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Abstract

Satellites provide unique perspectives on aerosol global and regional spatial and temporal distributions, and offer compelling evidence that
visibility and air quality are affected by particulate matter transported over long distances. The heights at which emissions are injected into the
atmosphere are major factors governing downwind dispersal. In order to better understand the environmental factors determining injection heights
of smoke plumes from wildfires, we have developed a prototype system for automatically searching through several years of MISR and MODIS
data to locate fires and the associated smoke plumes and to retrieve injection heights and other relevant measurements from them. We are refining
this system and assembling a statistical database, aimed at understanding how injection height relates to the fire severity and local weather
conditions. In this paper we focus on our working proof-of-concept system that demonstrates how machine-learning and data mining methods aid
in processing of massive volumes of satellite data. Automated algorithms for distinguishing smoke from clouds and other aerosols, identifying
plumes, and extracting height data are described. Preliminary results are presented from application to MISR and MODIS data collected over
North America during the summer of 2004.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The injection height of smoke plumes from forest fires is a
large source of uncertainty in transport models used to predict
the effect of emissions from fires on air quality and climate. It is
well known that crown fires generate sufficient energy to loft
smoke plumes above the boundary layer (Cofer et al., 1996;
Lavoue et al., 2000), facilitating long-range transport of gases
and particulate matter (e.g., Bertschi et al., 2004; Colarco et al.,
2004; Kahn et al., in press). A large fraction of smoke aerosols
remain in the near-surface boundary layer, and do not form
discrete “plumes” that are the focus of this paper. Emissions that
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rapidly escape the boundary layer are more likely to contribute
to long distance transport.

Case studies have shown that smoke from large boreal fires
can be injected to the lower stratosphere by supercell convection
(Fromm & Servranckx, 2003). The frequency of high-altitude
(and thus long-lifetime) smoke injection has not been quantified
systematically (Fromm et al., 2004). It is possible that boreal
and mid-latitude fires may become more common in the future
as a result of global warming (e.g., Brown et al., 2004;
Flannigan et al., 2000). Understanding the impacts of fires on
air quality and climate requires, in part, the use of transport
models to relate particle and gas emissions to their downstream
dispersal. Observations of aerosol injection are necessary to
initialize and validate the models and to develop relationships
between injection height and local surface and meteorological
conditions. To facilitate progress in this area, we are using data
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from the Terra satellite to obtain statistics on the geographic
distribution, extent, orientation, and injection height of plumes
(Averill et al., 2005). Terra data acquisition began in February
2000, and NASA recently approved an extension of the mission
through 2009. This paper describes the specific process we used
to automatically find and extract measurements from smoke
plumes, using machine learning techniques and custom image
analysis algorithms. We are in the process of refining these
algorithms, but our initial results demonstrate the utility of the
automated approach.

The development work discussed here uses data collected
from June to September 2004 over North America. We selected
this period for initial study because of record setting fires in
Alaska and the adjacent Yukon Territory of Canada. More than
2.6×106 ha burned in Alaska and 1.7×106 ha in the Yukon
Territory (CFS, 2004; NIFC, 2004). Records were also set for
the number of days with reduced visibility caused by wildfire
smoke, 42 days in Fairbanks, compared to the previous record
of 19 days in 1977, as noted by Averill et al. (2005).

Smoke plumes from these fires were intercepted by aircraft
on the INTEX-NA field campaign over the United States which
took place from July 1 to August 15 (Singh et al., 2002, in
press), and enhanced CO was observed by MOPITT (Measure-
ments Of Pollution In The Troposphere) as a continental scale
plume over North America (e.g., Pfister et al., 2005). A case of
pyroconvection was documented in June over Alaska, with
aerosol enhancements observed near the tropopause (Damoah
et al., 2006). Knowledge of the injection heights of the emis-
sions from severe fires such as those in 2004 is required for a
quantitative assessment of their effects on atmospheric com-
position. The work described below is a first step towards
providing this information, for plumes immediately downwind
of fires.

The Terra Multi-angle Imaging SpectroRadiometer (MISR)
instrument observes the Earth in reflected sunlight with a 10:30
AM local time equator crossing, and its typical data collection
mode is to observe the Earth globally at nine different view
zenith angles in four spectral bands (446, 558, 672, and 866 nm)
(Diner et al., 1998). The fore–aft cameras are paired in a
symmetrical arrangement and acquire images with nominal
view angles, relative to the Earth's surface, at 0°, 26.1°, 45.6°,
and 70.5°. In its global observing mode, the nadir camera data in
all bands, and the red band data of all of the off-nadir cameras
are downlinked at the full spatial resolution of the instrument,
275 m. All other channels are averaged on-board to 1.1-km
resolution. The swath width observed in common among all
nine cameras is about 380 km. Complete coverage between
±82° latitude is obtained every 9 days. Absolute geolocation
uncertainty for the nadir camera is about ±45 m, and relative co-
registration errors among the nine cameras are typically less
than 275 m.

