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Prototyping of MISR LAI and FPAR Algorithm with
POLDER Data over Africa

Yu Zhang, Yuhong Tian, Yuri Knyazikhin, John V. Martonchik, Dave J. Diner, Marc Leroy, and Ranga B. Myneni

Abstract—The multi-angle imaging spectroradiometer (MISR)
instrument is designed to provide global imagery at nine discrete
viewing angles and four visible/near-infrared spectral bands. The
MISR standard products include vegetation canopy green leaf area
index (LAI) and fraction of photosynthetically active radiation ab-
sorbed by vegetation (FPAR). These products are produced using
a peer-reviewed algorithm documented in the EOS-AM1 (Terra)
special issue of theJournal of Geophysical Research. This paper
presents results on spatial distributions of LAI and FPAR of vege-
tated land surfaces derived from the MISR LAI/FPAR algorithm
with bidirectional reflectance data from the polarization and di-
rectionality of the Earth’s reflectance (POLDER) instrument over
Africa. The results indicate that the proposed algorithm reflects the
physical relationships between surface reflectances and biophys-
ical parameters and demonstrates the advantages of using multi-
angle data instead of single-angle data. A new method for eval-
uating bihemispherical reflectance (BHR) from multi-angle mea-
surements of hemispherical directional reflectance factor (HDRF)
was developed to prototype the algorithm with POLDER data. The
accuracy of BHR evaluation and LAI/FPAR estimation is also pre-
sented. To demonstrate the advantages of using multi-angle data
over single-angle data of surface reflectance, we demonstrate that:
1) the use of multi-angle data can decrease the dispersion and satu-
ration of LAI, and increase the localization and quality of retrieved
LAI and FPAR, 2) the use of multi-angle data can improve the ac-
curacy of LAI retrievals in geometrically complex canopies such
as shrubs, and 3) the use of multi-angle data can help determine
biome or land cover types correctly (by using the minimum value
of LAI dispersion). For many other cases, we demonstrate that the
use of multi-angle data does not lead to misevaluation, even if the
land cover type is misidentified.

Index Terms—Fraction of photosynthetically active radia-
tion absorbed by vegetation (FPAR), leaf area index (LAI),
multi-angle imaging spectroradiometer (MISR), multi-angle
remote sensing, polarization and directionality of the Earth’s
reflectance (POLDER), terra.

I. INTRODUCTION

T HE multi-angle imaging spectroradiometer (MISR) is an
instrument on board the EOS-AM1 platform called Terra.

MISR will make global observations of the Earth’s surface at
1.1 km spatial resolution with the objective of determining the
atmospherically corrected reflectance properties of most of
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the land surface and the tropical ocean [1]. Two types of at-
mosphere-corrected bidirectional surface reflectances and their
integrated values will be made available from this instrument.
The hemispherical directional reflectance factor (HDRF) and
the bihemispherical reflectance (BHR) characterize surface
reflectance under ambient sky conditions (i.e., direct and
diffused illumination). The HDRF and BHR do not depend on
surface radiation models used and are highly accurate when
correct atmospheric information is used [1]. The bidirectional
reflectance factor (BRF) and the directional hemispherical
reflectance (DHR) are defined for the unique case when the
atmosphere is absent. The removal of the effects of diffuse sky
radiance from the HDRF requires the use of a model for the
surface bidirectional reflectance distribution function (BRDF).
This makes the retrieved BRF and DHR model dependent [2].

An operational algorithm that uses BHR, HDRF, and their un-
certainties as input variables was proposed in [2] and [3]. This
algorithm is specific to the MISR instrument for the retrieval of
green leaf area index (LAI) and fraction of photosynthetically ac-
tive radiation absorbed by vegetation (FPAR). Prior to the launch
of theMISRinstrument, thephysical credibilityandperformance
of the algorithm needs to be evaluated. Surrogate multi-angle
satellite data can be used to accomplish this task, which is termed
here as prototyping. The polarization and directionality of the
Earth’s reflectance (POLDER) sensor was designed to provide
global measurements of spectral, directional, and polarizational
characteristics of solar radiation reflected by the earth’s sur-
face. Atmospherically corrected surface reflectances acquired
by POLDER are presently available. The goal for this paper is
to prototype the MISR LAI and FPAR algorithm with data ac-
quired by the POLDER instrument over Africa.

A brief description of concepts for the algorithm is given,
followed by analysis of vegetation spectral and angular signa-
tures from POLDER data. A series of algorithm prototyping
retrievals are presented and discussed in detail. The algorithm
clearlydemonstratesbetterresultswhenmulti-angledataareused
comparedtosingle-angledata, thus indicatingboth theadvantage
of multi-angle data and the ability of the algorithm to recognize
the enhanced information content in multi-angle data. Finally, a
method to evaluate BHR’s from POLDER data is proposed and
evaluated.ItwasusedtoprototypeaspectsoftheMISRalgorithm.

II. A LGORITHM

A. Mathematical Basis for Multi-Angle Remote Sensing of
Vegetation

We begin with a theorem recently published in a journal on
inverse problems [4]. The theorem states that under general
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conditions, the three-dimensional (3-D) extinction coefficient
and 3-D scattering phase function can be uniquely retrieved
from boundary measurements. This theorem indicates there
is a one-to-one correspondence between the complex 3-D
vegetation canopy structure and radiation emergent from the
canopy boundaries. A question then arises as to whether or
not this correspondence can be specified from multi-angle
observations. Let us consider a hypothetical ideal instrument
that provides exact surface reflectances at any spatial point
and in any direction, i.e., one has the complete and accurate
spatial and angular information on the radiation field leaving
the canopy through the upper boundary. The theorem, however,
requires information on the downward radiation field at the
canopy bottom boundary to redeem canopy structure. How can
we obtain this information?

A specific feature of photon interactions with vegetation ele-
ments lies in the fact that the probability a photon will interact
with phytoelement is not dependent on wavelength; the extinc-
tion coefficient, the sum of wavelength dependent scattering and
absorption coefficients, does not depend on wavelength [5]. This
allows evaluation of canopy transmittance at any wavelength
once this variable is known at a fixed wavelength [6]. Mathe-
matically, the inverse problem of recovering 3-D canopy struc-
ture from multi-angle observations can be formulated as the fol-
lowing. Given “ideal” multi-angle canopy reflectances at a min-
imum of two spectral bands, find the canopy transmittance at
a fixed wavelength and canopy structure. This formulation in-
cludes two sets of known simultaneous multi-angle data and two
sets of unknowns. These data sets relate all variables needed for
unique retrieval of the 3-D structure of the medium. Thus, the
main advantage of multi-angle remote sensing is its potential
ability to retrieve realistic 3-D geophysical parameters required
by many interdisciplinary investigations [7]. It is clear that the
above arguments need a rigorous mathematical analysis and this
is provided elsewhere [3], [4]. These arguments are the basis
of the LAI/FPAR retrieval techniques developed for operational
use during the EOS Terra mission [3], [6].

