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Abstract. Landsliding in response to rainfall involves physical processes that operate on
disparate timescales. Relationships between these timescales guide development of a
mathematical model that uses reduced forms of Richards equation to evaluate effects of
rainfall infiltration on landslide occurrence, timing, depth, and acceleration in diverse
situations. The longest pertinent timescale is A/D0, where D0 is the maximum hydraulic
diffusivity of the soil and A is the catchment area that potentially affects groundwater
pressures at a prospective landslide slip surface location with areal coordinates x, y and
depth H. Times greater than A/D0 are necessary for establishment of steady background
water pressures that develop at ( x, y, H) in response to rainfall averaged over periods
that commonly range from days to many decades. These steady groundwater pressures
influence the propensity for landsliding at ( x, y, H), but they do not trigger slope failure.
Failure results from rainfall over a typically shorter timescale H2/D0 associated with
transient pore pressure transmission during and following storms. Commonly, this
timescale ranges from minutes to months. The shortest timescale affecting landslide
responses to rainfall is =H/g , where g is the magnitude of gravitational acceleration.
Postfailure landslide motion occurs on this timescale, which indicates that the thinnest
landslides accelerate most quickly if all other factors are constant. Effects of hydrologic
processes on landslide processes across these diverse timescales are encapsulated by a
response function, R(t*) 5 =t*/p exp (21/t*) 2 erfc (1/=t*), which depends only
on normalized time, t*. Use of R(t*) in conjunction with topographic data, rainfall
intensity and duration information, an infinite-slope failure criterion, and Newton’s second
law predicts the timing, depth, and acceleration of rainfall-triggered landslides. Data from
contrasting landslides that exhibit rapid, shallow motion and slow, deep-seated motion
corroborate these predictions.

1. Introduction

Landslides triggered by rainfall occur in most mountainous
landscapes. Some of these landslides occur suddenly and travel
many kilometers at high speeds. They can pose grave threats to
life and property, as demonstrated in the December 1999 di-
saster in northern Venezuela [Larsen et al., 2000]. Other land-
slides respond slowly to rainfall and move at imperceptible
speeds, but they can dominate sediment yields and landscape
change for years or even millennia [Swanson and Swanston,
1976]. Traditionally, prediction of rainfall-triggered landslides
has relied mostly on recognition of landslide-prone terrain
[e.g., Rib and Liang, 1978; Hansen, 1984; Soeters and van
Westen, 1996] and identification of rainfall intensities and du-
rations that cause slopes to fail [e.g., Caine, 1980; Cannon and
Ellen, 1985; Wieczorek, 1987]. These empirical methods are
important, but they provide no theoretical framework for un-
derstanding how hydrologic processes influence the location,
timing, and rates of landslides or for anticipating how landslide
hazards might change in response to changing climate or land use.

Recently, theoretical models have been developed to predict
how variations in landslide susceptibility depend on topo-
graphic, geologic, and hydrologic variables and changes in land
use [e.g., Sidle, 1992; Montgomery and Dietrich, 1994; Dietrich et
al., 1995; Wu and Sidle, 1995]. All of these models employ the
effective stress principle [Terzaghi, 1925] in an infinite-slope

stability analysis [Haefeli, 1948; Taylor, 1948], which relates
landslide potential to groundwater pressures in discrete land-
scape cells. The models assume that rainfall influences ground-
water only by modulating steady or quasi-steady water table
heights and that groundwater flows exclusively parallel to the
slope. The models consequently neglect slope-normal redistri-
bution of groundwater pressures associated with transient in-
filtration of rain. This neglect is predicated more on expedi-
ence than physical evidence; both theory and measurements
indicate that groundwater pressures in hillslopes respond
strongly to transient rainfall and that pressure redistribution
includes a large component normal to the slope [e.g., Freeze,
1974; Iverson and Major, 1987; Reid et al., 1988; Haneberg, 1991;
Baum and Reid, 1995; Iverson et al., 1997; Torres et al., 1998].

To assess the effects of transient rainfall on timing, rates,
and locations of landslides, I use rational approximations to
develop a theoretical model that augments steady and quasi-
steady models such as those described above. Analysis of Rich-
ards [1931] equation yields approximations that describe near-
surface groundwater pressures that develop in hillslopes in
response to rainfall over varying periods of time. An approxi-
mation valid for long times governs quasi-steady background
pressures that typically develop over periods ranging from days
to many decades. These pressures reflect the influence of to-
pography, geology, and climate on slope failure potential. An
approximation valid for shorter times governs groundwater
pressures that develop in response to individual rainstorms or
groups of storms and that trigger most dangerous landslides.
For slopes that are initially quite wet, the short-time approxi-
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mation reduces to a linear diffusion equation, and analytical
solutions predict how near-surface pore water pressures re-
spond to rainfall of arbitrary intensity and duration. Combina-
tion of a diffusion solution with a generalized infinite-slope
stability model and Newton’s second law yields an equation
that predicts the timing, depth, and rate of slope failure as a
function of rainfall intensity and duration. Comparisons of
these predictions with data from two well-documented cases
demonstrates the utility of the model.

Before detailing the analyses outlined above, it is perhaps
worthwhile to emphasize that the theory is born of compro-
mise. The theory aims to predict variations in landslide sus-
ceptibility and behavior under diverse geologic and hydrologic
conditions, with the caveat that only valid approximations and
minimal data inputs are desirable. A more precise theory
would avoid approximations and include all details of tran-
sient, variably saturated groundwater flow as well as three-
dimensional landslide geometries and geologic heterogeneities
but would also demand extraordinary data inputs. Conversely,
theories that disregard transient rainfall entirely cannot ac-
count for its effect on landsliding: an effect that is evident to
even casual observers. The new theory described here includes
transient rainfall effects but requires only meager data inputs
(rainfall intensity and duration and a characteristic hydraulic
diffusivity) in addition to those required by steady and quasi-
steady theories. A theory this simple cannot, of course, predict
all complexities observed in the field. Nonetheless, it can illu-
minate rainfall effects on the timing and style of landsliding,
and it can sharpen the focus of field investigations and model
prognostications.

2. Analysis of Hydrologic Processes
To assess the influence of rainfall on near-surface ground-

water pressures in slopes, consider a local rectangular Carte-
sian coordinate system with its origin at an arbitrary point on
the ground surface (Figure 1). The coordinate x points down
the slope, y points tangent to the topographic contour that
passes through the origin, and z points into the slope, normal

to the x-y plane. Richards equation governs unsteady, variably
saturated, Darcian flow of groundwater in response to rainfall
on the slope. Referenced to the coordinate system of Figure 1,
Richards equation may be written as [Bear, 1972; Hurley and
Pantelis, 1985]

­c

­t
du

dc
5

­

­ x FKL~c!S ­c

­ x 2 sin aD G 1
­

­ y FKL~c!S ­c

­ yD G
1

­

­ z FKz~c!S ­c

­ z 2 cos aD G , (1)

in which c is groundwater pressure head, u is soil volumetric
water content, t is time, and a is the slope angle, 0 # a , 908.
Terms can be added to (1) to make the x and y coordinates
conform with hillslope curvature, but such terms are generally
small and vanish in approximations that are valid at shallow
depths [e.g., Hurley and Pantelis, 1985]. Non-Darcian flow in
slopes is not represented by (1) but might be simulated satis-
factorily by assigning Darcian parameter values that mimic
non-Darcian properties.

