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Abstract

While nadir-viewing passive multispectral sensors have limited utility for characterizing the full dimensionality of forest canopies, multi-angle
remote sensors such as the Multi-angle Imaging SpectroRadiometer (MISR) may improve detection of canopy architecture, canopy cover, and leaf
area index (LAI) of forest canopy versus understory vegetation. Our objective was to determine whether data from the MISR sensor could improve
estimates of LAI across a post-fire ponderosa pine forest located in the Black Hills of South Dakota. We measured LAI during the 2002 and 2003
growing seasons and created continuous LAI maps using Landsat TM and ETM+ data (mean R2=0.81). We fit linear regression models of total
and canopy LAI, using a series of MISR at-nadir and off-nadir or anisotropic vegetation indices as predictor variables, for each of five sampling
periods. We found the best LAI model fits using either a new hotspot-adjusted normalized difference vegetation index, NDVIHS, NDVI calculated
from the −60° view angle, or NDVI at-nadir and either the Hotspot–DarkSpot Index (HDS) or the normalized difference anisotrophic index
(NDAX) (R2=0.56–0.91). However, differences in fits of these best models and those including NDVI at-nadir ranged from only 1 to 8%.
Reflectance anisotropy patterns related strongly to understory vegetation phenology. We found that the relationships among NDVI or the enhanced
vegetation index (EVI) and canopy or total LAI showed little variation across view angles when the understory vegetation was senesced and
significant anisotropy when understory green LAI was greatest. These findings demonstrate the value of multi-temporal measurements during
periods of understory phenological change, even if the overstory LAI is relatively stable. We also evaluated the performance of the MISR LAI
product and found moderate fits between the MISR LAI and our field- and Landsat-derived canopy LAI (R2=0.21–0.44).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Forest canopy structure significantly affects ecosystem
function by influencing light attenuation and water, trace gas,
and nutrient fluxes. As a result, there is a great need to map
changes in canopy structural attributes such as leaf area index
(LAI). While nadir-viewing passive multispectral sensors have
limited utility for characterizing the full dimensionality of forest
canopies, multi-angle remote sensors such as the Multi-angle
Imaging SpectroRadiometer (MISR) may improve detection of
canopy architecture, canopy cover, and LAI of forest canopy
versus understory vegetation (Asner et al., 1998). Indeed, multi-
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angle remote sensing has recently been used to detect forest
canopy structural features including forest cover density and
foliage clumping (Chen et al., 2003; Diner et al., 2005; Nolin,
2004; Widlowski et al., 2004). Because strong biochemical and
ecological gradients occur vertically within vegetation cano-
pies, extending these multi-angle studies to improve retrievals
of LAI may increase our ability to model ecosystem processes
across broad spatial extents.

LAI, the projected leaf area per unit ground area, changes
seasonally and with disturbances including fires, insect out-
breaks, and human management. LAI is directly related to
photosynthesis because of its influence on stomatal area and the
amount of photosynthetically active radiation absorbed (e.g.
Bonan, 1993; Gholz, 1982). It is thus a key state variable in
ecosystem process models related to forest productivity, nutrient
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cycling, and water balance (Aber et al., 1996; Waring &
Running, 1998; White et al., 2000). Numerous studies have
found strong relationships between LAI and remotely sensed
reflectance in the red and near-infrared (NIR) wavelengths, due
to absorption of radiation in the red wavelengths by chlorophyll
pigments and the strong reflectance of NIR wavelengths by leaf
mesophyll cells within green vegetation (Gates et al., 1965;
Gausman et al., 1973). Vegetation indices that capture this
contrast and that are commonly used to predict LAI include the
Normalized Difference Vegetation Index (NDVI) (Rouse et al.,
1974) and the Simple Ratio (SR) (Birth & McVey, 1968).
However, at-nadir, the relationship between LAI and spectral
vegetation indices often saturates at intermediate values of LAI.
The incorporation of shortwave infrared (SWIR) wavelengths
into these vegetation indices reduces the influence of open
canopies and soil background (Brown et al., 2000; Nemani
et al., 1993) and seems to diminish the vegetation index-LAI
saturation problem (Chen et al., 2002; Pocewicz et al., 2004; X.
Chen et al., 2005c).

Vegetation indices incorporating multiple view angles have
potential to further improve LAI estimation by better account-
ing for structural variation affecting LAI, such as foliage
clumping (Chen et al., 2003) and stand density (Johnson, 1994;
Nolin, 2004). The use of multiple view angles may also better
distinguish between canopy and understory vegetation due to
differences in which vegetation layers can be detected at-nadir
and off-nadir view angles and varying degrees of light scattering
and shadowing with differing amounts or phenology of
understory vegetation (e.g., Vierling et al., 1997). The shapes
of angular bidirectional reflectance factor (BRF) signatures
have been related to vegetation structure and shadowing within
pixels (Nolin, 2004; Pinty et al., 2002; Widlowski et al., 2004),
with low to moderate density tree canopies typically exhibiting
a bell-shaped angular signature in the red BRF across the solar
principal plane (Pinty et al., 2002) and a bowl-shaped pattern in
NDVI (Deering et al., 1994, 1999). Differences in angular
signature shapes in the red BRF have been found among
ponderosa pine (Pinus ponderosa) forests differing in density
by as little as 13 or 21% (Nolin, 2004). Because stand density is
one of the factors influencing LAI, one might also expect to see
differences in angular signature shapes associated with different
amounts of forest stand LAI. Using data from the POLDER
instrument, strong correlations were found between indices
quantifying reflectance anisotropy (the Hotspot–DarkSpot
(HDS) and Normalized Difference between Hotspot and
Darkspot (NDHD) indices) and a foliage clumping index that
is an important parameter for LAI calculation in conifer can-
opies (Chen et al., 2003; Lacaze et al., 2002; J. Chen et al.,
2005a). Another anisotropy index, ANIX, was found to be more
influenced by forest canopy characteristics than by soil and
background effects, which helped to discriminate boreal forest
cover types having different canopy shapes (Sandmeier &
Deering, 1999a). An anisotropic version of NDVI, the
Normalized Difference Anisotropic Index (NADX) calculated
from Advanced Solid-State Array Spectroradiometer (ASAS)
data, also improved discrimination of these forest cover types,
relative to NDVI (Sandmeier & Deering, 1999b). The potential
of these or similar anisotropy indices to improve LAI estimates
directly has not yet been evaluated.