The above arguments indicate the canopy radiation model, the
foundation of any retrieval technique, must also provide canopy
transmittance to obtain a closed system of equations for the so-
lution of the inverse problem. We begin with the representation
of monochromatic intensity of a 3-D radiative field at
wavelength at a spatial point and in direction as a sum of
two components, that is

(1)

where the first component describes the radiation
regime within the vegetation canopy for the case of a black sur-
face at the bottom of the medium, and describes ad-
ditional radiative fields due to interactions between the surface
and canopy. This representation takes a simple form when the
vegetation canopy can be idealized as a horizontally homoge-
neous medium bounded at the bottom by a Lambertian surface.
The term can be expressed as follows [8]

(2)

where is the albedo of the Lambertian surface, is
the downward flux at the surface level (transmittance) for
the case of the black surface, and are radiance and
downward flux at the surface level generated by an isotropic
wavelength-independent source located at the canopy bottom.
Three independent variables are needed to describe the radiative
regime in a plane-parallel medium: the reflectance properties
of the surface, which are not dependent upon the vegetation,
and and , which are surface-independent parameters
because no multiple interaction of radiation between the surface
and canopy is possible (i.e., these variables have intrinsic
canopy information).

More complicated techniques, for example, the adjoint for-
mulation and Green’s function concept, have been developed in
reactor physics to extend the representations (1) and (2) for the
case of a 3-D radiation field [9]. Although in the 3-D case,
cannot be expressed in such a simple form, the physical meaning
of (1) and (2) remains unchanged. That is, the 3-D radiation
field can be parameterized in terms of surface reflectance prop-
erties that are independent of vegetation such as the radiation
field in the vegetation canopy for the case of the black surface
(“Black soil problem”) and the radiation field in the vegetation
canopy generated by anisotropic heterogeneous wavelength-in-
dependent sources located at the canopy bottom (“problem”).
This technique was used to create the look-up table (LUT) for
the LAI/FPAR algorithm [10]. In terms of this approach, the
hemispherical directional reflectance factor (HDRF)
and bihemispherical reflectance (BHR) at wavelength

can be expressed as

(3)

(4)

where and are hemispherically integrated
canopy reflectances, and and are canopy
transmittances for the black soil problem and problem,
respectively. The weight is the ratio of the HDRF for
the black soil problem to , and is the ratio of the
canopy leaving radiance generated by anisotropic sources on
the canopy bottom to . The effective ground reflectance

is the fraction of radiation reflected by the ground
surface beneath the canopy. This variable depends on the
radiation regime at the canopy bottom. Its range of variations
does not exceed the range of variations of the hemispherically
integrated bidirectional factor of the ground surface that is
independent of vegetation [6]. Therefore, is a parameter
characterizing the ground reflection. The set of various patterns
of spectral effective ground reflectances is a static table of the
retrieval algorithm.

B. Solutions of the Inverse Problem

A solution distribution function is introduced to provide the
convergence of the algorithm [3]. The retrievals are performed
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by comparing observed and modeled radiances for a suite of
canopy structures and soil patterns that covers a range of ex-
pected natural conditions. The set of canopy/soil patterns, for
which the magnitude of the residuals in the comparison does
not exceed uncertainties in observed radiances, is used to eval-
uate the distribution of LAI and FPAR values, and to specify
the most probable value of LAI and FPAR. Realistically, any
model can only simulate a process to a certain degree of accu-
racy and measurements cannot be precisely made. The model
predicts a domain to which the “true reflectance” belongs.
The same holds true for measured reflectances; that is, we can
specify a neighborhood around a measured reflectance in
which the “true value” belongs. Any elements from these do-
mains can be considered true values with a high probability.
The neighborhoods and are domains of uncertainties
in measurements and simulations. Domains of uncertainties de-
pend upon the direction of direct solar radiance, view directions
and the ratio of direct radiation to the total (direct and diffuse)
radiation incident on the pixel. The algorithm requires not only
measured canopy reflectances but also their domain of uncer-
tainties. All canopy/soil patterns in which simulated canopy re-
flectances belong to the domain are treated as acceptable
solutions to the inverse problem. Given the set of all accept-
able solutions corresponding to a measured set of spectral and
multi-angle canopy reflectances, one counts numbers
and as different values of LAI and for all solutions when
LAI is less than a given value. The solution distribution func-
tion is then defined as the ratio of to , that
is, . A precise mathematical definition
of how to count “continuous” values of LAI is presented in [3].
The LAI value now can be evaluated as a weighted mean in ac-
cordance with the frequency of occurrence of a given value of
, namely

(5)

where the integration is performed over the interval of all pos-
sible variations of . We note some properties of this estima-
tion [3]. Equation (5) is sensitive to values of LAI, but not to
the canopy/soil patterns generating the same LAI value. This
allows the use of 3-D models of canopy structure for which a
retrieved parameter may not be in the model parameter list. If
the inverse problem has a unique solution for a given, then
(5) coincides with this solution. Note that the concept of mul-
tiple acceptable solutions was originally formulated and imple-
mented in the MISR aerosol retrieval algorithm [1], [11]. Given
the solution distribution function , one can evaluate the
fraction of photosynthetically active radiation absorbed by veg-
etation (FPAR)

(6)

where is spectral canopy absorptance [3].
Concurrently, the solution of LAI is a distribution function

rather than a unique value; the dispersion of LAI values can be

evaluated as the root mean square deviation of the LAI solution
distribution function

(7)

In the red and near-infrared spectral space, the domain of
uncertainties in measurements and simulations can be approx-
imated by an ellipse with the major and minor axes and

. Consequently, the algorithm can be reformulated as the
following. Given a set of spectral and simultaneous multi-angle
observations of canopy reflectances, find all canopy/soil pat-
terns ( represents one canopy/soil pattern), and their solution
distribution functions satisfy the following inequality:

(8)

where is the number of view directions (nine for the
MISR and up to 14 for POLDER). The values and
are uncertainties in measurements and simulations, are assumed
known, and serve as input for the retrieval algorithm. These
variables depend upon the direction of direct solar radiance,
view directions, and the ratio of direct radiation to the total
(direct and diffuse) radiation incident on the pixel. The MISR
instrument routinely provides this information. However, the
POLDER data set provides no information on the uncertainties
associated with surface reflectances. Therefore, we used the fol-
lowing simple formula to describe the uncertainties:

(9)

where is the mean uncertainty assumed to remain throughout
the study.

