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MISR Global Data Products: A New Approach

Amy BravermanMember, IEEEand Larry Di Girolamo

Abstract—This paper describes a new type of global, gridded clustering, or any other data features potentially important for
product being created by the Multi-angle Imaging Spectro- science analysis. In addition, means and standard deviations do
Radiometer (MISR) team. The product is a compressed version, o qescribe relationships among geophysical parameters, and

or summary, of MISR geophysical data products on a ¥ monthly . .
global grid. Data belonging to each grid cell are summarized by they may in fact obscure them. Covariances can be reported, but

a multivariate histogram. The numbers, sizes, and shapes of the they say nothing about nonlinear relationships or interactions
histogram bins vary among cells, and they adapt to the shape among three or more parameters.

of the data in high-dimensional space. Also, bin representatives  Here we introduce a new type of Level 3 product, called the
are means rather than midpoints. These modifications allow data MISR Level 3 Joint Global Climate (L3JGC) product, designed

to be summarized parsimoniously and with lower error than t f th ltivariate data struct ti
is possible using customary, simple, descriptive statistics. The 0 preserve more of the muitivariale data structure present in

method is demonstrated by compressing test MISR aerosol data, MISR’s geophysical products. Rather than providing a single
and performance is assessed by comparing computations usingmean and standard deviation for each parameter, L3JGC pro-
compressed data with those using the original. vides a set of representative vectors and associated weights. The

Index Terms—Clustering algorithms, datacompression, entropy- Vectors have as many components as there are parameters to
constrained vector quantization, Level 3 products, massive datasets. be summarized. Vector weight is the number of data points the
vector represents. In other words, if there dgarameters to be
summarized for a given grid cell, the traditional Level 3 product
_ _ _ providesd meansg standard deviations, and possibly some of

HE Multi-angle Imaging SpectroRadiometer (MISR) waghe d(d — 1)/2 covariances. The new product provid&sd-
launched into earth Orblt.aboard NASA's Terr?. satellite Oflimensional d_D) representatives and counts, where the sum
December 18, 1999. Along with Terra’s four other instrumentgs the counts equals the number original data points in the cell
MISR has been collecting—and will continue to collect—masor which measurements exist on dlparametersk’ may vary
sive quantities of data [1]. MISR alone is currently producingmong grid cells, depending on how many representatives are
derived geophysical products at the rate of about 3.5 TB pg&eded to adequately characterize their data. This will be done
year. One goal of the Terra mission is to provide the reseangd halancing fidelity to the data against increased complexity
community with long-term datasets for global climate studiegycurred when greater numbers of representatives are used. We
but even the most well-equipped users can expect globghi| the set of representatives and weights a summary, or com-
exploratory analyses on this scale to be difficult. Recogmzwtgessed version, of the original ¥ 1° cell data.
this, many instrument teams, including the MISR team, have geyeral aspects of L3JGC distinguish it from traditional Level
resolved to produce lower-volume, lower-resolution Summ"J‘”Q?roducts. First, it summarizégparameters jointly, i.e., it treats
of their geophysical data products. These are so-called LeveA\Smeasurements of parameters taken at the same time and
products. _ ~ place asV points ind-D space. Distances in this high-dimen-

Level 3 products are typically constructed by partitioningjona| space are used to form groups from which representa-
data collected in a month on & % 1° latitude-longitude es and weights are determined. Second, L3JGC is a family
spatial grid and then summarizing the data belonging to €agf\\onparametric data distribution estimates, one for each grid
grid cell with a set of simple, descriptive stafistics suCh §$y| Each can be thought of as a high-dimensional histogram in
means, standard dewatlons,_and counts. While such summaigs-p sizes, shapes, and numbers of bins adapt to the shape of
have the advantage of being well-understood and easy#@ gata in high-dimensional data space. Traditional histograms
compute, they discard most of the information in the data. FQ&e 5 geometric partitioning to create rectangular bins. Here, in-
mstqnce_, the mean and standard deviation fully describe a dgiaen clustering in data space influences the shapes of the bins
distribution only if the data are normally distributed. If not, 4 5j10ws the data to be represented with less error. Moreover,
thef]? stagstlcskcharacterlze tg p'Cafll va(ljue andlispreadz bet B3YGC is parsimonious: the number of representatives in a cell
nothing about skewness, number of modes, outliers, uniformiy, ., 55 |arge as necessary to adequately represent data be-

longing to it.

