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Abstract

Accurately mapping community types is one of the main challenges for monitoring arid and semi-arid grasslands with remote sensing. The
multi-angle approach has been proven useful for mapping vegetation types in desert grassland. The Multi-angle Imaging Spectro-Radiometer
(MISR) provides 4 spectral bands and 9 angular reflectance. In this study, 44 classification experiments have been implemented to find the optimal
combination of MISR multi-angular data to mine the information carried by MISR data as effectively as possible. These experiments show the
following findings: 1) The combination of MISR’s 4 spectral bands at nadir and red and near infrared bands in the C, B, and A cameras observing
off-nadir can obtain the best vegetation type differentiation at the community level in New Mexico desert grasslands. 2) The k parameter at red
band of Modified—Rahman—Pinty—Verstracte (MRPV) model and the structural scattering index (SSI) can bring useful additional information to
land cover classification. The information carried by these two parameters, however, is less than that carried by surface anisotropy patterns
described by the MRPV model and a linear semi-empirical kernel-driven bidirectional reflectance distribution function model, the RossThin—
LiSparseMODIS (RTnLS) model. These experiments prove that: 1) multi-angular reflectance raise overall classification accuracy from 45.8% for
nadir-only reflectance to 60.9%. 2) With surface anisotropy patterns derived from MRPV and RTnLS, an overall accuracy of 68.1% can be
obtained when maximum likelihood algorithms are used. 3) Support Vector Machine (SVM) algorithms can raise the classification accuracy to
76.7%. This research shows that multi-angular reflectance, surface anisotropy patterns and SVM algorithms can improve desert vegetation type

differentiation importantly.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

New sensor and new classification methods in remote
sensing are providing capabilities for mapping and monitoring
the desert environment as never before. A plant community type
may be defined as an aggregation of plant types, which
demonstrate mutual interrelationships between species and
between species and the environment. Community type
differentiation is a classification problem in which the classes
are the recognized plant community types and also is an
approach to monitoring semi-arid grasslands. It implies a larger
number of classes, which differ more subtly than the broader
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categories assigned to regional or global classification schemes
(Chopping et al., 2002).

This study emphasizes a distinctive capability provided by
surface reflectance anisotropy patterns for community and
cover type monitoring. Our approach is based on an analysis of
1) data acquired by Multi-angle Imaging Spectro-Radiometer
(MISR) on NASA’s Earth Observing System (EOS) Terra
satellite, 2) surface anisotropy patterns estimated via inversion
of the Modified Rahman—Pinty—Verstracte (MRPV) model
(Engelsen et al., 1996) and a linear semi-empirical kernel-driven
model (Wanner et al., 1995), the RossThin—LiSparseMODIS
(RTnLS) model on MISR red and near infrared wavelength
data. All surfaces, including natural and man-made, show some
degree of spectral reflectance anisotropy when illuminated by
sunlight. The surface anisotropy patterns depend on the three-
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dimensional structure and optical properties of the surface. This
implies that the surface anisotropy patterns can be used to
characterize the surface target; so it should be reasonable to
introduce the surface anisotropy patterns into the classification
experiment. The anisotropic behavior of surface reflectance is
described by the Bidirectional Reflectance Distribution Func-
tion (BRDF); surface anisotropy patterns can be encapsulated in
the parameters of a BRDF model.

This study also investigates some indices derived from
BRDF computation, such as parameter £ of the MRPV model
(Pinty et al., 2002), the structural scattering index (SSI) (Gao
et al., 2003). These indices have been proposed as means to
access surface heterogeneity at the subpixel level. The main
goal of this study is to: 1) analyze the applicability of the newly
acquired MISR data; 2) evaluate the usability of surface
anisotropy patterns derived from these two main operational
BRDF models in classification; and 3) review the accuracy
improvement of the support vector machine (SVM) algorithm.
The following is a brief introduction to the MRPV model and
the linear semi-empirical kernel-driven model.

1.1. MRPV model and its k parameter at red band

The Modified Rahman—Pinty—Verstracte (MRPV) model
(Dineretal., 1999; Engelsen et al., 1996) is a modified version of
the Rahman—Pinty—Verstracte (RPV) model (Rahman et al.,
1993a,b). This model estimates the bi-directional reflectance
factor (BRF) of an arbitrary surface as a function of the geometry
of illumination and viewing, as well as uses the following three
parameters to describe the anisotropy of the surface:

1) p0, giving the overall reflectance level,

2) k, a representative of the bowl or bell shape of the surface
anisotropys;

3) b, describing the predominance of forward or backward
scattering.

Based on the extensive 3-dimensional radiation transfer
simulations, the parameter & at red wavelength of the MRPV
model was proven to be capable to reveal surface cover
heterogeneity at the subpixel level (Pinty et al., 2002). The
underlying physics is that for typical vegetation systems,
measurements in the red spectral region permit maximizing the
contrast between the scattering/absorption properties over the
vegetation stands versus the underlying soil. The value of the
parameter k at red wavelength can be explained as below.

® k<1.0 means a bowl-shape anisotropy pattern where BRF
values close to nadir are lower than larger exiting angles.

® k=1.0 indicates a Lambertian surface, an idealized case
rarely found in practice.

® k>1.0 means a bell-shape anisotropy pattern where BRF
values measured at large exiting angles are lower than those
measured at angles close to nadir.

The terrestrial surface usually exhibits a bowl-shape
anisotropy pattern. This situation is generally observed for

thick homogeneous plant canopies, bare soil, and other
planetary surfaces as well. Some terrestrial surfaces will exhibit
a bell-shape anisotropy pattern. This situation is generally
observed for sparse coniferous forest over a bright snow
background, or sparse bushes over a bright sandy desert at red
wavelengths. In such cases, the high background reflectance
dominates at small viewing zenith angles, while the absorbing
properties of the dark objects control the reflectance of the entire
scene at large angles. The parameter k£ was proposed as a new
axis of information in addition to the classical spectrally derived
information (Pinty et al., 2002).

1.2. The semi-empirical kernel-based BRDF model and
structural scattering index

Physical BRDF models relate the reflectance anisotropy of a
remotely-sensed pixel to the biogeophysical, structural, and
component spectral information in the pixel. A kernel-driven
semi-empirical BRDF model was first derived from a
physically-based BRDF model by Roujean et al. (1992) and
developed further by Wanner et al. (1995). These models use
fewer model parameters than true physical models and have a
simple linear form (Eq. (1)):

BRDF :fiso +fvol * kVO](gia gva ¢) +ﬂ;eo * kgeo(eia Hw ¢) (1)

where, k., called volumetric kernel, is a function of view
zenith 0, illumination zenith 6; and relative azimuth ¢. The &,
describes the volume scattering from the pixel. kye,, called
geometric kernel, also is a function of the 0, 0; and ¢. The kg,
describes the surface scattering from the pixel. fi and fge, are
the weights for these two kernels, respectively. fis, represents
isotropic reflectance. As the study area is a semi-arid region in
this research, we selected RossThin kernel as k,,, and
LiSparseMODIS kernel as kg, partly because this combination
produces fewer negative kernel weights (Chopping, 2001). The
semi-empirical kernel-driven BRDF model with RossThin and
LiSparseMODIS kernels is abbreviated here as RTnLS. We
used a modified version of the Algorithm for MODIS
Bidirectional Reflectance Anisotropies of the Land Surface
(AMBRALS) (Schaaf et al., 2002; Strahler & Muller, 1999),
version 2.4 to adjust the RTnLS model against MISR multi-
angle data sets.