When supplied with proper data, the algorithm results in
one of the following: 1) cases where no solution was found; 2)
cases where solutions were found and the solution distribution
function was localized to a desired value of LAI; or 3) cases
where solutions were found, but there was no localization of
LAI values. For the third case, the LAI values (9) are (said
to be) retrieved under conditions of saturation [3]. These
are important characteristics of the algorithm’s behavior. We
introduced indices such as the retrieval index (RI) and LAI
retrieval under conditions of saturation to characterize them
(discussed later).

III. D ATA ANALYSIS

A. POLDER Data

The POLDER instrument is an imaging radiometer designed
to provide systematic measurements of spectral, directional
and polarizational characteristics of solar radiation reflected
by the Earth/atmosphere system [12]. POLDER has a wide
field-of-view (FOV) with a cross-track swath of 2200 km. This
allows for near-complete daily coverage of the Earth surface.
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TABLE I
SPECTRAL BANDS OF MISR AND POLDER INSTRUMENTSTOGETHER WITH

THE CENTER WAVELENGTHS AND BANDWIDTHS

Every target is observed at least four times in a five day period,
even at the equator. All POLDER data are geocoded, calibrated,
cloud-screened, and partially corrected for atmospheric effect.
POLDER products are projected on a sinusoidal equal area
projection grid with a resolution of 6.17 km [13]. Detailed
atmospheric correction processes are described by Leroy [14].
However, the surface reflectances were not corrected for the
aerosol effects for operational reasons [15].

The spectral bands of MISR and POLDER instruments are
listed in Table I. The center wavelengths of the four spectral
bands of the MISR instrument are 446 nm, 558 nm, 672 nm,
and 866 nm. POLDER has eight spectral bands but its current
Level 2 land surface products offer four spectral bands, and the
central wavelengths are 443 nm, 670 nm, 765 nm, and 865 nm,
respectively. Therefore, three of the POLDER’s bands desig-
nated as BLUE, RED, and NIR can be used for prototyping of
the MISR LAI/FPAR algorithm. In this study, POLDER Level
2 data from November 1 through 16, 1996, over Africa and a
small region of South America and Southwest Asia was used to
prototype the MISR LAI/FPAR algorithm. In the algorithm, we
consider the input as HDRF data, but actually, the POLDER data
is BRDF measurements. Therefore, we convert BRDF to BRF
and consider it as a special case of HDRF. The corresponding
LUT entries are made for BRF in this case.

The maximum number of observations per pixel during this
16-day period was 14. However, due to cloud cover, the ac-
tual available data are much less and the distributions depend
heavily on geolocation. The repeat observations over central
Africa were often less than four, sometimes none, which is much
less than in the Sahara region (over eight at least). Thus, the dis-
tribution of available POLDER data varied greatly from 0 to 14
during this 16-day period.

B. Biome Classification Map

Another important ancillary data layer used is the biome
classification map (BCM), which is derived from the AVHRR
Pathfinder data set [2], [16]. The BCM is a static file, i.e., it
is a time-independent data set. In this map, global vegetation
is classified into six biome types: grasses and cereal crops,
shrubs, broadleaf crops, savanna, broadleaf forests, and needle
leaf forests [16]. The distribution of POLDER data for different
biomes is shown in the first row in Table II. Pixels belonging
to the needle leaf forest biome attributed to only 0.25% of
the total number of pixels. This biome was not considered for
further analysis. In addition, only 7% of the pixels represent
broadleaf forests. Note the MISR LAI/FPAR algorithm used
by MISR does not use the BCM but retrieves biome types from
data instead. The BCM is used for the purpose of analyzing
the algorithm’s behavior without being affected by biome
classification process.

TABLE II
STATISTICS OF THEDISTRIBUTION OF POLDER DATA. THE FIRST TWO ROWS

DENOTE THEDISTRIBUTION OF THESIX BIOME TYPES FORTOTAL AVAILABLE

DATA AND COMPOSITEDDATA. THE OTHERSINDICATE PROPORTION OF THE

DATA IN THE PRINCIPAL PLANE (WITHIN �5� RELATIVE AZIMUTH ANGLE) AS

A FUNCTION OF BIOME TYPE AND SUN ANGLE

C. Spectral Signatures

Surface information is contained within data of reflectance
measurements. The amount of information that can be retrieved
from data depends both on the accuracy of the data and the
methods used in the retrieval process. From a spectral point
of view, the intrinsic dimensionality of the remotely sensed
data for a single viewing angle is determined by the number
of physically independent (uncorrelated) wave bands. Instru-
ments, such as MODIS, may contain up to seven bands of
surface reflectance, and we assume useful information is stored
in no more than three or four bands [17].

Spectral signatures are important sources of information. The
distributions over different spectral bands for the five biomes are
plotted in Fig. 1 irrespective of the viewing angles. In general,
all distributions are similar in the NIR band, and in other bands,
the biome spectral signatures overlap considerably. Only shrubs
show a distinct distribution at RED and BLUE bands. In the RED
band, grasses and broadleaf crops are similar, and likewise, sa-
vannaandbroadleaf forestsaresimilar. IntheNIRband,broadleaf
forests have a higher reflectance and are distinct from the others.

We plot a 25% data contour for each biome in a two-band
plane to indicate where the data peak is located in order to better
distinguish biome signatures (Fig. 2). A data density distribu-
tion function defined as the number of pixels per unit area in
the plane was evaluated for each biome type. Each contour in
this figure identifies an area of high data density that contains
25% of the pixels from a given biome type. The larger the differ-
ence between the clusters of different biomes, the better they can
be distinguished in the spectral space [18], [19]. It is clear that
shrubs separate well from the other biomes. In the RED-NIR
plane, grasses separate from broadleaf forests. In between lay
overlapping savanna and broadleaf crops. It would appear sa-
vanna, broadleaf crops and grasses would be hard to distinguish
from one another if only red and near-infrared bands were used.

Although the BLUE band can be used to distinguish biomes
(for example, savanna), it is currently not used in the algorithm
because of large uncertainties due to strong atmosphere effects
of the BLUE band data.

