Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California

Chapter 10

Petroleum Systems of the San Joaquin Basin Province—Geochemical Characteristics of Gas Types

By Paul G. Lillis, Augusta Warden, George E. Claypool¹, and Leslie B. Magoon

Contents

Abstract	1
Introduction	2
Methods	3
Results	3
Natural Gas Types	9
Thermogenic Dry (TD)	9
Thermogenic Wet (TW)1	1
Biogenic1	1
Origin of Carbon Dioxide1	
Petroleum Systems1	1
Conclusions1	
Acknowledgments1	5
References Cited 19	5
Tables 19	9
Appendix (.xls file)	

Abstract

The San Joaquin Basin Province is a petroliferous basin filled with predominantly Late Cretaceous to Pliocene-aged sediments, with organic-rich marine rocks of Late Cretaceous, Eocene, and Miocene age providing the source of most of the oil and gas. Previous geochemical studies have focused on the origin of the oil in the province, but the origin of the natural gas has received little attention. To identify and characterize natural gas types in the San Joaquin Basin, 66 gas samples were analyzed and combined with analyses of 15 gas samples from previous studies. For the purpose of this resource assessment, each gas type was assigned to the most likely petroleum system.

Three general gas types are identified on the basis of bulk and stable carbon isotopic composition—thermogenic dry (TD), thermogenic wet (TW) and biogenic (B). The thermogenic gas types are further subdivided on the basis of the $\delta^{13}C$ values of methane and ethane and nitrogen content into TD-1, TD-2, TD-Mixed, TW-1, TW-2, and TW-Mixed. Gas types TD-1 and TD-Mixed, a mixture of biogenic and TD-1 gases, are produced from gas fields in the northern San Joaquin Basin. Type TD-1 gas most likely originated from the Late Cretaceous to Paleocene Moreno Formation, a gas-prone source rock. The biogenic component of the TD-Mixed gas existed in the trap prior to the influx of thermogenic gas. For the assessment, these gas types were assigned to the Winters-Domengine Total Petroleum System, but subsequent to the assessment were reclassified as part of the Moreno-Nortonville gas system. Dry thermogenic gas produced from oil fields in the southern San Joaquin Basin (TD-2 gas) most likely originated from the oil-prone source rock of Miocene age. These samples have low wetness values due to migration fractionation or biodegradation.

The thermogenic wet gas types (TW-1, TW-2, TW-Mixed) are predominantly associated gas produced from oil fields in the southern and central San Joaquin Basin. Type TW-1 gas most likely originates from source rocks within the Eocene Kreyenhagen Formation or the Eocene Tumey formation of Atwill (1935). Type TW-2 gas most likely originates from the Miocene Monterey Formation and equivalents. TW-Mixed gas is likely a mixture of biogenic and wet thermogenic gas (TW-1 or TW-2) derived from source rocks mentioned above. The thermogenic wet gas types are included in the corresponding Eocene or Miocene total petroleum systems.

Type B gas is a dry, nonassociated gas produced from the Pliocene San Joaquin Formation in the central

¹Research Geochemist, Lakewood, Colo.

and southern San Joaquin Basin. This gas type most likely originated from Pliocene marine source rocks as a product of methanogenesis, and defines the Neogene Nonassociated Gas Total Petroleum System.

Introduction

The Great Valley of California is a petroleum-productive Cretaceous-Paleogene forearc basin located between the Sierra

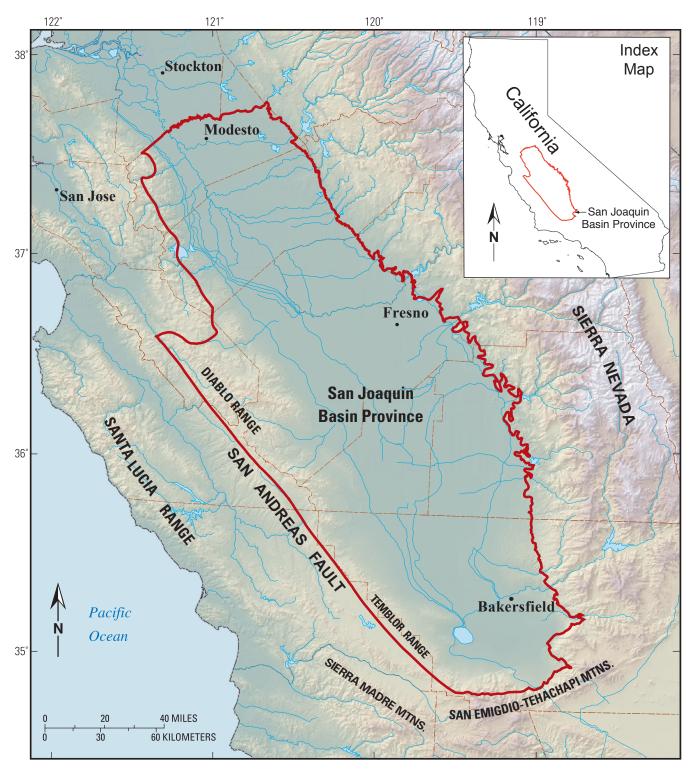


Figure 10.1. Location map of San Joaquin Basin Province (red outline) showing topography and location of county lines and some cities. Inset shows location of San Joaquin Basin Province (red outline) within the State of California.

Nevada and Coast Ranges (primarily the Diablo and Temblor Ranges; fig. 10.1). An east-west trending, subsurface structural arch (Stockton Arch) separates the Great Valley into the Sacramento Basin Province to the north and the San Joaquin Basin Province to the south. The Sacramento Basin is primarily a gas province, whereas the San Joaquin Basin produces mostly oil and some gas. The San Joaquin Basin is filled with Late Cretaceous to Pliocene-aged marine sediments (fig. 10.2), and organic-rich marine rocks of Eocene and Miocene age provide the source for most of its petroleum.

Previous geochemical studies in the San Joaquin Basin have focused on the origin of the oil (see discussion in Lillis and Magoon, this volume, chapter 9), but the origin of the natural gas has received little attention. In the Sacramento Basin Province, the natural gas geochemistry was studied by Jenden and Kaplan (1989b) and was reinterpreted in the context of petroleum systems (Magoon and others, 1994; Magoon and others, 1996a; Magoon and others, 1996b; Claypool and others, 2000; Claypool and others, 2001; Hosford Scheirer and others, 2007a; Hosford Scheirer and others, 2007b).

Rudkin (1968) first addressed the gas chemistry in the San Joaquin Basin with discussions of gas wetness, the exceptionally high nitrogen content of gases in Chowchilla field, and the high hydrogen sulfide content of gases at East Coalinga Extension field. Kaplan and others (1988) analyzed 40 gas samples from the San Joaquin Basin and categorized them into four genetic groups on the basis of carbon isotopic composition—two groups of associated thermogenic gases, one group of nonassociated thermogenic gas, and one group of mixed microbial and thermogenic gas. Four gas samples from the northern San Joaquin Basin were included in a study by Jenden and others (1988) on the origin of nitrogen-rich natural gas in the California Great Valley. Eleven gas analyses from the San Joaquin Basin were included in a broad study of more than 800 gas samples from around the United States (Jenden and Kaplan, 1989a). Kamerling and others (1989) recognized Pliocene biogenic gas in the southern San Joaquin Basin. In more recent studies, Claypool and others (2000), Claypool and others (2001), and Lillis and others (2004) assigned the San Joaquin Basin gases to petroleum systems—a mixed biogenicthermogenic gas attributed to the Winters-Domengine(?) gas system that extends southward from the Sacramento Basin, a Pliocene to Pleistocene biogenic gas system, and two wet thermogenic gas types associated with oils from Eocene and Miocene petroleum systems, respectively. [Note that the formal names for petroleum systems consist of the source rock name, followed by a hyphen, the principal reservoir name, and an indication of the certainty of the correlation (Magoon and Dow, 1994). The symbols (?), (.), and (!) indicate speculative, hypothetical, and known genetic relationships, respectively.]

In this study, 66 gas samples were collected from the San Joaquin Basin Province and analyzed for bulk composition and stable carbon isotope ratios. These analytical results were combined with 15 gas samples from previous studies (Jenden and Kaplan, 1989a; Claypool and others, 2000) to identify

and characterize natural gas types, and to assign these types to the most likely petroleum system for the purpose of resource assessment (Magoon and others, this volume, chapter 8).

Methods

Sixty-six gas samples were analyzed for C_1 to C_7 hydrocarbons, CO_2 , CO, N_2 , O_2 , Ar, He, H_2 , and H_2S using a Wasson gas analyzer, a customized Hewlett-Packard gas chromatograph. Oxygen and argon cannot be differentiated by this method, so the concentrations of these gases are reported together (O_2+Ar) . Because oxygen and argon concentrations are generally very low in natural gas, the measured O_2+Ar content in the gas samples is assumed to be air contaminant. Thus, the nitrogen content of the gas samples was corrected by reducing the measured nitrogen by the amount of nitrogen from air contamination using the ratio $(O_2+Ar)/N_2=0.2802$ (Mason and Moore, 1982, p. 211). This correction was not applied to the nitrogen data from Jenden and Kaplan (1989a) because their analytical method differentiates oxygen and argon.

Stable carbon isotopes (δ^{13} C) of methane, ethane, propane, butane and carbon dioxide were measured using a Hewlett-Packard gas chromatograph interfaced with a Micromass Optima continuous-flow isotope ratio mass spectrometer (IRMS). The results are expressed in delta (δ) notation, which represents the deviation of the 13 C/ 12 C ratio in parts per thousand (per mil or ‰) relative to the Peedee belemnite (PDB) standard. Gas wetness is reported as percent C_{2+} hydrocarbon gases relative to total hydrocarbon gases using the expression [(ΣC_2 to ΣC_5)/(ΣC_1 to ΣC_5)] * 100.

Results

Gas sample information is listed in table 10.1 and analytical results are listed in table 10.2. About 75 percent of the gas samples in this study were taken from oil fields, with the rest taken from gas fields (fig. 10.3), generally reflecting the dominance of oil and associated gas production over nonassociated gas production in the San Joaquin Basin Province. Natural gases from the San Joaquin Basin Province exhibit a wide range of gas wetness values in percent C₂₊ hydrocarbon gas (zero to 37 percent), and of δ^{13} C methane composition (-70.2 to -24.2%; table 10.2, fig. 10.4). Nitrogen content is generally less than 2 percent (fig. 10.5), but many gas samples from the northern San Joaquin Basin (fig. 10.3) have high nitrogen (from 7 to 59 percent; samples 1, 14, 15, 32, 47, 48, 49, 52, 53, and 64; fig. 10.5). The nitrogen correction is substantial in samples with significant air contamination (for example, samples 11, 20, 25, 27, 28, 33, 36, 60, 63, and 75; table 10.2). Gas sample 16 is suspected to have high nitrogen because it came from a treatment vessel rather than from a well.