The key Darcian parameters in (1) are the hydraulic con-
ductivities in the lateral ( x and y) directions and slope-normal
( z) direction, KL and Kz. The conductivities may vary owing to
variations of soil properties or c. It is convenient to define
normalized conductivities K* with reference to the maximum
(saturated) conductivity anywhere within the flow domain, Ksat,

K*L 5
KL~c!

K sat
, K*z 5

Kz~c!

K sat
(2)

and to relate the conductivities to hydraulic diffusivities (DL,
Dz, D0) by

DL 5
KL~c!

C~c!
, Dz 5

Kz~c!

C~c!
, D0 5

K sat

C0
, (3)

where C(c) 5 du/dc is the change in volumetric water con-
tent per unit change in pressure head and C0 is the minimum
value of C(c), typically observed when the soil becomes sat-
urated. Thus D0 is the maximum characteristic diffusivity gov-
erning transmission of pressure head, and it thereby provides a
convenient reference diffusivity.

Normalization of (1) reveals some fundamental features of
hillslope responses to rainfall [Hurley and Pantelis, 1985;
Haneberg, 1991]. In the present context the goal of normaliza-
tion is assessment of the pore pressure response at depth z 5
H (measured normal to the slope) and areal position ( x , y) as
a function of time (Figures 1 and 2). Areal position determines
the extent to which rain infiltration elsewhere in the catchment
affects the pressure head at ( x , y , H). Therefore I define
normalized variables

c* 5
c

H , z* 5
z
H , x* 5

x

ÎA
, y* 5

y

ÎA
(4)

that involve two length scales. One scale is H , which applies in
the z direction and establishes an appropriate reference for the
pressure head c that develops at depth H in response to rain-
fall. The length scale in the x and y directions is =A, where A
is the catchment area that might ultimately influence c( x , y ,
H , t) if rainfall persists. Groundwater hydraulics dictates that
A may be somewhat ambiguous, because groundwater can
cross beneath topographic divides and influence pressures up-
stream as well as downstream within a flow field. To define an

Figure 1. Definition of the local, rectangular, Cartesian co-
ordinate system used to analyze Richards equation. The origin
lies on the ground surface, x is tangent to the local surface
slope, y is tangent to the local topographic contour, and z is
normal to the x-y plane. The slope angle a is measured with
respect to horizontal.
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unambiguous length scale, it is therefore necessary to approx-
imate A by some readily measurable property.

To establish connections with previous work [e.g., Montgom-
ery and Dietrich, 1994; Dietrich et al., 1995], I approximate A by
the area enclosed by the upslope topographic divide and hy-
pothetical flow lines that run normal to topographic contours
and bound the region that can contribute surface runoff to
point ( x , y) (Figure 2). Unless groundwater flow paths are
unusually aberrant, this definition of A establishes a length
scale =A of the correct magnitude for lateral transmission of
pore water pressure to ( x , y , H).

Pore pressure transmission in response to rainfall is a tran-
sient process, which implies that two timescales exist in con-
junction with the two length scales H and =A. Employing the
reference diffusivity D0 to establish a reference time, one time-
scale may be identified as A/D0, which approximates the min-
imum time necessary for strong lateral pore pressure transmis-

sion from the area A to the point ( x , y , H). The other
timescale is H2/D0, which approximates the minimum time
necessary for strong slope-normal pore pressure transmission
from the ground surface to depth H [cf. Iverson and Major,
1987; Haneberg, 1991; Reid, 1994]. Here the distinction be-
tween pore pressure transmission and water flux is relevant.
Rainwater can infiltrate the soil as a gravity-driven slug with
uniform water content and zero pore water pressure behind
the wetting front [Bear, 1972, chapter 9], but pore pressure
change in a porous medium is largely a diffusive process that
can occur with or without much water flux [cf. Biot, 1941, 1956;
Chandler and Johnson, 1981].

The ratio of the pressure diffusion timescales H2/D0 and
A/D0 yields a length scale ratio « that plays a key role in
analyzing pressure head responses to rainfall on slopes,

« 5 ÎH2D0

AD0
5

H

ÎA
. (5)

If « ,, 1, long-term and short-term pressure head responses at
locations ( x , y , H) may be described adequately by simplified
forms of Richards equation. In many landscapes with high
potential for landslides, values « # 0.1 apply at typical slip
surface depths and locations (Table 1). Simplified forms of
Richards equation therefore provide a rational basis for as-
sessing landslide responses to rainfall.

2.1. Long-Term Behavior

Long-term pressure head responses can be assessed by iden-
tifying the appropriate dimensionless time as t* 5 tD0/A and
substituting this expression together with (2), (3), and (4) into
(1). Then multiplication of all terms by H/Ksat and some alge-
braic simplification yields a form of Richards equation appro-
priately scaled to assess c( x , y , H , t) in response to rainfall of
long duration (t . A/D0)

«2
C~c!

C0

­c*
­t* 5 «2

­

­ x* FK*LS ­c*
­ x* 2

1
«

sin aD G
1 «2

­

­ y* FK*LS ­c*
­ y*D G 1

­

­ z* FK*zS ­c*
­ z* 2 cos aD G .

(6)

Figure 2. Definition of the planimetric contributing area A
at two locations ( x , y) in a hypothetical landscape. Dashed
lines represent topographic contours.

Table 1. Characteristic Timescales and Timescale Ratios for Contrasting Landslide Sites

Significance

Numerical Values

Case 1
(Coos Bay)

Case 2
(Minor Creek)

Timescale
A/D0 quasi-steady groundwater response time 1 day 300 years
H2/D0 transient groundwater response time 20 min 1 year
=H/g landslide acceleration time 0.3 s 0.8 s
T rainfall duration (example) 1 hour 4 months

Timescale ratios
« 5H/=A 0.1 0.06
T* ;T/(H2/4D0) 10 1
S ;(H2/4D0)/=H/g 800 1 3 107

Case 1 is similar to the Coos Bay, Oregon, site described by Montgomery et al. [1997] and Torres et al.
[1998] and assumes H ; 1 m, A ; 100 m2, and D0 ; 1023 m2/s. Case 2 is similar to the Minor Creek,
California, site described by Iverson [1984, 1986] and Iverson and Major [1987] and assumes H ; 6 m, A ;
104 m2, and D0 ; 1026 m2/s. In each case, timescales are evaluated for a typical point near the failure
surface, and for convenience it is assumed that H 5 Z and D̂ 5 4D0. Numerical values are rounded to
one significant digit.
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Assuming « ,, 1, terms of order « and «2 in (6) generally may
be neglected. Then (6) reduces to a simple equation describing
steady, near-surface groundwater flow [Hurley and Pantelis,
1985]

­

­ z* FK*zS ­c*
­ z* 2 cos aD G 5 0. (7)

A general solution of (7) is (in dimensional form)

c 5 z@cos a 1 f~ x , y!~K sat/Kz!# 1 c , (8)

where c is a constant of integration that depends on water
table depth and f is a function that depends on the rate and
spatial distribution of long-term rain infiltration. Both c and f
can be evaluated explicitly if appropriate boundary conditions
are specified. Patterns of groundwater flow may be inferred
from (8) by combining it with the definition of total head h ,
which yields

h 5 c 2 Z 5 2x sin a 1 zf~ x , y!~K sat/Kz! 1 c , (9)

where the elevation head Z 5 x sin a 1 z cos a is measured
vertically downward from a horizontal reference plane that
passes through the origin on the ground surface (Figure 3).