MISR data make possible unique smoke plume identification
and characterization approaches. The use of oblique-angle
imagery from MISR enhances plume sensitivity because of the
longer optical path through the atmosphere, and the combina-
tion of multiangle and multispectral information assists in
distinguishing smoke from clouds or other types of aerosols
(Mazzoni et al., 2006-this issue). Furthermore, automated pattern
matching algorithms (Moroney et al., 2002; Muller et al., 2002;
Zong et al., 2002) take advantage of the stereoscopic nature of
MISR data, and as part of MISR operational data processing
determine the geometric parallax (horizontal displacement) that
occurs for a given plume due to its altitude above the surface.
Pattern matching is aided by the moderately high spatial
resolution of MISR imagery and the 14-bit radiometric depth.
Photogrammetric algorithms using accurate camera geometric
models transform the derived parallaxes into cloud-top or plume-
top heights. Using the nadir and near-nadir cameras, as is done
for the standard MISR product, the quantized precision of the
resulting height field is ±560 m. Height accuracies for low clouds
have been validated to a few hundred meters (Naud et al., 2004);
since the technique is purely geometric, comparable accuracy is
expected for smoke plumes. Altitudes for clouds as well as
smoke, dust, and volcanic plumes are routinely retrieved, and
reported on a 1.1-km resolution geolocated grid. However, the
MISR standard stereo product does not provide a scene classifier
along with the heights which identifies whether the observed
target is cloud or aerosol. In this paper, we describe the use of a
Support Vector Machine approach for providing this classifica-
tion in conjunction with height extraction from the MISR stereo
product.

Data captured by the MODerate-resolution Imaging Spectro-
radiometer (MODIS) instrument (Barnes et al., 1998), co-
located with MISR on the Terra spacecraft, provides invaluable
information about fires, including fire occurrence maps and
mean radiative power. Burned area products are being
developed with the algorithms of Roy et al. (2005) for the
entire MODIS data set. MODIS observes the Earth in 36
spectral bands from 0.4 to 14.4 μm. Its scan pattern sees a 2330-
km swath, providing near global daily coverage. MODIS's
thermal-infrared sensing capabilities give it the ability to detect
active fires with high temporal resolution. By combining MISR
and MODIS data over hundreds of fires, and supplementing the
Terra data with meteorological information, we are developing a
statistical database that will make it possible to empirically
relate a fire's power and local atmospheric conditions to the
resulting smoke plume injection height. While case studies have
shown that this technique is feasible (Kahn et al., in press),
performing this computation for hundreds of smoke plumes is
daunting, not only due to the calculations required, but also due
to the relative rarity of smoke plumes in terabytes of satellite
images and the challenge of finding them.

2. Method

Our method was developed based on the assumption that it is
unreasonably time-consuming to identify and extract data from
every smoke plume manually. Using machine learning and data
mining techniques, we have developed an approach for
extracting smoke plume and fire data automatically from
MISR and MODIS imagery and higher-level data products and
retrieving several properties including the plume direction and
injection height. Since this automated system cannot identify
plumes with perfect accuracy, all individual plumes found are
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spot-checked before being included in our database. This
human validation does not take very much time and provides an
appropriate balance between mostly automated processing and
scientific integrity.

Our method is designed to find as many plumes as possible,
while minimizing the number of false detections. So as not to
create an unreasonable amount of manual labor, we sought to
achieve an automatic false detection rate of no more than 3 or
4 times the number of true detections. Thus in our automated
algorithm we describe below, we sometimes made design
decisions to eliminate certain potential plumes, knowing that it
would reject a small number of true plumes, because it would
also reject a far greater number of false detections. Unfortu-
nately, this does mean that some plumes are not detected by the
current system. We discuss the implications of missed plumes in
Section 4.

2.1. Scene pruning

To facilitate the fusion of MISR and MODIS data, it is
necessary to define a common coordinate system for the data
products from the two instruments. The MISR swath is
narrower and a strict subset of the MODIS swath. We therefore
found it advantageous to conduct the plume search in the Space
Oblique Mercator coordinate system used for MISR's level 1
and 2 data products. In addition, we define a “scene” to consist
of one MISR block, comprised of 512×128 pixels at 1.1-km
resolution. Our data mining strategy starts with two tests
designed to quickly focus on scenes that likely contain smoke
plumes. This way the more expensive algorithms to trace the
shape of plumes and extract their properties are run on only a
fraction of the data. As discussed below, our initial tests reject
the vast majority of scenes.

