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Abstract

The power density spectrum is an essential tool for determining the frequency con-
tent of X-ray radiation from astronomical sources. For neutron star systems, power
density spectra reveal coherent oscillations for those sources that are pulsars, while
quasi-periodic oscillations over a wide range of frequencies (0.01 to 1300 Hz) are
used to identify subclasses and to probe the details of accretion physics. For black
hole binaries, the power density spectrum is useful in many important contexts: dis-
tinguishing black hole binaries from neutron star binaries, tracking the evolution of
X-ray states, and understanding the dynamics of accretion disks, in particular the
high-frequency oscillations that appear to be rooted in general relativity for strong
gravitational fields.

However, measurements of the power density spectrum are modified by the ef-
fects of deadtime in X-ray detectors. In this work, we focus on the Proportional
Counter Array (PCA) instrument of the Rossi X-ray Timing Explorer (RXTE), an
orbiting observatory that offers fast, microsecond-level time resolution and modest
spectral resolution for celestial X-ray sources. We derive a new model for the effect
of detector deadtime on measurements of the power density spectrum. The model
treats in a unified manner the contributions from self-deadtime among selected events
and interference from non-selected events. Using high-frequency power density spec-
tra obtained from observations of X-ray sources, the new model is shown to be more
accurate than existing approaches. The comparison between the model and the obser-
vations leads to a measurement of 8.83 µs for the fundamental instrument deadtime
timescale, which is dominated by the analog-to-digital conversion time. We addi-
tionally measure 59 µs and 137 µs for the Very Large Event deadtime related to
observer-specified settings 1 and 2 respectively. Future refinements to the deadtime
model are discussed, such as corrections for highly variable sources and for individual
X-ray energy bands.

A preliminary comparison between power density spectra from black hole binaries
and neutron star binaries is undertaken using the new deadtime model. While it may
be possible to use high-frequency cut-offs in the power continuum to distinguish neu-
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tron star binaries from black hole binaries in the thermal and hard X-ray states, the
comparison is inconclusive for black hole binaries in the steep power-law state. Since
state definitions require considerations of X-ray spectral properties, the comparison
results dispute a suggestion in the literature that accreting neutron stars and black
holes can be distinguished on the basis of power density spectra alone.

Thesis Supervisor: Ronald A. Remillard
Title: Principal Research Scientist
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Chapter 1

Introduction and Background

1.1 Power density spectra in X-ray astronomy

In X-ray astronomy, the power density spectrum (PDS) is an indispensable tool for

describing and analyzing the frequency content of X-ray radiation. Many celestial

X-ray sources are compact objects that accrete matter from surrounding structures

such as companion stars in a close binary system (see Psaltis (2006) for background).

The accretion process drives the emission of X-rays, which we observe using X-ray

detectors. The X-ray flux is often irregular, turbulent, and contains signatures of

many different timescales, a reflection of the complex dynamics of accretion (e.g. Mc-

Clintock & Remillard 2006). Consequently, observations of X-ray sources in the form

of light curves, which record the number of photon arrivals as a function of time,

are difficult to interpret directly. However, transforming light curves into the power

spectral domain, which characterizes the flux as a function of frequency, affords a

clearer understanding of the dynamical timescales and fast fluctuations of the accret-

ing system. Power spectral measurements can therefore yield many insights into the

behaviour of accreting compact objects (van der Klis 2006).

The astronomical phenomena that are analyzed using the PDS may be broken

into two broad categories: periodic and aperiodic variability. Examples of periodic

variability include the well-known pulsations of strongly magnetized, rotating neutron

stars known as pulsars. Periodic oscillations are more easily identified and charac-
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terized in the power spectral domain, especially in cases where the oscillation has

a low amplitude or a complicated profile. Flux oscillations are often produced by

binary system dynamics, e.g. the offset magnetic pole of a pulsar spinning about its

rotational axis. With the aid of the PDS, oscillation frequencies, amplitudes, har-

monic relationships and other features may be measured and information about the

responsible mechanisms may be gained.

Aperiodic variability encompasses any fluctuations that do not repeat at regular

intervals. Aperiodic variability is more common than periodic variability because

accretion flows are generally turbulent as already mentioned. Characterizing the

aperiodic variability of an X-ray source is an important step in understanding the

often complicated dynamics of the accretion disks that surround compact objects.

The study of aperiodic variability is often concerned with both the shape and the

integrated amplitude of the continuum PDS (Remillard & McClintock 2006). It is

common to describe the shape of the continuum in different frequency bands in terms

of power-law or broken power-law relationships. Alternatively, the continuum may

be modelled as the superposition of several very broad Lorentzian functions. The

integrated amplitude in a frequency band measures the flux level in the corresponding

range of timescales. In addition, the presence of a cut-off frequency, beyond which no

meaningful power can be found, is an important indicator of the dynamical limits of

the radiating process. Cut-off frequencies are discussed as a means of distinguishing

black holes from neutron stars in Section 1.3.

Aperiodic variability includes quasi-periodic oscillations (QPOs), which are peaks

of power concentrated in narrow frequency ranges but are less coherent than periodic

oscillations (van der Klis 2006). Analysis of the PDS allows the centre frequency,

integrated power, and coherence of a QPO to be measured. QPOs are often inter-

preted as signatures of resonances within accretion disks; their significance for black

hole binaries will be discussed in Section 1.2.

PDSs derived from real observations are composed of two components: a com-

ponent due to actual variations in source flux, and a component due to Poisson

counting statistics. We will also refer to the source component as the source power or
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the source PDS, and to the Poisson statistical component as the Poisson power, the

Poisson power level, or the Poisson PDS. The Poisson component is a consequence

of the finite collecting area of real instruments and the discrete nature of X-ray mea-

surements (e.g. counts per time interval). The source and Poisson components will

be discussed in greater detail in Section 4.1. X-ray astronomers are interested in vari-

ations in source flux and not in Poisson statistics, so for scientific studies the source

power must be isolated. In order to extract the source power, it is necessary to model

the Poisson power and subtract it from the total PDS. The quality of the model for

the Poisson power therefore limits the accuracy to which the source power may be

determined.

The aim of this thesis is to provide a more accurate model of the Poisson statistical

contribution to the total PDS in the presence of detector deadtime effects. Detector

deadtime refers to the time required by the signal processing elements in X-ray de-

tectors to recover from an incident event. During this processing time, no new events

are recorded by the detector and the detector is considered ”dead”. Detector dead-

time alters the Poisson PDS in a non-trivial, frequency-dependent manner. A precise

and detailed model is therefore needed to accurately capture the deadtime-modified

Poisson power level and remove it from the total PDS.

The model derived in this thesis is specific to the Proportional Counter Array

(PCA) aboard the Rossi X-ray Timing Explorer (RXTE), a satellite-based observa-

tory that offers fast, microsecond-level time resolution and modest spectral resolution

for celestial X-ray sources. RXTE is currently the instrument of choice for fast X-ray

timing studies because it has the largest collecting area (∼ 6000 cm2) of any X-ray

instrument used for astrophysics (Jahoda et al. 2006; Swank 1998). It is hoped that

the analytical techniques employed in this thesis will continue to be relevant for data

collected by the next generation of observational instruments.

Many areas of astrophysical research rely upon power spectral analyses and could

stand to benefit from an improved model for the Poisson component of the PDS. This

thesis is not intended as a comprehensive description of PDS applications. Neverthe-

less, in Sections 1.2 and 1.3 we highlight two areas of recent activity where a more
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careful calculation of PDSs could have a major impact.

1.2 Black hole binaries and X-ray states

Black hole binaries (BHBs) are important astronomical objects and are represented

in many contemporary areas of inquiry. A black hole (BH), according to general

relativity, has an event horizon bounding the region of spacetime that is unable to

communicate with the external universe because of the strength of the BH’s gravity

(Shapiro & Teukolsky 1983). They are one possible outcome of the evolution and

gravitational collapse of very massive stars (Woosley et al. 2002). A BHB consists of

a BH and a companion star; the latter often contributes stellar material that is pulled

by gravity into an accretion disk surrounding the BH. Currently, 20 X-ray binaries

are confirmed to be BHBs, a small sample of a possible ∼ 109 BHs present in our

galaxy (Remillard & McClintock 2006).

Significant questions persist concerning the formation and evolution of BHBs and

the accretion disk physics that underlies their behaviour. In addition, BHBs provide

an excellent testing ground for general relativity in strong gravitational fields. Fortu-

nately, with inner accretion disk temperatures reaching 1 keV (107 K), many BHBs

are bright X-ray sources that can be studied using X-ray cameras on space missions

such as RXTE. The timing and spectral data gathered from these missions play a

major role in addressing the questions above (Remillard & McClintock 2006).

BHBs often exhibit spectral evolution that involves very different types of X-ray

energy spectra and PDSs. The principal behaviour patterns are often classified in

terms of X-ray “states”. X-ray state definitions were traditionally based upon the

source luminosity and the X-ray energy spectrum, which is usually composed of a

thermal and a non-thermal component. The generally softer (lower X-ray energy)

thermal component is modelled by a multi-temperature black body with a character-

istic temperature near 1 keV (see description of thermal state later in this section).

The harder (higher X-ray energy) non-thermal component is modelled by a power-

law, N(E) ∝ E−Γ, where N is the number density of photons, E is the photon energy
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and the exponent Γ is called the photon index.

In light of challenges to the traditional state definitions brought by RXTE obser-

vations, a new set of X-ray state definitions was developed (Remillard & McClintock

2006; McClintock & Remillard 2006). The new state definitions abandon source lu-

minosity as a criterion and quantify state classifications in terms of parameters from

both the X-ray energy spectrum and the PDS. Remillard & McClintock used the

following four measures: the ratio f between the accretion disk flux and the total

source flux from 2 to 20 keV, a measure of the proportion of thermal radiation; the

photon index Γ; the variability r integrated from 0.1 Hz to 10 Hz in the PDS and

expressed as a fraction of the mean source count rate; and the integrated amplitude

a of any QPOs in the range 0.1 − 30 Hz, also expressed as a fraction of the mean

source count rate. Given these criteria, the three X-ray states for outbursting BHBs

are as follows:

• Thermal state, defined by f > 0.75 (disk-dominated flux), r < 0.075 and amax <

0.005 (low continuum power and weak QPOs).

• Hard state, defined by f < 0.2 (power-law-dominated flux), 1.4 < Γ < 2.1, and

r > 0.1 (high continuum power).

• Steep power-law (SPL) state, defined by Γ > 2.4, r < 0.15, and either f < 0.8

with a QPO present (a > 0.01) or f < 0.5 with no QPOs.

States that do not fall within the above ranges are classified as intermediate states.

Two of the four criteria defining X-ray states, the normalized source variability r

and the QPO amplitude a, depend on the PDS, and specifically on the source compo-

nent only. If the subtraction of the Poisson component is not performed accurately,

the resulting estimates of r and a will be biased. In the context of X-ray states, it

is therefore important to carefully model the effect of deadtime on Poisson power so

that the underlying source power can be properly estimated.

The thermal state is dominated by thermal radiation from the inner regions of

the accretion disk. The observed X-ray energy spectra in the thermal state are well-

modelled by a multi-temperature disk radiating as a black body (Makishima et al.
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1986; Kubota & Makishima 2004; Kubota et al. 2005). These models are based on the

well-known steady-state, thin disk model of Shakura & Sunyaev (1973) for in-falling

matter in an accretion disk around a compact object. The temperature profile of

the disk varies inversely with radius; thus the innermost annuli of the disk are the

strongest contributors to the radiation. PDSs drawn from the thermal state tend to

decrease steadily with frequency in a manner resembling a power-law.

The hard state is strongly correlated with the presence of a steady radio jet from

the same source (Fender 2006; McClintock & Remillard 2006). The evidence for the

relationship includes VLBI images of radio jets in BHBs (Dhawan et al. 2000; Stirling

et al. 2001) and the quenching of strong radio emission coinciding with transitions

out of the hard X-ray state (Fender et al. 1999). PDSs of BHBs in the hard state tend

to be elevated and roughly constant over a wide range of frequencies before dropping

quickly after a maximum frequency around 10–100 Hz. The broad continuum in the

X-ray PDS is thought to be caused by the same non-thermal mechanism that sustains

the jet.

The SPL state is the least understood of the three X-ray states for BHBs. Most

models suggest that inverse Compton scattering, the scattering of lower-energy pho-

tons by relativistic electrons, is the primary source of radiation (e.g. Zdziarski &

Gierliński 2004). The seed photons originate from the accretion disk, and the scat-

tering is thought to occur in the surrounding non-thermal corona.

One of the main signatures of the SPL state is the presence of QPOs, clearly

apparent in the PDS as peaks distinct from the continuum. Low-frequency QPOs

(centre frequency ∼ 0.1–30 Hz) can have high amplitudes (a > 0.15) and coherence

values (e.g. Muno et al. 1999). With amplitudes that peak at photon energies above

10 keV, they are clearly correlated with the non-thermal component of the X-ray

spectrum (Sobczak et al. 2000; Vignarca et al. 2003). There exist many models at-

tributing low-frequency QPOs to different types of oscillations involving the accretion

disk and/or magnetic instabilities (e.g. Titarchuk & Osherovich 2000; Chakrabarti &

Manickam 2000; Nobili et al. 2000; Tagger & Pellat 1999).

On the other hand, high-frequency QPOs (centre frequencies ∼ 40–450 Hz) are
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particularly interesting because their frequencies are comparable to the orbital fre-

quency of the innermost stable circular orbit (ISCO) around a ∼ 10M� spinless BH.

According to general relativity, the ISCO lies outside the event horizon and depends

on the mass and the spin of the BH (Shapiro & Teukolsky 1983). The centre frequen-

cies of high-frequency QPOs do not vary significantly with changes in luminosity,

suggesting that they are intrinsic properties of the BH (Remillard et al. 2002, 2006).