Multi-angle remote sensing has already been applied to LAI
estimation on a global scale. LAI at 1.1 km spatial resolution is a
standard product of the multi-angle MISR sensor (Knyazikhin
et al., 1998a). In areas having vegetation cover, MISR data are
used to model LAI within each of six biomes: grasses and cereal
crops, shrubs, broadleaf crops, savanna, broadleaf forest, and
needleleaf (conifer) forest. LAI values are retrieved using
canopy models that vary with biome type, canopy structure, and
soil/understory reflectance through an algorithm using bihemi-
spherical reflectance (BHR), bidirectional reflectance factor
(BRF) and their uncertainties (Hu et al., 2003; Knyazikhin et al.,
1998b). The MISR LAI product has been validated across five
biomes in Africa (Hu et al., 2003). Although biomes were
misclassified in 80% of the pixels, 70% of the time the un-
certainties in MISR LAI associated with the misclassification
did not exceed uncertainties in the observations (Hu et al., 2003).
The MISR LAI product has not been validated within the coni-
fer forest biome, and local studies evaluating its performance are
generally lacking. Validation studies do not commonly include
areas affected by fire or other natural disturbance regimes;
however, fire effects on vegetation may be highly variable,
making disturbed landscapes valuable locations for such studies.

Thus, the objectives of our study were to: 1) create and
evaluate regional maps of LAI by scaling-up LAI ground
measurements via Landsat TM or ETM+ data; 2) determine
whether vegetation indices incorporating MISR's multiple view
angles improve estimates of conifer forest LAI and whether this
varies with changes in canopy and understory LAI over two
growing seasons; and 3) compare the MISR LAI product with
LAI maps based on ground data across growing seasons in a
post-fire landscape. Our study area in the Black Hills of South
Dakota is dominated by ponderosa pine forest characterized
by low LAI values, allowing us to avoid the saturation of
vegetation indices that often occurs with higher LAI values,
especially when SWIR data are not available such as in the case
of MISR. Ponderosa pine forests range from western California
to central Nebraska and from southern British Columbia to
northern Mexico (Waring & Law, 2001), and thus our findings
may be relevant to large extents of forest across western North
America. Our study also evaluates temporal variation in the
relationship between LAI and vegetation indices, an important
consideration given the fact that LAI changes seasonally and
yearly. As in many ponderosa pine forests across the American
West, the Black Hills recently experienced a large wildfire with
a heterogeneous severity pattern, and LAI changes may be
especially pronounced during recovery from such disturbance.
We evaluate relationships between MISR data and LAI 2 and
3 years post-fire (2002–2003).

2. Methods

2.1. Study area description

The Black Hills forms the easternmost extension of the
Rocky Mountains, rising over 1000 m above the Great Plains in



Table 1
Leaf area index (LAI) ground sampling and Landsat andMISR image acquisition
dates

Time
period

LAI sampling
dates

Landsat
image date

MISR
image date

MISR sun
zenith angle

aNo.
sites

bNo.
plots

2002-1 July 7–16 July 2 July 2 23–26 13 58
2002-2 July 22–29 Aug 10 Aug 3 29–31 13 61
2002-3 Aug 21–Sept 1 Aug 19 Aug 19 32–35 11 48
2003-1 June 17–23 June 11 July 12 24–26 9 39
2003-2 July 19–21 July 20 July 21 26–29 9 42
2003-3 Aug 20–22 Aug 14 Aug 22 34–36 9 40
aSampling sites are 250 m×250 m areas having the same burn severity.
bSampling plots are located within each site and are∼ 25 m×25 m or equivalent
to one Landsat pixel.

324 A. Pocewicz et al. / Remote Sensing of Environment 107 (2007) 322–333
western South Dakota and northeastern Wyoming. Ponderosa
pine is the dominant tree species throughout the Black Hills and
is considered the climax species in most locations due to its
adaptations to the fire, insect infestations, and drought con-
ditions common to this area. Ponderosa pine vegetation habitat
types vary throughout the Black Hills due to local geology and
precipitation (Shepperd & Battaglia, 2002).

The area burned by the Jasper Fire is located on the
southwestern extent of the fertile Limestone Plateau. In the
study area, latitudes range from 43° 41′ 35ʺ to 43° 55′ 48ʺ N and
longitudes range from 103° 46′ 1ʺ to 104° 0′ 47ʺ W. Elevations
range from ∼ 1500–2100 m. The mean daily maximum and
minimum temperatures are −3.3 and 13.2 °C, and annual
precipitation ranges from ∼ 45 to 48 cm with ∼ 75% of
precipitation falling in late spring and summer. Forest under-
growth is dominated by graminoids (e.g.,Carex spp.), several forb
species (e.g., Antennaria spp. and Apocynum androsaefolium),
and shrubs (e.g., Juniperus communis and Symphoricarpos spp.).
Pine seed production is high, and natural regeneration is prolific in
the study area and throughout the Black Hills (Lentile, 2004).

The Jasper fire, the largest fire in recorded history of the
Black Hills of South Dakota, started on August 24, 2000 and
was contained 8 days later after burning 33,000 ha of the Black
Hills National Forest (USDA, 2000; USDA, 2001). Due to a
variety of topographic, meteorological, and vegetative condi-
tions, the fire created a mosaic of burn severities throughout the
fire scar (Lentile et al., 2005). This mixed-severity fire resulted
in 27% of the burned area classified as high severity (trees
devoid of needles), 48% moderate severity (crowns entirely or
almost entirely scorched), and 25% low severity (trees all or
partially green) (Gould, 2003). Like many recent fires in
ponderosa pine forests, the Jasper fire was initially perceived as
dominated by stand-replacing components, however, Lentile
et al. (2005) documented many small patches of high severity
fire interspersed in a matrix of less severely burned forests.
Land management activities, including salvage logging and
cattle grazing, occurred in many burned locations within the
first growing season following the Jasper fire.
Fig. 1. Layout of six TRAC sampling transects and six LAI-measurement points
within a 25×25 m field sampling plot.
2.2. LAI ground measurements

