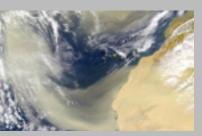

Atmospheric Aerosol Properties and Climate Impacts

January 2009

FEDERAL EXECUTIVE TEAM

Director, Climate Change Science Program:	William J. Brennan
Director, Climate Change Science Program Office:	Peter A. Schultz
Lead Agency Principal Representative to CCSP, Associate Director for Research, Earth Science Division, National Aeronautics and Space Administration:	Jack Kaye
Lead Agency Point of Contact, Earth Science Division, National Aeronautics and Space Administration:	Hal Maring
Product Lead, Laboratory for Atmospheres, Earth Science Division, Goddard Space Flight Center, National Aeronautics and Space Administration:	Mian Chin
Chair, Synthesis and Assessment Product Advisory Group Associate Director, National Center for Environmental Assessment, U.S. Environmental Protection Agency:	Michael W. Slimak
Synthesis and Assessment Product Coordinator, Climate Change Science Program Office:	Fabien J.G. Laurier


EDITORIAL AND PRODUCTION TEAM

Editors:	Mian Chin, NASA
	1
	-
Graphic Design:	Sally Bensusen, NASA
	Debbi McLean, NASA

This document, part of the Synthesis and Assessment Products described in the U.S. Climate Change Science Program (CCSP) Strategic Plan, was prepared in accordance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and the information quality act guidelines issued by the National Aeronautics and Space Administration pursuant to Section 515. The CCSP Interagency Committee relies on National Aeronautics and Space Administration certifications regarding compliance with Section 515 and Agency guidelines as the basis for determining that this product conforms with Section 515. For purposes of compliance with Section 515, this CCSP Synthesis and Assessment Product is an "interpreted product" as that term is used in National Aeronautics and Space Administration guidelines and is classified as "highly influential". This document does not express any regulatory policies of the United States or any of its agencies, or provides recommendations for regulatory action.

Atmospheric Aerosol Properties and Climate Impacts

Synthesis and Assessment Product 2.3 Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research

COORDINATING LEAD AUTHOR: Mian Chin, NASA Goddard Space Flight Center

LEAD AND CONTRIBUTING AUTHORS: Ralph A. Kahn, Lorraine A. Remer, Hongbin Yu, NASA GSFC; David Rind, NASA GISS; Graham Feingold, NOAA ESRL; Patricia K. Quinn, NOAA PMEL; Stephen E. Schwartz, DOE BNL; David G. Streets, DOE ANL; Philip DeCola, Rangasayi Halthore, NASA HQ

January 2009,

Members of Congress:

On behalf of the National Science and Technology Council, the U.S. Climate Change Science Program (CCSP) is pleased to transmit to the President and the Congress this Synthesis and Assessment Product (SAP) *Atmospheric Aerosol Properties and Climate Impacts*. This is part of a series of 21 SAPs produced by the CCSP aimed at providing current assessments of climate change science to inform public debate, policy, and operational decisions. These reports are also intended to help the CCSP develop future program research priorities.

The CCSP's guiding vision is to provide the Nation and the global community with the science-based knowledge needed to manage the risks and capture the opportunities associated with climate and related environmental changes. The SAPs are important steps toward achieving that vision and help to translate the CCSP's extensive observational and research database into informational tools that directly address key questions being asked of the research community.

This SAP reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It was developed in accordance with the Guidelines for Producing CCSP SAPs, the Information Quality Act (Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554)), and the guidelines issued by the National Aeronautics and Space Administration pursuant to Section 515.

We commend the report's authors for both the thorough nature of their work and their adherence to an inclusive review process.

Carlos M. Gutierrez Secretary of Commerce Chair, Committee on Climate Change Science and Technology Integration

Sincerely,

Summed a VS

Samuel W. Bodman Secretary of Energy Vice Chair, Committee on Climate Change Science and Technology Integration

The Mart

John H. Marburger III Director, Office of Science and Technology Policy Executive Director, Committee on Climate Change Science and Technology Integration

Executive Summary	1
ES I.Aerosols and Their Climate Effects	I
ES 1.1.Atmospheric Aerosols	I
ES 1.2. Radiative Forcing of Aerosols	I
ES 1.3. Reducing Uncertainties in Aerosol Radiative Forcing Estimates	2
ES 2. Measurement-Based Assessment of Aerosol Radiative Forcing	2
ES 2.1. Assessments of Aerosol Direct Radiative Forcing	3
ES 2.2. Assessments of Aerosol Indirect Radiative Forcing	3
ES 3. Model Estimated Aerosol Radiative Forcing and Its Climate Impact	
ES 3.1. The Importance of Aerosol Radiative Forcing in Climate Models	4
ES 3.2. Modeling Atmospheric Aerosols	4
ES 3.3. Aerosol Effects on Clouds	5
ES 3.4. Impacts of Aerosols on Climate Model Simulations	
ES 4. The Way Forward	

CHAPTER

	9
Introduction	
1.1 Description of Atmospheric Aerosols	9
I.2 The Climate Effects of Aerosols	12
1.3. Reducing Uncertainties in Aerosol-Climate Forcing Estimates	16
I.4 Contents of This Report	20

2	
Remote Sensing and In Situ Measurements of Aerosol Properties, Burden	is,
and Radiative Forcing	
2.1. Introduction	
2.2. Overview of Aerosol Measurement Capabilities	
2.2.1. Satellite Remote Sensing	
2.2.2. Focused Field Campaigns	27
2.2.3. Ground-based In situ Measurement Networks	
2.2.4. In situ Aerosol Profiling Programs	28
2.2.5. Ground-based Remote Sensing Measurement Networks	29
2.2.6. Synergy of Measurements and Model Simulations	
2.3. Assessments of Aerosol Characterization and Climate Forcing	34
2.3.1. The Use of Measured Aerosol Properties to Improve Models	34
2.3.2. Intercomparisons of Satellite Measurements and Model Simulation of	
Aerosol Optical Depth	37
2.3.3. Satellite Based Estimates of Aerosol Direct Radiative Forcing	38
2.3.4. Satellite Based Estimates of Anthropogenic Component of Aerosol Direct	
Radiative Forcing	44
2.3.5. Aerosol-Cloud Interactions and Indirect Forcing	44
2.4. Outstanding Issues	49
2.5. Concluding Remarks	52

TABLE OF CONTENTS

3	55
Modeling the Effects of Aerosols on Climate Forcing	
3.1. Introduction	55
3.2. Modeling of Atmospheric Aerosols	56
3.2.1. Estimates of Emissions	
3.2.2. Aerosol Mass Loading and Optical Depth	58
3.3. Calculating Aerosol Direct Radiative Forcing	61
3.4. Calculating Aerosol Indirect Forcing	66
3.4.1.Aerosol Effects on Clouds	66
3.4.2. Model Experiments	67
3.4.3.Additional Aerosol Influences	
3.4.4. High Resolution Modeling	70
3.5. Aerosol in the Climate Models	72
3.5.1. Aerosol in the IPCC AR4 Climate Model Simulations	72
3.5.2. Additional considerations	
3.6. Impacts of Aerosols on Climate Model Simulations	
3.6.1. Surface Temperature Change	
3.6.2. Implications for Climate Model Simulations	81
3.7. Outstanding Issues	81
3.8 Conclusions	82

4	85
The Way Forward	
4.1. Major Research Needs	85
4.2. Priorities	
4.2. I. Measurements	
4.2.2. Modeling	
4.2.3. Emissions	
4.3. Concluding Remarks	

Glossary and Acronyms9	I
References	9

AUTHOR TEAM FOR THIS REPORT

Executive Summary	Lorraine A. Remer, NASA GSFC; Mian Chin, NASA GSFC; Philip DeCola, NASA HQ; Graham Feingold, NOAA ERSL; Rangasayi Halthore, NASA HQ/NRL; Ralph A. Kahn, NASA GSFC; Patricia K. Quinn, NOAA PMEL; David Rind, NASA GISS; Stephen E. Schwartz, DOE BNL; David G. Streets, DOE ANL; Hongbin Yu, NASA GSFC/UMBC
Chapter 1	Lead Authors: Ralph A. Kahn, NASA GSFC; Hongbin Yu, NASA GSFC/UMBC Contributing Authors: Stephen E. Schwartz, DOE BNL; Mian Chin, NASA GSFC; Graham Feingold, NOAA ESRL; Lorraine A. Remer, NASA GSFC; David Rind, NASA GISS; Rangasayi Halthore, NASA HQ/NRL; Philip DeCola, NASA HQ
Chapter 2	Lead Authors: Hongbin Yu, NASA GSFC/UMBC; Patricia K. Quinn, NOAA PMEL; Graham Feingold, NOAA ESRL; Lorraine A. Remer, NASA GSFC; Ralph A. Kahn, NASA GSFC Contributing Authors: Mian Chin, NASA GSFC; Stephen E. Schwartz, DOE BNL
Chapter 3	Lead Authors: David Rind, NASA GISS; Mian Chin, NASA GSFC; Graham Fein- gold, NOAA ESRL; David G. Streets, DOE ANL Contributing Authors: Ralph A. Kahn, NASA GSFC; Stephen E. Schwartz, DOE BNL; Hongbin Yu, NASA GSFC/UMBC
Chapter 4	David Rind, NASA GISS; Ralph A. Kahn, NASA GSFC; Mian Chin, NASA GSFC; Stephen E. Schwartz, DOE BNL; Lorraine A. Remer, NASA GSFC; Graham Feingold, NOAA ESRL; Hongbin Yu, NASA GSFC/UMBC; Patricia K. Quinn, NOAA PMEL; Rangasayi Halthore, NASA HQ/NRL

ACKNOWLEDGMENTS

First, the authors wish to acknowledge the late Yoram J. Kaufman both for his inspiration and contributions to aerosol-climate science throughout his career and for his early leadership of the activity that produced this document. His untimely passing left it to the remaining authors to complete this report. Yoram and his contributions to our community are greatly missed.

This Climate Change Science Program Synthesis and Assessment Product (CCSP SAP) 2.3 has been reviewed by a group of experts, the public, and Federal Agencies. The purpose of these independent reviews was to assure the quality of this product.

We wish to thank the following individuals for their expert review of this report: Sundar Christopher (University of Alabama Huntsville), Daniel Jacob (Harvard University), Steven Ghan (Pacific Northwest National Laboratory), John Ogren (NOAA Earth System Research Laboratory), and Susan Solomon (NOAA Earth System Research Laboratory).

We also wish to thank the following individuals/group for their public/federal agency review of this report: Joel D. Scheraga (EPA), Samuel P. Williamson (NOAA/OFCM), Alan Carlin, David L. Hagen, Douglas Hoyt, Forrest M. Mims III (Geronimo Creek observatory), John Pittman, Nathan Taylor (Texas A&M University), Werner Weber (Technische University Dortmund, Germany), and the NOAA Research Council.

The work by Bates et al. (2006), Penner et al. (2006), Yu et al. (2006), Textor et al. (2006), Kinne et al. (2006), Schulz et al. (2006), and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007) provided important groundwork for the material in Chapter 2 and Chapter 3.

RECOMMENDED CITATIONS

For the Report as a Whole:

CCSP 2009: *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA, 128 pp.

For the Executive Summary:

Remer, L. A., M. Chin, P. DeCola, G. Feingold, R. Halthore, R. A. Kahn, P. K. Quinn, D. Rind, S. E. Schwartz, D. Streets, and H. Yu, 2009: Executive Summary, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter I:

Kahn, R. A., H. Yu, S. E. Schwartz, M. Chin, G. Feingold, L. A. Remer, D. Rind, R. Halthore, and P. DeCola, 2009: Introduction, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter 2:

Yu, H., P. K. Quinn, G. Feingold, L. A. Remer, R. A. Kahn, M. Chin, and S. E. Schwartz, 2009: Remote Sensing and *In Situ* Measurements of Aerosol Properties, Burdens, and Radiative Forcing, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter 3:

Rind, D., M. Chin, G. Feingold, D. Streets, R. A. Kahn, S. E. Schwartz, and H. Yu, 2009: Modeling the Effects of Aerosols on Climate, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter 4:

Rind, D., R. A. Kahn, M. Chin, S. E. Schwartz, L. A. Remer, G. Feingold, H. Yu, P. K. Quinn, and R. Halthore, 2009: The Way Forward, in *Atmospheric Aerosol Properties and Climate Impacts,* A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

Earth observed from space. Much of the information contained in this image came from the MODIS instrument on the NASA Terra satellite. This 2002 "Blue Marble" features land surfaces, clouds, topography, and city lights. Credit: NASA (image processed by Robert Simmon and Reto Stöckli).

