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Prototyping of MISR LAI and FPAR Algorithm with
POLDER Data over Africa

Yu Zhang, Yuhong Tian, Yuri Knyazikhin, John V. Martonchik, Dave J. Diner, Marc Leroy, and Ranga B. Myneni

~ Abstract—The multi-angle imaging spectroradiometer (MISR)  the land surface and the tropical ocean [1]. Two types of at-
instrument is designed to provide global imagery at nine discrete mosphere-corrected bidirectional surface reflectances and their
viewing angles and four visible/near-infrared spectral bands. The integrated values will be made available from this instrument.

MISR standard products include vegetation canopy green leaf area . . . .
index (LAI) and fraction of photosynthetically active radiation ab- The hemispherical directional reflectance factor (HDRF) and

sorbed by vegetation (FPAR). These products are produced using the bihemispherical reflectance (BHR) characterize surface
a peer-reviewed algorithm documented in the EOS-AM1 (Terra) reflectance under ambient sky conditions (i.e., direct and

special issue of theJournal of Geophysical ResearchThis paper  diffused illumination). The HDRF and BHR do not depend on
presents results on spatial distributions of LAl and FPAR of vege- surface radiation models used and are highly accurate when

tated land surfaces derived from the MISR LAI/FPAR algorithm t at heric inf tion i d M1, The bidirecti |
with bidirectional reflectance data from the polarization and di- correct atmospheric information is used [1]. The bidirectiona

rectionality of the Earth’s reflectance (POLDER) instrument over ~ reflectance factor (BRF) and the directional hemispherical
Africa. The results indicate that the proposed algorithm reflects the  reflectance (DHR) are defined for the unique case when the
physical relationships between surface reflectances and biophys- atmosphere is absent. The removal of the effects of diffuse sky
ical parameters and demonstrates the advantages of using multi- radiance from the HDRF requires the use of a model for the
angle data instead of single-angle data. A new method for eval- . . S .
uating binemispherical reflectance (BHR) from multi-angle mea- surface bldlrectlongl reflectance distribution function (BRDF).
surements of hemispherical directional reflectance factor (HDRF) This makes the retrieved BRF and DHR model dependent [2].
was developed to prototype the algorithm with POLDER data. The An operational algorithm that uses BHR, HDRF, and their un-
accuracy of BHR evaluation and LAI/FPAR estimation is also pre- - certainties as input variables was proposed in [2] and [3]. This
sented. To demonstrate the advantages of using multi-angle data 54 qrithm is specific to the MISR instrument for the retrieval of
over smgle-angle_ data of surface reflectance, we_demo_nstrate that: green leaf areaindex (LAI) and fraction of photosynthetically ac-
1) 'ghe use of multll-angle data can dgcrease the dlspersmn and satu-< - - )
ration of LA, and increase the localization and quality of retrieved  tive radiation absorbed by vegetation (FPAR). Prior to the launch
LAl and FPAR, 2) the use of multi-angle data can improve the ac-  ofthe MISRinstrument, the physical credibility and performance
curacy of LAl retrievals in geometrically complex canopies such of the algorithm needs to be evaluated. Surrogate multi-angle
Efo;hg%?ﬁéﬁg‘ig\)/;:‘teyszg gcf)r?;‘éﬁ;igg'i;ﬁ;atﬁgnmﬁﬁSr‘;tsgmge satellite data can be used to accomplish this task, which is termed
of LAI dispgrsion). For many other cases, we demonstrate tha"[ the here :’:15 prototyping. The polarization and d're(}t'ona“ty of the
use of multi-angle data does not lead to misevaluation, even if the Earth’s reflectance (POLDER) sensor was designed to provide
land cover type is misidentified. global measurements of spectral, directional, and polarizational
Index Terms—Fraction of photosynthetically active radia- characteristics of solar radiation reflected by the earth’s sur-
tion absorbed by vegetation (FPAR), leaf area index (LAI), face. Atmospherically corrected surface reflectances acquired
multi-angle imaging spectroradiometer (MISR), multi-angle by POLDER are presently available. The goal for this paper is
remote sensing, polarization and directionality of the Earth’s tg prototype the MISR LAl and FPAR algorithm with data ac-
reflectance (POLDER), terra. quired by the POLDER instrument over Africa.
A brief description of concepts for the algorithm is given,
l. INTRODUCTION followed by analysis of vegetation spectral and angular signa-
. . . . . _tures from POLDER data. A series of algorithm prototyping
_I-IEtmuItl—e:nglilmadgltﬂg E@gtf&aflﬂrﬁ?tef (MIHSE)_;S Astrievals are presented and discussed in detail. The algorithm
MISR:nS'Irlumel? OT bo?r b N i i ftEanrTh?a € ; err%Iearlydemonstratesbetterresultswhen multi-angle dataare used
Wil make global observations of the £arth's surtace %tomparedtosingle-angledata,thusindicating boththe advantage

1.1 km spatial resolution with the objective of determining tth multi-angle data and the ability of the algorithm to recognize

atmospherically corrected reflectance properties of most t?lfe enhanced information content in multi-angle data. Finally, a
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conditions, the three-dimensional (3-D) extinction coefficienwhere py is the albedo of the Lambertian surfach,; » is
and 3-D scattering phase function can be uniquely retrievilte downward flux at the surface level (transmittance) for
from boundary measurements. This theorem indicates théne case of the black surfacés » and i, are radiance and
is a one-to-one correspondence between the complex 33®wnward flux at the surface level generated by an isotropic
vegetation canopy structure and radiation emergent from tavelength-independent source located at the canopy bottom.
canopy boundaries. A question then arises as to whetherTdiree independent variables are needed to describe the radiative
not this correspondence can be specified from multi-anglegime in a plane-parallel medium: the reflectance properties
observations. Let us consider a hypothetical ideal instrumesftthe surface, which are not dependent upon the vegetation,
that provides exact surface reflectances at any spatial paanid [;,s » ands », which are surface-independent parameters
and in any direction, i.e., one has the complete and accurbteause no multiple interaction of radiation between the surface
spatial and angular information on the radiation field leavingnd canopy is possible (i.e., these variables have intrinsic
the canopy through the upper boundary. The theorem, howewemopy information).
requires information on the downward radiation field at the More complicated techniques, for example, the adjoint for-
canopy bottom boundary to redeem canopy structure. How aamlation and Green'’s function concept, have been developed in
we obtain this information? reactor physics to extend the representations (1) and (2) for the
A specific feature of photon interactions with vegetation elease of a 3-D radiation field [9]. Although in the 3-D cafg; »
ments lies in the fact that the probability a photon will interaatannot be expressed in such a simple form, the physical meaning
with phytoelement is not dependent on wavelength; the extina- (1) and (2) remains unchanged. That is, the 3-D radiation
tion coefficient, the sum of wavelength dependent scattering diield can be parameterized in terms of surface reflectance prop-
absorption coefficients, does not depend on wavelength [5]. Tleidies that are independent of vegetation such as the radiation
allows evaluation of canopy transmittance at any wavelengdthld in the vegetation canopy for the case of the black surface
once this variable is known at a fixed wavelength [6]. Math&“Black soil problem”) and the radiation field in the vegetation
matically, the inverse problem of recovering 3-D canopy strucanopy generated by anisotropic heterogeneous wavelength-in-
ture from multi-angle observations can be formulated as the folependent sources located at the canopy bottéhp(dbblem”).
lowing. Given “ideal” multi-angle canopy reflectances at a minFhis technique was used to create the look-up table (LUT) for
imum of two spectral bands, find the canopy transmittance thie LAI/FPAR algorithm [10]. In terms of this approach, the
a fixed wavelength and canopy structure. This formulation imemispherical directional reflectance factor (HDRE{<2, 2o)
cludes two sets of known simultaneous multi-angle data and tand bihemispherical reflectance (BHR) (£29) at wavelength
sets of unknowns. These data sets relate all variables needed\foan be expressed as
unique retrieval of the 3-D structure of the medium. Thus, the

