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Abstract

The Radiometric Camera-by-Camera Cloud Mask (RCCM) is archived at the NASA Langley Distributed Active Archive Center as one of the
standard products from the Multi-angle Imaging SpectroRadiometer (MISR) mission. The RCCM algorithm applied over land surfaces uses an
Automated Threshold Selection Algorithm (ATSA) to derive thresholds that are applied to a cloud masking test to determine whether a given
image pixel is clear or contains cloud. In this article, we established a framework for the selection of ATSA and the cloud masking tests, which is
not only suitable for the RCCM over land, but cloud detection for other satellite missions. Using this framework, we have undertaken the largest
comparison of existing histogram-based ATSAs (16 in total) and applied them to four cloud masking tests that can be constructed from the MISR
radiances, namely the red channel bidirectional reflectance function (BRF), the standard deviation (STDV) of the red channel BRF, the normalized
difference vegetation index (NDVI), and a parameter D that is constructed by optimizing the information from NDVI and red channel BRF for
cloud detection. The cloud masking tests and ATSAs are applied to 35 MISR scenes from six snow-free land surface types. To evaluate their
performance, reference cloud masks are constructed for the 35 scenes using interactive, supervised learning, visualization software. Independent of
the ATSA and as a single cloud masking test, D performed the best in terms of having the lowest misclassification rate using the best possible
threshold, the highest bimodal rate in the shape of the histograms derived from the 35 scenes, and the least sensitivity to errors in the choice of
threshold. Of the 16 ATSAs, the methods of Li and Lee [Li, C.H., and Lee, C.K., (1993). Minimum cross-entropy thresholding. Pattern
Recognition, 26(4), 617-625.] and Pal and Bhandari [Pal, N. R., and Bhandari, D., (1993). Image thresholding: some new techniques. Signal
Processing, 33, 139–158.] performed the best when applied to D, with essentially unbiased performance and a root mean square of 15% when
compared to cloud masks using the best possible thresholds. It is recommended that increased performance of the RCCM-land algorithm can be
had through an increase in the space–time sampling used to generate histograms of D and the addition of a STDV cloud masking test to improve
the detection of small cumulus clouds.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Multi-angle Imaging SpectroRadiometer (MISR) in-
strument was launched into a 705-km earth orbit on December
21, 1999, on board NASA's Terra spacecraft. It views the Earth
with radiometers placed at nine different angles ranging from
−70.5° to 70.5° along the orbital track, making measurements
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of scattered solar radiation from the Earth at four spectral bands
centered at 446 nm, 558 nm, 672 nm and 866 nm at a spatial
resolution of 275 m–1100 m (Diner et al., 2002). The measured
radiances are converted to surface, cloud and aerosol properties
that are used to improve our understanding of the climate
system (e.g., Diner et al., 1998). Like most other meteorological
satellite instruments, a cloud mask is required to label pixels as
either clear or cloudy before other geophysical products could
be derived (e.g., Rossow, 1989). Given that a cloud mask
depends on line-of-sight (e.g., Zhao & Di Girolamo, 2004),
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MISR requires nine separate cloud masks, one for each camera.
To meet this requirement, the NASA Langley Distributed
Active Archive Center (DAAC) produces a cloud mask product
for MISR called the Radiometric Camera-by-Camera Cloud
Mask (RCCM).

The MISR RCCM algorithm is described in its Algorithm
Theoretical Basis Document (Diner et al., 1999). The algorithm
is divided into ocean and land components, depending on the
surface being viewed by a MISR camera. As is customary in
most cloud detection algorithms, a series of thresholding tests
are employed (e.g., Ackerman et al., 1998; Rossow & Garder,
1993; Saunders & Kriebel, 1988; Stowe et al., 1999). For
example, if the pixel value XNThreshold, then the outcome of
this test is one class (e.g., “cloudy”); otherwise it is the other
(e.g., “clear”). We will refer to X throughout this article as the
“observable”. Thresholds for the ocean tests are static and
depend only on the sun-view geometry at the time of
observation. Further detail on the RCCM-ocean algorithm and
performance can be found in Zhao and Di Girolamo (2004).
Over land, however, thresholds will also depend on location and
time of year because of the variability of the surface. It was
concluded before launch that static thresholds with the few
observables that can be constructed from the MISR channels
would lead to a poor RCCM over land (Di Girolamo, 1996). To
overcome this problem, a dynamic thresholding approach was
proposed where the thresholds would be a function of time in
addition to surface type, solar zenith angle, relative azimuth
angle and view angle. Specifically, the RCCM-land algorithm
implemented at the Langley DAAC and described in Diner et al.
(1999) divides the surface into 1580 contiguous surface types
within the Cloud Screening Surface Classifications (CSSC)
dataset, which is solely based on theWE1.4D version of Olson's
global ecosystem database (NOAA-EPA Global Ecosystems
Database Project, 1992). The solar zenith angle and relative
azimuth angle are divided into 10 and 12 bins, respectively. A
histogram of an observable is constructed for each camera,
season, CSSC, solar zenith angle and relative azimuth angle bin.
Thresholds are derived from these histograms using an
automated threshold selection algorithm (ATSA) that is suitably
fast for satellite data processing on a global scale. The thresholds
are then used during the reprocessing of the MISR datasets. For
the RCCM-land algorithm to work well, it is crucial to select a
good observable used for the cloud detection test and a good
ATSA.

The purpose of this article is to justify the choice of the
observables and the ATSA used by the RCCM-land algorithm.
In so doing, we undertake the largest comparison of ATSAs
applied to cloud detection on satellite imagery. The choice of
observable and ATSA may also be used to improve cloud
detection for other satellite missions carrying similar channels
to MISR. We emphasize that this article is not a validation of the
RCCM-land algorithm. Validation is currently underway with
updates available through the Langley DAAC's website.