2.2. Identifying fire locations using MODIS

We start with the MODIS Thermal Anomalies product to
look for evidence of fires (see Fig. 1). This is a daily Level 3
product at 1-km resolution, and it classifies each pixel as fire,
cloud, water, or land, with three levels of fire confidence (high,
nominal, or low). It uses the 4 μm brightness temperature and
the difference between the 4 mm and 11 μm brightness
temperatures in comparison to nearby pixels to detect fires and
other thermal anomalies (Kaufman & Justice, 1998). We map
the MODIS product onto the MISR grid using a fast nearest-
neighbor mapping. More accurate registration is not necessary
because we allow several kilometers of tolerance between our
estimate of the fire location and the observed source of the
smoke plume.

After the MODIS thermal anomalies have been projected
onto the MISR grid, the initial pruning occurs at the scene level.
If one scene has no high or nominal confidence fire detections at
all, it is immediately rejected from further analysis. We found
that this eliminates 82.5% of all scenes. (The performance
statistics cited in this paper are derived from application of our
methodology to the fire season over North America, and may
not be appropriate for other regions, such as the tropics where
fire occurrence is more frequent.) Any scene that has one or
more fire pixels on that day is retained for further analysis.

2.3. Identifying smoke in MISR data using a support vector
machine

The next step in the data mining is to identify which pixels
contain smoke. To do this, we leverage earlier work (Garay et al.,
2005; Mazzoni et al., 2006-this issue) in which we developed a
scene classifier able to distinguish between cloud, smoke, dust,
land, water, and ice/snow using a combination of spectral,
angular, and texture features fromMISR (see Fig. 2). EachMISR
pixel at 1.1-km resolution is classified independently — this is
the same resolution as the stereo-derived height product. The
classifier was trained using Support Vector Machines (SVMs)
(Cortes & Vapnik, 1995), a modern and powerful machine
learning technique. The SVM takes only radiance data from
MISR and geometric information as input. We trained the SVM
using hundreds of hand-labeled scenes containing those six
classes, and tested it by applying the resulting classifier to new
scenes. On our independent validation scenes, we determined that
the SVMwas able to distinguish successfully between all of these
classes, though with an accuracy of only 81% at the 1.1-km pixel
level. This is sufficient to make it usable since most plumes are
over 40 km long and are several kilometers wide; therefore,
hundreds of pixels are part of the plume. As long as most of them
are classified correctly, we will detect the presence of smoke.
Furthermore, the classifier is biased in favor of smoke: it is
approximately 2.7 times more likely to misclassify a non-smoke
pixel as smoke than it is to misclassify a smoke pixel as another
class. This biasworks to our advantage, as wewould prefer to find
a few extra false positives than to miss an important smoke plume
that we could have analyzed. Using different terminology, recall
is more important to us than precision.

As a second stage in pruning, we eliminate scenes that do not
have a significant amount of smoke. In our current implemen-
tation, we eliminate scenes that have less than 2% smoke, because
such scenes generally did not contain smoke plumes sufficiently
large enough to provide usable data. Eliminating this pruning step
would possibly lead to more small smoke plumes being found, at
a cost of 15% more scenes to be analyzed.

Although themajority of remaining scenes contain evidence of
smoke and fires, only a small fraction of them contain distinct
smoke plumes. In some instances, an entire scene can be
blanketed with smoke, and one or more large plumes are clearly
embedded within it. Our next step is to identify plumes by shape.
Our initial attempts involved a template-matching approach,
where we compared known smoke plume images to objects seen
in the scenes. This successfully found only about 25% of the
plumes. We abandoned this approach, realizing that there is too
much variability in smoke plume shape. Our preferred approach
involves several steps, as described in the next sections.

2.4. Creating a smoke mask image

In order to accurately identify the shape of each object that
might be a plume, we need to first generate a mask image for



Fig. 1. Left, the MODIS thermal anomalies product. Fires are indicated in red (high confidence) or yellow (low confidence). Right, an overlay of the MODIS fire
detections on the MISR image of a smoke plume. MISR orbit 24313, blocks 38–40, July 13, 2004. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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each scene identifying pixels that might belong to a smoke
plume. The straightforward approach is to use the SVM to
classify every pixel in the scene as smoke or not smoke. This is
successful for scenes that contain a smoke plume surrounded by
non-smoke pixels, but it fails when smoke pervades the entire
scene, though one or more plumes are still visible. For the latter
type of scene, a simple brightness threshold often does an
excellent job of masking the plumes.

