-90	NDC 0056-0189-75
7-1/2 mg yellow	NDC 0056-0173-70		NDC 0056-0173-75
10 mg white	NDC 0056-0174-70		NDC 0056-0174-75
(Dye Free)			

Protect from light. Store at controlled room temperature (59°-86°F, 15°-30°C). Dispense in a tight, light-resistant

Hospital Unit-Dose Blister Packages are to be stored in carton until contents have been used

ction: Available for intravenous use only. Not recommended for intramuscular administration. Reconstr 2.7 mL of stenie Water for injection to yield 2 mg/mL. Net contents 5.4 mg lyophilized powder. Maximum yield 2.5 mL

5 mg vial (box of 6) NDC 0590-0324-35

Protect from light. Keep vial in box until used. Store at controlled room temperature (59*-86*F 15*-30*C).

After reconstitution, store at controlled room temperature (59°-86°F, 15°-30°C) and use within 4 hours. Do not refrigerate Discard any unused solution

REFERENCES: 1. Poller, L. Laboratory Control of Anticoagulant Therapy Seminars in Thrombosis and Hemostasis, Vol. 12, No. 1, pp. 13-19, 1986. 2. Hirsh, J. is the Dose of Warfarm Prescribed by American Physicians Unnecessarily High? Arch Int. Med. Vol. 147, pp. 769-771, 1987. 3. Cook, D.J., Guyatt, H.G., Laupacis, A., Sackett, D.L.: Rules of Evidence and Clinical Recommendations on the Use of Antithrombotic Agents, Chest ACCP Consensus Conference on Antithrombotic Therapy, Chest, Vol. 102(Suppi), pp. 305S-311S, 1992. 4. Hirsh, J., Dalen, J., Deykin, D., Polier, L. Oral Anticoagularits Mechanism of Action, Clinical Effectiveness, and Optimal Therapeutic Range, Chest ACCP Consensus Conference on Antithrombotic Therapy Chest, Vol. 102(Suppl), pp. 312S-326S, pp. 312S-326S, Hirsh, J., M.D., F.C.C.P. Hamilton Civic Hospitais Research Center, Hamilton, Ontario, Personal Communication

Distributed by.

COUMADIN® and the color and configuration of COUMADIN tablets are trademarks of Bristol-Myers Squibb Company Any unlicensed use of these trademarks is expressly prohibited under the U.S. Trademark Act.

Converte C Bristol-Myers South Company 2002

T1-B001-07-02

6572-01/Rev June 2002