We established fourteen sites for field data collection throughout
the Jasper fire and surrounding area in spring of 2002. Three post-
fire severity classes and unburned control sites were used to collect
LAI measurements: high severity (5 sites), moderate severity (3
sites), low severity (3 sites) and unburned (3 sites). Sites were at
least 250 m×250 m, located on relatively flat terrain (slopeb5%),
and comprised of homogeneous burn severity and vegetation spe-
cies. Three to eight 25×25 m sampling plots were located within
each of the 14 sites. In six of the sites, four of the plotswere grouped
together as a 50×50 m ‘superplot’ in order to address scaling
questions in a related study. All plots were geographically refe-
renced using differential GPS so that plot corners were all oriented
in the four cardinal directions. Six sampling transects were estab-
lished within each 25×25 m plot and oriented in a SE–NW direc-
tion to reduce the influence of shadow from the operator during
optical data acquisition in the field (Fig. 1). LAI measurements
were made during six sampling periods from June to August in
2002 and 2003, in 40 to 61 sampling plots within 9 to 13 sites
(Table 1).

LAI was calculated using the following equation (Chen,
1996; Chen et al., 1997):

LAI ¼ ð1−aÞLegE=XE ð1Þ

where Le is effective LAI, γE is needle-to-shoot area ratio, ΩE is
a factor describing foliage clumping for scales larger than the
shoot, and α is the woody-to-total area ratio (α=W / (Le(γE /
ΩE))). W represents the wood surface area index (half the total
wood surface m−2 ground), including the contribution of
branches and stems. For W and γE, we used values previously
published for ponderosa pine; W=0.27 (Law et al., 2001b) and
γE=1.25 (Law et al., 2001a). ΩE was calculated using data from
a Tracing Radiation and Architecture of Canopies instrument
(TRAC, 3rd Wave Engineering, Ontario, Canada; Chen &
Cihlar, 1995). TRAC data were collected under bright and clear
sky conditions, using a walking pace of 1 m per 3 s and an instru-
ment sampling frequency of 32 Hz resulting in a TRAC measure-
ment interval of approximately 10 mm. The ΩE values for each of
the six transects were averaged for each plot (mean=0.83, standard
error=0.01). Le was measured with a LAI-2000 instrument (Li-
COR, LincolnNE) at six locations distributed systematicallywithin



Table 2
Model coefficients for prediction of leaf area index (LAI) from Landsat reduced
simple ratio (RSR), using generalized least squares or linear mixed-effects
models

Time period Total LAI Canopy LAI

2002-1 0.43+0.31(RSR)a/c −0.25+0.34(RSR)a

2002-2 0.27+0.42(RSR)b −0.45+0.50(RSR)c

2002-3 0.02+0.43(RSR)a −0.42+0.44(RSR)a

2003-1 0.60+0.35(RSR) −0.48+0.39(RSR)
2003-2 0.18+0.35(RSR)c −0.40+0.30(RSR)b/c

2003-3 −0.45+0.59(RSR)b/c −1.15+0.69(RSR)b

aFull model included sampling site as a random effect.
bFull model included sampling site and superplot as nested random effects.
cWeighted variance functions were applied to remove heteroscedasticity.
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each 25×25 m plot (Fig. 1). LAI-2000 measurements were
taken consecutively from both the ground level (total Le) and
above the understory vegetation (canopy Le). LAI-2000 mea-
surements were acquired during dusk or under overcast skies,
i.e. under predominantly diffuse irradiance conditions. Refer-
ence and field measurements with the LAI-2000 instruments
were taken quasi-simultaneously. Total and canopy LAI mea-
surements were averaged across each plot prior to analysis.

2.3. LAI modeling and mapping

To enable comparisons between 1.1 km spatial resolutionMISR
data and LAI ground data, we used a vegetation index calculated
from Landsat imagery to empirically model ground LAI
continuously across a broader region encompassing our study
sites. Empirical modeling approaches are commonly used to scale-
up ground LAI measurements for comparison with data from a
coarse resolution sensor (Cohen et al., 2003b;Wang et al., 2004; X.
Chen et al., 2005c). Landsat data were acquired on six dates
corresponding as closely as possible to ground data collection
(Table 1). Landsat 7 ETM+ data were used in 2002 and Landsat 5
TM in 2003. Both have a spatial resolution of 30 m. A GIS road
feature map was used to determine that the August 10, 2002
Landsat ETM+ image contained the highest level of geometric
accuracy. The August 2002 image was also cloud-free and was
therefore used as the base image for georegistration and norma-
lization purposes. Each Landsat data set was converted to at-satel-
lite reflectance and corrected for atmospheric effects using a simple
Dark Object Subtraction method. A temporally invariant cluster
method (X.Chen et al., 2005b)was used to normalize all data to the
August 2002 base image. When clouds and their shadows were
present, we masked and excluded these pixels from analysis.

To model LAI, we used the reduced simple ratio (RSR),
which is a vegetation index calculated from red (ρλred), near-
infrared (ρλNIR), and shortwave infrared reflectance (ρλSWIR)
(Brown et al., 2000), where

RSR ¼ qðgNIRÞ
qðgredÞ

1−
qðkSWIRÞ−qðkSWIRminÞ

qðkSWIRmaxÞ−qðkSWIRminÞ
� �

ð2Þ

and where ρ(λSWIRmin) and ρ(λSWIRmax) are the 1% minimum
and maximum reflectance in Landsat SWIR band 5 within each
image (Brown et al., 2000; Chen et al., 2002). The RSR has
been shown to be strongly correlated with LAI in conifer forests
(Chen et al., 2002; X. Chen et al., 2005c).

We fit statistical models of total and canopy LAI using both
traditional regression and a non-parametric regression method.
The non-parametric Theil–Sen regression does not assume a
normal distribution, is robust to outliers (Theil, 1950), and has
been promoted for use when measurement errors are present
(Fernandes & Leblanc, 2005).

