Magnitude and Frequency of Floods in the Suwannee River Water Management District, Florida

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 96-4176

Prepared in cooperation with the Suwannee River Water Management District

Magnitude and Frequency of Floods in the Suwannee River Water Management District, Florida

By G.L. Giese and M.A. Franklin

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 96-4176

Prepared in cooperation with the SUWANNEE RIVER WATER MANAGEMENT DISTRICT

Tallahassee, Florida 1996

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

For additional information write to:

District Chief U.S. Geological Survey 227 North Bronough Street, Suite 3015 Tallahassee, Florida 32301 Copies of this report can be purchased from:

U.S. Geological Survey Branch of Information Center Box 25286 Denver, CO 80225-0286

CONTENTS

1
l
2
3
3
3
1
3
3
3
)
)
1

Figures

1.	Map showing location of Suwannee River Water Management District and stream-gaging stations used	
	for measuring peak discharges	2
2.	Map showing physiographic regions within the Suwannee River Water Management District	4
3.	Graphs showing elation of flood discharge to drainage area for selected frequencies on the	
	Suwannee River	5
4.	Graphs showing relation of flood discharge to drainage area for selected frequencies on the	
	Santa Fe River	5

Tables

1.	Flood-frequency regression model for the Suwannee River Water Management District	6
2.	Probability that a flood of a given recurrence interval will be exceeded during indicated time period	7

CONVERSION FACTORS AND ABBREVIATIONS

Multiply	By	To obtain
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
square mile (mi ²)	2.590	square kilometer (km ²)
cubic foot per second (ft^3/s)	0.02832	cubic meter per second (m^3/s)

SYMBOLS

Symbol	Meaning
A_g	Drainage area for gaged site, in square miles
A_u	Drainage area for ungaged site, in square miles
B1 _T , B2 _T , B3 _T	Partial regression coefficients
C_T	Regression constant
C_{v}	Coefficient of variation
DA	Drainage area, in square miles
EY	Accuracy for a flood estimate, in equivalent years of record
K_T	Pearson Type III deviate
LE	Channel length, in miles
LK	Total area of lakes and ponds, in percent of drainage area
М	Mean of logarithms of the annual peaks
Ν	Number of items in a data set
n	Time interval, in years
Р	Exceedance probability
P_N	Probability of at least one exceedance within the specified time interval
Q_g	Estimate from log-Pearson Type III distributions of T-year flood, in cubic feet per second
Q_R	Estimate from regression equation of T-year flood for gaged site, in cubic feet per second
Q_{ru}	Regional estimate of T-year flood from regression equation for ungaged site, in cubic feet per second
Q_T	Estimate of the T-year flood from log-Pearson Type III distribution in cubic feet per second
Q_u	Adjusted estimate of T-year flood for ungaged site, in cubic feet per second
Q_{wt}	Weighted estimate of T-year flood at gaged site, in cubic feet per second
R	Multiple correlation coefficient
S	Standard deviation of the logarithms of annual peaks
SE_P	Standard-error of prediction
SL	Channel slope, in feet per mile
Т	Recurrence interval, in years
<i>X</i> ₁ , <i>X</i> ₂ , <i>X</i> ₃	Independent variables in linear regression

Magnitude and Frequency of Floods in the Suwannee River Water Management District, Florida

By G.L. Giese and M.A. Franklin

ABSTRACT

Flood-frequency statistics for 2-, 5-, 10-, 25-, 50-. 100-, 200-, and 500-year recurrence intervals, based on three methods of analysis, are presented for 25 continuous-record and seven peak flow partial-record gaging stations in the Suwannee River Water Management District. The first method, for gaged stations, utilizes station records; the second method, for ungaged sites, utilizes regional regression analysis; and the third method uses a weighted combination of the station and regional values. Because the weighted values utilize two more or less independent estimates of the peak flow statistic, they are considered more accurate than the station estimates or the regression estimates alone. Also, the use of another weighting scheme to improve estimates of flood frequency statistics at ungaged sites is demonstrated.

The karstic nature of much of the Suwannee River Water Management District significantly attenuates flood peaks in some streams by providing substantial subsurface storage when river stages are high. At such times, springs discharging into rivers may reverse flow temporarily and become sinks.