High-frequency QPOs could offer a method for measuring the spin of a BH when the

mass is well-constrained from analysis of the binary motion of the companion star

(Remillard & McClintock 2006). Of special interest is the discovery of high-frequency

QPO pairs with frequencies in a 3 : 2 ratio, representing an exciting opportunity

to test general relativistic theories of resonant oscillations (Abramowicz & Kluźniak

2001; Remillard & McClintock 2006).

Unfortunately, the identification and measurement of high-frequency QPOs in the

hundreds of Hz range is made difficult by the intrinsically low amplitudes in that

regime. An inaccurate subtraction of the Poisson power can severely distort the

profiles of low-amplitude, high-frequency QPOs. In order to study high-frequency

QPOs with greater confidence, one must first construct a trustworthy model for the

Poisson power so that the inaccuracies in the model do not obscure high-frequency

features in the source PDS.

1.3 Distinguishing neutron star binaries from black

hole binaries

Further motivation for more carefully modelling the Poisson power comes from Sun-

yaev & Revnivtsev (2000), who have proposed a method for distinguishing neutron

star binaries (NSBs) from BHBs by comparing their power spectral profiles. Sun-

yaev & Revnivtsev acknowledge that a number of criteria based on energy spectrum

characteristics are already commonly employed. In addition, the detection of coher-

ent X-ray pulsations is fairly definitive evidence for the offset rotating magnetic axis

21



of a pulsar, and the detection of Type I X-ray bursts, thermonuclear explosions of

accreted hydrogen and/or helium, suggests the hard surface of a neutron star (NS).

However, classification based on X-ray pulsations or bursts is not possible for sources

that do not demonstrate such behaviour, i.e. not all accreting NSBs exhibit pulsa-

tions or bursts. Thus, classification using the PDS could provide a useful alternative

to existing approaches. These comparisons between the PDSs of BHBs and NSBs

may also provide indirect evidence for the existence of an ISCO for BHs.

Sunyaev & Revnivtsev compared PDSs obtained from 9 NSBs and 9 BHBs in the

hard spectral state. The PDSs were normalized to units of squared fractional vari-

ability (RMS normalization, see Section 3.3) and then multiplied by the frequency,

yielding plots of power × frequency versus frequency. Given this normalization,

they observed that the NSB PDSs contain continuum power in the frequency range

500 − 1000 Hz. In contrast, the BHB PDSs fall off rapidly for frequencies beyond

10 Hz, becoming one to two orders of magnitude lower than the NSB PDSs at fre-

quencies beyond 100 Hz. From their empirical work, Sunyaev & Revnivtsev proposed

identifying sources with significant power up to several hundred Hz as NSBs. At a

very basic level, they attribute the difference in power spectral content to the different

locations of principal energy release in NSBs and BHBs. Most of the radiation from

a BHB is released in the accretion disk, while the boundary region between the inner

edge of the accretion disk and the NS surface is the most active region in a NSB.

The method of Sunyaev & Revnivtsev (2000), or any other work that relies upon

the high-frequency decay and cut-off of PDSs, is strongly sensitive to the model used

to remove the deadtime-modified Poisson component of the PDS. At high frequencies,

the intrinsic source power is almost always low, and becomes by definition even lower

beyond a cut-off frequency. It is very difficult in this regime to separate the source

power from the Poisson power. We indicate in Section 1.4 why the deadtime model

used by Sunyaev & Revnivtsev is not very satisfying. As an alternative, we describe

in Chapter 7 preliminary results from comparing BHB and NSB PDSs using the

deadtime model developed in this thesis.
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Furthermore, the selection of X-ray states for BHBs was incomplete in Sunyaev

& Revnivtsev (2000), as they used observations of BHBs in the hard state only. A

comparison of BHBs and NSBs should take into account the revised state definitions

and extensive observational classifications that have been published in recent years

(McClintock & Remillard 2006; Remillard & McClintock 2006). The dependence of

high-frequency PDSs on the X-ray state is further addressed in Chapter 7.

1.4 Previous work in deadtime modelling

Detector deadtime effects were recognized and analyzed early on in the field of nuclear

physics (see Evans (1955) for a textbook treatment). In X-ray astrophysics however,

the deadtime problem did not surface until the EXOSAT mission, when it was taken

up by a number of authors who derived approximations in the limits of low count

rate or very short deadtime interval (e.g. Tennant 1987; Lewin et al. 1988; van der

Klis 1989). A few years later, more rigorous analyses of the effect of deadtime on the

PDS were contributed by Vikhlinin et al. (1994) and Zhang et al. (1995). This thesis

builds mainly on the treatment of Zhang et al. (1995).

Zhang et al. distinguish between two classes of deadtime: paralyzable and non-

paralyzable. In the case of paralyzable deadtime, an event that arrives while the

detector is dead extends the deadtime for another interval from the moment it arrives.

In theory, if the arrival rate is very high, the detector could be “paralyzed” indefinitely

as events continue to engage it. In contrast, in the case of non-paralyzable deadtime,

an event that arrives while the detector is dead has no effect at all. A single incidence

of deadtime lasts for one interval and no longer.

Zhang et al. assume that the incident events arrive according to a Poisson process

characterized by an incident rate rin that cannot be observed directly. They relate

rin to the observed event rate ro for both cases of paralyzable and non-paralyzable

deadtime. They derive analytically the PDS predicted for a Poisson process under-

going deadtime of both varieties. The PDS for a Poisson process with paralyzable
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deadtime interval td is given in terms of cyclic frequency f [Hz] as

P (f) = 2− 4ro sin(2πftd)
2πf

, (1.1)

while the PDS for non-paralyzable deadtime is given by

P (f) = 2− 4 r2
in[1− cos(2πftd)] + 2πfrin sin(2πftd)

r2
in[1− cos(2πftd)]2 + [rin sin(2πftd) + 2πf ]2

. (1.2)

In the Leahy normalization (defined in Section 3.3), a pure Poisson process has an

expected power level of 2; the terms following the 2 in equations (1.1) and (1.2)

represent the deviation due to deadtime. Zhang et al. also derive expressions for the

corresponding discrete-time PDS in the realistic case where events are recorded in

terms of discrete time bins. Their calculations are verified by simulating an incident

Poisson process subject to detector deadtime and comparing the simulated PDSs to

their predictions.

The work of Zhang et al. (1995) and others describes the deadtime that the events

of interest (termed “selected events”) inflict upon themselves. There also exist other

forms of deadtime caused by “non-selected events”, i.e. events other than the selected

ones, which the detector must also process. A special class of non-selected events,

called very large events (VLEs), is particular to the RXTE PCA. VLEs consist of

energetic particle events exceeding 120 keV in equivalent X-ray ionizing energy for the

current PCA gain setting. To prevent VLEs from saturating the detector electronics

and skewing the measurement of subsequent X-ray events, the detector is disabled

following a VLE for an amount of time, τVLE, called the VLE window. The VLE

window, which is a longer deadtime interval than the deadtime td for selected events,

allows a full reset of the measurement chain. Further discussion can be found in

Section 2.2. The deadtime effect of VLEs was first studied by Zhang et al. (1996).

VLEs create anti-shots in the light curve and their effect on the Poisson PDS was

modelled as an ad hoc additive term:

24



P (f) = 2r0rVLEτ
2
VLE

[
sin(πfτVLE)

πfτVLE

]2

, (1.3)

where rVLE is the rate of VLEs per second.

Over the past decade, the combined deadtime models of Zhang et al. (1995) and

Zhang et al. (1996) have been used extensively to correct PDSs obtained from RXTE

PCA data (e.g. Morgan et al. 1997). Nevertheless, there are many cases where the

Poisson power level is underestimated and the subtraction results in a positive residual

that contaminates the high-frequency portions of the source PDS. A criticism of the

combined Zhang et al. model is that it assumes the deadtime effects of selected events

and VLEs to be additive. In reality, the two deadtime processes interact with each

other and are best modelled together rather than separately. Moreover, the RXTE

PCA event analyzers measure other types of non-selected events such as propane

events, which are ionizations in a separate propane chamber sharing measurement

circuitry with the main xenon chamber that generates selected events. Thus, non-

selected events other than VLEs contribute to the deadtime experienced by selected

events, but they have not received attention in existing deadtime models. The dif-

ferent categories of non-selected events will be described in greater detail in Section

2.2.

A different approach to correcting for deadtime effects has been put forth by Jerni-

gan et al. (2000). Notably, Sunyaev & Revnivtsev (2000) employed a very similar

method in their work on high-frequency PDSs. Jernigan et al. determine the dead-

time correction by empirically fitting a model to PDSs at high frequencies, instead of

predicting the correction based on observed count rates and deadtime parameters. In

addition to a model that describes features of the source PDS (e.g. power-law slopes,

QPO parameters), Jernigan et al. included two coefficients, A and B, that param-

eterize the deviation in the Poisson power caused by deadtime. The A coefficient

controls the deadtime contribution from selected events, assumed to be paralyzable

as in equation (1.1) without the leading 2. The B coefficient controls the VLE dead-

time contribution as given by equation (1.3). The observed PDS is fit to a model that
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accounts for both source and Poisson power components. The Poisson component is

effectively removed by including it in the fit.

Revnivtsev et al. (2000) also adopted the method of fitting the observed PDS

to a combined source and deadtime-Poisson model. However, unlike Jernigan et al.

(2000), they assumed that the deadtime due to selected events is non-paralyzable and

used equation (1.2) instead of equation (1.1).

The main drawback in the methods of Jernigan et al. (2000), Sunyaev & Revnivt-

sev (2000), and Revnivtsev et al. (2000) is the assumption that the source power

disappears above a certain frequency, leaving only the Poisson power. While the as-

sumption is generally true, it is possible that faint, high-frequency source power could

be mistaken for Poisson power in the fitting process. The simultaneous fitting could

also introduce unwanted interplay between source parameters and deadtime param-

eters, resulting in less accurate estimates for both. Jernigan et al. and Sunyaev &

Revnivtsev do ensure that the best-fit values of the two deadtime coefficients A and

B are comparable to their theoretical values. Nevertheless, their approach is not as

satisfying when compared to an accurate, predictive model as an alternative.

In the case of Sunyaev & Revnivtsev (2000) in particular, this fitting method calls

into question the validity of cut-off frequencies found after Poisson subtraction, since

it supposes a priori that the power above a certain frequency is due entirely to Poisson

statistics. The fitting process could create, somewhat artificially, a relative absence of

high-frequency power in the region where it is applied. Sunyaev & Revnivtsev defined

the fitting region to be f ≥ 50 Hz for BHBs and f ≥ 600 Hz for NSBs. The difference

in the fitting regions for BHBs and NSBs could bias the comparison of source PDSs

obtained after Poisson subtraction.

1.5 Outline of thesis

The remainder of the thesis is organized as follows: Chapter 2 briefly describes the

physical characteristics and functioning of the RXTE PCA instrument. The different

categories of events recorded by the RXTE PCA are summarized. Chapter 3 presents
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the mathematical framework that governs the power spectral analysis of X-ray tim-

ing data, including a discrete-time treatment that is more representative of signal

processing practices in observational astronomy. In Chapter 4, the new deadtime

model is derived, building upon the model of Zhang et al. (1995) and incorporating

the deadtime caused by non-selected events. The dependence of the model Poisson

PDS on count rates and deadtime parameters is explored in a series of plots. Chapter

5 presents the results of testing the deadtime model using very-high-frequency PDSs

obtained from RXTE observations. Measurements of the deadtime intervals td for

selected events and τVLE for VLEs are described. Chapter 6 discusses known phe-

nomena that were not incorporated into the deadtime model of this thesis. Deadtime

corrections for highly non-stationary sources and deadtime effects dependent on the

energies of events are of particular importance for further modelling efforts. Finally,

in Chapter 7, we discuss a preliminary comparison between the PDSs of BHBs and

NSBs using the new deadtime model. The work of Sunyaev & Revnivtsev (2000)

is extended by considering the dependence of PDS characteristics, in particular the

high-frequency continuum power, on the BHB X-ray state.
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Chapter 2

The Rossi X-ray Timing Explorer

Proportional Counter Array

The PCA aboard RXTE is a satellite-based X-ray observatory that offers fast, micro-

second-level time resolution and modest spectral resolution at 2–60 keV for celestial

X-ray sources. The RXTE PCA has been described in detail in a number of papers

(e.g. Jahoda et al. 2006; Swank 1998). This chapter summarizes the essential functions

and characteristics of the PCA that are relevant to constructing a model of PCA

deadtime effects on the PDS.

2.1 Physical description

The PCA consists of 5 proportional counter units (PCU) collecting data in parallel.

Briefly, a proportional gas counter is a device used to detect X-rays and measure their

energies. Its main component is a gas chamber with a window transparent to X-rays

on the top surface. The gas mixture is typically dominated by an inert noble gas

with high atomic number, such as xenon. An X-ray that enters the chamber through

the window is absorbed by a gas molecule and liberates a lower-shell electron. The

electron is then accelerated toward a high-voltage anode to be collected. While being

accelerated, the initial electron collides with other gas molecules and liberates ad-

ditional electrons, resulting in an “avalanche.” The number of subsequent electrons
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released depends on the energy of the initial electron, which is in turn directly de-

pendent on the energy of the incident photon. The overall effect of the X-ray induced

electron avalanche is to deposit a charge on the anode proportional to the incident

X-ray energy. By measuring the charge deposited by each photon and calibrating

the proportional counter with line-emitting X-ray sources in the laboratory, incident

photons can be counted and their energies determined. The RXTE PCA can detect

X-ray events in the energy range 2–60 keV, where the lower limit is set by the trans-

mission of the mylar window and the upper limit is set by the path length of X-rays

in xenon in relation to the size of the detector.