SAN JOAQUIN BASIN PROVINCE

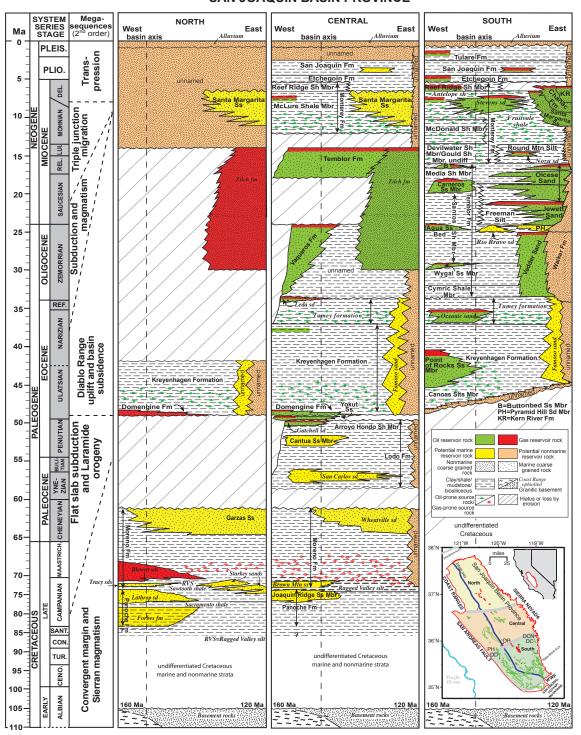
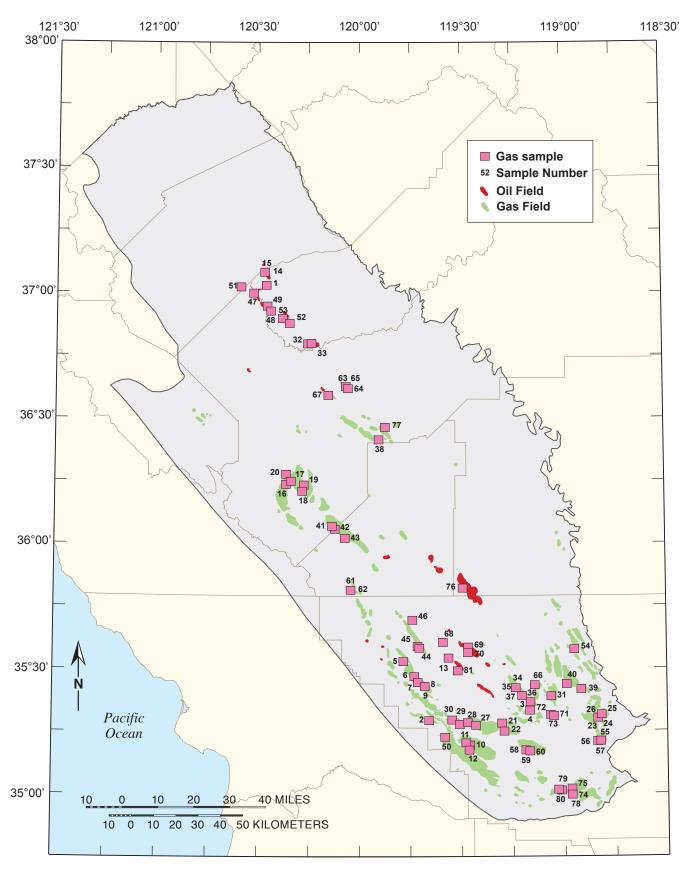



Figure 10.2. San Joaquin Basin Province stratigraphy showing hydrocarbon reservoir rocks and potential hydrocarbon source rocks. See Hosford Scheirer and Magoon (this volume, chapter 5) for complete explanation of the figure. Formation names in italics are informal and are defined as follows (in approximate age order): Forbes formation of Kirby (1943), Sacramento shale and Lathrop sand of Callaway (1964), Sawtooth shale and Tracy sands of Hoffman (1964), Brown Mountain sandstone of Bishop (1970), Ragged Valley silt, Starkey sands, and Blewett sands of Hoffman (1964), Wheatville sand of Callaway (1964), San Carlos sand of Wilkinson (1960), Gatchell sand of Goudkoff (1943), Oceanic sand of McMasters (1948), Leda sand of Sullivan (1963), Tumey formation of Atwill (1935), Famoso sand of Edwards (1943), Rio Bravo sand of Noble (1940), Nozu sand of Kasline (1942), Zilch formation of Loken (1959), Stevens sand of Eckis (1940), Fruitvale shale of Miller and Bloom (1939), and Antelope shale of Graham and Williams (1985).

Figure 10.3. Locations of the gas samples in the San Joaquin Basin Province (gray shading) used in this study. Sample information is given in table 10.1. County boundaries are shown as thin brown lines.

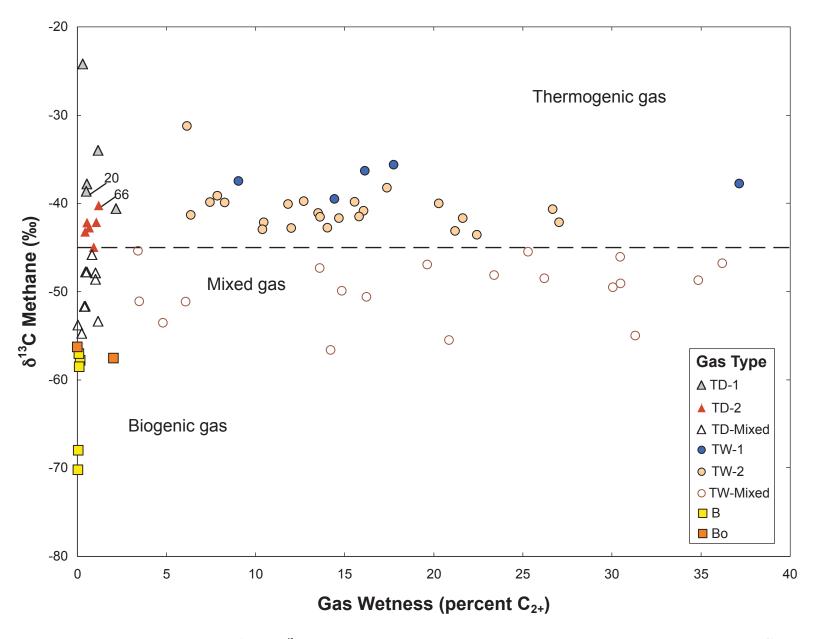


Figure 10.4. Plot of gas wetness (percent C $_{2+}$) versus δ^{13} C of methane for natural gas samples from the San Joaquin Basin Province. Wetness is defined as $[(\Sigma C_2 \text{ to } C_5)/(\Sigma C_1 \text{ to } C_5)] * 100$. Gas types are defined in the text and include thermogenic dry (subtypes TD-1, TD-2), thermogenic wet (subtypes TW-1, TW-2), mixed thermogenic-biogenic (subtypes TD-Mixed, TW-Mixed), biogenic (B), and biogenic outlier (Bo).

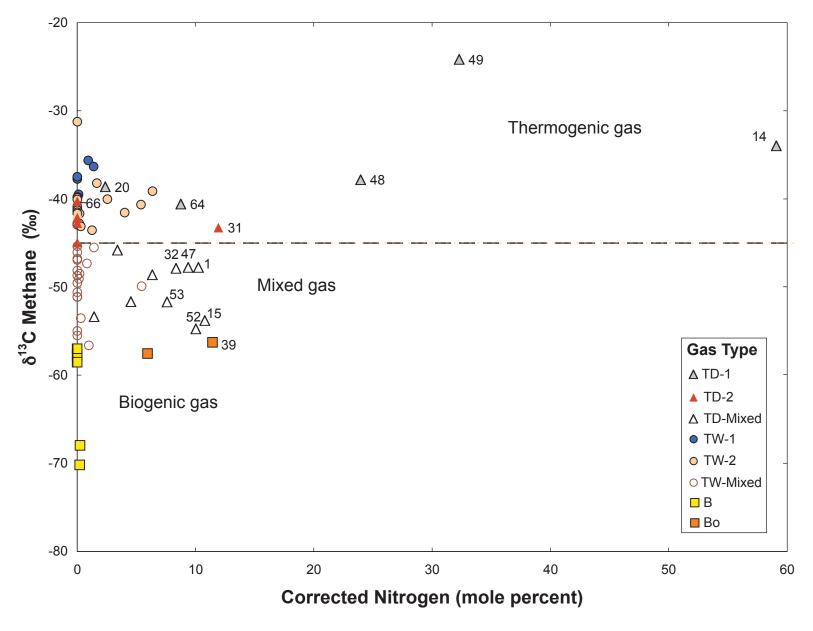
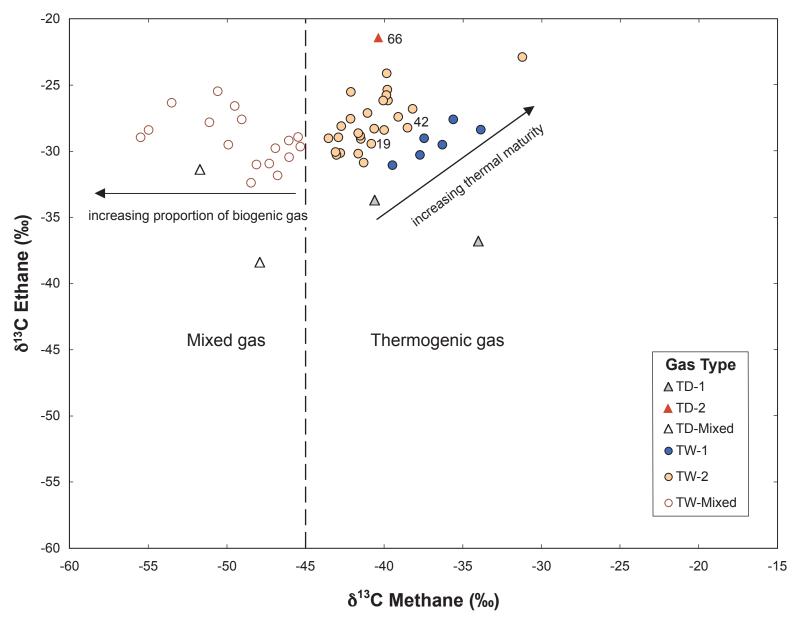



Figure 10.5. Plot of percent nitrogen (corrected) versus δ^{13} C of methane for natural gas samples from the San Joaquin Basin Province. See text for explanation of nitrogen correction.

Figure 10.6. Plot of δ^{13} C of methane versus δ^{13} C of ethane for natural gas samples from the San Joaquin Basin Province. Trend arrows show increasing proportion of biogenic methane mixed with thermogenic gas, as well as change in isotopic composition with increasing thermal maturity.

 δ^{13} C ethane values range from -38.4 to -21.5% (fig. 10.6), and δ^{13} C propane values range from -31.5 to -20.0% (table 10.2). The δ^{13} C *i*-butane values range from -31.9 to -20.3%, and the δ^{13} C *n*-butane values range from -28.5 to -9.4% (table 10.2). Carbon dioxide content is generally less than 1 percent, but ranges from 0 to 92 percent (table 10.2). However, the sample with 92 percent CO₂ (sample 40) may be discounted, because the sample was taken from the surface casing of a producing oil well. The δ^{13} C carbon dioxide values of the gas samples range from -13.1 to +32.7% (table 10.2).

Natural Gas Types

Natural gas forms by either biogenic (B) or thermogenic (T) processes (Bernard and others, 1977; Fuex, 1977; Schoell, 1980; Rice and Claypool, 1981). Biogenic gas (also called microbial gas) is generated in anaerobic, sulfate-free sediments at temperatures less than 75°C by communities of microbes that include fermentative bacteria, acetogenic bacteria, and a group of Archaea called methanogens. Thermogenic gas, in contrast, is generated by the cracking of kerogen or oil at higher temperatures with increasing burial. The main stage of thermogenic gas generation from kerogen occurs within the oil window, that is, at the same thermal maturity as oil generation. This is equivalent to a vitrinite reflectance range of 0.6 to 1.2 percent.

Biogenic gas is composed of isotopically light methane $(\delta^{13}$ C generally less than -55%; Rice and Claypool, 1981), whereas thermogenic gas is composed of isotopically heavier methane and varying amounts of higher hydrocarbon gases (measured as gas wetness). On the basis of stable carbon isotopic composition and gas wetness, the gas samples analyzed can be grouped into three gas types—thermogenic dry (TD), thermogenic wet (TW), and biogenic (B). The boundary between TD and TW gas is empirically placed at a wetness value of 2.5 percent C2+. This wetness boundary is consistent with the definition of Tissot and Welte (1984)—dry gas has a methane to total hydrocarbon gas ratio greater than 0.97 (wetness less than 3 percent C_{2+}). On the basis of a natural break in the data (figs. 10.4 and 10.6) thermogenic gas samples with δ^{13} C methane values less than -45% are interpreted to be a mixture of biogenic and thermogenic gas (TD-Mixed and TW-Mixed). The boundary between TD-Mixed and biogenic (B) gas is placed at a δ^{13} C methane value of -55% on the basis of Rice and Claypool (1981), although there is a natural break in the data at -60%. All wet gases (greater than 2.5 percent C_{2+}) with $\delta^{13}C$ methane values less than -45% are classified as TW-Mixed (table 10.3).

