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Abstract

The capability of the non-linear Rahman–Pinty–Verstraete (RPV) model to 1) accurately fit a large variety of Bidirectional Reflectance Factor
(BRF) fields and 2) return parameter values of interest for land surface applications motivate the development of a computer efficient inversion
package. The present paper describes such a package based on the 3 and 4 parameter versions of the RPV model. This software environment
implements the adjoint code, generated using automatic differentiation techniques, of the cost function. This cost function itself balances two main
contributions reflecting 1) the a priori knowledge on the model parameter values and, 2) BRF uncertainties together with the requirement to
minimize the mismatch between the measurements and the RPV simulations. The individual weights of these contributions is specified notably via
covariance matrices of the uncertainties in the a priori knowledge on the model parameters and the observations. This package also reports on the
probability density functions of the retrieved model parameter values that thus permit the user to evaluate the a posteriori uncertainties on these
retrievals. This is achieved by evaluating the Hessian of the cost function at its minimum. Results from a variety of tests are shown in order to
document and analyze software performance against complex synthetic BRF fields simulated by radiation transfer models as well as against actual
MISR-derived surface BRF products.
© 2006 Elsevier Inc. All rights reserved.
Keywords: RPV; Inversion; MISR; Adjoint code; Hessian code; Posterior uncertainties; Radiation transfer
1. Introduction

The Rahman–Pinty–Verstraete (RPV) model (Rahman et al.,
1993) approximates the Bidirectional Reflectance Factor (BRF)
of an arbitrary surface as a function of the geometry of
illumination (radiation arriving from the single direction Ω0(θ0,
ϕ0)) and observation (radiation leaving into the single direction
Ω(θ,ϕ)), as well as a small set of parameters meant to explain the
anisotropy of the surface. This model belongs to a class of so-
called semi-empirical models (see, for instance, the reviews by
Lucht and Roujean, 2000; Roberts, 2001; Verger et al., 2005).
This model is not derived from basic physical laws but recognizes
that the BRF shape and amplitude of an arbitrary target can be
usefully decomposed into a limited set of well identified
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contributions such as bowl versus bell-shape, backward versus
forward scattering regimes or absence of shadows in the exact
backscattering direction. This category of models represents and
approximates BRF fields at very limited computer cost and has
proved relevant for purposes such as 1) the specification of a
lower boundary condition for solving an atmospheric (aerosol
and/or cloud) radiation transfer problem (e.g., Martonchik et al.,
1998a,b), 2) the representation of clear-sky BRF fields at the top
of the atmosphere (e.g., Gobron et al., 2000) which allows, for
instance, the detection of cloud and cloud shadow occurrences
from a BRF time-sequence measured at the top of the atmosphere
(e.g., Pinty et al., 2000) as well as the extrapolation of BRF values
corresponding to incoming and exiting directions other than those
measured (e.g., Lattanzio et al., 2005), 3) the estimation of
angularly integrated quantities like the Directional Hemispherical
Reflectance (Black Sky Albedo) and the BiHemispherical
Reflectance (White Sky Albedo) (e.g., Lucht et al., 2000;
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Martonchik et al., 1998a,b; Schaaf et al., 2002), 4) the identication
of some surface characteristics (e.g., Cabot and Dedieu, 1997;
Duchemin, 1999; Lewis and Vives Ruiz de Lope, 1997; Rahman
et al., 1993), including those related to the presence and density of
vertical structures (e.g., Gao et al., 2003; Pinty et al., 2002;
Widlowski et al., 2001). Although all these applications except
the last could, in principle, be satisfied with the help of powerful
enoughmathematical formulae, e.g., orthogonal polynomials, the
fourth type of applications cited above suggests that such models
as RPV could be helpful to retrieve, for instance, some vegetation
structural properties.

The RPV formulation splits a BRF field into a scalar
amplitude component and the associated angular field describ-
ing the anisotropy of the surface, that is:

qsfcðz0;X0;X; q0; k;H; qcÞ ¼ q0 ̆qsfcðz0;X0;X; k;H; qcÞ ð1Þ

where ρ0 gives the overall reflectance level and where the
angular field of the surface BRF, ρ̆sfc(z0, Ω0, Ω; k, Θ, ρc), is
formulated as follows:

̆qsfcðz0;X0;X; k;H; qcÞ ¼ MIðh0; h; kÞFHGðg;HÞHðqc;GÞ ð2Þ

where

MI ðh0; h; kÞ ¼ cosk−1h0cosk−1h

ðcosh0 þ coshÞ1−k ð3Þ

FHGðg;HÞ ¼ 1−H2

½1þ 2Hcosg þH2�3=2
ð4Þ

Hðqc;GÞ ¼ 1þ 1−qc
1þ G

ð5Þ

with

cosg ¼ coshcosh0 þ sinhsinh0cos/r ð6Þ

G ¼ ½tan2h0 þ tan2h−2tanh0tanhcos/r�1=2 ð7Þ

/r ¼ /0−/ ð8Þ

where ϕr denotes the relative azimuth between the illumination
and viewing conditions specified by Ω0 and Ω which are
directional vectors at a target on the surface pointing to the Sun
and to the detector, respectively.