Inevitably, the proportional counter will also admit background particles, which

cause ionization events that need to be screened from photon events. Particles tend

to exhibit a different ionization profile, leaving behind a track of multiple ionizations.

The multiple ionizations allow the X-ray detector to distinguish and exclude particles

from photons. The filtering is achieved through an anti-coincidence mechanism, which

disqualifies events from different measurement chains that arrive too close to one

another in time. The anti-coincidence mechanism will be described in greater detail

later on in Section 2.2.

A schematic diagram for a single PCU is shown in Figure 2-1. Each PCU is topped

with a hexagonally-shaped mechanical collimator about 20 cm long that exposes the

PCU to a narrow sector of the sky with FWHM ≈ 1◦. The effective collecting area of

a PCU is 1200 cm2. The PCA does not form images; a source is observed by pointing

the array at it and collecting all events that pass through the collimators. Thus,

the PCA is most suitable for sources that are well-localized and bright compared to

the cosmic X-ray background. In contrast, some X-ray observatories employ focusing

telescopes that permit studies of very faint X-ray sources. However, detectors with

imaging telescopes are limited to low event throughput. X-ray timing analyses would

thereby suffer from poorer statistics as compared to a non-imaging instrument like

the RXTE PCA.

The top window of a PCU is constructed of mylar coated on both sides with

aluminum. The PCUs are housed in aluminum bodies shielded with tin and tantalum
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Figure 2-1: Schematic diagram of a single PCU.

so that all events must enter through the top window. Below the top window, the

first collecting layer is a propane-filled filtering layer about 1 cm thick and equipped

with its own collecting anode. Particles and other non-photon events interact with

the propane and lose some to all of their energy, while most X-rays pass through

unabsorbed. In this manner, the xenon-filled main counter, below the propane layer

and separated by another aluminum-coated mylar window, is partially protected from

non-photon events.

The main xenon chamber is divided into collecting cells 1 m long, 1 cm wide and 1

cm thick. The cells are bounded by wire anodes and are arranged into three vertical

layers numbered 1, 2, and 3. The cell wires in a layer are connected either to the

layer’s left or right chain in an alternating fashion, resulting in six chains 1L, 1R, 2L,

2R, 3L, 3R that fill the xenon chamber.

Surrounding the main xenon chamber is an additional xenon veto layer that is

shielded from a direct view of the X-ray sky. Events that trigger the xenon veto layer
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are likely particle events and hence are excluded.

In sum, each PCU produces 7 outputs, 6 from the xenon half-layers and 1 from

the propane layer. Each of the 7 outputs is fed into its own analog electronics chain

consisting of a charge-sensitive amplifier, a shaping amplifier, a discriminator and a

peak detector. Together these analog circuits integrate the charge associated with an

event, convert the charge into an equivalent voltage pulse, and determine the peak

of the pulse. The output voltage from each analog chain thus indicates the energy of

the event it received.

As can be seen in Figure 2-2, the 7 amplifier chains are reunited so as to share a

single analog-to-digital converter (ADC). The ADC is the slowest part of the mea-

surement chain by a substantial margin. After a nominal conversion time of td = 10

µs, the ADC outputs an 8-bit digital word to represent the energy of the incident

event. The essential consequence of sharing a single ADC among 7 analog chains is

that the ADC becomes unavailable to all chains once it is engaged by an event on

any one chain. For example, if an event travels through the 1L chain and triggers the

ADC, events on all chains that arrive at the ADC within the next td microseconds

are lost. The 10 µs conversion time is a non-paralyzable deadtime because an ADC

does not pay any attention to its input while it is busy converting a latched voltage,

so there is no means by which subsequent events can extend the deadtime.

2.2 Types of events

We distinguish three types of events that initiate analog-to-digital conversions. The

first type consists of the “good” events that trigger only a single xenon chain and

are most likely caused by X-rays. The second type consists of “propane” events,

events that trigger only the propane chain. The third type will be referred to as

“bad” events and includes coincident events that trigger multiple anodes. Coincident

events are likely particle events and thus are not included among the good events. As

defined by the detector, two or more events are considered coincident when they all

occur within an anti-coincidence window of length 3−4 µs and trigger more than one
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Figure 2-2: Measurement chains for a single PCU.

measurement chain. Two or more events that occur within a single anti-coincidence

window but trigger only one chain cannot be distinguished from a single event, as the

pulses tend to overlap and yield an inflated energy measurement. The anti-coincidence

mechanism is represented in Figure 2-2 by the “anti-coincidence flag” connected to

all of the measurement chains.

Bad events can also arise when the xenon veto layer is triggered, either alone or

in conjunction with other anodes. However, when the xenon veto layer is triggered

alone, a separate 2-bit ADC is employed and the main ADC is not engaged. The bad

event count recorded in Standard 1 timing mode data (to be discussed at the end of

this section) over-estimates the number of bad events that actually initiate analog-to-

digital conversions by the number of xenon veto layer-only events. The rate of xenon

veto layer-only events is less than 10 counts/sec/PCU (Morgan 2006).

Only the good events are relevant for scientific observations. However, the sharing

of the ADC means that the propane and bad events can interfere with observations of

good events. Propane events can engage an idle ADC and prevent it from registering

good events. Likewise, the first event of a coincident set will appear to be a good

event (or a propane event) and will trigger the ADC before being labelled “bad” upon
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the arrival of the second event of the coincident set. The ADC is nonetheless busy

for a time td following the first event of the coincident set.

VLEs constitute a fourth type of event. As mentioned in Section 1.4, VLEs are

energetic particle events (> 120 keV equivalent X-ray energy for the current PCA

gain setting) that can saturate the analog amplifiers and initiate a long, oscillatory

relaxation toward the baseline. The oscillations brought on by saturation are often

mistaken for actual events. To prevent the recording of such “ghost” events and

interference with subsequent actual events, the detector is disabled following a VLE

for an amount of time called the VLE window and denoted τVLE. No events that enter

during a VLE window are recorded, although the VLEs themselves are counted. Two

VLE windows of nominal lengths 70 and 170 µs are available to be selected by the

observer (Jahoda et al. 2006). We note that values of 61/142 µs (Jernigan et al. 2000;

Revnivtsev et al. 2000) and 55/155 µs have also been reported.

Every event in these four categories generates a transmission to the Experiment

Data System (EDS) that encodes the event energy and the measurement chains that

were affected. The EDS tags events with their arrival times and performs event se-

lection and data compression according to user specifications. The EDS for the PCA

consists of six event analyzers (EAs). Four EAs select data according to teleme-

try compression modes specified by the observer in order to best accommodate the

particular scientific goals. The remaining two EAs routinely operate in Standard 1

timing and Standard 2 spectral modes for all observers. Of particular interest is the

Standard 1 timing mode, which records with 1/8-second time resolution the number

of good events for each PCU, and the numbers of propane, bad, and VLEs for the

entire PCA. Standard 1 data is therefore very useful in modelling and quantifying the

self-deadtime effects among selected events, as well as the interference effects caused

by VLEs, propane, and bad events.
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Chapter 3

X-ray Timing Analysis and Power

Density Spectra

In this chapter we present the general framework for timing analysis in X-ray astron-

omy. Within this framework, we will then model the effects of detector deadtime

on the PDS. Throughout this chapter, we make use of concepts and notation from

Oppenheim et al. (1999), a widely-used signal processing textbook, as well as from

papers that analyze deadtime effects in an astrophysical context (Zhang et al. 1995;

Vikhlinin et al. 1994).

3.1 Light curves, random processes, and power den-

sity spectra

In continuous time, X-ray sources are described by a light curve x(t), a function of

time with dimensions [counts/second]. We may represent photon arrivals, which are

discrete events, by Dirac delta functions of unit amplitude at their times of occurrence

(Vikhlinin et al. 1994). The function x(t) is then composed of a string of unit delta

functions marking the arrival of events, as represented by Figure 3-1. A greater

density of delta functions in an interval means that more events are arriving during

that time.
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Figure 3-1: Light curve example x(t).

We assume that the arrival process described by x(t) is a wide-sense stationary,

ergodic random process. The ergodic property allows us to define the mean and the

autocorrelation function as time averages instead of ensemble averages (Oppenheim

et al. 1999):

µx = lim
T→∞

1

2T

∫ T

−T
x(t) dt ≡ ro, (3.1)

φxx(τ) = lim
T→∞

1

2T

∫ T

−T
x(t)x(t+ τ) dt. (3.2)

Because of stationarity, the mean observed event rate ro is independent of time, while

the autocorrelation function φxx(τ) is only a function of time lag τ .

The PDS is the Fourier transform of the autocorrelation function. Since autocor-

relations are even functions of τ , φxx(τ) = φxx(−τ), the PDS Pxx(f) can be written

as

Pxx(f) = 2

∫ ∞

0

φxx(τ) cos(2πfτ) dτ, (3.3)

where f is the frequency in Hz. Equivalently, the autocorrelation function φxx(τ) is

proportional to x(t) convolved with its time reversal x(−t). For real x(t), the PDS

Pxx(f) is then proportional to the magnitude squared of the Fourier transform X(f)

of x(t):

Pxx(f) = lim
T→∞

|X(f)|2
2T

, (3.4)
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where the Fourier transform X(f) (if it exists) is defined as

X(f) = lim
T→∞

∫ T

−T
x(t)e−i2πft dt. (3.5)

3.2 Light curves and power density spectra in ob-

servational astronomy

Astronomical measurements of X-ray sources occur in discrete time, not continuous

time. We do not measure x(t), but instead we count the number of events occurring

in successive time bins of size tb. The number of counts x[n] in the nth time bin is

related to x(t) by

x[n] =

∫ (n+1)tb

ntb

x(t) dt. (3.6)

For the purposes of analysis, the sequence of counts x[n] is usually broken into

non-overlapping segments xr[n] of length N :

xr[n] =



x[n+ rN ], 0 ≤ n ≤ N − 1,

0, otherwise.

(3.7)

For each segment, the mean number of counts per bin is estimated from the sample

mean:

〈xr[n]〉 = 1

N

N−1∑
n=0

xr[n] = rotb. (3.8)

The sample mean is then subtracted from xr[n] to yield a zero-mean sequence. Oth-

erwise, a non-zero mean would create a large zero-frequency component in the spec-

trum, an uninteresting feature that could obscure nearby low-frequency components

because of leakage due to windowing (Oppenheim et al. 1999). The spectral content of

each segment xr[n] (now zero-mean) is found by taking its discrete Fourier transform

(DFT):

Xr[k] =
N−1∑
n=0

xr[n]e
−i(2π/N)kn. (3.9)
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To take advantage of the Fast Fourier Transform (FFT) algorithms, the segment

length N is usually a power of 2.

From each segment we form an estimate of the continuous-time PDS Pxx(f):

Ir[k] =
|Xr[k]|2
Ntb

. (3.10)

The estimate Ir[k] is known as the periodogram (Oppenheim et al. 1999). The time

bin size tb is included in the denominator to make Ir[k] dimensionally equivalent to

Pxx(f).

While the periodogram estimate Ir[k] from each segment does approach the true

PDS Pxx(f) in an average sense, its statistical uncertainty is generally very large.

Therefore, in practice it is necessary to average periodograms from a large number of

segments R, resulting in the average periodogram estimate of the PDS:

〈I[k]〉 = 1

R

R−1∑
r=0

Ir[k]. (3.11)

In X-ray astronomy, periodogram averaging is the usual method of estimating the

PDS from a sequence of event counts. Strictly speaking, the average periodogram

is only an estimate of the true PDS. However, while using this technique, observers

assume that the two are equal.

3.3 Power density spectrum normalizations

Two different normalizations of the periodogram in equation (3.10) are popular in

X-ray astronomy. The first is known as Leahy normalization (Leahy et al. 1983) and

includes an additional factor of 2/ro:

Ir[k] =
2|Xr[k]|2
Nrotb

=
2|Xr[k]|2

Nph

, (3.12)

where we recognize that the quantity Nrotb is equal to the total number of events

Nph observed during the segment xr[n]. The Leahy normalization has the property
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that the PDS computed for a pure Poisson arrival process has the constant value 2

over the entire frequency band. Prior to Leahy normalization, the PDS for a pure

Poisson process is still constant or white, since there is no event-to-event correlation

at any frequency. However, the constant level would be proportional to the variance

in the number of counts per time bin, which in turn is proportional to the observed

rate ro. Multiplying by 2/ro removes the dependence on ro.

The second commonly used normalization is called root-mean-square (RMS) nor-

malization, in which the PDS is expressed in units of (RMS variability / mean)2 per

Hz. First, the mean observed rate ro is corrected for the contribution from back-

ground (i.e. non-source) events, so that the corrected rate r′o is a truer estimate of

the source brightness. The RMS-normalized PDS is the right-hand side of equation

(3.10) multiplied by 2/r′2o :

Ir[k] =
2|Xr[k]|2
Nr′2o tb

. (3.13)

In X-ray astronomy, one often estimates the Leahy-normalized PDS using equations

(3.12) and (3.11), subtracts the deadtime-corrected Poisson power level, and then

applies RMS normalization. The resulting RMS-normalized source PDS is interpreted

as the source variability per unit frequency as a fraction of the mean source rate

r′o. The integral of the RMS-normalized source PDS between frequencies f1 and f2

is equal to the contribution to the total variance from the frequency band [f1, f2],

normalized by the squared source rate r′2o . The RMS-normalized source PDS thus

measures the magnitude of intrinsic source fluctuations relative to the mean source

rate, an appealing interpretation for scientific analyses. Using RMS normalization,

the variability of sources can be meaningfully compared even if the sources differ in

brightness and the detectors used to observe them differ in sensitivity.
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3.4 Relationship between the average periodogram

and the discrete-time autocorrelation function

In using periodogram averaging to estimate the PDS, the discrete-time autocorre-

lation φxx[m] of x[n] does not need to be calculated. However, for the purposes of

modelling it is useful to express the average periodogram in equation (3.11) in terms

of φxx[m], which we will define shortly. In doing so, we follow the approach of Zhang

et al. (1995) closely. The reason for seeking such a relationship is as follows: We sup-

pose that we can model the light curve x(t) and derive its autocorrelation function.