main advantage of multi-angle remote sensing is its potential (€2, Q0) = Whs AThs,A(20) + ws,atsx

ability to retrieve realistic 3-D geophysical parameters required y Per(A) e (20) 3)
by many interdisciplinary investigations [7]. It is clear that the 1 — per(A) ®rg » be, A0

above arguments need a rigorous mathematical analysis and this

is provided elsewhere [3], [4]. These arguments are the basis Ax(Q0) = rps A(S20) +ts A

of the LAI/FPAR retrieval techniques developed for operational peit(N)

use during the EOS Terra mission [3], [6]. ths 2 (€20) 4)

The above arguments indicate the canopy radiation model, the
foundation of any retrieval technique, must also provide canopfiere ri, A(€2) and rs are hemispherically integrated
transmittance to obtain a closed system of equations for the sanopy reflectances, anth,. A(29) and ts\ are canopy
lution of the inverse problem. We begin with the representatidransmittances for the black soil problem asd problem,
of monochromatic intensityx (r, 2) of a 3-D radiative field at respectively. The weightu,s » is the ratio of the HDRF for
wavelength\ at a spatial point and in directiorf2 as a sum of the black soil problem tar, x, andws  is the ratio of the

1— pe(A) ®ors s

two components, that is canopy leaving radiance generated by anisotropic sources on
the canopy bottom tds . The effective ground reflectance
In(r, Q) = s A (7, Q) + Liese A (7, ) 1) pett(A) is the fraction of radiation reflected by the ground

surface beneath the canopy. This variable depends on the
radiation regime at the canopy bottom. Its range of variations
L(ﬂ;ges not exceed the range of variations of the hemispherically
integrated bidirectional factor of the ground surface that is

where the first componemnf, »(r, ) describes the radiation
regime within the vegetation canopy for the case of a black s

face at the bottom of the medium, ahd.; »(r, ©2) describes ad- _ ;
ditional radiative fields due to interactions between the Surfa&plependent of vegetation [6]. Therefopes (1) is a parameter

and canopy. This representation takes a simple form when ﬁ{'garacterizing the ground reflection. The set of various patterns

vegetation canopy can be idealized as a horizontally homo%?@e;}r::g%fﬁﬁm’e ground reflectances is a static table of the
iev ithm.

neous medium bounded at the bottom by a Lambertian surface.

The terml..; (7, 2) can be expressed as follows [8] B. Solutions of the Inverse Problem

A solution distribution function is introduced to provide the

. _ P
Lrest A(7,€2) Tis, A 15\ @ convergence of the algorithm [3]. The retrievals are performed

~1—paRy
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by comparing observed and modeled radiances for a suiteevBluated as the root mean square deviation of the LAl solution
canopy structures and soil patterns that covers a range of dstribution function

pected natural conditions. The set of canopy/soil patterns, for
which the magnitude of the residuals in the comparison does
not exceed uncertainties in observed radiances, is used to eval-
uate the distribution of LAl and FPAR values, and to specify
the most probable value of LAl and FPAR. Realistically, any In the red and near-infrared spectral space, the domain of
model can only simulate a process to a certain degree of acdicertainties in measurements and simulations can be approx-
racy and measurements cannot be precisely made. The md@igted by an ellipse with the major and minor axgs:p and
predicts a domai®s to which the “true reflectance” belongs.dnr- Consequently, the algorithm can be reformulated as the
The same holds true for measured reflectances; that is, we &lfpwing. Given a set of spectral and simultaneous multi-angle
specify a neighborhoo®,; around a measured reflectance i®bservations of canopy reflectanagsfind all canopy/soil pat-
which the “true value” belongs. Any elements from these dderns f represents one canopy/soil pattern), and their solution
mains can be considered true values with a high probabililistribution functions satisfy the following inequality:

The neighborhood®,; andOs are domains of uncertainties

in measurements and simulations. Domains of uncertainties de- 1 [(rRED,'u(Q'va Qo,p) — drED,w ) 2

1/2

DLAI(d):[ / (I — LAI(d))*d®(l,d) . 7

pend upon the direction of direct solar radiance, view directions Nojow
and the ratio of direct radiation to the total (direct and diffuse) )
radiation incident on the pixel. The algorithm requires not only n <rNIR,'v(Qv7 Qo,p) — dNIR,'U) ] <1 ®)
measured canopy reflectances but also their domain of uncer- ONIR v -

tainties. All canopy/soil patterns in which simulated canopy re-

flectances belong to the domaipy, are treated as acceptablevhere N,;.., is the number of view directions (nine for the
solutions to the inverse problem. Given the set of all accepHSR and up to 14 for POLDER). The valuésep ., andénir .

able solutions corresponding to a measured set of spectral angluncertainties in measurements and simulations, are assumed
multi-angle canopy reflectancel one counts numbe® (d) known, and serve as input for the retrieval algorithm. These
andN (I, d) as different values of LAl and for all solutions whenvariables depend upon the direction of direct solar radiance,
LAl is less than a given valuk The solution distribution func- view directions, and the ratio of direct radiation to the total
tion &(I, d) is then defined as the ratio &f(/, d) to N(d), that (direct and diffuse) radiation incident on the pixel. The MISR

is, ®({,d) = N(l,d)/N(d). A precise mathematical definition instrument routinely provides this information. However, the

of how to count “continuous” values of LAl is presented in [3]JPOLDER data set provides no information on the uncertainties
The LAl value now can be evaluated as a weighted mean in associated with surface reflectances. Therefore, we used the fol-
cordance with the frequency of occurrence of a given value lafving simple formula to describe the uncertainties:

I, namely

=1 6RED,’U
v=

1/2
SRED,» = ONIR,w = € [d%{ED,v + dQNIR,v] / )
LAI(d) = /ld@(l,d) (5) ) ) )

wheree is the mean uncertainty assumed to remain throughout

h he i L ¢ q the int | of all the study.
where the Integration Is performed over the interval of all pos-,,q, supplied with proper data, the algorithm results in

sible variations of. We note some properties of this estimaz o of the following: 1) cases where no solution was found: 2)

tion [3]. Equation (5) is sensitive to values of LAl, but not tO(:ases where solutions were found and the solution distribution

the canopy/soil patterns generating the same LAl value._ Tlﬂﬁqction was localized to a desired value of LAI; or 3) cases
alloyvs the use of 3-D models of canopy structure for Wh'?h\? ere solutions were found, but there was no localization of
retngved parameter may not t.)e in the m0d6| parameter IISt'L | values. For the third case, the LAI values (9) are (said
the inverse problem has a unique solution for a giderhen L? be) retrieved under conditions of saturation [3]. These

