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Atmospheric Aerosol Properties and Climate Impacts

This report critically reviews current knowledge about global distributions 
and properties of atmospheric aerosols, as they relate to aerosol 
impacts on climate. It assesses possible next steps aimed at substantially 
reducing uncertainties in aerosol radiative forcing estimates. Current 
measurement techniques and modeling approaches are summarized, 
providing context. As a part of the Synthesis and Assessment Product 
in the Climate Change Science Program, this assessment builds upon 

recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 
(IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote 
a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration 
of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, 
and general public, both within and outside the U.S government and worldwide.

ES 1. AEROSOLS AND THEIR 
CLIMATE EFFECTS

ES 1.1. Atmospheric Aerosols
Atmospheric aerosols are suspensions of solid 
and/or liquid particles in air. Aerosols are ubiq-
uitous in air and are often observable as dust, 
smoke, and haze. Both natural and human 
processes contribute to aerosol concentra-
tions. On a global basis, aerosol mass derives 
predominantly from natural sources, mainly 
sea salt and dust. However, anthropogenic 
(manmade) aerosols, arising primarily from a 
variety of combustion sources, can dominate 
in and downwind of highly populated and 
industrialized regions, and in areas of intense 
agricultural burning.

The term “atmospheric aerosol” encompasses 
a wide range of particle types having differ-
ent compositions, sizes, shapes, and optical 
properties. Aerosol loading, or amount in the 
atmosphere, is usually quantified by mass 
concentration or by an optical measure, aerosol 
optical depth (AOD). AOD is the vertical inte-
gral through the entire height of the atmosphere 
of the fraction of incident light either scattered 
or absorbed by airborne particles. Usually 
numerical models and in situ observations use 

mass concentration as the primary measure of 
aerosol loading, whereas most remote sensing 
methods retrieve AOD. 

ES 1.2. Radiative Forcing of Aerosols
Aerosols affect Earth’s energy budget by scat-
tering and absorbing radiation (the “direct 
effect”) and by modifying amounts and micro-
physical and radiative properties of clouds (the 
“indirect effects”). Aerosols influence cloud 
properties through their role as cloud condensa-
tion nuclei (CCN) and/or ice nuclei. Increases in 
aerosol particle concentrations may increase the 
ambient concentration of CCN and ice nuclei, 
affecting cloud properties. A CCN increase can 
lead to more cloud droplets so that, for fixed 
cloud liquid water content, the cloud droplet 
size will decrease. This effect leads to brighter 
clouds (the “cloud albedo effect”). Aerosols can 
also affect clouds by absorbing solar energy and 
altering the environment in which the cloud 
develops, thus changing cloud properties with-
out actually serving as CCN. Such effects can 
change precipitation patterns as well as cloud 
extent and optical properties.

The addition of aerosols to the atmosphere al-
ters the intensity of sunlight scattered back to 
space, absorbed in the atmosphere, and arriving 

Aerosols affect 
Earth’s energy budget 
by scattering and ab-

sorbing radiation (the 
“direct effect”) and 

by modifying amounts 
and microphysical 

and radiative proper-
ties of clouds (the 
“indirect effects”).
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at the surface. Such a perturbation of sunlight 
by aerosols is designated aerosol radiative forc-
ing (RF). Note that RF must be defined as a 
perturbation from an initial state, whether that 
state be the complete absence of aerosols, the 
estimate of aerosol loading from pre-industrial 
times, or an estimate of aerosol loading for to-
day’s natural aerosols. The RF calculated from 
the difference between today’s total aerosol 
loading (natural plus anthropogenic) and each 
of the three initial states mentioned above will 
result in different values. Also, the aerosol RF 
calculated at the top of the atmosphere, the 
bottom of the atmosphere, or any altitude in 
between, will result in different values. Other 
quantities that need to be specified when report-
ing aerosol RF include the wavelength range, 
the temporal averaging, the cloud conditions 
considered for direct effects, and the aerosol-
cloud interactions that are being considered 
for the broad classifications of indirect and 
semi-direct effects. Regardless of the exact 
definition of aerosol RF, it is characterized by 
large spatial and temporal heterogeneity due to 
the wide variety of aerosol sources and types, 
the spatial non-uniformity and intermittency of 
these sources, the short atmospheric lifetime of 
aerosols, and the chemical and microphysical 
processing that occurs in the atmosphere.
 
On a global average basis, the sum of direct 
and indirect forcing by anthropogenic aero-
sols at the top of the atmosphere is almost 
certainly negative (a cooling influence), and 
thus almost certainly offsets a fraction of the 
positive (warming) forcing due to anthropo-
genic greenhouse gases. However, because of 
the spatial and temporal non-uniformity of the 
aerosol RF, and likely differences in the effects 
of shortwave and longwave forcings, the net ef-
fect on Earth’s climate is not simply a fractional 
offset to the effects of forcing by anthropogenic 
greenhouse gases.

ES 1.3. Reducing Uncertainties in 
Aerosol Radiative Forcing Estimates
The need to represent aerosol influences on 
climate is rooted in the larger, policy related 
requirement to predict the climate changes 
that would result from different future emis-
sion strategies. This requires that confidence 
in climate models be based on their ability to 
accurately represent not just present climate, 
but also the changes that have occurred over 

roughly the past century. Achieving such 
confidence depends upon adequately under-
standing the forcings that have occurred over 
this period. Although the forcing by long-lived 
greenhouse gases is known relatively accurately 
for this period, the history of total forcing is 
not, due mainly to the uncertain contribution 
of aerosols. 

Present-day aerosol radiative forcing relative 
to preindustrial is estimated primarily using 
numerical models that simulate the emissions of 
aerosol particles and gaseous precursors and the 
aerosol and cloud processes in the atmosphere. 
The accuracy of the models is assessed primar-
ily by comparison with observations. The key 
to reducing aerosol RF uncertainty estimates 
is to understand the contributing processes 
well enough to accurately reproduce them in 
models. This report assesses present ability to 
represent in models the distribution, proper-
ties and forcings of present-day aerosols, and 
examines the limitations of currently available 
models and measurements. The report identifies 
three specific areas where continued, focused 
effort would likely result in substantial reduc-
tion in present-day aerosol forcing uncertainty 
estimates: (1) improving quality and coverage 
of aerosol measurements, (2) achieving more 
effective use of these measurements to con-
strain model simulation/assimilation and to test 
model parameterizations, and (3) producing 
more accurate representation of aerosols and 
clouds in models. 

ES 2. MEASUREMENT-BASED 
ASSESSMENT OF AEROSOL 
RADIATIVE FORCING

Over the past decade, measurements of aerosol 
amount, geographical distribution, and physi-
cal and chemical properties have substantially 
improved, and understanding of the controlling 
processes and the direct and indirect radiative 
effects of aerosols has increased. Key research 
activities have been:
• Development and implementation of new and 

enhanced satellite-borne sensors capable of 
observing the spatial and temporal charac-
teristics of aerosol properties and examine 
aerosol effects on atmospheric radiation. 