The parameter k in the modified version of the Minnaert's
function (Eq. (3)) (Minnaert, 1941) controls the bowl or bell-
shape of the BRF field, the parameter Θ establishes the degree
of forward versus backward scattering, depending on its sign,
following the Henyey–Greenstein formulation (Henyey and
Greenstein, 1941) and the parameter ρc accounts for the hot spot
effect especially significant in the backscattering region. When
the surface scattering properties follow a Lambert law, meaning
that the upward intensity field is scattered isotropically, the
angular function, ρ̆sfc(z0, Ω0, Ω; k, Θ, ρc) is constant and equal
to unity, a condition fulfilled numerically by setting the Θ, k
and ρc parameter values equal to 0, 1 and 1, respectively.

In summary, the RPV model uses four parameters for
representing the BRF field and describing the anisotropy of an
arbitrary target. In some instances, the parameter accounting for
the hot spot effect ρc can be set at a fixed value or forced to be
equal to the scalar amplitude parameter ρ0, in which cases only
3 instead of 4 model parameters are needed by RPV in order to
represent the angular field of the BRF (see Engelsen et al.,
1996). In the following of this paper, the 3 parameter version
thus refers to an RPV implementation using, ρ0, k and Θ
parameters only, with ρc equal to ρ0.

Applications of this category of semi-empirical models
require fitting/inverting the selected model against a set of BRF
measurements or simulations for a given scattering target. Such
a procedure typically yields a range of model parameter values
(expressing the non-uniqueness of solutions) that are providing
statistically acceptable fits between measured and modeled BRF
values, together with a documentation of their associated
uncertainties, as a result of either uncertainties in the input
measurements or intrinsic limitations in the semi-empirical
model, or both. In this context, linear models such as the kernel-
driven models (e.g., Lucht and Lewis, 2000) appear easier to
handle, thanks to the least-square theory and related statistical
analysis, than the non-linear formulation proposed by RPV. This
motivated the substitution of the original Henyey–Greenstein
expression (Eq. (4)) by a simpler exponential function, yielding
the MRPV model which, after a logarithmic transformation,
shows a quasi-linearity (Engelsen et al., 1996) and thus also
becomes easily applicable in operational contexts (Martonchik
et al., 1998a,b).

Nonetheless, the RPV model has been shown to be quite
powerful in representing a whole range of complex BRF fields
(see, for instance, Engelsen et al., 1996; Gobron and Lajas,
2002; Lucht, 1998; Privette et al., 1997; Rahman et al., 1993;
Roberts, 2001). To efficiently invert the non-linear RPV model,
Gobron and Lajas (2002) have already proposed a simpler
mathematical scheme than those traditionally adopted in the
case of non-linear systems. This scheme implements the
solution to a χ2 estimator defined with a pre-specified accuracy
level for fitting the data with the model. It requires the analytical
solution of a second order polynomial equation using an
ensemble of pre-computed functions discretized along a range
of those RPV model parameter values that control the BRF
shape. This scheme has proved to be computer efficient and
numerically robust in delivering the most representative set of
solutions minimizing the quadratic distance between the
measurements and the model simulations. Its computer
performance and accuracy in actual retrievals remain, however,
constrained by the pre-specified range and discretization of the
space of the RPV parameters controlling the shape of the BRFs.

The present paper revisits the issue of the RPV model
inversion by devising and documenting a methodology based
on inverse theory as promoted, for instance, by Tarantola (1987)
and Enting (2002). This methodology presents a number of
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advantages including the complete assessment of the measure-
ment-model mismatch covariance matrix and the engineering
possibility to operate adjoint software codes themselves derived
from automatic differentiation techniques (Griewank, 2000).
This leads to a software package allowing the user to perform,
under the classical Bayesian approach, the inversion of the non-
linear RPV model in a numerically and computationally very
efficient manner, while at the same time generating a rather
complete and mostly unbiased estimation of the Probability
Density Functions (PDFs) for the retrieved parameters. A series
of applications based on BRF fields simulated by radiation
transfer models and derived from data acquired by the
Multiangle Imaging SpectroRadiometer (MISR) instrument
are conducted to evaluate the performances of the RPV
inversion package.

2. Inversion methodology

The formulation of an inverse problem aims to optimize the
use of available information specified through a priori
knowledge on the values of the model parameters X, the
measurement, and the constraint provided by the model. This a
priori knowledge stabilizes the inversion procedure and
compensates for an incomplete or non-exhaustive set of
measurements which helps solving ill-conditioned problems.
It is appropriate to formulate the inverse problem in terms of
Probability Distribution Functions (PDFs) within the spaces of
model parameters and measurements. Finding solutions to the
inverse problem thus means estimating the a posteriori PDFs
for the model parameters.

The associated algebra is particularly convenient (see
Tarantola, 1987), if the measurements and the a priori knowledge
on the model parameters can be approximated by Gaussian
probability distributions that is, if they can be represented by their
mean values d and Xpr and associated covariance matrices
denoted by Cd and CXpr

, respectively. If, in addition, the local
linearisation provides a good approximation for the non-linear
model M(X), then the a posteriori probability distribution P(X)
is close to Gaussian as well. Hence, P(X) can be approximated by
its mean value and covariance matrix denoted Xpo and CXpo

,
respectively (where the superscript T represents the matrix
transpose):

PðXÞcexp −
1
2
ðX−XpoÞTC−1

Xpo
ðX−XpoÞ

� �
ð9Þ

Xpo represents the maximum likelihood estimator of the mean of
P(X) andminimises the following cost function J(X) expressed as
follows :