This article is organized as follows. In Section 2, information
is given on the data used in this research. Section 3 investigates
the suitability of four candidate observables constructed from
MISR data for cloud detection. Sixteen automated thresholding
algorithms are selected from the literature and a comparison of
their cloud detection performances as applied to the four
candidate observables is done in Section 4. The conclusions are
summarized in Section 5.

2. Data

2.1. MISR scenes

To test candidate observables and ATSAs on MISR data, the
following criteria for scene selection are employed: (1) the
selected scenes should represent typical snow-free surface types
since the RCCM-land algorithm is meant to detect clouds over
snow-free land surfaces, and (2) all chosen scenes must be
partially cloudy (0%bcloud fractionb100%), otherwise thresh-
olds can not be uniquely determined. A total of 35 scenes were
selected over the following six representative surface types: (1)
Eastern Saharan Desert, (2) Saharan Grass, (3) Brazilian
Tropical Rain Forest, (4) Southeast US Mixed Trees and
Crops, (5) East China Farmland and Settlements, and (6)
Argentinian Farmland and Settlements. The chosen scenes are
listed in Table 1. All 35 scenes are 256×256 pixels in size to
ensure the scene is of an uniform surface type as defined in the
CSSC dataset, while at the same time providing enough data to
form a statistically representative histogram. In order to match
the 1.1 km resolution of the MISR cloud mask, the selected
scenes have a pixel size of 1.1 km. All scenes were derived from
MISR's nadir camera.

2.2. Reference cloud mask

A major problem facing satellite cloud detection is the lack of
truth to compare against (e.g., Di Girolamo & Davies, 1997).
According to the Glossary of Meteorology (American Meteoro-
logical Society, 2000), cloud is defined as “a visible aggregate of
minute water droplets and/or ice particles in the atmosphere above
the earth's surface”. What constitutes “visible” depends on the
observing instruments and many other observing conditions, such
as sun-view geometry and surface type. An accepted practice in
evaluating the performance of an automated cloud mask is to use
an expert analyst to interpret the satellite imagery in terms of clear
and cloudy regions (e.g., Berendes et al., 2004; Stowe, 1984).
Although it is not practical to visually inspect the satellite images
and label each pixel as clear or cloudy for the entireMISRmission,
it is possible to do so on the limited number of scenes given in
Table 1. In this study, we used visualization software developed at
the Jet Propulsion Laboratory (JPL) called PixelLearn as a means
of deriving a supervised reference cloud mask for assessing the
quality of candidate observables and ATSAs.

PixelLearn is an interactive tool designed to assist the user in
quickly creating discrete labels of all pixels in a multispectral
image. The supervised classification algorithm used is a highly
optimized implementation of Support VectorMachines (Cortes &
Vapnik, 1995). This software uses asmany as hundreds of features
(observables) from each pixel, incorporating multiple spectral
channels and neighboring pixels for context, to distinguish cloudy
from clear (Garay et al., 2005; Mazzoni, 2005).



Table 1
The list of scenes used in this study

Scene no. Surface type1 Cloud fraction2 Central latitude3 Central longitude4 Orbit no.5 Date

1 Eastern Sahara Desert 0.15 23.1 28.6 13048 Jun. 01, 2002
2 Eastern Sahara Desert 0.16 28.1 28.3 12684 May 07, 2002
3 Eastern Sahara Desert 0.10 26.9 26.5 12320 Apr. 12, 2002
4 Eastern Sahara Desert 0.49 26.9 23.4 12291 Apr. 10, 2002
5 Saharan Grass 0.36 8.1 25.3 7689 May 29, 2001
6 Saharan Grass 0.30 9.4 24.0 7791 Jun. 05, 2001
7 Saharan Grass 0.62 9.4 22.5 8126 Jun. 28, 2001
8 Saharan Grass 0.57 8.1 16.0 8068 Jun. 24, 2001
9 Saharan Grass 0.52 8.1 14.5 8170 Jun. 01, 2001
10 Brazilian tropical rain forest 0.90 0.6 −64.6 8144 Jun. 29, 2001
11 Brazilian tropical rain forest 0.86 0.6 −67.7 8348 Jul. 13, 2001
12 Brazilian tropical rain forest 0.92 0.6 −69.2 7751 Jun. 02, 2001
13 Brazilian tropical rain forest 0.64 −4.4 −70.0 8217 Jul. 04, 2001
14 Brazilian tropical rain forest 0.79 −4.4 −71.5 8319 Jul. 11, 2001
15 Brazilian tropical rain forest 0.85 −5.6 −73.3 8188 Jul. 02, 2001
16 Brazilian tropical rain forest 0.89 −4.4 −73.1 8421 Jul. 18, 2001
17 Brazilian tropical rain forest 0.95 −5.6 −74.9 8290 Jul. 09, 2001
18 Brazilian tropical rain forest 0.91 −3.1 −75.9 7926 Jun. 14, 2001
19 Brazilian tropical rain forest 0.68 −3.1 −75.9 8159 Jun. 30, 2001
20 Brazilian tropical rain forest 0.72 −5.6 −78.0 8028 Jun. 21, 2001
21 Brazilian tropical rain forest 0.88 −4.4 −63.8 8042 Jun. 22, 2001
22 Southeast US mixed trees and crops 0.30 33.1 −90.7 8058 Jun. 23, 2001
23 Southeast US mixed trees and crops 0.96 34.4 −91.9 8160 Jun. 30, 2001
24 Southeast US mixed trees and crops 0.84 34.4 −93.4 8029 Jun. 21, 2001
25 Southeast US mixed trees and crops 0.53 35.6 −96.1 7767 Jun. 03 2001
26 Southeast US mixed trees and crops 0.12 34.4 −96.5 8466 Jul. 21, 2001
27 East China farmland and settlements 0.44 33.1 119.3 7700 May 30, 2001
28 East China farmland and settlements 0.78 34.4 115.1 8472 Jul. 22, 2001
29 East China farmland and settlements 0.92 35.6 113.9 7642 May 26, 2001
30 East China farmland and settlements 0.40 34.4 113.5 8108 Jun. 27, 2001
31 East China farmland and settlements 0.30 35.6 113.9 8341 Jul. 13, 2001
32 Argentina farmland and settlements 0.67 −31.9 −57.9 7925 Jun. 14, 2001
33 Argentina farmland and settlements 0.18 −31.9 −57.9 8158 Jun. 30, 2001
34 Argentina farmland and settlements 0.67 −35.6 −60.6 8493 Jul. 23, 2001
35 Argentina farmland and settlements 0.96 −31.9 −62.6 8464 Jul. 21, 2001