Introduction

Lead Authors: Ralph A. Kahn, NASA GSFC; Hongbin Yu, NASA GSFC/UMBC

Contributing Authors: Stephen E. Schwartz, DOE BNL; Mian Chin, NASA GSFC; Graham Feingold, NOAA ESRL; Lorraine A. Remer, NASA GSFC; David Rind, NASA GISS; Rangasayi Halthore, NASA HQ/NRL; Philip DeCola, NASA HQ

This report highlights key aspects of current knowledge about the global distribution of aerosols and their properties, as they relate to climate change. Leading measurement techniques and modeling approaches are briefly summarized, providing context for an assessment of the next steps needed to significantly reduce uncertainties in this component of the climate change picture. The present assessment builds upon the recent Inter-governmental Panel on Climate Change Fourth Assessment Report (IPCC AR4, 2007) and other sources.

I.I Description of Atmospheric Aerosols

Although Earth's atmosphere consists primarily of gases, aerosols and clouds play significant roles in shaping conditions at the surface and in the lower atmosphere. Aerosols are liquid or solid particles suspended in the air, whose typical diameters range over four orders of magnitude, from a few nanometers to a few tens of micrometers. They exhibit a wide range of compositions and shapes, that depend on the their origins and subsequent atmospheric processing. For many applications, aerosols from about 0.05 to 10 micrometers in diameter are of greatest interest, as particles in this size range dominate aerosol direct interaction with sunlight, and also make up the majority of the aerosol mass. Particles at the small end of this size range play a significant role in interactions with clouds, whereas particles at the large end, though much less numerous, can contribute significantly near dust and volcanic sources. Over the ocean, giant salt particles may also play a role in cloud development.

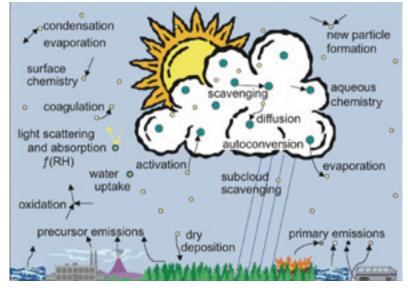

A large fraction of aerosols is natural in origin, including desert and soil dust, wildfire smoke, sea salt particles produced mainly by breaking bubbles in the spray of ocean whitecaps, and volcanic ash. Volcanoes are also sources of sulfur dioxide, which, along with sulfur-containing gases produced by ocean biology and the decomposition of organic matter, as well as hydrocarbons such as terpenes and isoprene emitted by vegetation, are examples of gases that can be converted to so-called "secondary" aerosols by chemical processes in the atmosphere. Figure 1.1 gives a summary of aerosol processes most relevant to their influence on climate.

Table 1.1 reports estimated source strengths, lifetimes, and amounts for major aerosol types, based on an aggregate of emissions estimates and global model simulations; the ranges provided represent model diversity only, as the global measurements required to validate these quantities are currently lacking.

Aerosol optical depth (AOD) (also called aerosol optical thickness, AOT, in the literature) is a measure of the amount of incident light either scattered or absorbed by airborne particles. Formally, aerosol optical depth is a dimensionless quantity, the integral of the product of particle number concentration and particle extinction cross-section (which accounts for individual particle scattering + absorption),

along a path length through the atmosphere, usually measured vertically. In addition to AOD, particle size, composition, and structure, which are mediated both by source type and subsequent atmospheric processing, determine how particles interact with radiant energy and influence the heat balance of the planet. Size and composition also determine the ability of particles to serve as nuclei upon which cloud droplets form. This provides an indirect means for aerosol to interact with radiant energy by modifying cloud properties.

Among the main aerosol properties required to evaluate their effect on radiation is the *singlescattering albedo* (SSA), which describes the fraction of light interacting with the particle that is scattered, compared to the total that is scattered and absorbed. Values range from 0 for totally absorbing (dark) particles to 1 for purely scattering ones; in nature, SSA is rarely lower than about 0.75. Another quantity, the *asymmetry parameter* (g), reports the first moment of the cosine of the scattered radiation angular distribution. The parameter g ranges from -1 for entirely back-scattering particles, to 0 for isotropic (uniform) scattering, to +1 for entirely forward-scattering. One further quantity that

Figure 1.1. Major aerosol processes relevant to their impact on climate. Aerosols can be directly emitted as primary particles and can form secondarily by the oxidation of emitted gaseous precursors. Changes in relative humidity (RH) can cause particle growth or evaporation, and can alter particle properties. Physical processes within clouds can further alter particle properties, and conversely, aerosols can affect the properties of clouds, serving as condensation nuclei for new cloud droplet formation. Aqueous-phase chemical reactions in cloud drops or in clear air can also affect aerosol properties. Particles are ultimately removed from the atmosphere, scavenged by falling raindrops or settling by dry deposition. Modified from Ghan and Schwartz (2007).

must be considered in the energy balance is the *surface albedo* (A), a measure of reflectivity at the ground, which, like SSA, ranges from 0 for purely absorbing to 1 for purely reflecting. In practice, A can be near 0 for dark surfaces, and can reach values above 0.9 for visible light over snow. AOD, SSA, g, and A are all dimensionless quantities, and are in general wavelength-dependent. In this report, AOD, SSA, and g are given at mid-visible wavelengths, near the peak of the solar spectrum around 550 nanometers, and A is given as an average over the solar spectrum, unless specified otherwise.

About 10% of global atmospheric aerosol mass is generated by human activity, but it is concentrated in the immediate vicinity, and downwind of sources (e.g., Textor et al., 2006). These anthropogenic aerosols include primary (directly emitted) particles and secondary particles that are formed in the atmosphere. Anthropogenic aerosols originate from urban and industrial emissions, domestic fire and other combustion products, smoke from agricultural burning, and soil dust created by overgrazing, deforestation, draining of inland water bodies, some farming practices, and generally, land management activities that destabilize the surface regolith to wind erosion. The amount of aerosol in the atmosphere has greatly increased in some parts of the world during the industrial period, and the nature of this particulate matter has substantially changed as a consequence of the evolving nature of emissions from industrial, commercial, agricultural, and residential activities, mainly combustion-related.

One of the greatest challenges in studying aerosol impacts on climate is the immense diversity, not only in particle size, composition, and origin, but also in spatial and temporal distribution. For most aerosols, whose primary source is emissions near the surface, concentrations are greatest in the atmospheric boundary layer, decreasing with altitude in the free troposphere. However, smoke from wildfires and volcanic effluent can be injected above the boundary layer; after injection, any type of aerosol can be lofted to higher elevations; this can extend their atmospheric lifetimes, increasing their impact spatially and climatically.

Aerosols are removed from the atmosphere primarily through cloud processing and wet

One of the greatest challenges in studying aerosol impacts on climate is the immense diversity, not only in particle size, composition, and origin, but also in spatial and temporal distribution. Table I.I. Estimated source strengths, lifetimes, mass loadings, and optical depths of major aerosol types. Statistics are based on results from 16 models examined by the Aerosol Comparisons between Observations and Models (AeroCom) project (Textor et al., 2006; Kinne et al., 2006). BC = black carbon; POM = particulate organic matter. See Chapter 3 for more details.

Aerosol Type	Total source ¹ (Tg/yr ¹)	Lifetime (day)	Mass loading ¹ (Tg)	Optical depth @ 550 nm
	Median (Range)	Median (Range)	Median (Range)	Median (Range)
Sulfate ²	190 (100-230)	4.1 (2.6-5.4)	2.0 (0.9-2.7)	0.034 (0.015-0.051)
ВС	II (8-20)	6.5 (5.3-15)	0.2 (0.05-0.5)	0.004 (0.002-0.009)
POM ²	100 (50-140)	6.2 (4.3-11)	1.8 (0.5-2.6)	0.019 (0.006-0.030)
Dust	1600 (700-4000)	4.0 (1.3-7)	20 (5-30)	0.032 (0.012-0.054)
Sea salt	6000 (2000-120000)	0.4 (0.03-1.1)	6 (3-13)	0.030 (0.020-0.067)
Total				0.13 (0.065-0.15)

¹ Tg (teragram) = 10^{12} g, or million metric tons.

² The sulfate aerosol source is mainly SO₂ oxidation, plus a small fraction of direct emission. The organic matter source includes direct emission and hydrocarbon oxidation.

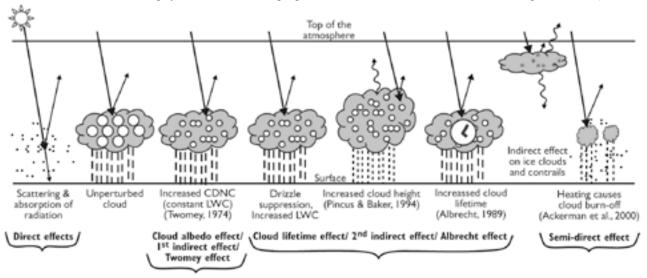
deposition in precipitation, a mechanism that establishes average tropospheric aerosol atmospheric lifetimes at a week or less (Table 1.1). The efficiency of removal therefore depends on the proximity of aerosols to clouds. For example, explosive volcanoes occasionally inject large amounts of aerosol precursors into the stratosphere, above most clouds; sulfuric acid aerosols formed by the 1991 Pinatubo eruption exerted a measurable effect on the atmospheric heat budget for several years thereafter (e.g., Minnis et al., 1993; McCormick et al., 1995; Robock, 2000, 2002). Aerosols are also removed by dry deposition processes: gravitational settling tends to eliminate larger particles, impaction typically favors intermediate-sized particles, and coagulation is one way smaller particles can aggregate with larger ones, leading to their eventual deposition by wet or dry processes. Particle injection height, subsequent air mass advection, and other factors also affect the rate at which dry deposition operates.

Despite relatively short average residence times, aerosols regularly travel long distances. For example, particles moving at mean velocity of 5 m s⁻¹ and remaining in the atmosphere for a week will travel 3000 km. Global aerosol observations from satellites provide ample evidence of this– Saharan dust reaches the Caribbean and Amazon basin, Asian desert dust and anthropogenic aerosol is found over the central Pacific and sometimes as far away as North America, and Siberian smoke can be deposited in the Arctic. This transport, which varies both seasonally and inter-annually, demonstrates the global scope of aerosol influences.

As a result of the non-uniform distribution of aerosol sources and sinks, the short atmospheric lifetimes and intermittent removal processes compared to many atmospheric greenhouse trace gases, the spatial distribution of aerosol particles is quite non-uniform. The amount and nature of aerosols vary substantially with location and from year to year, and in many cases exhibit strong seasonal variations.

One consequence of this heterogeneity is that the impact of aerosols on climate must be understood and quantified on a regional rather than just a global-average basis. AOD trends observed in the satellite and surface-based data records suggest that since the mid-1990s, the amount of anthropogenic aerosol has decreased over North America and Europe, but has increased over parts of east and south Asia; on average, the atmospheric concentration of low-latitude smoke particles has increased (Mishchenko and Geogdzhayev, 2007). The observed AOD trends in the northern hemisphere are qualitatively consistent with changes in anthropogenic emissions (e.g. Streets et al., 2006a), and with observed trends in surface solar radiation flux ("solar brightening" or "dimming"), though other factors could be involved (e.g., Wild et al., 2005). Similarly, the increase in smoke parallels is associated with

The impact of aerosols on climate must be understood and quantified on a regional rather than just a global-average basis.


changing biomass burning patterns (e.g., Koren et al., 2007a).