INTRODUCTION

In recent years there has developed a better awareness that natural systems such as wetlands, flood plains, native ecological communities, and aquifer recharge areas within the 7,640-square-mile SRWMD (Suwannee River Water Management

District) (fig.1) provide vital water-related functions. These functions include water- quality treatment, water supply, flood water conveyance and attenuation, fish and wildlife habitat, and recreational and economic uses. These systems depend on the maintenance of the natural variability of the hydrologic cycle as reflected by the magnitude, duration, and timing of changing streamflow, rising and falling water levels of lakes, rivers, and aquifers, and interaction of surface and ground waters. Alterations to the natural hydrologic regime by human activities may have adverse effects on the natural systems and their functions. However, many aspects of natural-system requirements are poorly known and must be better understood in order to establish minimum flow and water-level requirements that will allow adequate water to balance present and future needs of the natural system with those of the human population. Quantification of the natural hydrologic regime that has shaped the current natural system is basic to developing this understanding and achieving this balance.

Accordingly, in 1994, the USGS (U.S. Geological Survey) and the SRWMD entered into a cooperative agreement wherein the USGS agreed to provide, in the course of a long-term program of investigation, the hydrologic information or tools needed for the SRWMD to establish minimum flow and water-level requirements for surface and ground waters of the SRWMD. This report, dealing only with flood magnitudes and frequency, is one of a planned series of studies intended to accomplish this goal.

The primary motivation for this particular report is to document the high-flow regime of the natural hydrologic system of the SRWMD. This information is available to researchers studying minimum inundation requirements for wetlands, estuar-

Figure 1. Location of Suwannee River Water Management District and streamgaging stations used for measuring peak discharges.

ies, riparian communities, and other ecosystems in the SRWMD. These needs are beyond the traditional needs for flood-frequency information in the design of drainage structures and bridges, flood-plain zoning, and flow regulation. These traditional needs will also be served by the information in this report.

Purpose and Scope

This report is presents flood-frequency statistics for unregulated gaged sites in the SRWMD for which 10 years or more of peak flow data were available, provides means of improving estimates at gaged sites, and presents methods for estimating peak-flow characteristics at ungaged sites. Flood magnitudes are presented for 25 continuous-record stations and 7 partialrecord gaging stations for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, utilizing log-Pearson Type III distributions. Recurrence interval here can be defined as the average number of years between flood peaks greater than, or equal to, a specified magnitude. This analysis utilized records up to and including the 1994 water year. Regression equations for estimating flood-frequency characteristics at ungaged sites are also presented. Finally, this report includes methods for improved estimates at both gaged sites and ungaged sites on gaged streams.

Previous Studies

Franklin and others (1994) listed and ranked annual peak flows and various consecutive-day high flows for the SRWMD but did not assign frequencies of occurrence. Stamey and Hess (1993) presented flood-frequency characteristics of Georgia streams and techniques for estimating magnitude and frequency of floods in rural basins in Georgia. That report included station analyses and regional regression equations for streams in the upper Suwannee River basin in Georgia. Bridges (1982) presented flood frequency analyses for Florida stations gaging natural flow, including many of the stations in the SRWMD. That study also contained regional regression equations for estimating flood-frequency characteristics of ungaged streams. Bridge's report, which utilized records only through the 1978 water year, is superceded by this report for stations in the SRWMD. The U.S. Army Corps of Engineers (1974) delineated the areal extent of major Suwannee River flooding for the large floods of April 1948 and April 1973.

Physical Setting

The SRWMD, located in the north-central part of Florida, is one of five water management districts created by the Florida Legislature through the passage of the Water Resources Act of 1972. The SRWMD is the smallest in area and the most sparsely populated. The SRWMD is in the Southeastern Coastal Plain physiographic province of the United States, as delineated by Fenneman (1938). The SRWMD is covered by three physiographic regions of this province--the Northern Highlands, the Gulf Coastal Lowlands, and the River Valley Lowlands (fig. 2). The areal extent of overbank flooding is generally least in the Northern Highlands and greatest in the River Valley Lowlands.

The SRWMD has a humid subtropical climate. Rainfall averages about 56 inches per year. July and August are typically the wettest months; late spring and early fall are the driest. The largest floods, however, have occurred in March or April as the result of cumulative effects of several consecutive broad frontal-type rainfall events over the basin. The largest floods of record on the Suwannee River occurred in March and April of 1948, March 1959, and April 1973.

