Identifying New Persistent Chemicals in the Great Lakes Basin

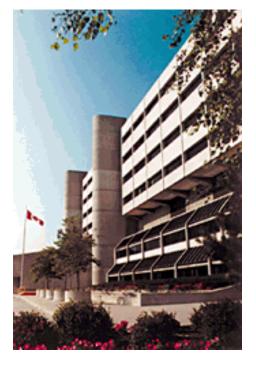
Derek Muir

National Water Research Institute

Environment Canada

Burlington ON

Mehran Alaee National Water Research Institute, Burlington ON


Robert Chenier Existing Substances Branch, Environment Canada, Gatineau Qc

Scott Mabury

Dept of Chemistry, University of Toronto, Toronto ON

Mike Whittle

Dept. of Fisheries and Oceans, Burlington ON

Environment Canada Environnement Canada

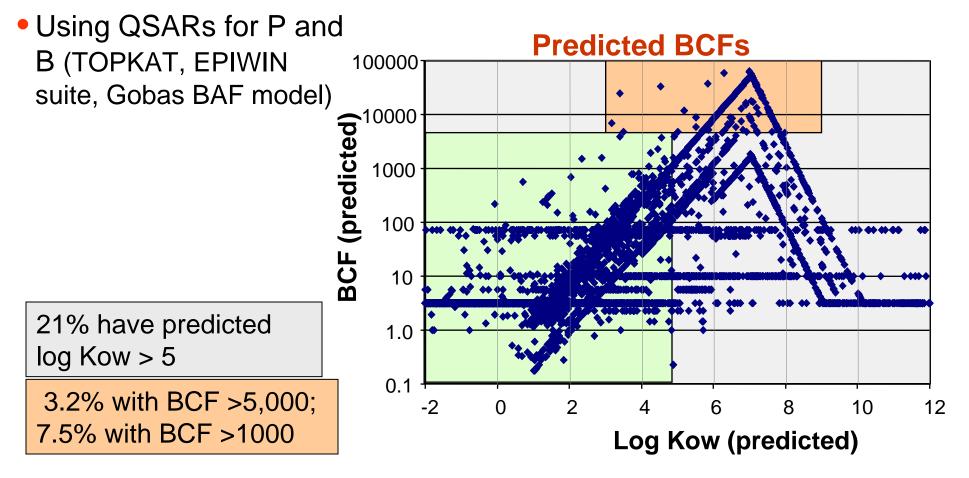

Background

- there are at least 100,000 chemical substances in commerce and the Great Lakes region is a major use area
 - 5200 high production volume chemicals (HPVCs) on OECD list – production >1000 tonnes/yr
- USEPA TSCA Inventory created in 1976 (~70,000)
- Canada's Domestic Substances List (DSL) created in 1986 (~23,000)
- The chemicals on the 1970-80's lists were "grandfathered" in and generally no data exists on their phys-chem properties relevant to environmental fate modelling or measurement
- Are there other PB&T chemicals not currently measured?
- How to identify them?
- How to priorize them?

Historically POPs and "new" candidate POPs have been identified mainly by

Analogues: e.g. PCBs, dioxins ■ PBDEs, PCNs, PBBs Analytical advances: ■ PFOS by LC-MS/MS Isolation and full scan MS identification (e.g. MeO-PBDEs)

New advances in analytical instrumentation can help e.g. GCxGC-ID-TOFMS, LC-QTOF etc but generally analytical standards are required to confirm