Manuscript received September 4, 2001; revised March 22, 2002. This work This paper describes the method used to create L3JGC
was conducted at the Jet Propulsion Laboratory, California Institute of Technd demonstrates how L3JGC can be used in data analysis
nology, under contract with the National Aeronautics and SpaceAdministratig. . d ib he al ith . d o

A. Braverman is with the Jet Propulsion Laboratory, Pasadena, CA 911 ection Il describes the algorithm. Section 1| errjonstrates Its
8099 USA (e-mail: Amy.Braverman@jpl.nasa.gov). use on a test dataset constructed from some preliminary MISR

L. Di Girolamo is with the Department of Atmospheric Science, Univergargsol retrievals. Section IV uses the resulting L3JGC-like
sity of lllinois at Urbana-Champaign, Urbana, IL 61801-3070 USA (e—mail(:j f o le d VSi d i f
larry@atmos uiuc.edu). ataset for a simple data analysis and assesses quality o

Publisher Item Identifier 10.1109/TGRS.2002.801159. the results by comparing them to those obtained when the

|I. INTRODUCTION

0196-2892/02$17.00 © 2002 IEEE



BRAVERMAN AND DI GIROLAMO: MISR GLOBAL DATA PRODUCTS: A NEW APPROACH 1627

same analysis is performed on the original test data. Finalbf, high descriptive complexity, and our goal is to find a set of
Section V contains an assessment of the exercise and discuassgnments that achieves an optimal balance between the two.
some issues regarding product use. The statistical basis for th&his goal is similar to that of quantization in signal processing

ideas presented here is discussed in [2]. [4]. There, data are random signals to be sent over channels of
limited capacity. Signals are assigned to ondiotlasses, and
[I. METHOD only class indicators are sent. At destination, indicators are re-

placed by representative values for classes as estimates of raw
signals. The quantization problem is to design a system that pro-
In this section, we introduce the method underlying creatiqfj,ces good estimates within constraints on the number of bits
of L3JGC. First, however, we introduce some notation, deﬁ”%cessary to distinguish classes (channel capacity) and in view
data summary, and discuss measures of quality for it. of the statistical character of the signals. This is a constrained
Each month, eachf1x 1° grid cell (“L3 cell”) has an associ- gptimization problem: findyx to minimize average error sub-
ated set of geophysical measurements. For the sake of this gligt to a limit on the average number of bits per transmission.
cussion assume those measurements are all at the same spaiidre the data are the observations we wish to summarize,
resolution, say, 1.1 kipand focus on a single L3 cell;param-  and for fixed K’ we seekay such that the distortion between
eters for the same 1.1-Kmegion can be concatenated to forfhe summary and the observations is small. The bit restriction
ad-D CO'an vectory, and the collection O_W_ such vectors s analogous to a requirement that summary entropy be small as
representing regions whose centers fall within the L3 cell ajiga|l. However, unlike the signal processing situation, here we
denoted by{y, },,_,; ¥ may also be called an observation or §ave no hard upper limit on entropy analogous to channel ca-
data point. pacity. Instead, we formulate the optimization problem as fol-

A summary of the data belonging to an L3 cell is a set @hws: find the assignment of data pointsAbclusters to mini-
representative vectors and their associated weightsy,’eén  mjze a Lagrangian objective function

an L3 cell are partitioned into groups, also called clusters, and
the mean vector of each cluster serves as its representative. The X
weights are the numbers gf's belonging to the clusters, alsoL, x = — Z [Hyn _ /3[ak(yn)]ll2
called counts. We let(%) denote thel-D mean vector of cluster N
k, andN (k) denotes the number gf,’s it contains. Sometimes, N(ax(yn))
we will also include a within-cluster error measuxék), which +A <_ log —— )} (1)
is the average squared distance between data points fiththe
cluster and their representative At is the number of clusters, where K and )\ are fixed constants.
the cell summary can be written compactly{akk), N (k). . The first term on the right-hand side of (1) is the average
or {B(k), N(k), A(k) le. squared distance between data points and their representatives
Two measures of summary quality are its distortion anghderc . The second term represents the average log-propor-
entropy. Distortion is the average squared distance betwein of points assigned to the clusters. This term can be thought
data points and their representatives. This is just the weightefhs a penalty that is small when, assigns data points to clus-
average of the within-cluster errors defined above, where tters to produce a low-entropy configuration. The paramsater
weights are given by the proportions of data points in eatfanslates the penalty into units of squared distance compatible
cluster. More formally,;;,,’s membership is recorded by anwith the first term. IfA = 0, L x is minimized whenyy as-
assignment functiomy (y,,) providing an integer identifying signs eachy, to the cluster with the nearest squared Euclidean
to which of the K clustersy, belongs. With this notation, distance representative, and &ll clusters receive at least one
Blak(yn)] is yn's representative, andViag(y,)] is the datapoint. IfA > 0, theathat minimizes., x may assign some
corresponding count. Then distortion is data points to clusters with representatives that are not nearest to
them because more massive clusters exist further away. In fact,
X N(k) 1 & 2 some clusters may receive no data points at all, and the number
A=) — Ak) =+ > M = Blovke (o]l of nonempty clusters may be fewer than
=t n=t To find the set of assignments that minimizes x, we use
Entropy measures the average number of bits necessar}&l‘fdterative, randomized algorithm described in Section 11-B and
specify cluster membership of a data point, and it can lgéven fully in the Appendix. Algorithm parameters and K
interpreted as a measure of summary descriptive complexigust be set in advance, and a procedure for determining their
[3]. It is calculated from the probability distribution defined byvalues is discussed in Section II-C.
the proportionsV(k)/N:

A. Summarizing Data

B. Algorithm
b EB: N(k) o N(k) The algorithm to find optimal assignment functions is based
o — N BTN on the Entropy-Constrained Vector Quantization algorithm

(ECVQ) [5]. ECVQ is an iterative descent algorithm for
Note thatox fully determines the representatives, counts, eminimizing Ly x by choice ofw. Fig. 1 is a diagram of ECVQ.
rors, distortion, and entropy, since they all depend on cluster asAssumingK andX are fixed, ECVQ begins by assigning each
signment. Low summary distortion generally comes at the cafdta point randomly to one df clusters and computing cluster
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Fig. 1. ECVQ algorithm finds assignments of data points to clusters wh Test for

both distortion and entropy of the distribution resulting from the assignmer
are taken into account.

convergence, ~—— Preliminary
No Yes Summaries

means. Next, each data point is reassigned to the cluster withithge2. Modified ECVQ algorithm. The ECVQ algorithm is repeated multiple

nearest mean vector. and then cluster means and counts aré"ﬂrESWith different random samples on each trial to create multiple preliminary
’ surmmaries. The distortions that would be incurred if the entire dataset were

dated. The folloyvm_g steps_are then iterated until Con_vergen%ﬁl;nmarized using these summaries are also estimated from the samples. The
1) each data point is reassigned to the cluster for which the peeliminary summary with smallest estimated distortion is used to summarize

nalized distance the full dataset.

T 2 R ples. For instance, if we use 50 samples, the first one is the de-
dy, k) = lly = BEI" + A= log N(k)/N] sign sample for the first preliminary summary, and the other 49
L are the first preliminary summary’s test samples. The second
is minimized, wherej(k) and N (k) are the cluster means andyympe is the design sample for the second preliminary sum-
counts, respectively; 2)(k) and N (k) are updated, and empty oy and samples 3, . .. , 50 are its test samples, and so forth.
clusters deleted. The final values @f) and N (k) constitute  gecond each preliminary set of representatives is then used to
the basic summary, and sometimes the within-cluster distQmmarize its test samples by i) assigning each set of test sample
tion will be included as well. The ECVQ algorithm is guaransints to their nearest squared Euclidean distance representa-
teed to converge in a finite number of iterations [5]. Thougfyes i) recomputing the cluster means based on these assign-
not guaranteed to converge to a global minimuniefi, the  mnents “and i) obtaining the distortion between test sample and
ECVQ solution will always be animprovement over the startingye reliminary summary. In the example, this yields 49 distor-
assignments, and the resulting summaries provide a sensifif,s tor each of the 50 preliminary summaries. Distortions for
lower-volume version of the original data. the same preliminary summary are averaged to produce an es-
ECVQ in this form is not practical for MISR data for severayase of the distortion that would be incurred had that sum-
reasons. First, ECVQ is iterative and too computationally intefis, ry heen used to summarize the entire cell dataset rather than
Sive fqr Iarge_vqlumes of data. S_e_c_ond, S_OIUUO”S are SUbJequﬁgt the test samples. Third, the preliminary summary with the
sampling variation because the initial assignment of data poifi§ et estimated distortion is designated the best preliminary
to clusters is random. Third, ECVQ solutions are not nearegﬁmmary_ The best preliminary summary is used to summa-
neighbor: the final assignments do not minimize squared Eis¢ he entire cell dataset by assigning every data point in the
clidean distances between data points and their cluster repigy ¢, the cluster with the closest squared Euclidean distance
sentatives. These problems are mitigated by modifying ECV{dresentative. New cluster means, counts, and distortions are

as §hown in Fig. 2. ) computed, and these are reported as the final summary for the
First, we run ECVQ separately on a number of independent , ! ~ ~ K
random samples taken with replacement from the data in e/l We’de3|gnate the final summary Bg(k), N (k)},._,. or