JðXÞ ¼ 1
2
½ðMðXÞ−dÞTC−1

d ðMðXÞ−dÞ

þðX−XprÞTC−1
Xpr

ðX−XprÞ�
ð10Þ

The first term of the right-hand side of Eq. (10) quantifies
the mismatch between the model simulations and the measure-
ments while the second term expresses the constraint given by
a priori knowledge on the model parameters X. The covariance
matrices expressing the uncertainties in the measurements and
in the a priori knowledge on model parameters can be con-
ceived of as weighting factors in Eq. (10). If the covariance
matrices are diagonal (implying zero correlation between the
matrix elements), then Eq. (10) reduces to a least squares
formulation and each component of d and Xpr is weighted in
inverse proportion to the uncertainty level that is associated
with it. Under conditions where a large set of accurate inde-
pendent measurements is available, the relative weight of the
a priori knowledge on the X decreases, and the solution to
Eq. (10) is essentially controlled by the first term on the right-
hand side of this equation. This latter term ensures that the
retrieved model parameter values generate BRF values that are
close to the measurements.

The inverse problem is solved with a gradient algorithm
minimizing Eq. (10) which iteratively evaluates both J(X) and
its gradient ∇ J(X) with respect to X. The exact evaluation of
this gradient can be achieved via the adjoint model of J(X)
which also saves significant computer time by contrast to finite-
difference techniques (Giering and Kaminski, 1998). An
additional term, which drastically increases the cost function
in case of unrealistic combinations of model parameters (not
shown but entering Eq. (10)), essentially excludes the
corresponding regions in the model parameter space. This is
somewhat similar to adding bounds on the parameter space.

Under the regularity conditions mentioned above, the Hessian
∇2 J(X) at the minimum of J approximates the inverse of the a
posteriori covariance matrix CXpo

. Comparison with the a priori
uncertainty indicates how well individual directions in the space
of model parameters are observed through the measurements.
Eigenvectors of CXpo

indicate the independent directions in the
parameter space, and the corresponding eigenvalues quantify the
uncertainties associated with the retrievals.

When seeking the minimum of a cost function such as J(X),
the crux of the problem lies in the generation of a compu-
tationally efficient software package while preserving the
numerical accuracy of the various terms contributing to this
cost function. Now popular inverse modeling and data assimi-
lation methods have promoted the development of advanced
software tools, including those based on automatic differenti-
ation techniques (Griewank, 2000). In the present RPV model
application, the derivative codes have been generated by the
compiler tool Transformation of Algorithms in Fortran (TAF)
(Giering and Kaminski, 1998; Giering et al., 2005) available
from FastOpt (http://www.FastOpt.com/). The software routines
for achieving minimization (dfpmin) and matrix inversion
(performed by computing the eigenvalues and eigenvectors of
this matrix (jacobi)) are provided by the scientific library avail-
able from Press et al. (1986).

The performance of this inversion package is illustrated in
this section against a model-simulated BRF scenario taken from
the RAdiation transfer Model Intercomparison (RAMI) exercise
(Pinty et al., 2004a,b). This particular scenario corresponds to
an idealized coniferous forest scene with a flat bright underlying
background meant to render a snow-covered ground typical of
winter conditions, albeit represented by a simple Lambertian

http://www.FastOpt.com/


Fig. 1. BRF values reconstructed in the principal (top panel) and orthogonal
(bottom panel) viewing planes using the RPVmodel with 3 (red line) and 4 (green
line) best fit parameters, respectively. The square symbol represents theBRFvalues
given as input to the RPV model inversion package. (For interpretation of the
references to colour in this figure legend, the reader is referred to theweb version of
this article.)

Fig. 2. Evolution of the values taken by the cost function J(X) with the iteration
number. The full (dashed) lines corresponds to the inversion of the RPV package
against BRF values in the principal (orthogonal) plane. Results with the 3 (4)
parameter version are indicated in red (green) color. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this
article.)
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scattering law. A detailed description of this scene (labelled as
HET03 with no topography in the RAMI environment) is given
in Pinty et al. (2004a,b) and can also be found at http://rami-
benchmark.jrc.it/. The BRF fields analyzed here were calculated
in the principal and orthogonal planes using the Raytran ray
tracing Monte-Carlo model of Govaerts and Verstraete (1998),
operated with the RAMI conditions set up to address the radia-
tion transfer regime in the near-infrared spectral domain.

The RPV model inversion package described here was
applied separately to the BRF values generated once in the
principal plane and once in the orthogonal plane. Each
application was performed with the RPV model using
3 parameters, as well as with the 4 parameter version. In all
cases analyzed in this section, and elsewhere in this paper unless
otherwise stated, the a priori knowledge on parameters X was
specified in the following way: 1) the a priori values for
parameters ρ0, k, Θ, and ρc are set at 0.01, 1.00, 0.00, and 0.01,
respectively, 2) large uncertainty values (standard deviations
equal to 102), are associated with these parameter values and, 3)
the covariance matrix, CXpr

, is diagonal. As mentioned earlier,
the setting of large uncertainties on the a priori knowledge on
model parameters gives a very small weight to the second
contributing term on the right-hand side of the cost function
(Eq. (10)). The covariance matrix associated with the measure-
ments, Cd, is assumed diagonal as well with a uniform standard
deviation value, corresponding to 10% of the mean BRF field in
each separate viewing plane, that is equal to 3.9×10−2 and
3.4×10−2 for the principal and orthogonal planes, respectively.