When a physical BRDF model is simplified as a semi-
empirical kernel-based BRDF model, the relationship between
the BRDF and vegetation structure is no longer clear (Su et al.,
2002). To reveal this relationship, a structural scattering index
(SSI) was proposed by Gao et al. (2003). The structural
scattering index (SSI) is (Eq. (2)):

SSI = In( £y /fues) (2)
where f° 32; is the volumetric weight for the near infrared band
and f ;ee% is the geometric weight for the red spectral band
retrieved by adjusting the model against a set of bidirectional
reflectance. The reflectance anisotropy in the near infrared
band, described by the volumetric scattering kernel, will be
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decreased by high multiple scattering within the canopy due to
the high leaf transmittance as well as reflectance in the near
infrared band for vegetation leaves. Conversely, the reflectance
anisotropy in the red band, described by the geometric
scattering kernel, will be increased by small leaf transmittance
and reflectance at the red band due to chlorophyll absorbance.
Therefore the SSI should be sensitive to vegetation structure.
Preliminary investigations show that the SSI can be used to
distinguish different land cover types or to detect structural
changes; it has thus has been proposed as a source of extra
structural information for classification (Gao et al., 2003).

2. Study area

Our study area lies within the Chihuahuan semi-desert
province, which in the United States stretches across south-
eastern Arizona, southern New Mexico, and western Texas. The
specific study sites are the Jornada Experimental Range in
southern New Mexico near Las Cruces (a USDA, Agricultural
Research Service (ARS) and National Science Foundation
(NSF) Long Term Ecological Research (LTER) site and a
NASA EOS Land Validation Core site, centered at 32.5° N,
106.8° W; Morisette et al., 1999); and the Sevilleta National
Wildlife Refuge in central New Mexico near Albuquerque (an
LTER, US Fish and Wildlife Service, and a NASA EOS Land
Validation Core Site, centered at 32.5° N, 106.8° W; Ritchie
et al.,, 2000). The Jornada Experimental Range is about
78,266 ha, locating between the Rio Grande floodplain on the
west and the crest of the San Andres Mountains on the east. Its
mean elevation is about 1350 m. The Sevilleta National Wildlife
Refuge is approximately 100,000 ha in size, encompassing two
mountain ranges and the Rio Grande valley in between. It lies at
the junction of several major biomes of the American Southwest
with an elevation range from 1350 to 2797 m.

The climate at the two intensive study sites is characterized
by high amounts of solar radiation, wide diurnal ranges of
temperature, low relative humidity, extremely variable precip-
itation (spatially and temporally), and high potential rates of
evaporation. The dry early-summer months of May and June are
typically the hottest part of the year in the Chihuahuan Desert.
Average annual precipitation is about 230 mm. Typically more
than 50% of rainfall occurs from July to October as convective
events. In this research, we selected MISR data from May 24 to
June 3, 2002, as this time is the end of dry season and all shrubs
are leafed out but grasses and some other small plants are
mostly dormant.

Shrubs are now the dominant plants in the Chihuahuan
desert. They frequently grow in open stands. In many places,
they are associated with short grasses, such as black grama
(Bouteloua eriopoda). In this research, we used two existing
vegetation maps as reference data. The first one is the Sevilleta
National Wildlife Refuge vegetation map. This map was created
based on an unsupervised classification of 12 multi-temporal
Landsat Thematic Mapper satellite images that variously cover
the April-to-October growing seasons from 1987 to 1993. The
Sevilleta vegetation map has 13 map classes based on similar
vegetation composition and spatial relationships. This vegeta-

tion map is provided in raster data format, having nominal
0.5 ha resolution (Muldavin et al., 1998). The Jornada
Experimental Range vegetation map (vector format) was
created from 1998 aerial photography and field data (Nolen
et al., 1999). The map has 9 classes each of which has a unique
species composition and dominant species; these classes
therefore describe the major plant communities. This vegetation
map is provided in vector data format, and its smallest polygon
has an area of 2992.7 m?. Intensive fieldwork has been carried
out at both sites (Muldavin et al., 1998; Rango et al., 1998).

3. Methods

This section is divided into three parts: Section 3.1
introduces the data which were used and the classifications
carried out; Section 3.2 presents briefly how MISR data were
processed; and Section 3.3 explains how SVM was used to
obtain the classifications.

3.1. Data and experiment description

MISR multi-angular reflectance is the main data used. The
MISR instrument provides new and unique opportunities to
record the anisotropy of land surfaces by quasi-simultaneous
observations in 4 spectral bands (blue, green, red and near
infrared) at nadir and 8 off-nadir observations (26.1, 45.6, 60.0
and 70.5° from the vertical both forward and afterward of nadir
in the satellite along-track direction). In order to mine the
information carried by multi-angular data as effectively as
possible, we used maximum likelihood classification (MLC)
and support vector machine (SVM) methods to perform 44
experiments on 30 data sets. These 44 experiments fall into 6
groups, which are listed in Tables 2—7. These 30 data sets
consist of various combinations of MISR nadir and off-nadir
reflectance, the k parameter at red band of the MRPV model,
SSI, and surface anisotropy patterns described by both the
MRPV model and the RTnLS model (p0, k, b and iso, vol, geo,
respectively).

We used MLC methods to classify vegetation types at the
community level with various combinations of MISR 4 spectral
bands at nadir viewing and red and near infrared bands viewing
off-nadir. In order to evaluate the usability of the k parameter,
SSI, and surface anisotropy patterns derived from the MRPV
and the RTnLS models, we also used MLC to classify
vegetation types with various combinations of these parameters
and MISR reflectance. In order to review the accuracy
improvement of the SVM algorithms, we used SVM algorithms
to carry out classifications with same data sets as with the MLC
methods. The overall accuracy and Kappa index were
calculated for every case. For maximum likelihood classifica-
tions, the separability is also given based on the transformed
divergence (TD). This transformed divergence will always be
incremental when the bands are added, so the transformed
divergence does not keep a constant relationship with
classification accuracy (Jensen, 1996).