Some special cases of (8) and (9) warrant particular atten-
tion owing to their frequent use in applications. For example,
if the long-term average infiltration rate in the z direction at
the ground surface Iz is specified by a constant flux boundary
condition Iz 5 2Kz(­h/­ z), and if the soil is homogenous,
then the pressure head and total head below the water table
(where c 5 0) obey [cf. Iverson, 1990]

c 5 ~ z 2 d!@cos a 2 ~Iz/Kz!# , (10a)

h 5 2x sin a 2 d cos a 2 ~ z 2 d!~Iz/Kz! , (10b)

where d is the water table depth measured normal to the
ground surface. If infiltration is sufficiently slow that Iz/Kz ,,
cos a, (10a) and (10b) reduce further to forms that describe
slope-parallel groundwater flow

c 5 ~ z 2 d! cos a , (11a)

h 5 2x sin a 2 d cos a . (11b)

Equations (11a) and (11b) indicate that saturated groundwater
flow in response to slow infiltration occurs only in the x direc-
tion, driven by the head gradient ­h/­ x 5 2sin a. The asso-
ciated groundwater flux above a reference depth z 5 d can be
calculated by combining this head gradient with Darcy’s law for
flow in the x direction, yielding

Qx 5 b~d 2 d! Kx sin a , (12)

where Qx is volumetric groundwater discharge in the x direc-
tion, b is the width (in the y direction) of the slope element
over which Qx is measured, Kx is the saturated hydraulic con-
ductivity in the x direction, and d 2 d is the water table height
above the reference depth d.

In utilizing (12), investigators commonly invoke mass con-
servation of groundwater by assuming that the flow domain is
bounded by an impermeable bed at depth d, but this approach
can yield self-contradictory results. To see the contradiction,
first consider slow variation of Qx in response to slow infiltra-
tion (Iz/Kz ,, cos a). In such circumstances, (12) can be
combined with the depth-averaged mass conservation equation
­Qx/­A 1 ­(d 2 d)/­t 5 Iz to form a kinematic wave model
of slope-parallel groundwater flow, which applies over long
timescales (t ; A/D0) [cf. Beven, 1981; Hurley and Pantelis,
1985; Wu and Sidle, 1995]. For still longer timescales (t ..
A/D0), time dependence becomes negligible, and the kine-
matic wave mass conservation equation reduces to a steady
discharge equation Qx 5 IzA , which can be combined with
(12) to predict the steady water table height above the imper-
meable bed

d 2 d 5
Iz

Kx

A
b sin a

. (13)

Equation (13) is the steady groundwater flow model used by
Montgomery and Dietrich [1994] and Dietrich et al. [1995] to
evaluate landslide susceptibility. Corresponding pressure head
and total head distributions are found by solving (13) for d and
combining the result with (11a) and (11b). The resulting equa-
tions

c 5 ~ z 2 d! cos a 1
Iz

Kx

A
b cot a , (14a)

h 5 2x sin a 2 d cos a 1
Iz

Kx

A
b cot a (14b)

reveal a paradox. If Iz/Kx 3 0, (14a) predicts negative pres-
sure heads at depths z , d , which contradict the positive water
table heights given by (13), yet the assumption Iz/Kz 3 0 is
necessary to derive both (13) and (14a). To eliminate this
paradox, one must assume strongly anisotropic conductivity,
Kz .. Kx (which yields Iz/Kx .. Iz/Kz), a condition not
typical of many slopes.

In summary, equations for steady, slope-parallel groundwa-
ter flow above an impermeable bed (e.g., equations (13), (14a),
and (14b)) can predict groundwater pressures produced by
rainfall only if four conditions are satisfied: (1) The rainfall
duration is very long (t .. A/D0), (2) the depth H is relatively
small (« ,, 1), (3) the rainfall intensity is very low (Iz/Kz ,,
cos a), and (4) the slope-normal component of hydraulic con-
ductivity greatly exceeds the slope-parallel component (Kz ..
Kx). Typically these conditions do not exist. Therefore I use

Figure 3. Definition of the vertical coordinate Z 5 x sin
a 1 z cos a used to calculate elevation head or depth at an
arbitrary location ( x , y). If the Z and z coordinates share a
common origin, the coordinate transformation Z 5 x sin a 1
z cos a simplifies to Z 5 z/cos a because x 5 z tan a.
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more general equations (such as (10a) and (10b)) and alter-
native approximations (valid for short-term, transient rainfall)
to assess hydrologic conditions that trigger landslides.

2.2. Short-Term Behavior

Short-term piezometric responses to rainfall can be assessed
by identifying the appropriate dimensionless time as t* 5
tD0/H2 and substituting this expression together with (2), (3),
and (4) into (1). Then multiplication of all terms by H/Ksat and
some algebraic simplification yields a form of Richards equa-
tion appropriately scaled to assess c( x , y , H , t) in response to
rainfall of short duration (t ,, A/D0)

C~c!

C0

­c*
­t* 5 «2

­

­ x* FK*LS ­c*
­ x* 2

1
«

sin aD G
1 «2

­

­ y* FK*LS ­c*
­ y*D G 1

­

­ z* FK*zS ­c*
­ z* 2 cos aD G .

(15)

Assuming « ,, 1, terms of order « and «2 in (15) generally may
be neglected. Then (15) reduces to an equation describing
near-surface groundwater flow in the z direction

C~c!

C0

­c*
­t* 5

­

­ z* FK*zS ­c*
­ z* 2 cos aD G . (16)

This equation may be expressed in terms of a vertical coordi-
nate Z* 5 x* sin a 1 z* cos a (defined as positive downward
as in Figure 3) as

C~c!

C0

­c*
­t* 5 cos2 a

­

­Z* FK*zS ­c*
­Z* 2 1D G , (17)

which is the standard Richards equation for vertical infiltra-
tion, written in a normalized form that accounts for the effect
of the surface slope a. This equation governs transient pres-
sure head responses at depths that are relatively shallow (« ,,
1) and times that are relatively short (t ,, A/D0), but non-
linearity of the equation makes it difficult to solve analytically.

Analysis is facilitated by considering limiting forms of (17)
that describe pressure head responses in soils that are initially
either quite wet or quite dry. These limiting forms can be
identified by differentiating the terms in brackets in (17) and
using the definition of total head h 5 c 2 Z in conjunction
with Darcy’s law for vertical flow in response to infiltration,
IZ 5 2KZ(­h/­Z), to rewrite (17) in a form that contains
distinct gravity flux and pressure diffusion terms on the right-
hand side

C~c!