1Name designation based on Olsen (NOAA-EPA Global Ecosystems Database Project 1992) dataset from which the MISR CSSC dataset was derived.
2Based on the reference cloud masks (see Section 2.2).
3Positive latitude represents northern hemisphere and negative latitude represents southern hemisphere.
4Positive numbers represent eastern longitude and negative numbers represent western longitude.
5Orbit number designation used by EOS-Terra.
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Because PixelLearn allows man–machine interaction at the
pixel level, we can make the results generated by this software
as close to visual interpretation as possible by correcting the
misclassified pixels. We subjectively estimate that the classifi-
cation error between visual inspection and the final reference
mask is b5% for all 35 scenes. As an example, Fig. 1 shows the
RGB image and its reference cloud mask for Scene 5. The scene
contains small cumulus, thin cirrus, and patches of bright
surfaces that are difficult to distinguish from the red channel
alone, all of which are detected very well, at least through visual
inspection, by the reference cloud mask.

3. Quality of observables

3.1. Observable construction

The observable and the algorithm used in a dynamic
thresholding scheme are two fundamental factors that determine
the quality of the cloud mask. The quality of an observable
includes two aspects: (1) observable sharpness: a good
observable would correctly reflect the cloud field, such that a
single threshold exists to separate clear and cloudy regions; and
(2) threshold sensitivity: for a good observable, a small shift
from the best possible threshold should not change the cloud
fraction dramatically.

The number of observables that can be constructed from
MISR data is limited because of the fact that it only has four
channels, none of which measures wavelengths over 1 μm. We
compare four candidate observables that can be constructed
from the MISR channels and have been used in other cloud
detection research. They are:

(1) R670, the bidirectional reflectance factor (BRF) of the red
channel, is defined at the top of the atmosphere as:

R670 ¼ pL670
l0F0



Fig. 2. Average minimum cloud mask error for the four observables.

Fig. 1. (a) RGB image for Scene 5; (b) Reference cloud mask generated with PixelLearn.
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where L670 is the spectral radiance recorded in the red band, μ0
is the cosine of the solar zenith angle and F0 is the solar spectral
irradiance at the top of the atmosphere. Due to the low
reflectance of the red channel over land, especially over
vegetated land, the images from this channel usually have a
relatively dark background when compared to clouds. For this
reason, the BRF or other measures of reflectance in the red
channel are widely adopted in cloud detection schemes (e.g.,
Ackerman et al., 1998; Baum & Trepte, 1999; Stowe et al.,
1999).

(2) The Normalized Difference Vegetation Index (NDVI) is
defined as:

NDVI ¼ R865−R670

R865 þ R670

where R865 is the top of atmosphere BRF of the near infrared
channel. Over most snow-free land surfaces, especially
vegetated surfaces, R865NR670 (e.g., Liang, 2004), making
NDVIN0 over clear sky land. However, over clouds, R865 and
R670 are very close to each other, making NDVI∼ 0. The NDVI
or other similar vegetation indices that use R865 and R670 are
popular choices for cloud detection (e.g., Ackerman et al., 1998;
Lee et al., 2001; Stowe et al., 1999).

(3) The D observable is defined as: D= |NDVI|b /R670
2 . This

observable was introduced by Di Girolamo and Davies (1995)
for cloud detection, where the parameter b is chosen to
maximize the separation between clear and cloudy pixels based
on principle components analysis. b depends on the underlying
surface type, which are coarsely divided into sparsely vegetated
surfaces (e.g., deserts) with b=2.0 and vegetated surfaces (e.g.,
rain forests) with b=0.65. In this study, b=2.0 is used for Scene
#1–4 (Table 1) and b=0.65 is used for the rest.

(4) The standard deviation (STDV) of the sixteen 275 m-
resolution red channel pixels within a 1.1 km area is also a
candidate for cloud detection. Using STDV as an observable is
based on the assumption that the spatial variations associated
with cloudy pixels are higher than that associated with clear
pixels (e.g., Stowe et al., 1999).
3.2. Observable sharpness

For a given scene having a total of N pixels, let Nd(t) be the
number of pixels that are labeled differently by the reference
(“truth”) cloud mask and the cloud mask generated by applying
threshold, t, to the observable for the scene. The best threshold,
tbest for the scene is the one that minimizes Nd(t):

tbest ¼ min
t
fNdðtÞg 8 t ¼ fmin;

: : :; fmax

where fmin to fmax are the minimum and maximum values of the
observable in the image, respectively.