This study used 3 MISR data products: 1) MISR level 1B2
MIIB2T terrain-projected product, 2) MISR Level 1B2
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MI1B2GEOP Geometric parameters product, and 3) MISR
Level 2 MIL2ASAE aerosol product. The MI1B2T product is
the terrain-projected top-of-atmosphere (TOA) radiance global
mode parameter. This TOA radiance has had a geometric
correction applied, which removes the errors of spacecraft
position and pointing knowledge and errors due to topography.
The parameter is then ortho-rectified on a reference ellipsoid at
the surface. This global mode parameter is averaged to 1.1 km
resolution in the off-nadir, non-red band channels. The
MIIB2GEOP product provides solar azimuth, solar zenith,
and MISR 9 cameras azimuth and zenith at 17.6 km resolution.
The MIL2ASAE product provides regional mean spectral
optical depth at MISR 4 bands with 17.6 km resolution. The
detailed information about these three products can be found in
MISR Data Products Specifications (Lewicki et al., 2003). In
order to share our experiences with MISR multi-angular data
processing, we give a brief description of our processing
approach in Section 3.2 which is expanded in Appendix A.

This study used both MLC and SVM algorithms for
classification. The MLC assumes that each spectral class can
be described by a probability distribution in multi-spectral
space. Such a distribution describes the chance of finding a
pixel belonging to that class at any given location in multi-
spectral space. SVM algorithms are inspired by statistical
learning theory (Vapnik, 1995) and do not use the probability
distribution of a spectral class: it is a non-parametric method.
Unlike maximum likelihood classification, SVM is not yet used
extensively in remote sensing classification though its use is
increasing. Published studies report that SVM has been applied
successfully to classification problems (Huang et al., 2002;
Keuchel et al., 2003; Pal & Mather, 2005; Zhu & Blumberg,
2002). The implementation of the SVM algorithm used in this
research is described in Section 3.3.

3.2. MISR data preprocessing

The upper-left corner of our working region is at 35° N,
108° W, and the lower-right corner is at 31.2° N, 105.5° W.
From May 22 to June 3, there were 5 orbits overlapping the
working region. They are: 0012937 (2002-05-24); 0012981
(2005-05-27); 0013010, (2002-05-29); 0013039 (2002-05-
31); and 0013068 (2002-06-02). Among these 5 orbits, only
0013039 covers both study sites: the Jornada and the Sevilleta.
The MISR data were resampled to a 250 m spatial resolution in
order to enable data fusion research. Below we first recall the
fundamental parameters of the MISR instrument and its data
product format and coordinate transformation; we then describe
briefly two key steps of the MISR data processing: resample
and atmospheric correction. The specific procedures employed
in processing the three MISR data products are described in
Appendix A.

MISR employs nine discrete cameras to acquire images
along the Terra ground track. These cameras point at fixed
angles, one viewing in the nadir direction (vertically downward,
designed An camera) and four viewing in the forward (designed
Af, Bf, Cf, and Df camera) and afterward (designed Aa, Ba, Ca,
and Da camera) directions at 26.1, 45.6, 60.0, and 70.5°

respectively. The MISR cameras image at four spectral bands
with center wavelengths at 446, 558, 672, and 867 nm. In
Global Science mode, the MISR nadir camera produces 275 m
resolution images at all four bands. The 8 off-nadir cameras
produce 275 m resolution data in the red band (only) and 1.1 km
resolution images in the blue, green and near infrared bands.
MISR uses 233 paths in Terra’s sun-synchronous orbits to cover
the Earth and acquires data continuously down the entire daylit
side of each orbit. The resulting image swath product is 360 km
wide by about 20,000 km long.

MISR has a specific Space Oblique Mercator (SOM)
projection applicable to each path. In SOM coordinates, the X
axis points more or less in the direction of satellite ground track
motion, with the Y axis perpendicular to X axis. The pixels in a
MISR swath are arranged in a regular two-dimensional array in
the SOM space. The indices to the array are called absolute line
and sample, which references the specific SOM projection of
every path. MISR uses 180 pre-defined blocks in fixed
geographic locations to cover the full extent of the swaths. A
block may be placed directly beneath the one above it, or it may
be shifted by an integral multiple of 17.6 km in the lateral
(= SOM Y axis) direction. These shifts are pre-defined so that
the blocks comfortably span the Terra ground track to
encompass a MISR data swath. Each block may be treated by
the user as an independent two-dimensional array. The block-
relative line and sample restart at 0, O at the top left corner of
each block. Therefore, the geographic coordinates of a given
pixel in a MISR data swath can be determined through three
phases like this: (block, block-relative line, block-relative
sample)<—phase 1—>(absolute line, absolute sample)<—phase
2—>SOM (X, Y)<—phase 3—>(latitude, longitude). The phase 1
processing needs the pre-defined block shift array of the path (it
is worth noting that the block array employs a zero-based index
and block offset array uses a l-based index). The phase 2
processing requires the SOM projection parameters of the path.
In phase 3, the General Cartographic Transformation Package
(GCTP) coordinate conversion software of the U.S. Geological
Survey was used to convert between SOM coordinates and
Latitude/Longitude.

Atmospheric corrections transferred the TOA radiance
provided by the MI1B2T product to surface reflectance. The
computation used the viewing and solar angles provided by the
MI1B2GEOP product and the optical depth of aerosol provided
by the MIL2ASAE product. Both of MIIB2GEOP and
MIL2ASAE data have 17.6 km resolution while MI1B2T data
have 275 m or 1.1 km resolution. Moreover, one 17.6 km pixel
exactly covers 16*16 (256) 1.1 km pixels or 64 *64 (4096)
275 m pixels in the MISR products. This means that 256 or
4096 TOA radiances have same aerosol parameters, solar
angles, and observing angles. So we performed atmospheric
correction based on 17.6 km pixels. For each 17.6 km pixel, the
atmospheric correction includes: a) sort the 256 or 4096 TOA
radiances covered by the pixel; b) select 16 TOA radiances
uniformly; c¢) run the Simple Method for Atmospheric
Correction (SMAC; Rahman & Dedieu, 1994) for the 16
radiances to calculate their ground reflectance; d) regress these
TOA radiances and their ground reflectance and e) apply the
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regression parameters to all other TOA radiances to obtain their
ground reflectance. Following TOA radiances, the surface
reflectance is indexed by MISR (block, block-relative line,
block-relative sample) coordinates. This regression approach
was compared with directly running SMAC on 275 mor 1.1 km
TOA radiances pixel by pixel. Their correlation coefficient
always is greater than 0.99975 and standard error is less than
0.000003. The absolute error always is less than 0.001 for any
pixel. This atmospheric correction approach works well within
the constraints of the available atmospheric data.

We also tested the SMAC version 4 code against 6S version
4.2 (Vermote et al., 1997) for a selection of six contrasting
surfaces ranging from very dark to very bright: Elephant Butte
lake (dark target); two lava flows (dark target); Jornada (desert
target); Sevilleta (desert target); and White Sands alkali flats
(bright target). The atmosphere potentially has a large impact on
the accuracy of surface bi-directional spectral reflectance at
large sensor zenith angles such as those of the MISR D cameras.
We therefore assessed the quality of the SMAC and 6S
atmospheric corrections at extreme angles as well as at nadir
over four different MISR orbits (0012937, 0013010, 0013039
and O013068): data from Da, Df, and An cameras were used.
Fig. 1 shows six scatter-plots for the lowest correlative cases of
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Fig. 1. The lowest correlation coefficients of 6S vs. SMAC on 6 testing areas at
White Sands, Elephant Butte lake, Sevilleta, Jornada and two lava flows ( is a
correlation coefficient, and #obs is number of observation).

the six testing areas. Regression analysis shows that the SMAC
and 6S results are very similar: most correlation coefficients
were greater than 0.992 with the lowest 0.984. More
specifically, The Jornada, Sevilleta and White Sands always
have correlation coefficients greater than 0.999. One of the lava
flows provided the lowest correlation, but this lowest one is still
high: 0.984. The other lava flow and Elephant Butte lake sites
fall between these two extremes. While this does not resolve the
question of the whether both modeling packages are in error at
these geometries it does reduce one source of uncertainty: using
SMAC instead of a more complete realization of an atmospheric
modeling code.

