Microbial Food Safety Research Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
CRIS 057 Project Personnel
Bacterial Responses to Environmental Factors
Microbial Safety of Seafoods
Effects of Interventions and Processes on Persistence of Pathogens on Foods
Microbial Modeling & Bioinformatics for Food Safety and Security
Related Projects
 

Research Project: MICROBIAL MODELING AND BIOINFORMATICS FOR FOOD SAFETY AND SECURITY

Location: Microbial Food Safety Research Unit

Title: Growth Model of a Plasmid-bearing Virulent Strain of Yersinia pseudotuberculosis in Raw Ground Beef

Authors

Submitted to: Meeting Abstract
Publication Type: Abstract
Publication Acceptance Date: February 10, 2008
Publication Date: August 4, 2008
Citation: Bhaduri, S., Phillips, J.G. 2008. Growth Model of a Plasmid-bearing Virulent Strain of Yersinia pseudotuberculosis in Raw Ground Beef. Meeting Abstract. P5-04. page 153.

Technical Abstract: Introduction: Yersinia pseudotuberculosis (YPST) has been implicated in foodborne illnesses associated with various foods, including raw beef. A 70-kb virulence plasmid (pYV) is involved in expression of virulence phenotypes. However, increased growth temperatures (30 degree C) facilitate the loss of this plasmid and the virulence-associated determinants. Purpose: There are no reports concerning the growth of plasmid-bearing virulent YPST in raw ground beef (RGB). To fully assess the potential risk of illness, it is necessary to know the effect of the endogenous microflora on the behavior/fate of YPST in RGB. Method: Ninety-gram portions of retail RGB (~7% fat) either irradiated or raw were artificially contaminated with serotype O:1b YPST PB1/+ strain and rifampicin (rif)-resistant YPST PB1/+ strain (rif-YPST) at a concentration of 105 CFU/g. Samples (3-gram) were stored at temperatures ranging from 0-30 degree C. At various time intervals, samples were serially diluted in 1% peptone water, surface plated onto Congo red-(CR)-magnesium-oxalate agar (CRMOX), and then incubated at 37 degree C for 48 hours for enumeration and detection of pYV-YPST by CR binding. For non-sterile RGB studies, rif-YPST colonies were enumerated on rif-(100 µg/ml)-CRMOX. Results: In sterile RGB, the growth rate (GR) ranged from 0.0227 to 0.6221 log10 CFU/h at 0 to 25 degree C and maximum population densities (MPD) ranged from 8.7 to 11.0 log CFU/g. The GR and MPD models were developed as a function of storage temperature. The models were validated with rif-YPST in sterile RGB. In non-sterile RGB, rif-YPST displayed the similar GR and MPDs as in sterile RGB. This may be due to low level (4.31±0.60 log CFU/g) of background microflora in fresh retailed RGB. Significance: Models for GR and MPD of YPST in RGB displayed acceptable bias and accuracy within 95% of the predicted values. Moreover, there was eventually no loss pYV at the temperatures evaluated herein. Therefore, beef contaminated with YPST could cause disease if the meat was not properly cooked.

   

 
Project Team
Juneja, Vijay
Luchansky, John
Hwang, Cheng-An - Andy
Sheen, Shiowshuh
Kingsley, David
Oscar, Thomas
Bhaduri, Saumya
 
Publications
   Publications
 
Related National Programs
  Food Safety, (animal and plant products) (108)
 
Related Projects
   HACCP ASSISTANCE FOR SMALL AND VERY SMALL PROCESSORS WITH DEVELOPMENT AND VALIDATION OF MEAT CHILLING RATES
 
 
Last Modified: 10/23/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House