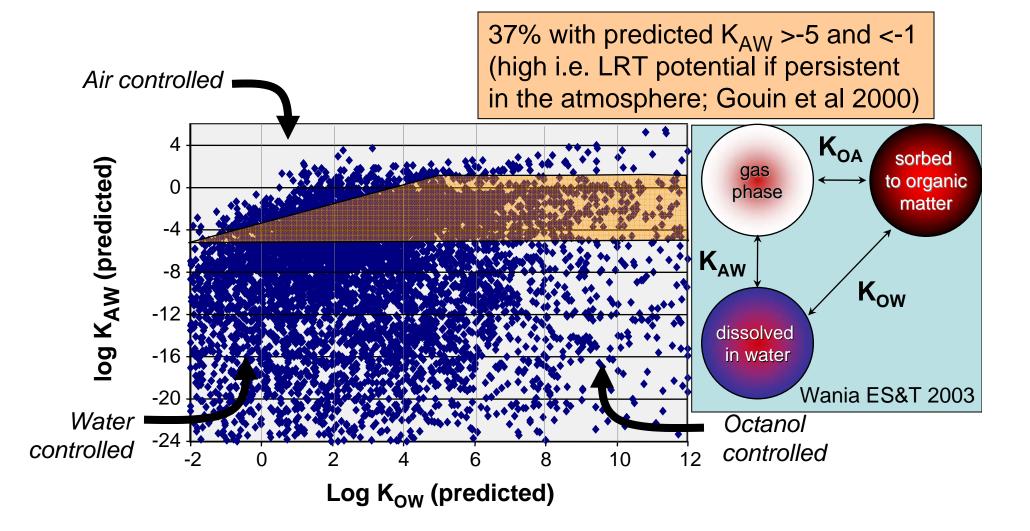


Screening of *existing chemical* lists is widening the data available for identifying potential contaminants

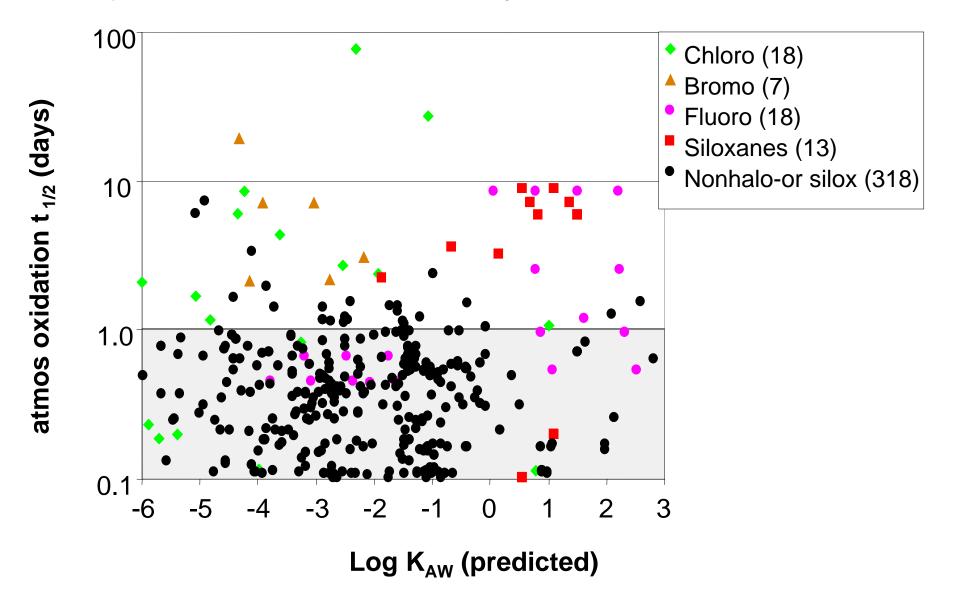
- OECD member countries, ICCA development of SIDS for high production volume chemicals (HPVCs)
- TSCA Inventory screening (US EPA)
 - EPA Screening of 8511 chemicals with production >4.5 t/yr for P & B using the EPIWIN suite of QSARs (Walker and Carlsen 2002)
 - Screening for LRT potential (Pennington 2001;Rodan et al 1999)
- Environment Canada's Domestic Substances List categorization
 - screening of 11,300 chemical substances with predicted log Kow
 - biodegradation, toxicity (production/use >100 kg/yr)
- European "REACH" (Registration, Evaluation & Authorization) program may generate a lot of phys/chem data - will require:
 - evaluation of ~5000 substances with production > 100 t/yr
 - registration of ~30,000 substances produced at >1 t/yr

Environment Canada has conducted one of the most detailed screening of "existing chemicals" to date

- 23,000 substances which were imported or manufactured in Canada at > 100 kg/yr in the period 1984-86
- Log Kow, BCF, atmospheric, soil and sediment half-lives, aquatic toxicity have been predicted for 11,300 discrete organic chemicals