3.3. Support vector machine

The foundations of the SVM approach were developed by
Vapnik (1995) and are gaining popularity due to many attractive
features and excellent empirical performance. The SVM
training algorithm promises to obtain the optimal separating
hyper-plane for a training data set in term of generalization
error. Given a set of examples (x;,y;), i=1,.../ where x;ERY and
v;€ {—1,+1}. The support vector machines require the solution
of the following optimization problem (Eq. (3)):

(1 4 !
Wm;r}<2w w—l—C; éi) (3)

subject to y;(w (x;)+b)>1-&; £;>0. Here &; are positive
slack variables. C>0 is a preset penalty value for misclassi-
fication errors. Training vector x; is mapped into a higher
(maybe infinite) dimensional space by the function ¢. The
w’-¢(x;)+b is a hyper-plane in this higher dimensional space.
SVM will find an optimal separating hyper-plane. Further-
more, k(x,-,xj):q_’>(x,-)T ¢(x;) is called the kernel function. The
choice of the kernel function % is crucial for good classification
performance. In the study we used the radial basis function
(RBF) (Eq. (4)):

k(x,%7) = exp(=y | lxi—=;|*), v>0 (4)

Here, 7 is a kernel parameter. The RBF is one of the most
commonly used kernel functions. In general, the RBF is a
reasonable choice. First, the RBF kernel non-linearly maps
samples into a higher dimensional space, so the RBF can handle
the case when the relationship between class labels and
attributes is non-linear. Second, the RBF kernel has less nu-
merical computation difficulties. We use LIBSVM software
(Chang & Lin, 2001) in the experiments.

The following three procedures were used in the experi-
ments: first, we conduct a simple scaling on the data; second, we
manually search the best parameter C and 7y on the training set;
and finally, we use the best parameter C and 7 to test accuracy
and calculate the kappa index on the test set. There are two main
advantages in scaling before applying the SVM algorithm: one
is to avoid the case where attributes in greater numeric ranges
dominate those in smaller numeric ranges. Another is to avoid
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numerical difficulties during the calculation. Linear scaling
each attribute to the range [—1,+1] or [0, 1] is recommended
(Chang & Lin, 2001).

4. Results and discussion

The experiment area covered by the Jornada and Sevilleta
vegetation maps produced by the respective LTERs is
23,978 pixels (250 m spatial resolution) in total, around
1492.4 km?. Half of the area (11,984 pixels) was randomly
picked up as a training set and the other half (11,994 pixels) was
retained as the testing set for MLC and SVM classifications.
There are 19 classes for these classification experiments, where
6 classes are from the Jornada and 13 classes from the Sevilleta
(Table 1). Although the Jornada vegetation map has 9 classes,
the numbers of pixels for the “Bare”, “Snakeweed” and “Yucca”
classes were too low for the classification experiments. The
Jornada Experimental Range vegetation map uses a set of class
names that differ from those used for the Sevilleta National
Wildlife Refuge vegetation map. This might lead to a
misunderstanding that the two study areas have completely
different vegetation classes; however, both sites are within the
Chihuahuan Desert and a number of the shrub and grass
communities are similar (e.g., grama grass; creosotebush), or
could feasibly exist at both locations. We therefore retained all
classes. It is reasonable to classify the two study areas together
because we expect the classifiers to exploit the canopy structure
information carried by the MISR data: at a minimum this will
show whether this additional information leads to lower
classification confusion between grass and shrub communities
over large areas.

In all some 44 classification experiments were performed
and the results are listed in Tables 2—7. Tables 2 and 3 show the
best candidate data sets for running MLC and SVM, while
Tables 4—7 show the results of MLC and SVM classifications

Table 1
The 6 classes of the Jornada and 13 classes of the Sevilleta

Code Class

1 jer_Upland_Grasses

2 jer_Playa_Grasses

3 jer_Tarbush

4 jer_Mesquite

5 jer_Creosotebush

6 jer_Other_Shrubs

7 sev_Water_or_Wet_Ground

8 sev_Barren_or_Sparsely_Vegetated

9 sev_Great_Basin_Grasslands

10 sev_Transition_Chihuahuan_and_Great_Basin_Grasslands
11 sev_Chihuahuan_Desert_Grasslands

12 sev_Transition_Chihuahuan_and_Plains_Grasslands

13 sev_Plains_Grasslands

14 sev_Chihuahuan_or_Great_Basin_LowlandSwale_Grasslands
15 sev_Chihuahuan_Desert_Shrublands

16 sev_Great_Basin_Shrublands

17 sev_Rocky_Mountain_Conifer_Savanna

18 sev_Rocky_Mountain_Conifer_Woodlands

19 sev_Rio_Grande_Riparian_Woodlands

Table 2
Maximum likelihood classifications at MISR data for selecting data sets
Pure MISR data set Average  Overall Kappa
TD accuracy  index
Nadir blue, green, red, NIR 1634.14 45.81 41.13
9 camera red 1778.13 41.93 36.26
Nadir 4 bands, and 8 off-nadir camera 1912.70 56.78 52.19
red
9 camera red and NIR 1956.63 54.78 49.81
Nadir 4 bands, and D camera red/NIR 1858.64  48.54 43.79
Nadir 4 bands, and C camera red/NIR 1842.70 55.56 51.11
Nadir 4 bands, and B camera red/NIR 1820.81 56.49 52.14
Nadir 4 bands, and A camera red/NIR 1788.25 54.33 49.96
Nadir 4 bands, and C/B camera red/NIR 1907.82 58.34 53.81
Nadir 4 bands, and C/B/A camera red/NIR 1938.09  60.91 56.52
Nadir 4 bands, and D/C/B camera red/NIR 1956.66  55.52 50.72
Nadir 4 bands, and 8 off-nadir camera 1969.48 59.38 54.78

red/NIR

on these data sets and their combinations. It is well known that
MLC does not work well if the probability distribution require-
ment is not satisfied. SVM, however, does not require any
probability distributions. It is obvious that the requirement of
MLC is much stricter than that of SVM, so we used only MLC
to obtain the optimal combinations in Tables 2 and 3. We
compared SVM with MLC based on same inputs in Tables 4-7.

