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Abstract

A capability to remotely measure the vertical and spatial distribution of forest structure is required for more accurate modeling of energy,

carbon, water, and climate over regional, continental, and global scales. We examined the potential of using a multi-angle spectral sensor to predict

forest vertical structure as measured by an airborne lidar system. Data were acquired from AirMISR (Airborne Multi-Angle Imaging

Spectrometer) and airborne LVIS (Laser Vegetation Imaging Sensor) for a 7000 ha study site near Howland Maine, consisting of small plantations,

multi-generation clearings and large natural forest stands. The LVIS data set provided a relatively direct measure of forest vertical structure at a

fine scale (20 m diameter footprints). Multivariate linear regression and neural network models were developed to predict the LVIS forest energy

height measures from 28 AirMISR multi-angle spectral radiance values. The best model accurately predicted the maximum canopy height (as

measured from LVIS) using AirMISR data (rmse=0.92 m, R2=0.89). The models developed in this study achieved high accuracies over a study

site with an elaborate patchwork of forest communities with exceptional diversity in forest structure. We conclude that models using MISR-like

data are capable of accurately predicting the vertical structure of forest canopies.
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1. Introduction

Forest structure affects the fluxes of energy and matter

across the land–atmosphere interface, and the biodiversity of

ecosystems. Forest structure is determined by several factors,

including species composition and the three-dimensional

distribution of leaves/needles and woody biomass. Many

processes, both anthropogenic and non-anthropogenic, alter

forest structure including forest management, natural distur-

bances, and recovery from disturbance (i.e., successional status

or age class).

Most remote sensing systems, although providing images of

the horizontal extent of canopies, do not provide direct

information on the vertical distribution of canopy elements.

For example, MODIS (Moderate Resolution Imaging Spectro-
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radiometer) land products provide typical forest parameters at

large spatial scales (e.g., forest type, %cover, leaf area index,

and net primary production) (Justice & Townshend, 2002), but

these products do not provide much insight into the vertical and

spatial structure of the forest. Structural information is essential

for realistic energy budgeting, and carbon and water cycle

modeling at the landscape scale. This requires a capability to

remotely measure the vertical and spatial distribution of forest

structural parameters that are needed for more accurate models

of energy, carbon, and water flux over regional, continental,

and global scales. Lidars, multiangle radiometers, radars and

imaging spectrometers have been identified as systems that can

capture information in the vertical dimension (e.g. Dobson et

al., 1996; Lefsky et al., 1999a; Ranson et al., 1994; Treuhaft et

al., 2002). In this paper, we consider the use of lidars and

multiangle radiometers to estimate forest vertical structure.

The composite return from a lidar footprint is called the lidar

waveform signature. The lidar waveform from a large-footprint

lidar instrument, such as the Laser Vegetation Imaging Sensor
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Fig. 1. AirMISR nadir color composite image of the study site near Howland

Maine. The white box is the cloud free area of the image. Within the white box

the green areas are roads or recent clear cut areas. The dark areas are conife

forests and the bright red areas are deciduous forests.
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(LVIS) (Blair et al., 1999; Drake et al., 2002), has been

successfully used to estimate the canopy height, stand volume,

basal area, and above-ground biomass (Drake et al., 2002;

Lefsky et al., 1999b; Means et al., 1999). The waveform data

provides a relatively direct measure of the vertical profile of the

canopy components (Blair & Hofton, 1999). In addition, LVIS

has a high density of footprints across a wide swath (2 km) that

can be used to form an image. LVIS data provide forest

structure information and are an excellent data set for

developing and testing methods to extract forest structure

information using other kinds of sensor data. Ground data of

forest structure at such a fine scale and for large regions has not

been previously available for developing forest structure

algorithms. In addition, lidars in orbit and proposed, do not

have a continuous mapping capability, and provide only sample

data in a region. A capability to continuously map the vertical

structure for large regions would provide fundamental infor-

mation that would enable more accurate modeling of energy,

carbon, water, and climate (Landsberg & Waring, 1997;

Cuevas, 2003; Dai et al., 2003; Engel et al., 2002; Hudak et

al., 2002; Shugart, 2000).

Imaging the Earth’s surface through various angles by the

Multiangle Imaging Spectrometer (MISR) instrument on-board

the Terra Spacecraft (Diner et al., 1998) could provide a

capability to continuously map forest vertical structure by using

directional reflectance information. Early studies showed the

promise of directional reflectance data for distinguishing forest

types (e.g., Ranson et al., 1994; Russell et al., 1997). Multi-

angle data significantly improved the accuracy of recovering

forest parameters when inverting 3-D optical models (Kimes et

al., 2002). More recently, studies by the MISR science team

members indicate the usefulness of off-nadir data for surface

heterogeneity and vegetation structure (e.g., Chopping et al.,

2003; Gobron et al., 2002; Jin et al., 2002; Pinty et al., 2002).

