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Abstract

The Multi-angle Imaging SpectroRadiometer (MISR) instrument is designed to provide global imagery at nine discrete viewing angles

and four visible/near-infrared spectral bands. The MISR standard products include green leaf area index (LAI) of vegetation and fraction of

photosynthetically active radiation absorbed by vegetation (FPAR). These parameters are being routinely processed from MISR data at the

Langley Atmospheric Sciences Data Center (ASDC) since October 2002. This paper describes the research basis for transitioning the MISR

LAI/FPAR product from beta to provisional status. The quality and spatial coverage of MISR land surface reflectances that are input to the

algorithm determine the quality and spatial coverage of the LAI and FPAR products. Therefore, considerable efforts have been expended to

analyze the performance of the algorithm as a function of uncertainties of MISR surface reflectances and to establish the convergence

property of the MISR LAI/FPAR algorithm, namely, that the reliability and accuracy of the retrievals increase with increased input

information content and accuracy. An additional objective of the MISR LAI/FPAR algorithm is classification of global vegetation into biome

types—information that is usually an input to remote sensing algorithms that use single-angle observations. An upper limit of uncertainties of

MISR surface reflectances that allows discrimination between biomes, minimizes the impact of biome misidentification on LAI retrievals,

and maximizes the spatial coverage of retrievals was estimated. Algorithm performance evaluated on a limited set of MISR data from Africa

suggests valid LAI retrievals and correct biome identification in about 20% of the pixels, on an average, given the current level of

uncertainties in the MISR surface reflectance data. The other 80% of the LAI values are retrieved using incorrect information about the type

of biome. However, the use of multi-angle data minimizes the impact of biome misidentification on LAI retrievals; that is, with a probability

of about 70%, uncertainties in LAI retrievals due to biome misclassification do not exceed uncertainties in the observations. We also discuss

in depth the parameters that characterize LAI/FPAR product quality—such as quality assessment (QA) that is available to the users along

with the product. The analysis of the MISR LAI/FPAR product presented here demonstrates the physical basis of the radiative transfer

algorithm used in the retrievals and, importantly, that the reliability and accuracy of the retrievals increase with increased input information

content and accuracy. Further improvements in the quality of MISR surface reflectances are therefore expected to lead to LAI and FPAR

retrievals of increasing quality.

D 2003 Elsevier Inc. All rights reserved.
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1. Introduction 1998). The land surface reflectance parameters currently
The Multi-angle Imaging SpectroRadiometer (MISR) is

an instrument on board the EOS Terra platform. MISR

collects observations of the Earth’s surface at 1.1-km spatial

resolution with the objective of providing atmospherically

corrected reflectance properties of most of the land surface

and the tropical ocean (Diner et al., 1998; Martonchik et al.,
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being generated at the NASA Langley Atmospheric Scien-

ces Data Center (ASDC) include the spectral hemispheri-

cal–directional reflectance factors (HDRF) at the nine

MISR view angles and the associated bihemispherical

reflectances (BHR). The hemispherical directional reflec-

tance factor (HDRF) and the bihemispherical reflectance

(BHR) characterize the surface reflectance under ambient

sky conditions, i.e., direct and diffuse illumination. The

bidirectional reflectance factor (BRF) and the directional

hemispherical reflectance (DHR) are defined for the unique

case when the atmosphere is absent, that is black sky
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conditions. An algorithm for the generation of vegetation

green leaf area index (LAI) and the fraction of photosyn-

thetically active radiation absorbed by vegetation (FPAR)

from MISR BHR and BRF was implemented for operational

processing in October 2002 (Knyazikhin, Martonchik, Diner

et al., 1998). An additional goal of the MISR LAI/FPAR

algorithm is the classification of global vegetation into

biome types; a parameter that is usually specified as an

input in certain algorithms that use single-angle observa-

tions for the retrieval of surface properties (Myneni et al.,

2002). In this paper, we describe performance of the

implemented version of the MISR LAI/FPAR algorithm

with retrievals from Africa as a test case.

The quality and spatial coverage of BHR and BRF

determine the quality and spatial coverage of the LAI and

FPAR products. Therefore, we start with a description of the

MISR data and analyses of uncertainties in MISR surface

reflectances, followed by a discussion of the spatial scaling

issues associated with the MISR LAI/FPAR algorithm. At

this initial stage, analyses that assess performance of the

algorithm as a function of uncertainties in the MISR BHR

and BRF data and the development of retrieval quality

indicator flags are emphasized.
2. MISR data

The MISR data distributed from the NASA Langley

Atmospheric Sciences Data Center were used in this study.

The MISR data are in the format of path (swath) and orbit.

The entire earth surface is covered in 233 paths; each path is

about 360 km wide from East to West. Each orbit corre-

sponds to data acquired over a path for a particular date.

Each path is divided into 180 blocks measuring 563.2 km

(cross-track)� 140.8 km (along-track), that is 512� 128

pixels. For a given path, a numbered block always contains

the same geographic locations.

The MISR Level 2 Surface Parameters Product contains

information on land surface directional reflectance proper-

ties, albedos (both spectral and PAR integrated) and asso-
c-

i -
Fig. 1. Flow chart of the relationship between MISR LAI/FPAR algorithm and d

Parameters Product, the sun and view angles from the MISR Geometric Paramet
ated radiation parameters. These data, in HDF format and at

1.1-km spatial resolution, are the source of BRFs, HDRFs,

DHRs, and BHRs (expansion of all abbreviations is given in

a list at the beginning of this article).

The view angles at the surface for each of the nine MISR

cameras, as well as the incident solar angle at the surface,

are contained in the MISR Geometric Parameters Product.

This information is at a spatial resolution of 17.6 km and is

input to the LAI/FPAR algorithm. The latitude and longi-

tude information is contained in the MISR Ancillary Geo-

graphic Product (MISR Data Products Specifications

Document).

A look-up table (LUT) approach is used to rapidly model

the radiative transfer process of complex canopy/soil models

to determine the matching modeled reflectances and the

associated values of LAI and FPAR. For efficiency in

execution of the algorithm, all necessary radiative transfer

parameters have been precomputed and stored in the Can-

opy Architecture Radiative Transfer (CART) file.

MISR data (version v2.2_i4) from Africa covering the

vegetated surface between 19.02jN and 35.34jS were

selected for this investigation as in situ LAI and FPAR

measurements were available from several sites in southern

Africa (Tian et al., 2002a,b). These field data, although

collected in 2000, are useful for estimating certain algorithm

parameters, as detailed elsewhere in this article. In particu-

lar, the analysis is focused on southern Africa with MISR

data from March 2001—the earliest period for which the

MISR LAI/FPAR products are available.