The experiments with various combinations of MISR nadir
and off-nadir reflectance are listed in Table 2. MISR nadir
reflectance in the 4 spectral bands does not provide high accu-
racy. All 9 cameras in the red and near infrared bands can
improve accuracy but as before do not achieve the highest
accuracy. After trying various combinations of nadir and multi-
angular reflectance, we found that the combination of the 4
multi-spectral (blue, green, red and near infrared) nadir reflec-
tance and off-nadir (Cf, Bf, Af, Aa, Ba, Ca camera) reflectance
in the red and near infrared bands can obtain the highest
accuracy. Therefore we used this combination as the funda-
mental MISR multi-angular dataset. This dataset is called
“MISR multi-angular plus”. The MISR nadir reflectance in all 4
spectral bands is called “MISR nadir plus” for the subsequent
experiments.

The experimental results in Table 3 show the capability of
surface anisotropy patterns derived from the MRPV and RTnLS
models. These BRDF parameters were obtained via inverting
the two models against all MISR 9 multi-angle reflectance in the

Table 3
Maximum likelihood classifications at surface anisotropy patterns from MRPV
model and RTnLS model

BRDF Model Data set Average Overall Kappa
TD accuracy index
MRPV p0Okb red 1264.31 34.51 29.20
MRPV p0kb NIR 965.57 22.22 16.88
MRPV p0Okb red/NIR 1578.71 42.95 37.82
RTnLS isovolgeo red 1322.08 37.35 32.09
RTnLS isovolgeo NIR 1227.85 27.02 22.24
RTnLS isovolgeo red/NIR 1625.01 43.45 38.84
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Table 4
Maximum likelihood classifications at combinations of MISR data and the &
parameter at red band of MRPV model and the Structural Scattering Index

Table 6
Support vector machine classifications at combinations of MISR data and the k
parameter at red band of MRPV model and the Structural Scattering Index

Data set Average Overall Kappa Data set Overall Kappa
TD accuracy  index accuracy index
MISR nadir plus None 1634.14 45.81 41.13 MISR nadir plus None 64.31 59.09
k_red 1698.42 51.62 47.07 k_red 67.12 62.41
SSI 1691.01 46.65 41.93 SSI 66.15 61.22
k_red and SSI 1745.41 51.56 47.02 k_red and SSI 68.70 63.80
MISR multi-angle plus None 1956.66 60.91 56.52 MISR multi-angle plus None 75.56 72.21
k_red 1943.00  61.96 57.61 k_red 75.62 72.24
SSI 1944.06  61.10 56.71 SSI 75.83 72.50
k_red and SSI 1948.90 61.77 57.42 k_red and SSI 75.71 72.21

red and NIR bands. The lower spatial resolution of the NIR
band may be a potential reason for the lower classification
accuracies seen when using this band with the retrieved BRDF
patterns vs. using only the red band. The combinations of
surface anisotropy patterns in the red and near infrared bands
provide higher capability than any single one of them, though
the accuracy still is low. We also found two optimal data sets for
the subsequent experiments: (1) surface anisotropy patterns at
both the red and NIR bands derived from MRPV model,
pOkb_red/NIR; (2) surface anisotropy patterns at the red and
NIR bands derived from RTnLS model, isovolgeo_red/NIR
(Table 3).

MLC methods were used to generate the results in Tables 4
and 5. Due to the probability distribution requirement of MLC,
these results are suitable for estimating improvements from
various inputs. Table 4 demonstrates the suitability of the &
parameter of the MRPV model at the red band and the SSI from
the RTnLS model as additional information dimensions in
classification. The k parameter can raise by almost 6% the
accuracy when it is used with the MISR nadir plus. The
improvement is much bigger than when using the SSI. The
improvement from the MISR nadir plus to the combinations of
the MISR nadir plus and the & parameter or the SSI is greater
than cases of the MISR multi-angle plus. It shows some
information redundancy between MISR multi-angle reflectance
and the additional information from the k& parameter or the SSI.
Using the k parameter or the SSI together cannot provide extra
improvement. It means that two parameters are not compatible.
Table 5 shows that — in comparison with Table 4 — these two
parameters are not as good as the surface anisotropy patterns
described by the p0, k, b of the MRPV model or the iso, vol,

Table 5
Maximum likelihood classifications at combinations of MISR data and surface
anisotropy pattern inversed by BRDF models from MISR data

geo of the RTnLS model. The RTnLS model enjoys a slightly
higher improvement than the MRPV model for this application.
The combination of MISR nadir plus and the isovolgeo_red/
NIR provides even higher accuracy than the original MISR
multi-angular reflectance. It is 61.97% vs. 60.91%. Moreover,
the pOkb_red/NIR and the isovolgeo_red/NIR each contain
slightly different, unique information. In other words, using the
pOkb_red/NIR and the isovolgeo_red/NIR together can obtain
extra enhancement. The accuracy is 64.85% for case of the
MISR nadir plus and the pOkb_red/NIR and the isovolgeo_red/
NIR together. It is an increment of about 19% from the MISR
nadir plus (64.85% vs. 45.81%). It is obvious that these BRDF
parameters from the MRPV and the RTnLS models do carry
useful information for classification. For cases of the MISR
multi-angle plus, the pOkb_red/NIR and the isovolgeo_red/NIR
together raise accuracy only 7.2% from 60.9% to 68.1%. It
means that there is greater information redundancy between
MISR multi-angle reflectance and the additional information
from the pOkb_red/NIR and the isovolgeo_red/NIR. In
summary, Tables 4 and 5 show: 1) original multi-angular
reflectance can raise classification accuracy from 45.8% for
nadir-only reflectance to 60.9%; 2) with surface anisotropy
patterns derived from MRPV and RTnLS, an accuracy of 68.1%
can be obtained. Totally, an increment of 22.3% has been
obtained with multi-angle reflectance and the derived BRDF
parameters.

Tables 6 and 7 display results from SVM methods. They use
the same input as Tables 4 and 5, respectively; the only
difference between the two table groups is the classification
algorithm. In comparison with Tables 4—7 are suitable for
estimating improvements from SVM. The two table groups

Table 7
Support vector machine classifications at combinations of MISR data and
surface anisotropy pattern inversed by BRDF models from MISR data

