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Abstract

Instruments such as the MODIS and MISR radiometers on EOS AM-1, and POLDER on ADEOS have
been deployed for the remote sensing retrieval of surface properties. Typically, retrieval algorithms use linear
combinations of semi-empirical bidirectional re8ectance distribution function (BRDF) kernels to model surface
re8ectance. The retrieval proceeds in two steps; <rst, an atmospheric correction relates surface BRDF to
top-of-atmosphere (TOA) re8ectances, then regression is used to establish the linear coe=cients used in
the kernel combination. BRDF kernels may also depend on a number of physical or empirical non-linear
parameters (e.g. ocean wind speed for a specular BRDF); such parameters are usually assumed known. A
major source of error in this retrieval comes from lack of knowledge of planetary boundary layer (PBL)
aerosol properties.
In this paper, we present a di>erent approach to surface property retrieval. For the radiative transfer simu-

lations, we use the discrete ordinate LIDORT model, which has the capability to generate simultaneous <elds
of radiances and weighting functions in a multiply scattering multi-layer atmosphere. Surface–atmosphere cou-
pling due to multiple scattering and re8ection e>ects is treated in full; the use of an atmospheric correction
is not required. Further, it is shown that sensitivities of TOA re8ectances to both linear and non-linear sur-
face BRDF parameters may be established directly by explicit analytic di>erentiation of the discrete ordinate
radiative transfer equations. Surface properties may thus be retrieved directly and conveniently from satellite
measurements using standard non-linear <tting methods. In the <tting for BRDF parameters, lower-boundary
aerosol properties can either be retrieved as auxiliary parameters, or they can be regarded as forward model
parameter errors. We present examples of simulated radiances and surface/aerosol weighting functions for
combinations of multi-angle measurements at several di>erent wavelengths, and we perform some examples
of self-consistent non-linear <tting to demonstrate feasibility for this kind of surface property retrieval.
Published by Elsevier Ltd.

∗ Tel.: +1-617-496-7819; fax: +1-617-354-3415.
E-mail address: rspurr@cfa.harvard.edu (R.J.D. Spurr).

0022-4073/04/$ - see front matter. Published by Elsevier Ltd.
doi:10.1016/S0022-4073(02)00283-2

mailto:rspurr@cfa.harvard.edu


16 R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004) 15–46

1. Introduction

1.1. Background to BRDF retrieval

Re8ectance of light from the terrestrial surfaces is an anisotropic phenomenon; it is characterized
mathematically by the bidirectional re8ectance distribution function (BRDF). The BRDF of a given
surface depends on the incident and re8ected viewing directions and also on intrinsic properties of
the surface itself. Proper consideration of surface re8ectance is important in remote sensing, not only
for the direct retrieval of surface properties from multi-angle backscatter measurements, but also in
the retrieval of atmospheric constituent distributions. Both applications require knowledge of surface
BRDFs, plus accurate radiative transfer (RT) modeling to deal with surface–atmosphere coupling
due to multiple scattering and re8ection.

In recent years, a number of remote sensing instruments have been deployed for surface retrieval.
These include the two EOS radiometers MODIS and MISR on the AM-1 platform, infrared mon-
itors such as AVHRR and ATSR-2, and the POLDER instrument that 8ew on ADEOS-1. BRDF
and surface albedo retrieval products have been generated on an operational basis for the MODIS
instrument [1]. In these applications, a variety of semi-empirical BRDFs (kernels) have been used to
model surface re8ectance; kernels have been used singly or in linear combinations. The total surface
BRDF is then related to the top-of-atmosphere (TOA) BRDF (as seen by the instrument) by means
of an atmospheric correction determined from radiative transfer considerations.

The kernel-based BRDF model may be written as

�(�s; �r; �) =
K∑
k=1

akfk(�s; �r; �; bk) (1)

for the BRDF function at incident zenith angle �s and re8ected zenith angle �r , with � indicating
the relative azimuth between the planes containing the incident and re8ected beams at the point of
re8ection. Geometrical dependence on incident and re8ected directions is assumed known for each
kernel fk . Each kernel depends non-linearly on a set bk of parameters which characterize the kernel
shape.

In the MODIS retrieval, land surface BRDF is simulated as a linear combination of three BRDF
kernels [1]. Once the re8ectance at the top of atmosphere (TOA) has been translated to the surface
BRDF by means of an atmospheric correction, the retrieval becomes essentially a linear regression
for the coe=cients {a1; a2; a3} (parameters bk are assumed known). In the POLDER work, TOA
re8ectances are also corrected for atmospheric e>ects. Surface BRDF signatures for various land
surface types may then be modeled with kernel functions (either singly or in linear combinations) to
determine either the coe=cients ak (linear regression) or the parameters bk (chi-square grid-search)
[2].

In reality, atmospheric correction itself is coupled to surface BRDF. Coupling e>ects can be sep-
arated with the assumption of a Lambertian surface in the RT simulations. Though convenient and
widely used, this assumption can generate signi<cant errors; in particular it becomes increasingly
untenable for larger atmospheric optical thickness. In the MODIS BRDF retrieval, the atmospheric
correction is applied iteratively. First, a correction is made using the Lambertian assumption and
then the BRDF kernel coe=cients are established by linear <tting. The resulting BRDF is then used



R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004) 15–46 17

to re-compute the correction, after which a second linear regression will generate an improved set
of coe=cients [1]. For most applications, one such iteration is usually su=cient to reduce surface
re8ectance errors to below the 3% level. Additional errors in retrieval parameters are due to uncer-
tainties in modeled atmospheric properties, the most prominent being the planetary boundary layer
(PBL) aerosol distribution.

1.2. Aims of this study

In this work we adopt a much more direct approach. We will treat surface property retrieval
as a standard non-linear <tting problem of the sort frequently encountered in remote sensing of
the earth/atmosphere system. The forward model (radiative transfer) part of such an algorithm will
simulate earthshine re8ectances at the satellite, and these are to be compared directly with the
instrument radiance measurements. The inversion may use unconstrained least squares or it can in-
corporate additional regularization either in the form of a priori knowledge (optimal estimation)
or the use of a regularization parameter (Phillips–Tikhonov). In all methods, the retrievals proceed
iteratively, with each iteration step being a linear inversion based on the minimization of a func-
tional such as the chi-square merit function. In optimal estimation, the iteration for state vector
xi is

xi+1 = xi + (KTS−1
measK + S−1

a )−1KTS−1
meas[Ymeas − F(xi)− K(xa − xi)]; (2)

in terms of the vector Ymeas of earthshine re8ectance measurements, the forward model simulation
F(xi), and the Jacobian (or weighting function) matrix K(xi) of derivatives of F(xi) with respect
to the elements in state vector xi. KT is the matrix transpose. xa is the a priori state vector, with
covariance matrix Sa, and Smeas is the error covariance on the measurement vector. For a surface
property retrieval based on linear combinations of BRDF kernels, state vector xi may consist of
the linear kernel coe=cients ak or the non-linear kernel parameters bk or any combination thereof.
It may also include a number of auxiliary parameters, such as the optical properties of the PBL
aerosol. For details on optimal estimation and other <tting methods, see [3].

The forward model is the key to this type of iterative retrieval. For the surface property application,
we have two main requirements: (1) the RT model should have a full multiple scattering treatment
in an multi-layer strati<ed atmosphere along with a comprehensive bidirectional treatment of surface
re8ectance; and (2) in addition to the usual radiance simulation Itoa=F(x), the RT model should have
the ability to generate accurately and e=ciently any sets of weighting functions Ktoa(x)=@F(x)=@R,
where R is any surface or atmospheric parameter to be retrieved. These requirements will ensure
that atmosphere/BRDF coupling is treated in full, and that surface property sensitivity applies to
radiances as seen by the remote sensing instrument; there is no need for atmospheric corrections
and a two-step breakdown of the retrieval.