Fig. 1 displays the BRF values reconstructed from the RPV
model given the 3 (red line) or 4 (green line) parameter values
delivered by the inversion package, together with the input BRF
values. As expected, in the principal plane (top panel), the RPV
4 parameter version gives a slightly improved fit in the angular
domain close to the exact backscattering direction as compared
to the RPV 3 parameter version. The BRF fields reconstructed
by these two versions in the orthogonal plane (bottom panel)
are, however, almost indiscernible for all practical purposes
since they differ by an amount much smaller than the
anticipated measurement uncertainties. Fig. 2 provides the
evolution of the values of J(X) (normalized by the number of
measurements and plotted on a logarithmic scale) as a function

http://ramienchmark.jrc.it/
http://ramienchmark.jrc.it/


Table 1
Means and standard deviations of the RPV parameter values as retrieved by inversion

Viewing conditions Moment ρ0 k Θ

Principal plane with 3 parameters Mean 0.239 0.893 −0.084
Standard deviation 0.58×10−2 2.26×10−2 0.85×10−2

Orthogonal plane with 3 parameters Mean 0.199 0.834 −0.152
Standard deviation 2.92×10−2 12.13×10−2 9.08×10−2

Viewing conditions Moment ρ0 k Θ ρc

Principal plane with 4 parameters Mean 0.221 0.875 −0.069 −0.041
Standard deviation 1.75×10−2 2.82×10−2 1.61×10−2 28.30×10−2

Orthogonal plane with 4 parameters Mean 0.514 1.063 −0.361 2.167
Standard deviation 71.69×10−2 12.13×10−2 63.50×10−2 149.4×10−2

Table 2
Correlation of a posteriori uncertainties of the retrieved RPV parameter values

Parameters ρ0 k Θ

ρ0 1.000 0.400 0.832
k 0.985 1.000 0.222
Θ 0.996 0.983 1.000

Values obtained in the principal (orthogonal) plane are reported in the upper-
right (italicized in the lower-left) corner, respectively.
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of the number of iterations required to find its minimum, for the
four studied cases, namely the principal (full lines) and
orthogonal (dashed lines) planes and using the version
implementing 3 (in red) and 4 (in green) model parameters in
the RPV package. In both viewing planes, the 4 parameter
version finds lower minima of J(X) than is possible with the
3 parameter version, hence a slightly better fit, but at the cost of
a larger number of iterations, as can be expected. In the studied
cases, the number of iterations required to identify an acceptable
minimum is quite small given the non-linearity of the RPV
model (the decrease in the values of J(X) is very fast) and
illustrates the excellent performance of the RPV inversion
package used here. This number of iterations is determined by
the gradient of the cost function. In the current setup, the
minimization is stopped once the norm of this gradient is less
than a prescribed conservative threshold value equal to 10−6. A
higher threshold value would thus reduce the number of
iterations and hence speed up the inversion procedure.

Table 1 provides basic statistical information about the RPV
model parameter values delivered by the inversion package.
The estimated values of the standard deviation (corresponding
to the values located along the diagonal of the a posteriori
covariance matrix CXpo

) associated with the mean values of the
retrieved parameters are systematically larger in the orthogonal
than in the principal plane. In other words, the range
(represented by the PDF P(X)) of acceptable values taken by
the RPV parameter in order to satisfy the inversion conditions is
larger when considering measurements in the orthogonal plane
only by contrast to the principal plane only.

The principal plane thus provides a more precise estimation
of the RPV set of parameter values and should be preferred
when there is no limitation on the angular sampling. Analogous
arguments can be used to understand the standard deviation
values obtained with the RPV version implementing 4 para-
meters. Nonetheless, one should note that the uncertainty values
associated with the k parameter seems only slightly affected by
the number of RPV parameters used.

Elements of the matrices of a posteriori parameter correlations
are given in Table 2 for the principal and orthogonal planes in the
case of the 3 parameter inversion. Both matrices are symmetric
and the values obtained in the principal (orthogonal) plane are
reported in the upper-right (italicized in the lower-left) corner,
respectively. These correlations show very significant numerical
differences between the retrievals performed in the two planes. By
contrast to the principal plane, all correlation values between the
retrieved parameters are close to unity in the orthogonal plane
which indicates that the available measurements do constrain the
inversion process in one direction only (specified by the dominant
eigenvector of CXpo

) in the RPV parameter space. As a matter of
fact, the retrieval of k values less than unity when fitting the bell-
shaped pattern in this viewing plane is explained by the very high
correlation value estimated between the k and Θ parameters. In
other words, the available measurements in the orthogonal plane,
when analyzed with RPV, do not help us learning about the
geophysical system as much as it is the case from measurements
in the principal plane.

3. Inversion results

This section documents results delivered by the RPV model
inversion package when operated against 1) a large range of
highly anisotropic conditions as generated by radiation transfer
model simulations on three-dimensional (3-D) scenes and 2)
actual surface BRF values derived operationally by the
Multiangle Imaging SpectroRadiometer (MISR) instrument on
board NASA's Terra platform. These two series of experiments
are intended to test the performance of the inversion package
with respect to its robustness and computer speed under a
variety of BRF amplitudes and shapes as well as sampling
conditions.