The minimum cloud mask error, Emin, is simply:

Emin ¼ NdðtbestÞ
N

If the image of an observable for a given scene has perfect
sharpness (i.e., a threshold would exist that could separate all
the cloudy pixels from the clear pixels), then Emin would be 0,
which hardly happens in practice.

Fig. 2 shows the average Emin of all 35 selected scenes, as
well as the average Emin of the scenes grouped by surface type,
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for each of the four observables. Among the four observables,D
gives the overall best result with an average Emin=6.7%, with
all surfaces having an Eminb10%. The average Emin for R670,
NDVI and STDV are 7.5%, 8.6% and 12.1% respectively. The
R670 makes a good observable over vegetated land (Groups 2 to
6), but performs poorly over the desert area (Group 1). The
NDVI performs more poorly compared to R670, except over
desert surfaces. STDV is not good for cloud detection by itself
because it gives large Emin for all surface types; however, we
will see below that it has the potential for enhanced detection of
small cumulus.

Contributions to Emin may come from three sources: (1) the
reference masks themselves are not perfect as they are
subjectively derived (see Section 2.2); (2) surface heterogeneity
may cause clear pixels in one part of the image to be brighter
(for R670 and STDV images) or darker (for D and NDVI
images) than those thin or partially cloudy pixels in another part
of the image (e.g., as discussed in Rossow & Garder, 1993), and
(3) for STDV images, spatially uniform clouds and spatially
heterogeneous surfaces exist in the same image. The latter two
are shown in Fig. 3 for the scene displayed in Fig. 1, where we
see that the misclassification comes from the thin cloud pixels,
Fig. 3. Classification differences between the reference cloud mask and the cloud mas
the reference cloud mask labels it cloudy while the thresholded image labels it cle
agreement. (a) R670, (b) NDVI, (c) D, and (d) STDV.
cloud edge pixels, small cumulus pixels and clear pixels over
bright surface. However, unlike the other three observables, for
which some small cumulus clouds go undetected, the thresh-
olding result of STDV (Fig. 3(d)) does detect them. The
undetected small cumulus clouds are shown as black dots on the
middle and lower-right parts of Fig. 3(a), (b) and (c), while the
misclassification is much smaller on the same parts of Fig. 3(d).
This indicates that higher accuracy might be achieved by
combining D and STDV.

3.3. Threshold sensitivity analysis

Threshold sensitivity refers to the cloud fraction change
corresponding to a small shift to the best threshold tbest. Low
sensitivity is desirable for a good observable. As the basis of
sensitivity analysis and thresholding algorithm comparison, a
128-bin histogram of each observable is constructed for each
scene in Table 1. To avoid the skewness caused by outliers,
histograms are constructed by minimizing the dynamic range of
the observable while keeping 98% of the data.

A sensitivity analysis is done on the 128-bin histogram by
moving the thresholds away from the best threshold bin by bin
k generated by applying tbest for Scene 5. The black points represent pixels where
ar. The white points are the other way around. Grey areas are where there is



Fig. 4. Threshold sensitivity of the four observables averaged over all 35 selected.
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in order to observe the corresponding change of cloud fraction.
Fig. 4 gives the average result for all the scenes. The threshold
sensitivity of each observable is represented by the slope of each
individual line near tbest. A large slope represents a more
dramatic change in cloud fraction accompanying a threshold
shift. From Fig. 4, both D and NDVI show the quality of a good
observable by having the lowest sensitivity among all the
observables.

The sensitivity of the observables could be explained by the
difference of their histogram shapes. Fig. 5 displays an example
of how histogram shapes differ for different observables. It
shows that D puts cloudy pixels tightly together on the left hand
side of the histogram, which is the reason why it has the lowest
Fig. 5. Histograms of Scene 16 for (a) R670, (b) NDVI, (c) D, and (d) STDV. T
threshold sensitivity. Physically, this property of D could be
seen from its definition: D= |NDVI|b /R670

2 . For cloudy pixels,
NDVI is small and R670 is large, which results in very small D
values. On the other hand, for clear pixels NDVI is large and
R670 is small, which results in large, variable D values. Thus the
histogram of D is relatively flat around tbest, making it less
sensitive to the choice of threshold.

Based on the analysis of Emin and threshold sensitivity, it
would appear that D is better suited for cloud detection over
snow-free land surfaces as compared to R670, NDVI, and STDV.
However, this is no guarantee that an automated threshold
selection algorithm (ATSA) will work well with this observable,
because the performance of an ATSA depends strongly on the
data to which it is applied (e.g., Pal & Pal, 1993).

4. ATSA comparison

4.1. Histogram-based ATSAs

A desirable ATSA should select a threshold that minimizes the
misclassification of clear and cloudy pixels. Theoretically, if the
distributions of cloudy and clear pixels are known, then the
optimal threshold could be determined according to Bayes' rule
(e.g., Schowengerdt, 1997). In reality, however, only the combined
distribution, the histogram, is known. Parametric techniques tend
to fit the histogram with two distributions— one for clear and one
for cloudy (e.g., Strahler, 1980). Non-parametric techniques, on
the other hand, make no assumptions about the probability
distribution and are often considered more robust (e.g., Schowen-
gerdt, 1997). Although a huge number of algorithms exists in the
published literature, few efforts have been spent on their evaluation
(e.g., Zhang, 1996), and no research has been done on comparing
their performance when applied to satellite cloud detection.
he bold solid line in each frame is the best threshold for that observable.