I.2 The Climate Effects of Aerosols

Aerosols exert a variety of impacts on the environment. Aerosols (sometimes referred to particulate matter or "PM," especially in air quality applications), when concentrated near the surface, have long been recognized as affecting pulmonary function and other aspects of human health. Sulfate and nitrate aerosols play a role in acidifying the surface downwind of gaseous sulfur and odd nitrogen sources. Particles deposited far downwind might fertilize iron-poor waters in remote oceans, and Saharan dust reaching the Amazon Basin is thought to contribute nutrients to the rainforest soil.

Aerosols also interact strongly with solar and terrestrial radiation in several ways. Figure 1.2 offers a schematic overview. First, they scatter and absorb sunlight (McCormick and Ludwig, 1967; Charlson and Pilat, 1969; Atwater, 1970; Mitchell, Jr., 1971; Coakley et al., 1983); these are described as "direct effects" on shortwave (solar) radiation. Second, aerosols act as sites at which water vapor can accumulate during cloud droplet formation, serving as cloud condensation nuclei or CCN. Any change in number concentration or hygroscopic properties of such particles has the potential to modify the physical and radiative properties of clouds, altering cloud brightness (Twomey, 1977) and the likelihood and intensity with which a cloud will precipitate (e.g., Gunn and Phillips, 1957; Liou and Ou 1989; Albrecht, 1989). Collectively changes in cloud processes due to anthropogenic aerosols are referred to as *aerosol indirect effects*. Finally, absorption of solar radiation by particles is thought to contribute to a reduction in cloudiness, a phenomenon referred to as the *semi-direct effect*. This occurs because absorbing aerosol warms the atmosphere, which changes the atmospheric stability, and reduces surface flux.

The primary direct effect of aerosols is a brightening of the planet when viewed from space, as much of Earth's surface is dark ocean, and most aerosols scatter more than 90% of the visible light reaching them. The primary indirect effects of aerosols on clouds include an increase in cloud brightness, change in precipitation and possibly an increase in lifetime; thus the overall net impact of aerosols is an enhancement of Earth's reflectance (shortwave albedo). This reduces the sunlight reaching Earth's surface, producing a net climatic cooling, as well as a redistribution of the radiant and latent heat energy deposited in the atmosphere. These effects can alter atmospheric circulation and the water cycle, including precipitation patterns, on a variety of length and time scales (e.g., Ramanathan et al., 2001a; Zhang et al., 2006).

Figure 1.2. Aerosol radiative forcing. Airborne particles can affect the heat balance of the atmosphere, directly, by scattering and absorbing sunlight, and indirectly, by altering cloud brightness and possibly lifetime. Here small black dots represent aerosols, circles represent cloud droplets, straight lines represent short-wave radiation, and wavy lines, long-wave radiation. LWC is liquid water content, and CDNC is cloud droplet number concentration. Confidence in the magnitudes of these effects varies considerably (see Chapter 3). Although the overall effect of aerosols is a net cooling at the surface, the heterogeneity of particle spatial distribution, emission history, and properties, as well as differences in surface reflectance, mean that the magnitude and even the sign of aerosol effects vary immensely with location, season and sometimes inter-annually. The human-induced component of these effects is sometimes called "climate forcing." (From IPCC, 2007, modified from Haywood and Boucher, 2000).)

The primary direct effect of aerosols is a brightening of the planet when viewed from space. The primary indirect effects of aerosols on clouds include an increase in cloud brightness and possibly an increase in lifetime. The overall net impact of aerosols is an enhancement of Earth's reflectance.

Atmospheric Aerosol Properties and Climate Impacts

Several variables are used to quantify the impact aerosols have on Earth's energy balance; these are helpful in describing current understanding, and in assessing possible future steps.

For the purposes of this report, *aerosol radiative forcing* (RF) is defined as the net energy flux (downwelling minus upwelling) difference between an initial and a perturbed aerosol loading state, at a specified level in the atmosphere. (Other quantities, such as solar radiation, are assumed to be the same for both states.) This difference is defined such that a negative aerosol forcing implies that the change in aerosols relative to the initial state exerts a cooling influence, whereas a positive forcing would mean the change in aerosols exerts a warming influence.

There are a number of subtleties associated with this definition:

(1) The initial state against which aerosol forcing is assessed must be specified. For direct aerosol radiative forcing, it is sometimes taken as the complete absence of aerosols. IPCC AR4 (2007) uses as the initial state their estimate of aerosol loading in 1750. That year is taken as the approximate beginning of the era when humans exerted accelerated influence on the environment.

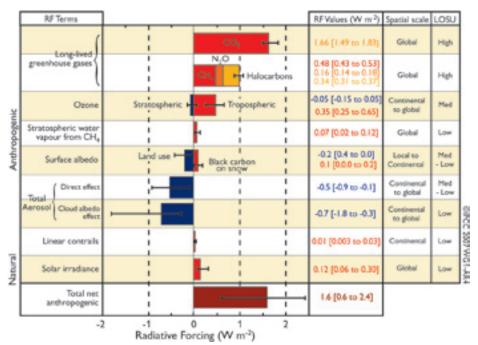
(2) A distinction must be made between aerosol RF and the *anthropogenic contribution* to aerosol RF. Much effort has been made to distinguishing these contributions by modeling and with the help of space-based, airborne, and surface-based remote sensing, as well as *in situ* measurements. These efforts are described in subsequent chapters.

(3) In general, aerosol RF and anthropogenic aerosol RF include energy associated with both the shortwave (solar) and the long-wave (primarily planetary thermal infrared) components of Earth's radiation budget. However, the solar component typically dominates, so in this document, these terms are used to refer to the solar component only, unless specified otherwise. The wavelength separation between the short- and long-wave components is usually set at around three or four micrometers.

(4) The IPCC AR4 (2007) defines radiative forcing as the net downward minus upward

irradiance at the tropopause due to an external driver of climate change. This definition excludes stratospheric contributions to the overall forcing. Under typical conditions, most aerosols are located within the troposphere, so aerosol forcing at TOA and at the tropopause are expected to be very similar. Major volcanic eruptions or conflagrations can alter this picture regionally, and even globally.

(5) Aerosol radiative forcing can be evaluated at the surface, within the atmosphere, or at topof-atmosphere (TOA). In this document, unless specified otherwise, aerosol radiative forcing is assessed at TOA.


(6) As discussed subsequently, aerosol radiative forcing can be greater at the surface than at TOA if the aerosols absorb solar radiation. TOA forcing affects the radiation budget of the planet. Differences between TOA forcing and surface forcing represent heating within the atmosphere that can affect vertical stability, circulation on many scales, cloud formation, and precipitation, all of which are climate effects of aerosols. In this document, unless specified otherwise, these additional climate effects are not included in aerosol radiative forcing.

(7) Aerosol direct radiative forcing can be evaluated under cloud-free conditions or under natural conditions, sometimes termed "all-sky" conditions, which include clouds. Cloud-free direct aerosol forcing is more easily and more accurately calculated; it is generally greater than all-sky forcing because clouds can mask the aerosol contribution to the scattered light. Indirect forcing, of course, must be evaluated for cloudy or all-sky conditions. In this document, unless specified otherwise, aerosol radiative forcing is assessed for all-sky conditions.

(8) Aerosol radiative forcing can be evaluated instantaneously, daily (24-hour) averaged, or assessed over some other time period. Many measurements, such as those from polar-orbiting satellites, provide instantaneous values, whereas models usually consider aerosol RF as a daily average quantity. In this document, unless specified otherwise, daily averaged aerosol radiative forcing is reported.

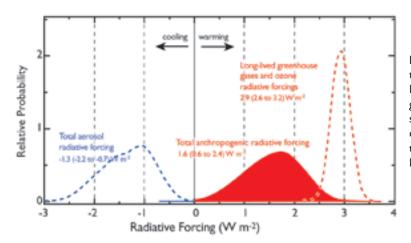

(9) Another subtlety is the distinction between a "forcing" and a "feedback." As different parts of the climate system interact, it is often unclear Aerosol radiative forcing is defined as the net energy flux (downwelling minus upwelling) difference between an initial and a perturbed aerosol loading state.

Figure 1.3a. (Above) Global average radiative forcing (RF) estimates and uncertainty ranges in 2005, relative to the pre-industrial climate. Anthropogenic carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), ozone, and aerosols as well as the natural solar irradiance variations are included. Typical geographical extent of the forcing (spatial scale) and the assessed level of scientific understanding (LOSU) are also given. Forcing is expressed in units of watts per square meter (W m⁻²). The total anthropogenic radiative forcing and its associated uncertainty are also given. Figure from IPCC (2007).

which elements are "causes" of climate change (forcings among them), which are responses to these causes, and which might be some of each. So, for example, the concept of aerosol effects on clouds is complicated by the impact clouds have on aerosols; the aggregate is often called aerosol-cloud interactions. This distinction sometimes matters, as it is more natural to attribute responsibility for causes than for responses. However, practical environmental considerations usually depend on the net result of all influences. In this report, "feedbacks" are taken as the consequences of changes in surface or atmospheric temperature, with the understanding that for some applications, the accounting may be done differently.

Figure 1.3b. (Left) Probability distribution functions (PDFs) for anthropogenic aerosol and GHG RFs. Dashed red curve: RF of long-lived greenhouse gases plus ozone; dashed blue curve: RF of aerosols (direct and cloud albedo RF); red filled curve: combined anthropogenic RF. The RF range is at the 90% confidence interval. Figure adapted from IPCC (2007).

In summary, aerosol radiative forcing, the fundamental quantity about which this report is written, must be qualified by specifying the initial and perturbed aerosol states for which the radiative flux difference is calculated, the altitude at which the quantity is assessed, the wavelength regime considered, the temporal averaging, the cloud conditions, and whether total or only human-induced contributions are considered. The definition given here, qualified as needed, is used throughout the report.

Although the possibility that aerosols affect climate was recognized more than 40 years ago, the measurements needed to establish the magnitude of such effects, or even whether specific aerosol types warm or cool the surface, were lacking. Satellite instruments capable of at least crudely monitoring aerosol amount globally were first deployed in the late 1970s. But scientific focus on this subject grew substantially in the 1990s (e.g. Charlson et al., 1990; 1991; 1992; Penner et al., 1992), in part because it was recognized that reproducing the observed temperature trends over the industrial period with climate models requires including net global cooling by aerosols in the calculation (IPCC, 1995; 1996), along with the warming influence of enhanced atmospheric greenhouse gas (GHG) concentrations - mainly carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and ozone.

Improved satellite instruments, ground- and ship-based surface monitoring, more sophisticated chemical transport and climate models, and field campaigns that brought all these elements together with aircraft remote sensing and in situ sampling for focused, coordinated study, began to fill in some of the knowledge gaps. By the Fourth IPCC Assessment Report, the scientific community consensus held that in global average, the sum of direct and indirect top-of-atmosphere (TOA) forcing by anthropogenic aerosols is negative (cooling) of about -1.3 W m⁻² (-2.2 to -0.5 W m⁻²). This is significant compared to the positive forcing by anthropogenic GHGs (including ozone), about 2.9 ± 0.3 W m⁻² (IPCC, 2007). However, the spatial distribution of the gases and aerosols are very different, and they do not simply exert compensating influences on climate.

The IPCC aerosol forcing assessments are based largely on model calculations, constrained as much as possible by observations. At present, aerosol influences are not yet quantified adequately, according to Figure 1.3a, as scientific understanding is designated as "Medium - Low" and "Low" for the direct and indirect climate forcing, respectively. The IPCC AR4 (2007) concluded that uncertainties associated with changes in Earth's radiation budget due to anthropogenic aerosols make the largest contribution to the overall uncertainty in radiative forcing of climate change among the factors assessed over the industrial period (Figure 3b).

