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Abstract

The retrieval of biophysical variables using canopy reflectance models is hindered by the fact that the inverse problem is ill posed. This is due
to the measurement, model errors and the inadequacy between the model and reality, which produces similar reflectances for the different
combination of the input parameters into the radiative transfer model. This leads to unstable and often inaccurate inversion results. The ill-posed
nature of the inverse problem requires some regularization. Regularization means that one tries to consider only those solutions that are in the
proximity of the true value. In order to regularize the model inversion, we propose kernel-based regularization by support vector machines
regression (SVR) method.

The formulation of the SVR contains meta-parameters C (regularization) and ε-insensitive loss. The SVR generalization performance
(estimation accuracy) depends on these two parameters and the kernel parameters. Often the meta-parameters are selected using prior knowledge
and/or user expertise. In this paper we adopt methods for the estimation of the meta-parameters from the input data itself instead of relying on any
prior information. This paper is focused on the retrieval of leaf area index (LAI) from multiangle imaging spectroradiometer (MISR) data. The
proposed methodology was implemented by inverting a 1D canopy reflectance model (PROSAIL) using SVR over MISR data. The results were
validated against the LAI retrievals at the Alpilles EOS validation core site. An RMSE of 0.64 was obtained using both near-infrared (NIR) in
conjunction with the red band and an RMSE of 0.50 using only the NIR band.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Radiative transfer models describe the interaction of the
sun's electromagnetic radiation with the atmosphere and the
Earth's surface accounting for both the scattering and
absorption of the radiation. This process is highly nonlinear
and numerical simulations are required to understand these
complex interactions (Jin and Liu, 1997). In particular, the
process in which solar radiation and vegetation interact reveals
biome functioning since the analysis of reflectance allows the
retrieval of major canopy characteristics. Among all the
extraction methods, those relying on physically based models
that calculate top-of-canopy reflectances have proved to be a
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promising alternative to estimate vegetation biophysical para-
meters (Bacour et al., 2002). The inversion of canopy
reflectance models is potentially a more robust and accurate
method than the use of empirical relationships for extracting
biophysical parameters from images acquired from space. The
inversion of canopy models using off-nadir data based on
studies of bi-directional reflectance distribution function
(BRDF) has been the primary concern for quantitative
extraction of biophysical parameters and canopy architecture
(Goel, 1988; Hu et al., 2003; Liang, 1993; Myneni et al., 1995).
The use of directional information from multiangular measure-
ments, which are likely to become increasingly available either
from existing or planned specific space-borne sensors such as
MISR, ATSR-2, POLDER, CHRIS-PROBA, etc. (Barnsley et al.,
2004; Casa & Jones, 2005; Chen et al., 2003; Deschamps et al.,
1994; Diner et al., 1998) should increase the power of model
inversions.
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Traditional inversion method involves numerical optimiza-
tion techniques that start with an initial guess and search for the
optimum parameter set for a specific set of reflectance and is an
iterative process that minimizes the error. The commonly used
algorithms are the Powell's method, Downhill Simplex method,
and Quasi-Newton methods (Press et al., 1986). However, they
do not guarantee a stable or optimum inversion, and may be
computationally intensive. The look-up table (LUT) approach is
a much simpler technique. To construct the LUT, the simulated
canopy reflectance is obtained by varying its structural and
radiometric properties. In addition, several studies in the recent
past used artificial neural networks (ANN) in the forward and
inverse modeling of radiative transfer models for retrieving
biophysical variables (Atzberger, 2004; Gong et al., 1999;
Gopal & Woodcock, 1996; Jensen et al., 1999; Kimes et al.,
1997; Knyazikhin et al., 1998a; Pierce et al., 1994; Privette
et al., 1996; Schlerf & Atzberger, 2006; Smith, 1993; Weiss &
Baret, 1999). A recent addition to the inversion methods is the
genetic algorithm (GA) (Fang et al., 2003) which was used to
retrieve LAI from field measured reflectance as well as Landsat
ETM+ data.

Previous studies have shown that the ANN and LUT
approaches generally performed best. However, the lack of
good generalization capacity is one of the disadvantages of the
LUTand ANN approaches (Fang et al., 2003; Kimes et al., 2000).

In general, the data obtained in empirical modeling are finite
and sampled; typically this sampling is non-uniform and due to
the high-dimensional nature of the problem, the data will form
only a sparse distribution in the input space. Consequently, the
problem is nearly always ill posed (Gunn, 1998; Poggio et al.,
1985). The problem of biophysical variables estimation by
inversion of canopy radiative transfer models is known to be ill
posed (Combal et al., 2002). “Ill posed” means that when finding
a p that satisfies the equality Ap=F, where A is a linear operator,
we have large deviations in the resolved p corresponding to small
deviation in F. This is due to the measurement, model errors and
the inadequacy between the model and reality, which produces
similar reflectances for different combination of the input para-
meters into the radiative transfer model. Also nonlinear interac-
tions between the variables can lead to unstable solutions (Bacour
et al., 2002).