The thermogenic dry and wet gas types are further subdivided. Thermogenic dry (TD) gas is subdivided into two subtypes on the basis of δ^{13} C methane values (fig. 10.4) and nitrogen content (fig. 10.5). Type TD-1 gas has higher δ^{13} C methane (greater than -41%, except for sample 66) and

higher nitrogen (greater than 8 percent, except for samples 20 and 31) than Type TD-2 gases. Thermogenic wet (TW) gas is subdivided into two subtypes on the basis of δ^{13} C methane and δ^{13} C ethane values (fig. 10.6), with TW-1 gases showing a distinct thermal maturity trend, and TW-2 gases showing a weak thermal maturity trend. Two biogenic gas samples (Bo) are distinguished from the biogenic gas type (B) on the basis of nitrogen content (fig. 10.5).

Thermogenic Dry (TD)

Type TD-1 gas is produced from Cretaceous-aged reservoir rocks in gas fields of the northern San Joaquin Basin Province (grey triangles, fig. 10.7), including Raisin City, Chowchilla, and Merrill Avenue Southeast fields. Claypool and others (2000) suggested that these gas accumulations may be an extension of the Winters-Domengine(?) gas system of Magoon and others (1994) in the Sacramento Basin on the basis of similar δ^{13} C methane values and high nitrogen content. However, high nitrogen content is not a distinctive characteristic of the Winters-Domengine(?) system; the nitrogen may be derived from metasedimentary basement rocks (Jenden and others, 1988) rather than the Cretaceous Winters formation of Edmondson (1962; hereafter referred to as Winters formation). Furthermore, a Winters formation source for TD-1 gas is problematic because the Stockton Arch separates thermally mature Winters formation in the Sacramento Basin Province from the northern San Joaquin Basin Province (see Hosford Scheirer and Magoon, this volume, chapter 21, for a detailed discussion).

A more likely source for the TD-1 gas is the Cretaceous to Paleocene Moreno Formation in the San Joaquin Basin Province, which has good source rock characteristics (McGuire, 1988; Peters, Magoon, Valin, and others, this volume, chapter 11), and is thermally mature down-dip from these gas fields that contain TD-1 gas. Unfortunately, we lack a gas sample to analyze from the Moreno Formation reservoir rock, such as Cheney Ranch field, that may derive from the Moreno Formation source rock. A gas seep from the Oil City pool at Coalinga field (sample 20), which may derive from the Moreno Formation, matches TD-1 gas on the basis of δ^{13} C methane and wetness values (fig. 10.4). However, on the basis of evidence of air contamination (high O_2 +Ar), the quality of the sample is in question.

The TD-Mixed gas is a mixture of thermogenic dry and biogenic gases found in Cretaceous, Eocene, and Miocene reservoir rocks in gas fields of the northern San Joaquin Basin (open triangles, fig. 10.7). The geographic distribution, reservoir rock age, and elevated nitrogen content (as much as 11 percent) of this gas type is similar to TD-1 gas and is considered genetically related. The biogenic gas component of TD-Mixed gas most likely originated from the microbial decomposition of organic matter in the Cretaceous (and possibly Eocene) aged sediments. Two gases assigned to the TD-Mixed gas (samples 15 and 52) are interpreted

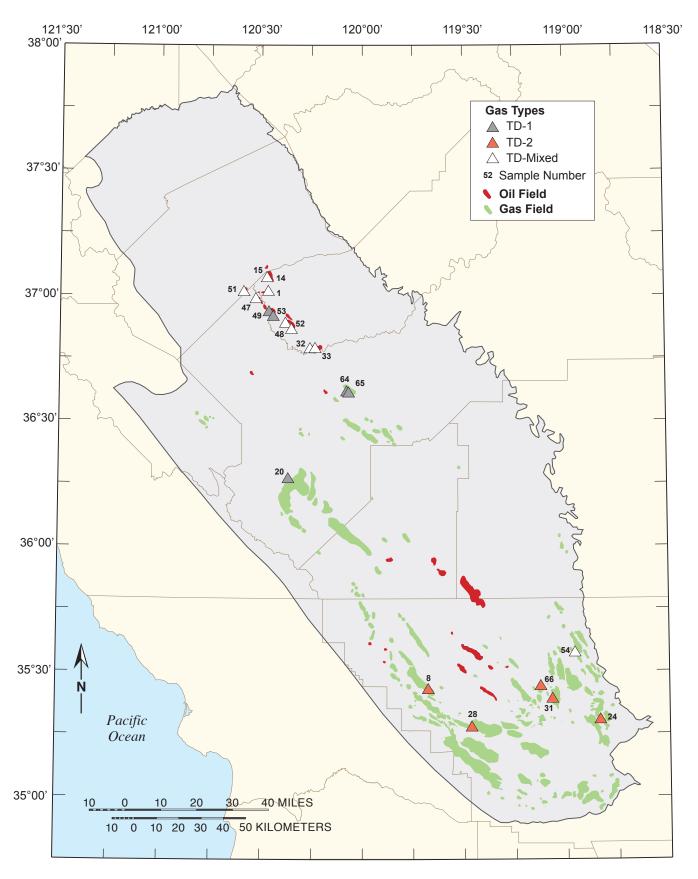


Figure 10.7. Sample locations for thermogenic dry gas in the San Joaquin Basin Province (gray shading).

to be predominantly biogenic on the basis of light (low) δ^{13} C methane values (-53.8 to -54.75‰) but have elevated nitrogen similar to other TD-Mixed gas. Although typed as TD-Mixed, the gas sample from Mount Poso field (sample 54) is probably unrelated to other TD-Mixed or TD-1 gases, because it is produced from an oil field in the southern San Joaquin Basin (fig. 10.7). Slightly elevated propane and butane (table 10.2) in the sample suggests a small component of wet thermogenic gas mixed with a biogenic gas. Type TD-2 gas is discussed below with thermogenic wet gases.

Thermogenic Wet (TW)

The thermogenic wet (TW) gas of the San Joaquin Basin Province is generally produced from oil fields (fig. 10.8), and most likely originates from the same source rocks as the coproduced oil. The TW-1 gas is produced from Eocene and Oligocene-aged reservoir rocks, and most likely originated from source rocks within the Eocene Kreyenhagen Formation or Tumey formation of Atwill (1935; hereafter referred to as Tumey formation).

Most TW-2 gas is produced from Miocene reservoir rocks, but it also occurs in Jurassic, Eocene, Oligocene and Pliocene-aged reservoir rocks. The most likely source rock for TW-2 gas is the Miocene Monterey Formation and equivalents. Two exceptions in the samples classified as TW-2 gas are samples 19 and 42, which come from fields producing TW-1 gas (fig. 10.8) and oil sourced from the Eocene Kreyenhagen Formation (Lillis and Magoon, this volume, chapter 9, their samples 26 and 179). Further, these two samples are located more than 30 miles north of other TW-2 gas. On figure 10.6 they plot close to the TW-1 gas samples suggesting that they may be genetically related to the latter.

TW-Mixed gas is a mixture of biogenetic gas and wet thermogenic gas (TW-1 or TW-2) most likely derived from Eocene or Miocene source rocks. The biogenic gas component of TW-Mixed gas most likely originated from the microbial decomposition of organic matter in Eocene or Miocene aged sediments.

The TD-2 gas is produced with oils from Miocene to Pliocene (Fruitvale, Elk Hills, Edison, Rosedale Ranch, and South Belridge fields) and Jurassic-aged (Edison field) reservoir rocks in the southern San Joaquin Basin (fig. 10.7). The TD-2 gas appears to be genetically related to the thermogenic wet gas (TW-2) and oils produced from the same fields, but is drier due to migration fractionation or biodegradation of ethane and higher hydrocarbons (James and Burns, 1984). For example, the gas sample produced from Rosedale Ranch field (sample 66) has a distinctly high (heavy) δ^{13} C ethane value (fig. 10.6) due to bacterial consumption of ethane and higher hydrocarbons. Two TW-2 gas samples from Edison field (samples 25 and 26) appear to have biodegraded propane on the basis of higher (heavier) δ^{13} C values than normally expected (James, 1983; James and Burns, 1984).

Biogenic

The biogenic (B) gas is a dry, nonassociated gas produced in the central and southern San Joaquin Basin (fig. 10.9) from shallow (less than 5,000 feet) reservoir rocks within the Pliocene San Joaquin Formation. The gas is characterized by low (light) δ^{13} C methane values (–56 to –70‰), low carbon dioxide (less than 0.5 percent), and low nitrogen (less than 0.3 percent). The B gas most likely originated from the microbial decomposition (methanogenesis) of marine organic matter in the Pliocene San Joaquin Formation during and soon after deposition. This gas type defines the Neogene Nonassociated Gas Total Petroleum System (Magoon and others, this volume, chapter 8).

Two outlier gas samples (Bo) have isotopically light δ^{13} C methane values, typically characteristic of biogenic gas, but appear to be unrelated to the B gas type (fig. 10.5). Gas sample 39 from Kern Bluff field is distinct because it is an associated gas with high nitrogen produced from the Miocene Santa Margarita Sandstone. Gas sample 50 from Midway-Sunset field is distinct because it contains elevated nitrogen and carbon dioxide and is associated with oil produced from the Miocene Reef Ridge Shale Member of the Monterey Formation. The origin of these two gases is unknown but the anomalous composition may be an artifact of sampling or field production practice (table 10.1).

Origin of Carbon Dioxide

Carbon dioxide in the San Joaquin Basin Province has at least two possible origins. For gas samples that have less than 2 percent carbon dioxide and negative δ^{13} C carbon dioxide values, the carbon dioxide is likely a minor byproduct of the thermal degradation of organic matter (Hunt, 1996). For gas samples with a carbon dioxide content greater than 2 percent and isotopic δ^{13} C values between +2 and +24‰, the carbon dioxide may be the residual gas from methanogenesis produced during petroleum biodegradation. Most of these gas samples (samples 6, 7, 8, 9, 10, 17, 23, 24, 25, 26, 50, 62, and 66) are produced from shallow reservoir rocks (less than 5,000 feet depth) that contain biodegraded oil. A similar process has been suggested for the origin of isotopically heavy carbon dioxide in some Los Angeles Basin oil fields (Jeffrey and others, 1991).

Petroleum Systems

For the purpose of resource assessment, the gas types characterized above were assigned to petroleum systems. The TD-1 and TD-Mixed gas types were assigned to the Winters-Domengine Total Petroleum System. Subsequent to the assessment, these gas types were reclassified to form the basis of the Moreno-Nortonville(.) gas system (fig. 10.10). The TW-1, TW-2, TW-Mixed and TD-2 gas types are considered to be associated gases that are included in the corresponding Eocene or Miocene total petroleum systems (Magoon and others, this

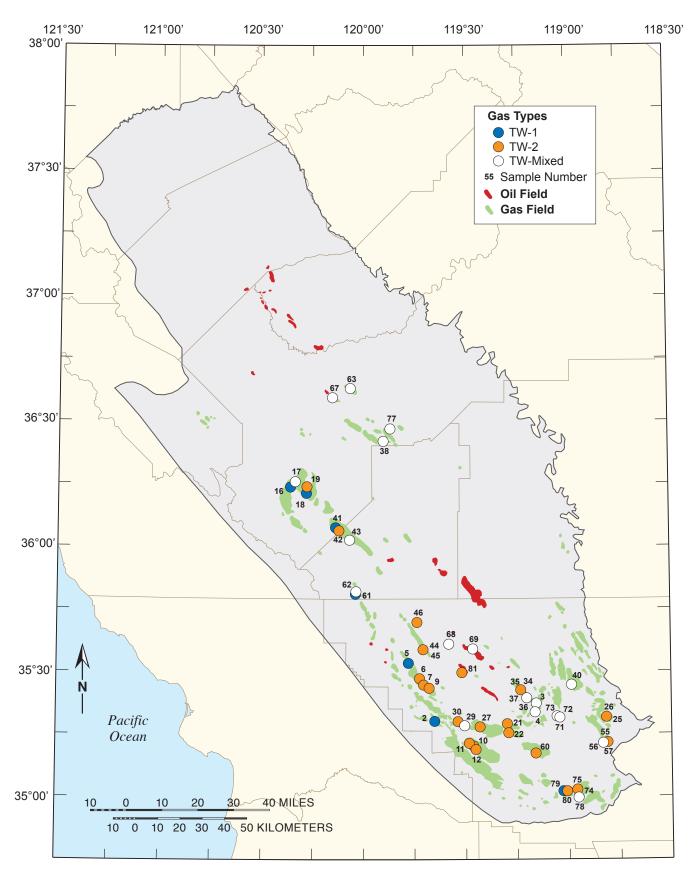


Figure 10.8. Sample locations for thermogenic wet gas in the San Joaquin Basin Province (gray shading).