Data set Average  Overall Kappa Data set Overall Kappa
D accuracy  index accuracy index
MISR nadir pOkb_red/NIR 1862.14  56.61 52.33 MISR nadir plus pOkb_red/NIR 72.10 68.16
plus isovolgeo_red/NIR 1881.44 61.97 58.00 isovolgeo_red/NIR 74.62 71.06
pOkb_isovolgeo_red/NIR 1954.38  64.85 60.96 pOkb_isovolgeo_red/NIR 75.62 72.22
MISR multi-  pOkb_red/NIR 197038  64.45 60.31 MISR multi-angle pOkb_red/NIR 75.67 72.31
angle plus  isovolgeo_red/NIR 1972.70  65.54 61.51 plus isovolgeo_red/NIR 76.60 73.38
pOkb_isovolgeo_red/NIR 1987.85 68.14 64.31 pOkb_isovolgeo_red/NIR 76.73 73.50
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show roughly similar trends in accuracy improvement when
various inputs were brought into play. The k& parameter of the
MRPV model and the SSI from the RTnLS model provide
additional information to classification, but the improvement is
marginal. However, the p0, k and b of the MRPV model or the
iso, vol and geo of the RTnLS model carry useful information.
Using the pOkb_red/NIR and the isovolgeo_red/NIR with the
MISR nadir plus together, we can obtain 75.62% accuracy. It is
very close to the highest accuracy (76.73%), which was found
with the combination of the MISR multi-angle plus, the
pOkb_red/NIR and the isovolgeo_red/NIR. As mentioned
above, the MLC also obtained its highest accuracy under the
same conditions. For cases of the & parameter or/and the SSI,
the SVM always raised accuracy more than 15% for cases of the
MISR nadir plus, and between 13% and 15% for the MISR
multi-angle plus. On the pOkb_red/NIR or/and the isovol-
geo_red/NIR, the improvements are roughly from 8% to 15%.
The mean of all of improvements is round 14%. These results
show that the SVM algorithm exploits the information carried
by the same inputs more effectively. The smallest increment
(8%) occurs in the case of the highest classification accuracy
(from 76.73% to 68.1%). At this point, we can speculate that the
probability distributions of classes were enhanced to a great
degree when combining the pOkb_red/NIR, the isovolgeo_red/
NIR, and the MISR off-nadir reflectance with the MISR nadir
reflectance. Thus the MLC method using multi-angle data
obtains a large improvement over spectral data alone (19%
increment from 45.81% to 64.85%), leaving less potential for
SVM methods.

It is informative to compare the relative performance of the
same method with different inputs, and of different methods
with same inputs on a class-by-class basis. The contingency
matrices obtained by the MLC with the MISR nadir plus, and
with the combination of the MISR multi-angle plus, the

Table 8

Contingency matrix of the maximum likelihood classification on MISR nadir plus

pOkb_red/NIR and the isovolgeo_red/NIR are shown in Tables 8
and 9, respectively. With same inputs as Table 9, contingency
matrices obtained by the SVM are shown in Table 10. While
overall accuracy is the number of pixels correctly classified
divided by the total number of pixels in the training data set, the
user’s accuracy is a measure of how well the classification
performed by class and details errors of commission (pixels
assigned to incorrect classes). Of the MLC results, the class-
level user’s accuracies obtained with multi-angle data (Table 9)
are almost all much better than the corresponding ones obtained
with nadir data (Table 8). Among the 19 classes, ‘JER upland
grasses’, ‘JER Other shrubs’, ‘SEV Water/wet ground’, and
‘SEV Great Basin shrublands’ (classes 1, 6, 7 and 16, respec-
tively) all enjoy a huge improvement as a result of incorporating
the multi-angle reflectance and the surface anisotropy patterns.
The only reduction in user’s accuracy was for class 4 (‘JER
mesquite’): its accuracy was reduced from 94.1% to 90.5% —
this is still very acceptable.

The questions of why and how nadir data with the MLC
method produces such grave misclassifications can be
addressed by examining the classes with which confusion
occurred. Classes 1, 2, and 6 were all subject to misclassifica-
tion as class 4 (‘JER Mesquite’). This is quite astonishing —
many pixels for two grassland communities were assigned to a
shrub-dominated community class — and highlights the
limitations of nadir-spectral data in this environment. The
misclassification of upland and playa grasses as shrubland is
surprising because the fractions of exposed soil and canopy
physical structure which largely determine the spectral signal
are very different between grasslands and shrublands. It is less
surprising that class 6 (‘JER Other shrubs’) would be
misclassified as ‘JER mesquite’ shrubland. The dramatic
improvements in differentiating these classes when using
MISR multi-angle data are perhaps not surprising since the

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Sum  User’s
1 54 18 53 94 75 0 0 0 0 11 1 7 0 2 1 0 0 0 0 316 17.1
2 3 67 12221 90 0 0 1 2 1 2 0 0 1 4 0 1 0 0 405 16.5
3 3 21 190 124 161 O 0 0 6 5 2 12 0 2 7 1 0 0 0 534 35.6
4 1 1 3 1383 71 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1470  94.1
5 2 12 17 79 400 © 0 0 21 3 20 4 0 2 39 14 5 0 0 624 64.1
6 7 4 2 968 188 39 0 0 0 0 2 0 0 0 5 0 0 0 0 1215 3.2
7 0 3 0 10 3 0 27 22 25 5 17 4 0 0 26 34 24 1 2 203 13.3
8 0 0 0 0 0 0 5 217 165 23 82 3 0 0 33 32 2 0 0 562 38.6
9 0 1 0 0 5 0 1 103 986 77 116 27 0 16 169 154 16 0 2 1673  58.9
10 0 2 2 1 35 0 0 8 106 514 35 104 3 21 113 35 4 0 0 983 52.3
11 0 0 1 1 8 0 0 7 27 11 73 12 4 5 25 3 21 0 0 198 36.9
12 0 2 3 0 21 0 0 6 43 160 36 282 28 6 12 16 22 0 1 638 44.2
13 0 0 0 0 1 0 0 1 1 71 45 138 163 2 25 4 87 0 1 539 30.2
14 1 5 7 12 19 0 0 9 49 56 77 25 6 54 105 1 9 0 0 435 12.4
15 0 2 3 4 31 0 2 6 26 58 35 20 1 6 98 27 3 0 3 325 30.2
16 0 2 0 2 29 0 12 27 195 63 79 27 1 3 121 164 47 0 7 779 21.1
17 0 1 1 6 32 0 2 1 6 1 27 20 22 3 8 9 510 10 6 665 76.7
18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 103 228 5 338 67.5
19 0 0 0 0 0 0 4 2 2 0 5 1 0 1 0 4 19 9 45 92 48.9
Sum 71 148 294 2905 1169 49 53 410 1661 1059 654 686 228 124 791 499 873 248 72 11994
Producer’s 76.1 45.3 64.6 47.6 34.2 79.6 50.9 529 594 48.5 11.2 41.1 71.5 43.6 12.4 329 58.4 91.9 62.5 45.8
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Table 9
Contingency matrix of the maximum likelihood classification on combinations of MISR multi-angle plus and surface anisotropy patterns at red and near infrared bands
Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Sum  User’s
1 53 7 0 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 84 63.1
2 6 9% 6 192 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 304 30.9
3 3 19 271 116 124 0 0 0 1 0 0 0 0 0 0 0 0 0 0 534 50.7
4 7 21 5 2430 203 18 0 0 0 0 0 0 0 0 0 0 0 0 0 2684 90.5
5 1 7 11 114 829 8 0 0 0 0 0 0 0 0 0 0 3 0 0 973 85.2
6 0 0 0 18 4 23 0 0 0 0 0 0 0 0 0 0 0 0 0 45 51.1
7 0 0 0 0 0 0 34 1 4 0 0 0 0 1 0 13 5 0 6 64 53.1
8 0 0 0 0 0 0 7 237 87 10 21 2 0 2 24 24 12 0 0 426 55.6
9 0 0 0 0 0 0 0 64 1130 39 24 21 1 13 165 74 21 0 2 1554 72.7
10 0 0 0 0 0 0 0 7 34 797 49 94 8 10 112 2 1 0 0 1114 71.5
11 0 0 0 0 0 0 0 43 59 59 416 57 10 10 197 6 175 0 2 1034 40.2
12 0 0 0 0 0 0 0 1 11 82 24 401 42 3 3 4 19 0 0 590 68.0
13 0 0 0 0 0 0 0 0 1 3 12 61 149 1 5 0 110 0 0 342 43.6
14 0 0 0 0 0 0 0 6 82 39 42 15 7 76 o6l 6 3 0 0 337 22.6
15 0 0 0 0 0 0 2 22 59 27 52 19 0 6 203 10 18 0 1 419 48.4
16 1 0 1 1 2 0 6 26 176 3 4 4 1 1 15 345 20 0 3 609 56.7
17 0 0 0 10 1 0 0 1 8 0 6 7 9 0 5 3 428 44 5 527 81.2
18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 56 204 0 261 78.2
19 0 0 0 0 0 0 4 2 9 0 4 5 0 1 1 12 2 0 53 93 57.0
Sum 71 148 294 2905 1169 49 53 410 1661 1059 654 686 228 124 791 499 873 248 72 11994
Producer’s 74.6 63.5 92.2 83.6 70.9 46.9 64.2 57.8 68.0 75.3 63.6 58.5 65.4 61.3 25.7 69.1 49.0 82.3 73.6 68.1