• Execution of focused field experiments ex-
amining aerosol processes and properties in 
various aerosol regimes around the globe; 

Forcing by anthropo-
genic aerosols at the 
top of the atmo-
sphere is negative 
(cooling) and offsets 
a fraction of the 
positive (warming) 
forcing by green-
house gases. How-
ever, because of the 
spatial and temporal 
non-uniformity of 
aerosol forcing, the 
net effect is not sim-
ply a fractional offset.
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• Establishment and enhancement of ground-
based networks measuring aerosol proper-
ties and radiative effects; 

• Development and deployment of new and 
enhanced instrumentation including devices 
to determine size dependent particle com-
position on fast timescales, and methods for 
determining aerosol light absorption coef-
ficients and single scattering albedo. 

ES 2.1. Assessments of Aerosol Direct 
Radiative Forcing
Over the past 15 years, focused field campaigns 
have provided detailed characterizations of 
regional aerosol, chemical, microphysical and 
radiative properties, along with relevant surface 
and atmospheric conditions. Studies from these 
campaigns provide highly reliable characteriza-
tion of submicrometer spherical particles such 
as sulfate and carbonaceous aerosol. In situ 
characterization of larger particles such as dust 
are much less reliable.

For all their advantages, field campaigns are 
inherently limited by their relatively short 
duration and small spatial coverage. Surface 
networks and satellites provide a needed long-
term view, and satellites provide additional ex-
tensive spatial coverage. Surface networks, such 
as the Aerosol Robotic Network (AERONET), 
provide observations of AOD at mid-visible 
wavelengths with an accuracy of 0.01 to 0.02, 
nearly three to five times more accurate than 
satellite retrievals. These same remote sensing 
ground networks also typically retrieve column 
integrated aerosol microphysical properties, but 
with uncertainties that are much larger than in 
situ measurements.

The satellite remote sensing capability developed 
over the past decades has enabled the estimate 
of aerosol radiative forcing on a global scale. 
Current satellite sensors such as the MODerate 
resolution Imaging Spectroradiometer (MODIS) 
and Multi-angle Imaging SpectroRadiometer 
(MISR) can retrieve AOD (τ) under cloud free 
conditions with an accuracy of ±0.05 ± 0.20τ 
over land and better than ±0.04 ± 0.1τ over ocean 
at mid-visible wavelength. In addition, these and 
other satellite sensors can qualitatively retrieve 
particle properties (size, shape and absorption), 
a major advance over the previous generation of 
satellite instruments. Much effort has gone into 
comparing different observational methods to 

estimate global oceanic cloud-free aerosol direct 
radiative forcing for solar wavelengths at the 
top of the atmosphere (TOA). Applying various 
methods using MODIS, MISR and the Clouds 
and Earth’s Radiant Energy System (CERES), 
the aerosol direct RF at TOA derived above 
ocean converges to -5.5 ± 0.2 W m-2, where 
the initial state of the forcing perturbation is 
a completely aerosol-free atmosphere. Here, 
the uncertainty is the standard deviation of the 
various methods, indicating close agreement be-
tween the different satellite data sets. However, 
regional comparisons of the various methods 
show greater spread than the global mean. Es-
timates of direct radiative forcing at the ocean 
surface, and at top and bottom of the atmosphere 
over land, are also reported, but are much less 
certain. All these measurement-based estimates 
are calculated for cloud-free conditions using an 
initial state of an aerosol-free atmosphere. 

Although no proven methods exist for measur-
ing the anthropogenic component of the ob-
served aerosol over broad geographic regions, 
satellite retrievals are able to qualitatively 
determine aerosol type under some conditions. 
From observations of aerosol type, the best 
estimates indicate that approximately 20% of 
the AOD over the global oceans is a result of 
human activities. Following from these esti-
mates of anthropogenic fraction, the cloud-free 
anthropogenic direct radiative forcing at TOA 
is approximated to be -1.1 ± 0.4 W m-2 over the 
global ocean, representing the anthropogenic 
perturbation to today’s natural aerosol. 

ES 2.2. Assessments of Aerosol Indi-
rect Radiative Forcing
Remote sensing estimates of aerosol indirect 
forcing are still very uncertain. Even on small 
spatial scales, remote sensing of aerosol ef-
fects on cloud albedo do not match in situ 
observations, due to a variety of difficulties 
with the remote sensing of cloud properties at 
fine scales, the inability of satellites to observe 
aerosol properties beneath cloud base, and the 
difficulty of making aerosol retrievals in cloud 
fields. Key quantities such as liquid water path, 
cloud updraft velocity and detailed aerosol size 
distributions are rarely constrained by coinci-
dent observations.

Most remote sensing observations of aerosol-
cloud interactions and aerosol indirect forcing 
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are based on simple correlations among vari-
ables, which do not establish cause-and-effect 
relationships. Inferring aerosol effects on clouds 
from the observed relationships is complicated 
further because aerosol loading and meteorol-
ogy are often correlated, making it difficult to 
distinguish aerosol from meteorological effects. 
As in the case of direct forcing, the regional na-
ture of indirect forcing is especially important 
for understanding actual climate impact.

ES 3. MODEL ESTIMATED 
AEROSOL RADIATIVE FORCING 
AND ITS CLIMATE IMPACT

Just as different types of aerosol observations 
serve similar purposes, diverse types of models 
provide a variety of approaches to understand-
ing aerosol forcing of climate. Large-scale 
Chemistry and Transport Models (CTMs) are 
used to test current understanding of the pro-
cesses controlling aerosol spatial and temporal 
distributions, including aerosol and precursor 
emissions, chemical and microphysical trans-
formations, transport, and removal. CTMs 
are used to describe the global aerosol system 
and to make estimates of direct aerosol radia-
tive forcing. In general, CTMs do not explore 
the climate response to this forcing. General 
Circulation Models (GCMs), sometimes called 
Global Climate Models, have the capability of 
including aerosol processes as a part of the cli-
mate system to estimate aerosol climate forcing, 
including aerosol-cloud interactions, and the 
climate response to this forcing. Another type 
of model represents atmospheric processes on 
much smaller scales, such as cloud resolving 
and large eddy simulation models. These small-
scale models are the primary tools for improv-
ing understanding of aerosol-cloud processes, 
although they are not used to make estimates 
of aerosol-cloud radiative forcing on regional 
or global scales.
 