MISR’s 375 km swath and 275–1100 m spatial resolutions

may provide a capability of mapping forest structure parameters

at regional, even global scales. Coincident data acquired from

theMISR airborne simulator instrument (AirMISRweb site) and

LVIS provide an opportunity for examining the potential of

using multi-angle spectral sensors to map forest vertical

structure measures. In this study we explore the potential of

accurately predicting forest vertical structure as measured from

LVIS using AirMISR spectral and angular data. We developed

and compared a number of prediction methods including linear

and neural network models.

2. Methods

2.1. Study area

LVIS and AirMISR data were acquired in the summer of

2003 as part of a NASA Terrestrial Ecology Program aircraft

campaign. Our study site is located at approximately 45- 15VN
latitude and 68- 45V W longitude at International Paper’s

Northern Experimental Forest near Howland, Maine, USA

(Fig. 1). This site was also the location of the NASA Forest

Ecosystem Dynamics Multi-sensor Aircraft Campaign in 1990
(Ranson et al., 1994; Ranson & Sun, 1994) and intensive SIR-

C/XSAR (Spaceborne Imaging Radar-C/X-Band Synthetic

Aperture Radar) experiments in 1994 (Ranson & Sun, 1997).

The area comprises approximately 7000 ha containing several

intensive experimental sites, where detailed ecological mea-

surements have been obtained. The study area contains an

assortment of small plantations, multi-generation clearings, and

large natural forest stands. A variety of forest ecosystem studies

are currently in progress at this site (e.g., Xiao et al., 2004).

The natural stands in this boreal-northern hardwood

transitional forest consist of hemlock-spruce-fir, aspen-birch,

and hemlock-hardwood mixtures. Topographically, the region

varies from flat to gently rolling, with a maximum elevation

change of less than 135 m within the 10 by 10 km study area.

Due to the region’s glacial history, soil drainage classes within

a small area may vary widely, from excessively drained to

poorly drained. Consequently, an elaborate patchwork of forest

communities has developed, supporting exceptional diversity

in forest structure (Ranson & Sun, 1997).

The soils are predominantly glacial tills; acid in reaction,

low in fertility and high in organic matter. The majority of soils

fall into the suborders orthods, orchrepts, or aquepts. Approx-

imately 450 ha of the forest area is covered with bogs and

wetlands in the central portion of the study site. There is also an

excessively well-drained esker in this area. The variable nature

of the soils (changing between very well drained to very poorly

drained soils over a short distance) has produced irregular stand

sizes and shapes. Wet areas are abundant and cause diversity of

species and stand densities over small areas. The climate is

cold, humid and continental with continuous snow pack from
,
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December through March with accumulations of 1 to 2 m

(Ranson & Sun, 1997).

2.2. Field measurements

The Howland, Maine site has been the subject of several field

measurement activities (e.g., see http://fedwww.gsfc.nasa.gov).

During October 2003 the site was visited and twenty forest

stands were measured. In each stand four 4 m radius plots were

established with one plot located around a center point, and

three other plots located 30 m to the north (0-), 30 m to the

southeast (120-) and 30 m to the southwest (240-) of the center
point. A total of 70 plots were measured. Global positioning

system (GPS) location, diameter breast height, and species of all

trees in a plot, and the height of the tallest tree in the plot were

measured using an ultrasonic range finder and an inclinometer.

2.3. LVIS data

NASA’s Laser Vegetation Imaging Sensor (LVIS) is an

airborne laser altimeter system designed, developed and

operated by the Laser Remote Sensing Laboratory, Goddard

Space Flight Center. In 2003, LVIS obtained sub-canopy and

canopy-top topography data as well as canopy vertical structure

information for forested sites in New England to generate the

most detailed forest structural data sets currently available for

these regions. The data used in this study is the Nominal 20 m-

spaced LVIS Ground Elevation Data (Blair et al., 2004).