(.5) coincides with thi? solution. the that the concept Of MUre important characteristics of the algorithm’s behavior. We
tiple acceptable solutions was originally formulated and 'mpl?ﬁtroduced indices such as the retrieval index (RI) and LAl
mented in the MISR aerosol retrieval algorithm [1], [11]. Give

. Lo . Petrieval under conditions of saturation to characterize them
the solution distribution functio®(l,d), one can evaluate the

. . . _— discussed later).
fraction of photosynthetically active radiation absorbed by veé- )
etation (FPAR

( ) lll. DATA ANALYSIS
A. POLDER Data

700 nm The POLDER instrument is an imaging radiometer designed

dA/aA(p’ Qo) de(l.d) ) to provide systematic measurements of spectral, directional

and polarizational characteristics of solar radiation reflected

wherea, is spectral canopy absorptance [3]. by the Earth/atmosphere system [12]. POLDER has a wide
Concurrently, the solution of LAI is a distribution functionfield-of-view (FOV) with a cross-track swath of 2200 km. This

rather than a unique value; the dispersion of LAl values can biows for near-complete daily coverage of the Earth surface.

FPAR(d) = /

400 nm
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TABLE | TABLE I
SPECTRAL BANDS OF MISR AND POLDER NSTRUMENTSTOGETHER WITH STATISTICS OF THEDISTRIBUTION OF POLDER DATA. THE FIRST TWO ROows
THE CENTER WAVELENGTHS AND BANDWIDTHS DENOTE THEDISTRIBUTION OF THE SIX BIOME TYPES FORTOTAL AVAILABLE
DATA AND COMPOSITEDDATA. THE OTHERS INDICATE PROPORTION OF THE
Band Name BLUE | GREEN RED NIR1L NIR DATA IN THE PRINCIPAL PLANE (WITHIN £-5° RELATIVE AZIMUTH ANGLE) AS
MISR  |_Centertnm) | 446 558 672 - 866 A FUNCTION OF BIOME TYPE AND SUN ANGLE
Width(nm) 42 29 22 - 40
Center(nm) 443 - 670 765 865
POLDER Width(am) 20 Z 20 40 40 Biome Type ax?dmcs::esal Shrubs Broadleaf Savanna Br‘oadleaf NE::;C
Crops Crops Forests Forests
Data 1 Total 4435 12.64 11.60 24.31 6.85 0.25
) . . . . (%) | Composie | 38.68 10.31 10.36 2743 12.99 0.23
Every target is observed at least four times in a five day period ~Sun Angie @egee) Probability in Total (%)
p 10~15 0.597 0.266 0313 0.826 0.463
even at the equator. All PQLDER data are geocoded, cgllbrate( 2024 3677 | 2664 | 3a1a | 5581 | 6128
cloud-screened, and partially corrected for atmospheric effect 30~35 1022 | 0727 | 1291 | 1578 | 2.806
. . . 40~45 0.131 0.228 0.073 0.035 0.003
POLDER products are projected on a sinusoidal equal are 50~55 0073 | 0261 | 0120 | 0031 | 0027

projection grid with a resolution of 6.17 km [13]. Detailed
atmospheric correction processes are described by Leroy [14].
However, the surface reflectances were not corrected for fre
aerosol effects for operational reasons [15]. Surface information is contained within data of reflectance
The spectral bands of MISR and POLDER instruments aneeasurements. The amount of information that can be retrieved
listed in Table I. The center wavelengths of the four spectrBibm data depends both on the accuracy of the data and the
bands of the MISR instrument are 446 nm, 558 nm, 672 nmethods used in the retrieval process. From a spectral point
and 866 nm. POLDER has eight spectral bands but its curreftview, the intrinsic dimensionality of the remotely sensed
Level 2 land surface products offer four spectral bands, and ttigta for a single viewing angle is determined by the number
central wavelengths are 443 nm, 670 nm, 765 nm, and 865 rowh physically independent (uncorrelated) wave bands. Instru-
respectively. Therefore, three of the POLDER’s bands desigents, such as MODIS, may contain up to seven bands of
nated as BLUE, RED, and NIR can be used for prototyping sfirface reflectance, and we assume useful information is stored
the MISR LAI/FPAR algorithm. In this study, POLDER Levelin no more than three or four bands [17].
2 data from November 1 through 16, 1996, over Africa and a Spectral signatures are important sources of information. The
small region of South America and Southwest Asia was useddistributions over different spectral bands for the five biomes are
prototype the MISR LAI/FPAR algorithm. In the algorithm, weplotted in Fig. 1 irrespective of the viewing angles. In general,
consider the input as HDRF data, but actually, the POLDER dagttdistributions are similar in the NIR band, and in other bands,
is BRDF measurements. Therefore, we convert BRDF to BRIre biome spectral signatures overlap considerably. Only shrubs
and consider it as a special case of HDRF. The correspondsigw a distinct distribution at RED and BLUE bands. Inthe RED
LUT entries are made for BRF in this case. band, grasses and broadleaf crops are similar, and likewise, sa-
The maximum number of observations per pixel during thissnnaandbroadleafforestsare similar. Inthe NIR band, broadleaf
16-day period was 14. However, due to cloud cover, the dorests have a higher reflectance and are distinct from the others.
tual available data are much less and the distributions dependVe plot a 25% data contour for each biome in a two-band
heavily on geolocation. The repeat observations over centpdéne to indicate where the data peak is located in order to better
Africa were often less than four, sometimes none, which is mudrstinguish biome signatures (Fig. 2). A data density distribu-
less than in the Sahara region (over eight at least). Thus, the diisa function defined as the number of pixels per unit area in
tribution of available POLDER data varied greatly from 0 to 1the plane was evaluated for each biome type. Each contour in

Spectral Signatures

during this 16-day period. this figure identifies an area of high data density that contains
25% of the pixels from a given biome type. The larger the differ-
B. Biome Classification Map ence between the clusters of different biomes, the better they can

Another important ancillary data layer used is the biomie distinguished in the spectral space [18], [19]. It is clear that
classification map (BCM), which is derived from the AVHRRShrubs separate well from the other biomes. In the RED-NIR
Pathfinder data set [2], [16]. The BCM is a static file, i.e., iplane, grasses separate from broadleaf forests. In between lay
is a time-independent data set. In this map, global vegetati@Ygrapping savanna and broadleaf crops. It would appear sa-
is classified into six biome types: grasses and cereal crop@nna, broadleaf crops and grasses would be hard to distinguish
shrubs, broadleaf crops, savanna, broadleaf forests, and nef@® one another if only red and near-infrared bands were used.
leaf forests [16]. The distribution of POLDER data for different
biomes is shown in the first row in Table II. Pixels belonging Although the BLUE band can be used to distinguish biomes
to the needle leaf forest biome attributed to only 0.25% 2‘” example, savanna), itis currently not used in the algorithm
the total number of pixels. This biome was not considered fgcause of large uncertainties due to strong atmosphere effects
further analysis. In addition, only 7% of the pixels represe®f the BLUE band data.
broadleaf forests. Note the MISR LAI/FPAR algorithm used
by MISR does not use the BCM but retrieves biome types froky Hot Spot
data instead. The BCM is used for the purpose of analyzingThe hot spot phenomenon is observed when the sun and
the algorithm’s behavior without being affected by biomeensor directions coincide [20]. This is a key feature of the di-
classification process. rectional signature, because its shape is sensitive to biophysical
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Fig. 1. Distribution of HDRF values as a function of spectral band and biome type derived from POLDER data.