multi-angle data and metrics hold greater information on
canopy structure. This information is derived mainly from the
change in the proportion of shadowed soil in the MISR field-of-
view in different cameras.

The SVM further improved the classification using the same
MISR multi-angle data (the MISR multi-angle plus, the
pOkb_red/NIR and the isovolgeo_red/NIR). The class-level
user’s accuracies obtained with the multi-angle/SVM (Table 10)
are almost all much better than the corresponding ones obtained
with the multi-angle/MLC (Table 9). Among the 19 classes,
‘JER Playa grasses’, ‘JER Tarbush’ and ‘SEV Plains grassland’

(classes 2, 3 and 13, respectively) enjoy a huge improvement as
aresult of using the SVM. The only reduction in user’s accuracy
was for class 9 (‘SEV Great Basin shrublands’): its accuracy
was reduced from 72.7% to 69.2%; as before, this is not
unacceptably low.

The worst case obtained with the multi-angle/SVM method
occurred with respect to class 14 (‘SEV Chihuahuan or Great
Basin lowland swale grasslands’); the user’s accuracy was still
low even though it was raised some 16.7 percentage points from
22.6% to 39.3%. This class was inclined to be confused with
classes 9, 10, 11, 12 and 15 in the both the multi-angle/MLC

Table 10

Contingency matrix of the support vector machine classification on combinations of MISR multi-angle plus and surface anisotropy patterns at red and near infrared
bands

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19  Sum  User’s
1 47 1 2 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 58 81.0
2 1 57 1 11 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 71 80.3
3 3 10 231 39 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 330 70.0
4 19 67 33 2795 130 27 O 0 0 0 0 0 0 0 0 1 0 0 0 3072 91.0
5 1 13 25 50 985 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1084  90.9
6 0 0 0 2 4 12 0 0 0 0 0 0 0 0 0 0 0 0 0 18 66.7
7 0 0 0 0 0 0 26 2 1 0 0 0 0 0 0 4 4 0 5 42 61.9
8 0 0 1 0 0 0 6 223 42 3 16 2 0 0 15 7 3 0 0 318 70.1
9 0 0 0 0 0 0 3 101 1415 49 52 31 1 31 199 145 17 0 0 2044 69.2
10 0 0 0 0 0 0 1 13 17 846 36 77 2 15 95 5 3 0 1 1111 76.2
11 0 0 0 0 0 0 0 20 25 36 356 15 4 11 135 5 34 0 4 645 55.2
12 0 0 0 0 0 0 0 1 9 78 24 467 41 5 2 4 15 0 1 647 72.2
13 0 0 0 0 0 0 0 0 0 0 1 41 136 1 0 0 25 0 0 204 66.7
14 0 0 0 0 0 0 0 1 14 7 15 14 2 4 9 3 1 0 2 112 39.3
15 0 0 0 0 0 0 2 31 59 35 1 13 4 14 323 14 12 0 1 619 52.2
16 0 0 0 0 1 0 9 1270 2 1 1 0 1 4 295 8 0 8 412 71.6
17 0 0 1 1 0 0 2 5 8 3 39 22 38 2 9 10 705 43 3 891 79.1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 205 O 251 81.7
19 0 0 0 0 0 0 4 1 1 0 3 3 0 0 0 6 0 0 47 65 72.3
Sum 71 148 294 2905 1169 49 53 410 1661 1059 654 686 228 124 791 499 873 248 72 11994
Producer’s 66.2 38.5 78.6 96.2 84.3 24.5 49.1 54.4 852 79.9 544 68.1 59.7 355 40.8 59.1 80.8 82.7 65.3 76.7
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classification and the multi-angle/SVM classification: this is not
so surprising as all these except the last are grassland classes;
and the total number of pixels is small (112), reducing the
statistical significance of the result. With the multi-angle/SVM
classification the incorrectly classified pixels of classes 9, 10,
11, 12, 14 and 15 almost all fall amongst these same classes,
implying that there is more difficulty in differentiating amongst
the grasslands of the Sevilleta National Wildlife Refuge
(Table 10). In general, the grass, shrub and woodland
community types of the Sevilleta were not confused; similarly,
the JER vegetation community types were rarely confused with
the SEV vegetation community types. It is worth noting that the
worst case per-class user’s accuracies obtained when nadir-
spectral data were used were much lower: 3.2%, 12.4%, 13.3%,
16.5%, and 17.1% (for classes 6, 14, 7, 2, and 1, respectively).

(a)

This is a robust demonstration of the tangible improvements
obtained with multi-angle reflectance, the derived BRDF
parameters, and SVM algorithms when a wide range of cover
types is included. These data can be treated in the same way. In
MLC, different input parameters will be projected to different
axis in a multi-dimensional classification space. In SVM, all
input parameters will be scaled to [—1,1]. Therefore, different
units of input parameters will not affect classification. On the
basis of these results much greater confidence would be
expected in classification of multi-angle remote sensing data to
recognized community and cover types over larger areas outside
the environs of the study areas, especially if SVM methods are
used. These experiments show that the surface anisotropy
patterns described by the MRPV and RTnLS models are
compatible with each other; when they are used together better

5km

— Class excluded*
|:| Upland Grasses
|:| Playa Grasses
- Tarbush
I:I Mesquite
_ Creosotebush
_ Other Shrubs
: Class outside area®

Fig. 2. Community Type Classifications for the Jornada Experimental Range (a) 1998 LTER Vegetation Map (b) Maximum Likelihood method (c¢) Support Vector
Machine Method. Note: * Areas corresponding to classes for which there were insufficient data to perform a classification. © Classification as a class belonging to the