The traditional regression models were fit using the linear
mixed-effects (lme) and generalized least squares (gls) model
functions of the open-source statistical language R (Pinheiro &
Bates, 2000; R Development Core Team, 2005). Mixed-effects
models include random effects that can account for correlated
error among observations. In this case, residuals from plots in
the same sampling site and/or superplot may be correlated. We
included random effects in order to achieve the best and most
appropriate model fits, but we used only the fixed effect from
these models for LAI prediction and to calculate error statistics.
The lme and gls functions allowed us to remove heteroscedas-
ticity in residuals by using weighted variance functions
(Pinheiro & Bates, 2000), which was preferable to applying
transformations to the LAI response variables. We fit models of
total and canopy LAI for each of the six sampling periods, in
which RSR was the only fixed effect. For each of these 12
models, we fit models having three different levels of random
effects: no random effects (using gls), sampling site, or
sampling site and superplot. For LAI prediction we used the
model structure having the lowest Akaike's information
criterion (AIC) and root mean squared error (RMSE). AIC is
a measure of model fit that is equivalent to the log likelihood
penalized for the number of parameters (Burham & Anderson,
1998). RMSE is the standard deviation (SD) of the fitted values,
expressed in units of LAI, and based upon only the fixed effect,
RSR. If heteroscedasticity was present in residuals, we applied
weighted variance functions. We calculated an R2 analog (R2

an)
as a measure of model fit for the full model including the
random effects. R2

an is equal to the variance of the response
variable minus the variance of the residuals corresponding to the
full model, divided by variance of the response variable. We
summarized error in the models using RMSE and bias. Bias is
the difference between predicted and observed values of LAI.
We also calculated a variance ratio, which is the SD of the
predicted values divided by the SD of the observed values and
represents the degree of variance compression (Cohen et al.,
2003a). A variance ratio of less than one means that the pre-
dicted variance was less than the observed variance.

We fit the Theil–Sen regression models in the median based-
linear models (mblm) R package using the Seigel repeated
medians approach, which is robust to 50% of outliers (Siegel,
1982; Theil, 1950). The regression formulas were equivalent to
those used in the gls models, and we calculated RMSE, R2

an,
bias, and variance ratio as described previously.

For each of the sampling periods, we applied our statistical
models of LAI across Landsat-derived RSR images, using the
coefficients in Table 2. Negative LAI values resulting from the
models were constrained to zero. We resampled the resulting
LAI images to a spatial resolution of 1.1 km using the ENVI
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pixel aggregate function, which averaged values from all
contributing 30 m pixels. We expanded our study area to include
unburned forest to the east of the Jasper fire area, for a total
extent of 651 km2. This allowed us to include a larger number of
sampling points in our analysis and to better represent the upper
range of LAI values in the Black Hills, because the majority of
the area within the Jasper fire extent where ground sampling
sites were located had burned.

2.4. MISR data

MISR level 2 land surface parameters (version 0017) were
acquired on six dates corresponding as closely as possible with
LAI ground sampling dates (Table 1). The MISR sensor records
each of four spectral bands (blue, green, red, NIR) at nine view
angles (±70.5°, ±60°, ±45.6°, ±26.1°, and 0° from nadir)
(Diner et al., 1998). MISR level 2 surface parameters have a
1.1 km spatial resolution. Mean geolocation error is below 50 m
for eight of the nine cameras, with standard deviations ranging
from 60 to 100 m. The camera at 70.5° from nadir has a
geolocation error below 150 m (Data Quality Statement, 10
March 2004, http://eosweb.larc.nasa.gov/PRODOCS /misr/
Quality_ Summaries). We used a MISR extension (NASA
Langley Atmospheric Sciences Data Center, Hampton, VA) for
ENVI image processing software (Research Systems Incorpo-
rated, Boulder, CO) to access the MISR data and associated
geographic coordinates, and we converted the geographic
projection to that of the Landsat imagery (UTM Zone 13 N,
datum NAD27, spheroid Clarke 1866).

We used two MISR level 2 parameters, the BRF and the LAI
product. The BRF is the ratio of the radiance leaving the surface
to that reflected by a Lambertian surface illuminated in a single
direction, in the absence of atmospheric effects (Martonchik
et al., 1998). MISR LAI in conifer forest is defined as the
projected needle leaf area per unit ground area, and because the
contribution of the understory vegetation and soil are removed
(Knyazikhin et al., 1998b), it is equivalent to our ground
measurements of canopy LAI. The BRF data were Stage 1
validated, and the LAI product had provisional status.

We calculated the NDVI and the enhanced vegetation index
(EVI) using BRF data from each of the nine MISR view angles.
NDVI is a commonly used index calculated from red and near-
infrared (NIR) reflectance (Rouse et al., 1974):

NDVIh ¼ qðkNIRhÞ−qðkredhÞ
qðkNIRhÞ þ qðkredhÞ ð3Þ

EVI is less sensitive to soil and atmospheric effects than
NDVI and is calculated using blue, red, and NIR reflectance
(Huete et al., 2002; Miura et al., 2001), so that

EVIh ¼ G
qðkNIRhÞ−qðkredhÞ

qðkNIRhÞ þ C1qðkredhÞ−C2qðkbluehÞ ð4Þ

where G is a gain factor for the entire equation, C1 and C2 are
adjustment factors for aerosol influences, and L is a soil
adjustment factor based on the nonlinear extinction of red and
NIR wavelengths through the canopy (Huete et al., 1997). We
used parameters suggested by Huete et al. (1997), where
G=2.5, C1=6, C2=7.5, and L=1.

We calculated two previously published and two new
anisotropic indices that incorporated the reflectance “hot spot”
and “dark spot”. The hot spot is the maximum reflectance that
occurs in the backscatter direction when the sensor view angle
and sun zenith angle are the same, while the dark spot occurs in
the location with minimum reflectance in the forward scattering
direction (Hapke et al., 1996; Lacaze et al., 2002; Sandmeier
et al., 1998). For the hot spot, we used the BRF from the
backscatter view angle closest to the sun zenith angles (−26.1°)
(Table 1). We calculated the normalized difference anisotrophic
index (NDAX) (Sandmeier & Deering, 1999b) from BRF
anisotropy index (ANIX) data:

NADX ¼ ANIXred−ANIXNIR

ANIXred þ ANIXNIR
ð5Þ

where ANIX represents the ratio of the hot spot and dark spot
BRF for a spectral band (Sandmeier et al., 1998). We calculated
the Hotspot–DarkSpot Index (HDS) (Lacaze et al., 2002) from
the hot spot (HS) and dark spot (DS) of the red BRF, where