parameters of vegetation such as the relative size, shape distributions of canopy reflectances within the principal plane
density of the leaves [21]-[23]. The measurement of the hiatr different biome types, sun angles, and spectral bands.
spot is particularly important to multi-angle instruments [24]5patial averaging was performed over all available pixels in
[25]. It is believed that directional reflectance measuremerttse principal plane from each biome. However, there is not
can be inverted to retrieve surface parameters such as Lé&hough data for broadleaf forests at some sun angles. The
The hot spot effect is pronounced in the visible bands, butésirves show a clear hot spot effect at both red and near-infrared
also obvious at all wavelengths throughout the solar spectrupands. For all available data, the number of pixels for which
Soil conditions will also affect the hot spot effect especially ithe accumulated angular reflectances about the principal plane
canopies that do not fully cover the surface. was approximately 12.3% of the total number of available
POLDER data potentially provide more information by virtugixels. The five biomes at near-infrared have three kinds of
of the angular signature. A drawback of POLDER for the meangular signatures distinct for broadleaf forests and shrubs
surement of angular signatures is its limitation to viewing anglesly. The different biomes have different reflectance magni-
less than 60[12]. It is difficult to study the hot spot when thetudes with similar shapes in the red band. Broadleaf crops and
solar zenith angle is larger than’5@nother problem in precise grasses/cereal crops appear similar in both bands. They are
measurement of the hot spot signatures is the atmosphericiedlistinguishable by their spectral and angular signatures. This
fect on surface reflectances. Atmospheric aerosols are stroncgy also be seen in the upper-left panel of Fig. 2.
forward scattering, which results in smoothing of the hot spot The statistics of the angular distribution of POLDER data,
measurements [21]. i.e., the percentage of pixels with canopy angular reflectances
The hot spot effect is best measured in the principal plaria.the principal plane over a 16-day period, are given in Table
Not all POLDER data are in the principal plane; the dati It is clear the data can be used to study the hot spot effect is
nearest the principal plane (with relative azimuthal angles lessly a small portion of the total data. For this reason, we did not
than +5°) were plotted in Fig. 3 to show the mean angulaconsider the hot spot effect in our analysis.
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Fig. 2. Distribution of pixels from POLDER data with respect to their reflectances at two of the three available wavelengths. Each biome-dependent co
separates a set of pixels representing the most probable patterns of canopy structure from a given biome type.

IV. PROTOTYPING RESULTS ments, nadir or near-nadir reflectance is the preferred choice.
The nadir pixels have the finest spatial resolution with minimal
The MISR instrument will provide HDRF and BHR mea-distortion, and atmospheric correction is most reliable and
surements along with their uncertainties [1], [2], [26]. Thaccurate for near-nadir measurements. A threshold NDVI value
LAI/FPAR algorithm is designed to utilize this informationof 0.1 was used to ensure that the pixel is vegetated in certain
in a two-step process. The first step uses BHR measuremesdses. The distribution of the composited POLDER data for
to identify canopy/soil patterns that are acceptable solutiomfferent biomes is illustrated in Table II.
Then, the HDRF test is used as a more stringent test to select
canopy/soils patterns from the previous set. The most probabie Retrieval Index
value is then specified. However, the POLDER instrument A pixel for which the algorithm retrieves a value of LAI
does not provide BHR's. Therefore, we skip the first step arghd FPAR is termed a successful pixel (a successfully retrieved
directly use the HDRF test to prototype the MISR LAI/FPARixel). A pixel for which no solution was found is termed an un-
algorithm for results. successful pixel (an unsuccessfully retrieved pixel). The ratio of
For the purpose of using POLDER data to prototype the algthve number of successful to total number of pixels is defined as
rithm, the following three cases with only the HDRF test werthe retrieval index (RI)
performed: 1) using one view angle, the near-nadir view; 2)
using multi-angle data, that is, six angles from all available di-
rections; and 3) using all available multi-angle data (about 12 or
more directions). The Rl is a simple indicator of the behavior of the algorithm. It
To minimize uncertainties in the POLDER data, we condemonstrates the percentage of pixels with successful retrievals
posite 16-day POLDER data into one layer using a maximufor a data set by the algorithm.
near-nadir NDVI method similar to the maximum value com- The RI increases with increases in mean uncertan{9).
positing (MVC) technique used by James and Kalluri [27However, the quality of retrieved LAI/FPAR fields decreases
Since surface anisotropic properties will affect the measungith an increase irz; it allows for a wider set of acceptable

_ successful pixels
~ total number of pixels

100%. (10)
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Fig. 3. Angular signatures of averaged HDRF's of POLDER data in the principal plane (#ifiirelative azimuth angle) as a function of biome type at different
sun angles. Some of the curves of broadleaf forests are missing because of insufficient data.

solutions. Ife is underestimated, the algorithm fails when reajood approximation [10]. Since uncertainties were unknown for
uncertainties in surface reflectances are greater than thosePI®LDER data. The actual uncertainties depend on the spectral
termined by (9). However, i is overestimated, the algorithmband and direction of view. The uncertainties of retrieved sur-
produces a wider set of acceptable solutions. Therefore, th&xee reflectances are usually higher at shorter wavelengths and
is a critical value ofz for which (9) optimally approximates larger view zenith angles due to atmosphere effects. Therefore,
real uncertainties. According to our experience, @ 0.2 is a the use of mean uncertaintyin (9) is a compromise. MISR of-
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TABLE Il patterns. Successful pixels of shrubs are mainly characterized
RETRIEVE INDEX AND FREQUENCY OFLAI UNDER SATURATION FOR SIX by low values of NDVI in contrast to broadleaf forests
BIOMES AT MEAN UNCERTAINTY ¢ = 0.2 . : .
The unsuccessful pixels causes the shape of the NDVI dis-

No. of BCM Biome Type tribution to vary with the number of view angles. However,
(6202) (%) Angle| CorenlCrops | S0 | “Ciope | Swamma | Sl the number of unsuccessful pixels for the single-angle case is
Rerieval Ind ; zzg zzz 9242 98.1 406 a small fraction of the total number of pixels for all biomes
etrieval Index X . 734 74.9 18.9 .
12 308 793 5.4 73 184 (RI > 98%) except in the case of broadleaf forests. Most of the
LA Saturation | ! 0.01 0.02 6.26 9.76 30.1 biomes, except shrubs, generally show unsuccessful retrievals at
6 0.0 0.01 2.52 6.18 174 . . . .
Frequency | ., | o 001 s S0 150 high NDVI values (0.5 to 0.8). High NDVI values indicate dense