D. Hot Spot

The hot spot phenomenon is observed when the sun and
sensor directions coincide [20]. This is a key feature of the di-
rectional signature, because its shape is sensitive to biophysical
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Fig. 1. Distribution of HDRF values as a function of spectral band and biome type derived from POLDER data.

parameters of vegetation such as the relative size, shape and
density of the leaves [21]–[23]. The measurement of the hot
spot is particularly important to multi-angle instruments [24],
[25]. It is believed that directional reflectance measurements
can be inverted to retrieve surface parameters such as LAI.
The hot spot effect is pronounced in the visible bands, but is
also obvious at all wavelengths throughout the solar spectrum.
Soil conditions will also affect the hot spot effect especially in
canopies that do not fully cover the surface.

POLDER data potentially provide more information by virtue
of the angular signature. A drawback of POLDER for the mea-
surement of angular signatures is its limitation to viewing angles
less than 60[12]. It is difficult to study the hot spot when the
solar zenith angle is larger than 50. Another problem in precise
measurement of the hot spot signatures is the atmospheric ef-
fect on surface reflectances. Atmospheric aerosols are strongly
forward scattering, which results in smoothing of the hot spot
measurements [21].

The hot spot effect is best measured in the principal plane.
Not all POLDER data are in the principal plane; the data
nearest the principal plane (with relative azimuthal angles less
than 5 ) were plotted in Fig. 3 to show the mean angular

distributions of canopy reflectances within the principal plane
for different biome types, sun angles, and spectral bands.
Spatial averaging was performed over all available pixels in
the principal plane from each biome. However, there is not
enough data for broadleaf forests at some sun angles. The
curves show a clear hot spot effect at both red and near-infrared
bands. For all available data, the number of pixels for which
the accumulated angular reflectances about the principal plane
was approximately 12.3% of the total number of available
pixels. The five biomes at near-infrared have three kinds of
angular signatures distinct for broadleaf forests and shrubs
only. The different biomes have different reflectance magni-
tudes with similar shapes in the red band. Broadleaf crops and
grasses/cereal crops appear similar in both bands. They are
indistinguishable by their spectral and angular signatures. This
can also be seen in the upper-left panel of Fig. 2.

The statistics of the angular distribution of POLDER data,
i.e., the percentage of pixels with canopy angular reflectances
in the principal plane over a 16-day period, are given in Table
II. It is clear the data can be used to study the hot spot effect is
only a small portion of the total data. For this reason, we did not
consider the hot spot effect in our analysis.
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Fig. 2. Distribution of pixels from POLDER data with respect to their reflectances at two of the three available wavelengths. Each biome-dependent contour
separates a set of pixels representing the most probable patterns of canopy structure from a given biome type.

IV. PROTOTYPINGRESULTS

The MISR instrument will provide HDRF and BHR mea-
surements along with their uncertainties [1], [2], [26]. The
LAI/FPAR algorithm is designed to utilize this information
in a two-step process. The first step uses BHR measurements
to identify canopy/soil patterns that are acceptable solutions.
Then, the HDRF test is used as a more stringent test to select
canopy/soils patterns from the previous set. The most probable
value is then specified. However, the POLDER instrument
does not provide BHR’s. Therefore, we skip the first step and
directly use the HDRF test to prototype the MISR LAI/FPAR
algorithm for results.

For the purpose of using POLDER data to prototype the algo-
rithm, the following three cases with only the HDRF test were
performed: 1) using one view angle, the near-nadir view; 2)
using multi-angle data, that is, six angles from all available di-
rections; and 3) using all available multi-angle data (about 12 or
more directions).

To minimize uncertainties in the POLDER data, we com-
posite 16-day POLDER data into one layer using a maximum
near-nadir NDVI method similar to the maximum value com-
positing (MVC) technique used by James and Kalluri [27].
Since surface anisotropic properties will affect the measure-

ments, nadir or near-nadir reflectance is the preferred choice.
The nadir pixels have the finest spatial resolution with minimal
distortion, and atmospheric correction is most reliable and
accurate for near-nadir measurements. A threshold NDVI value
of 0.1 was used to ensure that the pixel is vegetated in certain
cases. The distribution of the composited POLDER data for
different biomes is illustrated in Table II.

A. Retrieval Index

A pixel for which the algorithm retrieves a value of LAI
and FPAR is termed a successful pixel (a successfully retrieved
pixel). A pixel for which no solution was found is termed an un-
successful pixel (an unsuccessfully retrieved pixel). The ratio of
the number of successful to total number of pixels is defined as
the retrieval index (RI)

successful pixels
total number of pixels

% (10)

The RI is a simple indicator of the behavior of the algorithm. It
demonstrates the percentage of pixels with successful retrievals
for a data set by the algorithm.

The RI increases with increases in mean uncertainty(9).
However, the quality of retrieved LAI/FPAR fields decreases
with an increase in ; it allows for a wider set of acceptable
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Fig. 3. Angular signatures of averaged HDRF’s of POLDER data in the principal plane (within�5� relative azimuth angle) as a function of biome type at different
sun angles. Some of the curves of broadleaf forests are missing because of insufficient data.

solutions. If is underestimated, the algorithm fails when real
uncertainties in surface reflectances are greater than those de-
termined by (9). However, if is overestimated, the algorithm
produces a wider set of acceptable solutions. Therefore, there
is a critical value of for which (9) optimally approximates
real uncertainties. According to our experience, aof 0.2 is a

good approximation [10]. Since uncertainties were unknown for
POLDER data. The actual uncertainties depend on the spectral
band and direction of view. The uncertainties of retrieved sur-
face reflectances are usually higher at shorter wavelengths and
larger view zenith angles due to atmosphere effects. Therefore,
the use of mean uncertaintyin (9) is a compromise. MISR of-
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TABLE III
RETRIEVE INDEX AND FREQUENCY OFLAI UNDER SATURATION FOR SIX

BIOMES AT MEAN UNCERTAINTY " = 0.2

fers HDRF, BHR, and their uncertainties as functions of spec-
tral bands and viewing angles. The algorithm is expected to give
better results after utilizing the advantages of these inputs.

The retrieval indices that in single- and multi-angle cases for
six biomes at 0.2, are shown in Table III. It demonstrates
that RI decreases with the use of more view angles. This is ex-
pected because the uncertainties of distributed view-angles are
often larger than a direction near the nadir, and multi-angle data
generally have higher uncertainties than single-angle data. If the
uncertainties between the two are comparable, the mutli-angle
test based on angular dependent information is a more stringent
test than the single-angle test.