Although AOD, aerosol properties, aerosol vertical distribution, and surface reflectivity all contribute to aerosol radiative forcing, AOD

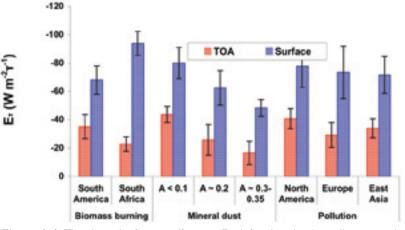

usually varies on regional scales more than the other aerosol quantities involved. Forcing ef*ficiency* (E_{τ}) , defined as a ratio of direct aerosol radiative forcing to AOD at 550 nm, reports the sensitivity of aerosol radiative forcing to AOD, and is useful for isolating the influences of particle properties and other factors from that of AOD. E_{τ} is expected to exhibit a range of values globally, because it is governed mainly by aerosol size distribution and chemical composition (which determine aerosol singlescattering albedo and phase function), surface reflectivity, and solar irradiance, each of which exhibits pronounced spatial and temporal variations. To assess aerosol RF, E_{τ} is multiplied by the ambient AOD.

Figure 1.4 shows a range of E_{τ} , derived from AERONET surface sun photometer network measurements of aerosol loading and particle properties, representing different aerosol and surface types, and geographic locations. It demonstrates how aerosol direct solar radiative forcing (with initial state taken as the absence of aerosol) is determined by a combination of aerosol and surface properties. For example, E_{τ} due to southern African biomass burning smoke is greater at the surface and smaller at TOA than South American smoke because the southern African smoke absorbs sunlight more strongly, and the magnitude of E_{τ} for mineral dust for several locations varies depending on the underlying surface reflectance. Figure 1.4 illustrates one further point, that the radiative forcing by aerosols on surface energy balance can be much greater than that at TOA. This is especially true

Reproducing the observed temperature trends over the industrial period with climate models requires including net global cooling by aerosols in the calculation.

FIE

The radiative forcing by aerosols on surface energy balance can be much greater than that at the top of the atmosphere.

Figure 1.4. The clear-sky forcing efficiency E_{τ} , defined as the diurnally averaged aerosol direct radiative effect (W m⁻²) per unit AOD at 550 nm, calculated at both TOA and the surface, for typical aerosol types over different geographical regions. The vertical black lines represent \pm one standard deviation of E_{τ} for individual aerosol regimes and A is surface broadband albedo. (adapted from Zhou et al., 2005).

In regions having high concentrations of anthropogenic aerosol, aerosol forcing is much stronger than the global average, and can exceed the magnitude of greenhouse gas warming.

Radiative heating of the atmosphere by absorbing particles can change the atmospheric temperature structure, affecting vertical mixing, cloud formation and evolution, and possibly large-scale dynamical systems. when the particles have SSA substantially less than 1, which can create differences between surface and TOA forcing as large as a factor of five (e.g., Zhou et al., 2005).

Table 1.2 presents estimates of cloud-free, instantaneous, aerosol direct RF dependence on AOD, and on aerosol and surface properties, calculated for three sites maintained by the US Department of Energy's Atmospheric Radiation Measurement (ARM) program, where surface and atmospheric conditions span a significant range of natural environments (McComiskey et al., 2008a). Here aerosol RF is evaluated relative to an initial state that is the complete absence of aerosols. Note that aerosol direct RF dependence on individual parameters varies considerably, depending on the values of the other parameters, and in particular, that aerosol RF dependence on AOD actually changes sign, from net cooling to net warming, when aerosols reside over an exceedingly bright surface. Sensitivity values are given for snapshots at fixed solar zenith angles, relevant to measurements made, for example, by polar-orbiting satellites.

The lower portion of Table 1.2 presents upper bounds on instantaneous measurement uncertainty, assessed individually for each of AOD, SSA, g, and A, to produce a 1 W m⁻² top-ofatmosphere, cloud-free aerosol RF accuracy. The values are derived from the upper portion of the table, and reflect the diversity of conditions captured by the three ARM sties. Aerosol RF sensitivity of 1 W m⁻² is used as an example; uncertainty upper bounds are obtained from the partial derivative for each parameter by neglecting the uncertainties for all other parameters. These estimates produce an instantaneous AOD measurement uncertainty upper bound between about 0.01 and 0.02, and SSA constrained to about 0.02 over surfaces as bright or brighter than the ARM Southern Great Plains site, typical of mid-latitude, vegetated land. Other researchers, using independent data sets, have derived ranges of E_{τ} and aerosol RF sensitivity similar to those presented here, for a variety of conditions (e.g., Christopher and Jones, 2008; Yu et al., 2006; Zhou et al., 2005).

These uncertainty bounds provide a baseline against which current and expected near-future instantaneous measurement capabilities are assessed in Chapter 2. Model sensitivity is usually evaluated for larger-scale (even global) and longer-term averages. When instantaneous measured values from a randomly sampled population are averaged, the uncertainty component associated with random error diminishes as something like the inverse square root of the number of samples. As a result, the accuracy limits used for assessing more broadly averaged model results corresponding to those used for assessing instantaneous measurements, would have to be tighter, as discussed in Chapter 4.

In summary, much of the challenge in quantifying aerosol influences arises from large spatial and temporal heterogeneity, caused by the wide variety of aerosol sources, sizes and compositions, the spatial non-uniformity and intermittency of these sources, the short atmospheric lifetime of most aerosols, and the spatially and temporally non-uniform chemical and microphysical processing that occurs in the atmosphere. In regions having high concentrations of anthropogenic aerosol, for example, aerosol forcing is much stronger than the global average, and can exceed the magnitude of GHG warming, locally reversing the sign of the net forcing. It is also important to recognize that the global-scale aerosol TOA forcing alone is not an adequate metric for climate change (NRC, 2005). Due to aerosol absorption, mainly by soot, smoke, and some desert dust particles, the aerosol direct radiative forcing at the surface can be much greater than the TOA forcing, and in addition, the radiative heating of the atmosphere by absorbing particles can change the atmospheric temperature structure, affecting vertical mixing, cloud formation and evolution, and possibly large-scale dynamical systems such as the monsoons (Kim et al., 2006; Lau et al., 2008). By realizing aerosol's climate significance and the challenge of charactering highly variable aerosol amount and properties, the US Climate Change Research Initiative (CCRI) identified research on atmospheric concentrations and effects of aerosols specifically as a top priority (NRC, 2001).

I.3. Reducing Uncertainties in Aerosol-Climate Forcing Estimates

Regional as well as global aerosol radiative effects on climate are estimated primarily through the use of climate models (e.g., Penner et al., 1994; Schulz et al., 2006). These numerical models are evaluated based on their ability to simulate the aerosol- and cloud-related processes that affect climate for current and past

Table 1.2. Top-of-atmosphere, cloud-free, instantaneous direct aerosol radiative forcing dependence on aerosol and surface properties. Here TWP, SGP, and NSA are the Tropical West Pacific island, Southern Great Plains, and North Slope Alaska observation stations maintained by the DOE ARM program, respectively. Instantaneous values are given at specific solar zenith angle. Upper and middle parts are from McComiskey et al. (2008a). Representative, parameter-specific measurement uncertainty upper bounds for producing 1 W m⁻² instantaneous TOA forcing accuracy are given in the lower part, based on sensitivities at three sites from the middle part of the table.

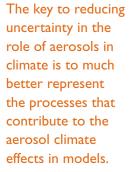
Parameters	TWP	SGP	NSA
Aerosol properties (AOD, SSA, g), solar zenith angle (SZA), surface albedo (A), and aerosol direct RF at TOA (F):			
AOD	0.05	0.1	0.05
SSA	0.97	0.95	0.95
g	0.8	0.6	0.7
А	0.05	0.1	0.9
SZA	30	45	70
F (W m-2)	-2.2	-6.3	2.6
Sensitivity of cloud-free, instantaneous, TOA direct aerosol radiative forcing to aerosol and surface properties , W m-2 per unit change in property:			
∂ <i>F</i> /∂(AOD)	-45	-64	51
∂ <i>F</i> /∂(SSA)	-11	-50	-60
∂ F /∂g	13	23	2
∂ F /∂ A	8	24	6
Representative measurement uncertainty upper bounds for producing 1 W m ⁻² accuracy of aerosol RF:			
AOD	0.022	0.016	0.020
SSA	0.091	0.020	0.017
g	0.077	0.043	
А	0.125	0.042	0.167

conditions. The derived accuracy serves as a measure of the accuracy with which the models might be expected to predict the dependence of future climate conditions on prospective human activities. To generate such predictions, the models must simulate the physical, chemical, and dynamical mechanisms that govern aerosol formation and evolution in the atmosphere (Figure 1.1), as well as the radiative processes that govern their direct and indirect climate impact (Figure 1.2), on all the relevant space and time scales. Some models simulate aerosol emissions, transports, chemical processing, and sinks, using atmospheric and possibly also ocean dynamics generated off-line by separate numerical systems. These are often called Chemistry and Transport Models (CTMs). In contrast, General Circulation Models or Global Climate Models (GCMs) can couple aerosol behavior and dynamics as part of the same calculation, and are capable of representing interactions between aerosols and dynamical aspects of the climate system, although currently many

of them still use prescribed aerosols to study climate sensitivity.

The IPCC AR4 total anthropogenic radiative forcing estimate, shown in Figure 1.3, is 1.6 W m⁻² from preindustrial times to the present, with a likely range of 0.6 to 2.4 W m⁻². This estimate includes long-lived GHGs, ozone, and aerosols. The increase in global mean surface temperature of 0.7° C, from the transient climate simulations in response to this forcing, yields a transient climate sensitivity (defined as the surface temperature change per unit RF) over the industrial period of 0.3 to 1.1° C/(W m⁻²).

Under most emission scenarios, CO_2 is expected to double by the latter part of the 21st century. A climate sensitivity range of 0.3 to 1.1°C/(W m⁻²) translates into a future surface temperature increase attributable to CO_2 forcing at the time of doubled CO_2 of 1.2 to 4.7°C. Such a range is too wide to meaningfully predict the climate response to increased greenhouse gases (e.g., Caldeira et al., 2003). As Figure 1.3 shows, the largest contribution to overall uncertainty in estimating the climate response is from aerosol RF.


The key to reducing uncertainty in the role of aerosols in climate is to much better represent the processes that contribute to the aerosol climate effects in models. This report highlights three specific areas for continued, focused effort: (1) improving measurement quality and coverage, (2) achieving more effective use of measurements to constrain model simulations and to test model parameterizations, and (3) producing more accurate representation of aerosols and clouds in models. This section provides a brief introduction to the current state of aerosol measurements and model representations of aerosol processes, as they relate to assessing aerosol impacts on climate. More complete discussion of these topics and assessment of possible next steps are given in Chapters 2, 3, and 4.

Improving measurement quality and coverage. Aerosol mass concentration, size and composition distributions, and absorption properties, as functions of location and time, are the main aerosol-specific elements of CTMs. They depend on primary particle and precursor gas emissions, on gas-to-particle conversion processes, on transport, humidification and cloud processing, and removal mechanisms. Satellite instruments, surface-based networks (*in situ* and remote sensing), and research aircraft all contribute quantitative measurements of aerosol properties and/or distributions that can be used to help constrain models, as well as to test and refine the model representations of processes that govern aerosol life cycles. As described in Chapter 2, the current situation reflects the significant progress that has been made over the past decade in satellite, airborne, groundbased and laboratory instrumentation, actual measurements available from each of these sources, remote sensing retrieval methods, and data validation techniques.

However, each type of measurement is limited in terms of the accuracy, and spatial and temporal sampling of measured quantities. At present, satellite passive imagers monitor AOD globally up to once per day, with accuracies under cloud-free, good but not necessarily ideal viewing conditions of about 0.05 or (0.1 to 0.2) X AOD, whichever is larger, for vegetated land, somewhat better over dark water, and less well over bright desert (e.g., Kahn et al., 2005a; Remer et al., 2005). Reliable AOD retrieval over snow and ice from passive remote sensing imagers has not yet been achieved. From space, aerosol vertical distribution is provided mainly by lidars that offer sensitivity to multiple layers, even in the presence of thin cloud, but they require several weeks to observe just a fraction of a percent of the planet.

From the expansive vantage point of space, there is enough information to identify columnaverage ratios of coarse to fine AOD, or even aerosol air mass types in some circumstances, but not sufficient to deduce chemical composition and vertical distribution of type, nor to constrain light absorption approaching the ~ 0.02 SSA sensitivity suggested in Section 1.2.