C0

­c*
­t* 5 cos2 aFK*z

­2c*
­Z*2 2

IZ

KZ

­K*z
­Z*G . (18)

Equation (18) indicates that if soils are sufficiently wet that
Kz 3 Ksat and C(c) 3 C0, the gravity flux term involving
IZ/KZ can be neglected, yielding a pressure head diffusion
equation

­c*
­t* 5

C0K*z cos2 a

C~c!

­2c*
­Z*2 , (19)

in which the normalized diffusivity is (C0K*z cos2 a)/C(c). On
the other hand, if soils are sufficiently dry that Kz ,, Ksat (i.e.,
K*z 3 0), the diffusion term in (18) can be neglected, and only
the gravity flux term can be retained. Then (18) reduces to a

kinematic wave equation, obtained by employing the chain rule
­K*z/­Z* 5 (dK*z/dc*)(­c*/­Z*) and rearranging terms to
yield

­c*
­t* 1 G

­c*
­Z* 5 0, (20)

where

G 5 cos2 a
IZ

KZ

C0

C~c!

dK*z
dc* (21)

is the normalized kinematic wave speed. The simplest non-
trivial solution of (20)

c* 5 Gt* 2 Z* (22)

predicts negative pressure heads where Z* . Gt* and positive
pressure heads where Z* , Gt*. Consequently, Z* 5 Gt*
defines the location of a saturated wetting front that moves
downward at the kinematic wave speed. As noted by Smith and
Hebbert [1983], kinematic wave models of infiltration describe
propagation of piston wetting fronts similar to that conceived
in Green and Ampt’s [1911] model of infiltration.

A measure of the relative efficacy of piston front wetting and
pore pressure diffusion during infiltration is provided by the
ratio k of the normalized kinematic wave speed in (21) to the
normalized diffusivity in (19)

k 5
IZ

KZ

H
Kz

dKz

dc
. (23)

This expression for k can also be obtained by writing (19) and
(21) in dimensional form and dividing the timescale for pore
pressure diffusion by the timescale for kinematic wave propa-
gation. Small values of k indicate the primacy of diffusion and
apply most commonly when soils are relatively wet initially [cf.
Van Genuchten, 1980]. To analyze conditions most prevalent
when rainfall triggers landslides, I focus on wet initial condi-
tions and assume that k ,, 1 and equation (19) applies. How-
ever, (20) may be a better approximation if soils are dry before
rainfall commences.

For wet initial conditions I assume Kz ' Ksat, C ' C0, and
that (19) consequently reduces to the approximation (in di-
mensional form) [cf. Eagleson, 1970, pp. 291–295]

­c

­t 5 D0 cos2 a
­2c

­Z2 . (24)

Linearity of (24) allows superposition of solutions. Thus to
evaluate pressure head responses to complicated rainfall se-
quences with varying intensities and irregular durations, it is
necessary only to obtain a fundamental solution of (24) that
describes the response c(Z , t) to rainfall of fixed intensity and
duration and to sum a series of responses.

An appropriate fundamental solution of (24) obeys the ini-
tial and boundary conditions

c~Z , 0! 5 ~Z 2 dZ!b , (25a)

­c

­Z ~` , t! 5 b , (25b)

­c

­Z ~0, t! 5 H2IZ/KZ 1 b t # T
b t . T , (25c)
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where T is the rainfall duration and the initial condition (25a)
assumes a steady state pressure head distribution like that
given in (10a). This distribution is conveniently expressed in
terms of a steady water table depth dZ (measured in the Z
direction), and a constant b, where b 5 cos2 a 2 (IZ/KZ)steady.
Here (IZ/KZ)steady 5 (Iz/Kz) cos a is the Z component of the
normalized steady state water table recharge rate that appears
in (10a); typically, (IZ/KZ)steady is much smaller than the nor-
malized transient rainfall infiltration rate IZ/KZ. Simpler ex-
pressions for b can be employed for special steady states such
as those with hydrostatic pressures (b 5 1) or slope-parallel
groundwater flow (b 5 cos2 a). In general, however, these
simplifications need not apply.

The constant b also appears in the boundary conditions
(25b) and (25c). The lower boundary condition (25b) states
that at great depths below the water table, transient vertical
groundwater flux decays to zero and steady state pressures
described by (10a) persist. The upper boundary condition (25c)
states that Darcy’s law governs water entry at the ground sur-
face (Z 5 0), where steady, background infiltration rates are
determined by b and transient, short-term infiltration rates are
IZ if t # T and are zero if t . T . The condition IZ/KZ 5 1
defines the maximum infiltration rate. If rainfall intensities
exceed this rate, the surplus rainfall runs off as Horton over-
land flow.

The solution of the initial boundary value problem posed by
(24) and (25a)–(25c) can be obtained by generalizing an anal-
ogous heat conduction solution described by Carslaw and Jae-
ger [1959, pp. 75–76], yielding

c~Z , t # T! 5 ~Z 2 d!b

1
IZ

KZ
FS D̂t

p D 1/ 2

expS2
Z2

D̂tD 2 Z erfcS Z2

D̂tD
1/ 2G , (26a)

c~Z , t . T! 5 c~Z , t # T!

2
IZ

KZ
F S D̂~t 2 T!

p D 1/ 2

exp S2
Z2

D̂~t 2 T!D
2 Z erfc S Z2

D̂~t 2 T!D
1/ 2G , (26b)

in which

D̂ 5 4D0 cos2 a (26c)

is an effective hydraulic diffusivity and erfc is the complemen-
tary error function. Equation (26a) applies while rainfall con-
tinues (t # T), whereas (26b) applies after rainfall stops (t . T).

Significant simplification of (26a) and (26b) results from
normalization with respect to Z . Division of all terms in (26a)
and (26b) by Z yields

c

Z ~Z , t # T! 5 b~1 2 d/Z! 1
IZ

KZ
@R~t*!# , (27a)

c

Z ~Z , t . T! 5 b~1 2 d/Z! 1
IZ

KZ
@R~t*! 2 R~t* 2 T*!# ,

(27b)

in which

t* 5
t

Z2/D̂
, (27c)

T* 5
T

Z2/D̂
(27d)

are normalized times and

R~t*! 5 Ît*/p exp ~21/t*! 2 erfc ~1/ Ît*! (27e)

is a pressure head response function, which depends only on
normalized time.

Equations (27a)–(27e) indicate that calculation of ground-
water pressure heads at all depths Z and all times t* requires
only knowledge of the pressure head response function R(t*)
and three additional kinds of information: an initial (steady
state) pressure head distribution (given by (10a) and repre-
sented by the first term on the right-hand sides of (27a) and
(27b)) and a normalized rainfall intensity IZ/KZ and duration
T* (Figure 4). This economy of information requirements and
computational demands makes rapid application of (27a)–
(27e) over broad regions feasible.