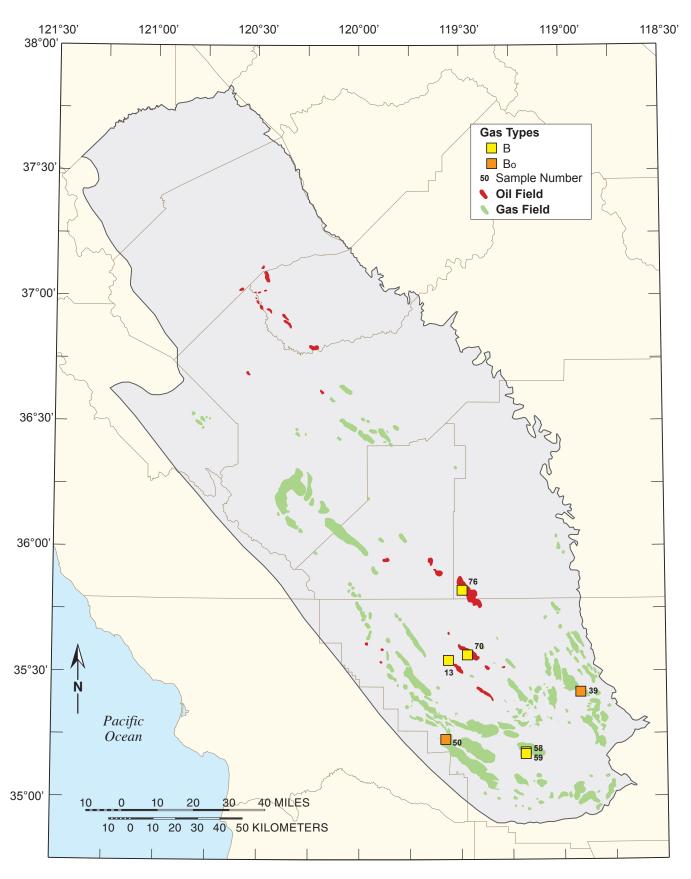
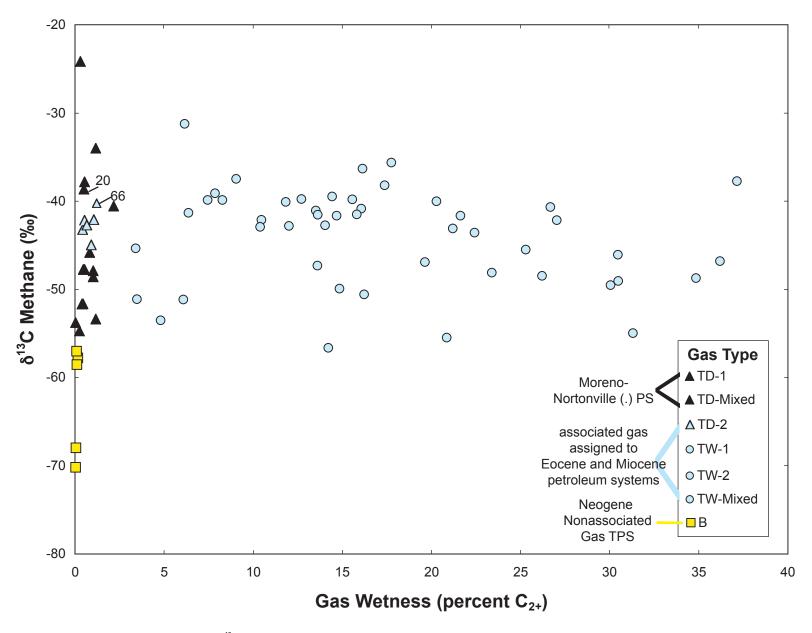



Figure 10.9. Sample locations for biogenic gas in the San Joaquin Basin Province (gray shading).

Figure 10.10. Plot of gas wetness versus δ^{13} C of methane for natural gas samples from San Joaquin Basin Province with symbol color representing petroleum system assignment. Type TD-1 and Type TD-Mixed gases are assigned to the Moreno-Nortonville(.) gas system (black triangles). Type TW-1, TW-2, TW-Mixed, and TD-2 gases are assigned to Eocene and Miocene petroleum systems (blue circles and triangless). Type B gas defines the Neogene Nonassociated gas system (yellow squares). PS, petroleum system; TPS, total petroleum system.

volume, chapter 8). The B gas defines the Neogene Nonassociated Gas Total Petroleum System (Magoon and others, this volume, chapter 8).

Conclusions

Natural gases in the San Joaquin Basin Province can be grouped into three general types on the basis of bulk and stable carbon isotopic composition—thermogenic dry, thermogenic wet, and biogenic. The thermogenic gas types can be further subdivided on the basis of $\delta^{13}C$ values of methane and ethane and nitrogen content into TD-1, TD-2, TD-Mixed, TW-1, TW-2, and TW-Mixed.

The dry thermogenic gas TD-1 is produced from gas fields in the northern San Joaquin Basin Province, and most likely originated from gas-prone source rocks of Cretaceous age. The TD-Mixed gas is a mixture of dry thermogenic and biogenic gases produced from Cretaceous, Eocene, and Miocene reservoir rocks in the northern San Joaquin Basin Province. These two gas types are assigned to the Moreno-Nortonville(.) gas system, but, alternatively, may be part of the Winters-Domengine Total Petroleum System of the Sacramento Basin. The dry thermogenic gas TD-2 is produced from oil fields in the southern San Joaquin Basin, and most likely originated from an oil-prone source rock of Miocene age. Low wetness values in this gas type likely results from migration fractionation or biodegradation.

The three wet thermogenic gases, or TW-1, TW-2, and TW-Mixed, are predominantly gases associated with produced oil from fields in the southern and central San Joaquin Basin. The TW-1 gas is produced from Eocene and Oligocene-aged reservoir rocks, and most likely originates from source rocks within the Eocene Kreyenhagen Formation or Tumey formation. The TW-2 gas is produced from Jurassic, Eocene, Miocene, and Pliocene reservoir rocks, and most likely originates from a source rock in the Miocene Monterey Formation and equivalents. The TW-Mixed gas is likely a mixture of wet thermogenic (TW-1 or TW-2) gases derived from Eocene or Miocene source rocks and biogenic gas. These three gas types are included in the resource assessments of the corresponding oil systems (Magoon and others, this volume, chapter 8).

The biogenic gas (type B) is a dry, nonassociated gas produced from the Pliocene San Joaquin Formation in the central and southern San Joaquin Basin. The B gas most likely originated from Pliocene marine source rocks as a product of methanogenesis and defines the Neogene Nonassociated Total Petroleum System.

Acknowledgments

Analytical work was performed by Augusta Warden at the USGS Organic Geochemistry Lab, Denver, Colo. Zenon Valin made the final figures. Numerous operators, too many to list here, kindly allowed access for sampling by the USGS (Les Magoon, George Claypool, Paul Lillis, Tom Lorenson, Elizabeth Rowan, Keith Kvenvolden and Zenon Valin). The manuscript was greatly improved by the comments and suggestions from Ken Peters, Joseph Hatch, and Allegra Hosford Scheirer (USGS).

References Cited

- Atwill, E.R., 1935, Oligocene Tumey Formation of California: Bulletin of the American Association of Petroleum Geologists, v. 19, no. 8, p. 1192-1204.
- Bernard, B., Brooks, J.M., and Sackett, W.M., 1977, A geochemical model for characterization of hydrocarbon gas sources, *in* Offshore Technology Conference, 9th, Houston, Tex., 1977, Proceedings: p. 435-438.
- Berryman, W.M., 1973, Lithologic characteristics of Pliocene rocks cored at Elk Hills, Kern County, California: U.S. Geological Survey Bulletin 1332-D, 56 p.
- Bishop, C.C., 1970, Upper Cretaceous stratigraphy on the west side of the Northern San Joaquin Valley, Stanislaus and San Joaquin counties, California: Sacramento, Calif., California Division of Mines and Geology Special Report 104, 29 p.
- Callaway, D.C., 1964, Distribution of uppermost Cretaceous sands in the Sacramento-Northern San Joaquin Basin of California: Selected Papers Presented to San Joaquin Geological Society, v. 2, p. 5-18.
- CDOGGR, 1998, California oil and gas fields: Sacramento, Calif., California Department of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-1, 1472 p.
- Claypool, G.E., Magoon, L.B., Lorenson, T.D., Lillis, P.G., and Kaplan, I.R., 2001, Natural gas in the Great Valley of California—Geochemical characterization and petroleum systems [abs.], *in* Annual Meeting, Denver, Colo., 2001, Expanded Abstracts: American Association of Petroleum Geologists, p. 37.
- Claypool, G.E., Magoon, L.B., Lorenson, T.D., Valin, Z.C., Warden, A., Lillis, P.G., and Kaplan, I.R., 2000, Natural gas in the Great Valley of California—Characterization, origin and petroleum systems [abs.], *in* AAPG Pacific Section/SPE Western Region Conference Joint Conference of Geoscientists and Petroleum Engineers, Long Beach, Calif., 2000: American Association of Petroleum Geologists Bulletin, v. 84, no. 6, p. 863.
- Eckis, R., 1940, The Stevens sand, southern San Joaquin Valley, California [abs.]: Bulletin of the American Association of Petroleum Geologists, v. 24, no. 12, p. 2195-2196.
- Edmondson, W.F., 1962, Stratigraphy of the late Upper Cretaceous in the Sacramento Valley: Selected Papers Presented to San Joaquin Geological Society, v. 1, p. 17-26.
- Edwards, E.C., 1943, Kern Front area of the Kern River oil field, *in* Jenkins, O.P., ed., Geologic formations and economic development of the oil and gas fields of California: San Francisco, Calif., State of California,

- Department of Natural Resources, Division of Mines Bulletin No. 118, p. 571-574.
- Foss, C.D., and Blaisdell, R., 1968, Stratigraphy of the west side southern San Joaquin Valley, *in* Karp, S.E., ed., Guidebook, Geology and oil fields, West side southern San Joaquin Valley: Pacific Sections, American Association of Petroleum Geologists, Society of Exploration Geophysicists, Society of Economic Paleontologists and Mineralogists, 43rd Annual Meeting, p. 33-43.
- Frame, R.G., 1950, Helm oil field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 36, no. 1, p. 5-14 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary of Operations/1950/].
- Fuex, A.N., 1977, The use of stable carbon isotopes in hydrocarbon exploration: Journal of Geochemical Exploration, v. 7, no. 2, p. 155-188.
- Goudkoff, P.P., 1943, Correlation of oil field formations on west side of San Joaquin Valley, *in* Jenkins, O.P., ed., Geologic formations and economic development of the oil and gas fields of California: San Francisco, Calif., State of California, Department of Natural Resources, Division of Mines Bulletin No. 118, p. 247-252.
- Graham, S.A., and Williams, L.A., 1985, Tectonic,
 depositional, and diagenetic history of Monterey Formation
 (Miocene), central San Joaquin Basin, California: American
 Association of Petroleum Geologists Bulletin, v. 69, no. 3,
 p. 385-411.
- Hoffman, R.D., 1964, Geology of the northern San Joaquin Valley: Selected Papers Presented to San Joaquin Geological Society, v. 2, p. 30-45.
- Hosford Scheirer, A., Magoon, L.B., Tennyson, M.E., and Peters, K.E., 2007a, Uplift and erosion, distribution of mature source rock, and burial histories for two gas systems in the Sacramento Basin, California [abs.], *in* Annual Convention and Exhibition, Long Beach, Calif., 2007: American Association of Petroleum Geologists Bulletin, v. 91 (digital).
- Hosford Scheirer, A., Tennyson, M.E., Magoon, L.B., Charpentier, R.R., Cook, T.A., Klett, T.R., Pollastro, R.M., and Schenk, C.J., 2007b, Assessment of undiscovered natural gas resources of the Sacramento Basin Province of California, 2006, U.S. Geological Survey Fact Sheet 2007-3014, 2 p. [http://pubs.usgs.gov/fs/2007/3014/].
- Hunt, J.M., 1996, Petroleum geochemistry and geology (2nd ed.): New York, Freeman and Company, 743 p.
- James, A.T., 1983, Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components: American Association of Petroleum Geologists Bulletin, v. 67, no. 7, p. 1176-1191.
- James, A.T., and Burns, B.J., 1984, Microbial alteration of subsurface natural gas accumulations: American Association of Petroleum Geologists Bulletin, v. 68, no. 8, p. 957-960.