STATION ANALYSIS

Frequency curves for individual gaging stations were developed following the guidelines described in Bulletin 17B, Interagency Advisory Committee on Water Data (1982). A log-Pearson Type III distribution function was used to fit annual peak discharges to log-probability curves. The distribution is defined by the equation:

$$\log Q_T = M + K_T S, \tag{1}$$

where

- Q_T is the peak discharge for a selected recurrence interval T, in cubic feet per second;
- *M* is the mean of the logarithms of the annual peaks;
- K_T is the Pearson Type III frequency factor expressed in number of standard deviations from the mean for a selected recurrence interval, T; and
 - *S* is the standard deviation of the logarithm of the annual peaks.

The computer program J407 (Kirby, 1979) was used to fit the log-Pearson Type III distribution to the annual maximum discharges at each of 25 continuousrecord and 7 peak-flow partial-record gaging stations (app. 1). User judgment was exercised in the use of this program in determining historic peaks, whether to use station or regional skew coefficents, and interpretation of low and high outliers.

Figures 3 and 4 were constructed to examine the consistency of flood peaks of different frequencies up to 100 years in a downstream direction on the Suwannee and Santa Fe Rivers. Weighted values of station

Figure 2. Physiographic regions within the Suwannee River Water Management District (after SRWMD, 1994).

and regional flood peaks were used in the plots. Generally, for rainfall equally distributed throughout a basin, it is usual to see an increase in flood magnitudes with increasing drainage area. The decrease in flood magnitude between the Luraville and Branford stations on the Suwannee River is thought to be due in part to peak attenuation along the channel as cross sectional area increases in a downstream direction. However, it is thought that a large part of the attenuation is through transient stream losses to springs which, at high stream levels, effectively become sinks. The same phenomenon of peak attenuation occurs between Worthington Springs and High Springs on the Santa Fe River.

REGIONAL ANALYSIS

Bridges (1982) performed statewide multiple regressions on 11 variables to develop relations between flood-peak discharges and basin characteristics. The variables tested were drainage area, channel slope, channel length, mean basin elevation, storage area of lakes and ponds, storage area of lakes, ponds, and swamps, forested area, maximum soil infiltration, mean annual precipitation, and maximum 24-hour precipitation intensity. The assumed form of the regression equation used by Bridges was:

$$Q_T = C_T X_1^{B_1} X_2^{B_2} \dots X_N^{B_N}$$
(2)

Figure 3. Relation of flood discharge to drainage area for selected frequencies on the Suwannee River.

Figure 4. Relation of flood discharge to drainage area for selected frequencies on the Santa Fe River.

Regional Analysis 5

- Q_T is the flood peak discharge (dependent variable) for recurrence interval of T-years, in cubic feet per second;
- X_1 to X_N are the basin characteristics (independent variables);
 - C_T is the regression constant for a given recurrence interval; and
- $B1_T$ to BN_T are the regression coefficients for a given recurrence interval.

The regression analysis used R^2 (the square of the multiple correlation coefficient) as a performance criterion. R^2 is a measure of the amount of variation in the independent variable that can be accounted for by the model. The one-variable model with the highest R^2 was produced. Then, the variable that produced the greatest increase in R^2 was added to the equation. Each variable in the two-variable model was compared to each variable not in the model to determine if replacing one variable with another would improve the R^2 coefficient. This procedure continued until the best two-variable, three-variable, and so forth, model was developed for each interval of T years. Bridges found that, statewide, drainage area (DA) accounted for 62 percent of the variance of the dependent variable; combining DA with lake area (LK) accounted for 80 percent; and, adding channel slope (SL) added only 3 percent. (For the SRWMD area, Bridges found that adding channel slope to the regression equation produced insignificant improvement.) All three of these parameters were determined from available USGS topographic maps. Adding a fourth and fifth variable

did not contribute to significant improvement of either R^2 or the standard error of the regression equations in any region of the State. The present (1996) study adopted Bridges' regression equation for Region B, one of three high flow hydrologic regions Bridges defined for Florida. Region B includes the entire SRWMD and is nearly coincident with it. The regression equation for Region B includes only *DA* and *LK* as variables. The equation is:

$$Q_T = C_T D A^{B_1} (LK + 0.6)^{B_2}$$
(3)

where

- Q_T is the discharge for a recurrence interval of Tyears, in cubic feet per second;
- C_T is the regression constant for a recurrence interval, T;
- DA is the drainage area, in square miles;
- *LK* is percentage of drainage area covered by lakes (determined from USGS 7.5-minute or 15-minute topographic maps); and

 $B1_T$ and

 $B2_T$ are exponents for various recurrence intervals.

