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MISR Global Data Products: A New Approach
Amy Braverman, Member, IEEE,and Larry Di Girolamo

Abstract—This paper describes a new type of global, gridded
product being created by the Multi-angle Imaging Spectro-
Radiometer (MISR) team. The product is a compressed version,
or summary, of MISR geophysical data products on a 1 monthly
global grid. Data belonging to each grid cell are summarized by
a multivariate histogram. The numbers, sizes, and shapes of the
histogram bins vary among cells, and they adapt to the shape
of the data in high-dimensional space. Also, bin representatives
are means rather than midpoints. These modifications allow data
to be summarized parsimoniously and with lower error than
is possible using customary, simple, descriptive statistics. The
method is demonstrated by compressing test MISR aerosol data,
and performance is assessed by comparing computations using
compressed data with those using the original.

Index Terms—Clusteringalgorithms,datacompression,entropy-
constrainedvectorquantization,Level3products,massivedatasets.

I. INTRODUCTION

T HE Multi-angle Imaging SpectroRadiometer (MISR) was
launched into earth orbit aboard NASA’s Terra satellite on

December 18, 1999. Along with Terra’s four other instruments,
MISR has been collecting—and will continue to collect—mas-
sive quantities of data [1]. MISR alone is currently producing
derived geophysical products at the rate of about 3.5 TB per
year. One goal of the Terra mission is to provide the research
community with long-term datasets for global climate studies,
but even the most well-equipped users can expect global,
exploratory analyses on this scale to be difficult. Recognizing
this, many instrument teams, including the MISR team, have
resolved to produce lower-volume, lower-resolution summaries
of their geophysical data products. These are so-called Level 3
products.

Level 3 products are typically constructed by partitioning
data collected in a month on a 1 1 latitude–longitude
spatial grid and then summarizing the data belonging to each
grid cell with a set of simple, descriptive statistics such as
means, standard deviations, and counts. While such summaries
have the advantage of being well-understood and easy to
compute, they discard most of the information in the data. For
instance, the mean and standard deviation fully describe a data
distribution only if the data are normally distributed. If not,
these statistics characterize typical value and spread, but say
nothing about skewness, number of modes, outliers, uniformity,
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clustering, or any other data features potentially important for
science analysis. In addition, means and standard deviations do
not describe relationships among geophysical parameters, and
they may in fact obscure them. Covariances can be reported, but
they say nothing about nonlinear relationships or interactions
among three or more parameters.

Here we introduce a new type of Level 3 product, called the
MISR Level 3 Joint Global Climate (L3JGC) product, designed
to preserve more of the multivariate data structure present in
MISR’s geophysical products. Rather than providing a single
mean and standard deviation for each parameter, L3JGC pro-
vides a set of representative vectors and associated weights. The
vectors have as many components as there are parameters to
be summarized. Vector weight is the number of data points the
vector represents. In other words, if there areparameters to be
summarized for a given grid cell, the traditional Level 3 product
provides means, standard deviations, and possibly some of
the covariances. The new product provides -
dimensional (-D) representatives and counts, where the sum
of the counts equals the number original data points in the cell
for which measurements exist on allparameters. may vary
among grid cells, depending on how many representatives are
needed to adequately characterize their data. This will be done
by balancing fidelity to the data against increased complexity
incurred when greater numbers of representatives are used. We
call the set of representatives and weights a summary, or com-
pressed version, of the original 1 1 cell data.

Several aspects of L3JGC distinguish it from traditional Level
3 products. First, it summarizesparameters jointly, i.e., it treats

measurements of parameters taken at the same time and
place as points in -D space. Distances in this high-dimen-
sional space are used to form groups from which representa-
tives and weights are determined. Second, L3JGC is a family
of nonparametric data distribution estimates, one for each grid
cell. Each can be thought of as a high-dimensional histogram in
which sizes, shapes, and numbers of bins adapt to the shape of
the data in high-dimensional data space. Traditional histograms
use a geometric partitioning to create rectangular bins. Here, in-
herent clustering in data space influences the shapes of the bins
and allows the data to be represented with less error. Moreover,
L3JGC is parsimonious: the number of representatives in a cell
is only as large as necessary to adequately represent data be-
longing to it.