In this work, we use the LIDORT model [4] which has been written for these sorts of retrieval
problems. LIDORT is a discrete ordinate RT package designed to deliver simultaneous <elds of
radiance values and all necessary Jacobian derivatives from a single call to the model. Jacobians are
calculated by explicit analytic di>erentiation of the complete set of discrete ordinate RT equations
in a multi-layer anisotropically scattering atmosphere; there is no need for time-consuming <nite
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di>erence approximations which require external perturbations of the atmospheric medium and sep-
arate calls to the (intensity-only) RT model. LIDORT will generate output at arbitrary viewing
geometry and optical depth. The pseudo-spherical approximation (solar beam attenuation in a curved
shell atmosphere) is standard, and there is also a sphericity correction available for wide-angle
o>-nadir viewing directions [5]. LIDORT was developed primarily for atmospheric retrieval appli-
cations, in particular for O3 pro<le retrieval from nadir UV backscatter spectrometers. Fast 4 and
6 stream versions of LIDORT will be incorporated into the <rst operational ozone pro<le retrieval
algorithm for the OMI instrument [6]. LIDORT has also been used for total vertical column retrieval
of selected trace species from GOME backscatter measurements in the UV and visible [7].

A full BRDF treatment of the surface has already been developed for LIDORT, but with only
one kernel function. Analytic surface property weighting functions have so far only been derived
for an albedo factor which normalizes the BRDF [8]. In this work, we re-formulate and extend the
surface boundary condition in terms of a linear combination of BRDF kernels. We then examine
the derivation of analytic weighting functions to include derivatives with respect to all linear and
non-linear parameters to be considered as part of a surface property retrieval. These derivations
are at the heart of this work, and are found in Section 3. Lambertian albedo weighting functions
have also been derived for the linearized RT model GOMETRAN [9]. Recently, an extension to
non-Lambertian surface property weighting functions has been outlined in Landgraf et al. [10], using
a Gauss–Seidel RT model and an adjoint perturbation-model approach to the linearization.

We present examples of simulated earthshine re8ectances for a range of viewing angles and for a
number of BRDF-kernel combinations, including specular re8ection and various land-surface vegeta-
tion types. Computations are done for 6 wavelengths in the visible and for a number of PBL aerosol
optical thickness values. Jacobian weighting functions with respect to these linear and non-linear
BRDF parameters are presented, and these Jacobians are useful for examining the sensitivity of
surface retrieval. We also look at PBL aerosol weighting functions with respect to optical thickness,
single scattering albedo and Angstrom exponent. To demonstrate feasibility for a simultaneous re-
trieval of surface parameters and PBL aerosol properties using multi-angle synthetic measurements at
a small number of wavelengths, we construct synthetic measurements using LIDORT, and add mea-
surement and random noise. Since the forward model also uses LIDORT, any such “quasi-perfect”
retrieval should return state vector elements close to their true values, depending on the level of
noise added to the measurements. We show that this retrieval is feasible for a typical 3-kernel BRDF
formulation, and for a number of values of PBL aerosol optical thickness.

The plan of the paper is straightforward. In Section 2, we summarize BRDF kernel parameteriza-
tions, including the ones used for MODIS BRDF retrieval. Here we also look at the decomposition
of kernels and their parameter derivatives in terms of a Fourier series in the cosine of the relative
azimuth between planes of incidence and re8ection. This decomposition is an essential prerequisite
for the subsequent RT analysis. In Section 3 we present the discrete ordinate theory required for
the analytic determination of surface property Jacobians. This is not a complete exposition of the
LIDORT model; we do not discuss atmospheric solutions to the radiative transfer equations, but
instead concentrate on the surface boundary condition and the coupling of BRDFs in the radiation
<eld. Numerical results are presented in Section 4. Following the scenario set-up in Section 4.1,
Section 4.2 gives LIDORT simulations of TOA re8ectance for a number of surface BRDF kernel
combinations. In Section 4.3 we look at the corresponding weighting functions with respect to sur-
face and PBL aerosol properties. In Section 4.4 we perform a self-consistent direct <tting of surface
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and PBL aerosol properties. We conclude with some remarks on the implications of this study for
operational retrieval of surface properties.

2. BRDF formalism

2.1. BRDF kernels used in this work

Semi-empirical BRDF models tend to be divided between those that use a volume scattering
treatment by surface facets, and those that use geometric-optics modeling of various shadow e>ects.
In these formulations, the BRDF itself usually consists of a constant Lambertian term (isotropic
surface) plus a kernel function depending on the model used:

�(�s; �r; �) = a0 + a1f(�s; �r; �; b); (3)

where b indicates a set of non-linear parameters characterizing the kernel.
Two volume scattering kernels, the Ross-thin and Ross-thick models [11], are used in MODIS

BRDF retrieval models. The Ross-type BRDFs depend on the leaf-area index (LAI); the LAI pa-
rameterization is subsumed in the linear weighting factors a0 and a1, and the Ross kernels fthin and
fthick are purely geometric functions free from any non-linear parameterizations. For geometric-optics
vegetation models, MODIS uses the Li-sparse and Li-dense models [11]. These are based on the
treatment of canopy crowns as spheroids; there are 2 non-linear parameters b(Li)1 (crown vertical
to horizontal radius) and b(Li)2 (ratio of height of crown center above ground to vertical radius).
For MODIS BRDF products, most land surfaces are modeled as the weighted sum of three kernels,
one for an isotropic surface, one Ross-type kernel and one Li-type kernel. Values of b(Li)1 = 1:0 are
used for the Li-sparse kernel, and b(Li)1 = 2:5 for the Li-dense kernel; b(Li)2 is <xed at 2.0 for both
Li-type kernels. The POLDER BRDF retrieval also uses a 3-kernel linear combination known as the
Roujean model [2]. This has a Lambertian term, a Ross-thick volume-scattering kernel and a simple
parameter-free geometric-optics kernel [12].

Other more empirically based BRDF models have been suggested for vegetation surfaces; these
include the Rahman 3-parameter model [13] and the Hapke model (also 3 parameters) [14]. These
models are not usually used as part of a linear kernel combination. Di>erences in these two models
are mainly in the treatment of the so-called hot-spot function (the backscatter peak). For water
surfaces, it is common to use the specular (glitter) BRDF based on a Cox–Munk Gaussian distribution
of wave facets [19]; in this case wind speed and refractive index of water are the two non-linear
parameters characterizing the kernel. MODIS BRDF retrieval uses a Lambertian, Cox–Munk and
Li-sparse combination for certain land scenarios with a substantial surface water component (melting
ice, 8ooded <elds); the wind speed is pre-set at 5 m=s.

In this work, we consider 8 non-Lambertian kernels (2 Ross-type, 2 Li-type, Roujean, Rahman,
Hapke and Cox–Munk). This covers a wide range of surface types. Mathematical expressions for
these kernels are found in Appendix A, where dependencies of the kernels on non-linear parameters
b are made explicit. Fig. 1 shows some kernel comparisons for viewing angles in the principal
plane, with solar angles as indicated; plots of the Rahman, Cox–Munk and Hapke functions have
been scaled for convenience of display. Values of non-linear parameters are as follows: b={1:0; 2:0}
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Fig. 1. (Left panels) Kernel shapes for the Ross-thin (solid line), Ross-thick (dotted), Li-sparse (dashed) and Li-dense
(dash-dot) functions; (Right panels) kernel shapes for the Roujean (solid line), Hapke (dotted), Rahman (dashed) and
Cox–Munk (dash-dot) functions. All results are in the principal plane for viewing angles in the range [− 85◦; 85◦].