3.1. Ensemble of model-based simulations

We have opted for 3-D model-simulated vegetation scenes to
establish the performance of the RPV model inversion package.
The various scenarios considered here are all based on realistic
forest system properties (birch trees in this case) as reported in
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the literature (Widlowski et al., 2003) and span a large range of
ecological situations. In particular, the inclusion of three widely
different background brightness conditions (from dark to very
bright) allows us to test the importance of the contribution of the
uncollided radiation to the total signal; that is, the fraction of
radiation that has travelled through the gaps of the canopy layer
and has been scattered by the background only (Pinty et al.,
2004a,b). The resulting overall BRF anisotropy may vary
dramatically from strongly bowl-(with dark background) to
bell-(with bright background) shaped patterns offering thus an
Fig. 3. Scatterplots of the 3-D model-simulated BRF values against those
reconstructed by the RPV model using the mean retrieved parameter values. The
precise location of the original and reconstructedBRF values in the angular domain
(Ω0, Ω) is given in Fig. 4. Results from the 3 (4) parameter versions are shown on
the top (bottom) panel. Labels Rbgd and Fc refer to the lambertian albedo of the
underlying background and the vegetation fractional cover used in the simulations,
respectively.

Fig. 4. Geometry of the viewing angles constraining (★) the inversion
procedure on 3-D model-based simulations. The agreement between the
reconstructed and original BRF values is assessed along different viewing
directions (◊). The three inner circles (dashed lines) correspond to zenith angles
of 25°, 45° and 65°, respectively. The backscattering regime occurs on the right
hand side of the graph.
appropriate ensemble of conditions to evaluate the RPV fitting
performance. The simulations of the radiation transfer regimes
characterizing this ensemble of forest systems are conducted in
the red and near-infrared spectral domains for three different
values of the Sun zenith angle, 25°, 45° and 65°, using the
Rayspread model, a 3-D Monte Carlo ray-tracing model that
implements the local estimator variance reduction technique for
the BRF simulations (Widlowski et al., 2006).

The 3 and 4 parameter versions of the RPV model inversion
package were both applied on this ensemble of 3-D model-
based simulations. The inversion procedure was activated on
756 different scenarios using 25 view angles distributed in both
the principal and orthogonal planes, between 0° and 75°. Fig. 3
shows the scatterplots between the 3-D model-based simula-
tions and those BRF values calculated with the forward RPV
model at azimuthal and zenithal angles different from those
originally used as input. The precise location of these exiting
directions is sketched on Fig. 4. The very good unbiased
agreement with quite limited scatter between the two BRF
datasets illustrates the capability of both 3 (top panel) and 4
(bottom panel) parameter versions of the RPV model to provide
accurate fits of BRF fields. As expected from results highlighted
in the previous section, the RPV version using 4 parameters
performs slightly better in terms of its fitting performance. This
feature is, however, somewhat counterbalanced by the larger
uncertainties on the retrieved mean parameter values as
documented in Table 1, thus rendering the subsequent analysis
of the mean retrieved values more difficult.

The histograms of the retrieved parameters obtained when
using the 3 parameter version are shown in Fig. 5 for both red
(red line) and near-infrared (black line) spectral bands. The



Fig. 5. Histograms of the RPV model parameters retrieved by the inversion package using 3 parameters against the ensemble of 3-D model-simulated scenarios. The
top left, top right and bottom left panels display results for the ρ0, k and Θ parameter, respectively. The bottom right panel illustrates the histogram of the number of
iterations. The red (black) lines correspond to retrievals obtained in the red (near-infrared) spectral band. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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distributions of ρ0 values (top left panel) are analogous in both
spectral bands due to the large range in the background
conditions that was specified in the 3-D model-based simula-
tions. By contrast, the k parameter (top right panel) exhibits
distinct (with limited overlap) PDFs in the red, where large
absorption by leaves embedded in the vertical tree structures are
simulated yielding a most frequent occurrence of bell-shaped
BRFs (kN1 values) conditions, and in the near-infrared band,
where scattering by vegetation elements is significant. This
spectral difference confirms earlier conceptual findings by Pinty
et al. (2002) and Widlowski et al. (2004) and suggests the
possibility to derive vegetation structure information from
multi-angle data, especially under bright background conditions
(Nolin, 2004). The PDFs of the retrieved Θ parameter (bottom
left panel) in both spectral bands are slightly skewed towards
negative values, thus indicating the predominance of backscat-
tering regimes due to the decrease in the relative contribution of
darkening caused by shadowing. The identification of the J(X)
function minima for these cases was achieved after a number of
iterations ranging from about 5 to 40, as shown in Fig. 5 (bottom
right panel).

Each of these 756 inversion cases (42 forest scenes×2
spectral bands×3 background brightness values×3 Sun zenith
angle values) required 3.9×10−3 seconds on average for the
3 parameter version and 7.7×10−3 for the 4 parameter version.
These small numbers correspond to the user time (defined here
as the total number of CPU-seconds that the process spends in
user mode) on a PC (dual Xeon 2.4 GHz) with 2 GB RAM,
running under the Linux 2.6 kernel. The software was compiled
using the GNU gfortran compiler (gcc-4.0.1) with no
optimization flag. The average number of iterations required
to find the minima of the cost function (Eq. (10)) are equal to 12
and 15 in the red and near-infrared spectral bands, respectively,
when using the same a priori knowledge, that is Xpr for the
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parameter values and Cd and CXpr
for the covariance matrices,

as those specified in Section 2. Since the values specified inCXpr

do not add any constraints on the range of the parameter values
to be retrieved, the 3 parameter inversion procedure returned a
small set (3% of the cases) of “unrealistic” values whose
combination however provides a good fit to the BRFs. This
situation can be avoided easily by constraining the range of
allowed parameter values.