- Jeffrey, A.W., Alimi, H.M., and Jenden, P.D., 1991, Geochemistry of Los Angeles Basin oil and gas systems, *in* Biddle, K.T., ed., Active margin basins: Tulsa, Okla., American Association of Petroleum Geologists Memoir 52, p. 197-219.
- Jenden, P.D., and Kaplan, I.R., 1989a, Analysis of gases in the Earth's crust—Final report to the Gas Research Institute, Chicago, GRI Report Number 88/0262, Contract Number 5081-360-0533, *in* Kaplan, I.R., ed., 2000, Collection of papers about the oil, gas, and source rock investigations carried out in the San Joaquin, Santa Maria, Santa Barbara, Ventura, and Los Angeles basins, California: Bakersfield, Calif., Pacific Section, American Association of Petroleum Geologists CD-ROM Series 1, 300 p.
- Jenden, P.D., and Kaplan, I.R., 1989b, Origin of natural gas in Sacramento Basin, California: American Association of Petroleum Geologists Bulletin, v. 73, no. 4, p. 431-453.
- Jenden, P.D., Kaplan, I.R., Poreda, R.J., and Craig, H., 1988, Origin of nitrogen-rich natural gases in the California Great Valley—Evidence from helium, carbon and nitrogen isotope ratios: Geochimica et Cosmochimica Acta, v. 52, no. 4, p. 851-861.
- Kamerling, M., Lewy, R.M., and Lundell, L.L., 1989, Biogenic origin of Pliocene dry gas, southern San Joaquin Basin, California [abs.], *in* AAPG-SEPM-SEG-SPWLA Pacific Section Annual Meeting, Palm Springs, Calif., 1989: American Association of Petroleum Geologists Bulletin, v. 73, no. 4, p. 542-543.
- Kaplan, I.R., Alimi, M.H., Lu, S.T., Jeffrey, A., Shepard, L.S., Meredith, D.E., and Polovini, J.S., 1988, The petroleum geochemistry of crude oils and potential source rocks from the Paleogene of the San Joaquin and Ventura/Santa Barbara basins, data synthesis and text, v. 1, *in* Kaplan, I.R., ed., 2000, Collection of papers about the oil, gas, and source rock investigations carried out in the San Joaquin, Santa Maria, Santa Barbara, Ventura, and Los Angeles basins, California: Bakersfield, Calif., Pacific Section, American Association of Petroleum Geologists CD-ROM Series 1, 283 p.
- Kasline, F.E., 1942, Edison oil field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 26, p. 12-18 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary of Operations/1940/].
- Kirby, J.M., 1943, Upper Cretaceous stratigraphy of the west side of Sacramento Valley south of Willows, Glenn County, California: Bulletin of the American Association of Petroleum Geologists, v. 27, no. 3, p. 279-305.
- Lillis, P.G., Warden, A., Claypool, G.E., and Magoon, L.B., 2004, Natural gas in the San Joaquin Basin—Geochemical characterization of the petroleum systems [abs.], *in* Pacific Section Convention, Pacific Sections AAPG, SEPM, & SEG, Bakersfield, Calif., 2004, Abstracts: American Association of

- Petroleum Geologists Bulletin, v. 88, no. 13 (Supplement). Loken, K.P., 1959, Gill Ranch gas field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 45, no. 1, p. 27-32 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary_of_Operations/1959/].
- Magoon, L.B., Castaño, J.R., Lillis, P., MacKevett, N.H., and Naeser, N., 1994, Two petroleum systems in the Sacramento Basin, California—A basis for new discoveries [abs.], *in* Pacific Section Meeting, Ventura, Calif., 1994: American Association of Petroleum Geologists Bulletin, v. 78, no. 4, p. 669.
- Magoon, L.B., and Dow, W.G., 1994, The petroleum system, *in* Magoon, L.B., and Dow, W.G., eds., The petroleum system—From source to trap: Tulsa, Okla., American Association of Petroleum Geologists Memoir 60, p. 3-24.
- Magoon, L.B., Valin, Z.C., and Lillis, P.G., 1996a, Petroleum systems in the Sacramento Basin, California, USA [abs.], *in* International Conference and Exhibition, Caracas, Venezuela, 1996, Abstracts: American Association of Petroleum Geologists Bulletin, v. 80, no. 8, p. 1310.
- Magoon, L.B., Valin, Z.C., and Reid, R.A., 1996b, Characterization of gas fields by petroleum system, Sacramento Basin, California [abs.], *in* Annual Meeting, San Diego, Calif., 1996, Abstracts: American Association of Petroleum Geologists, v. 5, p. A88.
- Mason, B., and Moore, C.B., 1982, Principles of geochemistry (4th ed.): New York, Wiley, 344 p.
- McGuire, D.J., 1988, Stratigraphy, depositional history, and hydrocarbon source-rock potential of the Upper Cretaceous-Lower Tertiary Moreno Formation, central San Joaquin Basin, California: Stanford, Calif., Stanford University, Ph.D. dissertation, 309 p.
- McMasters, J.H., 1948, Oceanic sand [abs.]: Bulletin of the American Association of Petroleum Geologists, v. 32, no. 12, p. 2320.
- Miller, R.H., and Bloom, C.V., 1939, Mountain View oil field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 22, no. 4, p. 5-36 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary_of_Operations/1937/].

- Mitchell, M.D., and Chamberlain, C.R., 1983, An analysis of stimulation treatments of the Randolph sand in the Semitropic field, Kern County, California, *in* California Regional Meeting, Ventura, Calif., 1983: Society of Petroleum Engineers Paper Number 11709, p. 413-418.
- Noble, E.B., 1940, Rio Bravo oil field, Kern County, California: Bulletin of the American Association of Petroleum Geologists, v. 24, no. 7, p. 1330-1333.
- Rice, D.D., and Claypool, G.E., 1981, Generation, accumulation, and resource potential of biogenic gas: American Association of Petroleum Geologists Bulletin, v. 65, no. 1, p. 5-25.
- Rudkin, G.H., 1968, Natural gas in San Joaquin Valley, California, *in* Beebe, B.W., and Curtis, B.F., eds., Natural gases of North America: Tulsa, Okla., American Association of Petroleum Geologists Memoir 9, p. 113-134.
- Schoell, M., 1980, The hydrogen and carbon isotopic composition of methane from natural gases of various origins: Geochimica et Cosmochimica Acta, v. 44, no. 5, p. 649-662.
- Sullivan, J.C., 1963, Guijarral Hills oil field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 48, no. 2, p. 37-51 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary_of_Operations/1962/].
- Tissot, B.P., and Welte, D.H., 1984, Petroleum formation and occurrence: Berlin, Springer-Verlag, 699 p.
- Wilkinson, E.R., 1960, Vallecitos field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 45, no. 2, p. 17-33 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary_of_Operations/1959/].
- Williams, R.N., Jr., 1938, Recent developments in the North Belridge oil field, *in* Summary of operations, California oil fields: San Francisco, Calif., Annual Report of the State Oil and Gas Supervisor, v. 21, no. 4, p. 5-16 [also available *in* California Division of Oil and Gas, Summary of Operations, 1915-1999: California Division of Conservation, Division of Oil, Gas, and Geothermal Resources, Publication No. CD-3, and at ftp://ftp.consrv.ca.gov/pub/oil/Summary_of_Operations/1936/].

18	Petroleum Systems of the San Joaquin Basin Province—Geochemical Characteristics of Gas Types
	This page intentionally left blank
	This page intentionary left blank

T	a	b	e	S

Table 10.1. Sample information for natural gas samples from the San Joaquin Basin Province, California.

[Gas types are based on gas composition (table 10.2) and are designated as thermogenic dry (TD-1, TD-2), thermogenic wet (TW-1, TW-2), biogenic (B), thermogenic mixed with biogenic (TW-Mixed, TD-Mixed), and biogenic outlier (Bo). Field names are designated by the State of California, Division of Oil, Gas, and Geothermal Resources (CDOGGR, 1998). Formation name and reservoir rock are modified to comply with USGS geologic name standards. Sec-Twn-Rng, location of sample in notation of public land survey system. Fm, Formation; Mbr, Member; Sh, Shale. See appendix for more information on each sample]

Gas Sample Number	Field Name	Formation Name	Reservoir Rock	Gas Type	Comments	Well Name	Depth Interval (feet)	Sec-Twn-Rng
1	Ash Slough	Blewett sands of Hoffman (1964)	Blewett sands of Hoffman (1964)	TD-Mixed	gas well just south of Ash Slough gas field	Redman-Roduner 1-32	5,441 - 5,594	32-10S-14E
2	Belgian Anticline	Kreyenhagen Shale	Kreyenhagen Shale	TW-1	oil well	Midway-McKittrick 21A	6,550 - 6,550	30-30S-22E
3	Bellevue	Fruitvale shale of Miller and Bloom (1939)	Stevens sand of Eckis (1940)	TW-Mixed	oil well	Argonaut 1	8,200 - 8,500	34-29S-26E
4	Bellevue	Fruitvale shale of Miller and Bloom (1939)	Stevens sand of Eckis (1940)	TW-Mixed	oil well	KCL 61 52X-10	7,530 - 7,572	10-30S-26E
5	Belridge North	Temblor Formation	Belridge 64 sand of Foss and Blaisdell (1968)	TW-1	oil well	63-35	7,820 - 7,867	35-27S-20E
6	Belridge South	Etchegoin Fm/Reef Ridge Sh Mbr of Monterey Fm	Etchegoin Fm/Reef Ridge Sh Mbr of Monterey Fm	TW-2	oil well	29 573-29	1,490 - 2,390	29-28S-21E
7	Belridge South	Etchegoin Fm/Reef Ridge Sh Mbr of Monterey Fm	Etchegoin Fm/Reef Ridge Sh Mbr of Monterey Fm	TW-2	oil well	33 577CR-33	775 - 2,615	33-28S-21E
8	Belridge South	Monterey Fm/Reef Ridge Sh Mbr of Monterey Fm/Etchegoin Fm	Monterey Fm/Reef Ridge Sh Mbr of Monterey Fm/Etchegoin Fm	TD-2	oil well	Sebu T 7624-1	1,195 - 3,020	1-29S-21E
9	Belridge South	Reef Ridge Sh Mbr of Monterey Fm	Reef Ridge Sh Mbr of Monterey Fm	TW-2	oil well	Belridge V 7384B- 2	1,420 - 2,700	2-29S-21E
10	Buena Vista	Etchegoin Formation	Etchegoin Formation	TW-2	oil well	Crimson Sec 25B 1-7A	2,900 - 3,390	25-31S-23E
11	Buena Vista	Monterey Formation	Monterey Formation	TW-2	oil well	Crimson 523	4,000 - 5,000	26 31S-23E
12	Buena Vista	San Joaquin Formation	Mya sand zone of Berryman (1973)	TW-2	shallow gas well	36 B McNee 5-8	2,070 - 2,300	36-31S-23E
13	Buttonwillow	San Joaquin Formation	San Joaquin Formation	В	gas well	Buttonwillow 1	4,000 - 4,000	25-27S-22E
14	Chowchilla	Panoche Formation	Starkey sands of Hoffman (1964) (third)	TD-1	gas well	Chowchilla 3	7,924 - 7,924	8-10S-14E
15	Chowchilla	Zilch formation of Loken (1959)	Zilch formation of Loken (1959)	TD-Mixed	gas well	Chowchilla 5	2,605 - 2,605	8-10S-14E
16	Coalinga			TW-1 a	from oil treater (no. 3) for many wells, suspect sample	plant treater		32-19S-15E
17	Coalinga	Temblor Formation	Temblor Formation	TW-Mixed	oil well	Coalinga 45-27	1,122 - 1,724	27-19S-15E
18	Coalinga East Extension	Lodo Formation	Gatchell sand of Goudkoff (1943)	TW-1	well produces only gas but was oil producer	Coalinga Nose Unit 3-7F	6,666 - 6,973	7-20S-16E
19	Coalinga East Extension	Lodo Formation	Gatchell sand of Goudkoff (1943)	TW-2 ^b	from oil and gas separator	Coalinga Nose Unit 26-31B	7,695 - 8,040	31-19S-16E