As a result, it is difficult to separate anthropogenic from natural aerosols using currently available satellite data alone, though attempts at this have been made based on retrieved particle size and shape information (see Chapter 2). At present, better quantification of anthropogenic aerosol depends upon integrating satellite measurements with other observations and models. Aircraft and ground-based *in situ* sampling can help fill in missing physical and chemical detail, although coverage is very limited in

both space and time. Models can contribute by connecting observed aerosol distributions with likely sources and associated aerosol types. Surface remote-sensing monitoring networks offer temporal resolution of minutes to hours, and greater column AOD accuracy than satellite observations, but height-resolved particle property information has been demonstrated by only a few cutting-edge technologies such as high-spectral-resolution lidar (HSRL), and again, spatial coverage is extremely limited.

Even for satellite observations, sampling is an issue. From the passive imagers that provide the greatest coverage, AOD retrievals can only be done under cloud-free conditions, leading to a "clear-sky bias," and there are questions about retrieval accuracy in the vicinity of clouds. And retrievals of aerosol type from these instruments as well as from surface-based passive remote sensing require at least a certain minimum column AOD to be effective; the thresholds depend in part on aerosol type itself and on surface reflectivity, leading to an "AOD bias" in these data sets.

Other measurement-related issues include obtaining sufficiently extensive aerosol vertical distributions outside the narrow sampling beam of space-based, airborne, or ground-based lidars, retrieving layer-resolved aerosol properties, which is especially important in the many regions where multiple layers of different types are common, obtaining representative *in situ* samples of large particles, since they tend to be under-sampled when collected by most aircraft inlets, and acquiring better surface measurement coverage over oceans.

Achieving more effective use of measurements

to constrain models. Due to the limitations associated with each type of observational data record, reducing aerosol-forcing uncertainties requires coordinated efforts at integrating data from multiple platforms and techniques (Seinfeld et al., 1996; Kaufman et al., 2002a; Diner et al., 2004; Anderson et al., 2005a). Initial steps have been taken to acquire complementary observations from multiple platforms, especially through intensive field campaigns, and to merge data sets, exploiting the strengths of each to provide better constraints on models (e.g., Bates et al., 2006; Yu et al., 2006; Kinne et al., 2006; see Chapter 2, Section 2.2.6). Advanced instrument concepts, coordinated measurement strategies, and retrieval techniques, if implemented, promise to further improve the contributions observations make to reducing aerosol forcing uncertainties.

Producing more accurate representation of aerosols in models. As discussed in Chapter 3, models, in turn, have developed increasingly sophisticated representations of aerosol types and processes, have improved the spatial resolution at which simulations are performed, and through controlled experiments and intercomparisons of results from many models, have characterized model diversity and areas of greatest uncertainty (e.g., Textor et al., 2006; Kinne et al., 2006).

A brief chronology of aerosol modeling used for the IPCC reports illustrates these developments. In the IPCC First Assessment Report (1990), the few transient climate change simulations that were discussed used only increases in greenhouse gases. By IPCC Second Assessment Report (1995), although most GCMs still considered only greenhouse gases, several simulations included the direct effect of sulfate aerosols. The primary purpose was to establish whether the pattern of warming was altered by including aerosol-induced cooling in regions of high emissions such as the Eastern U.S. and eastern Asia. In these models, the sulfate aerosol distribution was derived from a sulfur cycle model constrained by estimated past aerosol emissions and an assumed future sulfur emission scenario. The aerosol forcing contribution was mimicked by increasing the surface albedo, which improved model agreement with the observed global mean temperature record for the final few decades of the twentieth century, but not for the correct reasons (see Chapter 3).

The IPCC Third Assessment Report (TAR, 2001) report cited numerous groups that included aerosols in both 20th and 21st century simulations. The direct effect of sulfate aerosols was required to reproduce the observed global temperature change, given the models' climate sensitivity and ocean heat uptake. Although most models still represented aerosol forcing by increasing the surface albedo, several groups explicitly represented sulfate aerosols in their atmospheric scattering calculations, with geographical distributions determined by off-line CTM calculations. The first model calculations that included any indirect effects of aerosols on clouds were also presented. Due to the limitations associated with each type of observational data record, reducing aerosolforcing uncertainties requires coordinated efforts at integrating data from multiple platforms and techniques.

FE

Continued progress with measurement, modeling, and at the interface between the two, promises to improve estimates of aerosol contribution to climate change. The most recent IPCC assessment report (AR4; 2007) summarized the climate change experiments from more than 20 modeling groups that this time incorporated representations of multiple aerosol species, including black and organic carbon, mineral dust, sea salt and in some cases nitrates (see Chapter 3). In addition, many attempts were made to simulate indirect effects, in part because the better understood direct effect appeared to be insufficient to properly simulate observed temperature changes, given model sensitivity. As in previous assessments, the AR4 aerosol distributions responsible for both the direct and indirect effect were produced off-line, as opposed to being run in a coupled mode that would allow simulated climate changes to feed back on the aerosol distributions.

The fact that models now use multiple aerosol types and often calculate both direct and indirect aerosol effects does not imply that the requisite aerosol amounts and optical characteristics, or the mechanisms of aerosol-cloud interactions, are well represented. For example, models tend to have lower AOD relative to measurements, and are poorly constrained with regard to speciation (see Table 3.2 and Figure 3.1 in Chapter 3). To bridge the gap between measurements and models in this area, robust relationships need to be established for different aerosol types, connecting the AOD and types retrieved from spacecraft, aircraft, and surface remote sensing observations, with the aerosol mass concentrations that are the fundamental aerosol quantities tracked in CTMs and GCMs.

As detailed below, continued progress with measurement, modeling, and at the interface between the two, promises to improve estimates of aerosol contributions to climate change, and to reduce the uncertainties in these quantities reflected in Figure 1.3.

I.4 Contents of This Report

This report assesses current understanding of aerosol radiative effects on climate, focusing on developments of aerosol measurement and modeling subsequent to IPCC TAR (2001). It reviews the present state of understanding of aerosol influences on Earth's climate system, and in particular, the consequences for climate change of their direct and indirect effects. This report does not deal with several natural

forcings that involve aerosols. Stratospheric aerosols produced by large volcanic eruptions exert large, short-term effects which are particularly important for characterizing climate system response to forcing, and the effects of recent eruptions (e.g. Pinatubo) are well documented (e.g., Minnis et al., 1993; McCormick et al., 1995; Robock et al., 2002). However these effects are intermittent and have only short-term environmental impacts (ca. 1 year). Galactic cosmic rays, modulated by the 11-year solar cycle, have been reported to correlate with the total cloud cover (e.g., Svensmark and Friis-Christensen, 1997), possibly by aiding the nucleation of new particles that grow into cloud condensation nuclei (e.g., Turco et al., 1998). However, the present mainstream consensus is that these phenomena exert little to no effect on cloud cover or other cloud properties (e.g., Lockwood and Fröhlich, 2008; Kristjánsson et al., 2008).

The Executive Summary reviews the key concepts involved in the study of aerosol effects on climate, and provides a chapter-by-chapter summary of conclusions from this assessment. Chapter 1 provides basic definitions, radiative forcing accuracy requirements, and background material on critical issues needed to motivate the more detailed discussion and assessment given in subsequent chapters.

Chapter 2 assesses the aerosol contributions to radiative forcing based on remote sensing and *in situ* measurements of aerosol amounts and properties. Current measurement capabilities and limitations are discussed, as well as synergy with models, in the context of the needed aerosol radiative forcing accuracy.

Model simulation of aerosols and their direct and indirect effects are examined in Chapter 3. Representations of aerosols used for IPCC AR4 (2007) climate simulations are discussed, providing an overview of near-term modeling option strengths and limitations for assessing aerosol forcing of climate.

Finally, Chapter 4 provides an assessment of how current capabilities, and those within reach for the near future, can be brought together to reduce the aerosol forcing uncertainties reported in IPCC AR4 (2007).

GLOSSARY AND ACRONYMS

GLOSSARY

(Note: Terms in *italic* in each paragraph are defined elsewhere in this glossary.)

Absorption

the process in which incident radiant energy is retained by a substance.

Absorption coefficient

fraction of incident radiant energy removed by *absorption* per length of travel of radiation through the substance.

Active remote sensing

a remote sensing system that transmits its own energy source, then measures the properties of the returned signal. Contrasted with *passive remote sensing*.

Adiabatic equilibrium

a vertical distribution of temperature and pressure in an atmosphere in hydrostatic equilibrium such that an air parcel displaced adiabatically will continue to possess the same temperature and pressure as its surroundings, so that no restoring force acts on a parcel displaced vertically.

Aerosol

a colloidal suspension of liquid or solid particles (in air).

Aerosol asymmetry factor (also called asymmetry parameter, g)

the mean cosine of the scattering angle, found by integration over the complete scattering *phase function* of aerosol; g = 1 denotes completely forward scattering and g = 0 denotes symmetric scattering. For spherical particles, the asymmetry parameter is related to particle size in a systematic way: the larger the particle size, the more the scattering in the forward hemisphere.

Aerosol direct radiative effect

change in radiative flux due to aerosol scattering and absorption with the presence of aerosol relative to the absence of aerosol.

Aerosol hemispheric backscatter fraction (b)

the fraction of the scattered intensity that is redirected into the backward hemisphere relative to the incident light; can be determined from measurements made with an integrating nephelometer. The larger the particle size, the smaller the b.

Aerosol indirect effects

processes referring to the influence of aerosol on cloud droplet concentration or radiative properties. Effects include the effect of aerosols on cloud droplet size and therefore its brightness (also known as the "cloud albedo effect", "first aerosol indirect effect", or "Twomey effect"); and the effect of cloud droplet size on precipitation efficiency and possibly cloud lifetime (also known as the "second aerosol indirect effect" or "Albrecht effect").

Aerosol mass extinction (scattering, absorption) efficiency

the aerosol *extinction* (*scattering*, *absorption*) *coefficient* per aerosol mass concentration, with a commonly used unit of $m^2 g^{-1}$.

Aerosol optical depth

the (wavelength dependent) negative logarithm of the fraction of radiation (or light) that is extinguished (or *scattered* or *absorbed*) by *aerosol* particles on a vertical path, typically from the surface (or some specified altitude) to the top of the atmosphere. Alternatively and equivalently: The (dimensionless) line integral of the *absorption coefficient* (due to aerosol particles), or of the *scattering coefficient* (due to aerosol particles), or of the sum of the two (*extinction coefficient* due to aerosol particles), along such a vertical path. Indicative of the amount of aerosol in the column, and specifically relates to the magnitude of interaction between the aerosols and *shortwave* or *longwave radiation*.

Aerosol phase function

the angular distribution of radiation scattered by aerosol particle or by particles comprising an *aerosol*. In practice, the phase function is parameterized with *asymmetry factor* (or *asymmetry parameter*). Aerosol phase function is related to *aerosol hemispheric backscatter fraction* (*b*) and aerosol particle size: the larger the particle size, the more the forward *scattering* (i.e. larger *g* and smaller *b*).

Aerosol radiative forcing

the net energy flux (downwelling minus upwelling) difference between an initial and a perturbed aerosol loading state, at a specified level in the atmosphere. (Other quantities, such as solar radiation, are assumed to be the same.) This difference is defined such that a negative aerosol forcing implies that the change in aerosols relative to the initial state exerts a cooling in-

fluence, whereas a positive forcing would mean the change in aerosols exerts a warming influence. The aerosol radiative forcing must be qualified by specifying the initial and perturbed aerosol states for which the radiative flux difference is calculated, the altitude at which the quantity is assessed, the wavelength regime considered, the temporal averaging, the cloud conditions, and whether total or only human-induced contributions are considered (see Chapter 1, Section 1.2).

Aerosol radiative forcing efficiency

aerosol direct radiative forcing per aerosol optical depth (usually at 550 nm). It is governed mainly by aerosol size distribution and chemical composition (determining the aerosol *single-scattering albedo* and *phase function*), surface reflectivity, and solar irradiance.

Aerosol semi-direct effect

the processes by which *aerosols* change the local temperature and moisture (e.g., by direct radiative heating and changing the heat releases from surface) and thus the local relative humidity, which leads to changes in cloud liquid water and perhaps cloud cover.