(Li-dense); b = {2:5; 2:0} (Li-sparse); b = {0:6; 0:06; 1:0} (Hapke); b = {0:1;−0:5; 1:5} (Rahman);
b= {5:0; 1:334} (Cox–Munk). For more explanation on the vector entries, refer to Appendix A.
Since we are interested in weighting functions with respect to surface quantities, we need the

BRDF derivatives. Assuming the linear kernel combination in Eq. (1), we have

@�(�s; �r; �)
@ak

= fk(�s; �r; �; bk);

@�(�s; �r; �)
@bck

= ak�k(�s; �r; �; bk) ≡ ak @fk(�s; �r; �; bk)@bck
:

Linear coe=cient derivatives are easy to determine. In Appendix A, we also present explicit forms
for kernel derivatives with respect to non-linear parameters bck ; these are absent for the two Ross
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kernels and the Roujean kernel (none of these has any free parameters). BRDF derivatives are a
necessary starting point for the surface property weighting functions.

2.2. BRDF Fourier components

To solve the RT equation in an anisotropically scattering medium using the discrete ordinate
method, geometrical dependence on azimuth angle is removed using a Fourier series expansion of
the radiation <eld in terms of the cosine of the relative azimuth angle between the line-of-sight
plane and the solar plane. This applies not only to the scattering <eld and its weighting function
derivatives, but also to the bidirectional re8ection function. Thus for each BRDF kernel, we have

f(�s; �r; �; bk) =
M∑
m=0

fmk (�s; �r; bk) cosm�: (4)

Fourier coe=cients may be determined from the inverse relation

fm(�s; �r; b) =
1 + �m0

2�

∫ 2�

0
f(�s; �r; �; b) cosm� d�: (5)

In general the inversion must be done numerically for all values of the incident and re8ected angles
required in the radiative transfer computations. It is possible to use a double quadrature scheme over
the intervals [− �; 0] and [0; �]. Care needs to be taken for geometries close to hot-spot conditions;
in these cases one should use a <ner quadrature or resort to <ne-grid trapezium rule integration. The
accuracy of this implementation was tested by reconstructing the original kernels from their Fourier
coe=cients, up to a certain level of accuracy. For incident and re8ected angles from 0◦ to 89◦ and
for all values of �, a quadrature with 360 terms or a trapezium integration with resolution 0:5◦ is
su=cient to reproduce virtually all kernels to an accuracy of 10−4. The main exception was found
for the Cox–Munk kernel at angles of glancing incidence and re8ection. We note in passing that a
25-stream quadrature rule is standard in DISORT for the BRDF decomposition [15].

The non-linear parameter derivatives �k(�s; �r; �; bk) as de<ned above also have a Fourier series
decomposition in cosine azimuth, and the Fourier components are established in the same way by
numerical integration:

�mk (�s; �r; bk) =
1 + �m0

2�

∫ 2�

0
�k(�s; �r; �; bk) cosm� d�: (6)

The coe=cient forms fmk (�s; �r; bk) and �mk (�s; �r; bk) are basic inputs to the LIDORT computation
of the mth Fourier component of the radiance and Jacobian <elds. Once the kernel form is written
down explicitly and its derivative found by analytic means, then the stage is set for the analytic
derivation of surface property Jacobians.

There is one other constraint that should be placed on the BRDF. We take the total spherical
albedo of the surface to lie between 0 and 1, that is

0¡
K∑
k=1

akSk ¡ 1; where Sk =
1
4

∫ 1

0

∫ 1

0
�s�rf0

k(�s; �r) d�s d�r (7)

with �s = cos �s and �r = cos �r .



22 R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004) 15–46

3. BRDFs in LIDORT: analytic surface property Jacobians

For satellite applications we are interested in top of the atmosphere (TOA) upwelling radiative
transfer output. In terms of the Fourier expansion in cosine azimuth as noted above, and for output
at stream direction �, we require

I+toa(�; �) =
2N−1∑
m=0

Imtoa(�) cosm�; (8)

@I+toa
@R

(�; �) =
2N−1∑
m=0

@Imtoa(�)
@R

cosm�: (9)

In the RT calculation, the maximum number of Fourier coe=cients that can be used is 2N − 1,
where Ns is the number of discrete ordinate polar angles used in the scattering quadrature. In practice,
it is not necessary to compute all terms in the Fourier series; the summation is stopped when the
addition of one more Fourier component fails to change the radiance by more than a pre-speci<ed
small “accuracy” threshold (0.001 is typical) for all output angles. It follows that one should not
pre-calculate all possible BRDF Fourier coe=cients, but instead evaluate them one component at a
time as they are needed. From now on we assume that the Fourier decomposition holds and the
Fourier index m is implied.

3.1. The discrete ordinate radiance solution at TOA

In a multi-layer atmosphere, the upwelling radiance in direction � at TOA is

I+toa(�) = H
+(�)Tn(�) +

n∑
p=1

 +
p (�)Tp−1(�); (10)

where Tp(�) is the cumulative transmittance along direction � from TOA to the lower boundary
of layer p; T0(�) ≡ 1, and Tn(�) is the whole-atmosphere transmittance.  +

p (�) are the upwelling
whole-layer scattered light source terms, while H+(�) is the upwelling intensity at the surface. An
expression for H+(�) will be given shortly when we consider the surface boundary condition, but
<rst we derive the layer source terms  +

p (�).
In the discrete ordinate method, multiple scatter integrals are approximated by a quadrature sum

over a set of polar angle cosines (the discrete ordinates) selected using a double Gauss–Legendre
scheme over the intervals [− 1; 0] and [0; 1]. Solution of the homogeneous RTE proceeds via eigen-
value methods, and the particular RTE solution (due to scattering out of the direct solar beam) is
then determined by substitution or by Green’s function methods. The precise forms of the homo-
geneous and particular solutions do not concern us here, and the reader is referred to the literature
for details (see for example [16]). In an atmosphere assumed to be strati<ed in the vertical, the
2N -stream discrete ordinate solution of the RTE in a given layer p is

I±jp(x) =
N∑
#=1

[Lp#X±
jp#e

−&p#x +Mp#X∓
jp#e

−&p#('p−x)] + G±
jp(x); (11)
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where X±
jp# are the eigensolutions of the homogeneous RT equation in layer p for discrete ordinates

�±j, with corresponding separation constants &p# (eigensolutions are labeled by index #), and G±
jp(x)

are the particular RT solutions for scattering of the solar beam. x is the vertical coordinate (optical
thickness measured from top of layer), with 'p the complete layer optical thickness. Lp# and Mp#

are integration constants to be established from the imposition of boundary conditions; we discuss
these in Section 3.2.

Determination of the layer source terms follows the source function integration method <rst out-
lined by Chandrasekhar [17]. Essentially, we substitute solution (11) in the multiple scatter integral
which forms part of the RT equation for radiance at arbitrary polar direction, and carry out an optical
thickness integration over the whole layer. The result is

 +
p (�) =

N∑
#=1

[Lp#Y+
p#(�) +Mp#Y−

p#(�)] + G
+
p (�); (12)

where functions Y±
p#(�) arise from source function integration of eigensolutions X±

p#, and G
+
p (�) is

made up of integrations of primary scattering and direct beam contributions. Again the exact forms
of these functions do not concern us here, and we assume they are known, already calculated as
part of the LIDORT package (for details, see [8]). The important point is that the source terms are
a linear combination of the integration constants, and we may substitute (12) in (10) to get

I+toa(�) = H
+(�)Tn(�) +

n∑
p=1

Tp−1(�)

{
N∑
#=1

[Lp#Y+
p#(�) +Mp#Y−

p#(�)] + Gp(�)

}
: (13)

We seek the derivatives of I+toa(�) with respect to a surface property R. This may be a Lambertian
albedo, a kernel factor ak or one of the non-linear kernel parameters bck . We keep the discussion
general at this point. We note that the layer homogeneous and particular RTE solutions and the
corresponding source function integration terms in (12) have no dependence on surface properties, so
their derivatives with respect to R vanish. Indeed TOA radiance is coupled to the surface re8ectance
not only directly through the surface term H+(�) but also indirectly through the integration constants
Lp# and Mp#. Di>erentiation of (13) yields

@I+toa(�)
@R

=
@H+(�)
@R

Tn(�) +
n∑

p=1

Tp−1(�)

[
N∑
#=1

@Lp#
@R

Y+
p#(�) +

@Mp#

@R
Y−
p#(�)

]
: (14)

We now discuss derivations of the integration constants in our examination of the boundary value
problem.