We apply the brightness threshold as follows: let pSVM be the
percentage of pixels classified as smoke by the SVM. Choose
pBr, the percentage of smoke pixels that will be masked out
using a brightness threshold, to be:

pBr ¼ maxðpSVM−25%; 0Þ

Thus if 100% of the pixels in the scene are classified as
smoke by the SVM, we choose the brightness threshold so that
75% of the pixels are masked out. If 25% or fewer of the pixels
Fig. 2. Left, a true-color image fromMISR's AN (Nadir) camera. On the right, the resu
clearly detected, as is additional smoke in the lower-right corner of the image, even th
40, July 13, 2004.
are classified as smoke by the SVM, we do not mask out
anything due to brightness, and in-between, some fraction of the
pixels are masked out. This is illustrated in Fig. 3: there is
pervasive smoke in the MISR image on the left, and in fact over
90% of the pixels are classified as smoke by the SVM, so the
SVM mask reveals no interesting structure. However, when
about 70% of those pixels are masked out using a brightness
threshold, the result is the image seen on the right, where several
smoke plumes are clearly visible. We found that 22% of scenes
had more than 25% smoke and thus required dynamic
thresholding.

2.5. Finding distinct smoke plumes

Given a smoke mask image such as the one in Fig. 3, our
goal is now to identify specific plumes. We found template-
matching approaches to be inadequate because of the wide
variety of possible shapes for smoke plumes. Instead, we sought
lt of the support vector machine (SVM) classification of the image. The plume is
ough it is practically invisible in the nadir image. MISR orbit 24313, blocks 38–



Fig. 3. The SVM classifies this scene as entirely smoke, so the SVM cannot be used to determine the shape of the plume. The image on the right shows the smoke mask
computed using dynamic radiance thresholding, and two distinct plumes are visible. MISR orbit 24109, blocks 35–37, June 29, 2004.
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to find shapes in the image consisting of a connected set of
pixels, with a long thin shape, and a tip near a detected fire
source. We think this definition is broad enough to catch most
plumes, while specific enough to find a manageable number of
false positives.

Here we describe the specific algorithm we implemented to
find smoke plumes. This algorithm is somewhat arbitrary and
other approaches could conceivably improve upon it, but it
works in practice. Our approach in a nutshell is to start with
pixels near a fire source that could possibly be the tip of a
plume, and explore its connected region to determine if it is long
and thin.

We defined a simple metric to identify tips in the mask image
by looking at an 11×11 square of pixels at a time. We require
that the center pixel of the square is in the mask (i.e., it is
classified as smoke), that there is a connected line of smoke
pixels all the way to the edge of the square, and that the
percentage of smoke pixels in the square is strictly between 20%
and 40%. This successfully finds the tip of most plumes, but
also finds several times as many additional false tips. We reject
tips that are not within a 15-pixel radius (about 16.5 km) of a
MODIS fire detection. This large radius is used to account for
Fig. 4. Illustration of the algorithm used to identify smoke plumes, given an image th
point p0, the algorithm finds the set of all connected smoke pixels within some maxim
point from p1 within the set, then we have found the start of a valid smoke plume if
example on the right, the point we found is not the tip of a smoke plume (though it
the fact that some plumes are very narrow near the source, or the
fire is not hot enough to be detected by MODIS near the tip of
the plume. While there are occasional examples of real plumes
that did not have MODIS fire detections nearby, they are
relatively rare; the alternative of not rejecting tips too far from a
fire results in a large number of false positives.

Next we explore the region of pixels connected to that tip to
determine if it is long and thin. The specific algorithm is
described below and illustrated in Fig. 4. The threshold values
cited in the following algorithm were chosen by trying many
possible values systematically and choosing the values that gave
the best accuracy on a test set of plume images.

1. Let p0 be the coordinates of the pixel at the tip of the plume.
Compute the set S of all pixels that are classified as smoke
and are connected to p0 by a continuous chain of adjacent
smoke pixels. If this set is large, we only consider pixels
within a certain radius around p0 (we chose a radius of about
60 pixels, or 66 km).

2. If |S| (the number of pixels in the set S) is too small, we reject
the shape as not being large enough. Shapes that are too
small are not only more likely to be false positives, but even
at has already been separated into smoke and non-smoke pixels. Given a starting
um radius. If p1 is the farthest point from p0 within the set and p2 is the farthest
p0 is close to p2, as in the example on the left. When p0 is far from p2, as in the
may be a different point on a smoke plume).
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if they are real plumes they are less likely to be large enough
for us to determine the smoke plume height with the
automated stereo height algorithm. We require that |S|≥250.