Table 10.1. Sample information for natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas Sample Number	Field Name	Formation Name	Reservoir Rock	Gas Type	Comments	Well Name	Depth Interval (feet)	Sec-Twn-Rng
20	Coalinga, Oil City area	Moreno (?) Formation	Moreno (?) Formation	TD-1 °	from seep in water tank near abandoned well	gas seep in water tank		17-19S-15E
21	Coles Levee, North	Monterey Formation	Antelope shale of Graham and Williams (1985)	TW-2	oil well	North Coles Levee Unit 76-32	8,814 - 9,187	32-30S-25E
22	Coles Levee, South	Monterey Formation	Antelope shale of Graham and Williams (1985)	TW-2	oil well	South Coles Levee Unit 72-9	8,245 - 8,584	9-31S-25E
23	Edison	Kern River Formation	Kern River Formation	TD-2	from tank battery of oil well	Young Fee Dos Tres 72	1,961 - 2,192	23-30S-29E
24	Edison	schist	schist	TD-2	oil well	Young Fee 13	2,050 - 2,200	23-30S-29E
25	Edison	schist	schist	TW-2	oil well	Corp Fee 35	1,336 - 1,833	13-30S-29E
26	Edison	schist	schist	TW-2	oil well	Corp. Fee S 2	1,740 - 1,740	13-30S-29E
27	Elk Hills	Monterey Formation	Antelope shale of Graham and Williams (1985)	TW-2	from tank for several oil wells	358-31S	6,036 - 7,008	31-30S 24E
28	Elk Hills	San Joaquin Formation	San Joaquin Formation	TD-2	gas well	DZG 405X-36R	1,781 - 1,896	36-30S-23E
29	Elk Hills	San Joaquin Formation	San Joaquin Formation	TW-Mixed	well produces only gas but was oil producer	4-242-33R	2,110 - 2,205	33-30S-23E
30	Elk Hills	Temblor Formation	Carneros Ss Mbr of Temblor Fm	TW-2	oil well	542-30R	9,485 - 9,850	30-30S-23E
31	Fruitvale	Chanac Formation	Chanac Formation	TD-2	from separator for several oil wells	separator 3F	approx. 4,300	22-29S-27E
32	Gill Ranch	Panoche Formation	Panoche Formation	TD-Mixed	gas well	Gill 38-16	5,750 - 5,750	16-13S-16E
33	Gill Ranch	Panoche Formation	Panoche Formation	TD-Mixed	gas well	Gill 38X-17	5,000 - 7,000	20-13S-16E
34	Greeley	Freeman Silt-Jewett Sand	Freeman Silt-Jewett Sand	TW-2	oil well	KCL 12-8	11,234 - 11,327	7-29S-26E
35	Greeley	Freeman Silt-Jewett Sand	Freeman Silt-Jewett Sand	TW-Mixed	oil well	KCL 51 114-7	10,260 - 10,652	7-29S-26E
36	Greeley	Fruitvale shale of Miller and Bloom (1939)	Fruitvale shale of Miller and Bloom (1939)	TW-Mixed	oil well	KCL 63 43-20	8,677 - 9,143	20-29S-26E
37	Greeley	Vedder Sand	Vedder Sand	TW-2	from well casing of oil well	KCL 12-9	11,292 - 11,332	7-29S-26E
38	Helm	Zilch formation of Loken (1959)	Zilch formation of Loken (1959)	TW-Mixed	oil well, southeast area of field	Covey 3X	7,057 - 7,061	33-17S-19E
39	Kern Bluff	Santa Margarita Sandstone	Santa Margarita Sandstone	Bo ^d	from separator for several oil wells	separator	1,066 - 1,109	12-29S-28E
40	Kern River	Kern River Formation	Kern River Formation	TW-Mixed	from shut-in oil well casing	San Joaquin Fee 769	380 - 750	5-29S-28E
41	Kettleman North Dome	Lodo Formation	lower McAdams sandstone of Sullivan (1963)	TW-1	oil well, total depth = 10,060 ft	E 72-33	approx. 10,000	33-21S-17E
42	Kettleman North Dome	Lodo Formation	upper McAdams sandstone of Sullivan (1963)	TW-2 °	oil well	E 423-34 J	9,680 - 9,910	34-21S-17E
43	Kettleman North Dome	Temblor Formation	Temblor Formation	TW-Mixed	Total depth = 6326 ft, originally a gas well (now oil and gas)	31-18 Q	approx. 6,000	18-22S-18E

 Table 10.1.
 Sample information for natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas Sample Number	Field Name	Formation Name	Reservoir Rock	Gas Type	Comments	Well Name	Depth Interval (feet)	Sec-Twn-Rng
44	Lost Hills	Monterey Formation	Monterey Formation	TW-2	oil well	Monte Cristo 16 1741	4,546 - 4,782	16-27S-21E
45	Lost Hills	Reef Ridge Sh Mbr of Monterey Fm	Reef Ridge Sh Mbr of Monterey Fm	TW-2	from separator of oil well	Monte Cristo Fee 41	2,300 - 2,700	16-27S-21E
46	Lost Hills, East	Temblor Formation	Gibson sand of Williams (1938)	TW-2	gas well with condensate	Berkeley 1	19,370 - 19,698	6-26S-21E
47	Merrill Avenue	Blewett sands of Hoffman (1964)	Blewett sands of Hoffman (1964)	TD-Mixed	gas well	Wolfson 1-10	6,102 - 6,286	10-11S-13E
48	Merrill Avenue, SE	Blewett sands of Hoffman (1964)	Blewett sands of Hoffman (1964)	TD-1	gas well	Triangle-T 1-33	6,220 - 6,243	33-11S-14E
49	Merrill Avenue, SE	Panoche Formation	Ragged Valley silt of Hoffman (1964)	TD-1	gas well	Triangle-T 1-29	6,377 - 6,756	29-11S-14E
50	Midway-Sunset	Reef Ridge Sh Mbr of Monterey Fm	Reef Ridge Sh Mbr of Monterey Fm	Bo ^f	oil well, steam (from field injection) mixed with gas sample	Shale 284-D	1,516 - 1,690	14-31S-22E
51	Mint Road	Blewett sands of Hoffman (1964)	Blewett sands of Hoffman (1964)	TD-Mixed	gas well	Bertao 1-31	6,344 - 6,371	31-10S-13E
52	Moffat Ranch	Kreyenhagen Shale	Kreyenhagen Shale	TD-Mixed	gas well	Columbia Ranch 2-2	3,974 - 3,985	20-12S-15E
53	Moffat Ranch	Kreyenhagen Shale	Nortonville sand of Frame (1950)	TD-Mixed		N.M.R. 8-12	4,087 - 4,087	12 12S-14E
54	Mount Poso	Vedder Sand	Vedder Sand	TD-Mixed ⁹	from tank for several oil wells	Glide 15-5	approx. 1,600	15 27S-28E
55	Mountain View	Chanac Formation	Chanac Formation	TW-2	from oil and gas separator	Jewett 1-23	5,696 - 6,418	23-31S-29E
56	Mountain View	Chanac Formation	Chanac Formation	TW-Mixed	oil well	Simpson 1	6,930 - 7,013	26-31S-29E
57	Mountain View	schist	schist	TW-2	oil well	Stockton 3	5,605 - 6,140	25-31S-29E
58	Paloma	San Joaquin Formation	San Joaquin Formation	В	gas well	Paloma 43X-4	5,672 - 5,676	4-32S-26E
59	Paloma	San Joaquin Formation	San Joaquin Formation	В	gas well	Paloma 44-4	4,385 - 5,465	4-32S-26E
60	Paloma	Temblor Formation	Carneros Ss Mbr of Temblor Fm	TW-2	oil/condensate well	Paloma 28X-2	approx. 18,300	2-32S-26E
61	Pyramid Hills	Kreyenhagen Shale	Kreyenhagen Shale	TW-1	oil well	Norris-Drilexico- Hand 15	3,542 - 3,600	28-24S-18E
62	Pyramid Hills	Kreyenhagen Shale	Kreyenhagen Shale	TW-Mixed	oil well	Norris/Baylis 2-9	737 - 857	29-24S-18E
63	Raisin City	Kreyenhagen Shale	Kreyenhagen Shale	TW-Mixed	oil well	Ripperdan 56-13	6,174 - 6,300	13-15S-17E
64	Raisin City	Panoche Formation	Panoche Formation	TD-1	gas well	Ripperdan 501-13	7,574 - 7,584	13-15S-17E
65	Raisin City	Zilch formation of Loken (1959)	Zilch formation of Loken (1959)	TD-Mixed	oil well	B 22X-19	4,500 - 5,000	19-15S-18E
66	Rosedale Ranch	Etchegoin Formation	Etchegoin Formation	TD-2	oil well with high water production	KCL 31 16-1	4,190 - 4,328	1-29S-26E
67	San Joaquin	Domengine Formation	Domengine Formation	TW-Mixed	oil well	Schramm 71	approx. 7,800	31-15S-17E
68	Semitropic			TW-Mixed	gas and condensate well	EKHO 1	gt 17,000	3-27S-22E

Table 10.1. Sample information for natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas Sample Number	Field Name	Formation Name	Reservoir Rock	Gas Type	Comments	Well Name	Depth Interval (feet)	Sec-Twn-Rng
69	Semitropic	Etchegoin Formation	Randolph sand of Mitchell and Chamberlain (1983)	TW-Mixed	dual completion - oil zone, from separator	Community 1	7,500 - 8,000	14-27S-23E
70	Semitropic	San Joaquin Formation	San Joaquin Formation	В	dual completion - gas zone, from separator	Community 1	3,000 - 4,000	14-27S-23E
71	Stockdale	Round Mountain Silt	Round Mountain Silt	TW-Mixed	oil well	Panama 2-14	11,073 - 11,140	14-30S-27E
72	Stockdale	Round Mountain Silt	Round Mountain Silt	TW-Mixed	oil well	Panama 2-15	11,150 - 11,250	15-30S-27E
73	Stockdale	Round Mountain Silt	Round Mountain Silt	TW-Mixed	oil well	Panama 3-15	11,035 - 11,170	15-30S-27E
74	Tejon, North	Vedder Sand	Vedder Sand	TW-2	oil well	KCL "L" 67-25	8,710 - 8,710	25-11N-20W
75	Tejon, North	Vedder Sand-Tejon Formation	Vedder Sand-Tejon Formation	TW-2	from separator of oil well	KCL-G North 65- 24	8,475 - 10,695	24-11N-20W
76	Trico	San Joaquin Formation	Mya sand zone of Berryman (1973)	В	gas well	Trico-Newland 12	2,427 - 2,427	21-24S-23E
77	Van Ness Slough	Zilch formation of Loken (1959)	Zilch formation of Loken (1959)	TW-Mixed	oil well	Kleinhammer 1	approx. 6,900	11-17S-19E
78	Wheeler Ridge	Olcese Sand (lower)	Olcese Sand (lower)	TW-Mixed	oil well	KCL "L" So. 56-36	7,460 - 7,460	36-11N-20W
79	Wheeler Ridge	Tejon Formation	Tejon Formation	TW-1	oil well	WRU 312-28	10,140 - 10,552	28-11N-20W
80	Wheeler Ridge	Vedder Sand	Vedder Sand	TW-2	oil well	KCL G 34-27	8,880 - 8,880	27-11N-20W
81	wildcat well			TW-2	from oil and gas drill stem test	Bravo 1	approx. 14,300	17-28S-23E

 $^{^{}a}$ Probably Type TW-1 gas but has high nitrogen and lacks $\delta^{13}\!C$ ethane data to confirm.