3.2. The boundary value problem

We keep the discussion at a general level, but omit details of the atmospheric layer calculations.
The three boundary conditions are (1) downward di>use radiation at TOA is zero; (2) upwelling and
downwelling <elds are continuous at atmospheric layer interfaces; (3) there exists a relation between
the upwelling and downwelling <elds at the surface in terms of a speci<ed surface re8ectance
property. There are n layers in total. Writing the 2N -vector Qp for the set of unknowns {Lp#;Mp#}
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in layer p we may write the three conditions symbolically as

A1Q1 = E(1) for p= 1; (15)

BpQp + CpQp−1 = E(2)
p for p= 2; : : : ; n; (16)

DnQn = E(3) for p= n; (17)

where matrices A1 and Dn have dimensions N ×2N , matrices Bp and Cp for p=2; : : : ; n each have
dimensions 2N × 2N: E(1) and E(3) are N -vectors, E(2)

p for p= 2; : : : ; n are 2N -vectors.
Vectors and matrices for the <rst two boundary conditions are constructed from the layer RT

solutions; they do not depend on surface re8ection. Again we do not need to know the exact forms
here; details may be found in the literature, for example in Thomas and Stamnes [16]. Explicit forms
for Dn and E(3) will be given in the next section. For now we note that these three conditions may be
combined to produce the linear matrix algebra problem AQ=E. Matrix A has a sparse tridiagonal
block form, and its inverse may be found by standard numerical methods. (For a visualization of
this matrix, see [8]). Indeed, determining the inverse A−1 is the most time-consuming part of any
numerical implementation of the discrete ordinate theory in a multi-layer atmosphere. From this
system, we get Q=A−1E for the constants of integration, and at this juncture, we can complete the
layer discrete ordinate solutions and the source function terms  p required for an upward integration.

Di>erentiation of the above three boundary conditions gives us

A1
@Q1

@R
= 0 for p= 1; (18)

Bp
@Qp
@R

+ Cp−1
@Qp−1

@R
= 0 for p= 2; : : : ; n; (19)

Dn
@Qn
@R

= E ′(3) =
@E(3)

@R
for p= n; (20)

where we have written @Qp=@R for the vector of derivatives {@Lp#=@R; @Mp#=@R}. Clearly the solution
of the new system is @Q=@R=A−1E′. Matrix inverse A−1 has already been established during the
determination of the original set of integration constants, so the solution for the derivatives is merely
a matter of back-substitution using a di>erent right-hand vector E′ for which the only non-zero entries
are the derivatives of E(3) in the boundary layer.

Thus we have solved the boundary value problem for the integration constants and their derivatives.
It remains now to consider explicit forms for the matrix Dn, the vectors E(3) and E ′(3) and the surface
term H+(�) and its derivative. To do this we look at the surface boundary condition.

3.3. Details of the BRDF surface boundary condition

The surface boundary condition is

H+(�) = (1 + �m0)
∫ 1

0
�(�; �′)H−(�′) d�′ + T��(�; �0); (21)



R.J.D. Spurr / Journal of Quantitative Spectroscopy & Radiative Transfer 83 (2004) 15–46 25

where H± are the upwelling(+) and downwelling(−) radiance <elds at the surface, and T� is the
direct (solar) beam transmittance to the surface. The integral in (21) is approximated by the discrete
ordinate quadrature. We <rst insert quadrature values �i in (21):

H+
i = *

N∑
j=1

�jwjH−
j

K∑
k=1

akfkij + T�
K∑
k=1

akfki0; (22)

where we have the following de<nitions for BRDF kernel Fourier components at quadrature angles:

fkij = fk(�i; �j; bk) quadrature incidence; quadrature re8ected;

fki0 = fk(�i; �0; bk) direct beam incidence; quadrature re8ected:

In terms of the discrete ordinate solution (11) at the lower boundary of layer n, we have

H±
j =

N∑
#=1

[Ln#X±
jn#,n# +Mn#X∓

jn#] + G
±
jn('n) for j = 1; : : : ; N; (23)

where ,n# = exp[ − &n#'n] and the particular solution G±
jn is evaluated for the whole layer optical

thickness 'n. Substituting these solutions in (22), we <nd

N∑
#=1

[Ln#D+
i# +Mn#D−

i# ] = E
(3)
i for i = 1; : : : ; N; (24)

where

D+
i# =,n#

[
X+
in# −

K∑
k=1

akU+
ki#

]
; (25)

D−
i# = X

−
in# −

K∑
k=1

akU−
ki#; (26)

E(3)
i =−

[
G+
in('n)−

K∑
k=1

akWki

]
+ T�

K∑
k=1

akfk�0; (27)

with the following auxiliary de<nitions:

U±
ki# = (1 + �m0)

N∑
j=1

�jwjX∓
jn#fkij; (28)

Wki = (1 + �m0)
N∑
j=1

�jwjG−
jn('n)fkij: (29)
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In (10) we require the upwelling surface <eld for arbitrary polar direction �; application of the
boundary condition (21) and the discrete ordinate approximation yields

H+(�) = (1 + �m0)
N∑
j=1

�jwjH−
j

K∑
k=1

akfk�j + T�
K∑
k=1

akfk�0; (30)

where we have the following de<nitions for BRDF kernel Fourier components for re8ection at
o>-quadrature angles:

fk�i = fk(�i; �; bk) quadrature incidence; user-angle re8ected;

fk�0 = fk(�; �0; bk) direct beam incidence; user-angle re8ected:

This completes the explicit determination of terms in the surface boundary condition. We now look
at the derivatives of these terms and follow this up with the analytic determination of TOA weighting
functions.

3.4. TOA weighting functions from the linearized BRDF condition

We wish to compute derivatives of the surface boundary condition. There are two choices, (1)
with respect to kernel factors ak ; (2) with respect to components bkc of the vector of non-linear
kernel parameters.

3.4.1. Linearization w.r.t. kernel factors ak
This is straightforward; we take the derivative of (24) and use de<nition (27) to obtain

N∑
#=1

[
@Ln#
@ak

D+
i# +

@Mn#

@ak
D−
i#

]
=Wki + T�fki0 +

N∑
#=1

[Ln#,n#U+
ki# +Mn#U−

ki#]: (31)

This equation completes the boundary value speci<cation for the derivatives of the integration con-
stants, and we solve for them using back-substitution as indicated above. Once this is done, we
di>erentiate the surface upwelling radiation <eld at arbitrary � as given in (22) to get

@H+(�)
@ak

= (1 + �m0)
N∑
j=1

�jwj

[
@H−

i

@ak

K∑
k=1

akfk�j + H−
j fk�j

]
+ T�fk�0; (32)

in which the derivatives of the downwelling discrete ordinate <eld are given by

@H−
j

@ak
=

N∑
#=1

[
@Ln#
@ak

,n#X−
in# +

@Mn#

@ak
X+
in#

]
: (33)

Eq. (32) is the end point of the chain of di>erentiation, and this result together with the integra-
tion constant derivatives is enough to generate the desired weighting functions at the top of the
atmosphere.
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3.4.2. Linearization w.r.t. kernel parameters bkc
This is a little more tricky but the principles are the same. We express the linearization in terms

of the derivatives of the kernel Fourier components, that is

�ckij =
@fkij(bk)
@bkc

quadrature incidence; quadrature re8ected;

�cki0 =
@fki0(bk)
@bkc

direct-beam incidence; quadrature re8ected;

�cki� =
@fki�(bk)
@bkc

quadrature incidence; user-angle re8ected;