canopies, where about 80-95% of radiation at the red spectral
band is absorbed. The canopy reflectances at this wavelength
fers HDRF, BHR, and their uncertainties as functions of spegre very low and uncertainties may exceed the threshold value
tral bands and viewing angles. The algorithm is expected to gigemean uncertaintys(= 0.2). Note, however, the most probable
better results after utilizing the advantages of these inputs.  NDV!I values of successful and unsuccessful pixels for broadleaf
The retrieval indices that in single- and multi-angle cases f@grests are 0.85 and 0.7, respectively. Canopy structure can vary
six biomes at = 0.2, are shown in Table IIl. It demonstrategonsiderably when NDVIis unchanged [10]. Therefore, this fea-
that RI decreases with the use of more view angles. This is e¥re of NDVI distribution indicates the algorithm is sensitive to
pected because the uncertainties of distributed view-angles @i@opy structure, but not to the magnitude of NDVI.
often larger than a direction near the nadir, and multi-angle data
generally have higher uncertainties than single-angle data. If e LAl under Conditions of Saturation

uncertainties between the two are comparable, the mutli-anglgy, the case of a dense canopy, reflectance can be insensitive
test based on angular dependent information is a more string@¥he parameters in cerain directions. The canopy reflectance is
test than the single-angle test. _ . ~ then said to belong to the saturation domain [3]. Therefore, the
The retrieval indices for corresponding multi-angle retrievalgiapility of parameters retrieved under conditions of saturation
are low, indicating that multi-angle data have Iargeruncertainti%s\,ery low. In other words, the retrieved solution distribution
at off-nadir directions. It could also imply that the pre-assign&gction does not localize LAl values.
biome type is incorrect, as it is possible that the multi-angle testtpe frequency of LAl under saturation increases with in-
distinguishs biomes when the single-angle test cannot. It Mggasing uncertainties when more pixels are included in the cat-
alsoimply that the limited number of canopy structural types (Sgfyory of successful pixels and more realizations are included in
biomes) used by the algorithm does not represent all the can@Ry so|ution distribution. For a fixed mean uncertainty0.2),
types encountered in reality. Mixtures of more than one biomge | A| saturation frequency decreases with an increase in the
types will blur the architectural distinctions and the canopy reymber of view angles (Table I1l). This is a desirable attribute
flectance of mixed patterns may be different from those of pugg the algorithm, because it leads to a decrease in the disper-
biomes. Inaddition, itmay indicate that low resolution dataresWion, of LAI values or the retrieval uncertainty of LAl values.
in smoothing canopy reflectance features, especially in the ca3s s important evidence that multi-angle data contain more
of mixed stands[28]. This may be one of theimportantlimitationgormation, and is utilized by the algorithm to reduce saturation
of prototyping the algorithm on coarse resolution data. Finallynq |ocalization of the LAl value. Ascertaining if the solution
itis also possible that failures may result from the data qualityistribution function belongs to the saturation domain is a spe-
For example, if the canopy reflectances are retrieved with highy feature of the dispersion of LAl values (discussed in detail
uncertainties in the process of atmospheric correction. later). This has been previously formulated in [3]. The satura-
When using the RI metric to evaluate LAI/FPAR retrievalsjon conditions are quite different for the six biomes. Grasses
one should remember that a higher RI does not necessarily ggg shrubs have nearly no saturation and broadleaf forests have
note that the retrieved LAl and FPAR fields are correct or accipe highest saturation frequencies, as expected. The frequency
rate, and the mean uncertaintys not a sufficient criterion and o | A| values retrieved under conditions of saturation in the
individual uncertainties with input data and models should kg e of single-angle high resolution data, such as TM data (30
considered. m resolution) [10], is approximately the same for low resolution
o . single-angle near-nadir POLDER data. Therefore, the informa-
B. NDVI Distributions of Successful and Unsuccessful Pixel$io content of multi-angle data at coarse resolution may be
The characteristics of successful and unsuccessful pixeamparable to that of single-angle high resolution data. This is
provide information on where and why the algorithm failedone confirmation of the validity of the theorem cited in Section
The NDVI histograms of successful and unsuccessful pixdlsA, because the inverse problem has a unique solution. The
for ane = 0.2 are demonstrated in Fig. 4. The distribution gbroblem of “saturation” does not exist for “ideal” multi-angle
NDVI values of successful pixels is slightly dependent upatata. Therefore, inclusion of more angular information tends to
the number of view angles used. The NDVI distribution oéliminate this problem.
successful pixels is close to the actual NDVI distribution of The results presented thus far showcase a benefit of multi-
the data set because retrieval indices were high for all biomessgle data over single-angle data, but also that there is no sig-
(RI > 70%), with the exception of broadleaf forests. Amongstificant benefit of using 12 angles compared to six angles in our
the six biomes, shrubs and broadleaf forests exhibit distirantalysis. This is because the MISR look-up table (LUT) was
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Fig. 4. NDVI histograms for five biomes in the single-angle case and multi-angle case. The left column of two panels shows the distribution of pixetessf
with respect to their NDVI values. The right column shows the distribution of unsuccessful pixels.

designed to distinguish five intervals in view zenith angles (i.e., 207 ‘
ten directions in one azimuthal plane). The 12 POLDER view
directions were distributed amongst them. Therefore, the algo-
rithm is sensitive to six view directions but only slightly to 12
view directions. In addition, the use of more directions increases
not only the information content but also their uncertainties.

The dispersion of retrieved LAI values is closely related to
the saturation domain. The saturation domain is a special case
when the measured data are slightly influenced by canopy struc-
ture and the dispersions are very large. Thus, the dispersion of
LAl acts as an indicator of the quality of LAl retrieval. The de-
pendence of dispersion on the most probable value of LAl shows 0.0 « ‘ 5
that increases in the magnitude of LAl tends to increase the dis- 0 1 2 3 4 5 6
persion of its retrieval (Fig. 5). However, the inclusion of more Lal
angular information results in decreased values of the disper-

sion. This corresponds to better localization of the LAI diStriElg' 5. The relationships between dispersion of LAl and LAl values for the

) ) ’ . single-angle case (thin line) and multi-angle case (thick line). The relationships
bution function and a higher accuracy of estimated LAl valuesre calculated by averaging dispersion of LAl over a small interval of LAI
This is an additional evidence of the benefit of multi-angle datealues.

The histogram of the retrieved LAl field is a statistical charac-

teristic of the retrieved parameter. The histograms of retrievédm the AVHRR Pathfinder data by Mynest al. [16]. This

LAl values as a function of the number of view angles for theomparison is valuable in that it helps us to indicate if the algo-
five biomes are shown in left panels of Fig. 6. The last panel iithm catches the general LAI distribution patterns for different

this figure shows the ten-year average LAI histograms derivetbmes.
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Fig. 6. Histogram of retrieved LAl and FPAR for the sigle- and multi-angle data cases and from a ten-year average derived from AVHRR Pathfinder data [16

D. Histograms of LAl and FPAR distributions are similar. Note, high LAI values correspond
to low values of red reflectance and to high uncertainties.