Measurements derived from the lidar waveforms were used

to characterize the canopy vertical structure. First, various

ranging points were extracted including the elevations of the

lowest and highest detectable returns (above a threshold noise

level) and the mean ground elevation and various energy

quartile heights (Fig. 2). In this study, we focused on 4 quartile

heights, H25, H50, H75, and H100 (Blair et al., 1999). H25 is

the 25% quartile height and is calculated by subtracting the

elevation at which 25% of the returned energy occurs from the

ground elevation. H100 is the canopy height and is calculated

by subtracting the elevation of the highest detectable return

from the ground elevation.
Fig. 2. LVIS return waveform showing ground, canopy (H100), and quartile

heights (H75, H50, and H25). H100 is the location of the top of the canopy.
A typical forest waveform and the definition of these

canopy structure measures are shown in Fig. 2. These quartile

heights are a relatively direct measure of the vertical profile of

canopy components. However, this is based on a number of

assumptions including that multiple scattering effects are

minimal, the ground and top of the canopy can be detected

and accurately interpreted in terms of elevation, and a constant

reflectance for all canopy components. In addition, waveform

measures are a function of the complex and variable 3-D

structure of canopy components and their spectral properties

including the spectral properties of the ground/litter. This 3-D

structure defines the gap distribution as a function of canopy

height which largely determines the proportion of energy

reaching a given height. This gap distribution, along with the

spectral properties of the components, largely determines the

proportion of energy scattered at a given height. Finally, the

gap distribution largely determines the amount of scattered

energy at a given height that returns to the sensor.

LVIS data provided continuous coverage of the study site.

Fig. 3 presents LVIS images of the study site for these 4

vertical structure measures. These combined data contain

detailed, continuous, spatial (20 m diameter footprints)

information of the vertical distribution of forest canopy

components for the study site. The heterogeneous nature of

the site is clear for the different canopy elevations. Prior to

2002, the two circled regions in each image were relatively

similar homogeneous stands of spruce and hemlock. In 2002,

the white circle was selectively logged removing about 30% of

the trees. Fig. 3 shows these stands after logging in 2003.

2.4. AirMISR data

The Airborne Multi-Angle Imaging Spectrometer (Air-

MISR) is a four channel digital camera that flies on the high

altitude ER-2 aircraft. The four channels employed on Air-

MISR are 446.4 nm (blue), 557.5 nm (green), 671.7 nm (red),

866.4 nm (near-IR), with bandwidths of 41.9 nm, 28.6 nm,

21.9 nm, 39.7 nm, respectively. The AirMISR camera uses a

MISR brassboard lens and a MISR engineering model focal

plane; giving the airborne sensor spectral and radiometric

characteristics very similar to the satellite instrument. AirMISR

is a Fpushbroom_ sensor, which images a cross-track slit

beneath the aircraft during each scan. A two dimensional scene

is built up by successive scans as the spacecraft or aircraft

moves over the scene. The Satellite instrument, MISR, has nine

cameras which image the earth continuously, however, Air-

MISR has a single camera that is swiveled to 9 successive look

angles from 70.5- looking forward of the aircraft through nadir

then out 70.5- looking aft of the aircraft (Table 1) as the aircraft
passes over the site of interest.

The AirMISR data used here were acquired between 16:20

and 16:33 GMT on August 28, 2003. Fig. 1 shows a nadir color

composite image of the site. Cloud cover was estimated to be

less than 30% cumulus for the duration of the flight line. Mean

solar zenith angle was 36- and mean solar azimuth angle was

about 176-. The azimuth orientation of the flight line was about

0- with the sun oriented to the back of the aircraft.

http://fedwww.gsfc.nasa.gov


Fig. 3. LVIS images of the study site in 2003 for the 4 canopy vertical structure measures, a) H25, b) H50, c) H75, and d) H100. Dark to light shading corresponds to

low to high LVIS values, respectively. The two circled areas (one black and one white) show two stands of spruce and hemlock that were similar prior to 2002. The

white circle area was selectively logged in 2002.
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Consequently, the AirMISR data was collected within approx-

imately 4- of the solar azimuth plane. The forward looking

camera (f) acquires backscattered radiance and the aft looking

camera (a) acquires forward scattered radiance (Table 1). The

aircraft flew at about 20 km altitude providing view angle

dependent variable ground spatial resolutions and swath widths

(Table 1). The data were normalized to a common resolution of

27.5 m and co-registered to a common swath width of 11 km

by the AirMISR Project (AirMISR web site).