The full suite of values for C_T , $B1_T$, and $B2_T$ is given in table 1 along with R^2 values and standard errors for each of the regressions. The standard error of estimate is the standard deviation of the distribution of residuals about the regression line, meaning that 68 percent of the values are within one standard deviation of the regression line and 95 percent are within two standard deviations.

 Table 1. Flood-frequency regression model for the Suwannee River Water Management District

Recurrence		Pogrossion	Exp	onents		Standard	Accuracy,	
interval, in years (<i>۲</i>)	Exceedence probability	constant (C_T)	B1 _T	В2 _Т		error, in percent	in equivalent years of record (<i>EY</i>)	
2	0.5	44.2	0.658	-0.561	0.876	60.9	2	
5	.2	113	.614	573	.869	59.7	3	
10	.1	182	.592	580	.863	59.9	3	
25	.04	298	.570	585	.853	60.9	5	
50	.02	410	.556	589	.845	61.9	5	
100	.01	584	.543	591	.836	63.1	6	
200	.005	694	.533	593	.827	64.4	6	
500	.002	936	.521	594	.815	66.3	6	

where

Table 1 also gives the accuracy of the regional relations in equivalent years of record, which is defined as the number of years of actual streamflow record required at a site to obtain an accuracy equal to the standard error of prediction for the regression estimate (Hardison, 1971). Hardison showed that the equivalent years of actual record required to produce an accuracy for a T-year statistic equal to that of a regional regression is given by:

$$EY = \left(\frac{100C_V}{SE_P}\right)^2 \tag{4}$$

where

- *EY* is the accuracy of the T-year statistic at a site not used in the regression, in equivalent years of record;
- C_V is the coefficient of variation of annual events, in this case, annual floods;
- SE_P is the standard error of prediction in percent.

Table 2 gives the probabilities that floods of a given recurrence interval will be exceeded during indicated time periods. Note that probabilities are *not* multiplicative; that is, the probability of a flood of a given recurrence interval occurring during a 5-year period is *not* five times the probability of that magnitude flood occurring in any one year. The probabilities are computed by the formula (Interagency Advisory Committee on Water Data, March, 1982):

$$P_N = 1 - (1 - 1/T)^N \tag{5}$$

where

 P_N is the probability of at least one exceedence within the specified time interval;

N is the time period in years;

T is the recurrence interval in years.

Bridges (1982) used stations with drainage areas ranging from 13.9 to 9,640 square miles in developing the regression equations for Region B. Lake areas for Region B ranged from 0 to 13.26 percent. The regression equations have not been validated outside these limits. Also, the regressions are not considered valid where anthropogehic changes have a significant effect on flood runoff, such as regulation from dams, levees, diversion canals, strip mining operation, and urban development.

It is recommended that flood frequency estimates for ungaged sites on ungaged streams be determined by direct application of the regression equation (3) alone in cases where there is no gage upstream or downstream from the site of interest within a drainage area range of greater than one-half and less than twice that of the site of interest. The use of the regional equation is illustrated a follows:

1) Determine the 50-year flood for station 02321446, Fivemile Creek near Dukes, Florida, at County Road 18A (fig. 1).

2) The *DA* is 11.80 mi². The *LK* is 0.90 percent of the drainage area.

3) Equation 3, as determined from table 1 for the 50-year flood, becomes:

$$Q_T = C_T DA^{B_{1_T}} (LK + 0.6)^{B_{2_T}}$$
$$Q_{50} = 410 (11.80)^{0.556} (0.90 + 0.6)^{-0.58}$$
$$Q_{50} = 1,278 \text{ cubic feet per second}$$

Appendix 1 shows calculated values of flood magnitudes from equation 3 for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years at gaging stations. Although it is not recommended that regional values derived from equation 3 be used alone where estimates from gaged flows are also available, the fol-

Table 2.	Probability	/ that a f	lood of a	a given	recurrence interva	l will	be exceeded	l during	indicated	time j	period	Ļ
				ω				0				

Recurrence interval, in	rrence Period of time, in years val, in (N)													
years (<i>T</i>)	1	5	10	20	25	50	100	200	500					
5	0.20^{1}	0.67	0.89	0.99	(²)	(²)	(2)	(²)	(²)					
10	.10	.41	.65	.89	0.93	(²)	(²)	(²)	$(^{2})$					
25	.04	.18	.34	.56	.64	0.87	0.98	(²)	$(^{2})$					
50	.02	.10	.18	.33	.40	.64	.87	0.98	$(^{2})$					
100	.01	.05	.10	.18	.22	.40	.63	.87	$(^{2})$					

¹ Multiply probability values by 100 to obtain percent chance of exceedence.