2.3. Hydrologic Responses

Figures 5 and 6 illustrate key features of the pressure head
response function R(t*) for t* # T* and R(t*) 2 R(t* 2 T*) for
t* . T*. Figure 5 depicts graphs of the function for three
rainfall durations that span a range of great practical interest,
T* 5 0.1, 1, and 10. (For example, if Z 5 2 m and D̂ 5 1024

m2/s, these durations correspond to ;1, 10, and 100 hours.)
For all rainfall durations the response remains close to zero
until about t* 5 0.2, then increases smoothly and continues to
increase until briefly after rainfall ceases (as a result of pres-
sure head redistribution) and peaks at a value Rpeak at time
t*peak. After peaking, the response gradually declines and as-
ymptotically approaches zero. For rainfall durations T* # 1,
responses exhibit a nearly constant shape and time to peak,

Figure 4. Schematic of rainfall input and pressure head response as described by equations (25a)–(25c),
(26a)–(26c), and (27a)–(27e).

IVERSON: LANDSLIDE TRIGGERING BY RAIN INFILTRATION1902



t*peak ; 2, and response magnitudes vary in almost exact pro-
portion to T* (Figures 5a and 5b). For rainfall durations T* .
1, peak responses occur sooner after rainfall ceases and have
somewhat smaller magnitudes relative to T* (Figures 5b and 5c).

Figure 6 illustrates how the peaking behavior depicted in
Figure 5 varies as a function of rainfall duration T*. The
curves in Figure 6 demonstrate that a systematic change in
peaking behavior occurs between T* 5 1 and T* 5 10
(compare Figure 5). This change reflects trade-offs between
pressure head propagation and attenuation that occur as rain-
fall input becomes less abrupt and more continuous. For rain-
fall inputs longer than T* ; 10, Rpeak approaches T*/ 20
(Figure 6). This unbounded growth of Rpeak with growth of T*
demonstrates that transient pressure diffusion solutions pro-
vide unrealistic predictions of long-term (approximately steady
state) pressure heads that develop in response to persistent
rainfall. Steady state pressure heads are described better by an
equation such as (10a).

Figures 7 and 8 show examples of pressure head distribu-
tions predicted by (27a)–(27e) for two well-documented land-
slides with contrasting soil, slope, and rainfall properties (sum-

marized in Table 2). Together, Figures 7 and 8 illustrate the
profound influence of hydraulic diffusivity and rainfall inten-
sity and duration on transient pressure head responses that
may trigger slope failure. Figures 7 and 8 also demonstrate that
the fastest and largest pressure head responses always occur
near the ground surface, with more subdued and delayed re-
sponses at depth. After rainfall ceases, pressure heads slowly
relax to near–steady state gradients but, for a long time, remain
elevated above those of the initial steady state (as dictated by
the slowly declining tail of the response function shown in
Figure 5).

Figure 7 illustrates pressure head responses typical of Minor
Creek landslide, a seasonally active, slow-moving, clay-rich
landslide in northern California [Iverson, 1984, 1986]. The
landslide slopes 158, has typical saturated hydraulic conductiv-
ities ;5 3 1028 m/s and hydraulic diffusivities ;1026 m2/s, and
commonly receives ;2 m of rainfall distributed throughout a
six-month rainy season [Iverson and Major, 1987]. The average
wet season rainfall rate (;1 3 1027 m/s) exceeds typical sat-
urated conductivities, so that IZ/KZ 5 1. Although most of
the landslide soil remains nearly saturated year-round, pore
water pressures measured in the basal shear zone of the land-
slide (at 5–6 m depth) respond significantly to seasonal rainfall
cycles but respond negligibly to rainfall cycles of less than a few
months duration. As a consequence, the landslide accelerates
each wet season but does not accelerate measurably in re-
sponse to even the most intense individual storms [Iverson,
1984; Iverson and Major, 1987]. The predictions of Figure 7
mimic the hydrologic behavior at Minor Creek landslide under
circumstances in which (1) an initial steady state water table
exists at 2 m depth (similar to the observed dry season water
table), (2) D0 5 1026 m2/s, (3) IZ/KZ 5 1, and (4) rainfall of
two different durations (10 days and 12 weeks) occurs. Figure
7a demonstrates that pressure heads at the landslide base (5–6
m depth) respond negligibly to the 10 day rainfall input,

Figure 5. Graphs of the pressure head response function R
for three normalized rainfall durations T* 5 0.1, 1, and 10.
Graphs depict R(t*) for t* # T* and R(t*) 2 R(t* 2 T*)
for t* . T*.

Figure 6. Graphs of the peaking behavior of the pressure
head response function (Figure 5) for a wide range of normal-
ized rainfall durations. Graphs of the time to peak (t*peak) and
magnitude of the peak response (Rpeak) were constructed by
evaluating R(t*) 2 R(t* 2 T*) for a range of T*.
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whereas Figure 7b demonstrates that responses to the 12 week
rainfall input are considerable at this depth. Predicted pressure
heads at the landslide base ultimately increase by ;1 m, similar
to the observed pressure head changes that trigger seasonal
landslide motion [Iverson and Major, 1987].

Figure 8 illustrates much faster pressure head responses
predicted for landslide experiments like those described by
Iverson et al. [1997] and Reid et al. [1997]. These experiments
involve application of artificial rainfall to rectilinear prisms of
6 m3 of soil placed behind a 65-cm-high retaining wall on a 318
concrete-lined slope. In some of these experiments the soil is
prewetted by application of low-intensity rainfall to raise mois-
ture contents to near-saturation levels without producing pos-
itive pressure heads [Reid et al., 1997, experiments 2 and 3].
Higher-intensity rainfall (at rates of 180–400 mm/h) is then
used to elevate groundwater pressures and trigger slope fail-
ure. A loose loamy sand used in recent (1998) versions of these
experiments has Ksat ; 1024 m/s and D0 ; 1023 m2/s as it
approaches saturation (Table 2). Thus rainfall at rates of 180
and 400 mm/h corresponds to IZ/KZ ' 0.5 and IZ/KZ ' 1,
respectively. For D0 5 1023 m2/s and a rainfall duration T 5
10 min, Figure 8 demonstrates that pressure head responses to
these two rainfall intensities exhibit differing styles of behavior.
Lower intensity rainfall (Figure 8a) causes gradual water table
accretion from the bottom up, and pressure head gradients
both above and below the water table deviate relatively little

from steady state gradients. This behavior is similar to that
observed by Iverson et al. [1997] and Reid et al. [1997] in
moderate-intensity rainfall experiments. In contrast, higher-
intensity rainfall (Figure 8b) causes positive pressure heads to
develop quite suddenly (at about t 5 6 min) and almost
simultaneously at a range of depths. This behavior is similar to
that inferred by Reid et al. [1997] for high-intensity rainfall
experiments and by Torres et al. [1998] for the Coos Bay field
site listed in Table 1, and it mimics behavior produced by
rainfall on tension-saturated soil [Gillham, 1984].