The inverse problem can be solved properly only if it is well
posed, in the sense defined by Hadamard, i.e., a problem is well
posed if and only if its solution exists, is unique, and depends
continuously on the data (Combal et al., 2002; Garabedian,
1964). To solve ill-posed problems, regularization techniques
can be used to provide stable and reliable solutions. Regular-
ization solves the problem of choosing among the infinite
number of functions that all pass through the finite number of
data points by imposing a smoothness constraint on the final
solution. This results in minimizing the cost functional

H ½f � ¼
XN
i¼1

ðyi � f ðxiÞÞ2 þ kjjf jj2k ð1Þ

where || f ||k
2 is a measure of the deviation from the smoothness

of the solution f (Evgeniou et al., 1999; Evgeniou et al., 2000)
and the sum is the deviation of the function from the data points
(thus we are making a tradeoff between accurately modeling the
data points and the smoothness of the learned function). λ is a
parameter that tunes the tradeoff between model complexity (l
— norm of model parameters, f ) and minimization of the
training errors (first term on the right hand side of Eq. (1)).
Intuitively, regularization is equivalent to finding the estimator
which uses the minimum possible energy of the data to estimate
the output. Thus it is not necessary to focus on the minimization
of an empirical error over existing data. Such minimization is
both ill posed and does not necessarily lead to models with good
predictive capabilities. Instead, it is necessary to minimize a
combination of the empirical error over existing data and a
penalty factor that penalizes solutions that are too complex: the
smoothness or capacity of the functions considered needs to be
controlled (Evgeniou et al., 2002).

Recent methods for regularization in the inversion of canopy
reflectance models include:

▪ Use of prior knowledge to regularize the inversion process in
a look-up table (LUT)-based approach (Combal et al., 2002),

▪ Take into consideration the dynamic evolution of the LAI
during the crop cycle (CROMA, 2000), and

▪ Utilize the neighborhood radiometric information of the
pixel actually being inverted (Atzberger, 2004).

A Support Vector Machine (SVM) developed by Vapnik
(1995) is based on statistical learning theory and can be regarded
as the same type of network, corresponding to exactly the same
type of solution f (Eq. (1)) but trained in a different way and
therefore with different values of the weights after the training
(Evgeniou et al., 1999). SVMs can be used for both classification
and regression problems. SVMs provide excellent generaliza-
tion capabilities, fast, robust to high input space dimension, low
number of samples, provide sparse solutions where only the
most relevant samples of the training data are weighted resulting
in low computational cost and memory requirements.

Some applications of SVMs for classification are isolated
handwritten digit recognition (Burges and Scholkopf, 1997),
speech recognition (Campbell et al., 2006), and face detection in
images (Osuna et al., 1997; Türkan et al., 2006). In the case of
regression, SVMs have been applied to benchmark time series
prediction tests (Cao, 2003; Muller et al., 1997), the Boston
housing problem (Drucker et al., 1997) and financial forecasting
(Trafalis & Ince, 2000). In most of these cases SVM gene-
ralization performance either matches or is significantly better
than competing methods (Burges, 1998).

While much work exists in the domain of retrieving the
canopy biophysical variables from model inversion methods
using a variety of optimization methods (Baret et al., 1995;
Barnsley et al., 2000; Bicheron and Leroy, 1999; Combal et al.,
2002; Goel et al., 1984; Jacquemoud & Baret, 1993;
Knyazikhin et al., 1998a; Kuusk, 1991), applications of support
vector machines in remote sensing problems are focused mainly
towards classification (Banerjee et al., 2006; Durbha & King,
2005; Mantero et al., 2005; Mathur and Foody, 2004; Mazzoni
et al., 2000; Melgani & Bruzzone, 2004; Wohlberg et al., 2006)



Table 1
Input parameters for PROSAIL model and their range of variation

Parameter Unit Range of
variation

Levels

LAI m2 m−2 0–7 0.4, 1.4, 2.5, 3.5, 4.6, 5.6, 6.7
Cab μg cm−2 1–80 5, 17, 29, 41, 52, 64, 76
θ1 degrees (°) 5–85 9, 21, 33, 45, 57, 69, 81
s1 0.01–1 0.06, 0.21, 0.36, 0.51, 0.65,

0.80, 0.95
αsoil 0.5–2 0.57, 0.80, 1.02, 1.25, 1.48,

1.70, 1.93
N 2.5 1.1, 1.3, 1.5, 1.8, 2.0, 2.2, 2.4
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and to the best of our knowledge little work has been reported
towards the application of support vector regression (SVR) for
the retrieval of biophysical variables from inversion of canopy
radiative transfer models.

This study focuses on the retrieval capacity of SVR on one of
the key biophysical variables — vegetation green leaf area
index (LAI). LAI defines the size of the interface for exchange
of energy and mass between the canopy and the atmosphere
(Weiss et al., 2000) and it is a key state variable in land surface
models. LAI governs net radiation and its expenditure (energy
balance), net primary production (carbon fixation), evapotrans-
piration and canopy interception (water budget) (Tian et al.,
2002). In the development of an SVM predictor, the first
important step is feature selection or feature extraction. In an
SVM, all the available indicators can be used as the inputs, but
irrelevant or correlated features could adversely impact the
generalization performance due to the curse of the dimension-
ality problem. Thus it is critical to perform feature selection or
feature extraction in SVM (Bradley & Mangasarian, 1998;
Durbha & King, 2005; Guyon et al., 2002; Tay & Cao, 2001;
Weston et al., 2001). We perform feature extraction by kernel
principle component analysis (KPCA), which is a nonlinear
extension to the normal PCA. The extracted features provide
more robust estimation of the underlying structure of the data
and then are used to perform an SVR.