Table 2
Automated threshold selection algorithms selected for this study

Number Method Category

1 Otsu (1979) Discriminant analysis
2 Rosenfeld and De La Torre (1983) Minimum error
3 Kapur et al. (1985) Entropy-based
4 Tsai (1985) Moment preserving
5 Kittler and Illingworth (1986) Minimum error
6 Whatmough (1991) Minimum error
7 Pal and Dasgupta (1992) Fuzziness theoretic
8 Li and Lee (1993) Entropy-based
9 Pal and Bhandari (1993) Minimum error
10 Huang and Wang (1995) Fuzziness theoretic
11 Simpson and Gobat (1995) Discriminant analysis
12 Yen et al. (1995) Maximum correlation
13 Brink and Pendock (1996) Entropy-based
14 Pal (1996) Minimum error
15 Sahoo et al. (1997) Entropy-based
16 Tobias and Seara (2002) Fuzziness theoretic
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Most of the popular ATSAs could be categorized into the
following groups: minimum error method, entropy-based method,
fuzziness theoretic method and discriminant analysis method (for a
review, see Pal&Bhandari, 1993; Sahoo et al., 1988). The common
feature of these methods is that all of them need to construct one or
more criterion functions based on the histogram. Depending on the
algorithm, the threshold is set in such a way that the criterion
function(s) are minimized, maximized, or unchanged. Minimum
errormethods define the threshold as the point where the possibility
of misclassification is minimum, which could be done by assuming
the distributions of the background and the object or by finding the
deepest concavity point of the histogram. Entropy-based methods
originate from information theory. This group of methods set
thresholds by eithermaximizing the total entropy of the background
and the object or by minimizing the cross-entropy between the
images before and after thresholding. Fuzziness theoretic techni-
ques construct criterion functions based on fuzzy set theory, which
could be done byminimizing the distance between the fuzzy image
(before thresholding) and the crisp image (after thresholding).
Discriminant analysis methods find thresholds by maximizing
either the between class variance or the Euclidean distance of the
two classes. There are some methods that do not fall clearly in any
one of the above categories, such as the Tsai (1985) method, which
finds thresholds by keeping the first three moments of the image
unchanged, and the Yen et al. (1995) method, which selects
thresholds by maximizing the total amount of correlation of the
background and the object. Even though the criterion functions of
these algorithms look very different, several of them are interrelated
(Yan, 1996).

To find the appropriate automated thresholding procedure for
MISR's RCCM scheme, we select representative algorithms from
the literature for the comparison. The following criteria are
employed in the selection: (1) the technique should be a
histogram-based technique suitable for the MISR cloud detection
approach and processing load, and (2) the technique should exist in
the refereed literature within a full article. Based on this, 16
algorithms are chosen and they are listed in Table 2. The criterion
functions usedby these algorithms are summarized in theAppendix.

4.2. ATSA performances

The ATSA and the observable to which the ATSA is applied
are two key parts of a cloud detection scheme. An ATSA may
work well on the images of certain observables and not work well
on others (e.g., Pal & Pal, 1993). To compare their performances,
each algorithm is applied to all four observables for each selected
scene. The resulting cloud fraction of each automated threshold
image is compared with the cloud fraction of their individual best
threshold image. We did not compare the automated threshold
image to the reference threshold image because we are testing the
ability of eachATSA in putting thresholds at the best position for a
given histogram.

Fig. 6 shows the average bias and the Root Mean Square
(RMS) of the biases of the cloud fraction derived from the
automated threshold when compared to the best threshold image
of all 35 scenes. A positive bias means the algorithm tends to
overestimate the cloud fraction while a negative one means the
opposite. As shown in Fig. 6, all the algorithms tend to
underestimate the cloud fraction when applied to the obser-
vables of R670, NDVI and STDV when averaged over all 35
scenes. The results for D are generally better with the biases
oscillating around zero. The best results would be the
observable-ATSA combination that gives the smallest absolute
bias with the smallest RMS values. Fig. 6 shows that ATSA No.
8 and 9, which are the Li and Lee (1993) method and the Pal and
Bhandari (1993) method, applied to D give the best results with
a mean bias b1% and an RMS∼15%.

From the data studied here, the combination of either Li and
Lee method (1993) or the Pal and Bhandari (1993) method with
the D observable would be a desirable choice for an automated
threshold selection scheme. However, the 15% RMS indicates
that not every scene is equally satisfactory and other algorithms
may perform better for certain scenes. The worst case for both the
Li and Lee method and the Pal and Bhandarumethod is Scene no.
26, which was taken over the surface type “Southeast US Mixed
Trees and Crops” on July 21, 2001. Based on the reference cloud
masks, this scene had the lowest cloud fraction of all scenes over
vegetated surfaces. The cloud fraction bias is 53% for the Li and
Lee method and 54% for the Pal and Bhandaru method. Fig. 7
gives its histogram and the positions of the best threshold and the
threshold calculated from the Li and Lee method. Clearly, the Li
and Lee method missed the signal of the first mode because of its
narrowness, which caused a large overestimate of the cloud
fraction of the scene. This low cloud fraction case may be
indicating that an increase in cloudy samples over vegetated
surfaces is required. Further discussion on this point is given in
Section 5. We noticed that when applied to this case, ATSA #6
(Whatmough, 1991) and #14 (Pal, 1996) did a good job with
cloud fraction biases 0% and 0.7% respectively, but the general
performance of these two methods are not as good as the Li and
Lee method and the Pal and Bhandaru method.