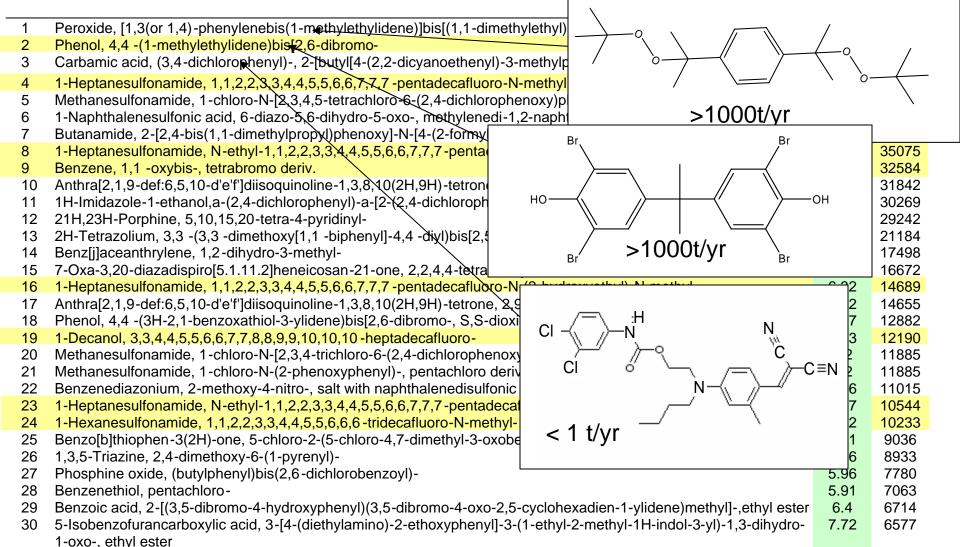

Ranking the DSL list for chemicals with potential to contaminate open waters of the Great Lakes and food webs

Based on lessons learned from POPs in the Great Lakes:


- 1. High bioaccumulation/biomagnification potential (BCF >1000)
- 2. Persistence low rate of biodegradation and atmospheric oxidation potential
- 3. Long range transport potential (air-water partitioning, log Kaw > -6)
- 4. Quantity in use

The Environment Canada list can be assessed for LRT Potential using Air-water and octanol-water partitioning and atmospheric oxidation half-life

Priority "open lake" contaminant chemicals on the Environ Canada list sorted by class and BCF>1000, Log Kaw>-6, atmospheric oxidation t $\frac{1}{2}$ >0.1 day



•	•	U				
atn	nospheric oxidation half-life, and quantity		Atmospheric			
	Br	D	idation half-			
Rank	Chemical Name	Br	ife (days)	BCF	Log Kaw	
1	1,3-lsobenzofurandione, 4,5,6,7-tetrabromo-	\prec	439	4,305	-5.18	
2	1,3-Cyclopentadiene, 1,2,3,4,5,5-hexachloro-)	27	1,517	-1.06	
3	Benzene, 1,1 -oxybis-, pentabromo deriv.		19	8,054	-4.32	
4	Cyclotetrasiloxane, octamethyl-	< $ $	9	1,687	0.55	
5	Sulfonium, triphenyl-, chloride	$\sum 0$	9	28,314	-4.24	
6	Benzene, 1-(1,1-dimethylethyl)-3,4,5-trimethyl-2,6-dinitro-		7	1,941	-4.92	
7	Benzene, 1,3,5-tribromo-2-methoxy-4-methyl-		7	2,366	-3.04	
8	Cyclopentasiloxane, decamethyl-	СНЗ	СНЗ	2,014	0.69	
9	1H-Indene, 2,3-dihydro-1,1,3,3,5-pentamethyl-4,6-dinitro-			2,825	-5.08	
10	Peroxide, bis(2,4-dichlorobenzoyl)	¹³ 0	О снз	8,472	-4.36	
11	Cyclohexasiloxane, dodecamethyl-	\setminus /		14,894	0.83	
12	Cyclotetrasiloxane, heptamethylphenyl-	Si	Si	14,256	-0.66	
13	Trisiloxane, 1,1,1,5,5,5-hexamethyl-3-phenyl-3-[(trimethylsilyl)oxy]-	/ \		40,272	0.16	
14	Silane, dichlorodiphenyl-		_О снз	1,563	-2.54	
15	Peroxide, (1,1,4,4-tetramethyl-1,4-butanediyl)bis[(1,1-dimethylethyl)	Si		22,233	-0.98	
16	Benzenethiol, pentachloro-		СНЗ	7,063	-2.32	
17	Tetrasiloxane, 1,1,3,3,5,5,7,7-octamethyl-	ĆH3	9	1,062	1.09	
18///	1-Octanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-N-me	<1	8	2,355	2.22	
19	1-Heptanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoro-N-methy		8	49,545	1.50	
20	1-Hexanesulfonamide, 1,1,2,2,3,3,4,4,5,5,6,6,6-tridecafluoro-N-methyl-					
21	1-Pentanesulfonamide, 1,1,2,2,3,3,4,4,5,5,5-undecafluoro-N-methyl-					
22	Tetrasiloxane, decamethyl-	$+ \times$	XX	Č	OH 1.37	
23	Benzene, 1,1 -oxybis-, tetrabromo deriv.	\checkmark X	\mathbf{X} \mathbf{X} \mathbf{X}	$\langle C \rangle$	3.92	
24	Trisiloxane, 1,1,1,5,5,5-hexamethyl-3,3-bis[(trimethylsilyl)oxy]-	FFF	FFFF	FHH	1.51	
25	Pentasiloxane, dodecamethyl-	<1	6	8,318	1.51	
26	Benzene, 1,2,3,4-tetrachloro-5,6-dimethoxy-	<1	4	1,102	-3.63	
27	Butanoic acid, 3,3-bis[(1,1-dimethylethyl)dioxy]-, ethyl ester	<1	3	1,285	-4.09	
28	1-Decanol, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro	<1	3	12,190	2.23	
29	1-Octanol, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-	<1	3	4,064	0.79	
30	Naphthalene, dichloro-	<1	2	2,254	-1.93	