This paper is organized as follows: in Section 2, we provide a
description of the materials and methods used in this work.
Specifically, instead of using the exhaustive parameter space
realization we propose a method for parameter selection for
input into the canopy radiative transfer model that generates a
reduced set of parameter combinations. Also the generation of
the training and testing data from the forward modeling of the
PROSAIL model, the MISR data used in the present study, and
the validation data from field derived LAI at the Alpilles
validation site are described. Section 3 provides the theoretical
background for the kernel-based learning methods adopted in
this work; kernel principal components analysis (KPCA) for
feature extraction and SVR for model generation and prediction
of LAI. This section also presents the proposed parameter
selection approaches for the SVR model generation; in
particular we provide a brief review of the existing techniques
and the methodology we adopted for the parameters selection
which were derived from the input training data itself without
relying on any prior information thus accounting for the
regularization of the solution. The results of the SVR-based
approach are presented in Section 4 along with some analysis.
We conclude in Section 5 by presenting the advantages of the
proposed approach and the limitations therein.

2. Materials and methods

2.1. Radiative transfer model

The SAIL model (Verhoef, 1984) is a 1D turbid medium
radiative transfer model. The PROSPECT (Jacquemoud et al.,
2000) model has been coupled with the SAIL model to obtain
the PROSAIL model and three variables are used to describe the
canopy structure, the LAI, the average leaf angle, and a hot spot
parameter. For a given input parameter set, both spectral and
directional reflectances are calculated after choosing the type of
sensor and the number of viewing angles. A number of sensors
(e.g., HRV, TM, AVHRR, AVIRIS, and MISR) could be simu-
lated using the PROSAIL model (Jacquemoud et al., 2000). We
have used the MISR sensor with 4 bands and 9 viewing angles
to simulate the directional reflectance using the PROSAIL
model.

Several techniques have been proposed to sample the
variables (input parameters); Combal et al., 2002 used
280,000 values of each variable, which were randomly drawn
with a distribution specific to each variable. The space of the
model input variables was sampled by randomly drawing values
within particular distribution functions. Atzberger (2004)
proposed the selection of parameter ranges by scaling the
parameters intrafield variability; Bacour et al. (2002) used a
range of values for each parameter where the lowest (highest)
values correspond to the lower (upper) bounds of the ranges of
variation increased (decreased) by 5%. The other levels are
regularly spaced between these two bounds. We adopted this
method and the simulations have been carried out with six free
parameters: leaf area index (LAI), mean leaf inclination angle
(θ1), the hot spot parameter (S1), a spectral soil parameter that
controls the soil reflectance levels (αsoil), the leaf structure
parameter (N), and chlorophyll A and B (Cab). As shown in
Table 1, there are six free parameters and each of these free
parameters takes 7 values. Therefore, the total number of
simulations for the PROSAIL model is 76 (i.e., 177,649
simulations). The choice of the seven levels for each parameter
is driven by the nonlinear behavior of LAI and Cab, for instance,
and is a compromise because more levels would greatly increase
the number of simulations. A more detailed description for the
choice of these levels is described in Bacour et al. (2002). For
the PROSAIL model the soil is characterized by a typical
Lambertian soil reflectance spectra multiplied by a brightness
parameter S. This permits representing the influence on
reflectance of soil roughness and moisture variation (Combal
et al., 2002).

2.2. Selection of parameter combinations

As discussed in the previous section, the simulations are
enormous when all the combinations of parameters are



351S.S. Durbha et al. / Remote Sensing of Environment 107 (2007) 348–361
considered. Bacour et al. (2002) reduced the number of
combinations by treating the problem in a similar manner to a
fractional factorial experimental design where data from
computer runs are collected using a Hyper Graeco Latin
Geometric Sampling scheme and all factors have the same
number of levels. The number of simulations by adopting the
above approach has been reduced to 343 from an exhaustive set
of 280,000 simulations.

In this paper we adopted an alternative strategy for
exhaustive testing; pseudo exhaustive testing attempts to reduce
the large test time required for exhaustive testing. The
methodology is being commonly used for writing test cases
for software testing purposes, but can be used in any scenario,
which deals with multiple parameter dimensions. Testing is
currently the dominant method for finding and eliminating
software errors. Obtaining good test cases is obviously a key
requirement to successfully test any software artifact, but many
issues (labor intensive, exercise only a restricted subset of the
functionality, etc.) complicate this activity. The alternative is to
automatically generate a range of test cases, then filter out any
test cases that do not satisfy the required input invariants of the
system under test.

In this paper we investigate this methodology by gen-
erating test cases for an input into the PROSAIL model.
Parameters tend to come in dimensions, where a test case for
each simulation of the model can choose one parameter from
each dimension. For example, LAI is a dimension and the
variable can have only one of several ranges of values. Each
test case chooses one feature from each dimension, and often
chooses them independently of each other. We used a software
package named Jenny for this purpose (Jenkins, 2005).
Exhaustive testing grows exponentially with the number of
dimensions to be tested together, but by constraining the
testing space by covering all pairs (triples, quadruples, n-
tuples) of features and allowing every test case to cover many
n-tuples, the number of test cases required grows only with
the log of the number of dimensions (Jenkins, 2005). The test
cases for input into the PROSAIL model have been generated
by covering all triples of features and resulted in 567 test
cases.