4.3. Separability analysis

To explain why ATSAs perform better when applied to
images of D, a separability analysis is performed. There are



Fig. 6. Biases in cloud fraction for each ATSA averaged over the 35 scenes. The dotted horizontal line is the zero bias line. The error bars show the root mean square of
the biases. Positive biases indicate that the ATSA tends to overestimate the cloud fraction while negative biases indicate that the ATSA tends to underestimate the cloud
fraction. The results are for (a) R670, (b) NDVI, (c) D, and (d) STDV.
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many different ways to define separability (Schowengerdt,
1997). One of the simpler measures of separability, s, is,

s ¼ jl1−l2j

where μ1 and μ2 are the means of the two classes. In this study,
μ1 and μ2 are the average bin numbers weighted by the
frequency of data falling in each bin of the two classes, which
are separated by the best threshold. Large values of s indicate
the clear and cloudy pixels are on average well separated, which
should allow for a good cloud mask using a single well placed
Fig. 7. The histogram of the D image for Scene no. 26, which was taken over the
land surface of the Southeast US Mixed Trees and Crops on July 21, 2001. The
bold dash line is the best threshold and the bold solid line is the threshold
selected with the Li and Lee (1993) method.
threshold. Fig. 8 gives the results of the separability analysis of
the four observables. The average of all scenes shows that D has
the largest separability with a value of 65, followed by NDVI,
R670, and STDV. This result is consistent with the general
performance of the ATSAs shown in Fig. 6.

Fig. 8 also gives the average separability of scenes over each
individual surface type. Due to the low contrast between clear
and cloudy pixels over desert areas for all observables,
separability for desert scenes are generally lower than other
groups. Again, D performs consistently better than other
observables over all groups.
Fig. 8. Results of separability analysis.
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The separability is directly related to the distribution of the
clear and cloudy pixels. Theoretically, if a remotely sensed
image consists of a homogeneous background and a homoge-
neous object, the distribution of the pixels, the histogram, could
be considered as a combination of two Gaussian or Poisson
distributions (e.g., Schowengerdt, 1997). In this case, the shape
of the histogram is bimodal, in which one mode represents the
background and the other represents the object. Most parametric
thresholding algorithms are based on this assumption. However,
for cloud detection over land, the heterogeneity of the surface
and the cloud makes this assumption largely untrue. Of the 35
scenes examined in this study, only five of the R670, 11 of the
NDVI, 15 of the D, and six of the STDV histograms are
bimodal. The low bimodal rate of R670 histograms indicates that
the clear and cloudy modes are not well separated, while the
higher bimodal rate ofD histograms suggests a better separation
of clear and cloudy modes.

5. Conclusion

In this article, a framework for ATSA and observable
selection was established and used to justify their choices
employed by the MISR RCCM over land. Even though this
research is done specifically for the MISR RCCM-land
algorithm, the result may be valuable to other satellite missions,
especially those with instruments having only a few spectral
solar channels. In this study, a thorough investigation is
performed on four observables and 16 ATSAs on 35 scenes
chosen from the MISR data over the Sahara Deserts, the
Saharan Grass, the Brazilian Tropical Rainforest, the Southeast
US Mixed Trees and Crops, the East China Farmland and
Settlements and the Argentinian Farmland and Settlements. To
the authors' knowledge, this represents the largest comparison
of ATSAs, not only for cloud detection, but in general. The
major conclusions of this study are as follows:

(1) Even if the best threshold was achieved for a single
observable, there would be a wide discrepancy between
reference cloud masks and the best thresholded images. If
we neglect the small amount of error that the reference
cloud masks may have, the discrepancy is mainly a result
of confusion between bright areas of the surface and the
thin or partially cloudy pixels. Among all four candidate
observables (R670, NDVI, D and STDV), D gives the
overall best result with an average minimum cloud mask
error 6.7%. Sensitivity analysis also shows that D is the
best choice in that it is least sensitive to small changes
from the best threshold.

(2) 16 ATSAs are selected for thresholding algorithm
comparison. Among them, the Li and Lee (1993) method
and Pal and Bhandari (1993) method, when applied to the
D observable, performed the best. The average differ-
ences between the automated thresholded cloud masks
and the best thresholded images derived from these two
methods are less than 1% with an RMS∼15%. The
superiority of D over the other observables was explained
by the separability analysis, which showed that D
observable has the largest separability among the four
observables.

(3) It has been widely assumed in image thresholding that
histograms are bimodal, in which one mode is for the
background and the other is the object. This assumption is
largely untrue in our study for clouds over snow-free
lands. In this study, only 14% of the R670 histograms are
bimodal. However, 43% of the D histograms are bimodal,
which suggests a more clearly defined threshold could be
achieved through the combination of information from
different spectral channels.

(4) Even though the overall performance of the standard
deviation (STDV) observable is not desirable, its ability
of detecting small cumulus cloud is superior compared to
the other three observables, which indicates that higher
cloud detection accuracy might be achieved by combin-
ing D and STDV.

Based on the above results, the authors recommend using the
Li and Lee or Pal and Bhandari method with D as the
observable for the MISR RCCM-land algorithm. STDV needs
to be considered in order to improve the detection of cumulus
clouds. To avoid the situation where ATSA misses a small
cloudy mode (cf. Fig. 7) due to an insufficient number of cloudy
pixels over vegetated land, an increase in sampling area or
sampling over time is recommended. These recommendations
have already been implemented in Version 3.3 of the RCCM-
land algorithm at the Langley DAAC, with the Li and Lee
(1993) method for the ATSA. The details on how these
recommendations were implemented (e.g., how to combine D
and STDV for final decision on labeling a pixel clear or cloudy)
is left to a separate article that the authors are currently
preparing on the full RCCM-land algorithm and the evaluation
of its performance over the globe.
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Appendix A

This appendix provides only a brief review of the 16
automated threshold selection algorithms (ATSAs) examined in
this study. A common feature of these ATSAs is that they
construct one or several criterion functions for selecting a
threshold based on a histogram of the observable. Thresholds
are found by minimizing, maximizing or keeping these criterion
functions unchanged. Only the criterion functions are defined in
this appendix, with their derivation and rationale left to their
source literature.