^b Possibly Type TW-1 gas on the basis of location, association with Eocene oil and TW-1 gas, and location as shown on figure 10.6.

^c Has low, corrected nitrogen compared with other TD-1 gases, and sample quality is in question due to air contamination.

d Different origin from Type B gas because it has high nitrogen and is associated gas.

e Possibly Type TW-1 gas on the basis of location, association with Eocene oil and TW-1 gas, and location as shown on figure 10.6.

f Different origin from Type B gas because it has high nitrogen and carbon dioxide and is associated gas.

⁹ Different origin than other TD-Mixed or TD-1 gases because it is produced in southern San Joaquin Basin from an oil field (see text).

Table 10.2 A. Geochemical data of natural gas samples from the San Joaquin Basin Province, California.

[Sample information is given in table 10.1. Lab No., analysis number for U.S. Geological Survey Organic Geochemistry Laboratory, Denver, Colo., except numbers starting with GGC- (Jenden and Kaplan, 1989a) and M- (Claypool and others, 2000). Gas compositions are in mole percent. N_2 corr, corrected nitrogen content, using the expression N_2 -(O_2 +Ar)/0.2802. N_2 , nitrogen; O_2 +Ar, oxygen plus argon; O_2 , oxygen; Ar, argon; O_2 , carbon dioxide; O_2 -(O_2 -Ar), hydrogen sulfide; O_2 -(O_2 -Ar), hydrogen; O_2 -(O_2 -Ar), hydrogen; hydrog

Gas Sample Number		Lab No.	N₂corr %	N ₂ %	O ₂ +Ar %	O ₂ %	Ar %	CO ₂	H₂S %	H ₂ %	He %	C₁ %	C ₂ %	C₃ %	i -C ₄
1	Ash Slough	99003023	10.25	12.28	0.57			0.13				86.62	0.33	0.06	0.02
2	Belgian Anticline	GGC-1180		1.38		0.13	0.027	0.90			0.001	79.50	6.61	4.74	0.937
3	Bellevue	99003005	0	3.42	1.11			0.95				75.96	6.88	7.66	1.14
4	Bellevue	02025012	0	1.28	0.51			0.53				67.67	10.33	12.39	1.49
5	Belridge North	02025040	0	1.76	0.59			1.26				87.65	4.98	2.13	0.5
6	Belridge South	02025039	0	2.28	0.95			17.51				74.16	1.05	1.72	0.49
7	Belridge South	02025038	0	1.72	0.69			23.98				57.46	2.73	5.36	1.38
8	Belridge South	02025036	0	1.64	0.72			15.35				81.55	0.25	0.07	0.19
9	Belridge South	02025037	0	1.32	0.52			15.58				60.09	9.61	7.06	1.23
10	Buena Vista	02025035	0	1.49	0.72			10.10				75.73	4.94	3.5	0.85
11	Buena Vista	02025034	0	10.67	3.27			3.85				73.67	3.52	2.97	0.52
12	Buena Vista	02025033	0	1.51	0.61			6.45				84.56	3.46	1.76	0.46
13	Buttonwillow	99003006	0	1.67	0.64			0.00				97.53	0.06	0.06	0.04
14	Chowchilla	GGC-1146		59.10		0.04	0.016	0.01			0.01	40.70	0.374	0.078	0.01
15	Chowchilla	GGC-1148		10.80		0.013	0.015	0.19			0.013	88.20	0.027	0.001	
16	Coalinga	02025003	34.34	35.98	0.46			11.63				48.91	1.18	0.62	0.44
17	Coalinga	02025002	0.19	2.90	0.76			13.60	0.03			60.90	6.76	7.99	1.56
18	Coalinga East Extension	02025004	0.12	1.12	0.28			1.09				83.38	11.17	2.53	0.15
19	Coalinga East Extension	02025005	0	1.11	0.43			2.49				80.25	6.6	4.74	0.84
20	Coalinga, Oil City area	02025001	2.39	31.41	8.13			4.22				55.96	0.2	0.04	0.02
21	Coles Levee, North	99003004	0	2.25	0.77			1.01				82.51	6.21	5.07	0.55
22	Coles Levee, South	99003003	0	3.80	1.32			1.53				82.31	6.75	3	0.41
23	Edison	02025020	0	1.65	0.53			2.69				94.51	0.63		
24	Edison	02025019	0	2.77	0.90			3.31				92.51	0.45		0.03
25	Edison	02025018	4	20.95	4.75			5.12	0.02			59.74	2.51	4.07	1.58
26	Edison	GGC-1181		6.37		0.418	0.069	4.92				81.00	1.64	2.48	1.31

 Table 10.2 A.
 Geochemical data of natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas Sample Number	Field Name	Lab No.	N₂corr %	N ₂ %	O ₂ +Ar %	O ₂ %	Ar %	CO ₂ %	H₂S %	H ₂ %	He %	C ₁ %	C ₂ %	C₃ %	i -C₄ %
27	Elk Hills	99003002	0	7.89	3.47			0.64				80.73	5.52	1.49	0.17
28	Elk Hills	99003001	0	8.76	2.54			2.90				84.89	0.68	0.17	0.02
29	Elk Hills	02025032	0	2.27	0.95			0.47				92.97	1.82	1	0.2
30	Elk Hills	02025031	0.04	0.93	0.25			4.25				79.52	8.03	3.56	0.8
31	Fruitvale	99003011	11.94	14.76	0.79			0.51				83.59	0.33	0.03	
32	Gill Ranch	GGC-1151		8.35		0.014	0.012	0.01			0.01	90.30	0.796	0.115	0.007
33	Gill Ranch	99003019	3.4	12.79	2.63			0.10				83.78	0.62	0.08	
34	Greeley	02025016	0.29	1.79	0.42			1.06				75.74	10.37	6.51	0.71
35	Greeley	02025015	0.13	2.45	0.65			1.05				66.48	4.69	11.09	3.74
36	Greeley	02025013	0	6.84	2.05			2.36				74.14	2.23	4.79	2.05
37	Greeley	02025014	0.15	1.97	0.51			3.41				82.75	7.28	3.81	
38	Helm	99003015	0.82	1.07	0.07			0.80				84.70	7.48	3.96	0.54
39	Kern Bluff	02025021	11.45	14.73	0.92			0.42				83.93			
40	Kern River	02025026	0	3.52	1.60			92.24				1.72		0.39	0.17
41	Kettleman North Dome	M-1													
42	Kettleman North Dome	M-2													
43	Kettleman North Dome	M-3													
44	Lost Hills	02025042	0	2.88	1.02			0.70				80.28	8.27	4.39	0.72
45	Lost Hills	99003012	0.19	2.01	0.51			0.68				82.58	7.28	4.22	0.59
46	Lost Hills, East	02025041	0	0.46	0.13			5.65				83.84	6.55	1.74	0.54
47	Merrill Avenue	99003025	9.4	12.36	0.83			0.16				86.20	0.36	0.07	0.03
48	Merrill Avenue, SE	99003022	23.96	27.99	1.13			0.00			0.11	70.39	0.31	0.05	0.02
49	Merrill Avenue, SE	99003021	32.29	39.21	1.94			0.13				58.55	0.15	0.03	
50	Midway-Sunset	02025030	5.94	7.23	0.36			43.24	0.04	4.1		44.08	0.24	0.15	0.2
51	Mint Road	99003024	4.54	4.79	0.07			0.18				94.55	0.33	0.06	0.03
52	Moffat Ranch	99003020	10.03	13.10	0.86			0.37				85.41	0.21		
53	Moffat Ranch	GGC-1150		7.61		0.021	0.012	0.06			0.01	91.40	0.289	0.049	0.005
54	Mount Poso	02025025	6.36	9.43	0.86			0.32				88.48	0.17	0.36	0.18
55	Mountain View	02025023	1.24	4.17	0.82			0.00				73.68	8.69	7.91	1.4
56	Mountain View	02025024	1.41	4.09	0.75			0.00				71.03	9.43	8.29	1.78
57	Mountain View	02025022	5.39	7.28	0.53			0.00				67.55	10.05	9.13	1.54
58	Paloma	99003008	0	1.58	0.54			0.49				97.27	0.05	0.04	0.02

Table 10.2 A. Geochemical data of natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas Sample	Field Name	Lab No.	N ₂ corr	N_2	O ₂ +Ar	O ₂	Ar	CO ₂	H ₂ S	H ₂	Не	C ₁	C_2	C ₃	i -C ₄
Number			%	%	%	%	%	%	%	%	%	%	%	%	%
59	Paloma	99003009	0	1.71	0.53			0.35				97.33	0.05	0.03	
60	Paloma	99003010	0	5.93	2.69			0.16				79.64	7.42	3.27	0.51
61	Pyramid Hills	02025006	0	0.67	0.37			0.12				61.85	14.17	13.1	2.33
62	Pyramid Hills	02025007	0	0.23	0.26			7.39				88.99	2.04	0.85	0.17
63	Raisin City	02025029	0.29	7.93	2.14			0.56				85.06	1.21	1.14	0.81
64	Raisin City	02025028	8.77	11.84	0.86			0.07				85.35	1.03	0.44	0.19
65	Raisin City	99003017	1.43	6.14	1.32			2.85				88.65	0.79	0.13	0.12
66	Rosedale Ranch	02025017	0	1.51	0.74			15.92				80.86	0.93	0.02	0.02
67	San Joaquin	99003018	0.96	1.25	0.08			0.68				83.95	4.13	4.72	1.62
68	Semitropic	02025008	0	0.48	0.27			0.98				62.57	16.03	12.33	1.84
69	Semitropic	99003014	0	4.07	1.98			0.30				87.97	1.92	3.05	0.34
70	Semitropic	99003013	0.23	3.23	0.84			0.14				95.73	0.04	0.02	
71	Stockdale	02025011	0	2.00	0.88			0.91				67.23	7.05	12.14	2.5
72	Stockdale	02025010	0	1.94	0.70			1.32				75.90	3.79	8.6	1.81
73	Stockdale	02025009	0	3.29	0.99			1.50				64.71	3.97	11.11	2.69
74	Tejon, North	GGC-1176		1.65		0.129	0.012	0.08			0.001	76.20	7.57	4.77	0.986
75	Tejon, North	99003007	0	8.68	3.94			0.03				81.99	4.01	1.15	0.16
76	Trico	GGC-1153		0.22		0.02	0.003	0.50			0.001	99.00	0.033	0.002	
77	Van Ness Slough	99003016	0	2.93	0.94			0.85				73.01	10.11	7.76	1.21
78	Wheeler Ridge	GGC-1177		5.43		0.346	0.025	0.11			0.003	77.50	5.01	4.18	1.12
79	Wheeler Ridge	GGC-1178		0.93		0.274	0.013	0.04				79.20	8.76	5.15	0.863
80	Wheeler Ridge	GGC-1179		2.54		0.291	0.022	0.02		0.005	0.001	75.50	7.93	6.58	1.21
81	wildcat well	M-4													

Table 10.2 B. Additional geochemical data of natural gas samples from the San Joaquin Basin Province, California.