This paper describes the method used to create L3JGC
and demonstrates how L3JGC can be used in data analysis.
Section II describes the algorithm. Section III demonstrates its
use on a test dataset constructed from some preliminary MISR
aerosol retrievals. Section IV uses the resulting L3JGC-like
dataset for a simple data analysis and assesses quality of
the results by comparing them to those obtained when the
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same analysis is performed on the original test data. Finally,
Section V contains an assessment of the exercise and discusses
some issues regarding product use. The statistical basis for the
ideas presented here is discussed in [2].

II. M ETHOD

A. Summarizing Data

In this section, we introduce the method underlying creation
of L3JGC. First, however, we introduce some notation, define a
data summary, and discuss measures of quality for it.

Each month, each 1 1 grid cell (“L3 cell”) has an associ-
ated set of geophysical measurements. For the sake of this dis-
cussion assume those measurements are all at the same spatial
resolution, say, 1.1 km, and focus on a single L3 cell;param-
eters for the same 1.1-kmregion can be concatenated to form
a -D column vector , and the collection of such vectors
representing regions whose centers fall within the L3 cell are
denoted by ; may also be called an observation or a
data point.

A summary of the data belonging to an L3 cell is a set of
representative vectors and their associated weights. The’s in
an L3 cell are partitioned into groups, also called clusters, and
the mean vector of each cluster serves as its representative. The
weights are the numbers of ’s belonging to the clusters, also
called counts. We let denote the -D mean vector of cluster

, and denotes the number of ’s it contains. Sometimes,
we will also include a within-cluster error measure , which
is the average squared distance between data points in theth
cluster and their representative. If is the number of clusters,
the cell summary can be written compactly as
or .

Two measures of summary quality are its distortion and
entropy. Distortion is the average squared distance between
data points and their representatives. This is just the weighted
average of the within-cluster errors defined above, where the
weights are given by the proportions of data points in each
cluster. More formally, ’s membership is recorded by an
assignment function providing an integer identifying
to which of the clusters belongs. With this notation,

is ’s representative, and is the
corresponding count. Then distortion is

Entropy measures the average number of bits necessary to
specify cluster membership of a data point, and it can be
interpreted as a measure of summary descriptive complexity
[3]. It is calculated from the probability distribution defined by
the proportions :

Note that fully determines the representatives, counts, er-
rors, distortion, and entropy, since they all depend on cluster as-
signment. Low summary distortion generally comes at the cost

of high descriptive complexity, and our goal is to find a set of
assignments that achieves an optimal balance between the two.

This goal is similar to that of quantization in signal processing
[4]. There, data are random signals to be sent over channels of
limited capacity. Signals are assigned to one ofclasses, and
only class indicators are sent. At destination, indicators are re-
placed by representative values for classes as estimates of raw
signals. The quantization problem is to design a system that pro-
duces good estimates within constraints on the number of bits
necessary to distinguish classes (channel capacity) and in view
of the statistical character of the signals. This is a constrained
optimization problem: find to minimize average error sub-
ject to a limit on the average number of bits per transmission.

Here, the data are the observations we wish to summarize,
and for fixed we seek such that the distortion between
the summary and the observations is small. The bit restriction
is analogous to a requirement that summary entropy be small as
well. However, unlike the signal processing situation, here we
have no hard upper limit on entropy analogous to channel ca-
pacity. Instead, we formulate the optimization problem as fol-
lows: find the assignment of data points toclusters to mini-
mize a Lagrangian objective function

(1)

where and are fixed constants.
The first term on the right-hand side of (1) is the average

squared distance between data points and their representatives
under . The second term represents the average log-propor-
tion of points assigned to the clusters. This term can be thought
of as a penalty that is small when assigns data points to clus-
ters to produce a low-entropy configuration. The parameter
translates the penalty into units of squared distance compatible
with the first term. If , is minimized when as-
signs each to the cluster with the nearest squared Euclidean
distance representative, and all clusters receive at least one
data point. If , the that minimizes may assign some
data points to clusters with representatives that are not nearest to
them because more massive clusters exist further away. In fact,
some clusters may receive no data points at all, and the number
of nonempty clusters may be fewer than.

To find the set of assignments that minimizes , we use
an iterative, randomized algorithm described in Section II-B and
given fully in the Appendix. Algorithm parameters and
must be set in advance, and a procedure for determining their
values is discussed in Section II-C.