2.5. Data processing and analysis

The AirMISR image data set was co-registered with an

ASTER (Advanced Spaceborne Thermal Emission and Reflec-

tion Radiometer) image (Yamaguchi et al., 1998) and re-
Table 1

Ground characteristics of AirMISR pixels for each camera angle where D, C, B, and

aft, and nadir looking directions, respectively, relative to the aircraft flight line

Ground characteristics Camera angle

Df, Da T70.5- C

Swath width (km) 32.7 2

Along track image length (km) 27.0 1

Cross track pixel size (m) 21.7 1

Along track pixel size (m) 55.8 2

Line spacing (distance traveled between scans) 8.3 m, for all angles

%Overlap/Underlap (gap) 85% 6
sampled into the 15 m nominal pixel size of ASTER. The

ASTER images were used in this study because they were used

as the base map as part of a larger multi-sensor data fusion

study. LVIS point data were gridded to the 15�15 m pixels

corresponding to the 15 m AirMISR and ASTER data.

The LVIS H100 height measures were compared to

maximum tree heights as measured on the ground. Because

the ground measured footprint (4 m radius) and the LVIS

footprints (10 m radius) never overlay exactly, this compar-

ison is far from ideal. Various comparisons were tested. We

report a comparison between the maximum tree height

for the 70 field plots and the corresponding mean of the

4 nearest LVIS H100 values (weighted by the inverse

distance to the to the field plot center) in the Results and

discussion section.
A, represent the different camera angles and f, a, and n represent the forward,

f, Ca T60- Bf, Ba T45.6- Af, Aa T26.1- An 0-

1.8 15.6 12.1 10.9

7.0 11.3 9.6 9.6

4.5 10.4 8.1 7.3

4.9 12.7 7.7 6.2

7% 35% �8% �34%
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Models were developed to predict LVIS quartile height

measures from AirMISR data. The 4 closest LVIS shots to the

center point of a pixel were identified. All calculations used the

center of each pixel and the center of the 4 closest LVIS shots.

The averages of the H25, H50, H75, and H100 values of these

4 closest LVIS shots (weighted by the inverse distance) were

calculated for each pixel. A random sample of 1000 points was

selected over the cloud free portion of the study area (identified

as the white box in Fig. 1.). The cloud free area was determined

by visual inspection of the multi-angle, color composite images

from AirMISR. The mean LVIS quartile height measures and

the mean spectral AirMISR radiances within a 3�3 pixel

window were calculated for each random point where the point

falls within the center pixel of the 3�3 pixel window. The

Da (aft looking 70.5-) and Df (forward looking 70.5-) camera

data of AirMISR were not used because of poor spatial

resolution and co-registration with data of other angles.

Consequently, 28 AirMISR radiance values were available. A

similar procedure was applied to the random sample points

using 1000 9�9 pixel windows and 1000 17�17 pixel

windows. These larger windows were explored to see if the

accuracies in predicting the forest structure using AirMISR

data changes with increasing window size. The larger windows

averaged more LVIS shots and, consequently, were more

representative of an area. The results focused on these 3�3,

9�9, and 17�17 pixel windows.

The effects of additional noise in the multi-angle spectral

radiances on the model accuracies were explored as follows.

For a selected model with its particular multi-angle spectral

inputs, 11 noise levels were generated and added to the input

radiances of the test data and the accuracy of the model was

then tested. Eleven noise levels from 0% to 5% of the true

signal were defined. To generate these data, random error was

added to each directional reflectance, e.g. RkV=Rk +((E *Rk) / 2)

where E is the random error uniformly distributed within the

noise level specified (T0–5%). The model’s predictions were

then performed using the RkVvalues. These noisy data sets were

presented to the linear and neural network models (trained on

error free data), and the rmse (root mean square error) values

were calculated between the true and predicted forest structure

measures. The increasing error in the predicted forest structure

measures with increasing noise in the spectral/direction data

was then graphically displayed.

2.6. Models

Multivariate linear regression and neural networks models

were developed to predict the LVIS height measures from the

28 AirMISR radiance values. The accuracies of the models

were compared. Two statistics were calculated for each model

for the purpose of documenting and comparing model

accuracies. These statistics were the rmse (root mean square

error of the predicted versus true target value of the model) and

the R2 (coefficient of determination of the predicted versus true

target value of the model). For all analyses, the dataset was

partitioned into training and testing sets. In all cases, 1000

points were chosen randomly from the data set for training/
fitting and another 1000 points were chosen randomly from the

data set for testing. The points correspond to the center of the

window pixels, e.g., 3�3, 9�9, or 17�17 windows. The test

data was used to see how well the model generalized to

independent data sets. These random points were chosen over

the cloud free portion of the study area (white box in Fig. 1).

The neural networks (NN) were chosen for several reasons.