2.3. Validation dataset

A field campaign over a 3×3 km2 agricultural area near
Alpilles in France (43.810°N, 4.750°E) was performed from
February 26 to March 15, 2001 (Baret et al., submitted for
publication). More than 95% of this site was composed of young
and mature wheat and grasses (biome 1). Leaf area index was
measured with a LAI-2000 Plant Canopy Analyzer (Jiannan
et al., 2007).

A subset of an ETM+ image fromMarch 15, 2001 (path 196,
row 90) containing the Alpilles site was selected for the purpose
of generating a fine resolution LAI map of the site. The image
was atmospherically corrected using the 6S radiative transfer
code (Vermote et al., 1997). Various techniques, including an
empirical regression based on the simple ratio (SR) and the fine
resolution MODIS LAI/FPAR algorithm, were evaluated to
identify the most accurate method for generating the fine
resolution LAI maps.

The fine resolution MODIS algorithm and the SR rela-
tionship were the best candidates for this site and thus were
used to generate a 30 m LAI map of a 20×20 km area centered
on the Alpilles site (Tan et al., 2005). This map was re-
projected from UTM WGS84 projection into the Space
Oblique Mercator (SOM) projection first and then degraded
to a 1.1-km resolution reference map. This map (Jiannan et al.,
2007) was made available to us for this study. Pixels
belonging to Biome 1 (grasses and cereal crops) were selected
for further analysis.

The MISR instrument on the Earth Observing System (EOS)
Terra platform orbits the Earth about 15 times each day. There
are 233 distinct orbits, called paths, which are repeated every
16 days, and since the paths overlap, near global coverage is
obtained in 9 days. The MISR instrument views symmetrically
about the nadir in forward and aftward directions along the
spacecraft flight track. Image data are acquired with nominal
view zenith angles relative to the surface reference ellipsoid of
0.0°, 26.1°, 45.6°, 60.0° and 70.5° in four spectral bands (446,
558, 672, and 866 nm).

The MISR data from path 196, orbit 6598 (March 15,
2001) were used to validate the proposed SVR-based LAI
retrieval algorithm. A 16.5×16.5 km area (15×15 MISR
pixels) which coincided with the reference map was extracted
from this path.

2.4. Training and testing data

The PROSAIL model was simulated for the 567 test cases
obtained by the application of pseudo exhaustive testing method
as described in Section 2.2. The generated reflectances in the
nine view angles for the red and NIR bands and the
corresponding canopy variable (LAI) were partitioned into
training and testing data. The training data consisted of
PROSAIL simulated directional reflectance for all the nine
MISR view angles using 400 test cases and the simulated
directional reflectance from 167 test cases was used as the
testing dataset.

3. Kernel-based methods to solve the inverse problem

3.1. Kernel principal component analysis (KPCA)

Kernel principal component analysis (KPCA) is an efficient
generalization of the traditional principal component analysis
(PCA) (Haykin, 1999; Schölkopf et al., 1998, 1999) which
computes the principal components in a high-dimensional
feature space F, which is nonlinearly related to the input space
that allows for the detection and characterization of the low-
dimensional nonlinear structure in the multivariate datasets
(Fig. 1). KPCA has been successfully applied for denoising
images and extracting features (Girolami, 2002; Rosipal et al.,
2001; Schölkopf et al., 1998). Given a set of centered input
vectors xt= (t=1, … l) and

Pl
t¼1 xt ¼ 0, each of which is of m

dimension xt= (xt(1), xt (2), … xt(m))
T (usually m< l), the idea



Fig. 1. Kernel PCA implicitly performs a linear PCA in some high-
dimensional feature space that is nonlinearly related to input space. Linear
PCA in the input space is not sufficient to describe the most interesting
direction. By using a suitable nonlinear mapping the resulting nonlinear
direction in the input space can find the most interesting direction (adapted
from Schölkopf et al., 1998).
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of KPCA is to first map the original input vectors xt into a
higher dimensional feature space ϕ(xt) and then to calculate the
linear PCA in ϕ(xt) (Fig. 1). By mapping xt into ϕ(xt) whose
dimension is assumed to be larger than l, KPCA solves the
eigenvalue problem.

kiui ¼ C̄ui;i ¼ 1; N ;l ð2Þ

where C̄ ¼ 1
l

Xl

i¼1
u xtð ÞuðxtÞT is the sample covariance

matrix of ϕ(xt), λi is the non-zero eigenvalues of C̄, and ui is
the corresponding eigenvector.

KPCA was applied to the training dataset and the extracted
nonlinear components were projected on to the datasets to
produce the training and testing data for SVR. For a complete
description of the algorithm, the reader is referred to Smola and
Scholkopf (2004) and Durbha and King (2005).
Fig. 2. Linearly separable case; only support vectors (dark circled) are required
to define the optimally defined hyperplane.
3.2. Support vector regression (SVR)

In recent years, the use of support vector machines (SVMs)
on various classification and regression problems has become
increasingly popular. SVMs can be applied to both classifica-
tion and regression problems. In the classification case, we try
to find an optimal hyperplane that separates two classes. In
order to find an optimal hyperplane, we need to minimize the
norm of the vector w, which defines the separating hyperplane.
This is equivalent to maximizing the margin between two
classes (Fig. 2).