ES 3.1. The Importance of Aerosol Ra-
diative Forcing in Climate Models
Calculated change of surface temperature due 
to forcing by anthropogenic greenhouse gases 
and aerosols was reported in IPCC AR4 based 
on results from more than 20 participating 
global climate modeling groups. Despite a wide 
range of climate sensitivity (i.e. the amount of 
surface temperature increase due to a change 
in radiative forcing, such as an increase of CO2) 
exhibited by the models, they all yield a global 

average temperature change very similar to that 
observed over the past century. This agreement 
across models appears to be a consequence of 
the use of very different aerosol forcing values, 
which compensates for the range of climate sen-
sitivity. For example, the direct cooling effect of 
sulfate aerosol varied by a factor of six among 
the models. An even greater disparity was seen 
in the model treatment of black carbon and 
organic carbon. Some models ignored aerosol 
indirect effects whereas others included large 
indirect effects. In addition, for those models 
that included the indirect effect, the aerosol 
effect on cloud brightness (reflectivity) varied 
by up to a factor of nine. Therefore, the fact that 
models have reproduced the global temperature 
change in the past does not imply that their fu-
ture forecasts are accurate. This state of affairs 
will remain until a firmer estimate of radiative 
forcing by aerosols, as well as climate sensitiv-
ity, is available.

ES 3.2. Modeling Atmospheric Aerosols 
Simulations of the global aerosol distribution by 
different models show good agreement in their 
representation of the global mean AOD, which 
in general also agrees with satellite-observed 
values. However, large differences exist in 
model simulations of regional and seasonal 
distributions of AOD, and in the proportion of 
aerosol mass attributed to individual species. 
Each model uses its own estimates of aerosol 
and precursor emissions and configurations 
for chemical transformations, microphysical 
properties, transport, and deposition. Multi-
model experiments indicate that differences 
in the models’ atmospheric processes play a 
more important role than differences in emis-
sions in creating the diversity among model 
results. Although aerosol mass concentration 
is the basic measure of aerosol loading in the 
models, this quantity is translated to AOD via 
mass extinction efficiency in order to compare 
with observations and then to estimate aerosol 
direct RF. Each model employs its own mass 
extinction efficiency based on limited knowl-
edge of optical and physical properties of each 
aerosol type. Thus, it is possible for the models 
to produce different distributions of aerosol 
loading as mass concentrations but agree in 
their distributions of AOD, and vice-versa.
 
Model calculated total global mean direct an-
thropogenic aerosol RF at TOA, based on the 
difference between pre-industrial and current 
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aerosol fields, is -0.22 W m-2, with a range from 
-0.63 to +0.04 W m-2. This estimate does not 
include man-made contributions of nitrate and 
dust, which could add another -0.2 W m-2 esti-
mated by IPCC AR4. The mean value is much 
smaller than the estimates of total greenhouse 
gas forcing of +2.9 W m-2, but the comparison of 
global average values does not take into account 
immense regional variability. Over the major 
sources and their downwind regions, the model-
calculated negative forcing from aerosols can be 
comparable to or even larger than the positive 
forcing by greenhouse gases.
 
ES 3.3. Aerosol Effects on Clouds
Large-scale models are increasingly incorpo-
rating aerosol indirect effects into their cal-
culations. Published large-scale model studies 
report calculated global cloud albedo effect RF 
at top-of-atmosphere, based on the perturbation 
from pre-industrial aerosol fields, ranging from 
-0.22 to  -1.85 W m-2 with a central value of -0.7 
W m-2. Numerical experiments have shown that 
the cloud albedo effect is not a strong function 
of a model’s cloud or radiation scheme, and 
that although model representations of cloud 
physics are important, the differences in mod-
eled aerosol concentrations play a strong role in 
inducing differences in the indirect as well as 
the direct effect. Although small-scale models, 
such as cloud-resolving or large eddy simula-
tion models, do not attempt to estimate global 
aerosol RF, they are essential for understanding 
the fundamental processes occurring in clouds, 
which then leads to better representation of 
these processes in larger-scale models.

ES 3.4. Impacts of Aerosols on Climate 
Model Simulations
The current aerosol modeling capability dem-
onstrated by chemical transport models has not 
been fully incorporated into GCM simulations. 
Of the 20+ models used in the IPCC AR4 as-
sessment, most included sulfate direct RF, but 
only a fraction considered other aerosol types, 
and only less than a third included aerosol in-
direct effects. The lack of a comprehensive rep-
resentation of aerosols in climate models makes 
it difficult to determine climate sensitivity, and 
thus to make climate change predictions.
 
Although the nature and geographical distri-
bution of forcings by greenhouse gases and 
aerosols are quite different, it is often assumed 
that to first approximation the effects of these 

forcings on global mean surface temperature 
are additive, so that the negative forcing by 
anthropogenic aerosols has partially offset the 
positive forcing by incremental greenhouse 
gas increases over the industrial period. The 
IPCC AR4 estimates the total global average 
TOA forcing by incremental greenhouse gases 
to be 2.9 ± 0.3 W m-2, where the uncertainty 
range is meant to encompass the 90% prob-
ability that the actual value will be within the 
indicated range. The corresponding value for 
aerosol forcing at TOA (direct plus enhanced 
cloud albedo effects), defined as the perturba-
tion from pre-industrial conditions, is -1.3 (-2.2 
to -0.5) W m-2. The total forcing, 1.6 (0.6 to 
2.4) W m-2, reflects the offset of greenhouse 
gas forcing by aerosols, where the uncertainty 
in total anthropogenic RF is dominated by the 
uncertainty in aerosol RF.
 
However, since aerosol forcing is much more 
pronounced on regional scales than on the 
global scale because of the highly variable 
aerosol distributions, it would be insufficient 
or even misleading to place too much emphasis 
on the global average. Also, aerosol RF at the 
surface is stronger than that at TOA, exerting 
large impacts within the atmosphere to alter 
the atmospheric circulation patterns and water 
cycle. Therefore, impacts of aerosols on climate 
should be assessed beyond the limted aspect of  
globally averaged radiative forcing at TOA.

ES 4. THE WAY FORWARD

The uncertainty in assessing total anthropo-
genic greenhouse gas and aerosol impacts on 
climate must be much reduced from its current 
level to allow meaningful predictions of future 
climate. This uncertainty is currently domi-
nated by the aerosol component. In addition, 
evaluation of aerosol effects on climate must 
take into account high spatial and temporal 
variation of aerosol amounts and properties as 
well as the aerosol interactions with clouds and 
precipitation. Thus, the way forward requires 
more certain estimates of aerosol radiative forc-
ing, which in turn requires better observations, 
improved models, and a synergistic approach.

From the observational perspective, the high 
priority tasks are:
• Maintain current and enhance future 

satellite capabilities for measuring geo-
graphical and vertical distribution of aerosol 
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amount and optical properties, suitable for 
estimating aerosol forcing over multi-dec-
adal time scales and for evaluating global 
models.

• Maintain, enhance, and expand the sur-
face observation networks measuring aero-
sol optical properties for satellite retrieval 
validation, model evaluation, and climate 
change assessments. Observation should 
be augmented with routine measurements 
of other key parameters with state-of-art 
techniques.