NN employ a more powerful and adaptive nonlinear equation

form than traditional linear and simple nonlinear analyses. In

using traditional approaches, one adopts linear or simple

nonlinear forms that must be explicitly designed by a

researcher. In contrast, a NN adaptively develops its own basis

functions, and their corresponding coefficients from the

collected data. NNs attempt to find the best nonlinear function

based on the network’s complexity without the constraint of

linearity or pre-specified nonlinearity. This allows the NNs to

learn complex functional relationships that cannot be envi-

sioned by a researcher (Kimes et al., 1998).

Fu (1994), Hagan et al. (1995), Kimes et al. (1998) present

an overview of the architectures, learning rules, and mathe-

matical analyses of neural networks and their applications. In

this study a cascade method of network construction (Fahl-

mann & Lebiere, 1988) was used that adds a hidden node one

at a time during its training phase. As each hidden node is

added it is fully connected to all previous nodes. Once a hidden

node is added and trained, its weights are fixed. The

advantages to this type of network are that it learns very

quickly, determines its own network size, and seems to be

relatively robust in learning complex mapping functions

relevant to this study (Kimes et al., 1998). Several methods

were used to avoid over-fitting the training data including

reducing network structure, halting training when test perfor-

mance began to decline, and decreasing the number of input

variables. The activation function used for the hidden nodes

was the hyperbolic tangent function and for the output node

was the sigmoid function.

Not all of the input data were necessary to give the best

accuracy for the NN models. An exhaustive search for the

subset of the 28 AirMISR inputs that resulted in the highest NN

accuracy was conducted. These ‘‘best’’ combinations were the

most accurate multi-angle spectral combinations for predicting

the LVIS height measures. The input variables can interact in a

highly nonlinear fashion. A particular directional view and

spectral band were added only if they significantly increased

the accuracy of prediction.

3. Results and discussion

A comparison was made between the maximum tree heights

as measured on the ground for the 70 field plots and the

corresponding average of the 4 nearest LVIS H100 values

(weighted by the inverse distance to the field plot). A simple

regression between the ground measured maximum tree height

and LVIS H100 had an rmse and R2 of 3.4 m and 0.55,

respectively. These results were improved by using all of the

LVIS height measures (H100, H75, H50, H25) to predict the

ground measured maximum height. The best model had an



Table 2

Testing accuracy for selected models for predicting LVIS H100 values from AirMISR variables for the 3�3, 9�9, and 17�17 pixel windows

Model Inputs Structure rmse R2

ML-3�3-17 All inputs except: CaR, BaIR, BaR, BaG, BaB, AaIR, AaB, AnR, AfR, BfR, BfG 17Y1 2.90 m 0.48

NN-3�3-13 CaIR, CaR, CaB, BaIR, BaB, AaG, AaB, AnR, AnG, AfIR, AfG, AfB, CfG 13Y10Y1 2.78 m 0.52

ML-9�9-18 All inputs except: BaIR, BaB, AaB, AnIR, AfIR, AfR, BfIR, BfR, BfG, CfIR 18Y1 2.00 m 0.66

NN-9�9-8 CaIR, CaR, AnIR, AnG, AfR, AfG, BfB, CfG 8Y12Y1 1.81 m 0.71

ML-17�17-22 All inputs except: BaIR, AaIR, IfIR, RfR, CfIR, CfR 22Y1 1.22 m 0.75

NN-17�17-15 BaIR, BaB, AaG, AaB, AnIR, AnG, AnB, AfIR, AfR, AfG, BfIR, BfG, BfB, CfIR, CfR 15Y29Y1 0.92 m 0.89

The inputs are the variables used by a particular model to make a prediction. The models are multivariate linear regression (ML) and neural network (NN) for 3�3,

9�9, and 17�17 pixel windows. The network structures are denoted as #input-nodesY#hidden-nodesY#output-nodes. The rmse (root mean squared error of the

predicted versus true target value of the model) and the R2 (coefficient of determination of the predicted versus true target value of the model). Each of the 28 inputs

from AirMISR are represented as View-Angle (D, C, B, or A, as shown in Table 1), Forward/Aft/Nadir Looking ( f, a, or n, respectively, as shown in Table 1), and

spectral bands (B, G, R, and IR). For example, CaIR is the camera angle C (60-), aft looking (a), and the IR spectral band.