Aerosol single-scattering albedo (SSA)

a ratio of the *scattering coefficient* to the *extinction coefficient* of an aerosol particle or of the particulate matter of an aerosol. More absorbing aerosols and smaller particles have lower SSA.

Aerosol size distribution

probability distribution function of the number concentration, surface area, or volume of the particles comprising an aerosol, per interval (or logarithmic interval) of radius, diameter, or volume.

Albedo

the ratio of reflected flux density to incident flux density, referenced to some surface; might be Earth surface, top of the atmosphere.

Angström exponent (Å)

exponent that expresses the spectral dependence of *aerosol* optical depth (τ) (or scattering coefficient, absorption coefficient, etc.) with the wavelength of light (λ) as inverse power law: $\tau \propto \lambda^{-A}$. The Ångström exponent is inversely related to the average size of aerosol particles: the smaller the particles, the larger the exponent.

Anisotropic

not having the same properties in all directions.

Atmospheric boundary layer (abbreviated ABL; also called planetary boundary layer—PBL)

the bottom layer of the troposphere that is in contact with the surface of the earth. It is often turbulent and is capped by a statically stable layer of air or temperature inversion. The ABL depth (i.e., the inversion height) is variable in time and space, ranging from tens of meters in strongly statically stable situations, to several kilometers in convective conditions over deserts.

Bidirectional reflectance distribution function (BRDF)

a relationship describing the reflected radiance from a given region as a function of both incident and viewing directions. It is equal to the reflected *radiance* divided by the incident *irradiance* from a single direction.

Clear-sky radiative forcing

radiative forcing (of gases or aerosols) in the absence of clouds. Distinguished from total-sky or all-sky *radiative forcing*, which include both cloud-free and cloudy regions.

Climate sensitivity

the change in global mean near-surface temperature per unit of *radiative forcing*; when unqualified typically refers to equilibrium sensitivity; transient sensitivity denotes time dependent change in response to a specified temporal profile.

Cloud albedo

the fraction of solar radiation incident at the top of cloud that is reflected by clouds in the atmosphere or some subset of the atmosphere.

Cloud condensation nuclei (abbreviated CCN)

aerosol particles that can serve as seed particles of atmospheric cloud droplets, that is, particles on which water condenses (activates) at *supersaturations* typical of atmospheric cloud formation (fraction of one percent to a few percent, depending on cloud type); may be specified as function of supersaturation.

Cloud resolving model

a numerical model that resolves cloud-scale (and mesoscale) circulations in three (or sometimes two) spatial dimensions. Usually run with horizontal resolution of 5 km or less.

Coalescence

the merging of two or more droplets of precipitation (or aerosol particles; also denoted coagulation) into a single droplet or particle.

Condensation

in general, the physical process (phase transition) by which a vapor becomes a liquid or solid; the opposite of *evaporation*.

Condensation nucleus (abbreviated CN)

an aerosol particle forming a center for *condensation* under extremely high *supersaturations* (up to 400% for water, but below that required to activate small ions).

Data assimilation

the combining of diverse data, possibly sampled at different times and intervals and different locations, into a unified and physically consistent description of a physical system, such as the state of the atmosphere.

Diffuse radiation

radiation that comes from some continuous range of directions. This includes radiation that has been scattered at least once, and emission from nonpoint sources.

Dry deposition

the process by which atmospheric gases and particles are transferred to the surface as a result of random turbulent air, impaction, and /or gravitational settling.

Earth Observing System (abbreviated EOS)

a major NASA initiative to develop and deploy state-of-theart *remote sensing* instruments for global studies of the land surface, biosphere, solid earth, atmosphere, oceans, and cryosphere. The first EOS satellite, Terra, was launched in December 1999. Other EOS satellites include Aqua, Aura, ICESat, among others.

Emission of radiation

the generation and sending out of radiant energy. The emission of radiation by natural emitters is accompanied by a loss of energy and is considered separately from the processes of *absorption* or *scattering*.

Emission of gases or particles

the introduction of gaseous or particulate matter into the atmosphere by natural or human activities, e.g., bubble bursting of *whitecaps*, agriculture or wild fires, volcanic eruptions, and industrial processes.

Equilibrium vapor pressure

the pressure of a vapor in equilibrium with its condensed phase (liquid or solid).

Evaporation (also called vaporization)

physical process (phase transition) by which a liquid is transformed to the gaseous state; the opposite of *condensation*.

External mixture (referring to an *aerosol*; contrasted with *internal mixture*)

an aerosol in which different particles (or in some usages, different particles in the same size range) exhibit different compositions.

Extinction (sometimes called attenuation)

the process of removal of radiant energy from an incident beam by the processes of *absorption* and/or *scattering* and consisting of the totality of this removal.

Extinction coefficient

fraction of incident radiant energy removed by extinction per length of travel of radiation through the substance.

General circulation model (abbreviated GCM)

a time-dependent numerical model of the entire global atmosphere or ocean or both. The acronym GCM is often applied to Global Climate Model.

Geostationary satellite

a satellite to be placed into a circular orbit in a plane aligned with Earth's equator, and at an altitude of approximately 36,000 km such that the orbital period of the satellite is exactly equal to Earth's period of rotation (approximately 24 hours). The satellite appears stationary with respect to a fixed point on the rotating Earth.

Hygroscopicity

the relative ability of a substance (as an *aerosol*) to adsorb water vapor from its surroundings and ultimately dissolve. Frequently reported as ratio of some property of particle or of particulate phase of an aerosol (e.g., diameter, mean diameter) as function of *relative humidity* to that at low relative humidity.

Ice nucleus (abbreviated IN)

any particle that serves as a nucleus leading to the formation of ice crystals without regard to the particular physical processes involved in the nucleation.

In situ

a method of obtaining information about properties of an object (e.g., *aerosol*, cloud) through direct contact with that object, as opposed to *remote sensing*.

Internal mixture (referring to an *aerosol*; contrasted with external mixture)

an aerosol consisting of a mixture of two or more substances, for which all particles exhibit the same composition (or in some usage, the requirement of identical composition is limited to all particles in a given size range). Typically an internal mixture has a higher *absorption coefficient* than an external mixture.

Irradiance (also called radiant flux density)

a radiometric term for the rate at which radiant energy in a radiation field is transferred across a unit area of a surface (real or imaginary) in a hemisphere of directions. In general, irradiance depends on the orientation of the surface. The radiant energy may be confined to a narrow range of frequencies (spectral or monochromatic irradiance) or integrated over a broad range of frequencies.

Large eddy simulation (LES)

A three dimensional numerical simulation of turbulent flow in which large eddies (with scales on the order of hundreds of meters) are resolved and the effects of the subgrid-scale eddies are parameterized. The typical model grid-size is < 100 m and modeling domains are on the order of 10 km. Because they resolve cloud-scale dynamics, large eddy simulations are powerful tools for studying the effects of aerosol on cloud microphysics and dynamics.

Lidar (light detection and ranging)

a technique for detecting and characterizing objects by transmitting pulses of laser light and analyzing the portion of the signal that is reflected and returned to the sensor.

Liquid water path

line integral of the mass concentration of the liquid water droplets in the atmosphere along a specified path, typically along the path above a point on the Earth surface to the top of the atmosphere.

Longwave radiation (also known as terrestrial radiation or thermal infrared radiation)

electromagnetic radiation at wavelengths greater than 4 μ m, typically for temperatures characteristic of Earth's surface or atmosphere. In practice, radiation originating by *emission* from Earth and its atmosphere, including clouds; contrasted with *shortwave radiation*.

Low Earth orbit (LEO)

an orbit (of satellite) typically between 300 and 2000 kilometers above Earth.

Mass spectrometer

instrument that fragments and ionizes a chemical substance or mixture by and characterizes composition by amounts of ions as function of molecular weight.

Nucleation

the process of initiation of a new phase in a supercooled (for liquid) or supersaturated (for solution or vapor) environment; the initiation of a phase change of a substance to a lower thermodynamic energy state (vapor to liquid condensation, vapor to solid deposition, liquid to solid freezing).

Optical depth

the *optical thickness* measured vertically above some given altitude. Optical depth is dimensionless and may be applied to Rayleigh scattering optical depth, aerosol *extinction* (or *scattering*, or *absorption*) *optical depth*.

Optical thickness

line integral of *extinction* (or *scattering* or *absorption*) *co-efficient* along a path. Dimensionless.

a remote sensing system that relies on the emission (transmission) of natural levels of radiation from (through) the target. Contrasted with *active remote sensing*.

Phase function

probability distribution function of the angular distribution of the intensity of radiation scattered (by a molecule, gas, particle or aerosol) relative to the direction of the incident beam. See also *Aerosol phase function*.

Polarization

a state in which rays of light exhibit different properties in different directions as measured azimuthially about the direction of propagation of the radiation, especially the state in which all the electromagnetic vibration takes place in a single plane (plane polarization).

Polarimeter

instrument that measures the polarization of incoming light often used in the characterization of light scattered by atmospheric aerosols.

Primary trace atmospheric gases or particles

substances which are directly emitted into the atmosphere from Earth surface, vegetation or natural or human activity, e.g., bubble bursting of *whitecaps*, fires, and industrial processes; contrasted with *secondary* substances.

Radar (radio detection and ranging) similar to lidar, but using radiation in microwave range.

Radiance

a radiometric term for the rate at which radiant energy in a set of directions confined to a small unit solid angle around a particular direction is transferred across unit area of a surface (real or imaginary) projected onto this direction, per unit solid angle of incident direction.

Radiative forcing

the net energy flux (downwelling minus upwelling) difference between an initial and a perturbed state of atmospheric constituents, such as carbon dioxide or aerosols, at a specified level in the atmosphere; applies also to perturbation in reflected radiation at Earth's surface due to change in albedo. See also *Aerosol radiative forcing*.

Radiative heating

the process by which temperature of an object (or volume of space that encompasses a gas or aerosol) increases in response to an excess of absorbed radiation over emitted radiation.

Atmospheric Aerosol Properties and Climate Impacts

Radiometer

instrument that measures the intensity of radiant energy radiated by an object at a given wavelength; may or may not resolve by wavelength.

Refractive index (of a medium)

the real part is a measure for how much the speed of light (or other waves such as sound waves) is reduced inside the medium relative to speed of light in vacuum, and the imaginary part is a measure of the amount of *absorption* when the electromagnetic wave propagates through the medium.

Relative humidity

the ratio of the vapor pressure of water to its saturation vapor pressure at the same temperature.

Remote sensing: a method of obtaining information about properties of an object (e.g., aerosol, cloud) without coming into physical contact with that object; opposed to *in situ*.

Saturation

the condition in which the vapor pressure (of a liquid substance; for atmospheric application, water) is equal to the *equilibrium vapor pressure* of the substance over a plane surface of the pure liquid substance, sometimes similarly for ice; similarly for a solute in contact with a solution.

Scattering

in a broad sense, the process by which matter is excited to radiate by an external source of electromagnetic radiation. By this definition, reflection, refraction, and even diffraction of electromagnetic waves are subsumed under scattering. Often the term scattered radiation is applied to that radiation observed in directions other than that of the source and may also be applied to acoustic and other waves.

Scattering coefficient

fraction of incident radiant energy removed by *scattering* per length of travel of radiation through the substance.

Secondary trace atmospheric gases or particles

formed in the atmosphere by chemical reaction, new particle formation, etc.; contrasted with *primary* substances, which are directly emitted into the atmosphere.

Secondary organic aerosols (SOA)

organic *aerosol* particles formed in the atmosphere by chemical reactions from gas-phase precursors.

Shortwave radiation

radiation in the visible and near-visible portions of the electromagnetic spectrum (roughly 0.3 to 4.0 μ m in wavelength) which range encompasses the great majority of solar radiation and little longwave (terrestrial thermal) radiation; contrasted with *longwave (terrestrial) radiation*.

Single scattering albedo (SSA)

the ratio of light scattering to total light extinction (sum of *scattering* and *absorption*); for *aerosols*, generally restricted to scattering and extinction by the aerosol particles. More absorbing aerosols have lower SSA; a value of unity indicates that the particles are not absorbing.