• Execute a continuing series of coordinated 
field campaigns aiming to study the atmo-
spheric processes, to broaden the database 
of detailed aerosol chemical, physical, and 
optical/radiative characteristics, to validate 
remote-sensing retrieval products, and to 
evaluate chemistry transport models.

• Initiate and carry out a systematic pro-
gram of simultaneous measurement of 
aerosol composition and size distribution, 
cloud microphysical properties, and precipi-
tation variables.

• Fully exploit the existing information in 
satellite observations of AOD and par-
ticle type by refining retrieval algorithms, 
quantifying data quality, extracting greater 
aerosol information from joint multi-sensor 
products, and generating uniform, climate-
quality data records.

• Measure the formation, evolution, and 
properties of aerosols under controlled 
laboratory conditions to develop mechanis-
tic and quantitative understanding of aerosol 
formation, chemistry, and dynamics.

• Improve measurement-based techniques 
for distinguishing anthropogenic from 
natural aerosols by combining satellite 
data analysis with in situ measurements and 
modeling methods.

Individual sensors or instruments have both 
strengths and limitations, and no single strat-
egy is adequate for characterizing the complex 
aerosol system. The best approach is to make 
synergistic use of measurements from multiple 
platforms, sensors and instruments having 
complementary capabilities. The wealth of 
information coming from the variety of to-
day’s sensors has not yet been fully exploited. 
Advances in measurement-based estimates of 
aerosol radiative forcing are expected in the 
near future, as existing data sets are more fully 

explored. Even so, the long-term success in re-
ducing climate-change prediction uncertainties 
rests with improving modeling capabilities, and 
today’s suite of observations can only go so far 
towards that goal.

From the modeling perspective, the high prior-
ity tasks are: 
• Improve the accuracy and capability of 

model simulation of aerosols (including 
components and atmospheric processes) 
and aerosol direct radiative forcing. Obser-
vational strategies described above must be 
developed to constrain and validate the key 
parameters in the model.

• Advance the ability to model aerosol-
cloud-precipitation interaction in climate 
models, particularly the simulation of 
clouds, in order to reduce the largest un-
certainty in the climate forcing/feedback 
processes.

• Incorporate improved representation 
of aerosol processes in coupled aerosol-
climate system models and evaluate the 
ability of these models to simulate present 
climate and past (twentieth century) climate 
change.

• Apply coupled aerosol-climate system 
models to assess the climate change that 
would result from alternative scenarios of 
prospective future emissions of greenhouse 
gases and aerosols and aerosol precursors.

In addition to the above priorities in measure-
ments and modeling, there is a critical need to:
• Develop and evaluate emission inventories 

of aerosol particles and precursor gases. 
Continuous development and improvement 
of current emissions, better estimates of past 
emissions, and projection of future emissions 
should be maintained.

Progress in improving modeling capabilities 
requires effort on the observational side, to 
reduce uncertainties and disagreements among 
observational data sets. The way forward 
will require integration of satellite and in situ 
measurements into global models. However, 
understanding the strengths and weaknesses 
of each observational data set must be clear in 
order for the constraints they provide to improve 
confidence in the models, and for efforts at data 
assimilation to succeed. 

The way forward 
requires more 
certain estimates 
of aerosol radiative 
forcing, which in 
turn requires better 
observations, im-
proved models, and a 
synergistic approach.
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Narrowing the gap between the current under-
standing of long-lived greenhouse gas and that 
of anthropogenic aerosol contributions to RF 
will require progress in all aspects of aerosol-
climate science. Development of new space-
based, field and laboratory instruments will be 
needed, and in parallel, more realistic simula-
tions of aerosol, cloud and atmospheric pro-
cesses must be incorporated into models. Most 
importantly, greater synergy among different 
types of measurements, among different types 
of models, and especially between measure-

Most importantly, 
greater synergy 
among different 

types of measure-
ments, among 

different types of 
models, and es-

pecially between 
measurements and 

models is critical.

ments and models is critical. Aerosol-climate 
science will naturally expand to encompass 
not only radiative effects on climate, but also 
aerosol effects on cloud processes, precipitation, 
and weather. New initiatives will strive to more 
effectively include experimentalists, remote 
sensing scientists and modelers as equal part-
ners, and the traditionally defined communities 
in different atmospheric science disciplines will 
increasingly find common ground in addressing 
the challenges ahead. 

Several massive wildfires were across southern California during October 2003. MODIS, on the NASA 
Terra satellite, captured smoke spreading across the region and westward over the Pacific Ocean on 
October 26, 2003. Credit: NASA.
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Mexico city, located in a basin surrounded by mountains, often accumulates air pollution—anthropogenic 
combustion particles, sometimes mixed with wildfire smoke and mineral dust from the surrounding 
region. Photo taken from the NASA DC-8 aircraft during the INTEX-B field experiment in spring 2006. 
Credit: Cameron McNaughton, University of Hawaii.

Los Angeles in the haze at sunset. Pollution aerosols scatter sunlight, shrouding the region in an intense 
orange-brown glow, as seen through an airplane window, looking west across the LA River, with the city 
skyline in the background. Credit: Barbara Gaitley, JPL/NASA.
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(Note: Terms in italic in each paragraph are defined 
elsewhere in this glossary.)

Absorption
the process in which incident radiant energy is re-
tained by a substance.

Absorption coefficient
fraction of incident radiant energy removed by ab-
sorption per length of travel of radiation through the 
substance. 

Active remote sensing
a remote sensing system that transmits its own energy 
source, then measures the properties of the returned 
signal. Contrasted with passive remote sensing.

Adiabatic equilibrium
a vertical distribution of temperature and pressure in 
an atmosphere in hydrostatic equilibrium such that 
an air parcel displaced adiabatically will continue to 
possess the same temperature and pressure as its sur-
roundings, so that no restoring force acts on a parcel 
displaced vertically.

Aerosol
a colloidal suspension of liquid or solid particles (in air).

Aerosol asymmetry factor (also called asymmetry 
parameter, g)
the mean cosine of the scattering angle, found by in-
tegration over the complete scattering phase function 
of aerosol; g = 1 denotes completely forward scat-
tering and g = 0 denotes symmetric scattering. For 
spherical particles, the asymmetry parameter is relat-
ed to particle size in a systematic way: the larger the 
particle size, the more the scattering in the forward 
hemisphere.

Aerosol direct radiative effect
change in radiative flux due to aerosol scattering and 
absorption with the presence of aerosol relative to the 
absence of aerosol.

Aerosol hemispheric backscatter fraction (b)
the fraction of the scattered intensity that is redirected 
into the backward hemisphere relative to the incident 
light; can be determined from measurements made 
with an integrating nephelometer. The larger the par-
ticle size, the smaller the b.

