Seventy Years of Disk Drives: The Exciting Road Ahead

Mark Kryder Seagate Technology November 2006

Outline

How far we've come in 50 years – then and now

- Product and performance trends
- Technology development over time

Where we're going – now and tomorrow

- Perpendicular Recording
- Heat Assisted Magnetic Recording (HAMR)
- Bit Patterned Media (BPM)

What this means we'll be doing in 2020.

Invention of the Disk Drive - 1956 IBM 305 RAMAC

(Random Access Method of Accounting and Control)

5 Megabyte Capacity 50 disks, each 24 inches in diameter 2000 bits/in² storage density.

This drive could store 2000 pages of text with 2500 characters per page.

Small Form Factor 5.25" Drive – 1979

Seagate ST506

This 3,600 RPM drive has a storage capacity of 5 Mbytes

Can read or write more than 12 records, spread randomly over the disc, in less than a second

Cheetah 15K.5

Perpendicular Recording First 300 Gbyte 15 Krpm disk drive. **1.4 Million Hour MTBF. Nonrecoverable Read Error Rate:** 1 sector per 10e16 Average R/W time: 3.5/4.0 msec Latency: 2 msec **125 MB/s Sustained Transfer Rate**

Technical Specifications – Then and Now

	IBM RAMAC (1956)	Seagate ST506 (1979)	Seagate Cheetah 15K.5 (2006)	Delta
Capacity	5 MB	5 MB	300 GB	60,000 X
Areal Density	2 Kbpsi	1.9 Mbpsi	108 Gbpsi	54,000,000
Discs	50 @ 24" dia.	2 @ 5.25" dia.	4 @ 3.5" dia.	
Price	\$50,000	\$1,500	< \$1420	X/35
Price/MB	\$1,000	\$300	< \$0.00473	X/210,000
Data Rate	10 KB/s	5 MB/s	125 MB/s	12,500 X
Power	5000 W	20 W	13.7 W	X/365
Weight	1 ton	~5 lbs	1.5 lb	X/1333
Seek Time	600 ms	85 ms	3.5/4.0 ms	X/158
Reliability		11K hrs	1.4M hrs	
Spindle Speed	1,200 RPM	3,600 RPM	15,000 RPM	12.5X

Technical Specifications – Then and Now

What if automobiles had improved as much?

	1956	2006
	(RAMAC)	(Cheetah 15K.5)
Capacity	5 people	300,000 people
Price	\$2,500	\$71
Price/person	\$500	\$0.002
Top Speed	100 mph	1,250,000 mph
0 – 60 mph	15 s	0.1 s
Gas Mileage	25 mpg	9,125 mpg
Weight	1 ton	1.5 lb

Recording Basics: Superparamagnetism

To preserve SNR, number of grains in a bit must be constant.

 $SNR \sim log_{10}(N)$

Therefore higher densities require smaller grains

The smaller bits have a higher probability of flipping and the data is unstable

Perpendicular Recording

Perpendicular recording was recently introduced, but will hit thermal stability limits at about 1 Tbit/in² in ~2012.

421 Gb/in² Areal Density Demo at OTC-w3GI

R. Victora et al., U. of Minnesota Jitter: Recording at Tbit/in2

Thermal stability requires $K= 2x10^7$ ers/cc. Therefore, this head and media combination requires signal processing to accommodate 14% jitter for Terabit/in².

Areal Density Potential of Media Candidates

FePt and other high anisotropy materials offer areal density potential 10X that of CoCrPt materials used in perpendicular recording.

How to write on them?

Heat Assisted Magnetic Recording (HAMR)

Spin Stand Recording – HAMR

Recorded and Read back using typical recording conditions

HDD Performance Trends: Short Term

3.5 inch Consumer	2006 (Perp)	2010 (Perp)	2014 (HAMR)
Drive Capacity (GB)	750	3,000	12,000
Number of Discs	4	4	4
Capacity (GB/disc)	187	750	3000
Product Areal Density (Gbpsi)	133	500	2000
Transfer Rate (Mb/sec)	930	2,000	4,000
RPM	7,200	7,200	7,200
3.5 inch Enterprise	2006 (Perp)	2010 (Perp)	2014 (HAMR)
Drive Capacity (GB)	300	1200	5,000
Number of Discs	4	4	4
Capacity (GB/disc)	75	300	1,200
Product Areal Density (Gbpsi)	108	400	1,600
Transfer Rate (Mb/sec)	975	2,000	4,000
RPM	15,000	15,000	15,000
1.0 inch Handheld	2006 (Perp)	2010 (Perp)	2014 (HAMR)
Drive Capacity (GB)	12	50	200
Number of Discs	1	1	1
Capacity (GB/disc)	12	50	200
Product Areal Density (Gbpsi)	133	500	2,000
Transfer Rate (Mb/sec)	145	300	750
RPM	3,600	4,200	5,400

Bit Patterned Media Lithography vs. Self Organization

Lithographically Defined

Direct E-Beam Write or Di-Block Co-Polymer

Major obstacle is finding low cost means of making media

- At 1 Tbpsi, assuming a square bit cell and equal lines and spaces, 12.5 nm lithography would be required
- Semiconductor Industry Association roadmap does not provide such linewidths within the next decade

FePt Self-Organizing Media

HAMR on Bit Patterned Media (BPM)

Areal Density Growth

November 2006

Enterprise Drive in 2020

Capacities: 10, 20 TBytes Areal Density: 14 Tbit/in² Sustained Data Rate: 1.4 GByte/sec Seek Time: 3.5/4.0 msec Latency: 2 msec MTBF: 20 million hours Price: \$300

Summary and conclusions

Dramatic changes in HDD performance, form-factor and cost over last 50 years.

Areal density growth on track at 40% per year

- Perpendicular recording extensible to 500-1000 Gbpsi.
- HAMR extensible by an additional order of magnitude.
- Bit patterned media/SOMA, combined with HAMR promise to extend the areal density to perhaps 50 Tbpsi.
- Prediction: In 2020, storage will utilize HAMR with BPM at an areal density of 14 Tbit/in².

♦ 2.5" drives with 20 Tbyte capacity.

Questions?