Figures 7b and 8b also show that pressure heads predicted
for the shallowest depths can eventually rise to unrealistically
high levels. These pressure heads exceed values denoted by a
“b” line, which indicates maximum pressure heads sustainable
with a water table at the ground surface and the steady, back-
ground, vertical flow components (IZ/KZ)steady listed in Table
2. Prediction of unrealistic pressure heads at shallow depths
results from the constant flux boundary condition (25c) and
lack of a gravity drainage term in the linear pressure diffusion
model (24). For the analyses of landsliding described in section
3, pressure head predictions for shallow depths are restricted
by specifying that pressure heads cannot exceed those given by
the b line, c 5 Zb (compare equations (25a)–(25c) and
Figures 7 and 8). This restriction is rather ad hoc but is nec-
essary when using a linear model and constant flux boundary to
approximate the nonlinear effects of rainfall infiltration.

Figure 7. Pressure head responses predicted by equations
(27a)–(27e) for conditions representative of the clay-rich Mi-
nor Creek landslide [Iverson and Major, 1987] for a normalized
rainfall intensity IZ/KZ 5 1 and contrasting rainfall durations
(a) T 5 10 days and (b) T 5 12 weeks. Pressure heads above
the b line are physically unrealistic and can be amended to
equal Zb .

Figure 8. Pressure head responses predicted by equations
(27a)–(27e) for conditions representative of sandy loam land-
slide experiments similar to those reported by Iverson et al.
[1997] and Reid et al. [1997] for a rainfall duration T 5 10 min
and contrasting rainfall intensities (a) IZ/KZ 5 0.5 and (b)
IZ/KZ 5 1. Pressure heads above the b line are physically
unrealistic and can be amended to equal Zb .
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3. Analysis of Landslide Processes
Landsliding involves two basic phenomena, slope failure and

postfailure motion, which I analyze sequentially. Both analyses
assume that groundwater flow established over times longer
than A/D0 produces a steady, background pressure head dis-
tribution c0( x , y , Z) described by an equation such as (10a).
In addition, the analyses consider the effects of transient pres-
sure heads (which change over times much less than A/D0)
due to infiltrating rain. These pressure changes are assumed to
obey (27a)–(27e) and to influence both slope failure and post-
failure motion.

3.1. Slope Failure

To evaluate the potential for slope failure at diverse loca-
tions within a landscape, I use a one-dimensional infinite-slope
stability analysis, which neglects all forces not resolvable on
planes that parallel the ground surface (Figure 9). An infinite-
slope geometry is a rigorous, lowest-order approximation of a
multidimensional landslide geometry if H ,, L , where H is

the prospective slip surface depth and L is the prospective
landslide length or width. The assumption H ,, L is also
compatible with the assumption « ,, 1 used to develop the
Richards equation approximations (7) and (16) of groundwa-
ter flow in slopes. A related idiosyncracy of infinite-slope anal-
yses results from the need to specify a maximum plausible
failure depth H . Without this specification no bound exists for
landslide thickness. Commonly, a practical upper bound for H
can be identified on the basis of geological stratification in
which strong rock underlies a weaker overburden.

Incipient failure of infinite slopes is described by an equation
that balances the downslope component of gravitational driv-
ing stress against the resisting stress due to basal Coulomb
friction (mediated by pore water pressure). Failure occurs at
depth Z (measured vertically from the origin such that Z 5
z/cos a 5 x sin a 1 z cos a; Figures 3 and 9) if at that depth

FS 5 Ff 1 Fw 1 Fc 5 1, (28a)

where the dimensionless “factor of safety” FS has components
[Iverson, 1991]

Ff 5
tan w

tan a
, (28b)

Fw 5
2c~Z , t!gw tan w

g sZ sin a cos a
, (28c)

Fc 5
c

g sZ sin a cos a
(28d)

and w is the soil friction angle, c is the soil cohesion, gs is the
depth-averaged soil unit weight, and gw is the unit weight of
groundwater. Equations (28a)–(28d) avoid the assumption of
slope-parallel groundwater flow, which is unnecessary and in-
appropriate if significant rainfall infiltration occurs [Iverson,
1990, 1991]. Instead, the pressure head distribution c(Z , t) in
(28c) determines groundwater effects on slope stability. The
position of the water table is irrelevant mechanically (except

Figure 9. Schematic illustrating the infinite-slope model of
slope stability, which assumes no variation of any quantity in
the x direction or the direction normal to the page.

Table 2. Slope, Soil, and Rainfall Properties Used to Generate Figures 7, 8, 10, 11, 12, and 13

Property, Symbol, and Unit Minor Creek Landslide Landslide Experiment, June 23, 1998

Slope properties
Slope angle (a), deg 15 31
Landslide depth, vertical (Z), m 6 0.4
Steady state water table depth, vertical (dZ), m 2 0.7 (concrete bed depth)
Steady state vertical water influx (IZ/KZ)steady 0.1 0

Soil properties
Soil composition in situ gravely clay reconstituted loamy sand
Friction angle (w), deg 18 (residual) 38 (peak)
Cohesion (c), Pa 4000 500
Soil unit weight, wet (gs), N/m3 22,000 19,000
Pore water unit weight (gw), N/m3 9800 9800
Hydraulic conductivity (Ksat), m/s 5 3 1028 1 3 1024

Hydraulic diffusivity (D0), m2/s 1 3 1026 1 3 1023

Rainfall properties
Rainfall intensity, vertical (IZ), m/s 1 3 1027 (6 cm/week) 5 3 1025 (18 cm/hour), 1 3 1024 (40 cm/h)
Rainfall duration (T), s 864,000 (10 days), 7,257,600 (12 weeks) 600 (10 min)

Normalized properties
Normalized infiltration rate, vertical (IZ/KZ) 1 0.5, 1
Normalized rainfall duration (T*) 0.09, 0.8 11
S (equation (33b)) 1.2 3 107 270

More detailed descriptions of the two landslide scenarios summarized here are provided by Iverson [1984, 1986], Iverson and Major [1987],
Iverson et al. [1997], and Reid et al. [1997].
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insofar as it might subtly influence gs) if the pressure head
distribution is known.

When rainfall occurs, the factor of safety defined by (28a)–
(28d) varies as a function of depth and time, and it is conve-
nient to split the factor of safety into a time-varying component
FS9 and steady background component FS0, as envisaged by
Terzaghi [1950],

FS~Z , t! 5 FS0~Z! 1 FS9~Z , t! , (29a)

FS0~Z! 5 Ff 1 Fc 2
c0~Z!gw tan w

g sZ sin a cos a
, (29b)

FS9~Z , t! 5 2
@c~Z , t! 2 c0~Z!#gw tan w

g sZ sin a cos a
. (29c)

If the steady, background pressure head distribution c0(Z) is
known (e.g., from equations (10a) and (10b)), and if appropri-
ate values of the slope and soil parameters a , w, c , gs, gw are
known, then the background factor of safety FS0 can be cal-
culated for every depth Z . Such calculations follow the con-
ventions of typical steady state analyses of slope stability.