Aerosol indirect effects
processes referring to the influence of aerosol on 
cloud droplet concentration or radiative properties. 
Effects include the effect of aerosols on cloud droplet 
size and therefore its brightness (also known as the 
“cloud albedo effect”, “first aerosol indirect effect”, 
or ”Twomey effect”); and the effect of cloud drop-
let size on precipitation efficiency and possibly cloud 
lifetime (also known as the “second aerosol indirect 
effect” or “Albrecht effect”).

Aerosol mass extinction (scattering, absorption) 
efficiency
the aerosol extinction (scattering, absorption) coeffi-
cient per aerosol mass concentration, with a commonly 
used unit of m2 g-1.

Aerosol optical depth
the (wavelength dependent) negative logarithm of the 
fraction of radiation (or light) that is extinguished (or 
scattered or absorbed) by aerosol particles on a verti-
cal path, typically from the surface (or some specified 
altitude) to the top of the atmosphere. Alternatively 
and equivalently: The (dimensionless) line integral of 
the absorption coefficient (due to aerosol particles), or 
of the scattering coefficient (due to aerosol particles), 
or of the sum of the two (extinction coefficient due to 
aerosol particles), along such a vertical path. Indicative 
of the amount of aerosol in the column, and specifi-
cally relates to the magnitude of interaction between 
the aerosols and shortwave or longwave radiation.

Aerosol phase function
the angular distribution of radiation scattered by aero-
sol particle or by particles comprising an aerosol. In 
practice, the phase function is parameterized with 
asymmetry factor (or asymmetry parameter). Aero-
sol phase function is related to aerosol hemispheric 
backscatter fraction (b) and aerosol particle size: the 
larger the particle size, the more the forward scatter-
ing (i.e. larger g and smaller b).

Aerosol radiative forcing
the net energy flux (downwelling minus upwelling) 
difference between an initial and a perturbed aerosol 
loading state, at a specified level in the atmosphere. 
(Other quantities, such as solar radiation, are assumed 
to be the same.) This difference is defined such that 
a negative aerosol forcing implies that the change in 
aerosols relative to the initial state exerts a cooling in-
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fluence, whereas a positive forcing would mean the change 
in aerosols exerts a warming influence. The aerosol radiative 
forcing must be qualified by specifying the initial and per-
turbed aerosol states for which the radiative flux difference is 
calculated, the altitude at which the quantity is assessed, the 
wavelength regime considered, the temporal averaging, the 
cloud conditions, and whether total or only human-induced 
contributions are considered (see Chapter 1, Section 1.2).

Aerosol radiative forcing efficiency
aerosol direct radiative forcing per aerosol optical depth 
(usually at 550 nm). It is governed mainly by aerosol size 
distribution and chemical composition (determining the 
aerosol single-scattering albedo and phase function), sur-
face reflectivity, and solar irradiance.

Aerosol semi-direct effect
the processes by which aerosols change the local temper-
ature and moisture (e.g., by direct radiative heating and 
changing the heat releases from surface) and thus the local 
relative humidity, which leads to changes in cloud liquid 
water and perhaps cloud cover. 

Aerosol single-scattering albedo (SSA)
a ratio of the scattering coefficient to the extinction coef-
ficient of an aerosol particle or of the particulate matter of 
an aerosol. More absorbing aerosols and smaller particles 
have lower SSA. 

Aerosol size distribution
probability distribution function of the number concentra-
tion, surface area, or volume of the particles comprising 
an aerosol, per interval (or logarithmic interval) of radius, 
diameter, or volume. 

Albedo
the ratio of reflected flux density to incident flux density, 
referenced to some surface; might be Earth surface, top of 
the atmosphere. 

Angström exponent (Å)
exponent that expresses the spectral dependence of aerosol 
optical depth (τ) (or scattering coefficient, absorption coeffi-
cient, etc.) with the wavelength of light (λ) as inverse power 
law: τ∝λ-Å. The Ångström exponent is inversely related to 
the average size of aerosol particles: the smaller the par-
ticles, the larger the exponent.

Anisotropic
not having the same properties in all directions.

Atmospheric boundary layer (abbreviated ABL; also 
called planetary boundary layer—PBL)
the bottom layer of the troposphere that is in contact with 
the surface of the earth. It is often turbulent and is capped 

by a statically stable layer of air or temperature inversion. 
The ABL depth (i.e., the inversion height) is variable in time 
and space, ranging from tens of meters in strongly statically 
stable situations, to several kilometers in convective condi-
tions over deserts.

Bidirectional reflectance distribution function (BRDF)
a relationship describing the reflected radiance from a given 
region as a function of both incident and viewing directions. 
It is equal to the reflected radiance divided by the incident 
irradiance from a single direction.

Clear-sky radiative forcing
radiative forcing (of gases or aerosols) in the absence of 
clouds. Distinguished from total-sky or all-sky radiative 
forcing, which include both cloud-free and cloudy regions.

Climate sensitivity
the change in global mean near-surface temperature per unit 
of radiative forcing; when unqualified typically refers to 
equilibrium sensitivity; transient sensitivity denotes time de-
pendent change in response to a specified temporal profile.

Cloud albedo
the fraction of solar radiation incident at the top of cloud 
that is reflected by clouds in the atmosphere or some subset 
of the atmosphere.

Cloud condensation nuclei (abbreviated CCN)
aerosol particles that can serve as seed particles of atmo-
spheric cloud droplets, that is, particles on which water 
condenses (activates) at supersaturations typical of atmo-
spheric cloud formation (fraction of one percent to a few 
percent, depending on cloud type); may be specified as 
function of supersaturation.

Cloud resolving model
a numerical model that resolves cloud-scale (and mesoscale) 
circulations in three (or sometimes two) spatial dimensions. 
Usually run with horizontal resolution of 5 km or less.

Coalescence
the merging of two or more droplets of precipitation (or 
aerosol particles; also denoted coagulation) into a single 
droplet or particle.

Condensation
in general, the physical process (phase transition) by which a 
vapor becomes a liquid or solid; the opposite of evaporation.

Condensation nucleus (abbreviated CN)
an aerosol particle forming a center for condensation under 
extremely high supersaturations (up to 400% for water, but 
below that required to activate small ions).
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Data assimilation
the combining of diverse data, possibly sampled at different 
times and intervals and different locations, into a unified 
and physically consistent description of a physical system, 
such as the state of the atmosphere.

Diffuse radiation
radiation that comes from some continuous range of direc-
tions. This includes radiation that has been scattered at least 
once, and emission from nonpoint sources.

Dry deposition
the process by which atmospheric gases and particles are 
transferred to the surface as a result of random turbulent air, 
impaction, and /or gravitational settling.

Earth Observing System (abbreviated EOS)
a major NASA initiative to develop and deploy state-of-the-
art remote sensing instruments for global studies of the land 
surface, biosphere, solid earth, atmosphere, oceans, and 
cryosphere. The first EOS satellite, Terra, was launched in 
December 1999. Other EOS satellites include Aqua, Aura, 
ICESat, among others.