The PDS corresponding to the model can then be obtained from the autocorrelation

function using the relationship between them.

We use the definition of the DFT in equation (3.9) and expand the Leahy-

normalized PDS in equation (3.12),

Ir[k] =
2

Nph

N−1∑
n=0

N−1∑
m=0

x[n]x[m]e−i(2π/N)k(n−m). (3.14)

Next, we let R become very large so that the Leahy-normalized average periodogram

〈I[k]〉 given by equation (3.11) becomes an average over all time. Using ergodicity,
〈I[k]〉 can be interpreted as an ensemble average, so that 〈I[k]〉 is also equal to the
ensemble average of equation (3.14). The result is an expression for the average

periodogram in terms of the discrete-time autocorrelation φxx[m]:

〈I[k]〉 = 2

rotb

[
φxx[0] + 2

N−1∑
m=1

N −m

N
φxx[m] cos

(
2πkm

N

)]
. (3.15)

The discrete-time autocorrelation function is defined as φxx[m] = E {x[n]x[n+m]}
and is also stationary (not a function of n). We use the notation E{·} to denote the
expectation over an ensemble.

The relation between the discrete-time autocorrelation φxx[m] and its continuous-
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time counterpart φxx(τ) is as follows:

φxx[m] =

∫ tb

0

dτ1

∫ (m+1)tb

mtb

dτ2 φxx(τ2 − τ1),

= tb

∫ (m+1)tb

(m−1)tb

dτ φxx(τ)

(
1−

∣∣∣∣ τtb −m

∣∣∣∣
)
. (3.16)

The second, simpler equality can be derived by a change of variables in the double

integration. The relation can be thought of as multiplying φxx(τ) by a triangular

window of width 2tb, height tb, and centre mtb, and integrating the product.

In summary, given a model for the signal x(t), we can derive its continuous-time

autocorrelation φxx(τ), convert φxx(τ) to φxx[m] using equation (3.16), and compute

the predicted PDS using equation (3.15). In Chapter 4 we will use this approach

to derive the expected PDS for an initially Poisson arrival process that undergoes

detector deadtime effects.
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Chapter 4

PCA Deadtime Model

4.1 Overview

As discussed in Section 1.1, the PDS is employed to examine the variability of X-ray

sources from measurements of the X-ray flux. However, we cannot observe the X-ray

flux continuously, but rather must rely on discrete counts of X-ray events per time

bin. Such counting measurements do yield the X-ray flux on average, but inevitably

include Poisson statistical variations about the true event rate.

Taking the simplest example, if the X-ray source has a constant rate of r counts

per second for all time, its constituent photons will follow a Poisson arrival process

characterized by the rate r. The number of counts in any one-second interval will

on average deviate from the mean r by the standard deviation
√
r. Because of this

statistical variation, the resulting PDS will be non-zero. The PDS will also be white;

since different times in a Poisson process are independent, the count data will show

no correlation on any timescale.

Real X-ray sources however are never truly stationary, but exhibit an event rate

that fluctuates about a local mean. The count data will contain variations due to

the evolution of the source rate in addition to Poisson statistical variations. In the

power spectral domain, the frequency content of the source rate variation will appear
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in addition to the flat Poisson PDS:

Ptotal(f) = Psource(f) + PPoisson(f). (4.1)

In the earlier example of a source rate that is constant, the source power Psource(f)

is zero because the source flux does not vary about the mean rate r (and assuming

mean subtraction), and the total power Ptotal(f) is completely accounted for by the

Poisson component PPoisson(f).

Our scientific interest lies not in Poisson statistics but in the variability Psource(f)

of the source flux. Therefore, it is common practice in analyzing PDSs to subtract

the Poisson power level PPoisson(f), which is calculated by assuming a Poisson process

with rate equal to the mean observed rate. The residual PDS Ptotal(f)− PPoisson(f)

should then be a direct estimate of the intrinsic flux variability.

In the presence of detector deadtime, and specifically self-deadtime among selected

events, the PDS PPoisson(f) of a stationary Poisson process is no longer flat versus

frequency. Qualitatively speaking, detector deadtime eliminates any correlations in

the count data at time lags less than the deadtime, since it is impossible for two events

to be separated by less than the deadtime. This gap in the autocorrelation function

affects the PDS. The modified PDS will depend upon the deadtime characteristics

of the detector in addition to the average arrival rate. It is the modified Poisson

PDS that must now be subtracted from the total PDS. Thus, it is necessary to derive

the precise form of the modified Poisson PDS to ensure an accurate subtraction and

estimation of the intrinsic variability.

For the RXTE PCA instrument, and for proportional counters in general, the

deadtime is dominated by the ADC conversion time. In addition to the self-deadtime

among selected events, interference from non-selected events that compete for ADC

measurement will also impact the autocorrelation and the PDS. Non-selected events

introduce additional gaps where no good events can be observed.

The remainder of this chapter will be concerned with deriving the PDS PPoisson(f)

corresponding to a Poisson arrival process observed through a detector that features
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both self-deadtime and interference from non-selected events. Figure 4-1 shows the

model of the deadtime and discretization processes that take place inside the detector.

The stages of the derivation will follow the processing stages in Figure 4-1.

x(t) y(t) z(t) z[n]

ri rm ro

φyy(τ) φzz(τ)

φzz[m]
self-deadtime interference

discrete time

binning

reversed with respect to real detector

Figure 4-1: Block diagram for deadtime processes in the RXTE PCA.

We should point out a key simplification made in the present model. In the

actual PCA, good events first undergo an interference process where they may be

blocked from the ADC by VLEs, propane, and ”bad” events. The self-deadtime ef-

fect among good events can happen only after a good event avoids being blocked.

In other words, one can think of the interference process as occurring first, followed

by the self-deadtime process. However, the temporal correlations introduced by the

interference process cause the input into the self-deadtime process to lose the simpli-

fying memorylessness property of Poisson processes. An analysis of the self-deadtime

process with a non-Poisson input becomes significantly more complicated (see Sec-

tion 6.4). Therefore, in the interests of obtaining a simpler mathematical model, we

reverse the order of the two processes. As long as the losses due to deadtime and

interference are small compared to the overall flux, the inaccuracy arising from the

reversal should be unimportant.

Let the light curve x(t) represent “good” X-ray events that arrive at the detector

according to a Poisson process. x(t) includes all single (i.e. non-coincident) events

that pass through one of the six xenon chains and is characterized by a constant

rate of ri events per second per PCU.
1 We suppose that x(t) first undergoes a self-

1All rates in this section are in units of counts per second per PCU, since the deadtime and
interference processes affect each of the PCUs individually. In cases such as VLEs where the rate
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deadtime process, losing some events to deadtime to yield the output y(t). y(t) is

then subjected to interference by non-selected events, resulting in the observed light

curve z(t).

We seek the observed event rate ro and the continuous-time autocorrelation func-

tion φzz(τ) for z(t). ro and φzz(τ) may be derived from rm and φyy(τ), the event rate

and autocorrelation function associated with the output y(t) of the self-deadtime

process. Once φzz(τ) is obtained, equation (3.16) converts φzz(τ) to its counterpart

φzz[m] in discrete binned time. The PDS is then determined from φzz[m] using equa-

tion (3.15).

4.2 Self-deadtime among good events

As previously mentioned, the self-deadtime effect is primarily caused by the analog-

to-digital conversion of good events and is non-paralyzable in nature. We denote the

conversion time by td. Zhang et al. (1995) have derived the output event rate rm and

the continuous-time autocorrelation φyy(τ) for a non-paralyzable deadtime process:

rm =
ri

1 + ritd
, (4.2)

φyy(τ) = rmδ(τ) + rirm

∞∑
k=1

u(xk)
(rixk)

k−1

(k − 1)! e
−rixk , (4.3)

where xk = τ − ktd and u(xk) is the unit step function: u(xk) = 1, xk ≥ 0 and

u(xk) = 0, xk < 0. Equation (4.2) states that the average interval 1/rm between

detected events is the sum of the deadtime td and 1/ri, the expected time from the

end of the conversion until the next arrival. To derive equation (4.3), Zhang et al.

consider the probability of detecting an event at lag τ relative to the previous event

given a non-paralyzable deadtime of td. We note that φyy(τ) = 0 for 0 < τ < td, as

is expected since events cannot be separated by less than td.

per PCU is unavailable, the rate for the entire PCA is divided by the number of active PCUs.
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4.3 Interference from non-selected events

Armed with the mean event rate rm and the autocorrelation function φyy(τ) for

the X-ray flux y(t) emerging from the self-deadtime process, we now consider the

interference of VLEs, propane events and bad events. If X-rays from only a single

energy band have been selected, good events in other energy bands are also considered

to be non-selected events because they prevent the detection of X-rays in the selected

band.

We can represent the result of the interference process as z(t) = v(t)y(t), where

v(t) is the masking function associated with the non-selected events. v(t) is equal

to zero whenever the detector is occupied with a non-selected event, and is equal to

unity otherwise. More precisely:

• v(t) = 0 for intervals of length τVLE that occur at a rate of rVLE intervals

per second. These intervals represent the disabling of the detector for a non-

paralyzable time τVLE following VLEs, which occur at a rate rVLE.

• v(t) = 0 for intervals of length td that occur at a rate r1, equal to the sum of

the propane rate rp, the bad rate rb, and the out-of-band good event rate rob.

• v(t) = 1 otherwise.

The masking function v(t) is depicted in Figure 4-2.

The types of non-selected events identified above are considered to have disjoint

probabilities. If we define rVLE, rp, rb, and rob as the observed rates recorded in the

Standard 1 data mode, then the corresponding non-selected events cannot overlap

each other. Each recorded non-selected event, because it was recorded, must have

initiated its own distinct masking interval. Thus, as long as we use observed rates

of non-selected events, we need not be concerned with masking intervals overlapping

each other.

We assume that the non-selected events represented in v(t) are independent of the

selected events in y(t). In the case of VLEs and the large majority of propane and bad

events, the events are caused by particles in the path of the satellite and are unrelated
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v(t)

t

τVLE

rate rVLE

td td

rate r1

Figure 4-2: The masking function v(t).

to X-ray photons from the source. On the other hand, multiple photon coincidences

and out-of-band good events are correlated with the selected events, since an increase

in overall flux increases the likelihood of coincidences and usually increases the flux

in each energy band. Nevertheless, the assumption of independence between v(t) and

y(t) is reasonable and greatly simplifying.

The observed rate ro corresponding to z(t) can thus be written as ro = rmE {v(t)} =
rmµv, where µv denotes the expected value of v(t). Similarly, the autocorrelation of

z(t) can be expressed as:

φzz(τ) = E {z(t)z(t+ τ)} = E {v(t)y(t)v(t+ τ)y(t+ τ)} ,
= E {v(t)v(t+ τ)}E {y(t)y(t+ τ)} ,
= φvv(τ)φyy(τ). (4.4)

rm and φyy(τ) are given in equations (4.2) and (4.3); it remains to calculate µv and

φvv(τ), the autocorrelation function for the masking function v(t). We have also

assumed that v(t) is wide-sense stationary, so that φvv(τ) is a function of τ only and

not both t and τ . The assumption of wide-sense stationarity is valid as long as the

rates of non-selected events do not contain large secular variations over the course of

an observation.

In calculating µv and φvv(τ) it is somewhat easier to consider w(t) = 1 − v(t)
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instead. Thus w(t) = 1 whenever a masking interval is in effect, w(t) = 0 otherwise,

and w(t) is also wide-sense stationary.

µv = E {1− w(t)} = 1− µw, (4.5)

φvv(τ) = E {(1− w(t))(1− w(t+ τ))} ,
= 1− E {w(t)} − E {w(t+ τ)}+ E {w(t)w(t+ τ)} ,
= 1− 2µw + φww(τ). (4.6)

The expectation value µw is equal to the probability Pr{w(t) = 1}, since w(t) is a

binary process. Pr{w(t) = 1} is in turn equal to the sum of the disjoint probabilities

riti for each type of non-selected event, where ri and ti are the associated rate and

deadtime. Hence,

µw = rVLEτVLE + (rp + rb + rob)td = rVLEτVLE + r1td. (4.7)

Similarly, the autocorrelation φww(τ) reduces to the following:

φww(τ) = E {w(t)w(t+ τ)} ,
= Pr{w(t)w(t+ τ) = 1},
= Pr{w(t) = 1}Pr{w(t+ τ) = 1|w(t) = 1}, (4.8)

where Pr{A|B} means the probability of A given B. We divide the preceding joint

probability into several cases based on the range of τ and the position of t relative to

a masking interval:

Case τ ≥ τVLE: In this case, w(t + τ) is independent of w(t) because any

masking interval that was in effect at time t has expired before time t+ τ . Therefore

Pr{w(t+ τ) = 1|w(t) = 1} = Pr{w(t+ τ) = 1}, which is the same as Pr{w(t) = 1}.
From equation (4.7) we have:

φww(τ) = (rVLEτVLE + r1td)
2, τ ≥ τVLE. (4.9)
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Case td ≤ τ < τVLE: We break this into three sub-cases:

(a) time t falls into a masking interval of length td with probability r1td. Then

w(t+ τ) is independent of w(t) because the interval containing t ceases to have

any effect at t + τ . At time t + τ , all types of non-selected events can occur,

not just those in the r1 category, so Pr{w(t+ τ) = 1} = rVLEτVLE + r1td.