cell being summarized. This produces a number of differe{l/fi(k),N(k),A(k)}le, where the tilde notation indicates all
sets of representatives and counts, here called preliminary sufata in the cell are represented. With this scheme all data are
maries. Each preliminary summary is derived from one sampimmarized, but only a random sample is used to design the
called its design sample, and we call the others its test sasoimmary.
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We call the final summary’s distortion thee posterioridis- by the scatterplots in the top panels of Fig. 3. The modified
tortion. We also report the average of the 50 preliminary sursCVQ solutions obtained with = 0 are shown in the middle
mary distortions and call it tha priori distortion, since it ap- two panels of Fig. 3 fotKk' = 5. Both summaries havél
proximates the average distortion incurred before specifyingepresentatives, but the quality is much better for cell B, since
particular preliminary summary for use on the whole dataséfie average squared distance between data points and their
A posterioridistortion can be thought of as a goodness-of-fiepresentatives is smaller.
measure for a specific summary. It is the relevant error to prop-£ clusters are more than the number necessary to achieve cell
agate through transformations of summarized data in orderA§ quality levelin cell B, or, put another way, cell B's summary
gauge how closely such quantities approximate true valuesi®nore descr'iptively complex than necessary. In this sense, cell
those transformations computed using the original datasetB's data are simpler than cell A's because a summary with lower
priori distortion can be thought of as a process performan@@tr(_)py can achieve the same dlstort!on level. In the interest of
measure incorporating both goodness-of-fit and algorithm sR@rsimony, B's summary should be simpler, and we say cell B
bility over different design samples. It is the relevant error me undercompressed at= 0.

sure for making decisions about future applications of the mod_AIterqatlver, if A IS very large(A = oo) the complexity
ified ECVQ algorithm to the same data. For instarayiori penalty inL g outweighs the error term. In each cell, observa-
' tions are assigned to a single cluster for which the representative

distortion is the relevant error for selecting an appropriate value, . , .
of \ in Section 11-C. IS'the cell mean vector. Entropies for both cells summaries are
. . . . . log 1 = 0, and summary errors are just the sums of the variances
Problems of computanonf_;ll |nten§|ty are m!tlgatgd by us”-%?the data vector elements. This is an overcompressed condition
samples for the computathnally m_tense, lterative part @f \hich summaries do not reflect differences in data variation.
the procedure. Moreover, using multiple random samples @fse differences are subsumed into summary errors rather than
multiple trials and averaging estimated summary errors V*‘e'dbeing manifest by differences in descriptive complexity.
priori distortion estimates that account for sampling variation. ganween these extremes is some valug that neither under-
Also, this strategy constitutes a randomized algorithm thag, gvercompresses the two cells’ data relative to one another.
improves chances of finding a true global minimumiofx if  sych a solution is shown in Fig. 3(e) and (f), and it corresponds
it exists. Finally, since data are assigned to their nearest clugten = ¢.2. Summary error levels are relatively similar com-
means prior to updating for the last time, final assignmengred to solutions ax = 0 or A = co. ConditionA = 0.2
are approximately nearest neighbor and, therefore, error miptoduces summaries of similar quality, so differences between
mizing. The modified procedure is called modified ECVQ.  them reflect data distribution differences rather than discrepan-
cies in goodness-of-fit of the summaries to their data. If this ex-
C. SettingK and A ercise were repeated usif = 10 instead ofK” = 5, the same

. . ) ) . type of result would be obtained except that error levels would
The algorithm described in Section II-B requires the Parafenerally be lower.

etersk and\ be set in advance. The parameterestablishes = psrametei controls overall fidelity of a collection of sum-

the general level of fidelity. The largét is, the lower will be - 5ries to their data. Parameteis used to tune the summaries to
the distortion of the theoretically best summary, the sSummagy:ommon distortion level in that regime so that summaries are
produced by the assignment function that is the global minit comparable quality. In practic is set by practical consid-
mizer of L x when = 0. Even though our algorithm may erations described earlier; then, various valuesarfe tested by
useA > 0 and is not guaranteed to find the global minimumynning the modified ECVQ algorithm on a subset of L3 cells.
larger values of{" tend to produce lower distortions. All otherFor instance, in the example in Section I, we use all L3 cells

things being equal, one would therefore like to &etis large for which latitude and longitude are even multiples 6fdnd
as possible. On the other hand, the total number of clusters f@st\x = 0,0.1,0.2,...,1.0. We start with this range because

all L3 cells must not exceed some value determined by the file= 0 is its minimum possible value, and= 1.0 makes one
size allocated for their storage. We gétto the largest integer unit of distortion equal to one bit of descriptive complexity in
not exceeding this value divided by the number of cells beingie objective function. We look at the variance across L3 cells
summarized. of a priori distortion and seleck to minimize this quantityA