HDS ¼ HSred−DSred
DSred

ð6Þ

We also calculated a newHotspot–Darkspot NDVI (NDVIHD)
in order to maximize the contrast between red and NIR re-
flectance, so that

NDVIHD ¼ HSNIR−DSred
HSNIR þ DSred

ð7Þ

and, finally, we adjusted at-nadir NDVI to incorporate the hot spot
from the red BRF:

NDVIHS ¼ NDVIðnadirÞð1−HSredÞ ð8Þ

2.5. LAI-MISR data analysis

We randomly generated 200 points, at least 1.1 km apart,
within our 651 km2 study area. Points having a slope greater than
4% were then eliminated to reduce interference due to complex
terrain, resulting in 145 points. We extracted data from the
Landsat LAI and MISR BRF and LAI pixels corresponding to
these 145 geographic locations. In order to compare data from
the same locations over time, we eliminated any points that had
missing data for at least one sampling period, resulting in 71 and
42 data points for the analyses including MISR BRF and LAI
data, respectively. All 42 points used for the LAI product
comparison had a quality estimate of the highest level (QA=0).

We fit simple linear regressions with total or canopy LAI as the
response variables and NDVI or EVI, calculated from eachMISR
view angle, as the predictor variables, using the lm function of R
(R Development Core Team, 2005). We also fit regressions with
total or canopy LAI as the response variables and either NDVIHD
orNDVIHS as predictor variables.We fit additionalmodels of LAI
that included NDVI at-nadir as the first term and NADX or HDS
as the second term. To determine whether NADX or HDS
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Table 4
Model fit and error statistics for Theil–Sen regression models predicting leaf
area index (LAI) from the Landsat reduced simple ratio (RSR)

Time
period

R2
an

a RMSEb Variance
ratio

Measured
LAI

Predicted
LAI

Bias

Total LAI
2002-1 0.50 0.68 0.73 1.51, 0.12

(0.03,3.44)
1.68, 0.09
(0.42,2.89)

0.17
(−1.61,1.49)

2002-2 0.49 0.51 0.77 1.32, 0.09
(0.19,2.64)

1.34, 0.07
(0.65,2.66)

0.01
(−1.16,0.83)

2002-3 0.58 0.61 0.98 1.04, 0.09
(0.01,2.29)

1.15, 0.09
(0.43,2.18)

0.10
(−0.73,1.09)

2003-1 0.21 0.26 0.35 2.08, 0.12
(0.54,4.17)

2.21, 0.04
(1.69,2.58)

0.13
(−1.63,1.47)

2003-2 0.41 0.62 0.85 1.98, 0.11
(0.46,3.62)

2.09, 0.11
(0.83,3.38)

0.11
(−1.30,1.07)

2003-3 0.70 0.68 0.95 1.44, 0.11
(0.24,2.67)

1.46, 0.11
(0.31,2.47)

0.02
(−0.96,0.79)

Canopy LAI
2002-1 0.36 0.51 0.57 0.90, 0.12

(0.00,3.08)
0.84, 0.07
(−0.09,1.74)

−0.06
(−2.13,1.59)

2002-2 0.53 0.49 0.69 0.76, 0.09
(0.00,2.23)

0.60, 0.06
(−0.05,1.88)

−0.15
(−1.42,0.87)

2002-3 0.41 0.41 0.59 0.62, 0.10
(0.00,2.17)

0.28, 0.06
(−0.20,0.97)

−0.34
(−1.23,0.17)

2003-1 0.24 0.33 0.43 1.14, 0.12
(0.00,2.72)

1.29, 0.05
(0.63,1.75)

0.15
(−1.56,1.42)
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explained variation in LAI beyond that explained by NDVI, we
used F tests from a sequential ANOVA to test for statistical
significance at α=0.05. Finally, we fit regressions with our
mapped canopy LAI as the response variable and MISR LAI as
the predictor variable.We accounted for larger uncertainties in our
Landsat-derived canopy LAI relative to MISR LAI (Tan et al.,
2005) by binning the Landsat-derived canopy LAI values to a
precision of 0.1, corresponding to their standard error (Table 3),
prior to model fitting. All models were fit for each sampling
period. For all models, residual and quantile–quantile plots were
assessed, and Box–Cox tests were used to determinewhether data
transformations were suggested. When they improved diagnostic
plots of residuals, transformations were applied. We compared
model fits using adjusted R2.

3. Results

3.1. LAI modeling and mapping

Models fit with traditional regression methods, on average,
had higher R2

an (0.72 vs. 0.46) and lower RMSE (0.45 vs. 0.55)
than Theil–Sen regression models (Tables 3 and 4). The average
variance ratio was higher for Theil–Sen than traditional re-
Table 3
Model fit and error statistics for generalized least squares and linear mixed-
effects models predicting leaf area index (LAI) from the Landsat reduced simple
ratio (RSR)

Time
period

R2
an

a RMSEb Variance
ratio

Measured
LAI

Predicted
LAI

Bias

Total LAI
2002-1 0.86 0.28 0.34 1.51, 0.12

(0.03,3.44)
1.46, 0.11
(0.95,1.95)

−0.04
(−1.90,1.13)

2002-2 0.92 0.45 0.68 1.32, 0.09
(0.19,2.64)

1.29, 0.07
(0.68,2.46)

−0.04
(−1.22,0.76)

2002-3 0.82 0.48 0.77 1.04, 0.09
(0.01,2.29)

1.05, 0.08
(0.48,1.87)

0.00
(−0.76,0.78)

2003-1 0.23 0.35 0.47 2.08, 0.12
(0.54,4.17)

2.08, 0.06
(1.38,2.58)

0.00
(−1.64,1.39)

2003-2 0.45 0.50 0.69 1.98, 0.11
(0.46,3.62)

1.98, 0.08
(0.96,3.01)

0.00
(−1.46,1.03)

2003-3 0.98 0.56 0.78 1.44, 0.11
(0.24,2.67)

1.38, 0.11
(0.44,2.20)

−0.07
(−1.02,0.65)

Canopy LAI
2002-1 0.85 0.30 0.34 0.90, 0.12

(0.00,3.08)
0.88, 0.10
(0.33,1.42)

−0.02
(−2.13,1.33)

2002-2 0.53 0.54 0.75 0.76, 0.09
(0.00,2.23)

0.76, 0.07
(0.04,2.15)