Fig. 4. Predicted versus true LVIS H100 heights for the 17�17 pixel windows

using model (Table 2, Model NN-17�17-15). The model was applied to 1000

random test points.
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rmse and R2 value of 1.9 m and 0.64, respectively. These

accuracies are relatively low because the comparison is

between the maximum tree height measured for each 4 m

radius plot and the average LVIS H100 values of 4 nearby

shots with 10 m radius diameter footprints. These accuracies

demonstrate the difficulties in comparing ground measured

heights with lidar measured heights when they do not measure

the exact same footprint on the ground.

Table 2 shows the testing accuracies for selected models for

predicting LVIS H100 values from the 28 AirMISR variables

for the 3�3 pixel window. The best NN model (Table 2, model

NN-3�3-13) had an rmse and R2 of 2.78 m and 0.52,

respectively, for the testing data. The best linear model (Table

2, model ML-3�3-17) had an rmse and R2 of 2.90 m and 0.48,

respectively, for the testing data. Although the results are

focused on the LVIS H100 data, the accuracies in predicting

the H75, H50, and H25 values were similar to those achieved

for the H100 data.

The predictions of LVIS height measures from AirMISR

variables using the 9�9 pixel window were higher than with

the 3�3 pixel window (Table 2). For example, the best NN

model for predicting H100 was NN-9�9-8 (Table 2) which

had a testing rmse and R2 of 1.81 m, and 0.71, respectively.

Similar accuracies were obtained for H75, H50, and H25

values. The 9�9 pixel window accuracies were higher than the

3�3 pixel windows because a larger number of AirMISR

pixels (81 vs. 9, respectively) were averaged together and a

larger number of LVIS footprints (324 vs. 36, respectively)

were averaged together resulting in a more accurate character-

ization of the variability within forest stands.

The predictions of LVIS height measures from AirMISR

variables using the 17�17 pixel window obtained the highest

accuracies. For example, the best model for predicting H100

was NN-17�17-15 (Table 2) which had a testing rmse and R2

of 0.92 m, and 0.89, respectively. Similar accuracies were

obtained for H75, H50, and H25 values; for example, the

testing rmse were 1.0, 1.0, and 0.83, respectively, and the R2

values were 0.85, 0.81, and 0.79, respectively. Fig. 4 shows a

graph of the true versus predicted LVIS H100 values (testing

data only).

The best NN and ML models (Table 2) included a wide

range of view angles in the forward, aft, and nadir looking

directions as well as all spectral bands (IR, B, G, and R). A
number of NN models were developed that utilized a smaller

number of inputs. These models were developed to examine

which combinations of view-angle and spectral bands were

critical in predicting the LVIS H100 value accurately. Because

of the high overall accuracies of the 17�17 window data, this

window size was used for these analyses. Table 3 shows the

testing accuracy for these selected NN models. The most

accurate model NN-17�17-15 used 15 variables and had an

rmse and R2 value of 0.92 m and 0.89, respectively (this is the

same model in Table 2 for comparison). As the number of

allowed input variables was reduced, the accuracy remained

high even with only 5 variables (Table 3, Model NN-17�17-5,

rmse=1.11 m, and R2=0.84). This model used the 45.6- aft

looking near infrared band, the 26.1- aft looking red band, and

the 26.1- forward looking red band, and the 60- forward

looking green and blue bands. The models using less than 5

input variables had relatively low accuracies (Table 3).

The models accurately predict the forest vertical structure in

a 17�17 pixel window (255�255 m). These accuracies were

high in a study site that is a relatively heterogeneous area

consisting of small plantations, multi-generation clearings and

large natural forest stands. In addition, the forest stands consist

of hemlock-spruce-fir, aspen birch, and hemlock-hardwood

mixtures. Further more, as mentioned previously, the soil

drainage classes vary widely from excessively drained to



Table 3

Testing accuracy for selected models for predicting LVIS H100 values from AirMISR variables (17�17 pixel windows)

Model Inputs Structure rmse R2

NN-17�17-15 BaIR, BaB, AaG, AaB, AnIR, AnG, AnB, AfIR, AfR, AfG, BfIR, BfG, BfB, CfIR, CfR 15Y29Y1 0.92 m 0.89

NN-17�17-7 BaIR, AnG, AfG, BfB, CfG, CfB, CfR 7Y28Y1 1.09 m 0.84

NN-17�17-5 BaIR, AaR, AfR, CfG, CfB 5Y29Y1 1.11 m 0.84

NN-17�17-4 BaR, AaG, RfG, BfB 4Y25Y1 1.49 m 0.71

NN-17�17-3 AfG, AfB, BfIR 3Y18Y1 1.68 m 0.64

NN-17�17-2 BaIR, AfR 2Y10Y1 1.69 m 0.63

NN-17�17-1 AfG 1Y1 1.93 m 0.52

The table headings follow Table 1. In a similar fashion the neural network model NN-17�17-15 allowed any combination of AirMISR variables as inputs and used

15 input variables. Each successive NN model reduced the number of inputs allowed in predicting LVIS H100.
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poorly drained causing an elaborate patchwork of forest

communities with exceptional diversity in forest structure

(Ranson & Sun, 1997). Even though a relatively heterogeneous

mixture of cover-types and structure occur within a window,

the models using the average of multi-angle spectral AirMISR

data provide an accurate prediction of the average LVIS height

measures for the same area.