The majority of retrieved LAl values are less than 2.5Therefore, many of the pixels with possibly high LAl cannot
broadleaf crops, savanna and broadleaf forests generally hbgeetrieved. This implies that i nformation about uncertainties
higher LAI values. Shrubs and broadleaf forests are distiristalso very important in order to improve the performance of
in their LAI distributions. In the case of multi-angle data, théhe algorithm, as discussed in Section IV.A. In comparison to
retrieved LAl values are somewhat smaller for all biomes bthe result from the AVHRR data, the distributions for shrubs
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Fig. 7. Average NDVI-LAI and NDVI-FPAR relationships for single- and multi-angle cases. The left column is NDVI-LAI relationship in the singlexatg|
multi-angle cases, and the right column is the NDVI-FPAR relationship.

and savanna seem to match well. Grasses and broadleaf cagree statistical properties as those derived from ground based
also show comparable tendencies. Broadleaf forests havenagasurements. Therefore, NDVI-LAI and NDVI-FPAR regres-
anomalously higher frequency at the low end of LAI. A detailedion curves using retrieved LAl and FPAR fields and near-nadir
analysis of broadleaf forests will be presented later. NDVI derived from POLDER data were calculated (Fig. 7). The
The right panels in the Fig. 6 are the cases of single- ateft column of panels in Fig. 7 shows the relationships of NDVI
multi-angle data retrievals and the ten-year average from thed LAI retrieved from single-angle and multi-angle observa-
AVHRR data for FPAR histograms. The histograms of FPARons, respectively. The right column shows the relationships
for different biomes match well with ten-year averages. Wheasf NDVI to FPAR. These relationships generally correspond to
comparing single-angle and multi-angle results, one can dettuise reported in the literature [16], [32]. However, their forms
the frequency of high FPAR values decreases slightly witkary with biome types and this is not clearly seen here. This is
decreasing number of observations. This corresponds to htlk effect of resolution will be discussed in a later section.
NDVI values. It is known that the NDVI-LAI relationship is an increasing
function with a shape determined by biome type. The problem
with shrubs is worthy of notice. It is obvious that the NDVI-LAI
relation is poorly estimated with shrubs using single-angle data.
The relationships between a spectral vegetation index sudbwever, the use of multi-angle data greatly improvesi it (Fig. 7).
as NDVI and surface biophysical variables LAl and FPAR hav@hrubs are a special biome type characterized by extreme lateral
been studied extensively [29]-[31]. Their relationships are oftéxeterogeneity with low to intermediate vegetation ground cover
used as an empirical, but effective way of calculating LAl an(0.2—0.6), small leaves, woody material, and bright soil back-
FPAR [16], [17], [32]-[34]. These products will likely be usedgrounds [16]. Shrubs are the most discontinuous of all biome
in biophysical and biogeochemical models by potential usetgpes, and the radiation regime is greatly influenced by soil
This demands the retrieved LAI and FPAR fields possess thackground. For a single-angle near-nadir view, the influence

E. NDVI-LAI and NDVI-FPAR Relationships
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1.0T T ; T ] TABLE IV
3 g BIOME TYPE DISAGREEMENT AND MISVALUATION MATRIX BETWEEN THE
0.8 ] BIOME CLASSIFICATION MAP (BCM) DERIVED FROM THEAVHRR DATA AND
[ RN MISR BiOME CLASSIFICATION MAP (MBCM). THE DIAGONAL ENTRIES IN
THE FIRST SuB-Rows (MARKED A FOR AGREEMENT) SHOW THE PERCENTAGE
OF DATA WITH AGREEDBIOME TYPE ASSIGNED BY MBCM AND BCM. THE
OTHER ENTRIES IN THE FIRST SUB-ROWS SHOW THE PROPORTION OFPIXELS
IDENTIFIED AS OTHER BIOMES SPECIFIED BY MBCM. THE DIAGONAL
/. 1 ENTRIES IN THE SECOND SUB-ROWS (MARKED E FOR EVALUATION )
0.2k ,,,,,,,,, Lview 22%}2 (near nadir) ] SHOW THE PERCENTAGE OFDATA |S EVALUATED REGARDLESS OF THE
[ 1 BIOME TYPE IN MBCM. THE OTHER ENTRIES SHOW THE PROPORTION OF
0.0L ) ‘ ‘ 1 PIXELS CLASSIFIED INTO OTHER BIOME TYPES BY MBCM AND THOSE
0 1 2 3 4 RESULTING IN AN INCORRECTESTIMATION OF LAI

LAI

NDVI

MBCM Biome Type

Grasses and Broadleaf Broadleaf
)i Cereal Crops Shrubs Crops Savanna Forests

21.21 12.66 5.02 22,13 38.98
49.23 5.64 2.04 8.67 34.42
13.56 9.91 1.80 48.09 26.64
4.81 73.85 0.10 0.17 21.07
24.49 14.50 5.87 24.42 30.72
18.06 0.50 57.33 1.34 22.77
31.21 17.32 7.38 17.48 26.61
22.26 0.98 0.04 57.18 19.54
32.99 2295 11.09 23.24 9.73
29.97 21.83 8.46 21.95 17.79
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this process fails to identify a unique biome type, the algorithm

is deemed unsuccessful. A biome classification map denoted as

Fig. 8. The average NDVI-LAI relationship of shrubs and the correspondir%‘e MISR biome cla_SS|f|c§t|on map (MBCM) IS derlved'

LAI-DLAI relationship in the single-angle and multi-angle cases. Table IV summarizes disagreement between the biome map

derived from the MISR algorithm (MBCM) and the map de-

- . : ) scribed in Section III.B derived from the AVHRR data (BCM).

of soil is dominant and can lead to incorrect retrievals. Muml‘he table is a five by five matrix with BCM biome types in rows

angle data contains more information and hence retrievals gte, \iscM biome types in columns. The ratio of pixels be-

superior. This is illustrated in Fig. 8. For an LAI range of apfonging to agreement of two maps to all pixels for each of the

proximately 1.0 to 3.0, the single-angle NDVI-LAI relation isg o\ pigme types is given together with the rate of disagree-
greatly distorted, and the dispersion of retrieved LAl can be 83, .+ |t the two LAI retrievals for a pixel, based on BCM and

high as 0.5. The LAl dispersion then decreases dramatically BCM. are within 20%, the LAI of the pixel is assumed cor-

multi-angle retrievals. . : . .
) ) ) . rectly evaluated even if the assigned biome types are different.
Although the NDVI-LAI relationship of shrubs includes h'ghThen, the rate of misevaluation is defined as the ratio of pixelsin

LAl values, only 1.6% of the pixels have a LAl greater than 2.Qyisoreement and have differences larger than 20% in retrieved
and 13% of the pixels have a LAl larger than 1.0. The relatiop-y . o | pixels. The two sub-rows in Table IV, marked “A”

sh?p at_high LAI values is based on IittIe_data._The same Casfy “» show the rates of biome type agreement (the diagonal
exist with respect to the NDVI-FPAR relationship. Generally, 'éntries) and biome type disagreement (other entries), and the

is a near-linear relat|or.1. Also note that the range of variation Htes of correct LAI evaluation (the diagonal entries) and mise-
LAl values for grasses is reduced frofh f] for the single-angle | ., ,24i0n (other entries), respectively.