0.00
(−1.25,1.05)

2002-3 0.93 0.50 0.72 0.62, 0.10
(0.00,2.17)

0.64, 0.09
(0.05,1.48)

0.02
(−0.75,0.68)

2003-1 0.25 0.39 0.50 1.14, 0.12
(0.00,2.72)

1.14, 0.06
(0.37,1.68)

0.00
(−1.74,1.29)

2003-2 0.86 0.43 0.49 1.17, 0.13
(0.00,3.34)

1.13, 0.11
(0.26,2.02)

0.04
(−2.05,1.29)

2003-3 0.94 0.66 0.84 0.99, 0.12
(0.00,2.36)

0.99, 0.11
(−0.11,1.95)

−0.01
(−0.91,0.58)

For measured and predicted LAI means are followed standard error, with
minimum and maximum values in parentheses. For bias, means are followed by
minimum and maximum values in parentheses.
aR2

an is an R2 analog based on the full model (see text for details).
bRoot mean square error (RMSE) is the standard deviation of the predicted
values of LAI.

2003-2 0.28 0.82 0.95 1.17, 0.13
(0.00,3.34)

1.06, 0.13
(−0.61,2.78)

−0.10
(−1.97,1.37)

2003-3 0.76 0.65 0.83 0.99, 0.12
(0.00,2.36)

0.93, 0.10
(−0.15,1.89)

−0.06
(−0.97,0.53)

For measured and predicted LAI means are followed standard error, with
minimum and maximum values in parentheses. For bias, means are followed by
minimum and maximum values in parentheses.
aR2

an is an R2 analog based on the full model (see text for details).
bRoot mean square error (RMSE) is the standard deviation of the predicted
values of LAI.
gression, but this improvement was small, 0.72 as compared
with 0.61. Because of higher R2

an, and lower RMSE and bias,
we chose to use coefficients from the traditional models for our
LAI predictions (Table 2).

Overall, we found strong relationships between the Landsat
RSR and ground measurements of total and canopy LAI, with
an average R2

an of 0.72 across sampling dates (Table 3). Based
on low R2

an values (0.23–0.25), we eliminated data from the
2003-1 sampling period from further analyses. There was also a
one month difference in acquisition dates between cloud-free
Landsat and MISR data for the 2003-1 sampling period, which
further supported its removal (Table 1). Mean values for LAI
measured in the field and predicted from the models were
generally the same. Predictions of the lowest total and canopy
LAI values were consistently overestimated by the models,
while predictions of the highest values were consistently
underestimated (Table 3). This trend is the result of variance
compression (Cohen et al., 2003a). The variance was least
compressed during the late summer sampling periods and most
compressed during the early summer sampling periods
(Table 3). Models of total LAI had lower RMSE (relative to
ranges in measured and predicted LAI values) than did models
of canopy LAI. Average variance compression was the same for
total and canopy LAI. Mean bias was typically zero, but the



Fig. 2. MISR angular signatures of NDVI for three categories of canopy LAI,
during early (2002-1) and late summer (2003-3) sampling periods. Error bars
represent standard error around the mean. MISR camera angle units are in
degrees.

Table 5
Adjusted R2 values for linear regression models of canopy and total LAI
predicted from NDVI, EVI and anisotropic indices

2002-1 2002-2 2002-3 2003-2 2003-3

Canopy LAI
NDVI (nadir) 0.83 0.48 0.82 0.79 0.85
NDVI (off-nadir)a NA 0.54e 0.83d NA 0.88e

EVI (nadir) 0.81 0.41 0.80 0.69 0.81
EVI (off-nadir)a NA 0.46e 0.81d 0.71b 0.85e

NDVI+NADX 0.83 0.54 0.83 0.83 0.87
NDVI+HDS 0.84 0.54 0.82 0.79 0.86
NDVIHD 0.77 0.16 0.79 0.65 0.86
NDVIHS 0.82 0.56 0.82 0.84 0.89

Total LAI
NDVI (nadir) 0.83 0.50 0.79 0.84 0.89
NDVI (off-nadir)a NA 0.54e 0.80d NA 0.91e

EVI (nadir) 0.82 0.37 0.78 0.71 0.86
EVI (off-nadir)a NA 0.47e NA 0.72c 0.89e

NDVI+NADX 0.83 0.53 0.82 0.84 0.91
NDVI+HDS 0.84 0.53 0.81 0.84 0.90
NDVIHD 0.77 0.18 0.76 0.67 0.88
NDVIHS 0.83 0.53 0.81 0.85 0.89

The highest R2 value for each sampling period and LAI type is shown in bold.
aR2 value from the off-nadir index is reported if it higher than that of the model
using the index at-nadir.
b–e The off-nadir index that improved model fit was calculated from the
following MISR view angles: b=−26.1°, c=−45.6°, d=−60°, and e=−70.5°.

Table 6
Sequential ANOVA p-values from models of canopy and total LAI in which
NDVI was the first term and HDS or NDAX the second

HDS NADX

Canopy LAI
2002-1 0.08 0.07
2002-2 0.41 0.53
2002-3 0.49 0.06
2003-2 0.40 0.43
2003-3 <0.01 <0.01

Total LAI
2002-1 0.03 0.03
2002-2 0.40 0.53
2002-3 0.61 0.14
2003-2 0.45 0.33
2003-3 0.01 <0.01

Statistically significant p-values (α=0.05) are shown in bold. The first term,
NDVI, was statistically significant in all models ( pb0.001).
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range in bias showed that Landsat predicted values tended to
underestimate ground LAI measurements (Table 3).

3.2. LAI-MISR relationships

Differences in LAI were best explained by the magnitude of
NDVI, rather than by differences in the anisotropy of NDVI
(Fig. 2). NDVI angular signatures exhibited a slight bowl-
shape, which is to be expected from a relatively open forest
canopy. The degree to which these signatures were bowl-shaped
did not vary greatly among three categories of canopy LAI
values (Fig. 2).