3. Let p1 be the point in S farthest from p0. We require that ||p1−
p0|| ≥22, to ensure that the shape is long enough to be a
possible plume.

4. Let p2 be the point in S farthest from p1. If p0 really was the
tip of the plume, then p2 and p0 should be the same, but if p0
was a false tip and was in the middle of the set of pixels,
then p2 will be very different than p0. We require that ||p2−
p0|| ≤12; if so, we replace our previous tip with p2 —
experiments showed that p2 is actually a more accurate guess
as to the actual source.

5. Let pctr be the center of mass of the pixels in S, which is
easily computed as the average of the x coordinates and
average of the y coordinates of all pixels in S. The vector v=
(pctr−p0) / ||pctr−p0|| is our approximation of the direction of
the plume.

6. Finally, we eliminate from S all points which are not within a
50-pixel (about 55 km) radius of p2, as these are less likely to
be useful for measuring properties or computing the injection
height.
Fig. 5. Above, an image fromMISR's AN (Nadir) camera with the smoke plume
mask outlined. Below, a plot of the extracted stereo height (above sea level) of
each pixel in the plume as a function of its distance from the source. The rise of
the plume over the first 3–4 km can be seen. MISR orbit 24166, blocks 38–40,
July 3, 2004.

Fig. 6. Above, the geographic distribution of smoke plumes that were found
using our automated approach. Below, the distribution of smoke plume heights
(above sea level) we computed. There were 77 plumes found, during the summer
of 2004.
Out of all plumes found, it is not uncommon to end up with
several detections that are actually of the same plume, but with
different tips that are off by only a couple of pixels. Therefore
we perform an arbitration step, where we randomly choose one
plume out of all overlapping detections, and eliminate the
others. After this step is done, for each plume we save the tip p2
and the set of points S for further analysis.

2.6. Limitations of this approach

There are several examples of smoke plumes that we would
like to be able to detect but our algorithm is currently unable to
identify. It was not a design goal to find plumes that originate
outside of the MISR swath, because we would have less
information about the fire, so our approach deliberately rejects
such examples. Smoke plumes that are very near the edge of the
MISR swath can confound the algorithm. A more common
example of a failure was when two independent smoke plumes
that originate very near each other merge to form a single shape.
Most of the time our algorithm rejects such examples. We
expected cases of mixed clouds and smoke to cause problems,
but we found several examples of smoke plumes with



Table 1
Table of data collected from 77 smoke plumes observed over North America in the summer of 2004

Date (2004) UTC time Terra orbit no. Lat. Lon. Orient. Plume height (km) Fire area (km2) Mean radiative power (MW)