MISR has a ground track repeat cycle every 16 days and

achieves global coverage every 9 days. However, in view of

cloud cover, data from an entire month are required to

obtain full coverage of southern Africa. Assembling the data

set in this fashion meant an implicit assumption that

vegetation changes were minimal in this one month com-

posite period, introducing uncertainty into the derived

results. This uncertainty will be assessed during the course

of this investigation.

The moderate spatial resolution, multi-spectral, and

multi-angle aspects of the MISR instrument imply large
ata. The inputs, BHR, DHR, and BRF are from the MISR Level 2 Surface

ers Product, and canopy/soil model parameters from the CART file.
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data volumes and hence the need for analysis stratified by

biome type. Raw data that were corrupted or with missing

geometry information (flagged with fill values) were ex-

cluded from the analysis. Likewise, invalid reflectance data,

for example, BHRs greater than 1, were ignored. A sche-

matic chart of the data processing is shown in Fig. 1. The

ratio of pixels with valid data to the total number of

vegetated pixels from paths 162 to 203 is shown in Fig. 2,

separately for different biomes. The data from each path are

from different days in March 2001. About 46% of the pixels

contain valid data, useful as inputs to the algorithm. This

number changes by date and by biome type, and may be as

low as 31.5% in the case of tropical humid forests, where

cloud cover is persistent.
Fig. 2. Ratio of valid pixel number to total pixel number, in percentage. (a) All

savannas, and (f) broadleaf forests. There is no significant presence of needleleaf

The maximum percentage of valid pixels is for shrubs (47%) and the minimum i
3. Data analysis

The nominal view angles for the nine cameras are 0.0j,
F 26.1j, F 45.6j, F 60.0j, and F 70.5j. The variations in
actual view angles relative to the specification, for the fore

and aft off-nadir sensors, are shown in Fig. 3. The maximum

deviation in view zenith angles is for camera A fore and aft

(4.95j and 4.84j, respectively). These deviations decrease

with increasing view zenith angle. Most of the deviations

are positive. This is a geometric effect. The MISR data are

in the Space Oblique Mercator (SOM) projection, in which

the reference meridian nominally follows the spacecraft

ground track. It maps the earth latitude and longitude to a

SOM coordinate system that is approximately fit into MISR
biomes, (b) grasses and cereal crops, (c) shrubs, (d) broadleaf crops, (e)

forests in Africa. The average ratio is shown in these plots as a dashed line.

s 31.5% for broadleaf forests.



Fig. 3. Histograms of the difference between nominal and actual viewing angles. The maximum deviation is given for each camera.
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swath. The center of the block has the nominal view angles;

since a block is 563 km wide, the view angle increases from

the center to the edge of the block. The effect is most

pronounced in the nadir camera, where the view angle is 0j
at the center and 18j at the edge of the block. This problem

can be avoided if one uses data from the center of the swath

only. Even with the variations they still fall within the view

angle bin limits in the CART file.

Uncertainties in land surface reflectances determine the

quality of retrieved LAI and FPAR values (Wang et al.,

2001). The calibration and processing for atmospheric

effects of the measured radiances induce uncertainties in

surface reflectances. Land surface reflectance parameters,

such as BRF and BHR, are inputs of the LAI/FPAR

algorithm. Therefore, the uncertainties in MISR surface

reflectance product are evaluated below, using two different

methods, spatial and temporal.

MISR surface reflectance data were first sorted according

to the biome type. The at-launch Moderate Resolution

Imaging Spectroradiometer (MODIS) biome map was used
to identify the pixel biome type (Lotsch, Tian, Friedl, &

Myneni, 2003). This map segregates global vegetation into

six major biome types depending on vegetation structure

and optical properties, and background characteristics

(Myneni, Nemani, & Running, 1997). The six biomes

include: grasses and cereal crops (biome 1), shrubs (biome

2), broadleaf crops (biome 3), savannas (biome 4), broadleaf

forests (biome 5), and needleleaf forests (biome 6). The site-

based accuracy of this map is 73% (Lotsch et al., 2003). The

kappa coefficient (j) (Cohen, 1960), which provides a

correction for the proportion of chance agreement between

reference and test data, is 0.68 (Lotsch et al., 2003). When

compared to maps generated from the same data but

classified using the International Geosphere Biosphere Pro-

gram (IGBP) classes (Hansen, Defries, Townshend, &

Sohlberg, 2000; Loveland et al., 1995), the biomes were

mapped with f 5% higher overall accuracy (Lotsch et al.,

2003). It should be noted that this classification accuracy

analysis is based on sites that are a priori pure and therefore

will not include errors due to sub-pixel mixing. The upper-
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left and bottom-right latitude and longitude of the MISR

data block were used as georeferences to reproject the at-

launch MODIS biome map to the MISR SOM projection.

Data density distribution functions, defined as the number of

pixels per unit area in the red-NIR space, were evaluated for

each biome type. Pixels located around the data peak, i.e.

the maximum pixel number, can be interpreted as the set of

pixels representing the most probable pattern of canopy

structure. As an example, the data density distribution

function for Broadleaf Forests is shown in Fig. 4a. Such

pixels were selected for further analysis.

The mean and standard deviation of the HDRFs and

BHRs evaluated from pixels about the data peak (the spatial

method) are shown in Fig. 4b–d, for different biomes.

Uncertainties in HDRFs are larger at large view angles

(except the A fore and Aft cameras), and greater in the

near-infrared channel than the red channel, with one excep-
Fig. 4. (a) Distribution of pixel counts in the red and near-infrared DHR space

interpreted as pixels characteristic of broadleaf forests. (b) The mean and standard

derived from pixels around the data peak for broadleaf forests. The solar zenith an

standard deviation of HDRFs at red and NIR wavelengths derived from pixels aro

azimuth are 32F 3j and 232F 5j, respectively. Values of the difference between s

afterward cameras. (d) Mean and standard deviation of MISR BHR values from pix

Africa).
tion (standard deviations in the red channel for the nine view

angles, from angle 1 to angle 9 are 0.031, 0.019, 0.015,

0.016, 0.016, 0.014, 0.013, 0.019, 0.042; standard devia-

tions in the NIR channel for the nine view angles are 0.033,

0.026, 0.024, 0.023, 0.024, 0.019, 0.017, 0.022, 0.040). The

uncertainties are generally similar in the fore and aft angles.

The BHR magnitudes with respect to biome type, shown in

Fig. 4d, display expected behavior. In the red channel,

shrubs are brighter and the BHR magnitude decreases with

increased tree cover. In the near-infrared, the opposite is

seen. Although the uncertainties are generally comparable at

both wavelengths, they are considerably larger in the red

channel on a relative basis.