B. Algorithm

The algorithm to find optimal assignment functions is based
on the Entropy-Constrained Vector Quantization algorithm
(ECVQ) [5]. ECVQ is an iterative descent algorithm for
minimizing by choice of . Fig. 1 is a diagram of ECVQ.

Assuming and are fixed, ECVQ begins by assigning each
data point randomly to one of clusters and computing cluster
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Fig. 1. ECVQ algorithm finds assignments of data points to clusters when
both distortion and entropy of the distribution resulting from the assignments
are taken into account.

means. Next, each data point is reassigned to the cluster with the
nearest mean vector, and then cluster means and counts are up-
dated. The following steps are then iterated until convergence:
1) each data point is reassigned to the cluster for which the pe-
nalized distance

is minimized, where and are the cluster means and
counts, respectively; 2) and are updated, and empty
clusters deleted. The final values of and constitute
the basic summary, and sometimes the within-cluster distor-
tion will be included as well. The ECVQ algorithm is guaran-
teed to converge in a finite number of iterations [5]. Though
not guaranteed to converge to a global minimum of , the
ECVQ solution will always be an improvement over the starting
assignments, and the resulting summaries provide a sensible,
lower-volume version of the original data.

ECVQ in this form is not practical for MISR data for several
reasons. First, ECVQ is iterative and too computationally inten-
sive for large volumes of data. Second, solutions are subject to
sampling variation because the initial assignment of data points
to clusters is random. Third, ECVQ solutions are not nearest-
neighbor: the final assignments do not minimize squared Eu-
clidean distances between data points and their cluster repre-
sentatives. These problems are mitigated by modifying ECVQ,
as shown in Fig. 2.

First, we run ECVQ separately on a number of independent
random samples taken with replacement from the data in the
cell being summarized. This produces a number of different
sets of representatives and counts, here called preliminary sum-
maries. Each preliminary summary is derived from one sample,
called its design sample, and we call the others its test sam-

Fig. 2. Modified ECVQ algorithm. The ECVQ algorithm is repeated multiple
times with different random samples on each trial to create multiple preliminary
summaries. The distortions that would be incurred if the entire dataset were
summarized using these summaries are also estimated from the samples. The
preliminary summary with smallest estimated distortion is used to summarize
the full dataset.

ples. For instance, if we use 50 samples, the first one is the de-
sign sample for the first preliminary summary, and the other 49
are the first preliminary summary’s test samples. The second
sample is the design sample for the second preliminary sum-
mary, and samples are its test samples, and so forth.
Second, each preliminary set of representatives is then used to
summarize its test samples by i) assigning each set of test sample
points to their nearest squared Euclidean distance representa-
tives, ii) recomputing the cluster means based on these assign-
ments, and iii) obtaining the distortion between test sample and
the preliminary summary. In the example, this yields 49 distor-
tions for each of the 50 preliminary summaries. Distortions for
the same preliminary summary are averaged to produce an es-
timate of the distortion that would be incurred had that sum-
mary been used to summarize the entire cell dataset rather than
just the test samples. Third, the preliminary summary with the
lowest estimated distortion is designated the best preliminary
summary. The best preliminary summary is used to summa-
rize the entire cell dataset by assigning every data point in the
cell to the cluster with the closest squared Euclidean distance
representative. New cluster means, counts, and distortions are
computed, and these are reported as the final summary for the

cell. We designate the final summary by , or

, where the tilde notation indicates all
data in the cell are represented. With this scheme all data are
summarized, but only a random sample is used to design the
summary.
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We call the final summary’s distortion thea posterioridis-
tortion. We also report the average of the 50 preliminary sum-
mary distortions and call it thea priori distortion, since it ap-
proximates the average distortion incurred before specifying a
particular preliminary summary for use on the whole dataset.
A posterioridistortion can be thought of as a goodness-of-fit
measure for a specific summary. It is the relevant error to prop-
agate through transformations of summarized data in order to
gauge how closely such quantities approximate true values of
those transformations computed using the original dataset.A
priori distortion can be thought of as a process performance
measure incorporating both goodness-of-fit and algorithm sta-
bility over different design samples. It is the relevant error mea-
sure for making decisions about future applications of the mod-
ified ECVQ algorithm to the same data. For instance,a priori
distortion is the relevant error for selecting an appropriate value
of in Section II-C.