The retrieval indices for corresponding multi-angle retrievals
are low, indicating that multi-angle data have larger uncertainties
at off-nadir directions. It could also imply that the pre-assigned
biome type is incorrect, as it is possible that the multi-angle test
distinguishs biomes when the single-angle test cannot. It may
also imply that the limited number of canopy structural types (six
biomes) used by the algorithm does not represent all the canopy
types encountered in reality. Mixtures of more than one biome
types will blur the architectural distinctions and the canopy re-
flectance of mixed patterns may be different from those of pure
biomes. Inaddition, itmay indicate that lowresolutiondata result
in smoothing canopy reflectance features, especially in the case
ofmixedstands [28].Thismaybeoneof the important limitations
of prototyping the algorithm on coarse resolution data. Finally,
it is also possible that failures may result from the data quality.
For example, if the canopy reflectances are retrieved with high
uncertainties in the process of atmospheric correction.

When using the RI metric to evaluate LAI/FPAR retrievals,
one should remember that a higher RI does not necessarily de-
note that the retrieved LAI and FPAR fields are correct or accu-
rate, and the mean uncertaintyis not a sufficient criterion and
individual uncertainties with input data and models should be
considered.

B. NDVI Distributions of Successful and Unsuccessful Pixels

The characteristics of successful and unsuccessful pixels
provide information on where and why the algorithm failed.
The NDVI histograms of successful and unsuccessful pixels
for an 0.2 are demonstrated in Fig. 4. The distribution of
NDVI values of successful pixels is slightly dependent upon
the number of view angles used. The NDVI distribution of
successful pixels is close to the actual NDVI distribution of
the data set because retrieval indices were high for all biomes
( 70%), with the exception of broadleaf forests. Amongst
the six biomes, shrubs and broadleaf forests exhibit distinct

patterns. Successful pixels of shrubs are mainly characterized
by low values of NDVI in contrast to broadleaf forests.

The unsuccessful pixels causes the shape of the NDVI dis-
tribution to vary with the number of view angles. However,
the number of unsuccessful pixels for the single-angle case is
a small fraction of the total number of pixels for all biomes
( 98%) except in the case of broadleaf forests. Most of the
biomes, except shrubs, generally show unsuccessful retrievals at
high NDVI values (0.5 to 0.8). High NDVI values indicate dense
canopies, where about 80–95% of radiation at the red spectral
band is absorbed. The canopy reflectances at this wavelength
are very low and uncertainties may exceed the threshold value
of mean uncertainty ( 0.2). Note, however, the most probable
NDVI values of successful and unsuccessful pixels for broadleaf
forests are 0.85 and 0.7, respectively. Canopy structure can vary
considerably when NDVI is unchanged [10]. Therefore, this fea-
ture of NDVI distribution indicates the algorithm is sensitive to
canopy structure, but not to the magnitude of NDVI.

C. LAI under Conditions of Saturation

In the case of a dense canopy, reflectance can be insensitive
to the parameters in cerain directions. The canopy reflectance is
then said to belong to the saturation domain [3]. Therefore, the
reliability of parameters retrieved under conditions of saturation
is very low. In other words, the retrieved solution distribution
function does not localize LAI values.

The frequency of LAI under saturation increases with in-
creasing uncertainties when more pixels are included in the cat-
egory of successful pixels and more realizations are included in
the solution distribution. For a fixed mean uncertainty (0.2),
the LAI saturation frequency decreases with an increase in the
number of view angles (Table III). This is a desirable attribute
of the algorithm, because it leads to a decrease in the disper-
sion of LAI values or the retrieval uncertainty of LAI values.
This is important evidence that multi-angle data contain more
information, and is utilized by the algorithm to reduce saturation
and localization of the LAI value. Ascertaining if the solution
distribution function belongs to the saturation domain is a spe-
cial feature of the dispersion of LAI values (discussed in detail
later). This has been previously formulated in [3]. The satura-
tion conditions are quite different for the six biomes. Grasses
and shrubs have nearly no saturation and broadleaf forests have
the highest saturation frequencies, as expected. The frequency
of LAI values retrieved under conditions of saturation in the
case of single-angle high resolution data, such as TM data (30
m resolution) [10], is approximately the same for low resolution
single-angle near-nadir POLDER data. Therefore, the informa-
tion content of multi-angle data at coarse resolution may be
comparable to that of single-angle high resolution data. This is
one confirmation of the validity of the theorem cited in Section
II-A, because the inverse problem has a unique solution. The
problem of “saturation” does not exist for “ideal” multi-angle
data. Therefore, inclusion of more angular information tends to
eliminate this problem.

The results presented thus far showcase a benefit of multi-
angle data over single-angle data, but also that there is no sig-
nificant benefit of using 12 angles compared to six angles in our
analysis. This is because the MISR look-up table (LUT) was
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Fig. 4. NDVI histograms for five biomes in the single-angle case and multi-angle case. The left column of two panels shows the distribution of successful pixels
with respect to their NDVI values. The right column shows the distribution of unsuccessful pixels.

designed to distinguish five intervals in view zenith angles (i.e.,
ten directions in one azimuthal plane). The 12 POLDER view
directions were distributed amongst them. Therefore, the algo-
rithm is sensitive to six view directions but only slightly to 12
view directions. In addition, the use of more directions increases
not only the information content but also their uncertainties.

The dispersion of retrieved LAI values is closely related to
the saturation domain. The saturation domain is a special case
when the measured data are slightly influenced by canopy struc-
ture and the dispersions are very large. Thus, the dispersion of
LAI acts as an indicator of the quality of LAI retrieval. The de-
pendence of dispersion on the most probable value of LAI shows
that increases in the magnitude of LAI tends to increase the dis-
persion of its retrieval (Fig. 5). However, the inclusion of more
angular information results in decreased values of the disper-
sion. This corresponds to better localization of the LAI distri-
bution function and a higher accuracy of estimated LAI values.
This is an additional evidence of the benefit of multi-angle data.
The histogram of the retrieved LAI field is a statistical charac-
teristic of the retrieved parameter. The histograms of retrieved
LAI values as a function of the number of view angles for the
five biomes are shown in left panels of Fig. 6. The last panel in
this figure shows the ten-year average LAI histograms derived

Fig. 5. The relationships between dispersion of LAI and LAI values for the
single-angle case (thin line) and multi-angle case (thick line). The relationships
are calculated by averaging dispersion of LAI over a small interval of LAI
values.

from the AVHRR Pathfinder data by Myneniet al. [16]. This
comparison is valuable in that it helps us to indicate if the algo-
rithm catches the general LAI distribution patterns for different
biomes.
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Fig. 6. Histogram of retrieved LAI and FPAR for the sigle- and multi-angle data cases and from a ten-year average derived from AVHRR Pathfinder data [16].