The uncertainties in Fig. 4b–d may result from variations

in view angles, sun angles, variation in vegetation canopy

structure and atmospheric correction. Deviations from nom-

inal view zenith angles were small (Fig. 3). The angular
for broadleaf forests. Pixels located around data peak (0.02, 0.36) may be

deviation of HDRFs in the perpendicular plane at red and NIR wavelengths

gle and azimuth are 23F 2j and 288F 9j, respectively. (c) The mean and

und the data peak for grasses and cereal crops. The solar zenith angle and

olar and view azimuth are 217F 10j for forward cameras and 37F 10j for

els near the data peak (there is no appreciable needleleaf forests presence in
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signature of broadleaf forests, which is in the 90j azimuth

plane relative to sun is shown in Fig. 4b. The solar zenith

angle and azimuth are 23F 2j and 288F 9j, respectively.
For grasses and cereal crops (Fig. 4c), the solar zenith angle

is 32F 3j and solar azimuth is 232F 5j. Values of the

difference between solar and view azimuth are 217F 10j
for forward cameras and 37F 10j for afterward cameras.

Variations due to sun-view geometry differences, therefore,

are small. Vegetation cover type mixture may also contrib-

ute to uncertainties in reflectance data. Variations in canopy

structure due to biome mixtures are minimized by selecting

pixels around the data peak. These pixels may be considered

representative of a biome type with minimal mixing. There-

fore, uncertainties due to biome mixture are unlikely to be

the cause of variations seen in Fig. 4b–d.

Thus, uncertainties in BHR and HDF remain even after

accounting for minor uncertainties due to variations in view

angles and cover type. The residual uncertainties may be
Fig. 5. Histograms of the coefficient of variation (standard deviation/mean) of the

6626 (Mar. 17, 2001), and orbit 6859 (April 2, 2001). Coefficients of variation of th

are for grasses and cereal crops and broadleaf forests at blue, red and NIR bands
due to atmospheric correction, and this is further investigat-

ed in the following temporal analysis.

In this method, we assume the vegetation structure to

remain unchanged during the month of March. The coef-

ficients of variation (standard deviation divided by the

mean) of the MISR BHR in blue, red, and NIR bands from

3 different days from path 178 are shown in Fig. 5 for

different biomes. The histograms are wide, especially in the

blue band for both grasses and cereal crops and broadleaf

forests, which is likely due to correction for atmospheric

effects. Likewise, the histograms are broad at the red band,

especially in the case of broadleaf forests. The most prob-

able value of the coefficient of variation is least for the NIR

band (about 0.15 for grasses and cereal crops and about 0.4

for broadleaf forests).

Data from only three different days in March were

available for this analysis and this sample is clearly insuf-

ficient. These uncertainties are considered as very rough
MISR BHR from path 178 for 3 different days, orbit 6393 (Mar. 1, 2001),

e solar zenith angle and azimuth do not exceed 0.07 for data used. The plots

.



Fig. 6. Mean coefficient of variation of DHR at red and NIR wavelengths

derived from spatial and temporal analyses of MISR data. The data

described in Figs. 4d and 5 were used to derive spatial and temporal

variation in MISR surface reflectance. Labels TN and TR refer to the

temporal, and SR and SN refer to the spatial coefficients of variation at red

and NIR spectral bands.
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estimates of the upper bounds of uncertainties in the MISR

surface reflectances. At least in the case of broadleaf forests,

the LAI does not change much during the peak green

season. Therefore, variations in canopy structure can be

excluded for this cover type. Coefficients of variation of

solar zenith angle and azimuth did not exceed 0.07 for data

shown in Fig. 5 and thus the impact of the sun angular

geometry on variation in the MISR BHR is negligible. The

large uncertainties here may be due to errors in pixel

geolocation, or may be due to atmospheric correction.

From the comparison presented in Fig. 6 between uncer-

tainties estimated from spatial (Fig. 4) and temporal (Fig. 5)

analyses, it is obvious that uncertainties from the temporal

analysis are greater than the uncertainties from spatial

analysis for most biome types, with the exception of shrubs,

where both kinds of uncertainties are similar in both bands.

The uncertainties of the temporal analysis are significant

and they are taken as the upper bounds in the LAI/FPAR

retrievals discussed in this article.
4. MISR LAI/FPAR algorithm

The MISR algorithm retrieves LAI and FPAR values

using a two-step process. The first step involves a com-

parison of the MISR BHR with those determined from a

suite of canopy models, which depend on biome type,

canopy structure, and soil/understory reflectances. All can-

opy, soil, and biome patterns for which the modeled and

observed BHRs in the four spectral bands differ by an

amount equivalent to or less than the uncertainty in model

and observations are considered as acceptable solutions.

FPAR is calculated for each acceptable solution. For each

biome pattern bio, bio = 1, 2, . . ., 6, the algorithm then
evaluates mean LAI1(bio) and FPAR1(bio) over acceptable

solutions, their dispersions, DLAI1(bio), DFPAR1(bio), and

number Nsol,1(bio) of acceptable solution. Eq. (2) with

overall uncertainties in modeled and observed BHRs is

used to execute the first step. The biome, canopy, and soil

patterns that pass this comparison test are subject to the

second step, which is comparison of directional signatures

of modeled and observed BRFs. Again, for each biome

type, mean LAI2(bio) over acceptable solutions, its disper-

sion, DLAI2(bio) and number Nsol,2(bio) of acceptable

solutions are evaluated. Eq. (3) with appropriate overall

uncertainties is used to execute the second test. For each 1.1-

km MISR pixel within which the BHR/BRF retrieval was

performed, LAI1(bio), DLAI1(bio), Nsol,1(bio), LAI2(bio),

DLAI2(bio), and Nsol,2(bio), bio = 1, 2, . . ., 6, are archived

in the MISR Aerosol/Surface Product. The FPAR is evalu-

ated and archived for each 17.6-km region.

An additional goal of the MISR LAI/FPAR algorithm is

the classification of vegetation in terms of biome types

described in the previous section, a parameter that is usually

specified as an input to other algorithms that use single-

angle observations. Based on the output archived, the

following biome identification algorithm will be examined

here. Assuming that more than one of the candidate biomes

passes the second test (the comparison of retrieved and

modeled directional reflectances), the biome type with the

minimum coefficient of variation (DLAI2/LAI2) of LAI

(COVLAI) is chosen as being most representative of the

observed vegetation type for that pixel. If the same mini-

mum COVLAI is found for more than one biome type, then

the biome type with the smallest mean LAI is chosen. If this

process fails to identify a unique biome type, the retrieval is

classified as unsuccessful.
5. Scaling of the algorithm

In the MISR LAI/FPAR algorithm, the three-dimensional

radiative transfer equation is used to simulate canopy

reflectances as a function of biome type, sun-view geometry,

and canopy/soil patterns (Knyazikhin et al., 1998). Global

vegetation is stratified into six canopy architectural types or

biomes mentioned earlier. The structural attributes of these

biomes are parameterized in terms of variables that the

radiative transfer equation admits (Myneni et al., 1997).