Sevilleta.
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(| Class outside area®

| V<1 or Wet Ground

| 5orren or Sparsely Vegetated

|:| Great Basin Grasslands

:l Transition Chihuahuan and Great Basin Grasslands
| [Chihuahuan Desert Grasslands

Transition Chihuahuan and Plains Grasslands
Plains Grasslands

Chihuahuan or Great Basin Lowland Swale/Swale Grasslands

I:l Chihuahuan Desert Shrublands
_ Great Basin Shrublands
:l Rocky Mountain Conifer Savanna
:| Rocky Mountain Conifer Woodlands
L

Rio Grande Riparian Woodlands

Fig. 3. Community Type Classifications for the Sevilleta National Wildlife Refuge (a) 1998 LTER Vegetation Map (b) Maximum Likelihood method (c) Support

Vector Machine Method. Note: ° Classified as a class belonging to the Jornada.

results can always be obtained. The combinations of MISR
nadir reflectance and surface anisotropy patterns from inversion
of BDRF models can provide the same accuracy as the original
MISR multi-angular reflectance. In fact, this suggests an
innovative approach to improve classification and fusion data
from multiple satellites. For example, multi-angle reflectance
from MISR, MODIS, and SPOT VEGETATION (amongst
others) could be used to obtain more precise surface anisotropy
patterns though the RTnLS and MRPV model inversions; these
might then be combined with nadir reflectance from MISR and
even higher resolution instruments such as ASTER for
classification. Better results might be expected with this kind
of approach.

Figs. 2 and 3 show the vegetation maps and the MLC and
SVM classification maps with the best overall accuracies for the
Jornada Experimental Range and the Sevilleta National Wildlife
Refuge, respectively. As mentioned before, the highest MLC
accuracy is 68.1%, and the highest SVM accuracy is 76.7%.
The two methods use same inputs. Note that these accuracies
are overall accuracies; Kappa index values show a similar trend

to overall accuracies indicating that the results are not spurious.
In addition, no auxiliary information on (for example) soils and
terrain slope and aspect has been used in these experiments.

5. Conclusions

The conclusions of this research can be summarized as
follows:

(1) In the classification experiments, additional information
is provided by the p0, k, and b parameters from the
MRPV model and the iso, vol and geo parameters from
the RTnLS model in the red and NIR bands. In other
words, the whole shape of the BRDF provides more
information than any one of the parameters, which
describe the shape in either of these two models.

(2) The highest classification accuracy is expected to be
obtained by using the following data together: 1) MISR
nadir blue and green red and NIR reflectance; 2) multi-
angular (C, B, A camera) red and NIR reflectance; 3) the
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p0, k, b parameters of the MRPV model, and the iso, vol,
geo parameters of the RTnLS model at red and NIR bands.

(3) The combination of MISR nadir reflectance and surface
anisotropy patterns obtained by inversion of BDRF
models can provide almost the same accuracy as obtained
with the original MISR multi-angle reflectance.

(4) The k parameter of the MRPV model and the SSI from the
RTnLS model provide additional information to the
classification problem — but the improvement is marginal.

(5) Multi-angle reflectance provides more information on the
surface than nadir-spectral reflectance alone.

(6) Reflectance in the NIR are helpful in differentiating semi-
desert vegetation types even though these data are obtained
at 1.1 km spatial resolution and the contrast between soil
and vegetation components is lower than in the red
wavelengths (arid regions have bright mineral soils).

(7) Using SVM algorithms provide a marked improvement
over the parametric MLC methods for classification of
semi-arid vegetation types.

While the best overall classification accuracy obtained might
not be considered high in the context of mapping broad land
cover classes, we are here concerned with plant communities
that exhibit a wide range of within-community conditions.
Future work will therefore explore the use of a soft classification
approach based on fuzzy set theory as well as the integration of
relatively static auxiliary data on soils and topography. Recent
work on retrieving fractional woody shrub cover via geometric-
optical modeling (Chopping et al., in press) will also provide
information that will mitigate against confusion owing to
within-community variation; for example, enabling differenti-
ation of grama grass communities that exhibit differing degrees
of woody shrub encroachment.
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Appendix A

The procedures employed for the processing of the three
MISR data products were as follows:

(1) The solar constant and SOM projection parameters were
extracted for any given orbit.

(2) The blocks that overlap the working region were
calculated, given geographic coordinates of 4 corners of
our working region.

(3) Top of atmosphere (TOA) radiance data for these blocks
obtained at step (2) were extracted from the MI1B2T

products. The radiance data include: 1) 275 m four bands
nadir radiance; 2) 275 m red band off-nadir radiance and
3) 1.1 km near infrared band off-nadir radiance. The
radiance data are indexed by MISR (block, block-relative
line, block-relative sample) coordinates.

(4) Aerosol data for the blocks obtained at step (2) were
extracted from the MIL2ASAE products. These data have
17.6 km spatial resolution and are also indexed by MISR
(block, block-relative line, block-relative sample)
coordinates.

(5) The solar zenith and azimuth and viewing zenith and
azimuth for the blocks obtained at step (2) were extracted
from the MI1B2GEOP products. They also have 17.6 km
spatial resolution. These angle data are indexed by MISR
(block, block-relative line, block-relative sample)
coordinates.

(6) Atmospheric corrections were performed on the TOA
radiance obtained at step (3) to obtain surface reflectance
using the solar and viewing angles at step (4) and aerosol
data at step (5). For each 17.6 km pixel, the atmospheric
correction procedure was: a) sort the TOA radiances
covered by the pixel; b) select 16 TOA radiances
uniformly; c) run the SMAC for the 16 radiances to
calculate their ground reflectance; d) regress these TOA
radiance and their ground reflectance and e) apply the
regression parameters to all other TOA radiances to
obtain surface reflectance. Following TOA radiances, the
surface reflectance also are indexed by MISR (block,
block-relative line, block-relative sample) coordinates.

(7) The surface reflectance, solar angles, observing angles
and aerosol data were resampled to a 250 m grid in the
UTM projection. There were two steps: first, the data
were transformed from MISR stacked-grid index (block,
block-relative line, block-relative sample) to geographic
coordinates (latitude, longitude) through the 3-phase
method described before; and second, the data were
projected from geographic coordinates (latitude, longi-
tude) to UTM coordinates (X, Y) and resampled to 250 m
using a nearest neighbor algorithm.

(8) Surface reflectance, solar zenith and azimuth angles, and
viewing zenith and azimuth angles of the 9 cameras were
collected for red and near infrared bands for all orbits to
produce a MISR multi-angle reflectance dataset.

(9) BRDF parameters (iso, vol and geo) were produced via
inverting the RossThin—LiSparseMODIS kernel-driven
model against the MISR multi-angle reflectance dataset
obtained at step (8).

(10) The structural scattering index was computed by using the
parameters at step (9).

(11) BRDF parameters (p0, k, b) were produced via inverting
the Modified—Rahman—Pinty—Verstracte model against
the dataset obtained at step (8).
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