Lawrence Berkeley National Laboratory Energy Retrofit Program Case Study

Dale Sartor, P.E.

Laboratories for the 21st Century Cambridge, Massachusetts September 9, 1999

Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Applications Team

Application of the Process: The Successful Retrofit of the Lawrence Berkeley National Laboratory

The LBNL In-House Energy Management Program

- History
- Staff
- Program elements

Retrofit Projects New Construction Program Cost and Impact Utility Cost Management Lessons Learned

History

- <u>1986</u>: LBNL IHEM formed dedicated staff
- <u>1986-89</u>: Process-related retrofits increased runtime, benefits recognized, management committed to IHEM
- <u>1990</u>: Began comprehensive building retrofits
- <u>1995</u>: Energy use reduction from FY '85 peaked at 42%
 Electrical rates reduced from \$.08 to \$.055/KWh
 Natural gas rates reduced from \$.40 to \$.28/therm
- <u>1996</u>: Began maintenance engineering services
- <u>1997</u>: Electrical rates reduced from \$.055 to \$.035/KWh

Staff:

Dedicated in-house engineers, and project managers

Scientists borrowed from research division

Consultants

Program Elements:

Energy Efficiency Studies (40+ since 1985) Energy Efficiency Retrofits (30+)

- Direct funded
- Utility surcharge funded
- Energy Savings Performance Contract

New Construction

- Conceptual Design Report
- Energy Efficiency Report
- Project team participation
- Good retrofit projects

Employee Awareness and Training

Research and Development

A-Team Support to other Federal Agencies

Typical Retrofit Projects

Constant Velocity VAV Fume Hood control VFD control for fans and pumps DDC/EMCS (over 8,000 points in place) T-8/Electronic Ballast lighting Occupancy sensor controlled lighting LED exit signs

CFLs

Typical Retrofit Projects - cont.

Premium Efficiency Motors Consolidation of Boiler and Chiller plants Modular boilers Small base loaded chillers

Typical Retrofit Projects - cont.

Mechanical equipment replacements Waterside economizers Metering Process

Instrumented Survey

Uncovers "hidden" opportunities Improves quantification of savings Aids in commissioning and persistence Can save purchase of new unneeded capacity

New Construction

Late design review doesn't work!

- Design decisions are made
- Appliqué not a systems approach
- Options easy to analyze
- No big hits
- No budget

Input at Conceptual Design Phase is Critical

Identify key opportunities

Provide direction (priority) to A/E team

Establish budget line-item(s)

Energy Efficient Design Process -A Systems Approach

What does it mean

Potential to reduce first cost

Encourage Inter-disciplinary Communication

Design Charrette

Regular meetings (not another one!)

Your ideas

Life Cycle Communications

Building Life Cycle Information Systems

(Derktop) - Soda ble					
	Design Intent Tool	PowerDOE	Chiller Cx Tool	8M 7/95	Measured O&M
Building Load (Whole Building) tons/1000 sq.ft.	3.5 tons/1000 sq.M.			20	
Chiller Efficiency kW/ton	0.65 KW/ton			0.89	
Energy Use Intensity (Whole Building) kWh/sq.ftme.	2.5 KWh/sq.ft/me.	2.3	ş 1	2.0	
Equipment E.U.I. kWh/sq.ftmo.	1.3 kWh/sq.tl/ma.	1,3 kWh/sq.#/mo.		j.f¥mo.	0.4 kWh/sq.ft/m
Operating Cost \$/sq.Rmo.	0.20 \$/sq.ft/mo.		2	23	
				-	

Goal:

Energy Efficiency is the Base Case!

Opportunities are Real

41% reduction in energy use per square foot from 1985 baseline

\$4.4 million/year more research based on 1985 energy prices Pollution reduction:

- 14,174 tons CO2
- 12,885 tons SO2
- 9,449 tons Nox

Improved worker productivity Safer environment

Improved reliability

Investment Required Studies: \$2.6 million Retrofit: \$20 million

Utility Cost Management

Billing errors (FY96 savings was \$98K)

Electricity: WAPA @ \$.035/KWh

Natural Gas: Defense Fuel Supply Center @ \$.28/Therm

Overall 40% savings due to rate reduction

Integrated Supply and Demand Side Energy Management

Potential Savings Over 60%baseline:\$11.0 millionactual:\$3.8 millionoverall savings\$7.2 million (or 65%)

New Energy Market

Seek utility supply "partners" providing an integrated approach

Beware of one sided proposals

Beware of take-or-pay utility outsourcing

Lessons Learned:

Outside air dominant load - focus on HVAC Fume hood VAV (constant velocity) safe and efficient DDC/EMCS to zone Commissioning and ongoing O&M important Don't oversize boilers and chillers - use modular units Avoid reheat Technology is improving