The radiative transfer equation was adjusted to model

canopy reflectances of the six biome types at 30 m spatial

resolution, which is taken as the reference resolution.

However, when the spatial resolution of the imagery

becomes significantly coarser than 30 m, both the degree

of biome mixing within a pixel and the number of mixed

pixels in the imagery increase. LAI retrieval errors increase

as biome mixing in pixels increases if the within-pixel

heterogeneity is not accounted for (Tian et al., 2002a,b).

Errors for the pixels in which forests are minority biomes in

non-forest pixels are particularly larger than pixels within
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which forest biomes are mixed with one another. Thus, the

retrieval algorithm must be scale-adjustable, to allow for

spatial scale effects. Here, we follow a technique developed

by Tian et al. (2001), which accounts for pixel heterogeneity

by modifications to the single scattering albedo that the

radiative transfer equation admits through the use of land

cover fractions.

To specify appropriate values for the single scattering

albedo, the MISR DHRs corresponding to the peak green

season are located in the red-NIR spectral space for each of

the biome types (Fig. 4a). Pixels located around the data

peak can be interpreted as the set of pixels representing the

most probable pattern of canopy structure. Neglecting

contribution of the surface underneath the canopy, the most

probable value of DHR at wavelength k is related to

canopy transmittance and absorptance at this wavelength

as (Knyazikhin et al., 1998; Panferov et al., 2001; Shabanov

et al., in press; Zhang, Shabanov, Knyazikhin, & Myneni,

2002)

1� DHRk ¼
q

1� xk pt
þ 1� xk

1� xk pi
ð1� qÞ: ð1Þ

Here xk is the single scattering albedo defined as the ratio of

energy scattered by the elementary volume formulated for

the radiative transfer equation, to energy intercepted by this

volume; q is the probability that a photon in the incident

radiation will arrive at the bottom of the canopy without

suffering a collision (uncollided radiation), xkpt and xkpi are

portions of collided radiation in total radiation transmitted

and intercepted by the vegetation canopy, respectively (Sha-

banov et al., in press; Wang et al., in press). The wavelength

independent parameters q, pt, and pi are functions of LAI.

Eq. (1) expresses the energy conservation law, namely, the

radiation absorbed by a vegetated surface (the left-hand side)

is the sum of radiant energy absorbed by the underlying

surface and vegetation (the first and second terms on the

right-hand side of Eq. (1), which are the canopy transmit-

tance, tbs,k, and absorption calculated for the case of a black

surface underneath the canopy). In the case of a reflecting

Lambertian surface, the term (qk/(1� qkrs,k))ts,ktbs,k should

be subtracted from the left-hand side of Eq. (1) to account for

the contribution of the ground to the canopy leaving radia-

tion (see Eq. (41) in Knyazikhin et al., 1998). Here, qk is the

reflectance of the underlying surface; ts,k and rs,k are frac-
Fig. 7. (a) Fraction of energy (1-DHR) absorbed by the vegetated surface at

red and NIR wavelengths by different cover types. Pixels located around

the data peak (see Fig. 4a) were used to derive values of (1-DHR). (b)

Adjusted single scattering albedos of different cover types used by the

operational MISR LAI/FPAR software. (c) Histogram of LAI values

produced by the MISR algorithm using surface reflectances located around

the data peak (see Fig. 4a). Single scattering albedos shown in (b) were

used. Uncertainties in MISR BHRs and BRFs were set to 0.2 based on

analysis presented in Figs. 4–6. The left curve is for grasses and cereal

crops with peak probability at LAI = 1.5 (mean LAI = 1.27) and the right

curve is for broadleaf forests with peak probability at LAI = 5.0.
tions of radiation transmitted and reflected by the vegetation

canopy if it were illuminated from below by an isotropic

source (Knyazikhin et al., 1998).

Leaf area index values corresponding to the most prob-

able canopy realization must be known in order to calibrate
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the algorithm, and this is usually accomplished through field

measurements. Given biome type and LAI, as well as

measured DHRk, and modeled q, pt, and pi corresponding

to this LAI value, the algorithm is then adjusted for data

resolution by finding values of the single scattering albedo

xk, which provide the best agreement between the left and

right sides of Eq. (1). Values of DHR for Africa, obtained

from MISR retrievals (1–23 March 2001) and field meas-

urements made during the SAFARI 2000 wet season cam-

paign (3–18 March 2000) and the Operation Canopy La

Makande’99 campaign (2–10 March 1999) (Panferov et al.,

2001), were used to scale the LAI/FPAR algorithm to the

MISR resolution. The MODIS biome classification map was

used to sort the MISR DHR data into individual biome

classes. The spectral ground reflectance qk is assumed to

vary within given biome-dependent ranges representative of

reflective properties of the most probable surfaces under-

neath the canopy (Knyazikhin et al., 1998).

The above method was followed to scale the MISR LAI/

FPAR algorithm. The most probable data, which have

minimal variations in vegetation structure, are used as the

input data. Fig. 7a shows locations of the most probable

values of (1�DHRk) at red and NIR wavelengths, for

different biomes. The algorithm is adjusted for data resolu-

tion by finding values of the single scattering albedo, which

provide the best agreement between the retrieved and

measured LAI values. The solutions to this problem are

shown in Fig. 7b. These single scattering albedos are used

by the operational MISR LAI/FPAR software. Fig. 7c shows

histograms of LAI retrievals for grasses and cereal crops and

broadleaf forests, which are centered at about 1.5 and 5.0,

respectively. These mean values agree well with LAI

measured in the field (Myneni et al., 2002; Privette et al.,

2002).
6. Performance of the algorithm as a function of

uncertainties

At least two types of uncertainties influence the quality

of LAI/FPAR retrievals-uncertainties in measured and mod-

eled land surface reflectances. In general, these uncertainties

set a limit to retrieval quality; that is, the retrieval accuracy

cannot be better than summary accuracy in input data and

the model. If uncertainties are ignored, it can result not only

in the loss of information conveyed to the algorithm, but

also in its destabilization (Wang et al., 2001). Thus, the use

of uncertainty information in the retrieval technique can

influence the quality of retrievals. An overall uncertainty in

model and measurements is input to the MISR LAI/FPAR

algorithm (Knyazikhin et al., 1998). Our aim here is to

evaluate an upper limit of acceptable uncertainties in data

and observations which allow the algorithm to discriminate

between pure biome types, to minimize the impact of biome

misidentification on LAI retrievals, and to maximize the

number of successful retrievals.
6.1. Definition of uncertainties

Let Ak and rk,i, k = 1, 2, . . .,4, i = 1, 2, . . ., 9, be

atmospherically corrected BHRs at four spectral bands and

BRFs at four spectral bands and in nine MISR directions,

respectively. We treat these values as independent random

variables with finite variances rA(k)
2 and rr(k,i)