Problems of computational intensity are mitigated by using
samples for the computationally intense, iterative part of
the procedure. Moreover, using multiple random samples on
multiple trials and averaging estimated summary errors yielda
priori distortion estimates that account for sampling variation.
Also, this strategy constitutes a randomized algorithm that
improves chances of finding a true global minimum of if
it exists. Finally, since data are assigned to their nearest cluster
means prior to updating for the last time, final assignments
are approximately nearest neighbor and, therefore, error mini-
mizing. The modified procedure is called modified ECVQ.

C. Setting and

The algorithm described in Section II-B requires the param-
eters and be set in advance. The parameterestablishes
the general level of fidelity. The larger is, the lower will be
the distortion of the theoretically best summary, the summary
produced by the assignment function that is the global mini-
mizer of when . Even though our algorithm may
use and is not guaranteed to find the global minimum,
larger values of tend to produce lower distortions. All other
things being equal, one would therefore like to setas large
as possible. On the other hand, the total number of clusters for
all L3 cells must not exceed some value determined by the file
size allocated for their storage. We setto the largest integer
not exceeding this value divided by the number of cells being
summarized.

The parameter translates the penalty in to its equiv-
alent in units of squared distance, but it is not obvious what

should be. If one were compressing a single cell dataset in
isolation, the most accurate summary, for given, is obtained
by setting . Then, is minimized by assigning each
data point to the nearest of the representatives regardless of
consequences for complexity. Now consider compressing two
datasets, say two neighboring L3 cells, using no more than
clusters each. Suppose cell A contains data distributed over
some hyperspherical region in-space, and suppose also that
cell B contains the same number of points tightly clustered in
a much smaller region. The situation is illustrated for

by the scatterplots in the top panels of Fig. 3. The modified
ECVQ solutions obtained with are shown in the middle
two panels of Fig. 3 for . Both summaries have
representatives, but the quality is much better for cell B, since
the average squared distance between data points and their
representatives is smaller.

clusters are more than the number necessary to achieve cell
A’s quality level in cell B, or, put another way, cell B’s summary
is more descriptively complex than necessary. In this sense, cell
B’s data are simpler than cell A’s because a summary with lower
entropy can achieve the same distortion level. In the interest of
parsimony, B’s summary should be simpler, and we say cell B
is undercompressed at .

Alternatively, if is very large the complexity
penalty in outweighs the error term. In each cell, observa-
tions are assigned to a single cluster for which the representative
is the cell mean vector. Entropies for both cells’ summaries are

, and summary errors are just the sums of the variances
of the data vector elements. This is an overcompressed condition
in which summaries do not reflect differences in data variation.
Those differences are subsumed into summary errors rather than
being manifest by differences in descriptive complexity.

Between these extremes is some value ofthat neither under-
nor overcompresses the two cells’ data relative to one another.
Such a solution is shown in Fig. 3(e) and (f), and it corresponds
to . Summary error levels are relatively similar com-
pared to solutions at or . Condition
produces summaries of similar quality, so differences between
them reflect data distribution differences rather than discrepan-
cies in goodness-of-fit of the summaries to their data. If this ex-
ercise were repeated using instead of , the same
type of result would be obtained except that error levels would
generally be lower.

Parameter controls overall fidelity of a collection of sum-
maries to their data. Parameteris used to tune the summaries to
a common distortion level in that regime so that summaries are
of comparable quality. In practice, is set by practical consid-
erations described earlier; then, various values ofare tested by
running the modified ECVQ algorithm on a subset of L3 cells.
For instance, in the example in Section III, we use all L3 cells
for which latitude and longitude are even multiples of 5and
test . We start with this range because

is its minimum possible value, and makes one
unit of distortion equal to one bit of descriptive complexity in
the objective function. We look at the variance across L3 cells
of a priori distortion and select to minimize this quantity.A
priori distortion is relevant because this is a pretest. Final cell
summaries will not be created here; a future application of the
algorithm will be required, and sampling variation must there-
fore be taken into account.