²Probability greater than 0.99 but less than 1.00.

lowing section shows how weighting of station and regional values can be used to improve estimates of flood magnitude and frequency at both gaged and ungaged sites.

IMPROVED FREQUENCY ESTIMATES BY USE OF WEIGHTING

Gaged Sites

Flood-frequency estimates based on station analysis and regional regression analysis tend to be independent of one another. Therefore, it is to be expected that an estimate of frequency characteristics utilizing both estimates is more likely to be closer to the "true" frequency characteristic than either method by itself. At gaged sites, a weighting procedure is recommended which is contained in guidelines of the Interagency Advisory Committee on Water Data (1982). In this procedure, station analysis is weighted by N, the number of years of actual record, and the regression estimate is weighted by EY, the equivalent years of record of the regression analysis, according to the formula:

$$Log Q_{wt} = (N log Q_g + EY log Q_r) / (N + EY)$$
(6)

where

- Q_{wt} is the weighted estimate of the T-year flood at gaged site, in cubic feet per second;
- Q_g is the T-year flood estimate from log-Pearson Type III frequency distribution of annual peaks at gaged site, in cubic feet per second;
- Q_r is the regional flood estimate for gaged site, computed from equation 3, in cubic feet per second;
- N is the the number of annual peaks used to compute Q_g in years;
- *EY* is the accuracy of the regional flood estimate, in equivalent years from table 1.

The weighting scheme of equation 6 is such that at longer periods of record (N) the station record value (Q_g) carries more and more weight relative to the regional value (Q_r). Appendix 1 gives weighted estimates of the T-year floods for each of the 32 gaged sites used in the regression analysis. At gaged sites, the weighted estimate is considered to be better for design or predictive purposes than either the log-Pearson Type III estimate alone or the regional estimate alone.

Ungaged Sites on Gaged Streams

Estimates for ungaged sites near gaged sites on the same stream can also be improved by weighting techniques. One method (Hannum, 1976) uses a weighted value of the ratio of the weighted and regional estimate at the gaged site to adjust the regional estimate at the ungaged site. This method is suggested when the drainage area at the ungaged site is more than half, but less than twice the drainage area of the gaged site. Equation 7 or 8 can be used to adjust the regional estimate at the ungaged site with the weighted estimate from the gaged site depending on the location of the ungaged site relative to the gaged site:

$$Q_u = Q_{ru}[((Q_{wt}/Q_r) - 1)^*((2A_g - A_u)/A_g) + 1] \text{ for site}$$

downstream from gage (7)

$$Q_u = Q_{ru}[((Q_{wt}/Q_r) - 1)^*((2A_u - A_g)/A_g) + 1] \text{ for site}$$

upstream from gage (8)

where

- Q_u is the adjusted estimate for ungaged site, in cubic feet per second;
- Q_{ru} is the regional estimate for ungaged site, in cubic feet per second;
- Q_{wt} is the weighted estimate of the T-year flood at the gaged site, in cubic feet per second;
- Q_r is the regional estimate at gaged site, in cubic feet per second;
- A_u is the drainage area for ungaged site, in square miles;
- A_g is the drainage area for gaged site, in square miles.

The weighting schemes for equations 7 and 8 are such that the weighted station value has full weight at the station. At sites less than one-half and greater than twice A_g , the regional value has full weight. An example of the use of this weighting technique is as follows:

- It is desired to estimate the 100-year flood for station 02320900, New River near Raiford (fig. 1), an ungaged site on a gaged stream. Its DA is 96.0 mi²; the percent *LK* is 0.01.There is a gaged site downstream, station 02321000, New River at Lake Butler. Its drainage area is 191 mi²; the percent *LK* is 0.03.
- 2) First, determine for the site of interest the Regional estimate of the 100-year flood from equation 3 and the appropriate values from table 1:

$$Q_T = C_T D A^{B_1} (LK + 0.6)^{B_2}$$

 $Q_{100} = 584(96.0)^{0.543}(0.03+0.6)^{-0.591}$

 $Q_{100}=Q_{ru}=9,150$ cubic feet per second.