(b) time t falls within the first τVLE−τ of a VLE interval with length τVLE. Sub-case

(b) occurs with probability rVLE(τVLE−τ). Then Pr{w(t+τ) = 1|w(t) = 1} = 1
since t+ τ is part of the same masking interval that contains t.

(c) time t falls within the last τ of a VLE interval with probability rVLEτ . Then

the interval that contains t ends before t+ τ and w(t+ τ) is again independent

of w(t) so that Pr{w(t+ τ) = 1|w(t) = 1} = rVLEτVLE + r1td.

The three sub-cases for case td ≤ τ < τVLE are depicted in Figure 4-3.

Summing the probabilities from the three sub-cases,

φww(τ) = r1td(rVLEτVLE+r1td)+rVLE(τVLE−τ)+rVLEτ(rVLEτVLE+r1td), td ≤ τ < τVLE.

(4.10)

Case 0 ≤ τ < td: We break this into four sub-cases:

(a) time t falls within the first td− τ of an interval of length td. Sub-case (a) occurs

with probability r1(td − τ). Then Pr{w(t+ τ) = 1|w(t) = 1} = 1 since t+ τ is

part of the same masking interval as t.

(b) time t falls within the last τ of an interval of length td with probability r1τ .

Then the interval that contains t ends before t+ τ and Pr{w(t+ τ) = 1|w(t) =
1} = rVLEτVLE + r1td.

(c) time t falls within the first τVLE−τ of a VLE interval with probability rVLE(τVLE−
τ). This is the same as case td ≤ τ < τVLE, sub-case (b).

(d) time t falls within the last τ of a VLE interval with probability rVLEτ . This is

the same as case td ≤ τ < τVLE, sub-case (c).
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w(t)

w(t)w(t)

t

t t

τ

t+ τ

t+ τt+ τ

td

τVLE

τVLE

τVLE − τ

Figure 4-3: The three sub-cases for case td ≤ τ < τVLE.

The four sub-cases for case 0 ≤ τ < td are depicted in Figure 4-4.

Summing the probabilities from the four sub-cases,

φww(τ) = r1(td− τ)+ r1τ(rVLEτVLE+ r1td)+ rVLE(τVLE− τ)+ rVLEτ(rVLEτVLE+ r1td),

(4.11)

for 0 ≤ τ < td.

We now compute µv and φvv(τ) according to the relations in (4.5) and (4.6) and

the quantities in equations (4.7) through (4.11).

µv = 1− r1td − rVLEτVLE. (4.12)
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τ

t+ τt+ τ
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td − τ

τVLEτVLE

τVLE − τ

Figure 4-4: The four sub-cases for case 0 ≤ τ < td.

Some factoring of terms yields the autocorrelation φvv(τ):

φvv(τ) =




(1− r1td − rVLEτVLE)(1− r1τ − rVLEτ), 0 ≤ τ < td,

(1− r1td − rVLEτVLE)(1− r1td − rVLEτ), td ≤ τ < τVLE,

(1− r1td − rVLEτVLE)
2, τ ≥ τVLE.

(4.13)

Finally, the observed event rate ro and the autocorrelation function φzz(τ) of z(t)

are given by

ro = rm(1− r1td − rVLEτVLE) =
ri(1− r1td − rVLEτVLE)

1 + ritd
, (4.14)
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φzz(τ) =




ro δ(τ), 0 ≤ τ < td,

riro(1− r1td − rVLEτ)
∞∑
k=1

u(xk)
(rixk)

k−1

(k − 1)! e
−rixk , td ≤ τ < τVLE,

riro(1− r1td − rVLEτVLE)
∞∑
k=1

u(xk)
(rixk)

k−1

(k − 1)! e
−rixk , τ ≥ τVLE,

(4.15)

where xk = τ − ktd as in equation (4.3). We have used equation (4.14) to substitute

ro for rm. The incident event rate ri can be inferred by solving equation (4.14) for ri.

4.4 Computing the deadtime-corrected Poisson power

density spectrum

Having derived the continuous-time autocorrelation function φzz(τ) for a Poisson

process with deadtime and interference effects, its discrete-time counterpart φzz[m] is

determined by integrating φzz(τ) using equation (3.16). As the expression for φzz(τ)

is rather complicated, the integration is accomplished numerically to the desired pre-

cision.

Calculating the PDS exactly from the discrete-time autocorrelation φzz[m] using

equation (3.15) requires N values of φzz[m]. However, we observe that φzz[m] ap-

proaches the constant value r2
ot

2
b for large m (Zhang et al. 1995). This asymptotic

value is in fact the square of the expected number of counts per time bin. Reaching

the asymptotic value reflects the lack of correlation between counts in sufficiently

separated time bins, so that mathematically we have φzz[m] = E {z[n]z[n+m]} ≈
E {z[n]}E {z[n+m]} = r2

ot
2
b .

Furthermore, we recall from Section 3.2 that the mean number of counts rotb is

subtracted from measured data before forming the periodogram estimate. In order to

be consistent with the periodogram method, the same mean subtraction is required

here in computing the model PDS. In terms of the autocorrelation function, mean
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subtraction is achieved by subtracting r2
ot

2
b from φzz[m]:

φ̃zz[m] = φzz[m]− r2
ot

2
b . (4.16)

As a consequence, φ̃zz[m]→ 0 as m increases.

The model PDS in equation (3.15) can now be written in terms of φ̃zz[m]. Let

mmax be the value of m beyond which φ̃zz[m] is negligible with respect to the desired

accuracy, i.e. |φ̃zz[m]| < ε, m > mmax for some tolerance ε. Sacrificing a small

amount of accuracy allows us to truncate the sum in (3.15) to mmax, which is usually

considerably smaller than N :

〈I[k]〉 � 2

rotb

[
φ̃zz[0] + 2

mmax∑
m=1

N −m

N
φ̃zz[m] cos

(
2πkm

N

)]
(4.17)

We have now accomplished our goal of computing the PDS for a Poisson arrival

process in the presence of deadtime and interference effects.

We employ the following procedure to subtract the deadtime-modified Poisson

level using the new model from PDSs calculated from measured data: From the

segment of measured data, we extract the observed rates ro, r1, and rVLE. These

rates, together with the timescales td and τVLE, parameterize the continuous-time

autocorrelation φzz(τ) in equation (4.15). φzz(τ) is then evaluated on a dense set of

points before being integrated numerically to obtain φzz[m]. After subtracting the

mean squared r2
ot

2
b and truncating the sum as in equation (4.17), the model PDS is

computed. The model PDS is then subtracted from the average periodogram estimate

of the data, yielding an estimate of the source PDS.

4.5 Dependence of model power density spectrum

on parameters

Before continuing on to applications of the deadtime model to real data, it is useful

and illuminating to explore the dependence of the model on its parameters. These
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parameters are: the observed rate of selected events ro, the observed VLE rate rVLE,

the observed rate of other non-selected events r1, the ADC deadtime td, the VLE

window τVLE, the time bin size tb, and the number of time bins per segment N . In

this section, the dependence of the model PDS on the more important parameters is

illustrated in a series of plots.

We first distinguish between the two regimes tb > td and tb < td. In scientific

observations, the time bin size tb is usually chosen to yield a Nyquist frequency of

a few kHz. Since td ≈ 10 µs, the tb > td regime prevails for nearly all scientific

observations. However, the RXTE PCA is capable of time resolutions down to 1 µs

where tb < td. Observations at such high time resolutions are undertaken to explore

systematics of the detector, such as deadtime effects as will be described in Section

5.2.

In the case tb > td, only the first few mean-subtracted autocorrelation values

φ̃zz[m] are significant. We expect that the correlations introduced by deadtime should

die out as the lag τ becomes much longer than the deadtime timescales td and τVLE.

Equivalently in discrete time, there should be little correlation at high values of m

corresponding to lags τ = mtb. As is often the case, if tb >> td and tb ∼ τVLE, the

correlations become negligible at relatively low values of m. Consequently, mmax in

equation (4.17) is small and the PDS contains only a few low-frequency sinusoidal

components. The PDS has the appearance of a half-wavelength of a sine wave super-

imposed on a constant level.

In contrast, if tb < td, the correlation introduced by deadtime becomes sufficiently

small only for large values ofm. The upper boundmmax in equation (4.17) is large and

the PDS is the sum of many sinusoidal components. The model PDS thus acquires a

wavy appearance, resembling a sinc function subtracted from a constant level. The

horizontal scaling is controlled by the ADC deadtime td. We might have expected

this sinc-like behaviour from equation (1.1) (Zhang et al. 1995), putting aside the

differences between paralyzable and non-paralyzable deadtime, and the continuous-

time PDS versus the discrete-time PDS.

In keeping with the two regimes tb > td and tb < td, the subsequent set of plots are
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divided into two groups of four, the first group corresponding to tb > td and the last

group to tb < td. More precisely, tb = 2
−13 s ≈ 122 µs for the first group and tb = 2

−20

s ≈ 1 µs for the second group. In each group of four, the parameters being varied

are, in order, ro, td, rVLE, and τVLE, while the other parameters are held constant.

The number of time bins per segment is fixed at N = 220 throughout.

Figure 4-5 shows the dependence of the model PDS on the observed selected rate

ro, which ranges from 2500 counts/sec/PCU to 20000 counts/sec/PCU, for the regime

tb > td. The other parameters are fixed at td = 10 µs, rVLE = 100 counts/sec/PCU,

τVLE = 170 µs (the nominal value for VLE setting 2), and r1 = 4000 counts/sec/PCU.

The values of rVLE and r1 represent typical values encountered in observing most

celestial sources. The Poisson level in Leahy normalization decreases from around 1.9

to below 1.4 as ro increases, while the curvature in the Poisson level also increases

with ro. We conclude that ro controls the amplitude of the deadtime effect, as is

expected since a higher selected count rate will incur more deadtime. Recall that the

Leahy-normalized Poisson power should be a constant 2 in the absence of deadtime.

In Figure 4-6 we show the dependence on td, which was varied between 6 µs and

14 µs, for tb > td. The other parameters are held at ro = 10000 counts/sec/PCU,

rVLE = 100 counts/sec/PCU, τVLE = 170 µs, and r1 = 4000 counts/sec/PCU. Again

we observe that the Poisson level decreases as td increases. However, in this case

the amount of curvature varies inversely with respect to td, decreasing from top to

bottom.

Figure 4-7 shows the model PDSs obtained for three different values of rVLE and

tb > td. The other parameters are held constant at ro = 10000 counts/sec/PCU,

td = 10 µs, τVLE = 170 µs, and r1 = 4000 counts/sec/PCU. For the range of VLE

rates encountered by the RXTE PCA in practice, the effect due to rVLE is more subtle

than those due to ro and td. ro and td can be considered the primary parameters in the

deadtime model while rVLE and τVLE play secondary roles. Nevertheless, by increasing

rVLE, the lowest frequencies in the PDS are emphasized by a few hundredths to a tenth

in Leahy units.
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Figure 4-5: Model PDS for different values of ro [counts/sec/PCU] and tb > td.

Figure 4-6: Model PDS for different values of td [µs] and tb > td.
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Figure 4-7: Model PDS for different values of rVLE [counts/sec/PCU] and tb > td.

Figure 4-8: Model PDS for different values of τVLE [µs] and tb > td.
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Figure 4-8 plots the PDSs computed for τVLE = 70 µs (nominal value for VLE

setting 1) and τVLE = 170 µs (nominal value for VLE setting 2). The other parameters

are ro = 10000 counts/sec/PCU, td = 10 µs, rVLE = 100 counts/sec/PCU and r1 =

4000 counts/sec/PCU. By switching from VLE setting 1 to VLE setting 2, the Poisson

level can switch from a rising function of frequency to a falling one. The effect of

τVLE, like that of rVLE, is on the order of a few hundredths in Leahy normalization.

Figures 4-9 through 4-12 feature the exact same parameter values as Figures 4-5

through 4-8, except that the time bin size tb is now 1 µs instead of 122 µs. The first

plot, Figure 4-9, shows the dependence of the Poisson level on ro for the case tb < td.

The more complicated, sinc-like appearance of the PDS immediately distinguishes

the case tb < td from the previous case tb > td. Indeed, we can think of the PDSs

displayed in Figures 4-5 through 4-8 as being magnified versions of the low-frequency

ends of the full PDSs in Figures 4-9 through 4-12. The PDS deviates most from the

zero-deadtime value of 2 in the first trough at lowest frequency. The most positive

excursion is found in the first peak, which is around 80 kHz for td = 10 µs. The

ripples around 2 decay thereafter as the frequency increases. In addition, there is an

upward hook near zero frequency; this feature is influenced by the presence of VLEs

as will be seen shortly. Figure 4-9 confirms that the observed selected rate ro sets the

amplitude, i.e. the vertical scaling, of the deviation caused by deadtime.

Figure 4-10 is the counterpart to Figure 4-6 for tb < td. Here we see how td

determines the horizontal scaling of the Poisson PDS. The curve for td = 6 µs appears

horizontally expanded, while the curve for td = 14 µs is horizontally compressed. The

deadtime effect is also larger for higher values of td, as it was for larger values of ro.

Thus we can conclude that the vertical scaling of the deadtime effect on the Poisson

level is determined by a combination of ro and tb, while the horizontal scaling is

largely influenced by td alone.
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Figure 4-9: Model PDS for different values of ro [counts/sec/PCU] and tb < td.