Top 30 DSL chemicals ranked by BCF>1000 and Log Kaw >-6,

Top 30 chemicals from DSL categorization sorted by BCF, persistence and quantity used (highlighted chemicals are currently analysed – 9 of 30)

Chemical Name

Limitations of the PB&T categorization process for identifying priority chemicals

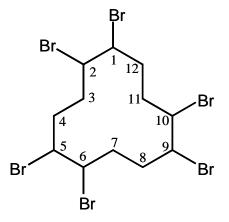
- almost all QSARs have training sets of <1000 substances
 e.g. biodegradation, aquatic toxicity, & receptor binding
- Example: BCFWIN used 694 chemicals of which 610 were non-ionic
- possibility of false negatives is a concern for regulators
- false positives are a concern from an industry perspective
- lack of structural information for some substances that are mixtures of variable or unknown composition

The Prioritization & Analytical challenges

- A concensus on screening approaches would be useful for regulators, chemical manufacturers/users, & analytical chemists
 - OECD Multimedia Expert Group developing generic multimedia model
- Lack of concensus on next priority "POP" may be holding back environmental analytical chemists
 - i.e. not sure if analytical resources should be committed

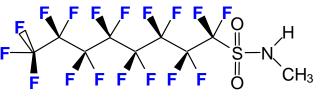
The good news:

- Most of these candidate chemicals are all hydrophobic and many are halogenated
- They may be amenable to existing extraction, isolation and quantification methodology

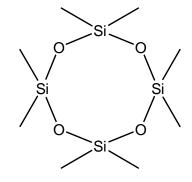

The **bad news**:

- Of the 600 chemicals with BCF >1000 and Log Kaw >-6 in the Environ Canada categorization only ~3% are currently analysed
- Currently acceptable standards of QA for POPs, pesticides, pharmaceuticals, food additives may be difficult to meet

Case studies on chemicals highly ranked chemicals


Brominated flame retardants e.g.
 PBDEs and hexabromocyclododecane

Rank	#3,23,34
AO t _{1/2}	2-19 days
BCF	6200-32000


 Polyfluoro sulfonamides, alcohols and perfluoro alkyl acids
 FVF FVF

Rank	5 in top 30		
AO t _{1/2}	2.5-8.5 days		
BCF	2000-49000		

• methyl siloxanes and cyclic siloxanes

Rank	10 in top 30
AO t _{1/2}	2-9 days
BCF	1100-40000

Using information on the presence of contaminants to infer Great Lakes contamination potential

- With detection limits for many halogenated organics in the pico- to femtogram range (10⁻¹⁵-10⁻¹⁸ g) mere detection is not useful
- **Biomonitoring** useful for demonstrating entry into food webs especially in open lake or isolated locations
- Air monitoring e.g. with arrays of passive air samplers may be more appropriate for validating LRT predictions
- Samples, sampling strategy, and sampling areas must provide information on:
 - Transport routes/source regions
 - Biomagnification potential
 - Temporal trends
 - Spatial trends
- Feed into basin wide LRT and deposition modelling e.g. MacLeod et al. ETC 2002 ; Cohen et al. ES&T 2002