In regression, the goal is to estimate an unknown
continuous-valued function based on a finite number set of
noisy samples. We perform feature extraction by KPCA as
described in Section 3.1, then the training points can be
expressed as (s1, y1), (s2, y2), … (sn, yn) where si⊆Rn is
the KPCA transformed input vector, yi⊆R is the target
value.

Assumed that the statistical model for data generation has the
following form:

y ¼ rðsÞ þ d ð3Þ
where r(s) is an unknown target function (regression), and δ is
additive zero mean noise with noise variance σ2 (Cherkassky &
Mulier, 1998; Cherkassky et al., 1999).

In SVM regression, the input s is first mapped onto an m-
dimensional feature space using some fixed (nonlinear)
mapping, and then a linear model is constructed in this feature
space (Smola & Scholkopf, 2004; Vapnik, 1995, 1998). The
linear model (in the feature space) f(x, w) is given by

f ðx;wÞ ¼
Xm
j¼1

xjujðsÞ þ b ð4Þ

where ϕj (s), j=1, … m represents a high-dimensional feature
space, which is nonlinearly mapped from the input space s, and
b is the “bias” term. Often the data are assumed to be zero mean
(this can be achieved by preprocessing), so the bias term in
expression (4) is dropped.

The quality of estimation is measured by the loss function L
(y, f (s, ω)). SVM regression uses a new type of loss function
called ε-insensitive loss function proposed by Vapnik (1995):

Leðy;f ðs;xÞÞ ¼ 0 if jy� f ðs;xÞjVe
jy� f ðs;xÞj � e otherwise

�
ð5Þ

The empirical risk is:

Remp xð Þ ¼ 1
n

Xn
i¼1

Le yi;f s;xð Þð Þ ð6Þ

SVM regression performs linear regression in the high-
dimension feature space using ε-insensitive loss and, at the
same time, tries to reduce model complexity by minimizing
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||ω||2. This can be described by introducing (non-negative)
slack variables ξi, ξI⁎i=1, … n, to measure the deviation of
training samples outside ε-insensitive zone. Thus SVM
regression is formulated as minimization of the following
functional:

min
1
2
jjxjj2 þ C

Xn
i¼1

ni þ n⁎i
� �

s:t:
yi � f ðsi;xÞVeþ n⁎i
f ðsi;xÞ � yiVeþ ni
ni;n

⁎
i z0;i ¼ 1; N ;n

8<
: ð7Þ

where C is referred to as the regularization constant and ε is
the tube size of SVM.

By introducing Lagrange multipliers and exploiting the
optimality constraints, the decision function has the following
explicit form:

f ðsÞ ¼
XnSV

i¼1
ðai � a⁎i ÞKðsi;sÞ s:t: 0Va⁎i VC; 0VaiVC; ð8Þ

where nSV is the number of Support Vectors (SVs) and the
kernel function

Kðs;siÞ ¼
Xm
j¼1

ujðsÞujðsiÞ ð9Þ

and αi⁎ are the so-called Lagrange multipliers.
The methodology adopted in this paper is illustrated in

Fig. 3. We implement a hybrid approach of feature extraction
using KPCA and then performing SVR on the resultant
components, our previous work has demonstrated that this
provides good generalization capabilities (Durbha and King,
2005).
3.3. ε-Support vector regression parameters selection

There are several issues that have to be considered while
using ε-support vector regression for inversion applications.
The quality of the SVM models depends on a proper setting
of the SVM meta-parameters. The main issue for practitioners
trying to apply SVM regression is how to set these parameter
values (to ensure good generalization performance) for a
given dataset. The common technique of resampling for
(simultaneously) tuning several SVM regression parameters is
very expensive in terms of computational costs and data
requirements. There are plenty of contradictory opinions for
the selection of optimal parameters for SVR; a brief
description of the proposed methods has been summarized
in Table 2.

Since noise often occurs in real input datasets, it is very
important for us to derive the dependency between the optimal
parameters in support vector regression and the noisy input.
Kwok and Ivor (2003) and Smola and Scholkopf (2004)
established the linear dependency between ε in ε-SVR with the
ε-insensitive loss function and the noisy input. Kwok and Ivor
(2003), show that there is always a linear relationship between
the optimal value of ε and the noise level. Hence we estimate
the noise variance in the input training dataset by a k-nearest
neighbor (KNN) algorithm.

In SVM regression, the parameter C determines the tradeoff
between themodel complexity (flatness) and the degree to which
deviations larger than ε are tolerated in the optimization formu-
lation. For example, if C is too large (infinity), then the objective
is to minimize the empirical risk without regard to model com-
plexity part in the optimization formulation. The parameter ε
controls the width of the ε-insensitive zone, used to fit the
training data (Cherkassky & Mulier, 1998; Vapnik, 1995, 1998)
and can affect the number of support vectors used to construct
the regression function. The bigger the ε is, the fewer support
vectors will be selected. On the other hand, bigger ε values result
in more ‘flat’ estimates. Hence, both C and ε values affect the
model complexity.