The time-varying component of the factor of safety at every
depth Z is obtained by combining (29c) with (27a)–(27e),
which yields

FS9~Z , t! 5 2
gw

g s

tan w

sin a cos a

IZ

KZ

z H @R~t*!# t* # T*

@R~t*! 2 R~t* 2 T*!# t* . T*.
(30)

Equation (30) demonstrates that FS9(Z , t) depends on only
three dimensionless variables (time t*, rainfall duration T*,
and rainfall intensity IZ/KZ) in addition to the soil and slope
parameters that determine the steady, background factor of
safety FS0. Therefore to account for transient rainfall effects,
the only information that must be added to a steady state
analysis is the rainfall intensity and duration and the timescale
Z2/D̂ . Moreover, it is unnecessary to specify the depth of slope
failure, because the analysis of failure mechanics combined

with transient groundwater pressure heads predicts factors of
safety at all depths Z . The depth Z that first yields FS 5 1
determines the depth of landsliding, which may vary in re-
sponse to different rainfall inputs.

Figures 10 and 11 depict factors of safety FS(Z , t) calcu-
lated from (29a)–(29c) using the pressure head conditions de-
picted in Figures 7b and 8b (amended to restrict pressure
heads to values no higher than the b line). Table 2 summarizes
the soil mechanics parameters used for each calculation (de-
rived from independent measurements reported by Iverson and
Major [1987] and Iverson et al. [1997]). The results shown in
Figures 10 and 11 illustrate the great range of conditions that
can lead to rainfall-triggered landsliding. Not only does the
timing of landsliding illustrated in the two figures differ by
many orders of magnitude, but the style of the rainfall trigger
differs as well.

Figure 10 predicts that seasonal motion of Minor Creek
landslide results from slow pressure head increases and grad-
ual water table accretion, as described by Iverson and Major
[1987]. The condition FS 5 1 is satisfied first at the landslide
base (;6 m depth) and slowly spreads upward. Factors of
safety do not drop much below 1, however: a condition that
favors slow landslide motion if soil resistance increases slightly
with increasing deformation.

In contrast, Figure 11 predicts that during intense rainfall on
prewetted sandy soils, slope failure can result from positive
pressure heads that develop first near the ground surface and
spread rapidly downward. Scenarios like that shown in Figure
11 favor abrupt triggering of shallow landslides as described by
Reid et al. [1997], rather than deeper-seated landsliding due to
water table accretion.

3.2. Postfailure Motion

Postfailure movement of a translating landslide mass de-
pends, in part, on soil properties that may cause deforming soil
to progressively weaken or strengthen [Leroueil and Marques,
1996]. However, the interplay of subsurface hydrology and
landslide inertia also plays a role, which is the focus here. For
a landslide of arbitrary thickness Z the effect of inertia can be

Figure 10. Factors of safety predicted by equations (29a)–
(29c) using the pressure head distributions for Minor Creek
landslide depicted in Figure 7b (T 5 12 weeks, IZ/KZ 5 1)
in combination with soil mechanics parameters summarized in
Table 2.

Figure 11. Factors of safety predicted by equations (29a)–
(29c) using the pressure head distributions for sandy soil
landslide experiments depicted in Figure 8b (T 5 10 min,
IZ/KZ 5 1) in combination with soil mechanics parameters
summarized in Table 2.
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evaluated by modifying (28a)–(28d) to account for the accel-
eration term in Newton’s second law, yielding an equation of
motion [cf. Iverson et al., 1997]

1
g

dv
dt 5 sin a@1 2 FS~Z , t!# , (31)

where v is downslope landslide velocity and g is the magnitude
of gravitational acceleration. Of course, equation (31) applies
only after FS(Z , t) , 1 is satisfied. The equation can be
generalized to account for internal deformation [Iverson,
1997], but translational sliding rather than internal deforma-
tion is the present focus.

By combining (29a)–(29c), (30), and (31) the landslide equa-
tion of motion can be written in a form that separates the
steady background factor of safety FS0(Z) from the time-
varying component FS9(Z , t). Then expressing FS9(Z , t) in
terms of the response function R yields

1
g

dv
dt 5 sin a@1 2 FS0~Z!# 1

gw

g s

tan w

cos a

IZ

KZ

z H @R~t*!# t* # T*

@R~t*! 2 R~t* 2 T*!# t* . T*,
(32)

which applies only after the right-hand side exceeds 0. The
right-hand side cannot exceed 0 under steady state hydrologic
conditions, because the first term on the right-hand side of (32)
is always negative and the second term is zero at steady state.
Solution of (32) also requires an initial condition for landslide
velocity, typically v 5 0 at t 5 0.

Before solutions of (32) can be generated, an important
timescale discrepancy must be rectified. Time variables on the
right-hand side of (32) are normalized by the diffusion time-
scale Z2/D̂ , whereas the left-hand side of (32) involves dimen-
sional time t . To eliminate this discrepancy, I define the nor-
malized landslide velocity as v* 5 v/=Zg and rewrite (32) as

dv*
dt* 5 S sin a@1 2 FS0~Z!# 1 S

gw

g s

tan w

cos a

IZ

KZ

z H @R~t*!# t* # T*

@R~t*! 2 R~t* 2 T*!# t* . T*,
(33a)

where

S 5
Z2/D̂

ÎZ/g
5

Z3/ 2g1/ 2

D̂
(33b)

is the ratio of the pore pressure diffusion timescale to the
landslide acceleration timescale =Z/g . For typical values of Z
(.1 m) and D̂ (,1022 m2/s), S exceeds 100, indicating that
landslide acceleration can occur much more rapidly than pore
pressure diffusion.

The contrast in timescales denoted by large values of S has
important implications for computing solutions of (33a). Al-
though (33a) can be integrated numerically using a standard
technique such as Simpson’s rule, normalized time steps Dt*
must be very small (Dt* ,, 1/S) to resolve landslide motion
accurately. This constraint implies that time steps must be
extraordinarily small relative to the timescale for pore pressure
diffusion. Fortunately, the analytical expression on the right-
hand side of (33a) obviates iterative computation of pore pres-
sure diffusion, and numerical integrations using Simpson’s rule
to find v*(t*) proceed very rapidly.

Figures 12 and 13 compare predictions of the timing and
speed of landslide motion obtained from (33a) with landslide
surface velocity data obtained using recording extensometers.
The figures demonstrate that greatly differing timescales and
velocity scales can typify motion of landslides.

Figure 12 depicts conditions at Minor Creek landslide dur-
ing the onset of wet season motion that began November 1,
1983 [Iverson, 1984]. Soil moisture storage during the unusually
wet year that preceded November 1, 1983, was sufficient to
maintain the landslide in an almost saturated state and to
maintain FS very close to 1 at the landslide base (6 m depth)
[Iverson and Major, 1987]. Consequently, model calculations
assume that FS0 5 1 when persistent seasonal rainfall begins
(Figure 10). Landslide responses to this rainfall are gradual
rather than abrupt. Both theory and measurements indicate
that landslide accelerations occur on timescales of days (;105

s) after motion commences. Theory predicts the timing of
landslide motion reasonably well, and it predicts velocities of

Figure 12. Measured and predicted velocity histories for Mi-
nor Creek landslide in November 1983. Measurements were
described by Iverson [1984]. Predictions were generated by
numerical integration of equation (33a) using FS0 5 1,
IZ/KZ 5 1, and other parameter values summarized in Table 2.