�ck�0 =
@fk�0(bk)
@bkc

direct-beam incidence; user-angle re8ected:

These quantities may be determined from expressions in Section 2, with explicit forms for the kernel
derivatives given in Appendix A. Di>erentiation of the boundary condition gives

N∑
#=1

[
@Ln#
@bkc

D+
i# +

@Mn#

@bkc
D−
i#

]
=
@E(3)

i

@bkc
: (34)

This is in the correct form to be used in the solution of the integration constant derivatives. We
have

@E(3)
i

@bkc
= ak

@Wi

@bkc
− ak

N∑
#=1

[
Ln#,n#

@U+
ki#

@bkc
+Mn#

@U−
ki#

@bkc

]
+ T�ak�cki0: (35)

From the de<nitions, we have for the derivatives

@U±
ki#

@bkc
= (1 + �m0)

N∑
j=1

�jwjX∓
−jn#�kij; (36)

@Wki

@bkc
= (1 + �m0)

N∑
j=1

�jwjG−
jn('n)�kij: (37)

For the user-de<ned directions, we linearize (30) in the same way:

@H+(�)
@bkc

= (1 + �m0)
N∑
j=1

�jwj

[
@H−

i

@bkc

[
K∑
k=1

akfk�j

]
+ H−

j ak�k�j

]
+ T�ak�k�0; (38)

with

@H−
j

@bkc
=

N∑
#=1

[
@Ln#
@bkc

,n#X−
jn# +

@Mn#

@bkc
X+
jn#

]
; (39)

by analogy to Eq. (33).
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3.5. Summary

In this section we have shown that, once the discrete ordinate solution for intensity has been
found, it is entirely di>erentiable with respect to any non-linear or linear surface BRDF parameter.
It follows that analytic expressions can be written down for the corresponding TOA weighting
functions. Although the theory presented here applies to the satellite application, it is possible to
write down analytic surface-parameter weighting functions for upwelling and downwelling radiation
anywhere in the atmosphere. This has been done in the LIDORT package, which now o>ers complete
surface weighting function capability along with the output of weighting functions with respect to
atmospheric quantities. It is also possible to derive surface property weighting functions in the
presence of surface emission (re8ectance and emittance are related according to Kirchho>’s law).
This was done for a Lambertian surface in the original LIDORT formulation [4]; the extension
to a full BRDF treatment is straightforward and has been implemented in the software. Note that
this formulation with surface emission also includes a weighting function with respect to the surface
Planck function. Finally we note that numerical implementation of all weighting functions in LIDORT
may be tested by making separate calls to the model in order to determine <nite di>erence estimates
of the Jacobian derivatives.

4. Results: LIDORT simulations and retrieval feasibility

4.1. BRDF and PBL scenarios

We assume the atmosphere to be vertically strati<ed, with 19 pressure levels separating 18 optically
uniform layers (the levels are at 0:1; 0:3; 0:5; 1:0; 2:0; 5:0; 7:0; 10:0; 20:0; 30:0; 50:0; 70:0; 100:0; 150:0;
200:0; 300:0; 500:0; 705:0, and 1000:0 mb). The PBL is about 3 km thick in this strati<cation. The
temperature distribution has been interpolated from a USA standard atmosphere. Molecular scattering
coe=cients and depolarization ratios are taken from empirical formulae [18]. Background LOWTRAN
aerosol data are used for all layers except the lowest (PBL). For this, we assume (i) a constant
aerosol single scatter albedo !0, (ii) a constant asymmetry parameter g0 to be used for the aerosol
phase function characterization, and (iii) a power-law relationship for the wavelength dependence of
the PBL optical thickness �(PBL)(�):

�(PBL)(�) = �(PBL)0

[
�
�0

]*
; (40)

for Angstrom exponent * and reference wavelength �0=550 nm, with �(PBL)0 ≡ �(PBL)(�0). We assume
a Henyey–Greenstein form for the aerosol phase function, with corresponding Legendre expansion
coe=cients 3(PBL)l expressed as powers of g0.

LIDORT requires as input the layer total optical thickness, single scatter albedo and total phase
function Legendre moments. For the PBL, the <rst two of these are

'(PBL)(�) = �(Ray)(�) + �(PBL)(�) and 5(PBL)(�) =
�(Ray)(�) + !0�(PBL)(�)

'(PBL)(�)
; (41)
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where �(Ray)(�) is the molecular scattering optical thickness. Similarly 3(PBL)l will be expressed as
a combination of molecular and aerosol coe=cients weighted by their respective scattering optical
thickness values.

We use LIDORT to calculate TOA re8ectances and their derivatives with respect to surface and
PBL aerosol parameters. Jacobians for BRDF linear and non-linear parameters are calculated using
the theory of the previous section, based on linear and non-linear parameterizations of the surface
BRDF in terms of kernel combinations. For the PBL aerosol, we want weighting functions with
respect to 3 quantities 61 = �(PBL)0 ; 62 = !0 and the Angstrom exponent 63 = *. From the above
de<nitions (41), it is straightforward to write down the derivatives @5(PBL)=@6q; @'(PBL)=@6q and
@3(PBL)l =@6q for q = 1; 2; 3; once these are known, we can initiate the linearization. Details of the
calculation of atmospheric pro<le weighting functions may be found in [8].

4.2. Simulation of TOA re;ectances

In Figs. 2–5, we show some simulations of earthshine re8ectance for a number of BRDF kernel
combinations as indicated. All calculations in this and the following section were done with an
8-stream discretization of the polar angle in the half-space [0; �=2]. All results here were calculated for
PBL aerosol quantities *=1:1; !0=0:9; g0=0:7. The 8 sub-plots correspond to calculations done with
di>erent values of the PBL aerosol optical thickness (AOT) (�0 =0:01; 0:05; 0:1; 0:2; 0:4; 0:7; 1:0; 2:0).
In all cases the solar zenith angle was taken at 25◦, and all calculations were done in the principal
plane. Linear kernel coe=cients ak and non-linear BRDF parameters bk are indicated in the <gure
captions. Each plot contains results for 6 di>erent wavelengths (360; 390; 440; 490; 540 and 590 nm)
covering part of the UV and visible.

There are a number of features of interest. In Fig. 2, non-linear parameters in the Rahman BRDF
kernel (see Appendix A) have a strong e>ect on the TOA re8ectance signature at all wavelengths, and
especially for small values of �0. The backscatter hot-spot is particularly strong; this is not surprising
as an asymmetry value of −0:8 was chosen for the non-linear kernel parameter that characterizes
the surface facet scattering. Fig. 3 shows TOA backscatter in the presence of specular glitter without
shadow e>ects. Here, we take the usual Cox–Munk empirical relation 82=0:003W+0:00512 between
the wind speed W in m/s and the variance 82 of the Gaussian distribution of wave facet slopes.
Figs. 4 and 5 show TOA re8ectances for two of the kernel combinations used in MODIS BRDF
retrieval studies. Non-linear kernel parameters are those assumed for the MODIS BRDF retrieval
[1]. In both cases, the viewing angle dependence shows distinctive shapes; in particular note the two
peaks in Fig. 5 corresponding to dominant specular glitter e>ects (forward direction) and dominant
hot-spot backscatter. The radiance dependency on viewing angles is similar for higher wavelengths
in the regime dominated by aerosol scattering, where there is a relatively smooth and slow-varying
dependence of optical properties on wavelength. However, for the lower (UV) wavelengths, the
e>ect of molecular scattering is correspondingly greater. We also note that most of the characteristic
surface features are obscured for an optically thick PBL aerosol; indeed the extreme case �0 = 2:0
is similar to a cloud deck.