Solar zenith angle

angle between the vector of Sun and the zenith.

Spectrometer

instrument that measures light received in terms of the intensity at constituent wavelengths, used for example to determine chemical makeup, temperature profiles, and other properties of atmosphere. See also *Mass spectrometer*.

Stratosphere

the region of the atmosphere extending from the top of the *troposphere*, at heights of roughly 10-17 km, to the base of the mesosphere, at a height of roughly 50 km.

Sunglint

a phenomenon that occurs when the sun reflects off the surface of the ocean at the same angle that a satellite sensor is viewing the surface.

Supersaturation

the condition existing in a given portion of the atmosphere (or other space) when the *relative humidity* is greater than 100%, that is, when it contains more water vapor than is needed to produce *saturation* with respect to a plane surface of pure water or pure ice.

Surface albedo

the ratio, often expressed as a percentage, of the amount of electromagnetic radiation reflected by Earth's surface to the amount incident upon it. In general, surface albedo depends on wavelength and the directionality of the incident radiation; hence whether incident radiation is direct or diffuse, cf., *bidirectional reflectance distribution function (BRDF)*. Value varies with wavelength and with the surface composition. For example, the surface albedo of snow and ice vary from 80% to 90% in the mid-visible, and that of bare ground from 10% to 20%.

Troposphere

the portion of the atmosphere from the earth's surface to the tropopause; that is, the lowest 10-20 kilometers of the atmosphere, depending on latitude and season; most weather occurs in troposphere.

Transient climate response

The time-dependent surface temperature response to a gradually evolving forcing.

Wet scavenging or wet deposition

removal of trace substances from the air by either rain or snow. May refer to in-cloud scavenging, uptake of trace substances into cloud water followed by precipitation, or to below-cloud scavenging, uptake of material below cloud by falling precipitation and subsequent delivery to Earth's surface.

Whitecap

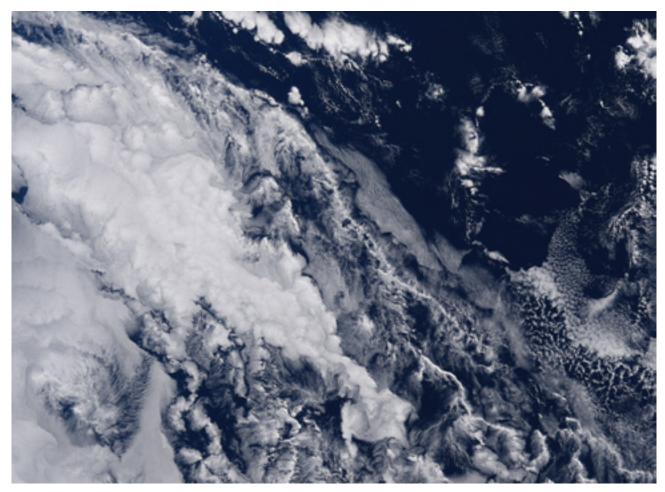
a patch of white water formed at the crest of a wave as it breaks, due to air being mixed into the water.

Major reference: *Glossary of Meteorology*, 2nd edition, American Meteorological Society.

ACRONYMS

A .	Surface albedo (broadband)
Å	Ångström exponent
ABC	Asian Brown Cloud
ACE	Aerosol Characterization Experiment
AD-Net	Asian Dust Network
ADEOS	Advanced Earth Observation Satellite
ADM	Angular Dependence Models
AeroCom	Aerosol Comparisons between Observa-
	tions and Models
AERONET	Aerosol Robotic Network
AI	Aerosol Index
AIOP	Aerosol Intensive Operative Period
ANL	Argonne National Laboratory (DOE)
AOD (τ)	Aerosol Optical Depth
AOT	Aerosol Optical Thickness
APS	Aerosol Polarimetry Sensor
AR4	Forth Assessment Report, IPCC
ARCTAS	Arctic Research of the Composition of
	the Troposphere from Aircraft and Satellites
ARM	Atmospheric Radiation Measurements
AVHRR	Advanced Very High Resolution
	Radiometer
A-Train	Constellation of six afternoon overpass
	satellites
BASE-A	Biomass Burning Airborne and Space-
	borne Experiment Amazon and Brazil
BC	Black Carbon
BNL	Brookhaven National Laboratory (DOE)
BRDF	Bidirectional Reflectance Distribution
	Function
CALIOP	Cloud and Aerosol Lidar with Orthogonal
	Polarization
CALIPSO	Cloud Aerosol Infrared Pathfinder Satellite
	Observations
CAPMoN	Canadian Air and Precipitation Monitoring
	Network
CCN	Cloud Condensation Nuclei
CCRI	Climate Change Research Initiative
CCSP	Climate Change Science, Program
CDNC	Cloud Droplet Number Concentration
CERES	Clouds and the Earth's Radiant Energy
~	System
CLAMS	Chesapeake Lighthouse and Aircraft
	Measurements for Satellite campaign
СТМ	Chemistry and Transport Model
DABEX	Dust And Biomass-burning Experiment
DOE	Department of Energy
DRF	Direct Radiative Forcing (aerosol)
EANET	Acid Deposition Monitoring Network in
	East Asia
EARLINET	European Aerosol Research Lidar Network
EarthCARE	Earth Clouds, Aerosols, and Radiation
	Explorer

Atmospheric Aerosol Properties and Climate Impacts


EAST-AIRE	East Asian Studies of Tropospheric	LMDZ	Laboratoire de Météorologie Dynamique
	Aerosols: An International Regional		with Zoom, France
	Experiment	LOA	Laboratoire d' Optique Atmosphérique,
EMEP	European Monitoring and Evaluation		France
	Programme	LOSU	Level of Scientific Understanding
EOS	Earth Observing System	LSCE	Laboratoire des Sciences du Climat et de
EP	Earth Pathfinder		l'Environnement, France
EPA	Environmental Protection Agency	LWC	Liquid Water Content
ERBE	Earth Radiation Budget Experiment	LWP	Liquid Water Path
ESRL	Earth System Research Laboratory	MAN	Maritime Aerosol Network
_	(NOAA)	MEE	Mass Extinction Efficiency
Ετ	Aerosol Forcing Efficiency (RF	MILAGRO	Megacity Initiative: Local and Global
E4 D	normalized by AOD)	MEDGD	Research Observations
FAR	IPCC First Assessment Report (1990)	MFRSR	Multifilter Rotating Shadowband
FT	Free Troposphere		Radiometer
g CANU	Particle scattering asymmetry factor	MINOS	Mediterranean Intensive Oxidant Study
GAW	Global Atmospheric Watch	MISR	Multi-angle Imaging SpectroRadiometer
GCM	General Circulation Model, Global Climate Model	MODIS	Moderate Resolution Imaging Spectro- radiometer
GEOS	Goddard Earth Observing System	MOZART	Model for Ozone and Related chemical
GFDL	Geophysical Fluid Dynamics Laboratory		Tracers
	(NOAA)	MPLNET	Micro Pulse Lidar Network
GHGs	Greenhouse Gases	NASA	National Aeronautics and Space
GISS	Goddard Institute for Space Studies		Administration
	(NASA)	NASDA	NAtional Space Development Agency,
GLAS	Geoscience Laser Altimeter System		Japan
GMI	Global Modeling Initiative	NEAQS	New England Air Quality Study
GOCART	Goddard Chemistry Aerosol Radiation and Transport (model)	NOAA	National Oceanography and Atmosphere Administration
GOES	Geostationary Operational Environmental	NPOESS	National Polar-orbiting Operational
	Satellite		Environmental Satellite System
GoMACCS	Gulf of Mexico Atmospheric Composition	NPP	NPOESS Preparatory Project
	and Climate Study	NPS	National Park Services
GSFC	Goddard Space Flight Center (NASA)	NRC	National Research Council
HSRL	High-Spectral-Resolution Lidar	OC	Organic Carbon
ICARTT	International Consortium for Atmospheric	OMI	Ozone Monitoring Instrument
	Research on Transport and Transformation	PARASOL	Polarization and Anisotropy of Reflectance
ICESat	Ice, Cloud, and Land Elevation Satellite		for Atmospheric Science, coupled with
IMPROVE	Interagency Monitoring of Protected		Observations from a Lidar
	Visual Environment	PDF	Probability Distribution Function
INCA	Interactions between Chemistry and	PEM-West	Western Pacific Exploratory Mission
NIDODU	Aerosol (LMDz model)	PM	Particulate Matter (aerosols)
INDOEX	Indian Ocean Experiment	PMEL	Pacific Marine Environmental Laboratory
INTEX-NA	Intercontinental Transport Experiment - North America	POLDER	(NOAA) Polarization and Directionality of the
INTEX-B	Intercontinental Transport Experiment -		Earth's Reflectance
	Phase B	РОМ	Particulate Organic Matter
IPCC	Intergovermental Panel on Climate	PRIDE	Pueto Rico Dust Experiment
	Change	REALM	Regional East Atmospheric Lidar Mesonet
IR	Infrared radiation	RF	Radiative Forcing, aerosol
LBA	Large-Scale Biosphere-Atmosphere	RH	Relative Humidity
	Experiment in Amazon	RTM	Radiative Transfer Model
LES	Large Eddy Simulation	SAFARI	South Africa Regional Science,
LITE	Lidar In-space Technology Experiment		Experiment

The U.S. Climate Change Science Program

Glossary and Acronyms

SAMUM SAP SAR SCAR-A SCAR-B SeaWiFS SGP SHADE	Saharan Mineral Dust Experiment Synthesis and Assessment Product (CCSP) IPCC Second Assessment Report (1995) Smoke, Clouds, and Radiation - America Smoke, Clouds, and Radiation - Brazil Sea-viewing Wide Field-of-view Sensor Southern Great Plain, ARM site in Oklahoma Saharan Dust Experiment	SZA TAR TARFOX TCR TexAQS TOA TOMS TRACE-A	Solar Zenith Angle Third Assessment Report, IPCC Tropospheric Aerosol Radiative Forcing Observational Experiment Transient Climate sensitivity Range Texas Air Quality Study Top of the Atmosphere Total Ozone Mapping Spectrometer Transport and Chemical Evolution over
SMOCC SOA SPRINTARS SSA SST STEM SURFRAD	Smoke, Aerosols, Clouds, Rainfall and Climate Secondary Organic Aerosol Spectral Radiation-Transport Model for Aerosol Species Single-Scattering Albedo Sea Surface Temperature Sulfate Transport and Deposition Model NOAA's national surface radiation budget network	TRACE-P UAE2 UMBC UV VOC WMO	the Atlantic Transport and Chemical Evolution over the Pacific United Arab Emirates Unified Aerosol Experiment University of Maryland at Baltimore County Ultraviolet radiation Volatile Organic Compounds World Meteorological Organization

Assessing the environmental impact of cloud fields becomes even more complicated when the contributions of aerosol particles in and around the cloud particles are also considered. Image from MODIS. Credit: NASA.