case to, 3] for the multi-angle case. It is clearly shown that the disagreement rate is rather high
and all biomes have very low agreement rates. For diagonal en-
tries, the evaluation rate is always larger than the agreement rate
Biome classification derived from multi-view angle data isnd for other entries, the misevaluation rate is always less than
an additional goal of the MISR LAI/FPAR algorithm. This goathe disagreement rate. It is clear that disagreement of the biome
is based on an assumption that multi-angle data contain mype by the algorithm does not necessarily lead to misevaluation.
information about vegetation canopy structure, and can be dixshould be recalled the distribution of grasses and broadleaf
ploited to obtain biome information along with LAl and FPARcrop pixels in the red and near-infrared space were similar (Fig.
The algorithm estimates both the expected LAI value and @3. The NDVI-LAI relationships were also similar at low LAl
dispersion according to the solution distribution function. It igalues (Fig. 7). Therefore, a biome type disagreement in this
possible, in principle, to utilize this dispersion to identify biomease does not result in poor LAl retrievals. Figs. 5 and 6 can help
type. The procedure is the same as in [2]. The algorithm is exes understand this concept. Variations in biome specific disper-
cuted for each pixel five times using the five biome look-up tasions are small at low values of most probable LAI's. There-
bles (LUT's). Assuming that at least one of the candidate biomfse, they are indistinguishable with respect to the dispersion
passes the HDRF test, the biome with minimum LAI dispersidor LAI values from the interval(, 1.75]. A total number of
is chosen. If the same minimum value is found for more than opecels whose LAI values belong to this interval make up 88%
biome, the biome with the smallest LAl is chosen. However, dccording to the BCM and 87% according to the MBCM. It

LAI

F. Biome Classification
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70% Data Cluster TABLE V
0.50(™ T L ™ RooT MEAN SQUARE ERROR (RMSE) OF BHR EVALUATION AT TWO
- SPECTRAL BANDS IN THE CASE OF GRASSES ANDCEREAL CROPS THE
b LUT TEST INDICATES USE OFLUT ENTRIES PLUS NOISE ASHDRF
c . TM Broadleaf Forests ] INPUTS AND MODEL TEST INDICATES USE OF SIMULATED HDRF’S AND
0.40 ! Y worioeiior.. Disagreement b BHRS BY A CANOPY RADIATION MODEL
; '\ _—___ MISR Broadleaf Forests ]
:" ' _ RMSE(%) LUT Test Model
! (noise ) 0% 5% 10% 15% | 20% | 25% Test
= 030" 3 RED 0 2.47 3.94 5.55 6.88 8.16 8.51
z 1 NIR 0 1.37 2.22 3.18 4.14 5.21 4.78
0205 ] TABLE VI
b 2 ] INPUT PARAMETERS FOR THEDISCRETE ORDINATES RADIATIVE
I TRANSFERCODE [20] TO SIMULATE BHR AND HDRF IN THE CASE OF
[ ’ GRASSES ANDCEREAL CROPS
0.100.. . .. . [
0.0 0.1 0.2 0.3 LAl 0.5 1.0 L5 2.0 3.0 5.0
RED R Sun Zenith
un Zenit
Angle (deg) 1.0 15.0 30.0 45.0 60.0
. o . . \:ev‘l/ szth 0~60 Randomly selected
Fig.9. Distribution of pixels for MBCM and BCM agreed as broadleaf forests, Vie‘;%zz(i;g)th
and disagreement of MBCM with broadleaf forests from BCM of POLDER data Angle (de;’) 0~60 Randomly selected
and broadleaf forests of TM data. Each contour shows the highest data densit ™ Reflectance et oy
area, which contains 70% of the pixels for a given dataset. (%) ’ '
Transmittance
) RED 11.24 NIR 47.90
Soil Reflectance 11.20 1320

means that the biome types for most pixels cannot be identified _%)- Medium
however, it does not lead to misevaluation of LAl values. The

evaluation rate given in Table 1V is also influenced by the RI. d iously that the NDVI-LA] relati £ dif
For broadleaf forests, the evaluation rate is 17.8%, and the R iét was hote previously t ".it the el re atlgns ot -
ent biomes were similar (Fig. 7). This may be attributed to the

also low: 18.9%. This shows a very high percentage of correct
’ yhghp g ow spatial resolution of the data, which leads to the biome type

) . ) disagreement. MISR data is expected to be better for biome clas-
Disagreement of the biome type from the algorithm could hication because it has better atmospheric correction. This im-
due to many reasons. First, characterization of global vegefiias smaller reflectance uncertainties, wider angular coverage

tion as six biomes is probably not an adequate representaigg 1o 76), which implies more information, and smaller pixels
of all situations encountered in reality. A typical problem 1.1 km), which implies less mixed biomes.
biome mixtures. Second, low spatial resolution of the dafa

_smoothes st_ructural fea_tures of _vegetatior_m Also, biome mixturg/_ EVALUATION OF BHRS FROMPOLDER DERIVED HDRF

increases with decreasing spatial resolution. In POLDER data, DATA

the biomes overlap considerably in spectral space, especially

grasses, broadleaf crops and savanna (Fig. 2). The biomes depMethodology

arate better with high resolution data such as thematic mappeps mentioned previously in Section IV, the MISR LAI/FPAR

(TM) data because the pixels are likely to contain mostly onggorithm has two tests—BHR and HDRF test, which utilize

biome type. Therefore, the low resolution of POLDER datge full information content and uncertainties from the MISR

smooths some of the architectural features of the biome typgstrument in the process of information extraction. Data from

and this leads to disagreement. POLDER consist of BRDF measurements only [14], [15]. As
Fig. 9 shows distribution of broadleaf forest pixels in theéhentioned before, BRDF can be converted to BRF and used in

red and near-infrared spectral space. The contour labeféeglace of HDRF. Therefore, a “shared version” of the algorithm

“MISR Broadleaf Forests” contains pixels identified inwas used to produce the LAI-FPAR fields. This shared version

BCM and MBCM as broadleaf forests. The contour “Thallows the evaluation of BHR’s. The aim of this section is to de-

Broadleaf Forests” was derived from Landsat TM Data usings&ribe a method to evaluate an accurate BHR from multi-angle

ground-based map [10]. The third contour, “Disagreement,” deata.

picts pixels marked in BCM as broadleaf forests and identified Based on (3)—(4), we can relate BHRx(€2)] and HDRF

by the MISR algorithm as nonbroadleaf forests. One can see the(€2, 20)] by

contours TM Broadleaf Forests and MISR Broadleaf Forests

tend to occupy similiar space. The red reflectances of pixels rA(2, Qo) = whs ATws, A (0) +ws A[AN(Q0)

in Disagreement varies between 0.05 and 0.15. This indicates — Ths A (Q0)]- (11)

the presence of soil or nongreen material contributions. This

conflicts with the definition of broadleaf forests. This examplén this equation, the term with the effective ground reflectance

demonstrates the ability of the MISR algorithm to identify.;(\) disappears. If the correct value of BHR is known,

the correct biome types even when the full complement tfe HDRF can be evaluated without knowledge of ground

information (e.g., uncertainties, BHR’s) is not available. reflectances. The LAI retrieval problem based on POLDER

evaluation.
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Fig. 10. Grasses and cereal crops data from the biome classification map (BCM) used as input for three different tests: the single-angle H DRititestgtbe
HDREF test, and the BHR test. The upper-left panel shows the distribution of retrieved LAl in the three cases and one from the ten-year averadpeitiéxi distri
over Africa for the same time period and same biome type [16]. The upper-right panel shows the distribution of NDVI from successful pixels. Téfepawer-|
shows the distribution of NDVI from unsuccessful pixels. In this figure, (s) indicates near-nadir direction HDRF only, and (m) indicates rtiattitiBRF data.