4.3. Simulation of TOA weighting functions

In this section we present some graphs of weighting function output from the LIDORT model. The
BRDF kernel combinations in Figs. 6–9 are the same as those used in the intensity-only simulations
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Fig. 2. Values of TOA backscatter intensity for a single BRDF kernel (the Rahman function) with linear factor 1.0, and
non-linear parameters 0:1;−0:8 (the phase function asymmetry factor) and 1.5. Values of AOT are as indicated. The
strong hot-spot dependency around the solar angle (marked with the straight dashed vertical line) is evident. In the top
left panel, wavelengths are in descending order from 360 nm (solid line), 390 nm (dotted line), through 440; 490; 540
and 590 nm.

of Figs. 2–5. Linear kernel scaling factors are indicated in the <gure captions. Non-linear parameters
are the same as those used in the previous set of <gures. The set of 6 wavelengths is the same, as is
the solar zenith angle and the principal plane geometry. All results in these <gures are computed for
an AOT value of 0.1. In all cases, weighting functions for the above-mentioned three PBL aerosol
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Fig. 3. Values of TOA backscatter intensity for the single Cox–Munk BRDF kernel with linear factor 1.0, and non-linear
parameters 5.0 (wind speed in m/s) and 1.334 (refractive index). Wavelengths and solar zenith angle as in previous <gure.

parameters are displayed. All weighting functions are parameter-normalized, that is, the quantities
plotted are 6@Itoa=@6.

Weighting function output is useful for looking at retrieval sensitivity. For example in Fig. 7,
weighting functions in the third and sixth panels are very similar in distribution. This indicates that
it would be hard to distinguish the e>ects of the two parameters in a retrieval situation; <tting
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Fig. 4. Values of TOA backscatter intensity for a linear combination of BRDF kernels; a Lambertian function with linear
factor 0.5, a Ross-thick function with linear factor 0.5, and a Li-dense function with linear factor 0.1 and non-linear
parameters 2.5 and 2.0. Wavelengths and solar zenith angle as in previous two <gures. This combination is one of the
MODIS options.

PBL aerosol single scatter albedo and refractive index is not a good idea. On the other hand, all
weighting functions with respect to wind speed (Fig. 7 panel 5 and Fig. 9 panel 6) have distinctive
shapes not seen in other sensitivity functions, indicating that this quantity can be retrieved with some
con<dence.
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Fig. 5. Values of TOA backscatter intensity for a linear combination of BRDF kernels; a Lambertian function with linear
factor 0.5, a Cox–Munk function with linear factor 1.0 and parameters 5.0 and 1.334 as in Fig. 3, and a Li-sparse function
with linear factor 0.1 and non-linear parameters 1.0 and 2.0. Wavelengths and solar zenith angle as in previous three
<gures. This combination is the MODIS option for vegetation cover with a surface water component.

4.4. Self-consistent surface property retrieval

In this section we look beyond pure RT model output and attempt some <tting. Synthetic mea-
surements in the form of sun-normalized radiances Is are created using the LIDORT model in
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Fig. 6. Values of TOA backscatter weighting functions for the Rahman BRDF kernel with linear factor 1.0, and non-linear
parameters 0.1, −0:8 and 1.5 as in Fig. 2. The AOT is 0.1. The three PBL aerosol weighting functions are in the top
3 panels, while the lower panels are surface weighting functions for the non-linear kernel parameters. The scale factor
weighting function is not shown.

“intensity-only” mode (no Jacobians) for a given set of atmospheric and surface parameters. We
assume independent Gaussian statistics for errors on these synthetic measurements, with error levels
set at 93 ≡ 10−3 and 94 ≡ 10−4. Synthetic measurements were created at 5 of the 6 wavelengths
used in the previous two sections (590 nm was left out), and for a set of 23 viewing angles from
1◦ to 41◦ at intervals of 2◦, plus two additional measurements at 45◦ and 49◦. We consider mea-
surements in both solar and anti-solar planes; all told, there are 230 multi-angle measurements for
a given scenario and solar zenith angle. We pick the MODIS-type scenario with a vegetation cover
and surface water: Figs. 5 and 9 in the previous section.

For the <tting, we use the standard optimal estimation method, which proceeds iteratively in
a series of linear inversion steps as noted in Eq. (2). Since we are using the same RT in the
forward model as was used to create synthetic measurements, the <tting should converge to the
“truth” values that were used in the synthetic measurement simulation, subject of course to retrieval
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Fig. 7. Values of TOA backscatter weighting functions for the single Cox–Munk BRDF kernel with linear factor 2.0, and
non-linear parameters 5.0 (wind speed in m/s) and 1.334 (refractive index). The lower center panel has the wind speed
weighting functions.

uncertainty. The retrieval is perfect if there are no other sources of error. We can create a more
realistic situation by introducing two other error sources: (1) some random noise on the synthetic
measurements, via I ′s = Is + 93 · Gs or I ′s = Is + 94 · Gs, where Gs is a Gaussian random deviate;
and (2) some forward model error by using LIDORT with a lower number of discrete ordinates
in the retrieval. For the results in Tables 1–3, 14 half-space streams were used for the synthetic
measurements, and 7 streams were used for LIDORT in the retrieval. Another source of error is
model parameter uncertainty (for example, knowledge of the temperature pro<le); we do not consider
this here, other than to note that it is straightforward to include it in the <tting as long as some
statistics are present and provided the appropriate sensitivity functions can be conveniently calculated.
In this regard, the latter aspect is easily dealt with by LIDORT, which has a full weighting function
capability.

We use a global <t with all 230 observations. In a sense this is an example of hyperspectral image
<tting; the aim is to combine multi-angle observations at a number of spectral channels to determine
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Fig. 8. TOA backscatter weighting functions for the linear combination of BRDF kernels in Fig. 4; total of 8 weighting
functions (3 atmospheric, 5 surface).

a whole range of surface and lower atmosphere parameters. This is just the sort of situation that
applies to MODIS; this kind of global <t has (to my knowledge) not been attempted yet for this
instrument. For the scenario considered, there are 3 kernels (Lambertian, Cox–Munk and Li-sparse).
For the state vector, we try to retrieve all 3 aerosol parameters, all 3 linear kernel coe=cients
and 3 out of the 4 non-linear kernel parameters (we omit the refractive index of water). There
are 9 parameters in all. For all parameters, the initial guess was taken to be 25% away from the
true value. Retrieval accuracy is examined by looking at the solution covariance matrix. The initial
guess was also taken to be the a priori state vector; in this rather idealized case, the <tting is not
ill-conditioned, and it is only necessary to impose light regularization (100% standard deviations and
no cross-correlations for the a priori covariance).

Tables 1 and 2 summarize two global <ts for this scenario, with “true” values compared alongside
a priori and retrieved values, and the retrieval parameter standard deviation (square roots of the
diagonal entries in the solution covariance matrix). Also shown are the % departures of the retrieved
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Fig. 9. TOA backscatter weighting functions for the linear combination of BRDF kernels in Fig. 5; total of 10 weighting
functions (3 atmospheric, 7 surface).

values from the truth. Fit results re8ect the in8uence of forward model errors as noted above, and
the inclusion of random errors. Table 1 is based on a general noise level of 93, Table 2 on 94. For
UV and visible backscattered light at the wavelengths noted here, these noise levels are realistic
for solar zenith angle 25◦. In both cases, 6 iterations were required for convergence. In optimal
estimation one can de<ne the degrees-of-freedom of signal and the total information diagnostics,
DFS and H , respectively; for details see [3]. As expected, the DFS was close to 9.0 (the dimension
of state vector space); for the information, H =54:37 for the 93 case (Table 1), with H =75:10 for
the 94 case (Table 2).