In this work we adopt the strategy proposed by Cherkassky
& Ma (2004) for the selection of the optimal values for the
parameters C and ε. Their proposed approach (to parameter
selection) is based on a well-known theoretical understanding of
SVM regression that provides the basic analytical form of
dependencies for parameter selection, below we give only the
expressions to calculate the parameters (for detailed derivation
the reader is referred to the publication Cherkassky & Ma,
2004).

(i.) Parameter C

C ¼ maxðjȳ þ 3ryj;jȳ � 3ryjÞ ð10Þ
where ȳ is the mean of the training responses (outputs), and σy

is the standard deviation of the training response values. The
above estimation of C can effectively handle outliers in the
training data.

(ii.) Parameter ε. It is well known that the value of ε should
be proportional to the input noise level, that is ε ∝ σ
(Cherkassky & Mulier, 1998; Kwok & Ivor, 2003; Smola
et al., 1998; Vapnik, 1998) where

e ¼ sr

ffiffiffiffiffiffiffi
lnn
n

r
ð11Þ

Based on empirical tuning, the constant value τ=3 gives
good performance for various dataset sizes, noise levels, and
target functions for SVM regression. Thus expression (11) was
used in our work.

We use the radial basis function (RBF) kernel that contains a
free parameter, γ which is the Parzen window width for the
RBF kernel. The proper choice for γ is usually determined by
hyper-tuning on an external validation set. The precise choice
for γ is usually not crucial, because there is generally a
relatively broad range for which the model quality is stable.
Selecting a particular kernel type and kernel function
parameters is usually based on application domain knowledge
and also should reflect distribution of input (x) values of
the training data (Vapnik, 1998). We used LIBSVM (Chang &



Fig. 3. Flowchart of the approach to estimate LAI with support vector regression algorithm.
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Lin, 2001) software for implementing the SVR-based inversion
method.

4. Results and analysis

This section presents results from the proposed SVR-based
approach and also compares the results with the other prevalent
approaches based on ANN and LUT.

4.1. Results from SVR-based methodology

The KPCA method of feature extraction produces nonlinear
principal components which are substantially higher (up to the
number of data points n) than a normal PCA. This can be nearly
always advantageous, especially in the situation where the
dimensionality N of the input data points is significantly smaller
than the number of data points and the data structure is spread
over all eigen directions (Rosipal et al., 2001). Fig. 4a illustrates
the number of components extracted by KPCA. Then, the
extracted features have then been projected on to the original
training and testing datasets.

A model is generated by SVR and it is then tested for its
predictive capability on a totally unseen testing data which were
also projected on the nonlinear components. The number of
components that are used in the training and testing data was
determined based on the mean squared error (MSE) on the



Fig. 4. (a) Eigenvalues corresponding to the number of components. (b)
Relationship between MSE of testing data and the number of eigenvectors.

Table 2
Proposed methods for parameter selections for SVR

Authors Parameters Proposed strategies Comments

Cherkassky and
Mulier, 1998

C and ε Prior knowledge
and/or user expertise

Prior knowledge not
available, ordinary
users cannot use the
methods

Schölkopf
et al. (1998)

ε Control another
parameter ν

User defined

Mattera and
Haykin (1999)

ε Percentage of
support vectors is
50% of the number
of samples

Not true always

Kwok and
Ivor (2003)

ε Asymptotically
optimal values
proportional to
noise variance

Does not reflect
sample size.

Mattera and
Haykin (1999)

C C equal to the range
of output values

Does not take into
account possible
effect of outliers in
the training data

Schölkopf et al.
(1998)

C and ε Cross-validation for
parameter choice

Computation and
data-intensive

355S.S. Durbha et al. / Remote Sensing of Environment 107 (2007) 348–361
testing dataset. As can be seen in Fig. 4b for a typical case of the
training dataset, the number of components can reach up to 300.
The amount of information encoded by the first 24 eigenvectors
is illustrated in Fig. 5. The contour lines are values of constant
eigenvalue. This figure depicts only datasets that correspond to
two view angles (45.6° and 70.5°) of the MISR pixels; however,
KPCA was performed on data from all the 9 view angles. The
performance for nonlinear components can be improved by
using more components than is possible in the linear case. The
latter is related to the fact that there are much more higher-order
features than there are pixels in an image (Smola & Scholkopf
2004).

The SVR models predictive and generalization capability
depends on the optimal selection of the SVR parameters C and
ε. The methodology adopted in this work has been described in
Section 3.3. Here we present the parameter values used in the
training of SVR. As shown in Fig. 6 the KNN algorithm was run
with different values of K and for different sizes of the dataset
size (N), we found the value of K=3 to be a reasonable value
and estimated the noise variance for the dataset and finally the
value of the ε-insensitive parameter. Table 3, depicts the values
of C and ε used in our study. The number of support vectors
obtained during the training process represents the extent of fit
of the data. Large numbers of free support vectors usually
signify over fitting of the data.

The number of free parameters allowed in the inversion
process affects the predictive capability of the SVR generated
model. However, we have refrained from fixing more than one
free parameter (Table 1) as the generalization capability for
predicting LAI on a wide range of land cover types would be
affected by fixing the free parameters and thus introducing prior
information which is generally unknown in many scenarios.
Thus the estimation of noise variance and the calculation of the ε
insensitive parameter from it implicitly allow the introduction of
information about the noise which is a way to introduce prior
information on uncertainties in the system. Combal et al., (2002)
have introduced a 2.5% noise as a way of including prior infor-
mation in a neural network-based inversion process.