Emission of radiation
the generation and sending out of radiant energy. The emis-
sion of radiation by natural emitters is accompanied by a 
loss of energy and is considered separately from the pro-
cesses of absorption or scattering.

Emission of gases or particles
the introduction of gaseous or particulate matter into the 
atmosphere by natural or human activities, e.g., bubble 
bursting of whitecaps, agriculture or wild fires, volcanic 
eruptions, and industrial processes.
 
Equilibrium vapor pressure
the pressure of a vapor in equilibrium with its condensed 
phase (liquid or solid).

Evaporation (also called vaporization)
physical process (phase transition) by which a liquid is trans-
formed to the gaseous state; the opposite of condensation.

External mixture (referring to an aerosol; contrasted with 
internal mixture)
an aerosol in which different particles (or in some usages, 
different particles in the same size range) exhibit different 
compositions.

Extinction (sometimes called attenuation)
the process of removal of radiant energy from an incident 
beam by the processes of absorption and/or scattering and 
consisting of the totality of this removal.

Extinction coefficient
fraction of incident radiant energy removed by extinction 
per length of travel of radiation through the substance. 

General circulation model (abbreviated GCM)
a time-dependent numerical model of the entire global at-
mosphere or ocean or both. The acronym GCM is often ap-
plied to Global Climate Model.

Geostationary satellite
a satellite to be placed into a circular orbit in a plane aligned 
with Earth’s equator, and at an altitude of approximately 
36,000 km such that the orbital period of the satellite is 
exactly equal to Earth’s period of rotation (approximately 
24 hours). The satellite appears stationary with respect to a 
fixed point on the rotating Earth. 

Hygroscopicity
the relative ability of a substance (as an aerosol) to adsorb 
water vapor from its surroundings and ultimately dissolve. 
Frequently reported as ratio of some property of particle 
or of particulate phase of an aerosol (e.g., diameter, mean 
diameter) as function of relative humidity to that at low 
relative humidity. 

Ice nucleus (abbreviated IN)
any particle that serves as a nucleus leading to the forma-
tion of ice crystals without regard to the particular physical 
processes involved in the nucleation.

In situ
a method of obtaining information about properties of an 
object (e.g., aerosol, cloud) through direct contact with that 
object, as opposed to remote sensing.

Internal mixture (referring to an aerosol; contrasted with 
external mixture)
an aerosol consisting of a mixture of two or more substanc-
es, for which all particles exhibit the same composition (or 
in some usage, the requirement of identical composition is 
limited to all particles in a given size range). Typically an 
internal mixture has a higher absorption coefficient than an 
external mixture.

Irradiance (also called radiant flux density)
a radiometric term for the rate at which radiant energy in a 
radiation field is transferred across a unit area of a surface 
(real or imaginary) in a hemisphere of directions. In gen-
eral, irradiance depends on the orientation of the surface. 
The radiant energy may be confined to a narrow range of 
frequencies (spectral or monochromatic irradiance) or inte-
grated over a broad range of frequencies. 
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Large eddy simulation (LES)
A three dimensional numerical simulation of turbulent flow 
in which large eddies (with scales on the order of hundreds 
of meters) are resolved and the effects of the subgrid-scale 
eddies are parameterized. The typical model grid-size is < 
100 m and modeling domains are on the order of 10 km. Be-
cause they resolve cloud-scale dynamics, large eddy simula-
tions are powerful tools for studying the effects of aerosol on 
cloud microphysics and dynamics. 

Lidar (light detection and ranging)
a technique for detecting and characterizing objects by 
transmitting pulses of laser light and analyzing the portion 
of the signal that is reflected and returned to the sensor.

Liquid water path
line integral of the mass concentration of the liquid water 
droplets in the atmosphere along a specified path, typically 
along the path above a point on the Earth surface to the top 
of the atmosphere.
 
Longwave radiation (also known as terrestrial radiation or 
thermal infrared radiation)
electromagnetic radiation at wavelengths greater than 4 
µm, typically for temperatures characteristic of Earth’s 
surface or atmosphere. In practice, radiation originating by 
emission from Earth and its atmosphere, including clouds; 
contrasted with shortwave radiation.

Low Earth orbit (LEO)
an orbit (of satellite) typically between 300 and 2000 kilo-
meters above Earth.

Mass spectrometer
instrument that fragments and ionizes a chemical substance 
or mixture by and characterizes composition by amounts of 
ions as function of molecular weight. 

Nucleation
the process of initiation of a new phase in a supercooled 
(for liquid) or supersaturated (for solution or vapor) envi-
ronment; the initiation of a phase change of a substance to a 
lower thermodynamic energy state (vapor to liquid conden-
sation, vapor to solid deposition, liquid to solid freezing).

Optical depth
the optical thickness measured vertically above some given 
altitude. Optical depth is dimensionless and may be applied 
to Rayleigh scattering optical depth, aerosol extinction (or 
scattering, or absorption) optical depth.

Optical thickness
line integral of extinction (or scattering or absorption) co-
efficient along a path. Dimensionless. 

Passive remote sensing
a remote sensing system that relies on the emission (trans-
mission) of natural levels of radiation from (through) the 
target. Contrasted with active remote sensing.

Phase function
probability distribution function of the angular distribution 
of the intensity of radiation scattered (by a molecule, gas, 
particle or aerosol) relative to the direction of the incident 
beam. See also Aerosol phase function.

Polarization
a state in which rays of light exhibit different properties in 
different directions as measured azimuthially about the di-
rection of propagation of the radiation, especially the state 
in which all the electromagnetic vibration takes place in a 
single plane (plane polarization).

Polarimeter
instrument that measures the polarization of incoming light 
often used in the characterization of light scattered by at-
mospheric aerosols.

Primary trace atmospheric gases or particles
substances which are directly emitted into the atmosphere 
from Earth surface, vegetation or natural or human activity, 
e.g., bubble bursting of whitecaps, fires, and industrial pro-
cesses; contrasted with secondary substances.

Radar (radio detection and ranging)
similar to lidar, but using radiation in microwave range.

Radiance
a radiometric term for the rate at which radiant energy in a 
set of directions confined to a small unit solid angle around 
a particular direction is transferred across unit area of a sur-
face (real or imaginary) projected onto this direction, per 
unit solid angle of incident direction.

Radiative forcing
the net energy flux (downwelling minus upwelling) differ-
ence between an initial and a perturbed state of atmospheric 
constituents, such as carbon dioxide or aerosols, at a speci-
fied level in the atmosphere; applies also to perturbation 
in reflected radiation at Earth’s surface due to change in 
albedo. See also Aerosol radiative forcing.