Also of interest is the cross-correlation matrix which corresponds to the o>-diagonal entries in
the solution covariance. An example is given in Table 3 for the same retrieval problem; we notice
in general that there are no correlations close to 1 or −1, with one exception. Parameters 7 and 9
(the Li-sparse kernel linear coe=cient and second aspect ratio) are highly anti-correlated, indicating
that there will be little to distinguish them in practice. In this respect, the wind speed and the PBL
aerosol optical thickness are noticeably “easy” quantities to recover.
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Table 1
Self-consistent optimal estimate retrieval for 9 surface and PBL aerosol properties as indicated

Parameter A priori Truth Retrieved Accuracy Departure
(% di>erence) (% di>erence)

PBL optical thickness 0.1250 0.1000 0.09792 1.98699 −2:08290
PBL single scatter albedo 0.9000 0.8500 0.84454 2.11441 −0:64191
PBL Angstrom exponent 1.3750 1.1000 1.16772 4.11372 6.15603
Kernel 1, linear coe>. 0.6250 0.5000 0.49966 0.21687 −0:06798
Kernel 2, linear coe>. 6.2500 5.0000 4.94776 0.57176 −1:04483
Kernel 2, Wind speed (m/s) 7.5000 5.0000 4.98037 0.30527 −0:39258
Kernel 3, linear coe>. 0.1250 0.1000 0.10261 2.06136 2.60710
Kernel 3, aspect ratio h=r 1.2500 1.0000 0.98704 0.96210 −1:29550
Kernel 3, aspect ratio h=b 2.5000 2.0000 1.95089 1.90004 −2:45538

Kernel 1 is Lambertian, kernel 2 is Cox–Munk, kernel 3 is Li-sparse. Noise level 93=1:0−3. Fit includes forward model
error (7 streams in the retrieval as opposed to 14 streams in the synthetic calculation). Global <t with 230 observations,
solar zenith angle 25◦.

Table 2
Self-consistent optimal estimate retrieval, for scenario as in previous table, but with noise level 94 = 1:0−4

Parameter A priori Truth Retrieved Accuracy Departure
(% di>erence) (% di>erence)

PBL optical thickness 0.1250 0.1000 0.09945 0.19316 −0:54660
PBL single scatter albedo 0.9000 0.8500 0.84585 0.21234 −0:48782
PBL Angstrom exponent 1.3750 1.1000 1.11525 0.42174 1.38631
Kernel 1, linear coe>. 0.6250 0.5000 0.50048 0.02284 0.09512
Kernel 2, linear coe>. 6.2500 5.0000 4.99360 0.05799 −0:12797
Kernel 2, linear coe>. 7.5000 5.0000 4.99963 0.03042 −0:00742
Kernel 3, linear coe>. 0.1250 0.1000 0.10066 0.20813 0.65640
Kernel 3, aspect ratio h=r 1.2500 1.0000 0.99756 0.09386 −0:24425
Kernel 3, aspect ratio h=b 2.5000 2.0000 1.98897 0.19498 −0:55154

It is clear from Fig. 5 that surface information is lost for higher values of PBL AOT. This is a
critical issue for the successful retrieval of surface quantities, and the PBL AOT along with solar
zenith angle are the two main determinants here. We may look at this in our idealized case by
carrying out the retrieval for a number of values of the PBL AOT. Results shown in Table 4 were
carried out with a 10-stream discretization for both synthetic and forward model simulations to avoid
ambiguity due to the presence of forward model errors. It is immediately clear that the critical AOT
value is around 0.87; for values higher than this, the <tting settles on the “wrong values”. The new
<tted PBL values are a few percent o> the truth, as are the parameters for the Lambertian and
Cox–Munk kernels. The three Li-sparse quantities (state vector elements 7, 8 and 9) are completely
wrong for AOT¿ 0:87; information on this kernel is lost.
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Table 3
Correlation matrix for self-consistent optimal estimate retrieval, for scenario as in previous tables, with noise level 94=1:0−4

Parameter number

1 2 3 4 5 6 7 8 9

1.0000 0.6036 −0:5233 −0:0331 0.5668 −0:0666 −0:0440 0.2779 0.0851
0.6036 1.0000 0.2288 −0:7913 0.0681 −0:2136 0.3677 0.0129 −0:3755

−0:5233 0.2288 1.0000 −0:6570 −0:5086 −0:0266 0.4312 −0:3418 −0:4624
−0:0331 −0:7913 −0:6570 1.0000 0.4664 0.3919 −0:6358 0.3935 0.6683
0.5668 0.0681 −0:5086 0.4664 1.0000 0.7457 −0:7733 0.8293 0.8005

−0:0666 −0:2136 −0:0266 0.3919 0.7457 1.0000 −0:7963 0.7386 0.7954
−0:0440 0.3677 0.4312 −0:6358 −0:7733 −0:7963 1.0000 −0:8053 −0:9960
0.2779 0.0129 −0:3418 0.3935 0.8293 0.7386 −0:8053 1.0000 0.7860
0.0851 −0:3755 −0:4624 0.6683 0.8005 0.7954 −0:9960 0.7860 1.0000

Table 4
E>ect of PBL aerosol optical thickness (column 1) on retrieval

AOT % deviations from truth for parameter number
truth

1 2 3 4 5 6 7 8 9

0.500 −0:0387 −0:0085 0.0895 −0:0317 −0:1448 −0:0660 0.3914 −0:2004 −0:3942
0.700 −0:0313 −0:0117 0.0512 −0:0387 −0:1712 −0:0777 0.4711 −0:2554 −0:4789
0.800 −0:0238 −0:0114 0.0325 −0:0369 −0:1660 −0:0777 0.4336 −0:2481 −0:4469
0.850 −0:0197 −0:0109 0.0235 −0:0341 −0:1592 −0:0773 0.3922 −0:2323 −0:4091
0.870 −0:0177 −0:0106 0.0204 −0:0330 −0:1566 −0:0773 0.3803 −0:2273 −0:3978
0.875 1.4607 0.7854 0.4072 3.3291 5.6334 4.0859 −44:835 24.627 87.201
0.900 1.2579 0.7473 0.6456 3.2545 5.3689 4.0934 −44:726 24.374 86.628
1.000 0.4688 0.6260 1.4914 2.9480 3.8439 4.0582 −45:781 24.538 89.165
1.200 −1:0295 0.4785 3.0885 2.0180 0.2613 4.1207 −48:621 25.034 96.483
1.500 −2:5606 0.3490 4.5647 0.4787 −5:4670 3.6082 −53:300 25.345 110.36

Random noise only at the 94 level.

5. Concluding remarks

In this paper we have shown that in a multi-layer anisotropically scattering atmospheric medium,
quasi-analytic and accurate weighting functions with respect to a very general set of surface properties
can be computed e=ciently without recourse to unnecessary approximations. The required theory was
developed for the linearized discrete ordinate radiative transfer model LIDORT. For remote sensing
applications, the e=cient and accurate generation of surface property radiance sensitivities allows
the retrieval to be done in a direct manner using standard non-linear inversion techniques, without
the need for two-step approximate procedures based on expediency.

Results of simulated radiances and surface property weighting functions were shown for a number
of surface scenarios parameterized semi-empirically with various volume-scattering and surface-optics
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models, and also for the characteristic specular glitter BRDF kernel. Weighting functions were also
shown for a 3-parameter model of the planetary boundary layer aerosol—this constituent is the largest
source of error in surface property retrieval. It was shown that global <tting of multi-angle backscatter
measurements at a few spectral channels is feasible, allowing for the simultaneous retrieval of PBL
parameters alongside the desired surface properties.

Although the discussion was focussed on the linear BRDF kernel combinations typifying surface
property retrieval from the MODIS and POLDER instruments, the linearization treatment in LIDORT
is generic, and the model can be used to derive accurate sensitivity functions for any number of
surface and atmospheric properties. In the next paper, I intend to use this combination of LIDORT
in conjunction with a global <tting technique to retrieve surface and aerosol information from real
MODIS backscatter data.
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Appendix A.

We list here the 8 non-Lambertian BRDF kernels used in this work. We do not attempt to derive
these semi-empirical models from scratch, instead referring the reader to the literature. However, we
derive partial derivatives with respect to those non-linear parameters which a>ect the kernel shapes.