The parameteh translates the penalty iy 5 to its equiv- priori distortion is relevant because this is a pretest. Final cell
alent in units of squared distance, but it is not obvious whatmmaries will not be created here; a future application of the
A should be. If one were compressing a single cell datasetdlyorithm will be required, and sampling variation must there-
isolation, the most accurate summary, for givénis obtained fore be taken into account.
by settingh = 0. Then, L, x is minimized by assigning each If this procedure suggestsshould be an endpoint of the ini-
data point to the nearest of th€ representatives regardless ofial test range, the range is refined, so we can be reasonably
consequences for complexity. Now consider compressing tsore we are finding a minimum. If the distortion-minimizing
datasets, say two neighboring L3 cells, using no more #ian X is zero, we retest using, 0.01,0.02,...,0.09. If it is one,
clusters each. Suppose cell A contains data distributed oves retest usind.1,1.2,...,2.0, and in principle continue the
some hyperspherical region iftispace, and suppose also thagprocess until the\ that minimizes the variance af priori dis-
cell B contains the same number of points tightly clustered tortion is in the interior of a test range. In practice, we stop after
a much smaller region. The situation is illustrated for= 2 a reasonable number ranges, say five, have been tested.
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Fig. 3. (Top) Scatterplots of two datasets: (a) one heterogeneous (cell A in the text) and (b) one homogeneous (cell B in the text). (Middle) Suihenaries o
two datasets using five clusters in both cases. These summaries are produced by the ECVQ algorifhm:wilndA = 0. Scatterplots are projected onto plot
floors. Locations of spikes show locations of cluster representatives. Spike heights indicate cluster counts. Region of high data densitpgetiemhemiataset

is represented by five clusters in close proximity. (Bottom) Summaries of the two datasets produced by the ECVQ algorithe witnd\ = 0.2. The region

of high data density in the homogeneous dataset is represented by fewer, more massive clusters than was thecaséwKete that the average (squared)
distance between data points and their nearest representatives is more equalwlited than whem\ = 0.
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[ll. EXAMPLE: COMPRESSINGMISR AEROSOLDATA high end, the cell with the largest number of data points has
V\ﬁel 137 observations. The total size of the test data for all cells
304 861 6-D data points.

To demonstrate the use of the modified ECVQ algorithm,
create a compressed version of some MISR test data. We %s

test data extracted from preliminary MISR aerosol retrievals, i9. 5 shows the number of clustels, , allocated to each .
over southern Africa (latitude-40° to O°, longitude O to 55 grid cell. The largest number of clusters allocated to any cell is

over land only) during a six-week period beginning in Augu 1. Note that cells with relatively high’, .. are not necessarily

2000. As of that time, MISR aerosol retrievals over land pr&- TI SaT; ones with lh'gl;[“;{'”' M(ire cluster_sl a;re aIIocat_(tar:j 0
vide an optical depth estimateand five goodness-of-fit mea- cells with more complex data, not necessarily 1o ones with more

sures, denoted?, x2, x2, x2, and x2, describing how well Qata pomKts. Tfeggc;tgl number of clusters for all cells combined
w,v WY T .

MISR’s observed radiances match sets of radiances prediclt%%_: "5 oh th  of terioridist
by five different aerosol models. For our example, optical depth 9.6 hOWS” el stquatre rol(l) 0 sumn:jarfos e_.\nton Istor-
and the fivex?’s are appended to form a six-dimensional (6—D5Ion In each cell relative 1o cell average data point norm

data vectoy = (7, x2,x2, x2,x2,x2)". There is one such data

vector for each 17.6-kmregion. N1 AE Ao (B) Ny o ()
Since aerosol retrievals are only valid in the absence of \/Zrel _ WY T v

clouds, MISR’s stereo-derived cloud mask (SDCM) is used v T Nero

to screen out cloudy subregions. Each 17.6-kragion is N 3 Ynuell

made up of a 16 16 array of 1.1-km subregions, and the n=1

SDCM designates each of these as cloudy or clear with higRis js 4 measure of how well the reported summary represents
or low confidence. Test data were created from the regiongl average data point. Of the 743 summaries, 738 have errors
retrievals by copying each data vecti. times, wherelV,. is  \yhich are less than 5% as large as the average data point size.
the number of high-confidence, clear subregions in region The color bar in Fig. 6 is truncated at 5%, since this is sufficient
Each subregional data vector bears the latitude and longitudggfaimost all the values shown, and provides distinguishability
the corresponding subregion, and these 1.£-Bata points are ¢ the low end of the scale. Of the five cells with errors greater
the observations to be summarized in this exercise. Of courggyn, 5%, the largest relative error is about 28%. There is no ap-
this creates a certain amount of artificial clustering. In creati%rent geographic pattern in the errors. The five high-distortion

L3JGC, it will be necessary to reconcile spatial resolutions Wy|is are those with a small numbers of data points where the
this way to combine parameters derived at different resolutior;ﬁgorithm may be less stable.