Radiative heating
the process by which temperature of an object (or vol-
ume of space that encompasses a gas or aerosol) in-
creases in response to an excess of absorbed radiation 
over emitted radiation.
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Radiometer
instrument that measures the intensity of radiant energy 
radiated by an object at a given wavelength; may or may 
not resolve by wavelength.

Refractive index (of a medium)
the real part is a measure for how much the speed of 
light (or other waves such as sound waves) is reduced 
inside the medium relative to speed of light in vacuum, 
and the imaginary part is a measure of the amount of 
absorption when the electromagnetic wave propagates 
through the medium.

Relative humidity
the ratio of the vapor pressure of water to its saturation va-
por pressure at the same temperature.

Remote sensing: a method of obtaining information about 
properties of an object (e.g., aerosol, cloud) without coming 
into physical contact with that object; opposed to in situ.

Saturation
the condition in which the vapor pressure (of a liquid 
substance; for atmospheric application, water) is equal 
to the equilibrium vapor pressure of the substance over 
a plane surface of the pure liquid substance, sometimes 
similarly for ice; similarly for a solute in contact with 
a solution.

Scattering
in a broad sense, the process by which matter is excited 
to radiate by an external source of electromagnetic radia-
tion. By this definition, reflection, refraction, and even 
diffraction of electromagnetic waves are subsumed un-
der scattering. Often the term scattered radiation is ap-
plied to that radiation observed in directions other than 
that of the source and may also be applied to acoustic 
and other waves.

Scattering coefficient
fraction of incident radiant energy removed by scattering 
per length of travel of radiation through the substance.

Secondary trace atmospheric gases or particles
formed in the atmosphere by chemical reaction, new par-
ticle formation, etc.; contrasted with primary substances, 
which are directly emitted into the atmosphere.

Secondary organic aerosols (SOA)
organic aerosol particles formed in the atmosphere by 
chemical reactions from gas-phase precursors.

Shortwave radiation
radiation in the visible and near-visible portions of the 
electromagnetic spectrum (roughly 0.3 to 4.0 µm in 
wavelength) which range encompasses the great ma-
jority of solar radiation and little longwave (terrestrial 
thermal) radiation; contrasted with longwave (terres-
trial) radiation.

Single scattering albedo (SSA)
the ratio of light scattering to total light extinction (sum 
of scattering and absorption); for aerosols, generally re-
stricted to scattering and extinction by the aerosol particles. 
More absorbing aerosols have lower SSA; a value of unity 
indicates that the particles are not absorbing.

Solar zenith angle
angle between the vector of Sun and the zenith.

Spectrometer
instrument that measures light received in terms of the in-
tensity at constituent wavelengths, used for example to de-
termine chemical makeup, temperature profiles, and other 
properties of atmosphere. See also Mass spectrometer.

Stratosphere
the region of the atmosphere extending from the top of the 
troposphere, at heights of roughly 10-17 km, to the base of 
the mesosphere, at a height of roughly 50 km.

Sunglint
a phenomenon that occurs when the sun reflects off the sur-
face of the ocean at the same angle that a satellite sensor is 
viewing the surface.

Supersaturation
the condition existing in a given portion of the atmosphere 
(or other space) when the relative humidity is greater than 
100%, that is, when it contains more water vapor than is 
needed to produce saturation with respect to a plane sur-
face of pure water or pure ice.

Surface albedo
the ratio, often expressed as a percentage, of the amount of 
electromagnetic radiation reflected by Earth’s surface to the 
amount incident upon it. In general, surface albedo depends 
on wavelength and the directionality of the incident radia-
tion; hence whether incident radiation is direct or diffuse, 
cf., bidirectional reflectance distribution function (BRDF). 
Value varies with wavelength and with the surface com-
position. For example, the surface albedo of snow and ice 
vary from 80% to 90% in the mid-visible, and that of bare 
ground from 10% to 20%.
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Troposphere
the portion of the atmosphere from the earth’s surface to the 
tropopause; that is, the lowest 10-20 kilometers of the at-
mosphere, depending on latitude and season; most weather 
occurs in troposphere.
 
Transient climate response
The time-dependent surface temperature response to a 
gradually evolving forcing. 

Wet scavenging or wet deposition
removal of trace substances from the air by either rain or 
snow. May refer to in-cloud scavenging, uptake of trace 
substances into cloud water followed by precipitation, 
or to below-cloud scavenging, uptake of material below 
cloud by falling precipitation and subsequent delivery to 
Earth’s surface.

Whitecap
a patch of white water formed at the crest of a wave as it 
breaks, due to air being mixed into the water.

Major reference: Glossary of Meteorology, 2nd edi-
tion,  American Meteorological Society.

ACRONYMS

A Surface albedo (broadband)
Å Ångström exponent
ABC Asian Brown Cloud
ACE Aerosol Characterization Experiment
AD-Net Asian Dust Network
ADEOS Advanced Earth Observation Satellite 
ADM Angular Dependence Models 
AeroCom Aerosol Comparisons between Observa- 
 tions and Models
AERONET  Aerosol Robotic Network
AI Aerosol Index
AIOP Aerosol Intensive Operative Period
ANL Argonne National Laboratory (DOE)
AOD (τ) Aerosol Optical Depth
AOT  Aerosol Optical Thickness
APS Aerosol Polarimetry Sensor
AR4 Forth Assessment Report, IPCC
ARCTAS Arctic Research of the Composition of  
 the Troposphere from Aircraft and Satellites
ARM Atmospheric Radiation Measurements
AVHRR Advanced Very High Resolution  
 Radiometer 
A-Train Constellation of six afternoon overpass
 satellites
BASE-A Biomass Burning Airborne and Space- 
 borne Experiment Amazon and Brazil
BC Black Carbon
BNL  Brookhaven National Laboratory (DOE) 
BRDF Bidirectional Reflectance Distribution  
 Function
CALIOP Cloud and Aerosol Lidar with Orthogonal 
 Polarization 
CALIPSO Cloud Aerosol Infrared Pathfinder Satellite  
 Observations
CAPMoN Canadian Air and Precipitation Monitoring  
 Network
CCN Cloud Condensation Nuclei
CCRI Climate Change Research Initiative
CCSP Climate Change Science, Program
CDNC Cloud Droplet Number Concentration
CERES Clouds and the Earth’s Radiant Energy  
 System
CLAMS Chesapeake Lighthouse and Aircraft  
 Measurements for Satellite campaign
CTM Chemistry and Transport Model
DABEX Dust And Biomass-burning Experiment
DOE Department of Energy
DRF Direct Radiative Forcing (aerosol)
EANET Acid Deposition Monitoring Network in  
 East Asia
EARLINET European Aerosol Research Lidar Network
EarthCARE Earth Clouds, Aerosols, and Radiation  
 Explorer
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EAST-AIRE East Asian Studies of Tropospheric   
 Aerosols: An International Regional  
 Experiment
EMEP European Monitoring and Evaluation  
 Programme
EOS Earth Observing System
EP Earth Pathfinder
EPA Environmental Protection Agency
ERBE Earth Radiation Budget Experiment
ESRL Earth System Research Laboratory   
 (NOAA)
Eτ Aerosol Forcing Efficiency (RF
 normalized by AOD) 
FAR IPCC First Assessment Report (1990)
FT Free Troposphere
g Particle scattering asymmetry factor
GAW Global Atmospheric Watch
GCM General Circulation Model, Global Climate 
 Model
GEOS Goddard Earth Observing System
GFDL Geophysical Fluid Dynamics Laboratory 
 (NOAA)
GHGs Greenhouse Gases
GISS Goddard Institute for Space Studies  
 (NASA)
GLAS  Geoscience Laser Altimeter System 
GMI Global Modeling Initiative
GOCART Goddard Chemistry Aerosol Radiation  
 and Transport (model)
GOES Geostationary Operational Environmental  
 Satellite
GoMACCS Gulf of Mexico Atmospheric Composition  
 and Climate Study
GSFC Goddard Space Flight Center (NASA)
HSRL  High-Spectral-Resolution Lidar
ICARTT International Consortium for Atmospheric  
 Research on Transport and Transformation
ICESat Ice, Cloud, and Land Elevation Satellite
IMPROVE Interagency Monitoring of Protected  
 Visual Environment
INCA Interactions between Chemistry and 
 Aerosol (LMDz model) 
INDOEX Indian Ocean Experiment 
INTEX-NA Intercontinental Transport Experiment -  
 North America
INTEX-B Intercontinental Transport Experiment -  
 Phase B
IPCC Intergovermental Panel on Climate   
 Change
IR Infrared radiation
LBA Large-Scale Biosphere-Atmosphere  
 Experiment in Amazon
LES Large Eddy Simulation
LITE Lidar In-space Technology Experiment