If this procedure suggestsshould be an endpoint of the ini-
tial test range, the range is refined, so we can be reasonably
sure we are finding a minimum. If the distortion-minimizing

is zero, we retest using . If it is one,
we retest using , and in principle continue the
process until the that minimizes the variance ofa priori dis-
tortion is in the interior of a test range. In practice, we stop after
a reasonable number ranges, say five, have been tested.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. (Top) Scatterplots of two datasets: (a) one heterogeneous (cell A in the text) and (b) one homogeneous (cell B in the text). (Middle) Summaries of the
two datasets using five clusters in both cases. These summaries are produced by the ECVQ algorithm withK = 5 and� = 0. Scatterplots are projected onto plot
floors. Locations of spikes show locations of cluster representatives. Spike heights indicate cluster counts. Region of high data density in the homogeneous dataset
is represented by five clusters in close proximity. (Bottom) Summaries of the two datasets produced by the ECVQ algorithm withK = 5 and� = 0:2. The region
of high data density in the homogeneous dataset is represented by fewer, more massive clusters than was the case when� = 0. Note that the average (squared)
distance between data points and their nearest representatives is more equal when� = 0:2 than when� = 0.
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III. EXAMPLE: COMPRESSINGMISR AEROSOLDATA

To demonstrate the use of the modified ECVQ algorithm, we
create a compressed version of some MISR test data. We use
test data extracted from preliminary MISR aerosol retrievals
over southern Africa (latitude 40 to 0 , longitude 0 to 55
over land only) during a six-week period beginning in August
2000. As of that time, MISR aerosol retrievals over land pro-
vide an optical depth estimateand five goodness-of-fit mea-
sures, denoted , , , , and , describing how well
MISR’s observed radiances match sets of radiances predicted
by five different aerosol models. For our example, optical depth
and the five ’s are appended to form a six-dimensional (6-D)
data vector . There is one such data
vector for each 17.6-kmregion.

Since aerosol retrievals are only valid in the absence of
clouds, MISR’s stereo-derived cloud mask (SDCM) is used
to screen out cloudy subregions. Each 17.6-kmregion is
made up of a 16 16 array of 1.1-km subregions, and the
SDCM designates each of these as cloudy or clear with high
or low confidence. Test data were created from the regional
retrievals by copying each data vector times, where is
the number of high-confidence, clear subregions in region.
Each subregional data vector bears the latitude and longitude of
the corresponding subregion, and these 1.1-kmdata points are
the observations to be summarized in this exercise. Of course,
this creates a certain amount of artificial clustering. In creating
L3JGC, it will be necessary to reconcile spatial resolutions in
this way to combine parameters derived at different resolutions.
The larger the disparity in resolution, the more pronounced
will be this artifact. Under such circumstances, counts reported
in the summaries should be interpreted as weights rather than
actual numbers of observations. That being said, we ignore the
issue for the remainder of this example.

The modified ECVQ algorithm is applied to all 743 cells in-
dependently with , 50 random samples of size 500
drawn with replacement, and . The paramters and
were set according to the criteria described in Section II-C. The
condition assures there can be no more than a total of

representatives output. To select
a value of , we tested values using 29 L3
cells: those with latitudes and longitudes evenly divisible by 5.
Condition minimized the variance of thea priori distor-
tions across those cells. The number of samples and sample size
was chosen to balance the benefits of large samples against the
cost in terms of computational speed. Seven hundred forty-three
summaries are created

, , where and index cell lat-
itude and longitude. A typical cell having about 15 000 data
points was compressed in about 12 min on a 400-MHz RISC
12000 processor.

Figs. 4–6 show some diagnostics. Fig. 4 displays the numbers
of test data vectors present by grid cell . There are 743
nonempty cells. The color bar in Fig. 4 is truncated at 20 000
to ensure distinguishability at the low end of the scale. At the

high end, the cell with the largest number of data points has
31 137 observations. The total size of the test data for all cells
is 6 304 861 6-D data points.

Fig. 5 shows the number of clusters allocated to each
grid cell. The largest number of clusters allocated to any cell is
31. Note that cells with relatively high are not necessarily
the same ones with high . More clusters are allocated to
cells with more complex data, not necessarily to ones with more
data points. The total number of clusters for all cells combined
is .