2, k = 1, 2,

. . ., 4, i = 1, 2, . . ., 9, and assume that the deviations

ek=(Ak� Āk)/rA(k) and dk,i=(rk,i� r̄k,i)/rr(k,i) follow Gauss-

ian distributions. Here Āk and r̄k,i, are the mathematical

expectations of Ak and rk,i, which are treated as ‘‘true

values.’’ The random variables,

v2A ¼
XNbands

k¼1

e2k ¼
XNbands

k¼1

ðAk � ĀkÞ2

rAðkÞ2
; ð2Þ

v2r ¼
XNview

i¼1

XNbands

k¼1

d2k;i ¼
XNview

i¼1

XNbands

k¼1

ðrk;i � r̄k;iÞ2

rrðk; iÞ2
; ð3Þ

characterizing the proximity of atmospherically corrected

data to true values have chi-square distributions. Here,

Nbands and Nview are the number of spectral bands and view

directions for which MISR observations are available.

Inequalities vA
2VNbands and vr

2VNbandsNview indicate good

accuracy in the atmospherically corrected surface reflectan-

ces with a high probability. Dispersions rA(k) and rr(k,i) are
uncertainties in the land surface reflectance product, which

are input to the MISR LAI/FPAR algorithm. Model uncer-

tainties, rA,m(k) and rr,m(k,i) can be defined in a similar

manner (Wang et al., 2001). Note that currently the MISR

algorithm uses two spectral bands, red, and NIR (Nbands = 2)

to retrieve the pixel LAI and FPAR values.

Overall uncertainties in BHR, dA(k), and BRF, dr(k,i),
which guarantee the convergence property of the retrieval

technique (i.e., increasingly accurate retrievals with increas-

ingly accurate inputs) can be represented as dA(k)
2=

[rA(k)
2 + rA,m(k)

2]/hA
2, dr(k,i)

2=[r(k,i)2 + rr,m(k,i)
2]/hr

2. Here,

the stabilization parameters hA and hr vary between 0.5 and

1 (Wang et al., 2001). To evaluate proximity of observed to

modeled surface reflectances, true values Āk, r̄ki, and uncer-

tainties in the surface reflectance product rA(k) and rr(k,i)
that appear in Eqs. (2) and (3) should be substituted with

modeled reflectances and overall uncertainties (Wang et al.,

2001). We assume that the model uncertainties do not

exceed uncertainties in observations, that is rA,m(k)/
rA(k) < 1 and rr,m(k,i)/r(k,i) < 1. The overall uncertainties

in BHR and BRF can be represented as dA(k)=(aA/hA)rA(k)
and dr(k,i)=(ar/hr)rr(k,i), respectively. Here, the coefficients

aA and ar vary between 1 and 2. A correct specification of

the ratios cA=(aA/hA) and cr=(ar/hr), each varying between 1

and 4, are required to achieve an optimal performance of the

algorithm (Wang et al., 2001). Inequalities vA
2VNbands and

vr
2VNbandsNview with appropriate overall uncertainties are
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used to execute the first and second comparison tests

(Section 4).

6.2. Optimal performance of the algorithm

The analysis presented earlier showed that uncertainties in

surface reflectances can be quite high (Figs. 4 and 5). Fig. 2

shows the availability of valid MISR surface reflectances,

which, on average, constitute 42% of the vegetated land for
Fig. 8. (a) Retrieval index as a function of biome type and QA for optimal set of r

peak and the six-biome map were used to derive values of the retrieval index. In

value given the biome type. (b) BI as a function of biome type and QA for the

retrieved LAI values using the six-biome map and surface reflectance located aroun

for the optimal set of relative uncertainties.
the selected paths. A subset of these surface reflectances

whose uncertainties exceed a certain acceptable level will

result in algorithm failure, reducing the number of successful

LAI and FPAR retrievals. This number can be increased by

setting the ratios cA and cr to higher values. The retrieval

quality, however, will decrease in this case. A decrease in cA
and cr will result in fewer successful retrievals. It should be

emphasized that this does not necessarily improve the re-

trieval quality. In general, the underestimation of the overall
elative uncertainties listed in Tables 1 and 2. Pixels located around the data

this case, the retrieval index is the conditional probability of retrieving LAI

optimal set of relative uncertainties. Pixels for which the MISR algorithm

d data peaks were used to evaluate the BI. (c) PI as a function of biome type



Table 2

Optimal values of relative uncertainties, mr, in modeled and observed BRFs

View

angle

Spectral

band

Grass and

cereal crops

Shrubs Broadleaf

crops

Savanna Broadleaf

forests

Nadir Red 0.2 0.2 0.15 0.2 0.15

NIR 0.2 0.2 0.05 0.2 0.05

Aa, Af Red 0.2 0.15 0.15 0.2 0.15

NIR 0.2 0.05 0.05 0.2 0.05

Ba, Bf Red 0.2 0.2 0.225 0.2 0.225

NIR 0.2 0.2 0.075 0.2 0.075

Ca, Cf Red 0.2 0.2 0.3 0.2 0.3

NIR 0.2 0.2 0.1 0.2 0.1

Da, Df Red 0.2 0.2 0.45 0.2 0.45

NIR 0.2 0.2 0.15 0.2 0.15

Table 1

Optimal values of relative uncertainties, mA, in modeled and observed BHRs

Biome type Grass and

cereal crops

Shrubs Broadleaf

crops

Savanna Broadleaf

forests

Red 0.2 0.08 0.15 0.4 0.2

NIR 0.05 0.05 0.05 0.1 0.2
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uncertainties can result in lower retrieval quality than their

overestimation (Wang, 2001). Our aim here is to evaluate

optimal values of cA and cr, which allow the algorithm to

discriminate between pure biome types, to minimize the

impact of biome misidentification on LAI retrievals, and to

maximize the number of successful retrievals.

Two variables are used to characterize the algorithm

performance as a function of uncertainties. The first is the

retrieval index (RI), defined as the ratio of the number of

retrieved LAI values to the total number of pixels with valid

surface reflectance data. This variable does not characterize

retrieval quality, but shows the spatial coverage of the

retrieved LAI and FPAR fields. In other words, (1�RI) is

the probability that the algorithm will fail to retrieve LAI

and FPAR and, as a result, return a fill value. The second is

the biome identification index (BI), the ratio of the number

of cases for which the algorithm correctly identifies the

biome type to the number of successfully retrieved pixels.

The at-launch MODIS biome map (Section 3) was used as

the reference biome classification map.