3) Since the site is upstream from a gage on the same stream, equation 8 applies. Substituting in equation 8 Q_{ru} obtained above for the ungaged station and Q_{wt} and Q_r for the gaged station as obtained from Appendix 1 for the 100-year flood for New River near Lake Butler:

$$Q_u = Q_{ru}[((Q_{wt}/Q_r) - 1)*((2A_u - A_g)/A_g) + 1]$$

Qu=9,150[((18,300/13,300)-1)*((2(96)-191)/191)+1]

Qu=9,150[(.3759)*(0.0052)+1]

Qu=9,150[1.002]=9,170 cubic feet per second.

SUMMARY

Flood-frequency statistics were presented for 25 continuous-record and 7 high-flow partial-record stations in the Suwannee River Water Management District for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, using three methods. The first, utilizing station analysis, applied a log-Pearson Type III function to the series of annual peaks. The second method utilized regional relations based on regression of values derived from station analysis with basin parameters. Only two basin parameters, drainage area and lake area, were significant enough to include in final regression equations. Lastly, a weighting method, utilizing both station and regional values, was used to improve estimates of flood frequency statistics at gaged sites. The weighted estimate is considered to be more accurate than either the station estimate or the regression estimate alone.

The regression equation can, of course, be used to estimate flood-frequency characteristics at ungaged as well as gaged sites. If the ungaged site is on a gaged stream, then the estimate for the ungaged site can be improved by transferring information from the gaged site to the ungaged site and applying weighting procedures.

The karstic nature of much of the Suwannee River Water Management District significantly attenuates flood peaks in some streams by providing substantial subsurface storage when river stages are high. Then, springs discharging into rivers may reverse flow temporarily and become sinks.

REFERENCES

Bridges, W.C., 1982, Technique for estimating magnitude and frequency of floods on natural- flow streams in Florida: U.S. Geological Survey Water-Resources Investigations Report 82-4012, 45 p.

Franklin, M.A., Giese, G.L., and Mixson, P.R., 1994, Statistical summaries of surface-water hydrologic data in the Suwannee River Water Management District, Florida, 1906-93: U.S. Geological Survey Open-File Report 94-709, 173 p.

- Fenneman, N.M., 1938, Physiography of eastern United States: New York, McGraw-Hill Book Company, Inc., 714 p.
- Hannum, C.H., 1976, Technique for estimating magnitude and frequency of floods in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 76-62, 70 p.
- Hardison, C.H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.
- Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood-flow frequency: Bulletin 17B of the Hydrology Subcommittee, Office of Water Data Coordination, U.S. Geological Survey, Reston, Va., 183 p.
- Kirby, W. H., 1979, Annual flood-frequency analysis using U.S. Water Resources Council guidelines (Program J407): U.S. Geological Survey WATSTORE User's Guide, v. 4, chap. I-C.
- Marella, R.L., 1995, Water-use data by category, county, and water management district in Florida, 1950-90:
 U.S. Geological Survey Open-File Report 94-521, 114 p.

Stamey, T.C., and Hess, G.W., 1993, Techniques for estimating magnitude and frequency of floods in rural basins of Georgia: U.S. Geological Survey Water-Resources Investigations Report 93-4016, 75 p.

Suwannee River Water Management District, 1994, Water Management Plan: Suwannee River Water Management District, draft of August 8, 1994, 215 p.

U.S. Army Corps of Engineers, 1974, Suwannee River floods, Florida and Georgia, December 1974: Special Flood Hazard Information Report: U.S. Army Corps of Engineers, Jacksonville District, Jacksonville, Florida, 17 p. and 41 plates.

10 Magnitude and Frequency of Floods in the Suwannee River Water Management District, Florida

APPENDIX

Appendix 1. Station, regional, and weighted T-year flood estimates for the Suwannee River Water Management District

[Discharge-frequency relations for each station are presented as follows: Top line--log-Pearson Type III analysis for the indicated period of systematic record; Middle line--regression equation; Bottom l ine--weighted or best estimate of T-year flood; mi², square miles; ft³/s, cubic feet per second]