Fig. 6 shows the square root of summarya posterioridistor-
tion in each cell relative to cell average data point norm

This is a measure of how well the reported summary represents
an average data point. Of the 743 summaries, 738 have errors
which are less than 5% as large as the average data point size.
The color bar in Fig. 6 is truncated at 5%, since this is sufficient
for almost all the values shown, and provides distinguishability
at the low end of the scale. Of the five cells with errors greater
than 5%, the largest relative error is about 28%. There is no ap-
parent geographic pattern in the errors. The five high-distortion
cells are those with a small numbers of data points where the
algorithm may be less stable.

Taken together, Figs. 4–6 show how much data volume re-
duction is achieved and at what cost. One measure of com-
pression is the proportional reduction in the number of records,
here 99.85%. There are two additional fields in the summaries:
cluster count and within-cluster distortion. It is also possible to
offer an information-theoretic measure of data reduction based
on entropy reduction, but this seems less relevant than simple re-
duction in file length for data-handling concerns addressed here.
The low relativea posteriorierrors suggest we can in general
expect calculations based on these summaries to well approx-
imate the same calculations using original data. However, this
depends as much on the nature of the calculation as on the level
of fidelity. Section IV contains an example involving a nonlinear
transformation and demonstrates why using the summaries is
better than using grid cell means.

IV. SAMPLE DATA ANALYSIS

In this section, we investigate relationships between optical
depth and measures using compressed MISR aerosol test
data, and we compare results with the same set of calculations
performed on raw test data. We emphasize that the standard by
which the modified ECVQ algorithm should be judged is how
closely results of the two sets of calculations match, not by their
substantive content. At the time of this analysis, the retrieval
algorithm which created these test data was preliminary. There-
fore, no conclusions should be drawn regarding quality of MISR
data based on this analysis.

We examine correlation between optical depth,, and the
variance, , of the five ’s about their mean. is a measure
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Fig. 4. Number of original data points belonging to L3 grid cells.N is the
value for the cell at latitudeu, longitudev. The total number of data points
represented is N = 6 304 861.

Fig. 5. Number of clusters allocated to L3 grid cells.~K is the value
for the cell at latitudeu, longitudev. The total number of clusters output is

~K = 9322.

of homogeneity of the ’s. Low values indicate the five models
explain observed radiances nearly equally well, and high values
indicate some degree of differentiation. We use the correlation

for this demonstration, not for its scientific content, but
because it is a nonlinear function of all six components of.
While linear functions of raw data are exactly reproduced by the
same linear functions of compressed data, nonlinear functions
are not preserved [2]. Quality of nonlinear transformation esti-
mates depends on how closely summaries match raw data and
on the transformation. This example illustrates that when sum-
maries match their data well, good estimates of typical nonlinear
functions such as correlation can be obtained.

Fig. 6. Square root ofa posteriorierror, relative to average data point norm,

by grid cell: ~� = ~� = ky k, wherey is thenth
data point in the grid cell at latitudeu, longitudev.

can be calculated for each data point

(2)

where indexes aerosol model. We would like, the true corre-
lation between and , for all 743 1 1 grid cells:

where and are the mean values ofand in the L3
cell with latitude and longitude , and and are
the variances:

Here, it is possible to calculate because the test data are
small. Fig. 7 shows the true values of by grid cell.
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Fig. 7. True correlation,� , between optical depth,� , and goodness-of-fit
� variance,W , in the MISR aerosol test data.

With large volumes of data like those we obtain from MISR
over a month, it may not be possible to calculate quantities like

directly. Instead, can be estimated by using com-
pressed data:

where

(3)

is the first component of , and is computed
from the remaining five components of using a formula
analogous to (2). Fig. 8 shows estimated correlations by grid
cell. It matches Fig. 7 closely, and neither shows any particularly
striking geographic features. Conclusions drawn from the two
figures would be similar.

Fig. 8. Estimated correlation,̂� , between optical depth,� , and� variance,
W , obtained from summarized MISR aerosol test data.

This analysis would be impossible using a data product which
represents L3 cell data by its mean or any other single value.
Correlation is a property of probability or data distributions, and
cannot be estimated unless there is a distribution of data points
from which to calculate it. Moreover, even quantities which can
be estimated from the mean alone may be very poorly estimated.
For example, consider estimating the mean value of. True
mean in the cell at latitude , longitude is given by
and is shown for all cells in the upper panel of Fig. 9. The esti-
mate of true mean computed from compressed data is given
by (3) and shown in the middle panel of Fig. 9. Given only the
mean vector for any cell,, the only possible estimate of true
mean is , where .
This estimate is shown in the bottom panel of Fig. 9.