3.2. MISR derived Surface BRFs

The Multiangle Imaging SpectroRadiometer (MISR) instru-
ment on board NASA's Terra platform acquires reflectance data
from any Earth target in four solar spectral bands, from nine
different directions, in at most seven minutes. In the default
mode of operation, MISR data are downloaded from the
platform at a spatial resolution of 275 m in all bands of the nadir
camera and in the red band of the off-nadir cameras, and at
1.1 km in the remainder (see Diner et al., 1998). The MISR
Fig. 6. Comparisons between the MISR Land BRFs (path 175, block 103, orbit 86
parameter values delivered by the inversion package using 3 parameters. The top (bo
green (near-infrared) bands, respectively.
instrument thus samples the information related to the
anisotropic patterns of the spectral radiation scattered by
various types of land surfaces. As shown in Diner et al.
(2005), these angular signatures can be used to obtain unique
information about the geometric and physical properties of the
environment. Specifically, under favorable conditions of
illumination and background brightness, the BRF field in the
red spectral domain can assume a bell-shape pattern. When this
occurs, the k parameter of the RPV model takes on values larger
than unity, and this has been interpreted as indicating the
presence of dark vertical structures such as trees over a
relatively bright background at the MISR subpixel scale (see for
instance Nolin, 2004; Pinty et al., 2002; Widlowski et al., 2004).
Separately, the RPV model parameter Θ has been used to assess
the presence of wetlands and shallow free standing water areas
when the spectral signature is not sufficient (Pinty et al., 2003).

The RPV model inversion package (3 parameters version) was
applied to block 103 (path 175) of MISR level 2 surface-derived
BRFs (terrain-projected) showing contrasted surface conditions
50, August 3, 2001) and those simulated using the optimal set of mean RPV
ttom) left and right panels corresponds to results obtained in the blue (red) and



Fig. 7. False color composite map of the mean values of the ρ0 parameters retrieved in the MISR red, green and blue bands (top panel) from data acquired on August 3,
2001 (path 175, block 103, orbit 8650). The bottom panel shows the FAPAR estimates delivered at 275 m spatial resolution by the VEGAS algorithm which uses top of
the atmosphere L1B2 MISR data (Gobron et al., 2002, Appendix I). The area located around the Mongu tower site is identied by a red ◊ on the FAPAR map. North is
up in the figure and the horizontal extent of the image is the MISR swath, i.e., about 380 km. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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and encompassing theMongu site in Zambia (15.44° S; 23.25° E).
This site was instrumented in the context of the SAFARI 2000
project experiment1 and the characteristics of the vegetation cover
over this area adjacent to the Zambezi river basin have been
extensively documented during this field campaign (Shugart et al.,
2004). The predominant vegetation belongs to a class of broad-leaf
deciduous woodland with sparse woody vegetation understory. In
this Kalahari woodland, the trees making up the overstory range
from 8 to 12 m in height and cover about 50% of the understory
which itself covers close to 30% of the ground (see for instance
Privette et al., 2004; Scholes et al., 2004). The strongly seasonal
rainfall induces changes in the Leaf Area Index (LAI) from about
0.5 (in August) to 2.0 (in January) (Huemmrich et al., 2005). The
surface BRF values used in this studywere generated by theMISR
operational processor (version 17) on data acquired during the year
2001. Over the selected block, the widest spatial coverage with
valid surface BRF estimates was found on August 3, 2001 (orbit
8650) and we thus focused first on the analysis of data acquired on
this date. The inversions were performed by specifying a uniform
standard deviation value corresponding to 5% of the mean MISR
land BRF field in the diagonal covariance matrix associated with
the measurements, Cd.

The comparison between the surface BRF values derived from
MISR data and those reconstructed using the RPVmodel with the
selected ensemble of parameter values delivered by the inversion
1 http://daac.ornl.gov/S2K/.
package is shown on Fig. 6. These two datasets appear to agree to
a large degree in all spectral bands, e.g., the root mean square
error is equal to 5.6×10−3 for the near-infrared band (bottom right
panel) and close to 3×10−3 for the cameras operating at the
shorter wavelengths (top and bottom left panels). These values
correspond to approximately 2% (in the near-infrared) to 5% (in
the blue) relative error of the mean BRF values.

Fig. 7 (top panel) displays a false color composite of the mean
values of the retrieved RPV ρ0 parameter in the red, green and
blue spectral bands. This map exhibits strong spatial and spectral
contrasts over this region, both primarily related to vegetation
density, i.e., low (high) vegetation density are associated with
high (low) ρ0 values in the red, green and blue bands. Indeed, the
spatial patterns of ρ0 are visually very similar to those exhibited
by the Fraction of Photosynthetically Active Radiation (FAPAR)
(bottom panel) delivered at 275 m spatial resolution by the
VEGetation Activity and Structure (VEGAS) algorithm which
uses top of the atmosphere L1B2MISR data (Gobron et al., 2002,
Appendix I). Incidentally, these FAPAR values are in the same
range as those reported from ground-based estimations at
locations close to the tower (see Huemmrich et al., 2005).