Figure 13. Measured and predicted velocity histories for
landslide experiment, June 23, 1998, which was very similar to
the high-intensity rainfall experiment described by Reid et al.
[1997] but used a finer-grained soil. Predictions were gener-
ated by numerical integration of equation (33a) using FS0 5
2, IZ/KZ 5 1 and other parameter values summarized in
Table 2.
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the correct order of magnitude, but it predicts accelerations
that are somewhat too large. The discrepancy between theory
and data might result from rate-dependent resistance (due to
pore dilation and consequent strain hardening or due to rate-
dependent friction), which are not included in the model [cf.
Iverson, 1986].

Figure 13 depicts velocities measured during an artificial
landslide experiment (June 23, 1998), which contrast sharply
with velocities at Minor Creek landslide. In this experiment the
sandy soil was prewetted to raise moisture contents to near-
saturation levels, but pressure heads at all depths remained
negative during prewetting, and the factor of safety remained
high (;2) at the prospective failure depth of 0.4 m (Figure 11).
Consequently FS0 5 2 was used in (33a) to compute the
timing and velocity of failure. Figure 13 demonstrates that the
theory predicts the timing of failure remarkably well, and it
correctly predicts the abrupt and rapid character of failure.
However, the theory errs by underpredicting the landslide ac-
celeration: an error opposite to that which arises in predicting
Minor Creek landslide’s acceleration. In the case of the June
23, 1998, landslide experiment, underprediction of accelera-
tion probably results from undrained loading and strain weak-
ening of the soil during slope failure. Strain weakening occurs

because cohesive bonds break during failure and pores in the
loosely packed soil contract during failure, transiently elevating
pore water pressures and reducing frictional resistance [Iverson
et al., 1997]. Both contractile weakening of loose soils and
dilatant hardening of dense soils can be incorporated in mod-
els of landslide motion, at the expense of additional complexity
and data requirements.

4. Discussion
Figure 14 summarizes relationships between the hydrologic

and landslide processes described above for two archetypical
cases. The figure juxtaposes curves that show how pressure
head responses R(t*) and factors of safety FS coevolve when
rainfall of normalized duration T* 5 1 triggers different styles
of landslides.

Shallow, rapid landslides commonly occur under conditions
similar to those depicted in Figure 14a. Such landslides com-
monly involve thin, sandy soils on steep slopes, which yield
small slip surface depths (Z) and large effective hydraulic
diffusivities (D̂). As a consequence, normalized time (t* 5
tD̂/Z2) grows rapidly once rainfall commences, and pressure
head responses R(t*) quickly reach a stage where they rise
steeply (after t* ' 0.3 in Figure 14). Efficient drainage of the
slope produces large FS values before rainfall commences
(FS0 5 2 in Figure 14a), but during intense rainfall, FS can
decline rapidly owing to the steep pressure head increase.
Slope failure occurs abruptly during rapid decline of FS , with
rapid postfailure acceleration.

In contrast, slow-moving landslides commonly occur under
conditions similar to those depicted in Figure 14b. Such land-
slides typically involve thick, relatively fine-grained soils that
yield large slip surface depths (Z) and small effective hydraulic
diffusivities (D̂). As a consequence, normalized time (t* 5
tD̂/Z2) proceeds slowly after rainfall commences, and pres-
sure head responses R(t*) long remain confined to the region
where they change very subtly (prior to t* ' 0.3 in Figure 14).
Slow drainage of the slope tends to hold factors of safety not
far above 1 during steady state conditions (assuming the slope
is potentially unstable), and rainfall changes this situation only
moderately. Thus if slope failure occurs, it occurs gradually in
response to slight changes in the balance of forces.

The “rapid” and “slow” landslides characterized above rep-
resent archetypes, but intermediate cases are obviously possi-
ble. Nonetheless, distinctions between rapid and slow land-
slides are important owing to differing implications for
landscape change and hazards. Rapid landslides can pose mor-
tal dangers, whereas slow landslides destroy property but sel-
dom cause fatalities.

5. Conclusions
Landslide responses to rainfall involve transient processes

with different intrinsic timescales. A new model of these tran-
sient processes links slope failure and landslide motion to
groundwater pressure heads that change in response to rain-
fall. The model requires little information in addition to that
required by steady state models. New information needs con-
sist of a hydraulic diffusivity D0, rainfall intensity IZ, and
rainfall duration T (or a sequence of intensities and durations).
The parsimony of these requirements results from use of five
simplifying assumptions: (1) The prospective landslide thick-
ness (H or Z), is much smaller than the square root of the

Figure 14. Relationships between pressure head responses
(summarized by R), factors of safety (FS), and normalized
time in contrasting landslides. Figures 14a and 14b both as-
sume that rainfall of normalized duration T* 5 1 and fixed
intensity begins at t* 5 0, but then assume that contrasting
slope and soil properties produce significant differences in the
initial factor of safety and growth of normalized time: Slope
failure occurs during rapid changes in R and FS (Figure 14a);
Slope failure occurs during gradual changes in R and FS (Fig-
ure 14b).
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upslope groundwater contributing area A , so that « ,, 1. (2)
The rainfall duration T that triggers slope failure is much less
than the steady state groundwater response time at the pro-
spective landslide location, so that T ,, A/D0. (3) The hy-
draulic diffusivity D0 varies negligibly, which implies that soils
are relatively wet before landslide-triggering rainfall com-
mences. (4) Landslide mechanics can be represented ade-
quately by an “infinite-slope” force balance that neglects all
forces not resolvable on planes that parallel the ground sur-
face. (5) Soil strength depends on constant Coulomb parame-
ters, friction angle w, and cohesion c .

Under these assumptions, landsliding triggered by rainfall
obeys simple algebraic equations cast in terms of a normalized
rainfall intensity IZ/KZ and response function R( t*) 5
=t*/p exp (21/t*) 2 erfc (1/=t*) that depends only on
normalized time t* 5 tD0/Z2. This function predicts pressure
head responses to rainfall, which, in turn, govern slope failure
and postfailure landslide motion.

In some cases, pressure head growth and slope failure can
occur rather abruptly in response to intense rainfall, and land-
slides can accelerate catastrophically. Such behavior is typical
where shallow soils (with small Z) have high diffusivities (D0).
In such cases, normalized time proceeds rapidly after rainfall
commences, and the pressure head response function R rises
quickly.

In contrast, locations such as Minor Creek landslide (with
thick soil and low hydraulic diffusivity) favor slow landsliding.
In these cases, normalized time proceeds slowly, and the pres-
sure head response function rises almost imperceptibly for a
long time, even under sustained rainfall of high intensity. If
landsliding occurs, it occurs gradually, with prolonged acceler-
ation preceding any catastrophic movement.

The model developed here predicts key aspects of the be-
havior of “fast” and “slow” landslides, but it neglects factors
that can be important. In particular, it neglects soil strength
evolution, such as that due to contractile strain weakening,
dilatant strain hardening, and fabric development, and it ne-
glects mechanical effects of three-dimensional landslide geom-
etries. Despite these shortcomings the model adds realism to
current models that predict landsliding as a function of steady
state hydrology, and it does so with a minimum of added data
requirements. The model also provides information for assess-
ing rates of postfailure landslide motion, thereby refining haz-
ard forecasts.
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