data can be reformulated as follows. Givefim.s(§2), find The resulting BHR values are a function of the solution distri-
suchA, and the solution distribution functioh(LAI, A,) that bution function, i.e.®(LAIL, A,) = LAIL Then, we execute the
minimize the following function first MISR comparison test in order to obtain the second itera-
N tion of (LAI, A,). One repeats this process until (12) does not
Z /[m,mes(Qk) (O, AN AO(LAL Ay)  (12) exceed a threshold value.
k=1 B. Accuracy of BHR Evaluation

where 7y ..s(§2x) are the HDRF measurements. The accuracy of BHR evaluation described above was as-
ramod Sk, Ax) equals ra(2,Q) in (11), which is the sessed as follows. For a given biome and a sun-view geometry,
modeled value of HDRF from LUTA, denotes the BHR, BHR’s and HDRF's were calculated from LUT entries. For ex-
[AA(20)]; P(LAT, A,) is the solution distribution function ample, we choose grasses and cereal crops, a sun anglg of 30
mentioned in Section 1I-B, andV is the number of view and nine view directions distributed evenly over the hemisphere.
directions used in the calculations. This function corresponBer each combination of LAl and soil pattern, the corresponding
to a fixed sun angle, therefor@, is omitted. BHR and HDRF values were regarded as true values. Then

Ay is given in the case of MISR. Equation (12) does not exaulti-view angle HDRF’s with noise added to the test HDRF’s
ceed retrieved uncertainties. For the POLDER data, we mugtre used as input to evaluate the BHR. Table V shows root
solve (12) in order to evaluat®(LAI, A,) and Ay. The value mean square errors (RMSE) for two spectral bands at different
of Ay, which minimizes (12), can be expressed as (13), shownise levels. The RMSE is less than 7% for noise levels around
at the bottom of the next page. 20%. Errors in the red band are larger than for the near-infrared

Notations are similar to Section II-A. From (13), BHR’s forband because the reflectance in red is less than in near-infrared.
each spectral band can be estimated from measured HDRHAse BHR method was further validated as follows.
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Fig. 11. LAl retrieved from POLDER data over Africa in November, 1996. The POLDER data is based on maximum NDVI selection, and the algorithm is
executed in multi-angle case. For the unsuccessful pixels, the NDVI-LAI relationships shown in Fig. 7 were used to estimate LAI. Gray color mithdicatag
either barren lands or that the data are not available.

A canopy radiation model based on the numerical solutig®. Histograms of LAl and NDVI
(the discrete ordinates method) of the radiative transfer equayyith the BHR method, the MISR LAI/FPAR algorithm can
tion [20], applicable to the grasses and cereal crops, was usegdqy with the two-test process. Here, we took grasses and ce-
simulate the HDRF's as well as BHR's in the red and near-inag| crops as an example to investigate the algorithm behavior.
frared wave bands for different values of LAl and solar zenitfipe calculations were performed as follows: 1) one view angle
angles (Table VI). The sensor zenith and relative azimuth anglgsly (near-nadir direction) with the HDRF test only (see Sec-
were selected randomly within a range of O td 6 the polar tjon |v); 2) 12 view angles with the HDRF test only; and 3) all

angle and 0 to 360Tor the azimuth. Then, the entire hemisphergyailable HDRF measurements to first estimate BHR and then
was sampled. The simulated HDRF’s at 12 view directions weyigth the BHR test only.

used to evaluate the BHR'’s exercising the method described earfhe distribution of retrieved LAl is shown in the upper left
lier. A total of 210 test calculations were performed. The esfpanel in Fig. 10. The single-angle HDRF test retrieval yeilds
mated and model simulated BHR'’s are compared and the RMBigher values of LAI than the other two tests. The BHR test re-
of this test is shown in the last column of Table V. The error isults in the lowest LAI values. However, its distribution is sim-
equivalent to a 30% noise level from the first test. In generalar to the ten-year average LAl distribution over Africa for the
errors are larger in the red band due to low canopy reflectansame time period reported by Mynegtial.[16].

_ 22;1 J d®(LAL A\)ws A[ra(£2, Qo) + (ws x — wis A)Ts,A(€20)]

Ax - 5
Zk:l f d(I)(LAI, A)\(w&)\)

(13)



ZHANG et al. PROTOTYPING OF MISR LAI AND FPAR ALGORITHM

The upper-right panel shows the distribution of NDVI from
successful pixels. Clearly, the results for all cases are similar be=|.
cause the majority of data is successfully retrieved. For the ¢
of HDRF single-angle test, the Rl is 99.3%. In the case of HD
multi-angle test, the Rl is 83.6%, lower than the single-ang
case because it is a more stringent test. For the case with th
BHR test only, the Rl is 96.8%. Presumably, the BHR’s include
information from multi-angle data and thus are more informa-
tive than the single-angle case.

The lower-left panel in Fig. 10 shows the NDVI distribution
for unsuccessful pixels. Compared to the single-angle test re-
sulting in algorithm failure at low NDVI values, the multi-angle 2]
test has more unsuccessful pixels at high NDVI values. In the
case of the former, it is reasonable that low NDVI values corre-
spond to bare ground, and high NDVI values correspond to re—[3]
flectances which do not satisfy the uncertainty tolerance level.
The unsuccessful pixels are distributed over the entire range,
but cluster more around a NDVI of 0.4-0.6 for the multi-angle
test. The NDVI of unsuccessful pixels is concentrated at a highia
NDVI value range (0.6-0.8) for the BHR test. This is similar to
the single-angle case, as high NDVI's usually correspond to low
red reflectances, which have high uncertainties.

(1]

(5]
(6]

VI. CONCLUSIONS

Results from prototyping of the MISR LAI/FPAR algorithm 1"}
with POLDER data over Africa demonstrate the ability to pro-
duce global LAI and FPAR fields using multi-angle data. An
image of LAl field over Africa in November, 1996 derived from
POLDER data is shown in Fig. 11. Instead of using empirical
relationships between vegetation indices and land surface pd®l
rameters LAI/FPAR, the algorithm is a radiative transfer-baseg g,
synergistic approach. The algorithm uses information about
spectral and angular surface reflectances and the associated
uncertainties provided by the instrument to estimate LAl ang;
FPAR. However, the quality of retrievals is dependent upon
the quality of the worst spectral reflectance if uncertainties in
spectral canopy reflectances are not available. Band and vieM/2
direction-dependent uncertainties in atmospherically corrected
surface reflectances is critical to improve the quality of the
LAI/FPAR product. The use of multi-angle data decreases thg 3
dispersion and saturation of LAI, and increases the localization
and quality of the retrieved LAI and FPAR fields. Although [14]
minimum dispersion of the retrieved solution distribution
cannot be used to identify biome types with high accuracy,
especially with coarse resolution observations, LAl and FPA
are still estimated with high accuracy. The expected MISR dat
have many advantages over POLDER data because MISR data
has better atmospheric correction and less uncertainties. It h&$!
higher spatial resolution, which reduces the effect of biome
mixtures and has wider angular coverage, which offers poterji7]
tially more information. Therefore, the result of LAI/FPAR
retrievals is expected to improve with the improvement of datg, g,
quality. Finally, the method of BHR evaluation proposed in this
paper shows the close relationship between BHR and HDRFE
measurements, and the efficient use of both observations wi[IJrQ]
lead to better retrievals of the surface parameters.

(8]

15]
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