The atmospheric scattering in the blue band introduces a

large noise component at higher altitudes (aircraft and satellite

levels). Several models were developed that did not use the

blue band. The results showed that approximately the same

level of accuracy could be obtained without using the blue

band. For example, a network using 5 input variables (CaIR,

CaR, AnIR, AfG, CfR) had an rmse and R2 of 1.2 and 0.79,

respectively, and the network structure was 5Y27Y1. This

model has essentially the same accuracy (rmse=1.1) as model

NN-17�17-5 (Table 3) that uses the blue band and 5 inputs.

Next, we explored models that were allowed to only use

nadir spectral values. A NN model with only the spectral nadir

values (AnIR, AnB, AnG, AnR) available had an rmse and R2

value of 1.77 and 0.59, respectively (Table 4, Model NN-

17�17-S). This low accuracy demonstrates that for this case

study, forest vertical structure can not be accurately captured

using only spectral information.

Finally, we explored models that were allowed to use all

view angles but only a single spectral band. A NN model with

all view angles available and only the IR band (CaIR, BaIR,

AaIR, AnIR, AfIR, BfIR, CfIR) had an rmse and R2 value of

1.98 and 0.49, respectively (Table 4, Model NN-17�17-D1).

In a similar fashion, a NN model with all view angles available

and only the Red band had an rmse and R2 value of 1.80 and

0.58, respectively (Table 4, Model NN-17�17-D2). These low

accuracies demonstrate that for this case study, forest vertical

structure can not be accurately captured using only directional
Table 4

Testing accuracy for selected models for predicting LVIS H100 values from

AirMISR variables (17�17 pixel windows)

Model Inputs Structure rmse R2

NN-17�17-S AnIR, AnR, AnG, AnB 4Y19Y1 1.77 m 0.59

NN-17�17-IR BaIR, AaIR, AnIR, AfIR, 4Y2Y1 1.98 m 0.49

NN-17�17-R CaR, BaR, AaR, An, AfR, CfR 6Y30Y1 1.80 m 0.58

The table headings follow Table 1. The neural network model NN-17�17-S

allowed inputs of any spectral band in the nadir direction. The NN-17�17-IR

model allowed inputs of any directional view for the IR band only. The NN-

17� -17R model allowed inputs of any directional view for the Red band only.
data for the 17�17 pixel windows. It seems that both multi-

angle and spectral data are necessary to obtain higher

accuracies (Table 3).

The results of this study demonstrate the ability to extract

forest structure information using multi-angle spectral Air-

MISR data. This kind of information can be used to identify

subtle differences in forest structure that are of importance to

biomass, carbon, and ecosystem disturbance studies. For

example, Fig. 3 shows two circled regions in each image that

were relatively similar homogeneous stands of spruce and

hemlock prior to 2002. In 2002, the smaller circle was

selectively logged removing about 30% of the trees. Fig. 3

shows these stands in 2003 after logging.

The H100 image in Fig. 3 shows that the maximum height

of the logged area is similar to the unlogged area, although the

logged area is slightly darker representing a slightly lower

maximum height. As one moves from the H100, H75, H50 and

H25 images, the logged area becomes progressively darker

relative to the unlogged area. In other words, as one proceeds

from the top of the canopy to the ground, more pulse energy is

returned to the sensor in the logged area relative to the

unlogged area. For example, the height at which 25% of the

energy is returned (H25) is much lower (closer to the ground)

in the logged area relative to the unlogged area. The logged

forest allows greater penetration of the laser pulse into the
Fig. 5. Predicted versus true LVIS energy for canopy height (H100) and quartile

heights (H75, H50, H25) for the logged and unlogged areas (Fig. 3). The

predictive models used only AirMISR data and used the 17�17 pixel

windows.
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forest canopy and a larger proportion of the energy is returned

from deeper into the canopy.