We found the best model fits for canopy and total LAI using
either NDVIHS, models including both at-nadir NDVI and either
NADX or HDS, or NDVI calculated from the −60° view angle
(Table 5). Model fits were generally good, with adjusted R2

values for best-fitting models ranging from 0.82 to 0.91 for all
models except those corresponding to the 2002-2 sampling
period, where the best-fitting models had R2 values of 0.54 and
0.56. Model fits were nearly identical for canopy and total LAI,
with a maximum difference in R2 of 0.02 between the best-
fitting models for each type of LAI. The differences between the
adjusted R2 values for the best-fitting models and those
including only at-nadir NDVI were small, ranging from 0.01
to 0.08 (Table 5). In the models including both at-nadir NDVI
and either HDS or NADX, NDVI was always highly sta-
tistically significant ( pb0.001). In most cases, the inclusion of
HDS or NADX did not explain additional variation in LAI
beyond that explained by NDVI. The exceptions were that
during the 2003-3 sampling period HDS and NADX explained
additional variation in both canopy and total LAI, and the same
was true for total LAI for the 2002-1 sampling period (Table 6).
The statistical significance of HDS and NADX did not greatly
affect model fit, although these were the best-fitting models for
total LAI in 2002-1 and 2003-3.

Models with NDVI and off-nadir or anisotropic versions of
NDVI generally had higher R2 values than those with EVI or
off-nadir EVI. Model fits for NDVI and EVI calculated across



Fig. 3. Adjusted R2 values from simple linear models of canopy or total LAI, with NDVI or EVI calculated at each MISR view angle as predictor variables.
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all MISR view angles showed much more variation during the
earlier summer sampling periods than during the later summer
sampling periods (Fig. 3). This pattern was the same for canopy
and total LAI.

We found relatively poor fits between the MISR LAI product
and our Landsat-derived estimates of canopy LAI, with adjusted
R2 values ranging from 0.21 to 0.44 (Fig. 4). The relationship
between our LAI estimates and the MISR LAI was close to the
1:1 line in the 2002-2, 2003-2 and 2003-3 sampling periods, but
our Landsat-derived LAI was overestimated by the MISR LAI
product in the 2002-1 and 2002-3 sampling periods (Fig. 4).

4. Discussion and conclusions

4.1. LAI modeling and mapping

The 10 gls and lme linear regression models that we used to
predict LAI surfaces had an average R2

an of 0.81. The models
also had low RMSE (0.3–0.7, in LAI units) and only negligible
negative bias (Table 3). A trade-off of these good fits and low
error was that the variance of the predicted LAI only retained 34
to 84% of the variance present in the measured LAI values.
Variance compression has been reduced or eliminated in
previous studies through the use of regression methods that
correctly assume there is error in both predictor and response
variables (Cohen et al., 2003a,b). Errors from field measure-
ments and the Landsat data used to extrapolate them across a
landscape can reduce precision of LAI estimates (Tan et al.,
2005). Although we fit Theil–Sen regression models, which
account for such measurement errors, we did not find that it
decreased variance compression enough to justify higher error.
We might have found even less variance compression had
we applied reduced major axis, or geometric mean regression
(GMA), a method with similar assumptions to Theil–Sen
regression (Cohen et al., 2003a), but GMA has been found to
result in higher RMSE than either traditional or Theil–Sen



Fig. 4. Comparison between the MISR LAI product and Landsat-derived, ground-based measurements of canopy LAI, at 42 points. Each plot represents a different
sampling period. Linear regression lines are solid and 1:1 lines are dotted.
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regression (Fernandes & Leblanc, 2005). In our case low error
appeared preferable to a preserved variance structure. Preser-
vation of LAI variance would have been given preference had
our purpose been to use our predicted LAI surfaces as part of
mechanistic models (Cohen et al., 2003a).

We found less error in models of total LAI than in those of
canopy LAI (Table 3). It is to be expected that total LAI or
greenness would have a stronger correlation with the Landsat
RSR than just a portion of that greenness. We also found the
best model fits and least variance compression during the late
summer sampling period, when the contribution of the
understory vegetation to the reflectance signal would be lowest.
The pattern of reduced variance compression with improved
model fit has been noted previously (Cohen et al., 2003b). We
report errors at the scale of 30 m Landsat pixels, but the
aggregation of 1225 Landsat pixels to the 1.1 km MISR spa-
tial resolution may have reduced our reported LAI RMSE
(Fernandes et al., 2003).
4.2. LAI-MISR relationships

We found improved model fits for both canopy and total LAI
when we used NDVI calculated from off-nadir view angles or
included anisotropic indices in our models in addition to at-
nadir NDVI. However, these 1 to 8% improvements in adjusted
R2 may not represent statistically significant differences. The
inclusion of HDS or NADX in models of LAI explained
significant variation in LAI (beyond that explained by NDVI) in
only a few cases (Table 6) and without large improvements in
adjusted R2 (Table 5). HDS calculated from POLDER data has
been previously correlated with foliage clumping at a coarse
spatial resolution (7 km), but across more diverse vegetation
types (Chen et al., 2003). NADX has previously explained
variation related to tree species and canopy shapes, but at a
much finer spatial resolution of 3.7 m (Sandmeier & Deering,
1999b). Although these indices were correlated with different
canopy attributes in past studies, they appeared to explain the
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same variation in our study area. We may have found only small
improvements using data from multiple view angles because
our study area is dominated by a single tree species, ponderosa
pine, in open stands typically having less than 70% canopy
cover. The BRF of forests has been largely explained by
differences in tree species, crown shapes (Lobell et al., 2002;
Rautiainen et al., 2004; Sandmeier & Deering, 1999a), and
forest stand density or overall canopy heterogeneity (Johnson,
1994; Nolin, 2004; Pinty et al., 2002). Greater improvements in
LAI estimation using multiple view angles may occur in forest
types having more diversity in tree species and stand densities.
However, more diverse forests may also occur in areas with
more complex terrain, which could complicate the detection of
anisotropy effects. Although low LAI values allowed us to
avoid NDVI saturation, a forest with higher LAI values may
show a greater response to multiple view angles precisely
because of this saturation effect at-nadir. Conversely, angular
effects have also been found to decrease with increases in leaf
area (Kaufmann et al., 2000). Kaufmann et al. (2000) found that
advanced very high resolution radiometer (AVHRR) NDVI was
sensitive to changes in solar zenith angles only in shrub and
grassland biome types having low leaf area and sparse canopies.