The following procedure was executed to specify optimal

values of the overall uncertainties. For each biome type,

pixels located around the data peak were selected (Fig. 4a).

Given values of the ratios cA and cr for each biome type, the

MISR LAI/FPAR algorithmwas executed using these surface

reflectances and the six-biome map described earlier. From

the initial set, pixels that pass the first and/or second tests are

selected. A quality assessment (QA) flag is assigned to each

pixel, indicating that a retrieval resulted from both tests

(QA= 0, highest quality), the first test only (QA= 1, interme-

diate quality), or the second test only (QA= 2, low quality).

The RI as a function of QA and biome type is also calculated.

The biome identification algorithm is then applied and the BI

as a function of QA is calculated. In this procedure, the RI is

the conditional probability of retrieving a LAI value given

biome type, while the BI is the probability of identifying the

biome type. By calculating RI(cA, cr, bio, QA) and BI(cA, cr,
bio, QA) for all possible combinations of the ratios cA and cr,
we select those that result in the maximum of the performance

index (PI),

PIðbioÞ ¼
X2

QA¼0

RIðcA; cr; bio;QAÞ � BIðcA; cr; bio;QAÞ: ð4Þ

In this procedure, relative values mA(k, bio) = dA(k, bio)/Ak

and mr(k, i, bio) = dr(k, bio)/rk,i were used to parameterize the

overall uncertainties in the model and observations. Given

relative uncertainties, the MISR LAI/FPAR algorithm

approximates actual overall uncertainties as dA(k, bio) =
mA(k, bio)Ak and dr(k, i, bio) = mr(k, bio)rk,i, which are taken

as the acceptable levels of uncertainties.

Fig. 8a–c shows RI(bio, QA), BI(bio, QA), and PI(bio,

QA) for the optimal set of relative overall uncertainties

(values listed in Tables 1 and 2). With the exception of

broadleaf crops, the algorithm retrieves LAI values with a

very high probability, if information about the biome type is

available and uncertainties in input do not exceed the thresh-

old acceptable level. The probability of identifying pure

biome types is quite high if both tests were successfully

executed, again with the exception of broadleaf crops (Fig.

8b, bars labeled ‘‘QA= 0’’). If uncertainties in BRFs exceed

the acceptable level and, as a consequence the second test

fails, the probability of identifying grasses and cereal crops,

shrubs, savannas, and broadleaf forests based on BHRs only

is greatly reduced (Fig. 8b, bars labeled ‘‘QA= 1’’). The first

comparison test tends to extract information about canopy

structure conveyed by the location of biome type in the

spectral space. Although the locations of pure biome types

in the spectral space are localized (Fig. 4d), the uncertainties

in BHRs do not allow the algorithm to take full advantages of

this property. Their effect is most pronounced in the case of

spectrally similar biomes like broadleaf crops and savannas

(Fig. 4d). Thus, the inclusion of additional angular informa-

tion compensates for the loss of information due to uncer-

tainties in input surface reflectances. Values of the BI

corresponding to QA= 2 are higher compared to those

derived from the first test only, with the exception of

broadleaf crops and savannas (QA= 1). This suggests that

the angular signature of vegetation conveys more information

about the canopy structure than the location of BHRs in the

spectral space, at least, for the data investigated here. How-

ever, as will be shown later in this paper, the use of BRFs only

results in a lower retrieval quality, as compared to when the

first test only or both tests are triggered to retrieve LAI values.

This is because an increase in the amount of angular infor-

mation not only increases the information content but also

decreases the overall accuracy in the data. The former

enhances quality of the retrievals, while the latter suppresses

it. A failure of the algorithm to execute the first test indicates

high uncertainties in BHR which, propagating through the

surface retrieval algorithm, result in a poor quality of BRF
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and, as a consequence, LAI retrievals. At the Langley ASDC,

the operational version of the algorithm generates LAI and

FPAR products only for the conditions of QA= 0 and QA=1,

i.e., the first or both comparison tests must be successful.
7. Impact of biome misidentification on LAI retrievals

Fig. 8c shows the PI for six biome types. On average, for

only about 20% of pixels, both LAI and biome type can be

simultaneously specified at the optimal level of uncertain-

ties. This means that the majority of LAI values are

retrieved using incorrect information about biome type.

Table 3 summarizes disagreement between the biome types

derived from the MISR LAI/FPAR algorithm and the six-

biome map described earlier, as a function of QA. For a

given vegetation type, the distribution of biomes assigned

by the MISR algorithm is shown in rows. The aim of this

section is to analyze the impact of biome misidentification

on LAI retrievals.

To address this issue, we compare two LAI fields. The

first, produced by the algorithm using the biome map as

input, is taken as the reference field. The second LAI field

was obtained by applying the MISR LAI/FPAR algorithm to

the same data without using the biome map. For pixels in

which both retrievals were available, a relative difference,

D, was calculated between reference values, LAIref, and

retrieved values, LAIMISR, i.e.,

D ¼ LAIref � LAIMISR

LAIref
: ð5Þ

Pixels located around the data peaks (Fig. 4a) were used to

generate these values. Fig. 9 shows histograms of D as a

function of QA for different biome types. Mean values and

standard deviations of D are shown in Table 4. With the

exception of broadleaf crops and savannas, the impact of
Table 3

Disagreement between biome types assigned by the MISR algorithm and the six

Landcover type QA Landcover type assigned by MISR algorith

Grasses and

cereal crops

Shrubs Broadl

crops

Grasses and 0 81 7 4

cereal crops 1 5.49 39.47 14.06

2 29.94 14.48 0.08

Shrubs 0 0.03 38.33 0.91

1 0 20 0

2 0 100 0

Broadleaf crops 0 n/a n/a n/a

1 0 2 69

2 4 11 16

Savannas 0 42.7 3.3 9.5

1 26 20 31

2 n/a n/a n/a

Broadleaf forests 0 0 0 0

1 0 0 0

2 3.9 8.8 9.6
biome misidentification on LAI retrievals is minimal if both

comparison tests were executed (Table 4).

The histogram of D for shrubs corresponding to

QA= 1 has two local minimums at D = 0 and D =� 0.7

(Fig. 9). This biome was mainly misclassified as broad-

leaf forests and needleleaf forests (Table 3). The reference

and retrieved LAI values for which the relative difference

was close to � 0.7 varied between 0.2 and 0.34, respec-

tively. Shrubs exhibit lateral spatial heterogeneity, low to

intermediate vegetation ground cover, and have a bright

background. The information conveyed about the canopy

structure is small and a wide range of natural variation in

ground cover and soil brightness can result in the same

value of the BHR. Broadleaf and needleleaf forests with

a very low ground cover and bright (green) understory

can result in similar values of surface reflectances at 1.1-

km resolution. The effect of biome misclassification on

the retrievals, therefore, is maximal if retrievals are from

the first test only (curve ‘‘QA= 1’’ in Fig. 9b). The

availability of additional angular information results in a

reduced disagreement between reference and retrieved

LAI values (curve ‘‘QA= 0’’ in Fig. 9b). Note that the

probability of identifying shrubs using angular informa-

tion only (QA= 2) is very high (Fig. 8b and Table 3).