D. Histograms of LAI and FPAR

The majority of retrieved LAI values are less than 2.5;
broadleaf crops, savanna and broadleaf forests generally have
higher LAI values. Shrubs and broadleaf forests are distinct
in their LAI distributions. In the case of multi-angle data, the
retrieved LAI values are somewhat smaller for all biomes but

distributions are similar. Note, high LAI values correspond
to low values of red reflectance and to high uncertainties.
Therefore, many of the pixels with possibly high LAI cannot
be retrieved. This implies that i nformation about uncertainties
is also very important in order to improve the performance of
the algorithm, as discussed in Section IV.A. In comparison to
the result from the AVHRR data, the distributions for shrubs
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Fig. 7. Average NDVI-LAI and NDVI-FPAR relationships for single- and multi-angle cases. The left column is NDVI-LAI relationship in the single-angle and
multi-angle cases, and the right column is the NDVI-FPAR relationship.

and savanna seem to match well. Grasses and broadleaf crops
also show comparable tendencies. Broadleaf forests have an
anomalously higher frequency at the low end of LAI. A detailed
analysis of broadleaf forests will be presented later.

The right panels in the Fig. 6 are the cases of single- and
multi-angle data retrievals and the ten-year average from the
AVHRR data for FPAR histograms. The histograms of FPAR
for different biomes match well with ten-year averages. When
comparing single-angle and multi-angle results, one can detect
the frequency of high FPAR values decreases slightly with
decreasing number of observations. This corresponds to high
NDVI values.

E. NDVI-LAI and NDVI-FPAR Relationships

The relationships between a spectral vegetation index such
as NDVI and surface biophysical variables LAI and FPAR have
been studied extensively [29]–[31]. Their relationships are often
used as an empirical, but effective way of calculating LAI and
FPAR [16], [17], [32]–[34]. These products will likely be used
in biophysical and biogeochemical models by potential users.
This demands the retrieved LAI and FPAR fields possess the

same statistical properties as those derived from ground based
measurements. Therefore, NDVI-LAI and NDVI-FPAR regres-
sion curves using retrieved LAI and FPAR fields and near-nadir
NDVI derived from POLDER data were calculated (Fig. 7). The
left column of panels in Fig. 7 shows the relationships of NDVI
and LAI retrieved from single-angle and multi-angle observa-
tions, respectively. The right column shows the relationships
of NDVI to FPAR. These relationships generally correspond to
those reported in the literature [16], [32]. However, their forms
vary with biome types and this is not clearly seen here. This is
the effect of resolution will be discussed in a later section.

It is known that the NDVI-LAI relationship is an increasing
function with a shape determined by biome type. The problem
with shrubs is worthy of notice. It is obvious that the NDVI-LAI
relation is poorly estimated with shrubs using single-angle data.
However, the use of multi-angle data greatly improves it (Fig. 7).
Shrubs are a special biome type characterized by extreme lateral
heterogeneity with low to intermediate vegetation ground cover
(0.2–0.6), small leaves, woody material, and bright soil back-
grounds [16]. Shrubs are the most discontinuous of all biome
types, and the radiation regime is greatly influenced by soil
background. For a single-angle near-nadir view, the influence
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Fig. 8. The average NDVI-LAI relationship of shrubs and the corresponding
LAI-DLAI relationship in the single-angle and multi-angle cases.

of soil is dominant and can lead to incorrect retrievals. Multi-
angle data contains more information and hence retrievals are
superior. This is illustrated in Fig. 8. For an LAI range of ap-
proximately 1.0 to 3.0, the single-angle NDVI-LAI relation is
greatly distorted, and the dispersion of retrieved LAI can be as
high as 0.5. The LAI dispersion then decreases dramatically for
multi-angle retrievals.

Although the NDVI-LAI relationship of shrubs includes high
LAI values, only 1.6% of the pixels have a LAI greater than 2.0,
and 13% of the pixels have a LAI larger than 1.0. The relation-
ship at high LAI values is based on little data. The same case
exist with respect to the NDVI-FPAR relationship. Generally, it
is a near-linear relation. Also note that the range of variation in
LAI values for grasses is reduced from [ ] for the single-angle
case to [ ] for the multi-angle case.

F. Biome Classification

Biome classification derived from multi-view angle data is
an additional goal of the MISR LAI/FPAR algorithm. This goal
is based on an assumption that multi-angle data contain more
information about vegetation canopy structure, and can be ex-
ploited to obtain biome information along with LAI and FPAR.
The algorithm estimates both the expected LAI value and its
dispersion according to the solution distribution function. It is
possible, in principle, to utilize this dispersion to identify biome
type. The procedure is the same as in [2]. The algorithm is exe-
cuted for each pixel five times using the five biome look-up ta-
bles (LUT’s). Assuming that at least one of the candidate biomes
passes the HDRF test, the biome with minimum LAI dispersion
is chosen. If the same minimum value is found for more than one
biome, the biome with the smallest LAI is chosen. However, if

TABLE IV
BIOME TYPE DISAGREEMENT AND MISVALUATION MATRIX BETWEEN THE

BIOME CLASSIFICATION MAP (BCM) DERIVED FROM THEAVHRR DATA AND

MISR BIOME CLASSIFICATION MAP (MBCM). THE DIAGONAL ENTRIES IN

THE FIRST SUB-ROWS(MARKED A FORAGREEMENT) SHOW THE PERCENTAGE

OF DATA WITH AGREEDBIOME TYPE ASSIGNED BYMBCM AND BCM. THE

OTHER ENTRIES IN THE FIRST SUB-ROWSSHOW THE PROPORTION OFPIXELS

IDENTIFIED AS OTHER BIOMES SPECIFIED BY MBCM. THE DIAGONAL

ENTRIES IN THE SECOND SUB-ROWS (MARKED E FOR EVALUATION )
SHOW THE PERCENTAGE OFDATA IS EVALUATED REGARDLESS OF THE

BIOME TYPE IN MBCM. THE OTHER ENTRIES SHOW THE PROPORTION OF

PIXELS CLASSIFIED INTO OTHER BIOME TYPES BY MBCM AND THOSE

RESULTING IN AN INCORRECTESTIMATION OF LAI

this process fails to identify a unique biome type, the algorithm
is deemed unsuccessful. A biome classification map denoted as
the MISR biome classification map (MBCM) is derived.