Using the models developed in this study for the 17�17

pixel windows, we predicted the energy quartile heights using

AirMISR data and compared these predicted values with the

true quartile height values as measured from LVIS data. Fig. 5

shows the average predicted and true quartile heights for the

logged and unlogged areas. The predicted and true values are

very close for both logged and unlogged areas. The figure

clearly shows that as one proceeds from the top of the canopy

to the ground, for any given height, a significantly higher

proportion of pulse energy is returned to the sensor from

objects below this level (canopy components and ground) for

the logged area relative to the unlogged area. Thus, for any

specific quartile height, it occurs at a significantly lower

canopy height for the logged area (Fig. 5). These trends are

most exaggerated at the 25% quartile height.

These kinds of vertical structural measures have many

applications. For example, the H50 value has been shown to be

a good single variable predictor of forest biomass by Drake et

al. (2002). Forest structure measures have also been success-

fully used to estimate the canopy stand volume and basal area

(Lefsky et al., 1999b; Means et al., 1999). In addition,

structural information may improve vegetation cover mapping

and vegetation disturbance identification (as demonstrated

above) for many applications.

Are these models of forest structure using a multi-angle

spectral sensor data applicable to current and future satellite

data (e.g., MISR)? Currently, the authors are exploring and

developing relationships with MISR data. However, in this

study we explored how sensitive these models using AirMISR

data are to noise. As described in the Data processing and

analysis, the addition of noise in each multi-angle spectral input

variable provided information on how sensitive the models

would be to noise introduced from other sources such as

atmospherically corrected data. Fig. 6 shows how the errors

increase with increasing noise in the multi-angle spectral input

for selected models. These models have about the same level of

sensitivity to noise. The models are relatively sensitive to noise
Fig. 6. Root mean squared error of LVIS H100 prediction as a function of noise

level in the multi-angle spectral radiance data. Various selected models are

shown (Tables 2 and 3).
with the rmse value approximately doubling with each 2%

increase in noise. However, it should be noted that the data set

used in this study already contains a significant amount of

noise due to atmospheric variations due to thin clouds as well

as instrument noise (both AirMISR and LVIS).

4. Conclusions and implications

The models developed in this study achieved high accura-

cies over a study site with an elaborate patchwork of forest

communities with exceptional diversity in forest structure.

Models using the 17�17 window had high accuracies when

predicting the H100 value (rmse=0.92 m, R2=0.89) using 15

inputs (all view angles and all spectral bands). The accuracies

for predicting the H75, H50, and H25 values had similar

accuracies.

Relatively high accuracies were obtained with models using

a minimum number of inputs. For example, Models using the

17�17 window data with only 5 inputs (4 view angles and 4

spectral bands) had accuracies of rmse=1.11 m, R2=0.84. At

the satellite level, the blue band is not appropriate for retrieving

canopy parameters due to the large atmospheric scattering

component; however, high accuracies were obtained without

this band. In this study, forest vertical structure can not be

captured accurately using only the 4 spectral bands in the nadir

view or all view angles with a single spectral band.

These methods seem to be relatively accurate even at the

highest canopy density experienced in this study that was

estimated at 300 t/ha. In addition, these models are relatively

sensitive to noise with the rmse value approximately doubling

with each 2% increase in noise. The authors are currently

exploring the potential of using MISR data for predicting forest

structure measures.

The data products from LVIS available at the time of this

study were limited to the H100, H75, H50, and H25 quartile

height values. We believe, however, that many other forest

structure measures could be accurately estimated using multi-

angle-spectral data. For example, these forest structure mea-

sures could provide additional information to accurately

retrieve other key parameters such as biomass, leaf area index,

fraction of photosynthetically active radiation, and albedo. In

addition, forest structure information could be utilized as

additional constraints for current retrieval/inversion algorithms

(e.g. look-up-table approaches) for vegetation parameters.

It has been shown that the directional radiances in or near

the principal plane of the sun provides information that leads to

more accurate prediction of canopy structure parameters than

from other azimuth planes (e.g., Gobron et al., 2000). For

satellite data (e.g., MISR) the directional views deviate from

the principal plane of the sun. Consequently, the authors

believe that the accuracies for predicting forest structure

measures may decrease as the deviation from the solar plane

increases.

In conclusion, models similar to the ones developed in this

study using MISR-like data are capable of accurately predicting

the vertical structure of forest canopies. A continuous capability

to remotely measure the vertical and spatial distribution of
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forest structure is required for more accurate modeling of

energy, carbon, water, and climate over large regional,

continental, and global scales. The findings also provide

information for future satellite and aircraft mission design.
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