Let the number of observations within a histogram bin be
denoted by hi, i∈{1, …, n}, where n is the total number of bins
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that make up the histogram. In this review, the histogram is
normalized and regarded as a probability mass function, pi:

pi ¼ hiPn
i¼1

hi

Note that pi≥0 and
Pn

i¼1 pi ¼ 1.
The following mth order cumulative moments of the

histogram are used routinely throughout this appendix:

Mm
k ¼

Xk
i¼1

impi
M̄
m
k ¼

Xn
i¼kþ1

impi

The goal of an ATSA is to select a threshold, t∈{1, …, n},
that best divides the histogram into clear and cloudy categories.

1) Otsu (1979)
The Otsu method is based on discriminant analysis. The

optimal threshold is selected by maximizing the between class
variance, σB

2 , given by:

r2BðkÞ ¼
½M 1

nM
0
k −M

1
k �2

M 0
k ½1−M0

k �

The threshold t is chosen when:

r2BðtÞ ¼ max
1VkVn

r2BðkÞ

2) Rosenfeld and De La Torre (1983)
This method requires the construction of the convex hull of

the histogram:

ri ¼ max pi;max
l;m

pl þ i−l
m−l

ðpm−plÞ
� �� �

where any available (m, l) combination with 1≤ lb i, i≤mbn is
included.

The threshold t is selected at the deepest concavity point
where:

sðtÞ ¼ max
k

½rk−pk �

3) Kapur et al. (1985)
This method chooses the threshold t by maximizing the sum

of the entropy of the background and the object:

wðtÞ ¼ max
k

½Hb þ Hw�

where Hb and Hw are the entropy of the two categories:

Hb ¼ −
Xk
i¼1

pi
M 0

k

ln
pi
M 0

k

Hw ¼ −
Xn
i¼kþ1

pi

M̄
0
k

ln
pi

M̄
0
k

4) Tsai (1985)

The Tsai method is based on the moment preserving

principle in which the threshold is selected in such a way that
the first three moments of the image are kept unchanged before
and after the thresholding. The threshold t is set when:

M0
t ¼ ðz−M 1

n Þ
ðc21−4c0Þ1=2

where

z ¼ 1
2
½−c1 þ ðc21−4c0Þ1=2�

c0 ¼ M 1
nM

3
n−ðM 2

n Þ2
M 2

nM
0
n−ðM 1

n Þ2

c1 ¼ M 0
nM

3
n−M 1

nM
2
n

M 2
nM

0
n−ðM 1

n Þ2

5) Kittler and Illingworth (1986)
Based on the assumption that both of the background and the

object are normally distributed, this method constructs a
criterion function J(k), which reflects the amount of overlap
between the distribution of the background and the object:

JðkÞ ¼ M 0
k ln

r1
M 0

k

þ M̄
0
k ln

r2

M̄
0
k

where

r21ðkÞ ¼ ½Xk
i¼1

fi−M 1
k =M

0
kg2

pi�=M 0
k

r22ðkÞ ¼ ½ Xn
i¼kþ1

fi−M̄ 1
k=M̄

0
kg2

pi�=M̄
0
k

The threshold t is chosen when:

JðtÞ ¼ min
k

JðkÞ

6) Whatmough (1991)
This method could be regarded as a revised version of the

Rosenfeld and De La Torre (1983) method. Instead of
constructing the convex hull of the histogram, the exponential
hull is constructed:

Hi ¼ max pi;max
l;m

plexp
i−l
m−l

ðlnpm−lnplÞ
� �� �� �

Then threshold t is selected when:

rðtÞ ¼ max
k

½Hk−pk �



169Y. Yang et al. / Remote Sensing of Environment 107 (2007) 159–171
7) Pal and Dasgupta (1992)
This method constructs several fuzziness memberships,

which represent different opinions, and calculates the total
amount of ambiguity. The threshold is selected when the total
amount of ambiguity is minimized.

In our calculation, the following fuzziness memberships are
used:

l1 ¼
0 iba
i−a
c−a

� �2

aViVc

1 iNc

8><
>:

l2 ¼
0 iba

1− 1−
i−a
c−a

� �2

aViVc

1 iNc

8><
>:

l3 ¼

0 iba

2
i−a
c−a

� �2

aViVk

1−2
i−c
c−a

� �2

kbiVc

1 iNc

c−k ¼ k−a ¼ 4 is used in
the calculation

8>>>>>><
>>>>>>:

Let

dmn ¼ jlm−lnj

Tj ¼ min½lj; 1−lj�

The total amount of ambiguity is written as:

dðkÞ ¼ 1
n

Xn
i¼1

d12 þ d13 þ d23
4

þ T1 þ T2 þ T3
3

� �
pi

The threshold t is chosen when:

dðtÞ ¼ min
k

dðkÞ

8) Li and Lee (1993)
In this method, the expression of the cross-entropy between

the original image and the thresholded image is:

gðkÞ ¼
Xk
i¼1

ipiln
i

M1
k =M

0
k

� �
þ
Xn
i¼kþ1

ipiln
i

M̄
1
k=M̄

0
k

 !