A.1. Roujean kernel

This was derived from a consideration of the re8ectance of a random arrangement of rectangular
blocks on a 8at surface [12]. The kernel has no free parameters and is given by

froujean(�i; �r; �) = [(�− �) cos�+ sin�] tan �i tan �r − '(�i; �r; �); (A.1)

with

'(�i; �r; �) =
1
�
{tan �i + tan �r +

√
tan2 �i + tan2 �r − 2 tan �i tan �r cos�}:

A.2. Li-sparse and Li-dense kernels

These kernels apply to re8ectances modeled for vegetation cover; they are derived from consid-
eration of the proportional areas of sunlit tree crowns and sunlit ground for randomly distributed
cover. Kernel di>erences depend on the treatment of mutual shadowing. Tree crowns are assumed to
be spheroids of vertical dimension b, horizontal dimension r, with their centers at height h above the
ground. There are two free parameters characterizing the kernels, namely the “crown ratio” x = b=r
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and the “height ratio” y = h=b. Derivations for these kernels may be found in the work of Wanner
et al. [11] and references therein. We may write them as

fsparse(x; y) = 1
2p(x)− q(x; y)r(x); (A.2)

fdense(x; y) =
p(x)

q(x; y)r(x)
− 2; (A.3)

where

p(x) = (1 + cos 6′)b(x);

q(x; y) = 1− 1
�
(t − sin t cos t);

r(x) = a(x) + b(x);

a(x) = sec �′i ; b(x) = sec �′r ;

cos 6′ = cos �′i cos �
′
r + sin �′i sin �

′
r cos�;

r(x) cos t = yh(x);

h(x) =
√
d2(x) + tan2 �′i tan2 �′r sin

2 �;

d(x) =
√

tan2 �′i + tan2�′r + 2 tan �′i tan �′r cos�;

tan �′i = x tan �i; tan �′r = x tan �r:

The angular dependence has been dropped for clarity. If there is no overlap area, then q(x; y) ≡ 1.
Note that both functions are identically zero when the angle of incidence equals the angle of re8ection
in the principal plane �= 0. It is straightforward to <nd the derivatives. We have

@fsparse

@x
=

1
2
@p
@x

− @q
@x
r − q @r

@x
; (A.4)

@fdense

@x
= (fdense + 2)

[
1
p
@p
@x

− 1
r
@r
@x

− 1
q
@q
@x

]
; (A.5)

and

@fsparse

@y
=− @q

@y
r; (A.6)

@fdense

@y
=−(fdense + 2)

1
q
@q
@y
: (A.7)
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The auxiliary functions p(x); q(x; y) and r(x) are common to both kernels, and their derivatives
may be obtained by di>erentiation of the above. We <nd

@r
@x

=
r
x

(
1− 1

ab

)
;

@p
@x

=
1
xa2

{
p(1 + a2)− r2

b

}
;

@q
@x

=
2
�
sin t cos t

[
1
h
@h
@x

− 1
r
@r
@x

]
;

@q
@y

=
2
�y

sin t cos t;

@h
@x

=
2h2 − d2
hx

:

A.3. Ross-thin and Ross-thick kernels

These re8ectance kernels are based on volume-scattering empirical models, in which a radiative
transfer model is applied to randomly oriented scattering facets (leaves) over a 8at surface of known
Lambertian albedo. The kernels have no degrees of freedom (no non-linear parameters). Following
the de<nitions in Wanner et al. [11], we have

fthick(�i; �r; �) =
(�=2− 6) cos 6+ sin 6

cos �i + cos �r
− �

4
; (A.8)

fthin(�i; �r; �) =
(�=2− 6) cos 6+ sin 6

cos �i cos �r
− �

2
; (A.9)

where

cos 6= cos �i cos �r + sin �i sin �r cos�:

A.4. Hapke kernel

This kernel was developed in the work of Hapke [14]. There are 3 parameters characterizing the
kernel. In terms of the cosines �i = cos �i and �r = cos �r we have

fhapke(�i; �r; �) = Rir{(1 + B(6))P(6) + TiTr − 1}; (A.10)

where

Rir =
5

4(�i + �r)
;

cos 6= cos �i cos �r + sin �i sin �r cos�;
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P(6) = 1 + 1
2 cos6;

B(6) =
B0'

'+ tan(1=2)6
;

Ti =
1 + 2�i
1 + 2�iA

;

Tr =
1 + 2�r
1 + 2�rA

;

A =
√
1− 5:

The free parameters are 5 (single scattering albedo), B0 (amplitude of the hot-spot), and ' (angular
width of the hot-spot). Derivatives are straightforward; we have

@fhapke

@5
=
fhapke

5
+ Rir

@(TiTr)
@5

; (A.11)

@fhapke

@'
=
RirP(6)B(6)

'

[
1− B(6)

B0

]
; (A.12)

@fhapke

@B0
=
RirP(6)B(6)

B0
; (A.13)

with

@Ti
@5

=
�iTi

A(1 + 2�iA)
and

@Tr
@5

=
�rTr

A(1 + 2�rA)

A.5. Rahman model

This empirical model [13] includes an explicit form for the phase function of the surface dis-
tribution of scatterers in the form of a Henyey–Greenstein function with asymmetry parameter *1
(which is one of the three non-linear parameters characterizing the BRDF kernel). The other two
parameters are *2, which determines the angular spread, and *0, which gives the overall amplitude.
The hot spot function is modeled empirically. We have

frahman(�i; �r; �) = *0P(6)[1 + R(6)]
[
�i�r
�i + �r

]*2−1

; (A.14)

where

cos 6= cos �i cos �r + sin �i sin �r cos�;

P(6) =
1− *21

[1 + *21 + 2*1 cos 6]1:5
(phase function);

R(6) =
1− *0
1 + '

(hot-spot function):
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where '= '(�i; �r; �) is de<ned as for the Roujean kernel. Derivatives of this BRDF with respect
to the three parameters are:

1
frahman

@frahman

@*0
=

1
*0

− 1
[1 + R(6)](1 + ')

; (A.15)

1
frahman

@frahman

@*1
=− 2*1

1− *21
− 3

2
2*1 + 2 cos 6

[1 + *21 + 2*1 cos 6]
; (A.16)

1
frahman

@frahman

@*2
= ln

[
�i�r
�i + �r

]
: (A.17)

A.6. Cox–Munk specular kernel

This is a function representing the glitter term. We use a geometric optics model, with the usual
assumption of a Gaussian distribution of the slopes of the wave facets, and the empirical relation
82 = #+ 3W where W is the wind speed in meters per second and 82 is the Gaussian spread. Cox
and Munk [19] derived values of 0.003 for # and 0.00512 for 3; these values are still in common
use. Obviously wind speed is one free parameter; the other is the value of the refractive index of
water—this is usually speci<ed as m=1:334, but its value does depend somewhat on water turbidity.
The kernel is

fspec(�i; �r; �) = R(m; 6)P(W; �i; �r); (A.18)

where the Fresnel re8ection term is

R(m; 6) =
r2+ + r2−

2
; (A.19)

with

r+ =
m2�− c
m2�+ c

;

r− =
�− c
�+ c

;

c =
√
m2 + (�2 − 1);

�= cos (6=2); where cos 6= cos �i cos �r + sin �i sin �r cos�

and angle 6 de<ned as before. The Gaussian probability function is given by

P(W; �i; �r) =
1

4�i�r�82*4
exp

[−B2
82

]
; (A.20)
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with

*=
(�i + �r)

2�
;

B= tan(�=2− sin−1 *):

For derivatives with respect to W and m we have:

@fspec

@W
= 3fspec

82 − B2
84

; (A.21)

@fspec

@m
= 2mfspec

[
r+
@r+
@m2 + r−

@r−
@m2

]
; (A.22)

with

@r+
@m2 =

�(2c2 − 1)
c(m2�+ c)2

;

@r−
@m2 =− �−

c(�+ c)2
;
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