LMDZ Laboratoire de Météorologie Dynamique 
 with Zoom, France 
LOA Laboratoire d’ Optique Atmosphérique,  
 France
LOSU Level of Scientific Understanding
LSCE Laboratoire des Sciences du Climat et de  
 l’Environnement, France
LWC  Liquid Water Content 
LWP Liquid Water Path
MAN Maritime Aerosol Network
MEE Mass Extinction Efficiency
MILAGRO Megacity Initiative: Local and Global  
 Research Observations
MFRSR Multifilter Rotating Shadowband 
 Radiometer
MINOS Mediterranean Intensive Oxidant Study
MISR Multi-angle Imaging SpectroRadiometer 
MODIS Moderate Resolution Imaging Spectro- 
 radiometer
MOZART Model for Ozone and Related chemical  
 Tracers
MPLNET Micro Pulse Lidar Network 
NASA National Aeronautics and Space
 Administration
NASDA NAtional Space Development Agency,  
 Japan
NEAQS New England Air Quality Study
NOAA National Oceanography and Atmosphere  
 Administration
NPOESS National Polar-orbiting Operational  
 Environmental Satellite System
NPP NPOESS Preparatory Project
NPS National Park Services
NRC National Research Council
OC Organic Carbon
OMI Ozone Monitoring Instrument
PARASOL Polarization and Anisotropy of Reflectance  
 for Atmospheric Science, coupled with  
 Observations from a Lidar
PDF Probability Distribution Function
PEM-West  Western Pacific Exploratory Mission
PM Particulate Matter (aerosols)
PMEL Pacific Marine Environmental Laboratory  
 (NOAA)
POLDER Polarization and Directionality of the  
 Earth’s Reflectance
POM Particulate Organic Matter
PRIDE Pueto Rico Dust Experiment
REALM Regional East Atmospheric Lidar Mesonet
RF Radiative Forcing, aerosol
RH Relative Humidity 
RTM Radiative Transfer Model 
SAFARI South Africa Regional Science, 

 Experiment
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SAMUM Saharan Mineral Dust Experiment
SAP Synthesis and Assessment Product (CCSP)
SAR  IPCC Second Assessment Report (1995)
SCAR-A Smoke, Clouds, and Radiation - America
SCAR-B Smoke, Clouds, and Radiation - Brazil
SeaWiFS Sea-viewing Wide Field-of-view Sensor
SGP Southern Great Plain, ARM site in  
 Oklahoma
SHADE Saharan Dust Experiment
SMOCC Smoke, Aerosols, Clouds, Rainfall and 
 Climate
SOA Secondary Organic Aerosol
SPRINTARS Spectral Radiation-Transport Model for 
 Aerosol Species
SSA Single-Scattering Albedo
SST Sea Surface Temperature
STEM Sulfate Transport and Deposition Model
SURFRAD NOAA’s national surface radiation  
 budget network

SZA Solar Zenith Angle
TAR Third Assessment Report, IPCC
TARFOX Tropospheric Aerosol Radiative Forcing 
 Observational Experiment 
TCR Transient Climate sensitivity Range
TexAQS Texas Air Quality Study
TOA Top of the Atmosphere 
TOMS Total Ozone Mapping Spectrometer
TRACE-A Transport and Chemical Evolution over 
 the Atlantic
TRACE-P Transport and Chemical Evolution over  
 the Pacific
UAE2 United Arab Emirates Unified Aerosol 
 Experiment
UMBC University of Maryland at Baltimore 
 County
UV Ultraviolet radiation
VOC Volatile Organic Compounds 
WMO World Meteorological Organization

Assessing the environmental impact of cloud fields becomes even more complicated when the contributions of aerosol particles in 
and around the cloud particles are also considered. Image from MODIS. Credit: NASA.
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Image 1: Fire in the savanna grasslands of Kruger National Park, South Africa, during the 
international Southern African Fire-Atmosphere Research Initiative (SAFARI) Experiment, 
September 1992. Due to extensive and frequent burning of the savanna grass, Africa is the 
“fire center” of the world. Credit: Joel S. Levine, NASA.

Image 2: Urban pollution in Hong Kong, May 2007. The persistent pollution haze signifi-
cantly reduces the visibility. Credit: Mian Chin, NASA.

Image 3: Dust storms of northwest Africa captured by Sea-viewing Wide Field-of-view Sen-
sor (SeaWiFS) on February 28, 2000. Credit: SeaWiFS Project at NASA Goddard Space 
Flight Center.

Image 4: Breaking ocean waves – a source of sea salt aerosols. Credit: Mian Chin, NASA.

Image 5: Clouds at sunset. Clouds and aerosols scatter the sun’s rays very effectively 
when the sun is low in the sky, creating the bright colors of sunrise and sunset. Credit: 
Mian Chin, NASA.

Image 6: Ship tracks appear when clouds are formed or modified by aerosols released in 
exhaust from ship smokestacks. Image from MODIS. Credit: NASA.

For other images in this report, please see the captions/credits located with each image.
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