The threshold is selected by minimizing the cross-entropy:

gðtÞ ¼ min
k

gðkÞ

9) Pal and Bhandari (1993)
This method is a revision of the Kittler and Illingworth

(1986) method. Instead of assuming that the background and the
object follow normal distributions, Pal and Bhandari assume
they follow Poisson distributions. The criterion function is
constructed as:

JðkÞ ¼ M 1
n =M

0
n−M

0
k ½lnM 0

k

þ ðM 1
k =M

0
k ÞlnðM 1

k =M
0
k Þ�−M̄

0
k ½lnM̄

0
k

þðM̄ 1
k=M̄

0
kÞlnðM̄

1
k=M̄

0
kÞ�

The threshold t is chosen when:

JðtÞ ¼ min
k

JðkÞ

10) Huang and Wang (1995)
The Huang and Wang method defines threshold by

minimizing the fuzziness index:

EðkÞ ¼
Xk
i¼1

½−lAðiÞlnðlAðiÞÞ−ð1−lAðiÞÞlnð1−lAðiÞÞ�pi

þ
Xn
i¼kþ1

½−lBðiÞlnðlBðiÞÞ−ð1−lBðiÞÞlnð1−lBðiÞÞ�pi

lAðiÞ ¼
1

1þ ji−M1
k =M

0
k j=C

lBðiÞ ¼
1

1þ ji−M̄ 1
k=M̄

0
k j=C

where C is a constant value such that

1
2
VlAðiÞV1

1
2
VlBðiÞV1

In our study, we choose C=n−1.

11) Simpson and Gobat (1995)
Simpson and Gobat used a simple adaptive threshold

selection procedure in their cloud detection effort. First, the
average of the histogram is calculated as the initial threshold,

t ¼ M 1
n =M

0
n

The means of the two groups of data created using this
threshold are calculated. The average of the means is used as a
new threshold:

tnew ¼ ½M 1
t =M

0
t þ M̄

1
t =M̄

0
t �=2

This process continues until the threshold remains constant.
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12) Yen et al. (1995)
This method finds the threshold by maximizing the total

amount of correlation provided by the thresholded image, which
is defined as:

TCðkÞ ¼ −ln
Xk
i¼1

pi
M 0

k

� �2

−ln
Xn
i¼kþ1

pi

M̄
0
k

 !2

The threshold is selected when:

TCðtÞ ¼ max
k

TCðkÞ

13) Brink and Pendock (1996)
This is another method that uses the principle of minimizing

cross-entropy to select threshold. They defined cross-entropy
as:

hðkÞ ¼
Xk
i¼1

piM
1
k ln

M 1
k

i

� �
þ
Xn
i¼kþ1

pi M̄
1
k ln

M̄
1
k

i

 !

The threshold t is chosen when:

hðtÞ ¼ min
k

hðkÞ

14) Pal (1996)
Pal used the assumption that both the background and the

object follow the Poisson distribution. These distributions could
be written as:

qAi ¼ e−M
1
k =M

0
k ðM 1

k =M
0
k Þi

i!
i ¼ 1; 2; N ; k

qBi ¼ e− M̄
1

k= M̄
0

k ðM̄ 1
k=M̄

0
kÞi

i!
i ¼ k þ 1; k þ 2; N ; n

Different with Li and Lee's definition, Pal defines the cross-
entropy as:

DðkÞ ¼
Xk
i¼1

pi
M 0

i

ln
pi

M0
i q

A
i

� �
þ
Xk
i¼1

qAi ln
M 0

i q
A
i

pi

� �

þ
Xn
i¼kþ1

pi

M̄
0
i

log
pi

M̄
0
i q

B
i

 !

þ
Xn
i¼kþ1

qBi log
M̄

0
i q

B
i
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The threshold is chosen when:

DðtÞ ¼ min
k

DðkÞ
15) Sahoo et al. (1997)
This method maximizes the total entropy of the background

and the object, which is defined as:

Hða; kÞ ¼ 1
1−a

ln
Xk
i¼1

pi
M 0

k

� �a

þ 1
1−a

ln
Xn
i¼kþ1

pi

M̄
0
k

 !a

Different α values would result in different thresholds. In our
calculation, three thresholds, t1, t2, and t3, are computed using
α values as 0.1, 0.9999 and 10 respectively. The optimal
threshold t is set by combining t1, t2, and t3 together with the
following formula:

t ¼ t1 M 0
t1 þ

b1x
4

� �
þ t2

b2x
4

þ t3 1−M 0
t3 þ

b3x
4

� �

x ¼ M 0
t3
−M 0

t1

where

ðb1; b2; b3Þ ¼
ð1; 2; 1Þ if ðjt1−t2jV5Þ and ðjt2−t3jV5Þ
ð1; 2; 1Þ if ðjt1−t2jN5Þ and ðjt2−t3jN5Þ
ð0; 1; 3Þ if ðjt1−t2jV5Þ and ðjt2−t3jN5Þ
ð3; 1; 0Þ if ðjt1−t2jN5Þ and ðjt2−t3jV5Þ

8>><
>>:

16) Tobias and Seara (2002)
This method creates two fuzzy subsets, A and B, on each end

of the histogram, [1,j] and [r,n]. In our calculation, we use j=10
and r=n−9. The membership functions, μA and μB are:

lA ¼

0 iba

2
i−a
c−a

� �2

aViVb

1−2fi−cÞ=ðc−aÞg2 bbiVc
1 iNc

8>>>><
>>>>:

lB ¼ 1−lA

where

b ¼

Ximax

i¼imin

ipi

Ximax

i¼imin

pi

c ¼ bþmaxfjb−imaxj; jb−iminjg

a ¼ 2b−c

and imax and imin are the upper and lower bound of the subset.
For a fuzzy set (X) with membership μ that has m supports,

the index of fuzziness is defined as:

wðX Þ ¼ 2
m

Xm
i¼1

jli− l̄ijpi
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l̄i ¼ 0; if lib0:5
1; if liz0:5

�

For each k∈ [j+1, r−1], the threshold is selected when:

xðtÞ ¼ min
k
½wðA [ kÞ−awðB [ kÞ�

where

a ¼ wðAÞ
wðBÞ
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