The larger the disparity in resolution, the more pronouncedTgken together, Figs. 4-6 show how much data volume re-
will be this artifact. Under such circumstances, counts reportgflction is achieved and at what cost. One measure of com-
in the summaries should be interpreted as weights rather t"Egssion is the proportional reduction in the number of records,
actual numbers of observations. That being said, we ignore fige 99.85%. There are two additional fields in the summaries:
issue for the remainder of this example. _ cluster count and within-cluster distortion. It is also possible to
The modified ECVQ algorithm is applied to all 743 cells inytfer an information-theoretic measure of data reduction based
dependently with' = 40, 50 random samples of size 500y, entropy reduction, but this seems less relevant than simple re-
drawn with replacement, and= 0.1. The paramter# andA qyction in file length for data-handling concerns addressed here.
Were_s_et according to the criteria described in Section II-C. TR§,e |ow relativea posteriorierrors suggest we can in general
condition K = 40 assures there can be no more than a total gipect calculations based on these summaries to well approx-
743 % 40 = 29720 ~ 30000 representatives output. To selecimate the same calculations using original data. However, this
a value ofA, we tested values,0.1,0.2,...,1.0 using 29 L3 gepends as much on the nature of the calculation as on the level
cells: those with latitudes and longitudes evenly divisible by S figelity. Section IV contains an example involving a nonlinear

ConditionA = 0.1 minimized the variance of theepriori distor-  yransformation and demonstrates why using the summaries is
tions across those cells. The number of samples and sample gigger than using grid cell means.

was chosen to balance the benefits of large samples against the
cost in terms of computational speed. Seven hundred forty-three
summaries are created

IV. SAMPLE DATA ANALYSIS

) In this section, we investigate relationships between optical
{{/3 W (F) N W (F) A ’.(k)}l"uﬁv} depth andy? measures using cgmpressed MISR aerosol t.est
VAT ST Ty k=1 f data, and we compare results with the same set of calculations
performed on raw test data. We emphasize that the standard by
uw=0,...,—40,v = 0,...,55, wherex andv index cell lat- which the modified ECVQ algorithm should be judged is how
itude and longitude. A typical cell having about 15000 datzlosely results of the two sets of calculations match, not by their
points was compressed in about 12 min on a 400-MHz RISDbstantive content. At the time of this analysis, the retrieval
12000 processor. algorithm which created these test data was preliminary. There-
Figs. 4—-6 show some diagnostics. Fig. 4 displays the numbérse, no conclusions should be drawn regarding quality of MISR
of test data vectors present by grid céll, ... There are 743 data based on this analysis.
nonempty cells. The color bar in Fig. 4 is truncated at 20 000 We examine correlation between optical depthand the
to ensure distinguishability at the low end of the scale. At thariance W, of the five x?’s about their meari¥/ is a measure
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>=20 000

0 >=0.05

Fig. 4. Number of original data points belonging to L3 grid ceNs. , is the
value for the cell at latituder, longitudev. The total number of data points Fig. 6. Square root o& posteriorierror, relative to average data point norm,

. - —rel =
represented |§:u’UA7\’u,U = 6304 861. by grld Ce”:\/Ku,v — \/Zuﬁv/zfji,lv ||yn,u,v||,Wh8I’eyn,u,v is thenth
data point in the grid cell at latitude, longitudew.

W can be calculated for each data point
1 5 2 ) 2
Wn,u,'v = g Z (Xn,u,'vi - Xn,u,'v)
=1

1 5
—2 2
Xn,u,'v = 3 E Xn,u,'v,i (2)
=1

wherei indexes aerosol model. We would likethe true corre-
lation betweerr andW, for all 743 1 x 1° grid cells:

Ny v _
Niw 22 (Taue = Tuw) W = W)
Pu,v = n=t
02 ) 2

40 where7, , andW,, , are the mean values ofandW in the L3
cell with latitudew and longitude, ando? , , andogy,, . are

T,U,V

the variances:

Nuy,»
Tuw=N_1 T
w, v T A v U,V
n=1

Fig. 5. Number of clusters allocated to L3 grid cels.. ., is the value
for the cell at latituder, longitudew. The total number of clusters output is
Y Kuw = 9322,

of homogeneity of thg?’s. Low values indicate the five models

explain observed radiances nearly equally well, and high values W, = N-L ]\E: W

indicate some degree of differentiation. We use the correlation v et

p(r, W) for this demonstration, not for its scientific content, but :_

because it is a nonlinear function of all six componentg,of o2 —=pN-L (Thuw — T ’U)2
While linear functions of raw data are exactly reproduced by the sy Gr L ’
same linear functions of compressed data, nonlinear functions Nuw

are not preserved [2]. Quality of nonlinear transformation esti- 0%, =N1 Whw — W 1_)2.
mates depends on how closely summaries match raw data and A SR

on the transformation. This example illustrates that when sum-
maries match their data well, good estimates of typical nonlingdere, it is possible to calculaig, ., because the test data are
functions such as correlation can be obtained. small. Fig. 7 shows the true values®f., by grid cell.
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. .
-1 +1