Station	Name	¹ Years of record Name		Drainage area	Lake area	Discharge for recurrence interval in years (ft ³ /s)							
numper		Systematic	Historic	(mi²)	(percent)	2	5	10	25	50	100	200	500
² 02313400	Waccasassa River near Bronson	23		220	3.50	262 697 283	613 1380 673	950 1960 1030	1510 2820 1690	2030 3580 2240	2640 4740 2980	3360 5330 3740	4490 6720 4980
02314200	Tenmile Creek nr Lebanon Station	29		26.0	1.00	607 290 577	1250 640 1170	1840 954 1730	2820 1450 2540	3730 1900 3360	4810 2590 4300	7000 2980 5870	8160 3870 6880
02315000	Suwannee River nr Benton	19		2090	0.24	6390 7460 6480	10400 13600 10800	13300 18600 13900	17200 25800 18700	20300 31900 22300	23600 41100 27000	27000 45300 31000	31700 55700 37500
02315200	Deep Creek nr Suwannee Valley	10		88.6	0.50	617 800 644	777 1680 928	874 2450 1110	989 3630 1530	1070 4690 1750	1150 6300 2180	1220 7160 2530	1320 9150 3120
02315500	Suwannee River at White Springs	69		2430	.31	7510 7870 7520	13200 14300 13200	17300 19400 17400	22700 26800 23000	26700 33100 27100	30800 42600 31600	34900 46800 35800	40300 57500 41800
02315550	Suwannee River at Suwannee Springs	33		2630	.37	7720 8000 7740	12500 14500 12700	15900 19600 16200	20200 27000 21000	23500 33300 24600	26800 42800 28800	30200 47000 32600	34700 57700 38300
02317620	Alapaha River nr Jennings	11		1680	0	8390 6420 8050	14800 11900 14100	19800 16200 19000	26900 22600 25500	32700 28000 31200	38900 36300 38000	45600 49200 47000	55200 60700 57500
² 02317630	Alapaha River nr Jasper	27	47	1720	0	6920 7920 6990	12300 14700 12500	16500 20100 16800	22200 28000 23000	26900 34800 28000	31800 45100 34000	36900 49800 39200	44200 61400 47500
02319000	Withlacoochee River nr Pinetta	63	67	2120	.23	10400 7580 10300	20700 13900 20300	29800 18900 29200	43900 26200 42300	56300 32400 54100	70500 41700 67400	86600 45900 81300	111000 56500 103000
02319500	Suwannee River at Ellaville	67		6970	.27	19000 16200 18900	33200 28000 33000	44100 37200 43800	59500 50100 58800	72100 61000 71300	85400 77500 84700	99800 84300 98200	120000 102000 118000
02320000	Suwannee River at Luraville	10		7330	.27	19900 16700 19300	34900 28900 33400	46500 38300 44500	63100 51600 59000	76700 62700 71700	91300 79600 86700	107000 86600 98000	130000 105000 118000

Appendix 1. Station, regional, and weighted T-year flood estimates for the Suwannee River Water Management District -- Continued

[Discharge-frequency relations for each station are presented as follows: Top line--log-Pearson Type III analysis for the indicated period of systematic record; Middle line--regression equation; Bottom l ine--weighted or best estimate of T-year flood; mi^2 , square miles; ft^3 /s, cubic feet per second]

Station number	Name	¹ Years of record Name		Drainage area	Lake area	Discharge for recurrence interval in years (ft ³ /s)							
number		Systematic	Historic	(mi ²)	(percent)	2	5	10	25	50	100	200	500
02320500	Suwannee River at Branford	63	67	7880	.30	17000 17200 17000	28000 29600 28100	36300 39200 36400	47700 52700 48000	56900 64000 57400	66600 80100 67700	76800 88200 77900	91300 107000 92900
02320700	Santa Fe River nr Graham	37		94.9	13.26	466 202 446	934 410 878	1310 587 1230	1830 858 1670	2260 1100 2070	2700 1460 2480	3170 1650 2860	3810 2100 3400
02321000	New River nr Lake Butler	25		191	.03	2770 1820 2680	5740 3700 5480	8340 5330 7950	12300 7800 11400	15900 9980 14700	19800 13300 18300	24300 15000 21900	31000 19000 27500
02321500	Santa Fe River at Worthington Springs	63		575	2.64	4440 1500 4290	8890 2900 8450	12500 3960 11900	17600 5600 16200	21800 7020 20100	26200 9190 23900	30900 10200 27700	37600 12800 33300
² 02321600	Olustee Creek nr Lulu	19		49.1	.04	735 736 735	1480 1590 1490	2130 2360 2160	3110 3560 3200	3970 4650 4100	4920 6300 5220	5990 7210 6300	7580 9280 8050
² 02321700	Swift Creek nr Lake Butler	25		46.0	8.67	486 157 447	790 331 720	1010 482 4770	1320 718 1190	1560 928 1430	1800 1250 1680	2070 1430 1910	2430 1830 2270
² 02321800	Olustee Creek nr Providence	12		163	.88	2820 1010 2440	4320 2060 3730	5380 2960 4770	6770 4320 5930	7840 5530 7080	8940 7360 8380	10100 8310 9400	11600 10500 11100
02322000	Sante Fe River nr High Springs	41		868	1.90	3560 2270 3490	7290 4260 7030	10300 5870 9910	14600 8250 13700	18100 10300 17000	21700 13400 20400	25600 14800 23600	30900 18400 28400
02322016	Blues Creek nr Gainesville	10		5.12	.05	125 131 126	221 318 240	297 500 335	404 798 507	492 1080 639	587 1510 837	689 2140 1100	835 2830 1440
02322500	Santa Fe River nr Fort White	64		1017	1.73	3940 2620 3890	6540 4890 6460	8510 6720 8420	11300 9410 11200	13500 11700 13400	15900 15200 15800	18400 16800 18200	22000 20900 21900
02323000	Suwannee River nr Bell	25	29	9390	0.49	16400 17300 16500	27500 29600 27800	36900 38900 37100	51400 52100 51500	64500 63000 64300	79500 79700 79500	97000 86400 94600	124000 104000 119000