6/19 21:16:58 23963 66.483 −138.593 259° 1.9 20 56.5
6/19 21:16:58 23963 67.161 −146.330 10° 1.9 148 143.6
6/19 21:17:18 23963 67.187 −146.469 27° 2.0 148 143.6
6/19 21:17:18 23963 66.937 −145.367 32° 2.0 95 171.0
6/19 21:17:18 23963 65.581 −141.263 279° 1.5 26 43.8
6/19 21:17:18 23963 65.648 −142.905 260° 2.0 0 10.8
6/19 21:17:39 23963 64.917 −141.803 295° 1.9 51 39.6
6/21 19:30:10 23991 52.105 −125.120 290° 3.6 8 70.3
6/22 21:47:49 24007 67.140 −146.396 79° 5.2 148 143.6
6/23 20:53:12 24021 63.823 −138.368 272° 2.7 9 51.4
6/23 20:53:12 24021 63.904 −142.363 35° 4.8 64 109.6
6/23 20:53:33 24021 63.428 −142.653 8° 4.1 61 116.7
6/25 20:53:33 24050 63.114 −137.436 285° 3.0 12 49.9
6/25 20:53:33 24050 62.254 −137.297 330° 4.4 48 75.0
6/29 21:54:20 24109 65.708 −152.227 258° 1.8 85 69.0
6/30 20:58:22 24123 66.370 −134.425 243° 1.7 50 64.2
6/30 20:58:22 24123 66.876 −138.697 319° 1.9 84 74.3
6/30 20:58:43 24123 66.876 −138.697 317° 2.0 84 74.3
6/30 20:58:43 24123 66.097 −134.707 226° 1.6 102 92.9
6/30 20:58:43 24123 66.218 −142.239 256° 1.9 44 75.6
6/30 20:58:43 24123 65.837 −140.593 265° 2.0 63 62.6
6/30 20:59:03 24123 65.816 −140.759 271° 2.2 63 62.6
6/30 20:59:03 24123 65.503 −141.311 303° 2.8 40 79.1
6/30 20:59:24 24123 63.644 −139.038 257° 2.6 120 195.2
6/30 20:59:24 24123 63.476 −142.850 306° 4.5 46 92.1
7/02 20:46:21 24152 66.357 −134.434 256° 2.2 50 64.2
7/02 20:46:21 24152 66.680 −137.735 345° 2.2 57 57.5
7/02 20:46:21 24152 66.104 −134.711 223° 1.7 102 92.9
7/03 18:20:29 24165 35.069 −111.326 48° 2.2 60 244.0
7/03 18:20:50 24165 34.043 −111.459 354° 3.4 140 83.9
7/03 19:51:26 24166 64.141 −127.219 50° 2.5 11 26.1
7/03 19:51:46 24166 62.660 −124.059 22° 3.5 21 126.0
7/03 19:52:07 24166 61.879 −125.596 44° 3.1 14 40.5
7/03 19:52:07 24166 61.509 −124.155 11° 3.9 5 152.7
7/04 20:35:02 24181 63.090 −137.282 304° 3.1 10 69.9
7/05 19:38:44 24195 64.478 −117.431 19° 3.6 1 23.3
7/10 21:36:10 24269 65.782 −152.377 120° 2.1 60 44.3
7/11 19:02:41 24282 61.053 −110.263 24° 4.1 3 50.2
7/11 20:40:53 24283 64.058 −133.825 102° 3.1 26 66.1
7/11 22:19:26 24284 64.516 −157.644 61° 1.1 26 44.7
7/11 22:20:07 24284 62.807 −158.756 63° 1.1 58 71.3
7/12 21:23:27 24298 65.806 −145.586 73° 4.4 31 62.0
7/12 21:23:48 24298 65.089 −147.220 68° 2.9 101 72.4
7/13 18:50:20 24311 61.413 −111.646 193° 1.5 12 34.9
7/13 22:07:45 24313 62.819 −158.778 10° 2.6 58 71.3
7/17 21:42:00 24371 65.195 −147.339 354° 3.2 101 72.4
7/17 21:42:00 24371 65.088 −147.134 32° 3.3 101 72.4
7/17 21:42:21 24371 65.088 −147.134 37° 3.1 101 72.4
7/18 20:47:25 24385 61.724 −135.456 337° 4.1 26 41.0
7/22 18:44:08 24442 61.821 −110.724 152° 2.8 17 121.2
7/22 18:44:08 24442 61.248 −107.278 79° 2.9 11 73.1
7/24 18:32:48 24471 58.386 −110.330 82° 1.7 51 79.9
8/01 19:23:54 24588 52.266 −125.260 252° 3.3 40 81.8
8/03 19:08:46 24617 60.849 −112.028 332° 2.1 37 64.4
8/03 19:09:06 24617 59.995 −113.971 331° 1.6 5 50.3
8/10 20:53:03 24720 63.744 −142.477 288° 2.4 25 35.6
8/10 20:53:03 24720 63.692 −143.124 47° 1.8 262 78.4
8/11 19:58:27 24734 60.174 −126.723 42° 2.5 12 37.6
8/17 19:21:38 24821 59.826 −119.532 177° 1.9 83 68.6
8/17 19:23:22 24821 52.578 −120.129 193° 2.8 1 18.5
8/20 21:28:58 24866 67.448 −143.365 253° 1.4 41 84.9
8/20 21:28:58 24866 67.273 −145.424 248° 1.3 60 67.8
8/20 21:28:58 24866 66.179 −142.163 277° 1.5 65 76.9
8/20 21:29:18 24866 66.785 −148.653 258° 0.9 108 76.9
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Table 1 (continued)

Date (2004) UTC time Terra orbit no. Lat. Lon. Orient. Plume height (km) Fire area (km2) Mean radiative power (MW)

8/20 21:29:18 24866 66.315 −149.208 266° 0.8 85 43.6
8/20 21:29:39 24866 65.113 −148.552 202° 1.6 27 36.3
8/22 21:16:55 24895 66.204 −142.114 268° 1.3 65 76.9
8/22 21:16:55 24895 66.364 −146.364 220° 0.7 25 37.7
8/22 21:16:55 24895 66.141 −145.023 197° 0.8 32 53.0
8/22 21:17:15 24895 65.361 −144.663 265° 1.0 0 0.0
8/22 21:17:15 24895 64.927 −146.104 275° 2.1 85 54.7
8/22 21:17:15 24895 64.094 −142.445 323° 2.9 16 39.3
8/22 21:17:36 24895 63.334 −142.208 305° 3.2 5 29.7
8/27 21:35:04 24968 67.196 −147.094 237° 1.2 35 67.5
9/07 21:17:14 25128 65.530 −145.580 47° 2.4 8 48.8
9/12 21:35:25 25201 66.485 −149.520 277° 2.0 11 37.4
9/28 16:48:00 25431 33.386 −88.894 175° 1.2 13 108.9

An electronic version can be found at this URL: http://www-misr.jpl.nasa.gov/mission/data/plume_data/PlumeDB-2006-02-06.csv.
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pyrocumulus clouds that were successfully detected by our
system.