[Sample information is given in table 10.1. Lab No., analysis number for U.S. Geological Survey Organic Geochemistry Laboratory, Denver, Colo., except numbers starting with GGC- (Jenden and Kaplan, 1989a) and M- (Claypool and others, 2000). Gas compositions are in mole percent. n-C₄, normal butane; i-C₅, isopentane (2-methyl butane); n-C₅, normal pentane; n-C₇, normal pentane; n-C₇, normal heptane; Wetness, percent C₂+, using the expression [(Σ C₂ to C5)/(Σ C1 to C5)]*100. δ ¹³C in per mil relative to Peedee belemnite standard; δ D in per mil relative to Standard Mean Ocean Water standard]

Gas					neo-			و.	lene wein	ess								
Sample		n -C ₄	i -C₅	n -C ₅	C ₅	n -C ₆	n -C ₇	her	Wett	δ ¹³ C ₁	$\delta D C_1$	$\delta^{13} \hbox{\bf C}_2$	$\delta D \; C_2$	$\delta^{13} \textbf{C}_3$	$\delta^{13}i$ -C ₄ 8	S ¹³ n -C₄	$\delta^{13}CO_2$	$\delta^{13} \hbox{\bf C}_5$
Number		%	%	%	%	%	%	%	%	‰	‰	‰	‰	‰	‰	‰	‰	‰
1	Ash Slough								0.47	-47.78								
2	Belgian Anticline	1.92	0.685	0.39					16.12	-36.30	-156	-29.50	-132	-28.90				
3	Bellevue	2.57	0.2	0.11					19.64	-46.91		-29.78		-27.14				
4	Bellevue	4.56	0.08	0.78		0.3	0.1		30.46	-46.05		-30.45		-27.96	-26.87	-24.39		
5	Belridge North	0.8	0.18	0.12		0.03			9.04	-37.46		-29.03		-27.38	-25.15	-24.42	-0.03	
6	Belridge South	1.24	0.31	0.23		0.07			6.36	-41.30		-30.86		-29.56	-28.24	-25.14	9.29	
7	Belridge South	4.25	1.18	0.95		0.29	0.02		21.62	-41.65		-28.63		-26.91	-26.76	-23.56	19.16	
8	Belridge South	0.21	0.02	0.02					0.92	-44.96							20.65	
9	Belridge South	2.95	0.78	0.64		0.23			27.04	-42.13		-27.54		-27.78	-28.33	-25.15	8.12	
10	Buena Vista	1.68	0.49	0.36		0.14			13.50	-41.07		-27.12		-27.16	-28.40	-24.85	16.13	
11	Buena Vista	1.15	0.23	0.14		0.02			10.38	-42.91		-28.95		-26.66	-22.12	-21.73	-0.76	
12	Buena Vista	0.79	0.18	0.15		0.07			7.44	-39.84		-24.12		-23.00	-22.25	-18.64	18.91	
13	Buttonwillow								0.16	-57.79								
14	Chowchilla	0.009	0.006	0.004					1.17	-34.00	-143	-36.80						
15	Chowchilla		0.001	0.001					0.03	-53.80	-199							
16	Coalinga	0.43	0.15	0.08	0.02	0.03			5.76	-43.28							-11.48	
17	Coalinga	3.85	0.89	0.56	0.02	0.19			26.21	-48.46		-32.38		-31.09	-31.89	-28.47	13.71	
18	Coalinga East Extension	0.11	0.02	0.08		0.04	0.02		14.43	-39.47		-31.06		-28.93			-2.72	
19	Coalinga East Extension	2.17	0.52	0.48		0.26	0.09	0.02	16.06	-40.82		-29.44		-28.66	-29.09	-26.77	-4.01	
20	Coalinga, Oil City area		0.02						0.50	-38.65							21.40	
21	Coles Levee, North	1.35	0.16	0.12					14.03	-42.73		-28.10		-27.60				
22	Coles Levee, South	0.68	0.12	0.07					11.82	-40.06		-26.17		-25.43				
23	Edison								0.66	-42.73							16.65	
24	Edison				0.02				0.54	-42.18							15.52	
25	Edison	0.49	0.72	0.02	0.03				13.62	-41.52		-28.83		-20.76	-25.42	-9.41	14.17	
26	Edison	0.37	11	0 005					7 86	-39 10	-255	-27 40		-20 00			24 00	

 Table 10.2 B.
 Additional geochemical data of natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas Sample	Field Name	n -C₄	i -C ₅	n -C ₅	neo- C ₅	n -C ₆	n -C	-ex	zene wein	e ^{gS} δ¹³C₁	δD C ₁	$\delta^{13}C_2$	δD C ₂	\$ ¹³ €	$\delta^{13}i$ -C ₄ 8	S ¹³ n −C	8 ¹³ CO	δ^{13} C ₅
Number		// -C₄ %	7 -C₅ %	// -C₅ %	℃ ₅ %	// -C ₆	// -C ₇	%	" "	o C₁ ‰	% %	6 C₂ ‰	‰	o C₃ ‰	% / -C ₄ 0	% // -C ₄	% CO₂	o C₅ ‰
27	Elk Hills	0.09							8.26	-39.87		-25.75		-25.96				
28	Elk Hills	0.04							1.06	-42.12							16.24	
29	Elk Hills	0.28	0.02	0.02					3.47	-51.10		-27.82		-24.11			-4.34	
30	Elk Hills	1.45	0.43	0.37		0.27	0.1	0.06	15.55	-39.79		-25.34		-23.61	-20.34	-19.93	-1.07	
31	Fruitvale								0.43	-43.23							18.23	
32	Gill Ranch	0.006	0.003	0.001					1.02	-47.90	-193	-38.40						
33	Gill Ranch								0.83	-45.83								
34	Greeley	2.15	0.09	0.55		0.42	0.18		21.20	-43.09		-30.06		-28.55	-25.69	-24.92		
35	Greeley	8.14	0.15	1.33		0.22			30.47	-49.05		-27.60		-30.11	-29.30	-25.13		
36	Greeley	4.34	0.07	0.87		0.26			16.22	-50.58		-25.46		-31.50	-29.04	-25.60	0.37	
37	Greeley		0.03	0.17		0.07			12.01	-42.78		-30.13		-26.81	-28.84	-25.22	-5.92	
38	Helm	1.16	0.18				0.02	0.02	13.59	-47.31		-30.92		-30.54				
39	Kern Bluff								0.00	-56.28								
40	Kern River	0.21	0.04	0.02	0.09				34.85	-48.71							32.70	
41	Kettleman North Dome									-33.85		-28.37		-27.55		-27.42		-28.44
42	Kettleman North Dome									-38.52		-28.22		-27.62		-27.46		-27.85
43	Kettleman North Dome									-46.06		-29.18		-27.23		-26.82		-26.99
44	Lost Hills	1.48	0.02	0.2		0.04			15.81	-41.49		-29.08		-27.52	-25.14	-21.17		
45	Lost Hills	1.53	0.27	0.31		0.03			14.67	-41.64		-30.19		-27.98				
46	Lost Hills, East	0.63	0.21	0.12		0.08	0.02	0.03	10.46	-42.12		-25.51		-21.91	-24.64	-19.19	-1.20	
47	Merrill Avenue								0.53	-47.78								
48	Merrill Avenue, SE								0.54	-37.82								
49	Merrill Avenue, SE								0.31	-24.19								
50	Midway-Sunset	0.25	0.04	0.03		0.03	0.02		2.02	-57.56							2.11	
51	Mint Road								0.44	-51.66								
52	Moffat Ranch							0.04	0.25	-54.75								
53	Moffat Ranch	0.012	0.006	0.009					0.40	-51.70	-200	-31.40						
54	Mount Poso	0.2							1.02	-48.62								
55	Mountain View	2.91	0.03	0.35		0.04			22.42	-43.55		-29.03		-28.13	-28.95	-24.22		
56	Mountain View	3.18	0.89	0.48		0.09			25.29	-45.48		-28.93		-27.67	-27.47	-22.75		
57	Mountain View	3.37	0.04	0.45		0.06			26.68	-40.64		-28.30		-26.40	-26.11	-22.20		
58	Paloma								0.11	-58.53								

 Table 10.2 B.
 Additional geochemical data of natural gas samples from the San Joaquin Basin Province, California—Continued.

Gas					neo-			ben	lene weth		_							
Sample	Field Name	n -C ₄	<i>i</i> -C ₅	n -C ₅	C_5	n -C ₆	n -C ₇	ben	Weil	δ ¹³ C₁	$\delta D \; C_1$	$\delta^{13} \hbox{\bf C}_2$	$\delta D \ C_2$	$\delta^{13}\text{C}_3$	$\delta^{13}i$ -C ₄	§ ¹³ n −C ₄	$\delta^{13}CO_2$	$\delta^{13}C_5$
Number		%	%	%	%	%	%	%	%	‰	‰	‰	‰	‰	‰	‰	‰	‰
59	Paloma								0.08	-57.02								
60	Paloma	0.35	0.03						12.69	-39.75		-26.16		-24.76				
61	Pyramid Hills	5.23	0.89	0.8	0.02	0.37	0.08		37.14	-37.73		-30.28		-29.25	-27.51	-25.67		
62	Pyramid Hills		0.03	0.02	0.02				3.40	-45.34		-29.65			-26.10	-25.15	12.81	
63	Raisin City	0.75	0.27	0.11		0.02			4.80	-53.52		-26.33		-28.03	-30.13	-24.41		
64	Raisin City	0.21	0.02						2.17	-40.59		-33.72						
65	Raisin City								1.16	-53.38								
66	Rosedale Ranch								1.19	-40.36		-21.50					15.22	
67	San Joaquin	2.4	0.56	0.47		0.05	0.03	0.05	14.21	-56.62								
68	Semitropic	4.08	0.71	0.51		0.17	0.04		36.20	-46.77		-31.82		-27.98	-27.61	-22.92		
69	Semitropic	0.36	0.02						6.08	-51.13								
70	Semitropic								0.06	-67.99								
71	Stockdale	6.41	0.06	0.73		0.09			30.06	-49.51		-26.57		-26.13	-21.75	-19.80		
72	Stockdale	5.06	0.05	0.68		0.16			20.86	-55.48		-28.96		-29.78	-28.09	-24.40		
73	Stockdale	8.39	1.97	1.36					31.31	-54.97		-28.38		-28.87	-27.44	-23.21	-5.92	
74	Tejon, North	1.61	0.6	0.49					17.38	-38.20	-155	-26.80	-134	-24.70	-24.80	-23.30		
75	Tejon, North	0.05							6.15	-31.22		-22.87						
76	Trico	0.001	0.001	0.001					0.04	-70.20	-203						-13.10	
77	Van Ness Slough	2.56	0.38	0.27					23.39	-48.11		-31.01		-29.98				
78	Wheeler Ridge	1.85	0.781	0.554					14.83	-49.90	-198	-29.50	-128	-26.70				
79	Wheeler Ridge	1.54	0.457	0.326					17.75	-35.60	-153	-27.60	-126	-25.50				
80	Wheeler Ridge	2.14	0.739	0.611					20.28	-40.00	-163	-28.40	-133	-26.20	-25.00	-23.20		
81	wildcat well									-43.04		-30.29		-27.02		-25.32	-8.73	-25.14

Table 10.3 Definition of gas types, San Joaquin Basin Province, California

C ₁ Stable Carbon Isotopes, ‰	Wetness 0 to 2.5%	Wetness >2.5%
$\delta^{13}C > -45$	TD	TW
δ^{13} C -55 to -45	TD-Mixed	TW-Mixed
δ^{13} C <-55	В	TW-Mixed

TD = thermogenic dry, TW = thermogenic wet, B = biogenic, mixed = mixture of biogenic and thermogenic gas. Wetness = percent C_2 + or $[(\Sigma C_2 \text{ to } C_5)/(\Sigma C_1 \text{ to } C_5)] * 100$.