However, the inclusion of LAI retrievals corresponding to

QA= 2 has no significant effect on the PI (Eq. (4) and

Fig. 8a). Note that the failure of the algorithm to execute

the first test (QA= 2) indicates high uncertainties in BHR

which, propagating through the surface retrieval algo-

rithm, result in poor quality BRFs, and, as a conse-

quence, LAI retrievals.

For the other biome types, the disagreement between

reference and retrieved LAI values is maximal for QA= 2

(Table 4). If retrievals are from the first or both comparison

tests, the biome misidentification, on average, involves an

overestimation of LAI for grasses and cereal crops and

shrubs, and an underestimation in the case of broadleaf
biome classification map used in the study for different values of QA

m, %

eaf Savannas Broadleaf

forests

Needleleaf

forests

Failure

1 0 0 7

0 0 0 40.98

0 8.5 35.19 11.81

0.01 13.91 3.37 43.44

0 32 11 37

0 0 0 0

n/a n/a n/a n/a

0 0 29 0

0.02 18 26 25

37.2 0 6.7 0.6

15 0 7 1

n/a n/a n/a n/a

0 100 0 0

77.5 12.5 0 10

0 16 42.1 20



Fig. 9. Histograms of the relative difference between reference and retrieved LAI values for different biome types and QAs.
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crops, savannas, and broadleaf forests (Fig. 9 and Table 4).

In general, misclassification between distinct biomes has a

significant effect on LAI retrieval. For example, shrubs are

mainly misclassified as broadleaf or needleleaf forests

(Table 3, QA= 1). The mean relative difference is � 0.37

compared to � 0.14 when the probability of such a mis-

identification is much lower (Table 4, QA= 0).

What is the probability that biome misidentification has

no impact on LAI retrieval? To address this question, we

introduce the most probable relative difference as values of

D at which the histogram exhibits local maxima. Many of

histograms have two local maxima (Fig. 9), however,

all biomes have a local maximum around D = 0. Table 5

lists the most probable values of D̄ and probabilities of
jD� D̄jV v for different biome types, QA values, and

disagreement levels v.
For grasses and cereal crops, shrubs, savannas, and

broadleaf forests, the disagreement between reference and

high quality retrievals (QA= 0) does not exceed 15% with

probabilities 97%, 68%, 71%, and 100%, respectively

(Table 5). For 81% of savannas, the relative difference

corresponding to QA= 0 and D̄= 0 is about 25%. With the

exception of shrubs, more than 70% of intermediate quality

retrievals agree with reference values to within 25%. For

these retrievals, however, probabilities of jDjV 0.25 are

reduced. On average, with a probability of 70% and higher,

the high and intermediate quality retrievals agree with true

values to within 25% uncertainties, which is close to the



Table 4

Mean values and standard deviations of the relative difference for different

biome types and QAs

Mean Standard deviation

QA=0 QA=1 QA= 2 QA= 0 QA= 1 QA=2

Grasses and

cereal crops

� 0.01 � 0.13 0.20 0.05 0.10 1.68

Shrubs � 0.14 � 0.37 0 0.29 0.34 0.00

Broadleaf crops n/a 0.45 0.60 n/a 0.73 3.03

Savannas 0.17 0.05 n/a 0.76 0.68 n/a

Broadleaf forests 0 0.04 � 0.35 0 0.05 0.22
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overall uncertainty in model and observations (Tables 1 and

2). Thus, the optimal performance of the algorithm mini-

mizes biome misclassification when it has a significant

effect on LAI retrievals. With a very high probability,

uncertainties due to the biome misclassification do not

exceed uncertainties in model and observations.

Note that cover type information is an important input to

LAI/FPAR algorithms that use single-angle observations.

The typical overall accuracy in most biome maps is about

70% (Lotsch et al., 2003). Thus, about 30% of LAI

retrievals should be treated as unreliable. The use of angular

and spectral information of vegetations, instead of biome

maps, results in comparable accuracy in LAI and also

facilitates assignment of quality flags to retrievals. It should

also be noted that uncertainties in the reference LAI field are

unknown and thus the above analysis does not characterize

uncertainties in retrievals. However, the proximity of re-

trieved and reference LAI fields indicates that MISR angular

and spectral information is sufficient for LAI/FPAR retriev-

als without using land cover maps as input.
Fig. 10. (a) NDVI-LAI and (b) NDVI-FPAR regression curves for grasses

and cereal crops and broadleaf forests, based on the MISR data. High

quality retrievals (QA= 0) were used to derive these curves.
8. Test of physics

The measured spectral reflectance data are usually com-

pressed into vegetation indexes. More than a dozen such

indexes are reported in the literature and shown to correlate

well with vegetation amount (Tucker, 1979), the fraction of
Table 5

Most probable values D̄ of the relative difference D and probabilities of jD̄�Dj <
Most probable value Probability

QA= 0 QA= 1 QA= 2 QA= 0

v= 0.15

Grasses and

cereal crops

0 � 0.1 0 0.97

Shrubs 0 0 0 0.68

� 0.7 � 0.7 – 0.32

Broadleaf crops – 0 0 –

– 0.4 – –

– 1.7 – –

Savannas 0 0 – 0.71

� 0.6 � 0.6 – 0.06

Broadleaf forests 0 0 0 1

– – � 0.45 –
absorbed photosynthetically active radiation (Asrar, Fuchs,

Kanemasu, & Harfield, 1984), unstressed vegetation con-

ductance and photosynthetic capacity (Sellers, Berry, Col-
v for different biome types, QAs, and disagreement levels v

(jD̄�Dj < v)