The SVR training was conducted with training data from
both the NIR and red band and in a combination of the NIR and
red bands. Several experiments were conducted with both bands
(NIR and RED) separately and as a combination and the
predictive capability of the model was evaluated on test
datasets, whose results are depicted in Table 3.

As can be seen, using only the NIR band data, an R2 value of
0.86 was achieved. A combination of NIR and Red bands did
not improve the previous result but rather the R2 value has
decreased to 0.84. The free parameters N, θ1, Cab, and S1 have
profound effect on the retrieval of LAI. Previous studies (Fang
et al., 2003) have fixed these parameters one by one in the
course of the retrieval which are mainly based on the knowledge
about the field conditions. However, such fixing of the
parameters would result in a model that is very specific to a
particular land cover type and would loose the generalization
capability.

In our first set of experiments we developed SVR-based
models with training data consisting of 6 free parameters. This
resulted inMSE values of 0.68 (NIR band) and 0.99 (NIR and red

http://citeseer.ist.psu.edu/26614.html
http://citeseer.ist.psu.edu/26614.html


Fig. 5. The first twenty-four eigenvectors are shown in order of decreasing eigenvalue size. The figures contain lines of constant principal component value (contour
lines).
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band) respectively. The second set of experiments was designed
to observe the effect of fixing the parameters. We fixed only the
value of the PROSAIL input parameter N to 1.5 (Combal et al.,
2002; Jacquemoud et al., 2000) which corresponds to the average
value in nature (Bacour et al., 2002b). The MSE error has
decreased to 0.20 (NIR) and 0.28 (NIR and red) and R2 values of
0.96 and 0.94 were achieved respectively.

The models thus generated were applied on the Alpilles
validation dataset. An RMSE of 0.72 was achieved using the
model generated with only the NIR band data (Fig. 7a) and when
Nwas fixed the RMSE has decreased to 0.50 (Fig. 7b). Similarly
the SVR model generated with both NIR and red bands has
produced an RMSE of 0.82 (Fig. 8a) which is higher than when
only the NIR band was used. The SVRmodel with both NIR and
red bands and N fixed reduced the RMSE to 0.64 (Fig. 8b) at the
Alpilles validation site.

In order to test the generalization capability of the SVR
model, we also applied the model on MISR data corresponding
to May 18, 2001, acquisition at the Alpilles site (a time lag of
nearly 2 months from the actual availability of field data at
Alpilles site, whose LAI was measured between February 26,
2001 and March 15, 2001). Hence, the SVR retrieval on this
date is not strictly comparable to the field LAI. However, it gives
a general understanding about the retrieval and generalization
capability of the SVR method. An RMSE of 0.51 (Fig. 9) was
achieved in this case.

Further, we also applied the model to test the predication
capability at a different biome type (temperate mixed forest).



Fig. 6. Using k-nearest neighbor method for estimating noise variance for
training data with different k and n values.
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MISR data from the Harvard validation site (42.529°N,
72.173°W) corresponding to Oct 20, 2000 acquisition are
used in this experiment. In this case, an RMSE of 0.52 (Fig. 10)
was obtained. However, the LAI at this site could not be
validated with actual field LAI as was done for the Alpilles site
(due to lack of field data) and was compared with the LAI
retrieved from MISR LAI/FPAR algorithm (Knyazikhin et al.,
1998a,b; Hu et al., 2003, Jiannan et al., 2007).

4.2. Comparison of the proposed SVR-based approach with
earlier studies

In this section, we attempt to compare the proposed approach
with similar studies. We limit the details only to the earlier
proposed approaches that address the problem of regularization.
Two prevalent approaches for retrieving LAI from radiative
transfer model inversions are either based on NN or use the
LUT technique (we omit the discussion on LAI retrieval based
on traditional numerical optimization methods).

In the NN approach, no prior feature extraction was
performed and the raw reflectances from model simulations
were used as the input data to the network (Gong et al., 1999;
Schlerf & Atzberger, 2006). Other studies used the reflectances
from model simulations in conjunction with Normalized
Difference Vegetation Index (NDVI), Soil Reflectance Index
(SRI) (Fang et al., 2003), object signatures (Atzberger, 2004),
and addition of noise (Combal et al., 2002).

Given that the cost of training data acquisition is often noted
as a concern in remote sensing (Chi and Bruzzone, 2005; Foody
Table 3
Parameters and accuracy for the testing data

Data set C-value Value MSE Squared
correlation
coefficient
(R2)

Number of
support
vectors (Nsv)

NIR 9.7872 0.3548 0.6809 0.86 227
NIR (Fixed N) 9.7872 0.1946 0.2003 0.96 231
NIR+RED 9.7872 0.3615 0.9900 0.83 201
NIR+RED

(Fixed N)
9.7872 0.2454 0.2845 0.94 240
& Mathur, 2006; Tadjudin & Landgrebe, 2000), the ability to
use small training sets could be advantageous and attractive
feature for many applications. Large database sizes were used in
other studies (e.g., Atzberger, 2004 uses 100,000 samples in a
NNTapproach), Combal et al., 2002 use 280,000 values of each
variable and using prior information the size is reduced to 8032,
consequently reducing the time spent to sort this LUT to about
65 times shorter. Thus, in the absence of prior information, the
LUT approach is memory and disk storage consuming.
However, the proposed approach provides a method for feature
extraction (KPCA) that has the ability to extract structure from
the data and can work on small training set sizes. Also, both the
earlier studies report results only on synthetic datasets in
contrast to the proposed method in this paper that compares the
results with actual field derived LAI values.