Appendix 1. Station, regional, and weighted T-year flood estimates for the Suwannee River Water Management District -- Continued

[Discharge-frequency relations for each station are presented as follows: Top line--log-Pearson Type III analysis for the indicated period of systematic record; Middle line--regression equation; Bottom l ine--weighted or best estimate of T-year flood; mi², square miles; ft³/s, cubic feet per second]

Station	Name	¹ Years of record Name		Drainage area	Lake area	Discharge for recurrence interval in years (ft ³ /s)							
number		Systematic	Historic	(mi ²)	(percent)	2	5	10	25	50	100	200	500
02323500	Suwannee River nr Wilcox	53		9640	.54	20900 17200 20800	31700 29300 31600	39600 38500 39500	50200 51500 50300	58600 62300 58900	67500 78700 68600	76900 85300 77800	90100 103000 91700
02324000	Steinhatchee River nr Cross City	44		350	.53	2030 1950 2030	3940 3840 3930	5550 5440 5540	7990 7820 7970	10100 9910 10100	12400 13100 12500	15000 14700 15000	19000 18400 18900
02324400	Fenholloway River nr Foley	39		60.0	.04	368 840 383	762 1800 810	1140 2660 1210	1790 3990 1960	2410 5200 2630	3180 7020 3640	4120 8020 4500	5680 10300 6290
02324500	Fenholloway River at Foley	46		120	.37	570 1050 585	1180 2170 1220	1760 3150 1820	2770 4650 2910	3740 5980 3920	4940 8000 5220	6420 9070 6720	8890 11500 9240
02325000	Fenholloway River nr Perry	29		160	.42	687 1230 713	1090 2520 1180	1380 3630 1510	1780 5310 2090	2090 6810 2490	2420 9080 3040	2770 10300 3580	3250 13000 4390
02326000	Econfina River nr Perry	44		198	.85	643 1160 660	1190 2350 1240	1600 3360 1680	2140 4890 2330	2540 6230 2780	2950 8280 3340	3360 9330 3870	3910 11800 4630
² 02326250	Aucilla River nr Aucilla	11		345	2.00	1980 1210 1840	2990 2360 2840	3700 3320 3620	4640 4760 4680	5370 6020 5560	6120 7930 6710	6890 8870 7600	7960 11100 9160
² 02326300	Little Aucilla River nr Green- ville	14		90.7	3.12	437 411 434	796 847 805	1090 1220 1110	1510 1800 1580	1860 2320 1970	2250 3100 2480	2680 3520 2930	3300 4490 2690
02326500	Aucilla River at Lamont	38		747	3.00	1990 1670 1970	5020 3150 4850	7680 4350 7370	11600 6120 10800	14800 7630 13700	18200 9950 16800	21800 11000 19600	26600 13700 23700
02326512	Aucilla River nr Scanlon	20		805	3.00	2590 1760 2500	4380 3300 4220	5750 4550 5580	7700 6380 7420	9290 7960 9010	11000 10400 10800	12900 11500 12500	15500 14300 15100

¹Years of historic record include the period of systematic measurements as well as the intervening years to major flood events.

²Peak-flow partial-record gaging station.