The maps of the mean values of the parameters controlling the
angular shape of the BRFs, namely k andΘ, are given on Fig. 8 for
both the red and near-infrared spectral bands. As illustrated in
previous studies (see for instance, Diner et al., 2005; Gobron et al.,
2002; Gobron and Lajas, 2002) the mean values of these
parameters exhibit large spatially coherent variations probably
associated with specific surface cover features. The k parameter in

http://daac.ornl.gov/S2K/.


Fig. 8. Maps of the mean values of the k andΘ parameters retrieved in the MISR red (top panels) and near-infrared (bottom panels) spectral band from data acquired on
August 3, 2001 (path 175, block 103, orbit 8650). North is up in the figure and the horizontal extent of the image is the MISR swath, i.e., about 380 km. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the red band is rather contrasted with values both significantly
larger and smaller than unity. These can probably be attributed to
changes in vegetation density and related gappiness at the sub-
pixel resolution. By comparison, the k values in the near-infrared
band vary within a more limited numerical range, although the
signature of spatially organized surface features is still detectable.
The maps ofΘ exhibit predominantly a backscatter regime in both
wavelengths, although the occasional detection of forward
scattering areas suggests the presence of water bodies, such as
lakes and shallow water bodies in the Zambezi river basin (blue
color code in right panels of Fig. 8). The detection of such features,
especially on theΘmaps, is sensitive to theMISR aerosol retrieval
algorithm, which is also responsible for the occasional blockiness
at 17.6 km (16 MISR pixels at 1.1 km resolution). As can be
anticipated, this contamination is much more significant for
Fig. 9. False color composite map of parameter k retrieved in the MISR red band (
parameter Θ retrieved in the MISR near-infared band (coded in blue color) from dat
imply a marginally higher vegetation density, redish hues suggest a relatively structu
figure and the horizontal extent of the image is the MISR swath, i.e., about 380 km.
referred to the web version of this article.)
parameter values retrieved from the blue band (not shown) than at
any other wavelength.

This study underscores the complementarity of the traditional
spectral analysis and of the anisotropy investigation made
possible with MISR. For instance, the largest FAPAR values are
associated, in the red band, either with bowl-shape (lowest k
values in red color) or bell-shape patterns (highest k values in blue
color) therefore suggesting the presence of different surface
features most probably related to vegetation spatial heterogeneity.
By the same token, areas exhibiting spatially uniform low FAPAR
values (due to low vegetation density but also quasi bare soils,
roads and water bodies) are associated with different features in
the k and Θ parameters, the latter being particularly relevant for
shallow water bodies detection. Fig. 9 exhibits some of the
information contained in the retrieved parameter space by
coded in red color), FAPAR from L1B2 MISR data (coded in green color) and
a acquired on August 3, 2001 (path 175, block 103, orbit 8650). Greenish hues
red environment while blue spots indicate free standing water. North is up in the
(For interpretation of the references to colour in this figure legend, the reader is
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combining these elements into a false color composite image,
where the parameter k, derived from MISR in the red spectral
band is coded in red, the FAPAR estimated from MISR L1B2 is
coded in green, and the parameter Θ in the near-infrared spectral
band is represented in blue. The various hues can thus be easily
related to different associations of vegetation density and greeness
(greenish hues imply a marginally higher vegetation density), gap
occurrence within the canopy cover (redish hues suggest a
relatively structured environment) while blue spots indicate free
standing water.

The PDFs of standard deviation values on the three RPVmodel
parameters over that sameMISR block are reported in Fig. 10. The
large majority of the values taken by these standard deviations, all
spectral bands included, are smaller than 0.6×10−2, 3.5×10−2 and
1.4×10−2 for the ρ0 (top left panel), k (top right panel) and Θ
Fig. 10. Probability density functions of the standard deviation values of the RPV mo
MISR land BRFs (path 175, block 103, orbit 8650, August 3, 2001). The top left,
respectively. The bottom right panel illustrates the PDF of the cost function. The blue
green, red and near-infrared spectral bands, respectively. (For interpretation of the refe
this article.)
(bottom left panel) parameters, respectively. Since these values are
much smaller than the variations exhibited in the spatial patterns of
Figs. 7 and 8, the spatial organization suggested by these figures is
statistically significant. The effect of blockiness mentioned
previously translates into relatively large values of the cost
functions (bottom right panel) associated with these retrievals in
the blue spectral band. As can be logically expected, these values
are decreasingwith an increase in the spectral location of the bands,
i.e., the best retrievals are thus achieved for the near-infrared band.
This same spectral trend seems to affect, but only slightly, the fields
in the k and Θ parameters as well over this particular region.

This analysis was repeated throughout the year 2001,
whenever MISR land BRF products were available for that
same MISR block. Fig. 11 shows time profiles of the ρ0 and k
parameters together with those delivered by the operational
del parameters retrieved by the inversion package using 3 parameters against the
top right and bottom left panelsdisplay results for the ρ0, k and Θ parameter,
, green, red and black lines corresponds to results obtained with the MISR blue,
rences to colour in this figure legend, the reader is referred to the web version of



Fig. 11. Top panel: Time profiles of the ρ0 parameter delivered by the RPV
inversion package (3 parameter version) (+ symbol) and the MISR operational
processor (version 17) (◊ symbol) in the red (red) and near-infrared (black) band.
Bottom panel: same as before but for the k parameter. These values are all taken
from the 4 MISR pixels within the vicinity of the Mongu tower site (path 175,
block 103). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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processor (version 172) in the red and near-infrared spectral
bands. These profiles are relative to the four MISR pixels
(1.1 km resolution) located within the vicinity of the Mongu
tower site. Results from June 31, 2001 were excluded from
2 The BRF model parameters generated by MISR operational processor pre-
dating version 17 were found to be in serious error. Under some circumstances,
the MISR L2 Land BRF products were affected as well.
these figures because very large numerical values of the cost
function J(X) (Eq. (10)) indicate unreliable retrievals. Further
inspection of the MISR products suggests that rather unfavor-
able but unflagged atmospheric conditions were prevailing over
the Mongu tower site on that particular date.