Table IV summarizes disagreement between the biome map
derived from the MISR algorithm (MBCM) and the map de-
scribed in Section III.B derived from the AVHRR data (BCM).
The table is a five by five matrix with BCM biome types in rows
and MBCM biome types in columns. The ratio of pixels be-
longing to agreement of two maps to all pixels for each of the
BCM biome types is given together with the rate of disagree-
ment. If the two LAI retrievals for a pixel, based on BCM and
MBCM, are within 20%, the LAI of the pixel is assumed cor-
rectly evaluated even if the assigned biome types are different.
Then, the rate of misevaluation is defined as the ratio of pixels in
disagreement and have differences larger than 20% in retrieved
LAI’s to all pixels. The two sub-rows in Table IV, marked “A”
and “E”, show the rates of biome type agreement (the diagonal
entries) and biome type disagreement (other entries), and the
rates of correct LAI evaluation (the diagonal entries) and mise-
valuation (other entries), respectively.

It is clearly shown that the disagreement rate is rather high
and all biomes have very low agreement rates. For diagonal en-
tries, the evaluation rate is always larger than the agreement rate
and for other entries, the misevaluation rate is always less than
the disagreement rate. It is clear that disagreement of the biome
type by the algorithm does not necessarily lead to misevaluation.
It should be recalled the distribution of grasses and broadleaf
crop pixels in the red and near-infrared space were similar (Fig.
2). The NDVI-LAI relationships were also similar at low LAI
values (Fig. 7). Therefore, a biome type disagreement in this
case does not result in poor LAI retrievals. Figs. 5 and 6 can help
us understand this concept. Variations in biome specific disper-
sions are small at low values of most probable LAI’s. There-
fore, they are indistinguishable with respect to the dispersion
for LAI values from the interval [ ]. A total number of
pixels whose LAI values belong to this interval make up 88%
according to the BCM and 87% according to the MBCM. It
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Fig. 9. Distribution of pixels for MBCM and BCM agreed as broadleaf forests,
and disagreement of MBCM with broadleaf forests from BCM of POLDER data
and broadleaf forests of TM data. Each contour shows the highest data density
area, which contains 70% of the pixels for a given dataset.

means that the biome types for most pixels cannot be identified;
however, it does not lead to misevaluation of LAI values. The
evaluation rate given in Table IV is also influenced by the RI.
For broadleaf forests, the evaluation rate is 17.8%, and the RI is
also low: 18.9%. This shows a very high percentage of correct
evaluation.

Disagreement of the biome type from the algorithm could be
due to many reasons. First, characterization of global vegeta-
tion as six biomes is probably not an adequate representation
of all situations encountered in reality. A typical problem is
biome mixtures. Second, low spatial resolution of the data
smoothes structural features of vegetation. Also, biome mixture
increases with decreasing spatial resolution. In POLDER data,
the biomes overlap considerably in spectral space, especially
grasses, broadleaf crops and savanna (Fig. 2). The biomes sep-
arate better with high resolution data such as thematic mapper
(TM) data because the pixels are likely to contain mostly one
biome type. Therefore, the low resolution of POLDER data
smooths some of the architectural features of the biome types
and this leads to disagreement.

Fig. 9 shows distribution of broadleaf forest pixels in the
red and near-infrared spectral space. The contour labeled
“MISR Broadleaf Forests” contains pixels identified in
BCM and MBCM as broadleaf forests. The contour “TM
Broadleaf Forests” was derived from Landsat TM Data using a
ground-based map [10]. The third contour, “Disagreement,” de-
picts pixels marked in BCM as broadleaf forests and identified
by the MISR algorithm as nonbroadleaf forests. One can see the
contours TM Broadleaf Forests and MISR Broadleaf Forests
tend to occupy similiar space. The red reflectances of pixels
in Disagreement varies between 0.05 and 0.15. This indicates
the presence of soil or nongreen material contributions. This
conflicts with the definition of broadleaf forests. This example
demonstrates the ability of the MISR algorithm to identify
the correct biome types even when the full complement of
information (e.g., uncertainties, BHR’s) is not available.

TABLE V
ROOT MEAN SQUARE ERROR(RMSE) OF BHR EVALUATION AT TWO

SPECTRAL BANDS IN THE CASE OFGRASSES ANDCEREAL CROPS. THE

LUT TEST INDICATES USE OFLUT ENTRIES PLUS NOISE AS HDRF
INPUTS, AND MODEL TEST INDICATES USE OFSIMULATED HDRF’S AND

BHRS BY A CANOPY RADIATION MODEL

TABLE VI
INPUT PARAMETERS FOR THEDISCRETEORDINATES RADIATIVE

TRANSFERCODE [20] TO SIMULATE BHR AND HDRF IN THE CASE OF

GRASSES ANDCEREAL CROPS

It was noted previously that the NDVI-LAI relations of dif-
ferent biomes were similar (Fig. 7). This may be attributed to the
low spatial resolution of the data, which leads to the biome type
disagreement. MISR data is expected to be better for biome clas-
sification because it has better atmospheric correction. This im-
plies smaller reflectance uncertainties, wider angular coverage
(up to 70), which implies more information, and smaller pixels
(1.1 km), which implies less mixed biomes.

V. EVALUATION OF BHRS FROMPOLDER DERIVED HDRF
DATA

A. Methodology

As mentioned previously in Section IV, the MISR LAI/FPAR
algorithm has two tests—BHR and HDRF test, which utilize
the full information content and uncertainties from the MISR
instrument in the process of information extraction. Data from
POLDER consist of BRDF measurements only [14], [15]. As
mentioned before, BRDF can be converted to BRF and used in
replace of HDRF. Therefore, a “shared version” of the algorithm
was used to produce the LAI-FPAR fields. This shared version
allows the evaluation of BHR’s. The aim of this section is to de-
scribe a method to evaluate an accurate BHR from multi-angle
data.

Based on (3)–(4), we can relate BHR and HDRF
by

(11)

In this equation, the term with the effective ground reflectance
disappears. If the correct value of BHR is known,

the HDRF can be evaluated without knowledge of ground
reflectances. The LAI retrieval problem based on POLDER
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Fig. 10. Grasses and cereal crops data from the biome classification map (BCM) used as input for three different tests: the single-angle HDRF test, themulti-angle
HDRF test, and the BHR test. The upper-left panel shows the distribution of retrieved LAI in the three cases and one from the ten-year average LAI distribution
over Africa for the same time period and same biome type [16]. The upper-right panel shows the distribution of NDVI from successful pixels. The lower-left panel
shows the distribution of NDVI from unsuccessful pixels. In this figure, (s) indicates near-nadir direction HDRF only, and (m) indicates multidirection HDRF data.

data can be reformulated as follows. Given , find
such and the solution distribution function that
minimize the following function

(12)

where are the HDRF measurements.
equals in (11), which is the

modeled value of HDRF from LUT. denotes the BHR,
is the solution distribution function

mentioned in Section II-B, and is the number of view
directions used in the calculations. This function corresponds
to a fixed sun angle, therefore, is omitted.

is given in the case of MISR. Equation (12) does not ex-
ceed retrieved uncertainties. For the POLDER data, we must
solve (12) in order to evaluate and . The value
of , which minimizes (12), can be expressed as (13), shown
at the bottom of the next page.

