NASA SBIR 02-1 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER:02- E1.05-7685 (For NASA Use Only - Chron: 024314 )
SUBTOPIC TITLE: Active Microwave
PROPOSAL TITLE: New Structures for Large Sensor Array Platforms

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
AEC-ABLE ENGINEERING CO.
7200 Hollister Ave
Goleta , CA   93117 - 2807
(805 ) 690 - 2439

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dave Murphy
dmurphy@aec-able.com
7200 Hollister Ave
Goleta , CA   93117 - 2807
(805 ) 690 - 2447

TECHNICAL ABSTRACT (LIMIT 200 WORDS)
The success of SRTM (Shuttle Radar Topography Mission) illustrates the utility of radar interferometry from space. The intent of the proposed work is to develop system capability to deploy a one-kilometer baseline radar interferometer launched in a single mission from a standard launch vehicle. This system is enabled by on a novel deployable structure technology. This structural approach has the potential of increasing stowed packaging efficiency by a factor of >2x and decreasing linear mass density by a factor of >8x better than SRTM while maintaining equivalent strength, stability, and stiffness. The challenge of this technology is to develop methods of utilizing high modulus, low CTE (coefficient of thermal expansion) graphite fiber composites in an arrangement that does not exceed the strain limits of the material when stowed yet retains the desired stiffness and thermal stability when deployed. The approach is to add an additional order of structural hierarchy to the overall system by further optimizing the constituent columns of the truss into simple deployable truss structures themselves. Each column is comprised of a set of mutually stabilized rods that can be configured by varying the number and size of rods and stabilizers for required axial stiffness and buckling strength.

POTENTIAL COMMERCIAL APPLICATIONS (LIMIT 150 WORDS)
Once sufficiently characterized, the proposed technology is envisioned to have broad applicability for any mission requiring the capability to deploy stiff, stable and extremely mass and volume efficient structures. The technology is directly applicable to sensor array structural platforms. The ability to rapidly configure large, single-mission structures will have commercialization opportunities for a wide variety of communication and imaging spacecraft. Also, economic barriers common to small payloads associated with the cost of specialty-run composites will be reduced due to the generalized nature of the construction of the proposed structure, which should also prove a benefit to the general scientific community.

POTENTIAL NASA APPLICATIONS (LIMIT 150 WORDS)
Potential NASA applications include missions requiring autonomous deployment of large baseline stable structures for sensor arrays. The capability to efficiently package large deployable structures in conventional unmanned launch vehicles will reduce dependency on the STS and therefore reduce the cost of science and increase access to space. Rapid configuration of structures based on a reduced set of generalized constituent elements will also serve to lower mission costs. One conceptual mission is described herein that has the potential to compliment and possibly surpass the dataset generated by SRTM. Other potential applications exist for non-earth imaging as well.


Form Printed on 09-05-02 10:10