Figure 4-10: Model PDS for different values of td [µs] and tb < td.
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Figure 4-11 plots the PDSs obtained for three values of rVLE and tb < td. It is

evident that the VLE effect, occurring on a timescale of τVLE that is much longer than

td, is a low-frequency effect that does not extend beyond 10 kHz. The main difference

among the three curves, although somewhat difficult to discern from the plot, is that

the size of the upward hook near zero frequency is enhanced as rVLE increases. This

observation agrees with the rVLE effect seen in Figure 4-7 when tb > td.

Figure 4-12 shows the model PDSs corresponding to VLE settings 1 and 2 for

tb < td. As was the case in Figure 4-11, the τVLE effect is confined to the lowest

frequencies. In particular, the upward hook is absent for VLE setting 1 (τVLE = 70

µs).

Finally, we have not included corresponding plots for the Poisson level as a function

of r1, the rate of non-selected events excluding VLEs. In actual PCA observations,

the effect of r1 on the model PDS is on the order of a few thousandths in Leahy

normalization and is too small to be visually discernible. Nevertheless, r1 does play

an important role in relating the observed selected rate ro to the inferred incident

rate ri via equation (4.14). If r1 were absent, a key source of deadtime loss would

be neglected, and the inferred incident rate would be lower than the actual incident

rate. Thus, while the effect of r1 on the Poisson level is relatively unimportant, it is

still a significant contributor to deadtime.
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Figure 4-11: Model PDS for different values of rVLE [counts/sec/PCU] and tb < td.

Figure 4-12: Model PDS for different values of τVLE [µs] and tb < td.
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Chapter 5

Deadtime Measurements and

Model Testing

5.1 Measuring the VLE window τVLE

As discussed in Section 2.2, the RXTE PCA features a longer type of deadtime, the

deadtime τVLE triggered by VLEs, in addition to the deadtime td associated with

analog-to-digital conversion for normal events. PCA users can select one of two

VLE window lengths. The first, shorter window setting is intended to decrease the

deadtime impact on very bright sources, while the second, longer window is used for

more modest sources and produces an output containing fewer false events. There is

some disagreement concerning the exact window lengths for the two VLE settings.

Zhang et al. (1996), Morgan et al. (1997), and Jahoda et al. (2006) cite values of 70

µs and 170 µs, while Jernigan et al. (2000) and Revnivtsev et al. (2000) cite 61 µs

for the first setting and 142/150 µs for the second setting. In order to address these

discrepancies, we performed a direct, in-flight measurement of both VLE windows

using transparent mode data.

We examined nine transparent mode observations, listed in Table 5.1, of the bright

X-ray source Sco X-1: four using VLE setting 1 and five using VLE setting 2. In the

transparent data mode, every single event is classified and time-tagged to a precision

of 1 µs (2−20 s). In particular, the arrival times of all VLEs are recorded. For each

63



VLE in the data, the time between the VLE and the next event of any kind was

recorded and entered into a histogram. Due to the detector’s VLE mechanism, no

events should occur within τVLE after a VLE. Accordingly, the histograms should

show no events below τVLE and a sudden rise at τVLE. Only a single PCU was active

during these observations, allowing its deadtime to be isolated. Sco X-1 was used

for the measurement of τVLE because its brightness provides ample statistics for the

histograms.

VLE setting observation ID observation date (mm/dd/yyyy)
1 40803-01-01-00 02/19/1999

40803-01-02-00 02/19/1999
40803-01-03-00 02/24/1999
40803-01-04-00 02/25/1999

2 30801-01-16-00 11/06/1998
30801-01-21-22 11/06/1998
30801-02-14-00 11/06/1998
30801-03-14-00 11/07/1998
30801-05-13-00 11/06/1998

Table 5.1: Transparent data observations of Sco X-1.

The histogram obtained for VLE setting 1 is shown in Figure 5-1 and that for

VLE setting 2 is shown in Figure 5-2. From visual inspection of the rising edges in

the histograms, we determine the values of the two VLE windows to be 59 µs and 137

µs, marked by dashed lines in the plots. These values are substantially lower than

the nominally accepted values of 70 µs and 170 µs. They are, however, rather close

to the values of 61 µs and 142 µs used by Jernigan et al. (2000).
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Figure 5-1: Histogram of time elapsed between a VLE and the next event for VLE
setting 1. The dashed line marks τVLE = 59 µs.

Figure 5-2: Histogram of time elapsed between a VLE and the next event for VLE
setting 2. The dashed line marks τVLE = 137 µs.
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5.2 Comparing deadtime models against very-high-

frequency data and measuring the ADC dead-

time td

In this section, we describe how the deadtime models were evaluated using very-

high-frequency PDSs obtained from a number of astronomical sources. The fitting

procedure used in testing the models also produced an accurate measurement of the

ADC deadtime parameter td.

We used GoodXenon mode data from 4 sources: Sco X-1, GX 5-1, GX 349, and GX

9+1. A list of the observations used appears in Table 5.2. There are 30 observations

for Sco X-1, 31 for GX 5-1, and 23 each for GX 349 and GX 9+1 spanning the period

from April 2004 to June 2005.

source observation IDs
Sco X-1 90024-01-nn-00

nn = 01 through 31 excluding 21
GX 5-1 90024-03-nn-00

nn = 01 through 29 excluding 21, 25
90024-03-nn-01
nn = 09, 13, 14, 15

GX 349 90024-04-nn-00
nn = 01 through 24 excluding 05

GX 9+1 90024-05-nn-00
nn = 01 through 23

Table 5.2: GoodXenon mode observations used in testing deadtime models.

Sco X-1 was chosen for its very high flux (average observed count rates of 14000–

20000 counts/sec/PCU, about 6–8 Crab equivalents). As we found in Section 4.5, the

effects of deadtime on the PDS scale with the observed selected flux ro, and many

of the more subtle effects are appreciable only at high count rates. The very high

flux of Sco X-1 thus presents a severe challenge for deadtime models. If a model can

describe the deadtime effect for Sco X-1, then it should do even better for sources

with lower, more commonplace flux levels. The latter category is represented by GX

5-1, GX 349 and GX 9+1. GX 5-1 is the second brightest persistent X-ray binary,
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having count rates in the range 2000–3000 counts/sec/PCU or around 1 Crab, while

GX 349 and GX 9+1 have slightly lower count rates.

GoodXenon mode offers 1 µs (2−20 s) timing resolution, which translates into a

Nyquist frequency of 500 kHz.1 While GoodXenon mode does allow flexible spectral

analyses, its use must be limited to faint and moderately bright X-ray sources. For

bright X-ray sources, it is a very expensive data mode in terms of the daily telemetry

budget allowed to XTE by NASA. However, brief observations of bright sources are

ideal for calibration purposes, such as testing and verifying the deadtime model of

this thesis.

We computed very-high-frequency, Leahy-normalized PDSs from GoodXenon ob-

servations, containing frequencies up to 500 kHz, using the method of periodogram

averaging described in Section 3.2. Specifically, a single average PDS was computed

for each of the 107 observations from the four sources. We take advantage of the

absence of source power for frequencies above 1–2 kHz and isolate the deadtime-

modified Poisson power for fitting to deadtime models. From the quality of the fits,

we determine the accuracy of the present deadtime model and compare it to previous

models.

The two free parameters in the fits are the observed selected count rate ro and

the ADC deadtime td. The count rate ro was varied by first reading its value from

the data, robso , and then scaling robso by a correction factor r to yield rfito = r · robso .

The ratio r was usually varied between 0.9 and 1.1. A ratio of r = 1 means that the

best fit value of ro exactly matches the observed value. A value for r close to unity

indicates that the deadtime model is accurate and that all of the significant sources

of deadtime are taken into account. The deadtime td was initially varied between 8

and 10 µs, which was soon narrowed to a smaller range centred on 8.8 µs. The best

fit value for td is an estimate for the ADC deadtime, a very important measurement

in characterizing the RXTE PCA instrument.

As for the other parameters, the VLE rate rVLE, the propane rate rp, and the “bad”

1GoodXenon data also offers a full 256 channels of energy resolution, but we did not take ad-
vantage of this to test the deadtime model for individual energy bands beyond a preliminary stage.
Please see Section 6.2 for further discussion.
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rate rb were provided by Standard 1 data accompanying the GoodXenon observations,

and were fixed at their observed values throughout the fits. Either τVLE = 59 µs or

τVLE = 137 µs (the values found in the previous section) were used, depending on the

VLE setting in effect during the observation. The time bin size tb = 2−20 s and N ,

the number of data points included in each segment, were also taken directly from

the data. The fits were evaluated using the mean squared error χ2, defined for two

degrees of freedom by

χ2 =
1

Npts − 2
∑
k

(
Imodel[k]− Iobs[k]

σI [k]

)2

, (5.1)

where Iobs[k] is the average periodogram computed from the observations, Imodel[k] is

the model for the Poisson PDS, σI [k] is the statistical measurement uncertainty in

Iobs[k], and k denotes the frequency bin. The frequency spacing is linear at 1024 Hz

per frequency bin. The fits included all Npts frequency points above 1.5 kHz up to

the Nyquist frequency. The lower frequency boundary of 1.5 kHz was chosen to avoid

intrinsic power contributions from the X-ray source.

We employed three different models in fitting the data from the high-frequency

PDSs. The three models were compared to determine how well they match the

deadtime-modified Poisson power from real observations. Model I combines the para-

lyzable deadtime model of Zhang et al. (1995) with the additive VLE deadtime model

of Zhang et al. (1996), as has been the practice in many RXTE research papers since

their introduction (e.g. Morgan et al. 1997). The Leahy-normalized Poisson PDS for

Model I is the sum of equation (27) in Zhang et al. (1995), which is the discrete-time

analogue to equation (1.1) in this thesis for the case tb < td, and equation (1.3), the

additive VLE contribution due to Zhang et al. (1996). Model II differs from Model

I in using the non-paralyzable deadtime model of Zhang et al. (1995) instead of the

paralyzable case. The PDS for Model II may be calculated according to the proce-

dure in Chapter 4, omitting all contributions from non-selected events (i.e. setting

rVLE = 0, τVLE = 0, r1 = 0 temporarily), and later adding equation (1.3) to the result

(with rVLE and τVLE now assuming their proper values). Note that r1, which is the
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rate of all non-selected events that are not VLEs, is not considered at all in Models

I and II. Model III is the one developed in Chapter 4 of the thesis. It calculates the

deadtime effects of selected events, VLEs, and other non-selected events in a unified

manner.

We remark that a time bin size of tb = 1 µs falls in the regime tb < td, where the

effect of deadtime on the Poisson PDS becomes much more complex and interesting.

As seen in Section 4.5, the Poisson PDS for tb < td contains many waves and has

approximately the shape of an inverted sinc function. The added complexity of the

deadtime effect when tb < td poses a greater challenge to quantitative models, but at

the same time instils greater confidence in a successful model.

Figures 5-3 and 5-4 depict the scatter in best fit r and td values for Model III,

plotted as a function of the observed selected count rate ro. A different plotting

symbol is used for each source: open squares for Sco X-1, x’s for GX 5-1, solid

triangles for GX 349, and open circles for GX 9+1. Each point in the plots represents

one observation. The dashed line in Figure 5-4 marks td = 8.83 µs. The distributions

of best fit values do not show any trends with respect to the count rate ro. The

distributions tend to be wider at lower count rates because of greater statistical

variation in the PDSs.

The best fit values were averaged over all of the observations for a given source,

resulting in a single set of optimum values for each source and for each model. These

optimum values are summarized in Table 5.3. The statistical standard deviation

among the best fit parameters that are averaged is also given.
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Figure 5-3: Plot of optimum values for the count rate ratio r as a function of the
observed count rate ro.

Figure 5-4: Plot of optimum values for the ADC deadtime td as a function of the
observed count rate ro.
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source parameter Model I Model II Model III
Sco X-1 r 1.013± 0.002 1.012± 0.002 1.006± 0.003

td [µs] 8.73± 0.02 8.82± 0.02 8.83± 0.02
χ2 5.80± 2.36 1.08± 0.10 1.00± 0.07

GX 5-1 r 1.013± 0.009 1.012± 0.009 1.008± 0.008
td [µs] 8.81± 0.02 8.83± 0.02 8.83± 0.03
χ2 1.02± 0.07 1.00± 0.06 1.00± 0.06

GX 349 r 1.010± 0.006 1.010± 0.006 1.005± 0.006
td [µs] 8.83± 0.03 8.84± 0.03 8.84± 0.03
χ2 1.00± 0.08 0.99± 0.08 0.99± 0.08

GX 9+1 r 1.012± 0.007 1.011± 0.007 1.007± 0.007
td [µs] 8.82± 0.04 8.83± 0.04 8.83± 0.04
χ2 1.00± 0.06 1.00± 0.06 1.00± 0.06

Table 5.3: Comparison of best fit parameters for models I, II and III.

The ratio r for Model III is about 0.005 or half a percent closer to the ideal

r = 1 than in Models I and II. A value of r higher than 1 means that, according to

the model, the recorded rate robso of selected events is insufficient to account for the

amount of deadtime implied by the data. The lower r value for Model III indicates

that a greater proportion of deadtime-causing events are being identified as compared

to Models I and II.

Looking at the χ2 values for GX 5-1, GX 349, and GX 9+1, it appears that

all three models match the observed PDSs quite well. However, the χ2 values for

Sco X-1, for which the deadtime effect is much more pronounced, indicate a marked

preference for non-paralyzable deadtime models (II and III). In addition, Model III

shows a marginal improvement in χ2 over Model II for Sco X-1. We conclude therefore

that the deadtime td for the RXTE PCA is predominantly non-paralyzable, as was

expected for analog-to-digital conversion.

Table 5.3 also yields the value of 8.83 µs for the ADC deadtime, which is sub-

stantially lower than the nominal 10 µs that has been assumed for the RXTE PCA

(Zhang et al. 1996; Morgan et al. 1997; Jahoda et al. 2006). Our fits strongly support

td = 8.83 µs as the right value to use when correcting PDSs for the ADC deadtime.