Fig. 11 illustrates that both sets of parameters are in excellent
agreement and are both able to account for the seasonal
variations in these parameters. The spatial variability between
results obtained over these 4 MISR pixels is also very limited
and with low values of the cost function, thus adding a good
level of confidence on the observed patterns. The ρ0 parameter
in the red band gradually and smoothly increases from about
day 100 up to approximately day 250 and thereafter drops down
to lower values. This evolution, in full agreement with ground-
based observations of vegetation activity (see for instance
Privette et al., 2004), is not however observable in the near-
infrared band. This suggests that the decrease of solar
absorption in the photosynthetic range is not accompanied by
a change in the multiple scattering regime. In the mean time, the
k parameter values retrieved in the red (near-infrared) exhibit a
decreasing (increasing) trend over the same period of time.
These patterns, when considered together, can be interpreted as
a consequence of the leaf loss at the onset and during the dry
season (see for instance Shugart et al., 2004, Fig. 1). Indeed, at
the end of the wet season (close to the beginning of our time
series) green healthy (absorbing in the photosynthetic domain)
leaves are clumped into trees covering only a fraction of the
background. This situation yields low ρ0 and large (eventually
larger than unity) k values in the red band associated with low
values (less than 0.8) of k in the near-infrared band. As the dry
season proceeds, a smaller amount of green leaves is present
and thus their obscuring effect of the uncollided radiation
(scattered by the background) that exits the canopy layer at large
angles is lessened. This logically translates into an increase
(decrease) of the bowl-shape signature in the red (near-infrared)
bands (Pinty et al., 2002). It is noteworthy that the last MISR
sample in our time series suggests that the opposite trend occurs
at the end of the dry season. These limited examples of maps
and time series illustrate the added value provided by the
thorough analysis and interpretation of the BRF angular shape.

4. Conclusions

This paper describes a new inversion package for the non-
linear RPV model which capitalizes on recent computer
software techniques (such as automatic differentiation used to
generate the adjoint and Hessian code of a cost function) and
evaluates its performances. This package inverts the RPV
model in a numerically accurate and computer efficient manner
and delivers extensive statistical information on the results,
allowing the user to appreciate the quality of the retrievals and
the performance of the procedure. This information is
extremely valuable to properly interpret the RPV model
parameter values.

The current package is designed to address the inversion of
both the 3 and 4 parameter versions of the RPV model, i.e.,
including the optional hot spot parameter. It was shown that, as
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can be expected from logical considerations, the 4 parameter
version provides slightly better fits to a large ensemble of BRF
fields, but at the cost of higher uncertainties on the retrieved
parameter values. This study also confirms that when multi-
angular observations are plentiful, measurements taken in the
principal plane are more constraining on the inversion
procedure and, therefore, yield more precise results than when
they are acquired in the orthogonal plane. The gain in
knowledge and the improvement in product accuracy and
precision are documented and quantified by the analysis of the
values populating the a posteriori covariance matrix. Since this
covariance matrix is estimated optimally from the Hessian code,
this gain in knowledge is not penalized by a significant increase
in computing resources as it is generally the case with
traditional inversion techniques. The current inversion package
thus removes the necessity of linearizing/simplifying the RPV
formulation for the sole purpose of improving the speed of its
inversion.

A series of tests has been conducted first against an
extensive set of 3-D model simulated BRFs exhibiting
somewhat complex angular shapes. These applications of the
RPV inversion package confirm the excellent fitting capabil-
ities of the RPV model and the robustness of the inversion
procedure over a wide range of BRF conditions. A second
series of inversion exercises were performed against MISR
land BRF products generated by the operational processor
(version 17). The selected MISR-derived data sets correspond
to products available during year 2001 over the particular
MISR block encompassing the SAFARI 2000 Mongu area
located in Zambia. The main conclusions from this latter
application can be summarized as follows: 1) the 3 parameter
RPV version provides good fits to MISR land BRF products
with an unequivocal information about the uncertainty levels
in both the quality of the fit and the probability density
functions of the model parameters, 2) even though the current
version has not yet been optimized with respect to computing
performance criteria, the package already operates in a quite
computer efficient manner as can be assessed from a large
number of sampling and scene scenarios, 3) the RPV
parameter values representing the amplitude and the bowl to
bell shape of the angular BRF fields, namely ρ0 and k are in
excellent agreement with the analogous products generated by
version 17 of the MISR operational processor and, 4) the
inversion delivers spatially coherent fields of the RPV
parameters representing the amplitude and controlling the
anisotropy of the surface. These fields, when associated with
limited uncertainties, allow the user to analyze further the
surface anisotropy patterns. Such analyses confirm earlier
findings regarding the benefits from multiangular data
acquisition in particular, the potential to elaborate on the
processes leading to vegetation seasonal cycles.
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