Fig. 7. True correlationp....,, between optical depth;, and goodness-of-fit Fig. 8. Estimated correlatiop,. ., between optical depttr, andy? variance,

x? variance W, in the MISR aerosol test data.

W, obtained from summarized MISR aerosol test data.

With large volumes of data like those we obtain from MISR  This analysis would be impossible using a data product which
over a month, it may not be possible to calculate quantities likgpresents L3 cell data by its mean or any other single value.
pu,v directly. Insteadp,, ., can be estimated by, ., using com-  Correlation is a property of probability or data distributions, and

pressed data:

i
3
<

N2 3 R () = Fue) Wi = W)
ﬁu,u = =1 ~ —
z,u,'v O—‘/I’,u,b
where

Koy
Az,u,b :Nu_,i Z Nuyb(k)(’rk:u:b
k=1
Koy
A‘Q/I IR = Nu_,} Nuyb(k)(Wk:u:b -
k=1
Ko
Nu,'u = Nu,u(k)
k=1

cannot be estimated unless there is a distribution of data points
from which to calculate it. Moreover, even quantities which can
be estimated from the mean alone may be very poorly estimated.
For example, consider estimating the mean valu&ofTrue
meanW in the cell at latitudes, longitudev is given byW,, ,,

and is shown for all cells in the upper panel of Fig. 9. The esti-
mate of true meall’ computed from compressed data is given
by (3) and shown in the middle panel of Fig. 9. Given only the
mean vector for any cell, the only possible estimate of true
meanWV is (5-1) 320, (i — 5)°, whereg = (5"1) Y27, %.

This estimate is shown in the bottom panel of Fig. 9.

The estimate is obviously poor. The reason is tHatis a
nonlinear function of the data. The mean of a nonlinear function
does not equal the nonlinear function applied to the mean. For
these types of calculations, its important to have distributional
information over and above means and standard deviations.

V. DISCUSSION

This paper presents a new type of global data product being
produced to summarize MISR geophysical data. The algorithm
used to produce it is modified from a signal processing applica-
tion and is demonstrated using test MISR aerosol data. Exam-
ples show that typical nonlinear functions of the original data
can be estimated well from the new product even though the
new product is much smaller than the data it summarizes. Re-
sults are contrasted with estimates derived from cell means.

Tx,u,v IS the first component cfiiu,v(k), andeyu,,U is computed L3JGC is a global, descriptive summary of MISR data. It is
from the remaining five components/&t,,,,,.(k) using aformula created without physical or statistical modeling assumptions
analogous to (2). Fig. 8 shows estimated correlations by gadd is intended to facilitate global, exploratory data analysis.
cell. It matches Fig. 7 closely, and neither shows any particulafyesently, it is not intended to be used for inference. In
striking geographic features. Conclusions drawn from the tvibis respect, it functions in the same capacity as traditional
figures would be similar. Level 3 products. For instance, simple means and standard
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Fig. 9. (Top) True averagg? variance W, by L3 cell in the MISR aerosol

test data. (Middle) Estimated averafé computed from summarized data.
(Bottom) Variance ofy2’s about their mean computed from cell mean vector.
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deviations are appropriate for inference about underlying
physical processes, assuming data generated by them are
statistically independent. However, many researchers recognize
that spatial and temporal dependences exist, and they will want
to calculate their own statistics directly from high-resolution
products to incorporate their own assumptions. Even so,
global maps of means and standard deviations are useful in
looking for expected and unexpected phenomena, patterns,
and relationships in the data wholly apart from inference. The
summaries described here contain more information about
the multivariate distribution of the data than do simple means
and standard deviations. They should, therefore, be useful
in identifying phenomena, patterns, and relationships across
space and time arising from higher order, multivariate features
such as skewness, covariation, and other high-order interac-
tions, multimodality, clustering, and outliers. Armed with this
information, researchers can then make targeted requests for
specific, manageable portions of MISR’s high-resolution data
products from which inferences can be made.