Figures 5-5, 5-6 and 5-7 show the average PDS for Sco X-1 observation 90024-

01-19-00 and the best fits to the data using models I, II, and III respectively. The
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data points are marked by triangles while the best fit curve is drawn as a solid line.

The corresponding χ2 values are 6.21, 1.22 and 1.09, and the improvement in the

quality of the fit can be seen in the sequence of plots. In Figure 5-5, the Poisson

level predicted by Model I undershoots the data by many hundredths at frequencies

below 15 kHz. Model I also fails to match the peaks and troughs of the oscillations

at higher frequencies. In Figure 5-6, Model II improves significantly upon Model I,

although there is still some minor undershoot at the lowest frequencies and the first

peak. A non-paralyzable deadtime model is clearly a better fit to the Sco X-1 data

than a paralyzable model. Model III in Figure 5-7 is a marginal improvement over

Model II when comparing the lowest frequencies and the first peak. However, the

best fit values for r are 1.010± 0.003 for Model II and 1.003± 0.003 for Model III, so
Model III is also better because its r value is closer to unity.

Figure 5-8 is a comparison of the Poisson PDSs produced by Models I, II and

III given an identical set of input parameters. The input parameters are ro = 17000

counts/sec/PCU, td = 8.83 µs, rVLE = 100 counts/sec/PCU, τVLE = 137 µs, r1 =

6800 counts/sec/PCU, tb = 2
−20 s and N = 220 = 1048576. As in Figure 5-5, the PDS

of Model I can be distinguished from those of Models II and III by the undershoot

at low frequencies and the smaller amplitude of the oscillations at higher frequencies.

The difference between Models II and III is very subtle; the PDS of Model II appears

to be a slightly scaled-down version of that of Model III. This difference makes sense,

since the value of r, and hence ro, for Model II had to be slightly higher than that of

Model III when fitting to the same set of data.
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Figure 5-5: Average PDS from Sco X-1 observation 90024-01-19-00 (triangles) and
best fit using model I (solid line).

Figure 5-6: Average PDS from Sco X-1 observation 90024-01-19-00 (triangles) and
best fit using model II (solid line).
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Figure 5-7: Average PDS from Sco X-1 observation 90024-01-19-00 (triangles) and
best fit using model III (solid line).

Figure 5-8: Comparison of Poisson PDSs produced by Models I, II and III given
identical input parameters.
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Chapter 6

Additional Deadtime Effects for

Future Study

6.1 Non-stationarity of highly variable sources

In deriving the deadtime model in this thesis, we assumed that the incident events

follow a stationary Poisson process characterized by a constant rate, which is a stan-

dard approach in constructing such models (Zhang et al. 1995; Vikhlinin et al. 1994).

The assumption of stationarity works well when the amount of source variability is

modest and the source flux is approximately constant. However, astrophysical sources

are not always well behaved and can exhibit considerable fluctuations relative to their

average flux. The deadtime effect for a highly variable source may be very different

from the deadtime effect for a pure Poisson process, even though the average flux is

the same in both cases. For highly variable sources, we should expect some difficul-

ties in using a model based on a stationary Poisson process since the model does not

match the source’s behaviour.

A well-known example of an astrophysical source capable of extreme variability is

the BHB GRS 1915+105. We analyzed a small collection of RXTE PCA observations

of GRS 1915+105 in the “θ state” taken in September and October 1997. According

to the classification scheme of Belloni et al. (2000) for the types of variations of GRS

1915+105, the θ state is characterized by an irregular pattern of build-ups and sudden
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releases in the source flux. A representative light curve depicting the dramatic flux

variations in the θ state is shown in Figure 6-1. The count rate ranges from a minimum

near 8000 counts/sec to a maximum over 40,000 counts/sec. In comparison, the light

curve for GX 5-1 in Figure 6-2 exhibits much smaller relative variations.

The observations of GRS 1915+105 in the θ state were taken at a time resolution

of approximately 500 µs (2−11 s). No energy selection was performed on the events;

all events from the full observable energy spectrum were included. We employed five

different methods of calculating PDS estimates (average periodograms) from the GRS

1915+105 θ state timing data:

1. segment length of 256 seconds, periodogram averaging over an observation,

followed by subtraction of deadtime-corrected Poisson level based on count rates

averaged over the observation

2. same as #1, but with a segment length of 64 seconds

3. same as #1, but with a segment length of 16 seconds

4. same as #1, but with a segment length of 1 second

5. segment length of 1 second, subtraction of Poisson level based on count rates

within each segment, followed by averaging corrected periodograms over an ob-

servation

The Leahy-normalized PDSs obtained through Methods 1–3 are presented in Figure

6-3. Method 1 is represented by a solid line, Method 2 by a dotted line, and Method

3 by a dashed line. The PDSs corresponding to Methods 4 and 5 are shown in Figure

6-4. Method 4 is represented by a solid line and Method 5 by a dotted line. The

PDSs are plotted on a linear scale and the limits have been chosen in order to focus

on the high-frequency residual power.
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Figure 6-1: Sample light curve for GRS 1915+105 in the θ state.

Figure 6-2: Sample light curve for GX 5-1.
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Figure 6-3: Leahy-normalized average PDS for GRS 1915+105 in the θ state using
Methods 1 (solid line), 2 (dotted line), and 3 (dashed line).

Figure 6-4: Leahy-normalized average PDS for GRS 1915+105 in the θ state using
Methods 4 (solid line) and 5 (dotted line).
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In all cases, the PDS decays to an approximately constant level for frequencies

around 400 Hz and higher. The value of the constant level steadily decreases as the

segment length increases, going from near zero for 1-second segments to −0.01 for 256-
second segments. Since the intrinsic source power must be positive at all frequencies,

we conclude that the negative residuals in Figure 6-3 are caused by over-subtraction of

the Poisson power. In other words, the deadtime model overestimates the correction

to the Poisson power for GRS 1915+105 and the extent of the overestimate clearly

increases with the length of the transformed segments.

The dependence of the negative residual on segment length suggests that the

culprit could be the amount of source variability observed within a segment. As the

light curve in Figure 6-1 indicates, if an observation is divided into longer segments

(e.g. 256 seconds), the full extent of the variability of GRS 1915+105 is more apparent

within each segment. Segments that, in the extreme case, contain one of the sharp

drops in flux can hardly be called stationary. We expect that the deadtime model

should fail when applied to long segments containing clearly non-stationary behaviour.

In contrast, dividing an observation into short segments (e.g. 1 second) hides much

of the long-term, large-amplitude variation if each segment is viewed in isolation.

The deadtime model should perform better on short, quasi-stationary segments. In

summary, the longer the segment length, the more source variability is captured

within each segment, and the greater the discrepancy between the deadtime model

and the actual Poisson power.

We can show through the following semi-quantitative analysis that the residual

power should be correlated with a particular measure of source variance. We focus our

attention on the dependence of the Poisson power on the observed selected count rate

ro(t), which is no longer constant in time. Furthermore, we ignore all of the frequency-

dependent terms in equation (4.17) (all of the m �= 0 terms in the summation), and

approximate the Poisson power by the constant m = 0 term over all frequencies.

Given these simplifications, the deadtime-corrected Poisson power in Leahy units is

an approximately linear function of ro (for modest values of ro):
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PLeahy
Poisson ≈ 2(1− αro), (6.1)

where α > 0 is a parameter for the slope. Note that PLeahy
Poisson → 2 as ro → 0 in the

absence of deadtime. The Poisson power in raw, un-normalized units is a quadratic

function of ro, obtained from (6.1) by multiplying by ro/2:

P raw
Poisson ≈ ro − αr2

o. (6.2)

The observed count rate ro(t) may vary significantly over the course of a data

segment. As an intuitive guess, we suppose that the resulting Poisson power in un-

normalized units is the time average of equation (6.2) over the segment:

〈P raw
Poisson〉S ≈ 〈ro〉S − α〈r2

o〉S, (6.3)

where the subscript S denotes an average over a segment. In processing data from ob-

servations, the raw PDSs from individual segments are Leahy-normalized (multiplied

by 2/〈ro〉S) before being averaged over an observation (periodogram averaging):

〈〈
PLeahy
Poisson

〉
S

〉
O
≈ 2

(
1− α

〈〈r2
o〉S

〈ro〉S

〉
O

)
, (6.4)

where the subscript O denotes an average over an observation.

On the other hand, our model for the Poisson power uses the count rate averaged

over an observation in equation (6.1):

Pmodel
Poisson = 2 (1− α〈〈ro〉S〉O) . (6.5)

Subtracting equation (6.5) from (6.4) yields the residual power ∆PLeahy
Poisson:

∆PLeahy
Poisson ≈ −2α

〈〈r2
o〉S − 〈ro〉2S
〈ro〉S

〉
O

,

≈ −2α
〈
varS(ro)

〈ro〉S

〉
O

, (6.6)
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where we have identified varS(ro) as the variance of ro(t) computed for each segment.

Thus, the foregoing analysis predicts a linear relationship between the residual power

and the average source variance defined by 〈varS(ro)/〈ro〉S〉O.
The average source variance 〈varS(ro)/〈ro〉S〉O can be estimated from discrete-

time count data. Equivalently, it can be estimated in the frequency domain from

the periodogram corresponding to the same segment. Specifically, the average source

variance is approximately equal to the “integral” over all positive frequency bins

(k = 1 to k = N/2) of the Leahy-normalized average periodogram
〈
ILeahysource[k]

〉
O
:

〈
varS(ro)

〈ro〉S

〉
O

≈ 1

Ntb

N/2∑
k=1

〈
ILeahysource[k]

〉
O
. (6.7)

The factor 1/Ntb is the width of a frequency bin, hence the interpretation of the

sum on the right-hand side as an approximation to an integral. In addition, only

the source component of the average periodogram is integrated, as indicated by the

subscript “source”, since the average source variance does not include the variance

due to Poisson statistics. The source component of the average periodogram can be

obtained by subtracting the Poisson power from the total average periodogram.

Using equation (6.7), the average source variances corresponding to Methods 1–

5 were computed by integrating their Poisson-subtracted, Leahy-normalized average

periodograms over all positive frequencies. In doing so, the error due to the original

over-subtraction of the Poisson level was ignored as it has only a small effect on the

integrals. The high-frequency residual power (Leahy normalization, averaged above

500 Hz) is plotted against the average source variance in Figure 6-5. The correlation

between the two quantities is quite clear. The predicted linear relationship is drawn

as a dashed line in Figure 6-5. The dashed line has slope −2α ≈ −7.5 × 10−6

corresponding to the average flux of GRS 1915+105 and is offset so that it passes

through the leftmost data point. Except for the rightmost data point, there is rough

agreement between the data and the prediction despite the crudeness of the analysis.

We can also understand why Methods 4 and 5, which differ only in the order

of Poisson subtraction and periodogram averaging, give comparable residuals. In

81



Figure 6-5: High-frequency residual power as a function of average source variance
for GRS 1915+105 in the θ state.

Figure 6-5, Methods 4 and 5 are represented by the leftmost and second-leftmost data

points respectively and have similar average source variances. Since both methods

use a segment length of 1 second, they should theoretically experience the same

average source variance. The slight discrepancy between the two methods is due to

the different ways in which the Poisson component is subtracted from the total PDS.

In Method 4, the Poisson subtraction is performed at the end according to rates

averaged over the observation. In Method 5, the Poisson subtraction is performed on

each segment according to rates within the segment.
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6.2 Dependence of deadtime model on energy of

events

In this thesis, we have undertaken only a preliminary exploration of the dependence

of detector deadtime on the energies carried by events. The measurement of dead-

time parameters and the testing of the model in Chapter 5 were done for the full

energy spectrum (the sum band) permitted by the PCA. However, it is very common

practice in X-ray astronomy to select only events within a certain energy band for

further analysis. It is doubtful that a deadtime model with parameters adapted to

the sum band will continue to be accurate for an individual band. In order to fully

resolve this question, it will be necessary to systematically test the deadtime model

for different energy bands in isolation. Significant discrepancies among the individual

bands should then be incorporated into the deadtime model.

We should note that the current model, despite possible inaccuracies, is equipped

to handle the case of events selected from a single energy band. Events in other

energy bands are treated as non-selected events, equivalent for instance to propane

events, since they also compete with events in the selected energy band for access to

the ADC.

It is known that the detector gain, the ratio of the collected charge to the incident

event energy, suffers small temporary drops immediately after every incident event.

We recall from Section 2.1 that each incident event causes an avalanche of electrons

to be drawn toward an anode. At the same time, the much heavier and much slower

positive ions are left behind and must be collected by the cathode. Before the ions

are absorbed by the cathode, they can attract electrons from a subsequent event and

prevent them from reaching an anode. Thus, during the time it takes for ions to

reach the cathode following an event, i.e. the ion drift time, the number of electrons

collected by the anodes is reduced and the gain appears to decrease.

The gain decreases could cause a rapidly following event to yield a lower than

normal pulse height and be misinterpreted as having a lower energy, and thus can

lead to differences in the PDSs of different energy bands. In particular, a lower than
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expected level of high-frequency variability would be found for the higher energy

bands, since the effect requires that the events be separated by short time intervals,

and the demotion is always toward lower energy. For example, the lowest energy band

could experience a surplus of high-frequency power because of the events gained from

higher energy bands, while the higher energy bands would experience a high-frequency

power deficit because of the events lost. The timescale of the drops in gain is related to

the ion drift time and will need to be measured or inferred. It may then be possible

to model the amount of high-frequency power lost from higher energy bands and

gained by lower energy bands. We note that this effect can be especially important

for sources with steep energy spectra where the count rate is high at the boundaries

between energy channels.