QA=1 QA= 2

v= 0.25 v= 0.15 v= 0.25 v= 0.15 v= 0.25

0.99 0.86 0.96 0.44 0.51

0.68 0.32 0.32 1 1

0.32 0.68 0.68 – –

– 0.71 0.71 0.6 0.71

– 0.04 0.04 – –

– 0.25 0.25 – –

0.81 0.57 0.7 – –

0.06 0.22 0.22 – –

1 1 1 0.2 0.3

– – – 0.5 0.66
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latz, Field, & Hall, 1992), and seasonal atmospheric

carbon dioxide variations (Tucker & Sellers, 1986). There

are some theoretical investigations to explain these empir-

ical regularities (Knyazikhin, Martonchik, Myneni, Diner,

& Running, 1998; Myneni, Hall, Sellers, & Marshak,

1995; Vygodskaya & Gorshkova, 1987). Such relationships

provide a method to test the physics of retrievals. Here, we

test relationships between the normalized difference vege-

tation index (NDVI), LAI, and FPAR. NDVI values were

regressed against both LAI and FPAR to ascertain whether

the proper relationships were obtained. The NDVI values

were computed using the MISR nadir view HDRF values

in the red and NIR bands. It should be emphasized that the

LAI values were obtained from the MISR LAI/FPAR

algorithm with MISR surface reflectances as inputs and

not NDVI values. Fig. 10 shows the NDVI-LAI and

NDVI-FPAR regression curves for grasses and cereal crops

and broadleaf forests. The high quality retrievals (QA= 0)

were used to derive these curves. The biome specific

relationships between the retrieved LAI/FPAR and the
Fig. 11. NDVI-LAI regression curves for (a) grasses and cereal crops and

(b) broadleaf forests for different values of QA.
measured NDVI values conform to both theoretical and

empirical results. Fig. 11 shows NDVI-LAI relationships

for grasses and cereal crops and broadleaf forests corre-

sponding to different values of QA. One can see that

curves corresponding to QA= 2 do not follow regularities

expected from physics and are mainly outside of the error

bars of curves the NDVI-LAI relationships derived from

high quality retrievals. A failure of the algorithm to

execute the first test (QA= 2) indicates high uncertainties

in BHR which, propagating through the surface retrieval

algorithm, result in a poor quality of BRF, and, as a

consequence, LAI retrievals. At the Langley ASDC, the

operational version of the algorithm will generate LAI and

FPAR products only for the condition of QA= 0 and

QA= 1.
9. Concluding remarks

An algorithm for the retrieval of LAI, FPAR, and biome

type from MISR BHR and BRF data has been in operational

processing at the Langley ASDC since October 2002. This

paper describes the research basis for transitioning the

MISR LAI/FPAR product from beta to provisional status.

The quality and spatial coverage of MISR surface reflec-

tances input to the algorithm determine the quality and

spatial coverage of the LAI and FPAR products. Therefore,

our primary objective was to establish the convergence

property of the MISR LAI/FPAR algorithm, namely, that

the reliability and accuracy of the retrievals increase with

increased input information content and accuracy.

The uncertainties in modeling the physics of the problem

and measurements of surface reflectances are input to the

MISR LAI/FPAR algorithm. An upper limit for these

uncertainties that allows the algorithm to discriminate be-

tween pure biome types, minimize the impact of biome

misidentification on LAI retrievals, and maximize the spa-

tial coverage of retrievals was empirically evaluated from

MISR data over Africa. Our analysis indicates that uncer-

tainties in MISR BHR values over dense vegetation can

substantially exceed the acceptable level of 20%, resulting

in failure of the LAI/FPAR algorithm.

The performance of the MISR LAI/FPAR algorithm

evaluated on a limited set of MISR data from Africa can

be stated as resulting in valid LAI values and correct biome

identification in about 20% of the pixels, on an average,

given the current level of uncertainties in the MISR surface

reflectance product. About 80% of LAI values are retrieved

using incorrect information about biome type. We docu-

ment that the LAI/FPAR algorithm minimizes biome mis-

classification when it has a significant effect on LAI

retrievals. Finally, with a probability of about 70%, uncer-

tainties in LAI retrievals due to biome misclassification do

not exceed uncertainties in observations. These metrics will

significantly improve as the quality of MISR surface

reflectances improves. In fact, the surface reflectances used
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in this article are already outdated, as the upstream algo-

rithms and products, related to aerosol optical depth re-

trieval and atmospheric correction, have been significantly

improved.

Considerable attention was also paid to characterizing the

quality of the LAI/FPAR fields and this information is

available to the users as quality assessment flags accompa-

nying the product. A QA, as defined in this study, takes on

values between 0 and 2, indicating that a retrieval passed

both comparison tests (QA= 0, highest quality), the first test

only (QA= 1, intermediate quality), or the second test only

(QA= 2, low quality). Analyses presented in this paper

indicate that, with a high probability, the quality indicator

correctly reflects retrieval quality. Based on our investiga-

tion, one can conclude that the LAI/FPAR algorithm realizes

the stated convergence goal, namely, that the reliability and

accuracy of the retrievals increase with increased input

information content and accuracy. Therefore, the increasing

quality of the MISR surface reflectances will lead to better

quality LAI and FPAR retrievals in the near future.

Nomenclature

ASDC Atmospheric Sciences Data Center

BHR Bihemispherical Reflectance

BI Biome Identification Index

BRF Bidirectional Reflectance Factor

CART Canopy Architecture Radiative Transfer file

COVLAI Coefficient of Variation of LAI

DAAC NASA Distributed Active Archive Centers

DHR Directional Hemispherical Reflectance

FPAR Fraction of Photosynthetically Active Radiation

absorbed by vegetation

HDRF Hemispherical–Directional Reflectance Factors

LAI Leaf Area Index

LaRC Langley Research Center

LUT Look-Up Table

MISR Multi-angle Imaging SpectroRadiometer

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

NDVI Normalized Difference Vegetation Index

NIR Near Infra-Red

PI Performance Index

QA Quality Assessment

RI Retrieval Index

SOM Space Oblique Mercator projection
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Hu, J., Knyazikhin, Y., & Myneni, R. B. (2003). A new parameter-

ization of canopy spectral response to incident solar radiation: Case

study with hyperspectral data from pine dominant forest. Remote Sens-

ing of Environment (in press).

Wang, Y., Tian, Y., Zhang, Y., El-Saleous, N., Knyazikhin, Y., Vermote, E.,

& Myneni, R. B. (2001). Investigation of product accuracy as a function

of input and model uncertainties: Case study with SeaWiFS and

MODIS LAI/FPAR algorithm. Remote Sensing of Environment, 78,

299–313.

Vygodskaya, N. N., & Gorshkova, I. I. (1987). Theory and experiment in

vegetation remote sensing (p. 248). St. Petersburg, Russia: Gidrome-

teoizdat, in Russian, with English abstract.

Zhang, Y., Shabanov, N., Knyazikhin, Y., & Myneni, R. B. (2002). Assess-

ing the information content of multiangle satellite data for mapping

biomes II: Theory. Remote Sensing of Environment, 80, 435–446.


	Performance of the MISR LAI and FPAR algorithm: a case study in Africa
	Introduction
	MISR data
	Data analysis
	MISR LAI/FPAR algorithm
	Scaling of the algorithm
	Performance of the algorithm as a function of uncertainties
	Definition of uncertainties
	Optimal performance of the algorithm

	Impact of biome misidentification on LAI retrievals
	Test of physics
	Concluding remarks
	Acknowledgements
	References