The estimate is obviously poor. The reason is thatis a
nonlinear function of the data. The mean of a nonlinear function
does not equal the nonlinear function applied to the mean. For
these types of calculations, its important to have distributional
information over and above means and standard deviations.

V. DISCUSSION

This paper presents a new type of global data product being
produced to summarize MISR geophysical data. The algorithm
used to produce it is modified from a signal processing applica-
tion and is demonstrated using test MISR aerosol data. Exam-
ples show that typical nonlinear functions of the original data
can be estimated well from the new product even though the
new product is much smaller than the data it summarizes. Re-
sults are contrasted with estimates derived from cell means.

L3JGC is a global, descriptive summary of MISR data. It is
created without physical or statistical modeling assumptions
and is intended to facilitate global, exploratory data analysis.
Presently, it is not intended to be used for inference. In
this respect, it functions in the same capacity as traditional
Level 3 products. For instance, simple means and standard
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Fig. 9. (Top) True average� variance, �W , by L3 cell in the MISR aerosol
test data. (Middle) Estimated average�W computed from summarized data.
(Bottom) Variance of� ’s about their mean computed from cell mean vector.

deviations are appropriate for inference about underlying
physical processes, assuming data generated by them are
statistically independent. However, many researchers recognize
that spatial and temporal dependences exist, and they will want
to calculate their own statistics directly from high-resolution
products to incorporate their own assumptions. Even so,
global maps of means and standard deviations are useful in
looking for expected and unexpected phenomena, patterns,
and relationships in the data wholly apart from inference. The
summaries described here contain more information about
the multivariate distribution of the data than do simple means
and standard deviations. They should, therefore, be useful
in identifying phenomena, patterns, and relationships across
space and time arising from higher order, multivariate features
such as skewness, covariation, and other high-order interac-
tions, multimodality, clustering, and outliers. Armed with this
information, researchers can then make targeted requests for
specific, manageable portions of MISR’s high-resolution data
products from which inferences can be made.

APPENDIX

ALGORITHM

A. Preprocessing

Given a dataset for one L3 cell, denote the -D observa-
tions therein by , . Assume we know the
global mean vector,, and covariance matrix,, computed from
all data in all cells. Select samples of size from the . De-
note the th sample , . Stan-
dardize all the sample points using the global mean and vari-
ances: let , where .

B. Create Preliminary Summaries

Fix and . Then, for each standardized design sample
do the following.

1) Set the iteration counter . Set the convergence crite-
rion .

2) Set , ,
, for , , for

. Here, the random initial assignment
is accomplished by assigning the first data points
to the first clusters and all remaining data points
to the last cluster.

3) For compute

where if its argument is true and 0 otherwise.
4) For set
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5) For update:

6) For , remove from if
. Renumber so that elements of

are consecutive, and set .
7) Set . Compute

If , go to Step 4).
8) Set , , . For

set .
9) Report the preliminary cluster representatives on the stan-

dard scale .

C. Estimate Errors of Preliminary Summaries

For each preliminary summary , cluster the
test samples corresponding to . Let

index data points in the test samples. Assign eachto the
cluster in with the nearest Euclidean distance
cluster representative, and calculate totals:

1) For and , do

a) For set , ,
where is the -D zero vector, and is the
matrix of zeros. Set .

b) For in the th test sample, set

c) For , remove cluster if
. Renumber the remaining clusters consecutively,

.
d) For set

e) Set :

is the error incurred when the preliminary summary
derived from sample is used to summarize sample.

2) Compute the estimate of the error incurred when the pre-
liminary summary derived from sampleis used to sum-
marize the full cell dataset

D. Identify the Best Preliminary Summary

1) Set .

E. Summarize the Full Dataset

1) For set , , and
.

2) For set .

Note that assignment is based on distances between the
and which are on the standard scale, but totals

are computed using data on the original scale.
3) For remove cluster if .

Renumber the remaining clusters consecutively,
.

4) For set

Report the summary of the full dataset

The a posteriori error of this summary is
. The a priori error for this L3

cell is .
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