2.7. Computing the injection height and other properties

For each plume found, and for which associated stereo
heights have been retrieved, we determine several properties
associated with the plume from the MISR andMODIS data. The
most important of the properties we derive from the MISR data
is the maximum observed height of the plume, as one of our
primary goals is to empirically relate the plume's injection
height to the power of the fire and local weather conditions.

MISR has two different stereo-derived height products: with
and without wind correction. Because there is approximately a
1-min delay between the time when each of MISR's cameras
images each ground pixel, disparities in the location of features
that appear in multiple cameras could be due to either to parallax
resulting from the feature's height or to true displacement
resulting from advection, or as is most likely, a combination of
both. Because the density of stereo height retrievals that do not
have the wind correction applied is larger, our initial derivation
of plume height makes use of the non-wind-corrected values.
Correction for wind is then applied as a final step.

Fig. 5 shows a plot of non-wind-corrected heights above sea
level of the pixels in a particular plume, as a function of their
distance from the tip of the plume. The plot clearly shows the
rise of the plume and its stabilization at around 3 km. Note that
the vertical resolution of the height calculation has a precision
of approximately 560 m, which is why the heights appear to be
in discrete bins. In theory, the injection height we are computing
would be the maximum height obtained by the plume given a
plot such as the one in Fig. 5. However, frequently the height
retrieval gives erroneous results for as many as 10% of the
pixels in a plume, sometimes due to stereo matching errors, or
due to detection of higher clouds that were not screened out. As
a result, we found it necessary to add some heuristics to
eliminate outliers and estimate the true injection height.
Specifically, given the set of height retrievals H in km, we
first define a threshold max(median(H)⁎1.5, median(H)+1.5),
and eliminate all heights above this threshold. This eliminates
higher clouds. Then, instead of taking the maximum of H, we
take the average value of the top 10% of H — this appears to
give a better estimate of the true maximum height in the
presence of a small amount of noise in the retrieval. Note that
these heuristics were developed while examining a few dozen
initial plumes. Analysis of more data could lead to more formal
ways of eliminating outliers.

As a final step in the determination of injection height, a
wind correction equation is applied to the results. The MISR
stereo algorithm is designed to separate the apparent motion due
to height from the true motion due to wind using camera triplets,
but this calculation does not work on all pixels and sometimes
results in isolated blunders. To deal with potentially problematic
MISR wind retrievals, we use the following approach: first, our
system retrieves all heights within the plume without any wind
correction. Then, all stereo height retrievals within a 3-block
area that have both a “non-wind-corrected” and “wind-
corrected” value are regressed and a linear fit is obtained.
This provides a height-dependent correction equation for this
local region, essentially allowing the estimation of a mean wind
correction to the heights while ignoring small errors in the wind
retrieval or blunders in individual pixels.

3. Results and analysis

We have analyzed four months of data from the summer of
2004 (June through September) over North America. Our initial
study coincides with the time period studied by the Intercon-
tinental Chemical Transport Experiment North America
(INTEX-NA) field campaign (Singh et al., 2002, in press),
motivated by the relatively large number of fires in Alaska and
the Yukon territory that summer. As noted in Averill et al.
(2005), more than 2.6×106 ha burned in Alaska, and poor
visibility was recorded in Fairbanks on 42 of the 92 days of
summer.

We processed a total of 39,105 individual scenes (MISR data
blocks) for June to September of 2004 over North America. As
previously noted, 82.5% of these were immediately pruned due
to lack of MODIS fire detections, and another 15% of the
remaining were pruned due to lack of smoke detections by the
SVM classifier. Of the remaining scenes, our analysis software
found distinct plumes in only 196 of them. A total of 325
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Fig. 7. A page from our website showing detailed information and images about all of the plumes we have analyzed. Available from the following URL:
http://www-misr.jpl.nasa.gov/mission/data/plume.html.
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candidate plumes were identified (some scenes contained more
than one plume).