APPENDIX
ALGORITHM

A. Preprocessing

Given a dataset for one L3 cell, denote tNed-D observa-
tions therein byy,, n = 1,2,...,N. Assume we know the
global mean vectoy;, and covariance matriX;, computed from
all datain all cells. Sele§ samples of sizé/ from they,,. De-
note thejth sample{z 1. zj2, ..., z;m 7 =1,2,...,5. Stan-
dardize all the sample points using the global mean and vari-
ances: let;,, = I'Y/2(x;,, — p), wherel" = diag(X).

B. Create Preliminary Summaries

Fix A andK . Then, for each standardized design sampte
1,2,...,5 do the following.

1) Setthe iteration countér= 0. Set the convergence crite-
rion e.

2) SetK© = K, 7O = {1,2,..., KO}, o0(z;,) =
m,form=1,2,..., (K(O) — 1),a(0)(zjm) = KO for
m = K ... M. Here, the random initial assignment
is accomplished by assigning the fifst®) — 1 data points
to the firstK(® — 1 clusters and all remaining data points
to the last cluster.

3) Fork =1,2,...,K© compute

M

NOE) = 37 1@ () = 4]

m=

M

1
OB = ey 2 wm il m) = 4
NO(E
00) = oz |~
wherel[-] = 1 if its argument is true and O otherwise.

4) Form = 1,2,..., M set

) (z;,,) = argming | zim — BO® + Ay O (k).
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5) Fork =1,2,...,K® update: AZ¥ is the error incurred when the preliminary summary
o derived from samplg is used to summarize sample
N(t-l—l)(k,) _ Z 1[a(t+1)(z/' ) = &] 2) Compute the estimate of the error incurred when the pre-
— m liminary summary derived from sampjds used to sum-
marize the full cell dataset
/3(t+1) Ziml ( +1 ) (zim) =k - 1 -
( ) N(H_l) Z o] o] ) ] A* :S_lé:Aji'
t+1 1#]
’V(H'l)(k) = —log [N( M)(k)}
D. Identify the Best Preliminary Summary
6) For k. = 1,2,...,K® removek from Z® if 1) Setsot — aperin. { A1
N@D (k) = 0. Renumber so that elements Bf* ) Sets°* = argmin; {A; }j=1'

are consecutive, and sgf'tl) = 7(9,

E. mmarize the Full D
7) Sett = t + 1. Compute Su arize the Full Dataset

1) Fork = 1,2,..., K%, setr(k) = 0, (k) = O, and
M
2 TN(/{}) = 0.

L9 =37 [l = ALl + M@ @) - 2) Forn = 1,2,..., N setzn = I=H2(g0 — ).
m=1
If [L=D — LO]/LED > ¢ go to Step 4). a(yn) = argmingezes ||l2n = B35 (k II®
8) Sete; = o), K7 = KW, I* = IW. Fork = T(a(yn)) =7(a(yn)) + vn
1,2,..., K} setpi(k) = p(k). Ta((yn)) = 72((¥n)) + Ynn
9) Reportthe prehmlnary cluster representatives on the stan- a(alyn)) = 7a(alyn)) + 1.
dard scale{ 37 (k }k E
Note that assignment is based on distances between the
C. Estimate Errors of Preliminary Summaries zn @ndBis,. (k) which are on the standard scale, but totals
For each preliminary summary = 1,2,..., S, cluster the are computed using data on the original scale.
S —1test samples correspondingiteét j. Letm =1,2,..., M 3) Fork = 1,2,..., K. remove clustek if 7y (k) = 0.
index data points in the test samples. Assign eaghto the Renumber the remaining clusters consecutively,
cluster in {3 (k) f;l with the nearest Euclidean distance 4) |1:702r71; ”—7‘?2 7 set
cluster representative, and calculate totals: A
1) Fori =1,2,...,5 and: # 7, do f(k): (k)
a) Fork = 1,2,..., K} setr(k) = 0, o(k) = O, (k)
where0 is thed-D zero vector, an® is thed x d N(k) =7n(k
matrix of zeros. Sety (k) = 0. . k) s, s
b) Form = 1,2,..., M in theith test sample, set A(k) =tr {N(k) — B(k)p(k) } :
(zim) = argming . ||zim — 5 (K] Report the summary of the full dataset
T(a(zim)) =7((Zim)) + Zim P
(i) =72((zim)) + Zim zim {80). N (k). A} .
k=1
mv(a(zim)) =T {lzim)) + 1 The a posteriori error of this summary is
c) Fork=1,2,..., K}, remove clustek if 7y (k) = X (N(k)/N)A(K). The a priori error for this L3
0. Renumber the remaining clusters consecutively, cellisé = §—* Z;Ll A
1.2,... K}
d) Fork =1,2,..., K™ set ACKNOWLEDGMENT
” 7(k) The authors would like to thank the referees and editors for
Aji (k) = v (k) their careful attention and helpful suggestions.
N3 (k) =7n (k)
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