Notations are similar to Section II-A. From (13), BHR’s for
each spectral band can be estimated from measured HDRF’s.

The resulting BHR values are a function of the solution distri-
bution function, i.e., . Then, we execute the
first MISR comparison test in order to obtain the second itera-
tion of . One repeats this process until (12) does not
exceed a threshold value.

B. Accuracy of BHR Evaluation

The accuracy of BHR evaluation described above was as-
sessed as follows. For a given biome and a sun-view geometry,
BHR’s and HDRF’s were calculated from LUT entries. For ex-
ample, we choose grasses and cereal crops, a sun angle of 30,
and nine view directions distributed evenly over the hemisphere.
For each combination of LAI and soil pattern, the corresponding
BHR and HDRF values were regarded as true values. Then
multi-view angle HDRF’s with noise added to the test HDRF’s
were used as input to evaluate the BHR. Table V shows root
mean square errors (RMSE) for two spectral bands at different
noise levels. The RMSE is less than 7% for noise levels around
20%. Errors in the red band are larger than for the near-infrared
band because the reflectance in red is less than in near-infrared.
The BHR method was further validated as follows.
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Fig. 11. LAI retrieved from POLDER data over Africa in November, 1996. The POLDER data is based on maximum NDVI selection, and the algorithm is
executed in multi-angle case. For the unsuccessful pixels, the NDVI-LAI relationships shown in Fig. 7 were used to estimate LAI. Gray color in the image indicates
either barren lands or that the data are not available.

A canopy radiation model based on the numerical solution
(the discrete ordinates method) of the radiative transfer equa-
tion [20], applicable to the grasses and cereal crops, was used to
simulate the HDRF’s as well as BHR’s in the red and near-in-
frared wave bands for different values of LAI and solar zenith
angles (Table VI). The sensor zenith and relative azimuth angles
were selected randomly within a range of 0 to 60for the polar
angle and 0 to 360for the azimuth. Then, the entire hemisphere
was sampled. The simulated HDRF’s at 12 view directions were
used to evaluate the BHR’s exercising the method described ear-
lier. A total of 210 test calculations were performed. The esti-
mated and model simulated BHR’s are compared and the RMSE
of this test is shown in the last column of Table V. The error is
equivalent to a 30% noise level from the first test. In general,
errors are larger in the red band due to low canopy reflectance.

C. Histograms of LAI and NDVI

With the BHR method, the MISR LAI/FPAR algorithm can
be run with the two-test process. Here, we took grasses and ce-
real crops as an example to investigate the algorithm behavior.
The calculations were performed as follows: 1) one view angle
only (near-nadir direction) with the HDRF test only (see Sec-
tion IV); 2) 12 view angles with the HDRF test only; and 3) all
available HDRF measurements to first estimate BHR and then
with the BHR test only.

The distribution of retrieved LAI is shown in the upper left
panel in Fig. 10. The single-angle HDRF test retrieval yeilds
higher values of LAI than the other two tests. The BHR test re-
sults in the lowest LAI values. However, its distribution is sim-
ilar to the ten-year average LAI distribution over Africa for the
same time period reported by Myneniet al. [16].

(13)
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The upper-right panel shows the distribution of NDVI from
successful pixels. Clearly, the results for all cases are similar be-
cause the majority of data is successfully retrieved. For the case
of HDRF single-angle test, the RI is 99.3%. In the case of HDRF
multi-angle test, the RI is 83.6%, lower than the single-angle
case because it is a more stringent test. For the case with the
BHR test only, the RI is 96.8%. Presumably, the BHR’s include
information from multi-angle data and thus are more informa-
tive than the single-angle case.

The lower-left panel in Fig. 10 shows the NDVI distribution
for unsuccessful pixels. Compared to the single-angle test re-
sulting in algorithm failure at low NDVI values, the multi-angle
test has more unsuccessful pixels at high NDVI values. In the
case of the former, it is reasonable that low NDVI values corre-
spond to bare ground, and high NDVI values correspond to re-
flectances which do not satisfy the uncertainty tolerance level.
The unsuccessful pixels are distributed over the entire range,
but cluster more around a NDVI of 0.4–0.6 for the multi-angle
test. The NDVI of unsuccessful pixels is concentrated at a high
NDVI value range (0.6–0.8) for the BHR test. This is similar to
the single-angle case, as high NDVI’s usually correspond to low
red reflectances, which have high uncertainties.

VI. CONCLUSIONS

Results from prototyping of the MISR LAI/FPAR algorithm
with POLDER data over Africa demonstrate the ability to pro-
duce global LAI and FPAR fields using multi-angle data. An
image of LAI field over Africa in November, 1996 derived from
POLDER data is shown in Fig. 11. Instead of using empirical
relationships between vegetation indices and land surface pa-
rameters LAI/FPAR, the algorithm is a radiative transfer-based
synergistic approach. The algorithm uses information about
spectral and angular surface reflectances and the associated
uncertainties provided by the instrument to estimate LAI and
FPAR. However, the quality of retrievals is dependent upon
the quality of the worst spectral reflectance if uncertainties in
spectral canopy reflectances are not available. Band and view
direction-dependent uncertainties in atmospherically corrected
surface reflectances is critical to improve the quality of the
LAI/FPAR product. The use of multi-angle data decreases the
dispersion and saturation of LAI, and increases the localization
and quality of the retrieved LAI and FPAR fields. Although
minimum dispersion of the retrieved solution distribution
cannot be used to identify biome types with high accuracy,
especially with coarse resolution observations, LAI and FPAR
are still estimated with high accuracy. The expected MISR data
have many advantages over POLDER data because MISR data
has better atmospheric correction and less uncertainties. It has
higher spatial resolution, which reduces the effect of biome
mixtures and has wider angular coverage, which offers poten-
tially more information. Therefore, the result of LAI/FPAR
retrievals is expected to improve with the improvement of data
quality. Finally, the method of BHR evaluation proposed in this
paper shows the close relationship between BHR and HDRF
measurements, and the efficient use of both observations will
lead to better retrievals of the surface parameters.
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