The reflectance anisotropy associated with this ponderosa
pine forest appeared to relate strongly to understory vegetation
phenology. We found that the relationships between NDVI or
EVI and LAI showed very little variation across view angles
during the late summer sampling periods when the understory
vegetation would have been senesced and understory LAI was
lowest, while we found the most variation in this relationship
during the earliest summer sampling season, when understory
green LAI was greatest (Fig. 3). Despite the apparent influence
of the understory vegetation, we found little or no divergence in
patterns between canopy and total LAI. This could be because
understory LAI showed little variation across the study area.

The bowl-shape we observed in angular signatures of NDVI
may be due to the presence of relatively open forest canopies
that generate many shadows (Pinty et al., 2002). This pattern
may also be in response to the amount of canopy greenness,
with off-nadir angles viewing more leaf material, especially
when tree canopy LAI is higher than understory LAI. Angular
signatures for EVI generally declined from the backscatter to
forward scatter direction or were flat, likely because EVI is
more sensitive to shadowing than is NDVI (X. Chen et al.,
2005b). NDVI performed better than EVI in predicting LAI,
especially during July sampling periods (Table 5, Fig. 3).
X. Chen et al. (2005b) also found stronger correlations between
NDVI and LAI than between EVI and LAI, in mixed conifer
and deciduous forest. This was attributed to a “cancellation
effect” that occurred because EVI was positively correlated
with understory vegetation greenness but negatively correlated
with forest canopy greenness when the forest shadowed green
understory (X. Chen et al., 2004, 2005b). EVI has also shown
a stronger correlation with the grass fraction of multispectral
IKONOS imagery than has NDVI, in previous research con-
ducted near our Black Hills study area (Chen et al., 2004).
This greater sensitivity of EVI to green understory vegetation
may explain why NDVI and EVI produced nearly identical
model fits of LAI during the late August summer sampling
periods (Fig. 3), when the understory vegetation was senesced.

We found much lower model fits for LAI during the 2002-2
sampling period than during the other sampling periods. This
does not appear to be a result of error propagation due to the
modeling of ground LAI using Landsat imagery, as the model
fits and error for this time period are comparable to those for the
other sampling periods we assessed (Table 3). The poor model
fits may be a result of rapidly changing vegetation greenness
during this time period in late July and differences of as
much as a week among ground data collection, Landsat image
acquisition, and MISR image acquisition. We may have ob-
served this pattern in 2002 and not during the same time period
in 2003 because of differences in precipitation, temperature,
and phenological pattern between the 2 years. In 2003, the
understory vegetation appeared to senesce earlier than in 2002.
Drier conditions during 2003 are supported by precipitation
data; the nearest climate station in Custer, South Dakota
received 43.5 mm of precipitation during July 2002, but only
15.3 mm during July 2003 (South Dakota Office of Climatol-
ogy, http://climate.sdstate.edu/climate_site/climate.htm).

The indices we calculated from MISR BRF data explained
more variation in our ground-based estimates of total LAI than
did the MISR LAI product. A possible explanation for this
finding is that LAI was derived in a similar manner with
Landsat and MISR BRF data, using indices, while the MISR
LAI product is determined using other types of algorithms.

None of the 42 points we considered in our analysis were
assigned byMISR to the conifer forest biome, nor did any portion
of the Black Hills, which includes large extents of unburned
forest, appear to be categorized in the correct biome. Instead we
found that across sampling periods, 24 (57%) of our 42 sampling
points were classed as grasses and cereal crops, 7 (17%) were
shrubs, 10 (24%) were missing a biome class, and 1 point was
classed as broadleaf crops. This finding is consistent with
incorrect biome assignment in 80% of pixels across five biomes in
Africa (Hu et al., 2003). Hu et al. (2003) found minimal impact of
biome misclassification on MISR LAI retrievals, so it is unlikely
that biome misclassification can explain the only moderate
correspondence between our Landsat-derived and MISR LAI
values. MISR LAI values tended to be higher than our Landsat-
derived values. We would have expected the opposite pattern if
biome misclassification were responsible, because the MISR
biomes assigned in our study area are characterized by lower LAI
values than those typically occurring in conifer forest.

4.3. Future research needs

To our knowledge, this was the first quantitative study
considering MISR view angle effects on LAI. It is encouraging
that we found a small improvement in LAI estimation with
off-nadir NDVI or anisotropic indices, during five separate
sampling periods, using MISR BRF data despite relatively
minor canopy structural variation within one forest type and
MISR's coarse spatial resolution. Our findings suggest that
even greater improvements in LAI estimation may be pos-
sible with multi-angle remote sensing in forested areas

http://climate.sdstate.edu/climate_site/climate.htm
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including a more diverse mix of species, or at finer scale
spatial resolutions.

We found that vegetation phenology was important to rela-
tionships between Landsat RSR and LAI ground data and the
degree of anisotropy detected in relationships between MISR
NDVI or EVI andLandsat-derived LAI. In our study area, this was
largely due to contrasting greenness and senescence of understory
vegetation within relatively open forest canopies between wet and
dry summer sampling periods. Model fits between MISR BRF
indices andLAI also appeared to be affected by how closely image
and ground data acquisition dates corresponded, especially in the
case of a mid-season sampling period when vegetation phenology
was changing rapidly. Future research should continue to pay close
attention to phenological agreement between remotely sensed and
field data. To date, phenological patterns have received little
attention inmulti-angle remote sensing, but our findings show that
the amount of knowledge gained frommultiple view angles can be
amplified with the consideration of multiple sampling periods. In
addition, relatively few studies examine and map the variability of
LAI across landscapes that have recently experienced some degree
of disturbance (e.g. fire, insect outbreak). Further work to examine
the ability of satellite sensors to detect LAI patterns post-distur-
bance will increase the utility of these measurements when moni-
toring ecosystems ranging in scale from a landscape to a continent.

It is impossible to avoid errors when comparing ground mea-
surements to coarse scale remotely sensed data, because it is not yet
feasible to measure LAI directly across these broader scales. How-
ever, full accounting of model error is rarely presented in studies
that scale-up ground data for comparisons with coarser resolution
sensors (but see Tan et al., 2005). A more consistent reporting of
error measures is needed, as well as more research to understand
error propagation and how to minimize its effects. Statistical me-
thods aside from traditional linear regression should be also con-
sidered (Cohen et al., 2003a; Fernandes & Leblanc, 2005).
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