We manually examined each of the 325 potential plumes to
determine if each was a proper detection. It turned out that 138 of
them were true detections and 187 were false positives. The false
detections included long, thin branches of a real smoke plume,
smoke from a distant source that was trapped in a long, thin
valley (giving the appearance of a plume), and even thin smoke
over top of a long, thin river (because the smoke is easier to detect
over the water than the surrounding land). More than half of the
false positives clearly contained smoke, but not a plume
originating from a source on the ground. Despite the large
number of false positives from the automated algorithm, this
result is considered quite acceptable because the alternative
would be human examination of a data volume two orders of
magnitude larger. Of the properly detected plumes, 61 had
inconclusive stereo height data fromMISR's operational product,
either because the plume was too small or thin, or because the
plume was surrounded by other smoke and clouds that made it
too difficult to separate the plume from its surroundings.

Fig. 6 shows a histogram of the 77 plume heights (above sea
level) obtained using the automated algorithm. The range is
from 0.72 km to 5.18 km, with a mean of 2.42 km and a median
of 2.16 km. None of our plumes came close to reaching the
lower stratosphere, possibly indicating that plumes reaching
those heights are rare. MISR has observed such plumes before,
such as the plume from the Chisholm forest fire near Edmonton,
Alberta, Canada, which reached heights of 12–13 km above sea
level, as observed by MISR on May 29, 2001 (Diner et al.,
2004).

A summary of all of the data we collected on all 77 plumes is
found in Table 1. For each plume, we indicate the date and UTC
time, the orbit number of the Terra spacecraft, the latitude and
longitude of the plume source, the orientation (clockwise with
0° for North), injection height in km (as measured by MISR's
operational stereo height product with the corrections described
in the text), the fire area as retrieved by MODIS, and the mean
radiative power in MWas retrieved by MODIS. We have posted
an electronic version of this table at the following URL: http://
www-misr.jpl.nasa.gov/mission/data/plume_data/PlumeDB-
2006-02-06.csv and subsequent updates will be available here:
http://www-misr.jpl.nasa.gov/mission/data/plume.html.

On this site you will also find more detailed information
about each plume, including a plot of the geographic coor-
dinates on a globe for context, a plot of the pixel heights (like in
Fig. 5), and an animation of images from the different MISR
camera angles, making the three-dimensional structure of the
plume more apparent. An example page from this site is seen in
Fig. 7. We intend to update this site from time to time as we
improve our algorithms and collect more data.

http://wwwisr.jpl.nasa.gov/mission/data/plume_data/PlumeDB-02csv
http://wwwisr.jpl.nasa.gov/mission/data/plume_data/PlumeDB-02csv
http://wwwisr.jpl.nasa.gov/mission/data/plume_data/PlumeDB-02csv
http://wwwisr.jpl.nasa.gov/mission/data/plume.html
http://wwwisr.jpl.nasa.gov/mission/data/plume.html
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Not counting the time to develop and debug our system or
acquire the raw data, processing the four months of data for this
study required approximately three days of computation time on
an ordinary Linux workstation. The raw data consumed 720 GB
on disk. Examining the resulting plumes and filtering out false
positives required about two hours of human time. Extrapolat-
ing these numbers, in order to achieve our goal of analyzing five
years of data, we estimate that we will need approximately
11 TB of disk space, a month and a half of CPU time (though
this is trivially parallelizable across multiple machines), and a
week of manual labor to eliminate false positives.

4. Discussion and future work

We have shown how data mining methods applied to
imagery and higher level data products from MISR and
MODIS on Terra are capable of generating partially automated
retrievals of smoke plume injection heights over large spatial
areas. The methodology enables pinpointing smoke sources
and injection heights, which are needed for accurate modeling
of 3-D transport. The ability to deal with large volumes of data
makes it possible to assemble a statistical database of
information that can be used in realistic simulations of the
effects of fires on air quality. The database we are developing
will make possible tests for fire models that predict plume
heights for specific fires, based on the energy release. We plan
to investigate the associated meteorology and likely fuel
consumption for the fire/plume events we have identified in
Alaska and the Yukon.

More detailed information on plume profiles is potentially
available from the CALIPSO lidar (Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation), which launched in
April 2006. Lidar measurements are also needed to validate the
plume heights retrieved by MISR. However, the locations at
which the CALIPSO ground track crosses a given plume will be
an even greater matter of serendipity than is the case with
MISR. The spatial and temporal sampling characteristics of
MISR enable observation of any given mid-latitude location
once every 4–5 days on average. Even so, many plumes that are
visible within the broad MODIS swath are missed, and failure
of any stage of our algorithms could also reduce the potential
size of the database. Nonetheless, the methodology described
here makes possible an empirical investigation of the relation-
ship between source conditions and plume heights that could
not be done prior to the launch of Terra. We will partially make
up for plume undersampling through sheer volume, and are
currently in the process of scaling this approach to many years
of MISR and MODIS data over North America.
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