Further, to test the ability of the Neural Network (NN)
method on the reduced database, the NN architecture was
Fig. 7. (a) RMSE of SVR algorithm retrieved LAI values using only NIR band.
(b) RMSE of SVR algorithm retrieved LAI values using NIR bands (N fixed).
(Note: plus (+) sign represents SVR-based retrieval and circle (○) represents
actual field derived LAI at Alpilles site. X-axis represents observation at each
pixel) The MISR data correspond to 03/15/2001 acquisition.



Fig. 8. (a) RMSE of SVR algorithm retrieved LAI values using NIR and red
bands. (b) RMSE of SVR algorithm retrieved LAI values using NIR and red
bands (N fixed). (Note: plus (+) sign represents SVR-based retrieval and circle
(○) represents actual field derived LAI at Alpilles site. X-axis represents
observation at each pixel.) The date of MISR data correspond to 03/15/2001
acquisition. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 9. RMSE of SVR algorithm retrieved LAI values using only NIR band. The
MISR data correspond to May 18, 2001 acquisition. This retrieval is strictly not
comparable to the actual field data at Alpilles as it is measured between February
26 and March 15, 2001. However, this provides an approximate idea of the
generalization capability of the SVR method (Note: plus (+) sign represents
SVR-based retrieval and circle (○) represents LAI retrieved by actual field

Fig. 10. RMSE of SVR algorithm retrieved LAI values using only NIR bands.
(Note: plus (+) sign represents SVR-based retrieval and circle (○) represents
LAI retrieved by actual field derived LAI at Alpilles site).
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realized in matlab (www.mathworks.com) (Nørgaard, 2000). A
three layer feed-forward network with a tan-sigmoidal transfer
function in the hidden layer and a linear transfer function in the
output layer was designed. Networks with 2–9 neurons in the
hidden layer were evaluated in this study. The Neural Network
(NN) was trained with examples obtained directly from the
PROSAIL model simulations as was done in the earlier studies.
The Levenberg–Marquardt optimization algorithm was imple-
mented to search for the synaptic weights and neuron bias that
allows the best fit with the canopy variable (LAI) corresponding
to the input BRFs in the training dataset. The following
approaches are generally used for regularization:

• Early stopping (requires training, testing and validation data,
and is not suitable for small databases),

• Selecting an appropriate weight decay value,
• Jitter (i.e., artificial noise deliberately added to the inputs
during training).
In our experiments, we chose to investigate the selection of
the weight decay parameter, as the network performed poorly in
the absence of its setting. An earlier study (Combal et al., 2002)
has investigated the effects of adding jitter to the input datasets
to perform regularization.

The generalization ability of the network can depend
crucially on the decay constant, especially with small training
sets as was used in this experiment. Weight decay is a subset of
regularization methods. The penalty term in weight decay, by
definition, penalizes large weights. However, the selection of a
specific value for weight decay is difficult. One of the often
used approaches is to train the network with a range of values
and then assess its generalization capacity. The weight decay

derived LAI at Alpilles site).

http://www.mathworks.com
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value was varied in the range of 1e-2 to 1e-4. An RMSE of 1.7
was obtained for the combined NIR and Red bands database and
an RMSE of 1.55 using only NIR band data. More rigorous
studies are required to address the regularization aspects when
using NN for canopy radiative transfer model inversion.

5. Conclusion

The solution for ill-posed problems requires robust regular-
ization techniques. A first attempt was carried out to test the
usefulness of kernel-based regularization by SVR for the
inversion of a 1D canopy radiative transfer model. A procedure
for selecting the parameter combinations has been introduced,
which considerably reduces the number of simulations of the
model, saving computational resources and time. The SVR
method provides a very attractive alternative to the current
optimization methods used in the inversion, wherein it enables
to generate predictive models that have good generalization
capabilities and can handle linearly non-separable data with
multiple hyper planes, which is difficult to accomplish with
comparable methods like artificial neural networks. The SVR
method is firmly grounded in statistical theory, and since the
SVR is a convex Quadratic Programming (QP) it can always
find a global optimum whereas, artificial neural networks are
local solutions (e.g., gradient descent search). Also, there is no
need for an initial guess, as required for other optimization
algorithms like the Powell and Quasi-Newton methods.

Two sets of data (only NIR, and NIR in conjunction with the
red band) were investigated. Once the model has been
generated, the prediction of LAI on validation data is almost
instantaneous. The SVR-based retrieval of LAI provides a
reasonably good agreement with the field derived LAI.

The present study could be validated only at one biome type
(grasses and cereal crops). More rigorous studies are required to
apply this method at several different biome types to test the
generalization capability of the SVR method. Currently the
SVR method provides the ability to retrieve only one parameter
at a time. Multi-output support vector regression is still a very
active area of research and we intend to pursue it in the future
for simultaneously retrieving multiple parameters from the
inversion of a canopy radiative transfer model.
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