As motivating evidence for the effect of temporary drops in detector gain, we

present in Figures 6-6 and 6-7 two PDSs taken from observations of GRS 1915+105

in the θ state. Figure 6-6 shows the PDS for events in the 2–6 keV band, the lowest

energy band in this analysis, while Figure 6-7 shows the PDS for events in the next

highest 6–10 keV band. Both PDSs were calculated using Method 4, i.e. periodograms

from 1-second data segments were averaged and then corrected for deadtime and Pois-

son statistics. Using 1-second segments avoids most of the problems associated with

high source variability, as demonstrated in Section 6.1. Figure 6-6 clearly indicates

positive, high-frequency residual power for the 2–6 keV band. Conversely, the PDS in

Figure 6-7 for the 6–10 keV band contains negative residual power at high frequencies.

These plots support the theory that short-term decreases in detector gain reduce the

high-frequency variability in higher energy bands while increasing the same in lower

energy bands by a similar amount. Nevertheless, more sources need to be tested to

see if a similar pattern holds.
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Figure 6-6: Leahy-normalized average PDS for the 2–6 keV band of GRS 1915+105
in the θ state

Figure 6-7: Leahy-normalized average PDS for the 6–10 keV band of GRS 1915+105
in the θ state.
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One possible approach to accounting for the differences among individual energy

bands is to determine effective r and td values for each band. As a reminder, the

correction factor r is the ratio between the observed count rate ro and the count

rate that is actually input into the deadtime model. While the values r = 1.007 and

td = 8.83 µs work well for the sum band, proper deadtime correction for the individual

bands could require slightly different values. For example, some preliminary tests

involving energy bands higher than 10 keV indicate that a value of td = 9.0–9.1 µs

could be more appropriate. In addition, the observed count rate generally decreases

with increasing energy, so that deadtime corrections become less important for data

from higher energy bands.

6.3 Multiple photon coincidences

As described in Section 2.2, the RXTE PCA features an anti-coincidence mechanism

that eliminates events deemed to be too close together. Specifically, if events A and

B occur on different measurement chains, and if event B follows event A by less than

the anti-coincidence window ta ≈ 3–4 µs, both events are declared “bad” and are

excluded from the selected events. The anti-coincidence feature is designed to rule

out particles and other non-photon events that tend to generate multiple ionizations

in quick succession. However, if the source is very bright, there is a non-negligible

probability that two photons will arrive within ta of each other, causing the PCA to

mistakenly disqualify both photons. The model of this thesis does not distinguish

multiple photon coincidences from legitimate non-photon events, even though photon

coincidences should be admitted as part of the source flux. We should point out that

if the anti-coincidence feature did not exist, the second and third events of a multiple

photon coincidence would still be eliminated because they arrive while the ADC is

busy with the first event (td > 2ta). The action of the anti-coincidence monitor

eliminates the first event as well.

The anti-coincidence mechanism is expected to have a secondary impact on the

Poisson PDS. Intuitively speaking, anti-coincidence targets regions of high-frequency
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variability where the source photons tend to cluster together. The effect should

scale with the count rate squared since it depends on the rate of multiple photon

coincidences. A quantitative model for the anti-coincidence effect could be helpful

for very bright sources such as Sco X-1. As a first step, approximate calculations of

multiple coincidence rates can be found in Jahoda et al. (1999).

6.4 Ordering of deadtime processes

As explained in the section on the deadtime model, the self-deadtime among selected

events is thought of as occurring before the interference effects due to VLEs, propane,

and other non-selected events. However, the opposite order is closer to how events

are processed in the actual detector. The order assumed in the model was chosen

mainly for analytical convenience, and because the discrepancy should be negligible

for all but the highest count rates.

We outline here the steps needed to analyze the more realistic ordering of deadtime

processes. First, the interference by non-selected events would remove some events

from the stream of incoming selected events, which is again assumed to be Poisson.

The probability of detecting a selected event after undergoing interference will carry

a slight dependence on the time since the last selected event, unlike a Poisson process

where no such memory exists. The reason for the slight memory effect can be under-

stood intuitively by noting that the detection of a selected event guarantees in the

short term the absence of masking by non-selected events. The resulting stream of

selected events would no longer follow a Poisson process. One would have to repeat

the calculations of Zhang et al. (1995) to determine the effect of self-deadtime among

the surviving selected events, but with a non-Poisson process instead, a derivation

that could be quite difficult. Once the continuous-time autocorrelation function for

the surviving selected events is determined, the discrete-time PDS could be calculated

via equations (3.16) and (3.15) as before.
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Chapter 7

Preliminary Comparison of Power

Density Spectra from Black Hole

Binaries and Neutron Star Binaries

In Section 1.3, we described a method proposed by Sunyaev & Revnivtsev (2000) for

distinguishing BHBs from NSBs on the basis of their PDSs. Specifically, Sunyaev &

Revnivtsev observed that PDSs of BHBs do not contain any significant power beyond

several hundred Hz, whereas the PDSs of NSBs often extend into the kHz range. They

claim therefore that BHBs and NSBs may be distinguished by the high-frequency cut-

offs of their intrinsic power.

As we noted in Sections 1.3 and 1.4, there are two concerns with their approach.

First, Sunyaev & Revnivtsev selected BHB observations from the hard X-ray state

only (see Section 1.2 for description of X-ray states). Since there are large quantitative

and qualitative differences among PDSs from different states (Remillard & McClin-

tock 2006; McClintock & Remillard 2006), a more complete study must consider all

of the states of both BHBs and NSBs. The omission of other states appears worse

when one recalls from Section 1.2 that the BHB hard state is now clearly associated

with the presence of a quasi-steady radio jet (Fender 2006; Remillard & McClintock

2006). The jet is thought to distort the radiation geometry of the inner accretion disk

where high-frequency variability originates. Therefore, we might expect diminished

89



high-frequency continuum power in the hard state as compared with other states.

The second concern involves the deadtime modelling of Sunyaev & Revnivtsev

(2000). In subtracting the Poisson component of the PDS, they fitted a paralyzable

deadtime model, specifically Model I of Section 5.2, to the high-frequency portion

of the total PDS. As shown in Section 5.2, Model I is less accurate than the model

developed in this thesis. More importantly, the fitting process appears to be problem-

atic because it pre-supposes a cut-off frequency and attempts to minimize the power

beyond the cut-off to the extent that the model allows. The cut-off frequency chosen

for NSBs is higher than that for BHBs (600 Hz versus 50 Hz), potentially biasing the

results.

In this chapter, we report preliminary findings that address the two issues of X-

ray state selection and deadtime modelling. The comparisons between BHBs and

NSBs are re-examined in light of these refinements. We computed average PDSs

for a number of BHBs and NSBs. A single PDS was obtained for each observation

by periodogram averaging and Poisson subtraction using the new deadtime model

and without any fitting. The BHB observations were classified by X-ray state and

luminosity relative to their X-ray state. For each BHB, all of the PDSs belonging

to a given X-ray state and luminosity were averaged. The NSBs chosen belong to

the high-luminosity class known as “Z sources”, which are named for the shape of

the tracks they exhibit in plots of hardness colour versus luminosity (van der Klis

2006). For each Z source, we averaged PDSs from each of the three branches of the

“Z”, called the horizontal branch, normal branch, and flaring branch, where this list

is given in order of increasing mass accretion rate, under current interpretations.

We should comment on the difficulty of establishing cut-off frequencies in PDSs by

quantitative means. As we noted in Section 1.3, cut-off frequencies in source PDSs are

strongly sensitive to the deadtime model used for Poisson subtraction. If the deadtime

model is perfect, the power should be essentially zero above the cut-off frequency,

with positive and negative fluctuations about zero within the statistical uncertainty.

However, small systematic errors in the deadtime model can shift the level of true zero

power and complicate the determination of cut-off frequencies. At the required level
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of accuracy, even the improved deadtime model is vulnerable to systematic errors. A

number of known sources of systematic error were discussed in Chapter 6. Of these

known effects, the error due to the non-stationarity of astronomical X-ray sources is

especially important since it affects nearly all sources to some degree. In addition,

the model inevitably does not take into account other as-yet-unidentified effects, e.g.

non-ideal behaviour in the gas chamber or analog electronics.

True zero power may also be obscured by finite-length effects in Fourier trans-

form analysis. The finite length of transformed data segments leads to smearing of

features in the PDS. In particular, if the true PDS falls to zero beyond a cut-off

frequency, the observed PDS will decay as f−2 instead. In principle, cut-off frequen-

cies could be detected by plotting the PDS on a logarithmic scale and searching for

breakpoints where the slope becomes −2. However, except for the hard state, regions
with −2 slope are not particularly common in practice and may not extend over a
wide enough frequency range to be conclusive. In recognition of the difficulties of

quantitative analysis, we follow Sunyaev & Revnivtsev in determining high-frequency

cut-offs graphically.

We begin by comparing PDSs from the three BHB states: thermal, hard, and

steep power-law (SPL). In the left panel of Figure 7-1, we present PDSs for the BHB

XTE J1550-564 in all three states. In the right panel, we show PDSs for the BHB

GRO J1655-40 in the thermal and SPL states, and for the BHB GX 339-4 in the hard

state. In both panels, the thermal state is represented by a dashed line, the hard

state by a dotted line, and the SPL state by a solid line. RMS normalization is used

throughout this chapter.
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Figure 7-1: Comparison of PDSs from the three BHB X-ray states for XTE J1550-
564 (left panel), GRO J1655-40 (right panel, thermal and SPL states) and GX 339-4
(right, hard state). The X-ray states are represented by the following line types:
thermal (dashed), hard (dotted), and SPL (solid).

The hard state is distinguished as having the highest power at low frequencies.

Beginning at several Hz in the PDS of XTE J1550-564, the continuum power is seen

to decay with a logarithmic slope near −2. The PDS of GX 339-4 also has a slope

close to −2 from ∼ 50 Hz to 200 Hz, and contains gaps above 200 Hz that indicate

negative fluctuations in the source power. These observations suggest a relatively low

cut-off to the substantial low-frequency power of the hard state.

The PDSs for the thermal state are smoothly decaying for the most part. In

contrast, the PDSs for the SPL state are more varied and change slope often. They

contain a number of QPOs, both at lower frequencies in the vicinity of 10 Hz, and at

higher frequencies in the tens and hundreds of Hz. In general, the SPL state has the

strongest high-frequency content in the range 10 Hz to 1 kHz, assuming that the −2
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slopes of the hard state are finite-length artifacts. It is difficult to determine whether

or not the continuum power extends beyond 1 kHz in the SPL state as the amplitudes

become comparable to the statistical uncertainty.

The PDSs of Z sources in different branches also appear to differ in systematic

ways, as seen in Figure 7-2. The left panel features the Z source GX 17+2 while the

right panel features GX 5-1, a source familiar from Section 5.2. In both panels, the

horizontal branch is represented by a dotted line, the normal branch by a solid line,

and the flaring branch by a dashed line.

Figure 7-2: Comparison of PDSs from the three Z source branches for GX 17+2 (left
panel) and GX 5-1 (right panel). The branches are represented by the following line
types: horizontal (dotted), normal (solid), and flaring (dashed).

The horizontal branch for Z sources tends to exhibit more high-frequency power

than the other two branches. On the other hand, the flaring branch possesses slightly

more low-frequency power, i.e. for f < 0.1 Hz. Nevertheless, there is more qualitative

similarity among Z source branches than among BHB states. In particular, QPOs
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are present in similar locations for all three branches.

We now compare the PDSs of BHBs with those of NSBs. With three BHB X-

ray states and three Z source branches, there are certain combinations of states and

branches where NSBs consistently have greater high-frequency power than BHBs.

One such combination is the BHB thermal state and the Z source horizontal branch,

shown in Figure 7-3. The left panel compares XTE J1550-564 with GX 17+2, while

the right panel compares GRO J1655-40 with GX 5-1. The BHBs are represented

using solid lines and the NSBs using dashed lines. In both cases, the NSB PDSs are

clearly higher and contain more features above 10 Hz than the BHB PDSs. Figure

7-3 supports the conclusion of Sunyaev & Revnivtsev (2000) for this combination of

states.

Figure 7-3: Comparison of PDSs from BHBs in the thermal state (solid) and NSBs in
the horizontal branch (dashed): XTE J1550-564 vs. GX 17+2 (left panel) and GRO
J1655-40 vs. GX 5-1 (right panel).

However, there also exist combinations of states where the comparison is inconclu-
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sive. Figure 7-4 compares the same set of BHBs and NSBs as in Figure 7-3, but with

the BHBs in the SPL state. As before, XTE J1550-564 and GX 17+2 are depicted

in the left panel, GRO J1655-40 and GX 5-1 are depicted on the right, the BHBs are

represented by solid lines, and the NSBs by dashed lines.

Figure 7-4: Comparison of PDSs from BHBs in the SPL state (solid) and NSBs in
the horizontal branch (dashed): XTE J1550-564 vs. GX 17+2 (left panel) and GRO
J1655-40 vs. GX 5-1 (right panel).

It is very difficult to distinguish between the BHB and NSB PDSs in Figure 7-

4. Both contain features and significant continuum power out to at least 1 kHz

and possibly beyond. We conclude therefore that the high-frequency cut-off criterion

of Sunyaev & Revnivtsev (2000) cannot be extended to the SPL state of BHBs.

More generally, any comparison between the PDSs of BHBs and NSBs needs to be

cognizant of the X-ray state of the BHB and, to a lesser extent, the state of the NSB.

Conclusions drawn from such comparisons may have to be qualified in ambiguous

cases as exemplified by Figure 7-4. Since state definitions require considerations of
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energy spectra and/or evolution of timing properties on a colour-intensity diagram,

we conclude that BHB versus NSB classifications in general cannot be ascertained

solely on the basis of PDS measurements.
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