- Abdou, W., D. Diner, J. Martonchik, C. Bruegge, R. Kahn, B. Gaitley, and K. Crean, 2005: Comparison of coincident MISR and MODIS aerosol optical depths over land and ocean scenes containing AERONET sites. *Journal of Geophysical Research*, **110**, D10S07, doi:10.1029/2004JD004693.
- Ackerman, A.S., Toon, O. B., and P. V. Hobbs, 1994: Reassessing the dependence of cloud condensation nucleus concentration on formation rate. *Nature*, 367, 445-447, doi:10.1038/367445a0.
- Ackerman, A., O. Toon, D. Stevens, A. Heymsfield, V. Ramanathan, and E. Welton, 2000: Reduction of tropical cloudiness by soot. *Science*, 288, 1042-1047.
- Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. *Nature*, 432, 1014-1017.
- Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. *Physics Today* 56, 38-44.
- Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. *Science*, 245, 1227-1230.
- Alpert, P., P. Kishcha, Y. Kaufman, and R. Schwarzbard, 2005: Global dimming or local dimming? Effect of urbanization on sunlight availability. *Geophysical Research Letters*, **32**, L17802, doi: 10.1029/GL023320.
- Anderson, T., R. Charlson, S. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg, 2003: Climate forcing by aerosols—A hazy picture. *Science*, **300**, 1103-1104.
- Anderson, T., R. Charlson, N. Bellouin, O. Boucher, M. Chin, S. Christopher, J. Haywood, Y. Kaufman, S. Kinne, J. Ogren, L. Remer, T. Takemura, D. Tanré, O. Torres, C. Trepte, B. Wielicki, D. Winker, and H. Yu, 2005a: An "A-Train" strategy for quantifying direct aerosol forcing of climate. *Bulletin of the American Meteorological Society*, **86**, 1795-1809.
- Anderson, T., Y. Wu, D. Chu, B. Schmid, J. Redemann, and O. Dubovik, 2005b: Testing the MODIS satellite retrieval of aerosol fine-mode fraction. *Journal of Geophysical Research*, **110**, D18204, doi:10.1029/2005JD005978.
- Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo and M. A. F. Silvas-Dias, 2004: Smoking rain clouds over the amazon. *Science*, 303, 1337-1342.
- Andrews, E., P. J. Sheridan, J. A. Ogren, R. Ferrare, 2004: *In situ* aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties. *Journal of Geophysical Research*, **109**, D06208, doi:10.1029/2003JD004025.

- Ansmann, A., U. Wandinger, A. Wiedensohler, and U. Leiterer, 2002: Lindenderg Aerosol Characterization Experiment 1998 (LACE 98): Overview, Journal of Geophysical Research, 107, 8129, doi:10.1029/2000JD000233.
- Arnott, W., H. Moosmuller, and C. Rogers, 1997: Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. *Atmospheric Environment*, 33, 2845-2852.
- Atwater, M., 1970: Planetary albedo changes due to aerosols. *Science*, 170(3953), 64-66.
- Augustine, J.A., G.B. Hodges, E.G. Dutton, J.J. Michalsky, and C.R. Cornwall, 2008: An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD). *Journal of Geophysical Research*, **113**, D11204, doi:10.1029/2007JD009504.
- Baker, M. B., and R.J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. *Nature*, 345, 142-145.
- Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. *Atmospheric Chemistry and Physics*, 7, 81-95.
- Bates, T., B. Huebert, J. Gras, F. Griffiths, and P. Durkee (1998): The International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE-1)—Overview. *Journal of Geophysical Research*, **103**, 16297-16318.
- Bates, T.S., P.K. Quinn, D.J. Coffman, J.E. Johnson, T.L. Miller, D.S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, and C. Neusüb, 2001: Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview. *Journal of Geophysical Research*, 106, 20767-20782.
- Bates T., P. Quinn, D. Coffman, D. Covert, T. Miller, J. Johnson, G. Carmichael, S. uazzotti, D. Sodeman, K. Prather, M. Rivera, L. Russell, and J. Merrill, 2004: Marine boundary layer dust and pollution transport associated with the passage of a frontal system over eastern Asia. *Journal of Geophysical Research*, 109, doi:10.1029/2003JD004094.
- Bates T., et al., 2006: Aerosol direct radiative effects over the northwestern Atlantic, northwestern Pacific, and North Indian Oceans: estimates based on *in situ* chemical and optical measurements and chemical transport modeling. *Atmospheric Chemistry and Physics*, **6**, 1657-1732.

- Baynard, T., E.R. Lovejoy, A. Pettersson, S.S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W.P. Dube, and A.R. Ravishankara, 2007: Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements. *Aerosol Science and Technology*, **41**, 447-462.
- Bellouin, N., O. Boucher, D. Tanré, and O. Dubovik, 2003: Aerosol absorption over the clear-sky oceans deduced from POL-DER-1 and AERONET observations. *Geophysical Research Letters*, 30, 1748, doi:10.1029/2003GL017121.
- Bellouin, N., O. Boucher, J. Haywood, and M. Reddy, 2005: Global estimates of aerosol direct radiative forcing from satellite measurements. *Nature*, **438**, 1138-1140, doi:10.1038/ nature04348.
- Bellouin, N., A. Jones, J. Haywood, and S.A. Christopher, 2008: Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. *Journal of Geophysical Research*, **113**, D10205, doi:10.1029/2007JD009385.
- Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.-H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. *Journal of Geophysical Research*, 109, D14203, doi:10.1029/2003JD003697.
- Bond, T.C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D.G. Streets, and N.M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. *Global Biogeochemical Cycles*, 21, GB2018, doi:10.1029/2006GB002840.
- Boucher, O., and D. Tanré, 2000: Estimation of the aerosol perturbation to the Earth's radiative budget over oceans using POLDER satellite aerosol retrievals. *Geophysical Research Letters*, 27, 1103-1106.
- Brenguier, J. L., P. Y. Chuang, Y. Fouquart, D. W. Johnson, F. Parol, H. Pawlowska, J. Pelon, L. Schuller, F. Schroder, and J. Snider, 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. *Tellus*, **52B**, 815-827.
- Caldeira, K., A. K. Jain, and M. I. Hoffert, 2003: Climate sensitivity uncertainty and the need for energy without CO₂ emission. *Science*, 299, 2052-2054.
- Carmichael, G., G. Calori, H. Hayami, I. Uno, S. Cho, M. Engardt, S. Kim, Y. Ichikawa, Y. Ikeda, J. Woo, H. Ueda and M. Amann, 2002: The Mics-Asia study: Model intercomparison of long-range transport and sulfur deposition in East Asia. *Atmospheric Environment*, **36**, 175-199.
- Carmichael, G., Y. Tang, G. Kurata, I. Uno, D. Streets, N. Thongboonchoo, J. Woo, S. Guttikunda, A. White, T. Wang, D. Blake, E. Atlas, A. Fried, B. Potter, M. Avery, G. Sachse, S. Sandholm, Y. Kondo, R. Talbot, A. Bandy, D. Thorton and A. Clarke, 2003: Evaluating regional emission estimates using the TRACE-P observations. *Journal of Geophysical Research*, 108, 8810, doi:10.1029/2002JD003116.

- **Carrico**, C. et al., 2005: Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. *Atmospheric Environment*, **39**, 1393-1404.
- CCSP, 2008: Climate Projections Based on Emissions Scenarios for Long-lived and Short-lived Radiatively Active Gases and Aerosols. A Report by the U.S. Climate Change Science, Program and the Subcommittee on Global Change Research, H. Levy II, D, T. Shindell, A. Gilliland, M. D. Schwarzkopf, L. W. Horowitz, (eds.). Department of Commerce, NOAA's National Climatic Data Center, Washington, D. C. USA, 116 pp.
- Chand, D., T. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan, 2008: Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing. *Journal of Geophysical Research*, **113**, D13206, doi:10.1029/2007JD009433.
- Charlson, R. and M. Pilat, 1969: Climate: The influence of aerosols. *Journal of Applied Meteorology*, **8**, 1001-1002.
- Charlson, R., J. Langner, and H. Rodhe, 1990: Sulfate aerosol and climate. *Nature*, **348**, 22.
- Charlson, R., J. Langner, H. Rodhe, C. Leovy, and S. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. *Tellus*, **43AB**, 152-163.
- Charlson, R., S. Schwartz, J. Hales, R. Cess, R. J. Coakley, Jr., J. Hansen, and D. Hofmann, 1992: Climate forcing by anthropogenic aerosols. *Science*, 255, 423-430.
- Chen, W-T, R. Kahn, D. Nelson, K. Yau, and J. Seinfeld, 2008: Sensitivity of multi-angle imaging to optical and microphysical properties of biomass burning aerosols. *Journal of Geophysical Research*, **113**, D10203, doi:10.1029/2007JD009414.
- Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. Duncan, R. Martin, J. Logan, A. Higurashi, and T. Nakajima, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. *Journal of the Atmospheric Sciences*, **59**, 461-483.
- Chin, M., T. Diehl, P. Ginoux, and W. Malm, 2007: Intercontinental transport of pollution and dust aerosols: implications for regional air quality. *Atmospheric Chemistry and Physics*, 7, 5501-5517.
- Chou, M., P. Chan, and M. Wang, 2002: Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties. *Journal of the Atmospheric Sciences*, **59**, 748-757.
- Christopher, S., and J. Zhang, 2002: Daytime variation of shortwave direct radiative forcing of biomass burning aerosols from GEOS-8 imager. *Journal of the Atmospheric Sciences*, **59**, 681-691.
- Christopher, S., J. Zhang, Y. Kaufman, and L. Remer, 2006: Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans. *Geophysical Research Letters*, **33**, L15816.

Atmospheric Aerosol Properties and Climate Impacts

- Christopher, A., and T. Jones, 2008: Short-wave aerosol radiative efficiency over the global oceans derived from satellite data. *Tellus*, (B) 60(4), 636-640.
- Chu, D., Y. Kaufman, C. Ichoku, L. Remer, D. Tanré, and B. Holben, 2002: Validation of MODIS aerosol optical depth retrieval over land. *Geophysical Research Letters*, **29**, 8007, doi:10.1029/2001/GL013205.
- Chung, C., V. Ramanathan, D. Kim, and I. Podgomy, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. *Journal of Geophysical Research*, 110, D24207, doi:10.1029/2005JD006356.
- Chung, C. E. and G. Zhang, 2004: Impact of absorbing aerosol on precipitation. *Journal of Geophysical Research*, 109, doi:10.1029/2004JD004726.
- Clarke, A.D., J.N. Porter, F.P.J. Valero, and P. Pilewskie, 1996: Vertical profiles, aerosol microphysics, and optical closure during the Atlantic Stratocumulus Transition Experiment: Measured and modeled column optical properties *Journal of Geophysical Research*, **101**, 4443-4453.
- **Coakley**, J. Jr., R. Cess, and F. Yurevich, 1983: The effect of tropospheric aerosols on the earth's radiation budget: A parameterization for climate models. *Journal of the Atmospheric Sciences*, **40**, 116-138.
- **Coakley**, J. A. Jr. and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. *Journal of the Atmospheric Sciences*, **59**, 668-680.
- Collins, D.R., H.H. Jonsson, J.H. Seinfeld, R.C. Flagan, S. Gassó, D.A. Hegg, P.B. Russell, B. Schmid, J.M. Livingston, E. Öström, K.J. Noone, L.M. Russell, and J.P. Putaud, 2000: *In Situ* aerosol size distributions and clear column radiative closure during ACE-2. *Tellus*, **52B**, 498-525.
- Collins, W., P. Rasch, B. Eaton, B. Khattatov, J. Lamarque, and C. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. *Journal of Geophysical Research*, 106, 7313-7336.
- Conant, W. C., T. M. VanReken, T. A. Rissman, V. Varutbangkul, H. H. Jonsson, A. Nenes, J. L. Jimenez, A. E. Delia, R. Bahreini, G. C. Roberts, R. C. Flagan, J. H. Seinfeld, 2004: Aerosol, cloud drop concentration closure in warm cumulus. *Journal of Geophysical Research*, **109**, D13204, doi:10.1029/2003JD004324.
- Cooke, W.F., and J.J.N. Wilson, 1996: A global black carbon aerosol model. *Journal of Geophysical Research*, 101, 19395-19409.
- **Cooke**, W.F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a $1^{\circ} \times 1^{\circ}$ fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. *Journal of Geophysical Research*, **104**, 22137-22162.

- Costa, M., A. Silva, and V. Levizzani, 2004a: Aerosol characterization and direct radiative forcing assessment over the ocean. Part I: Methodology and sensitivity analysis. *Journal of Applied Meteorology*, **43**, 1799-1817.
- Costa, M., A. Silva AM, and V. Levizzani, 2004b: Aerosol characterization and direct radiative forcing assessment over the ocean. Part II: Application to test cases and validation. *Journal* of Applied Meteorology, 43, 1818-1833.
- de Gouw, J., et al., 2005: Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. *Journal of Geophysical Research*, **110**, D16305, doi:10.1029/2004JD005623.
- **Delene**, D. and J. Ogren, 2002: Variability of aerosol optical properties at four North American surface monitoring sites. *Journal of the Atmospheric Sciences*, **59**, 1135-1150.
- Delworth, T. L., V. Ramaswamy and G. L. Stenchikov, 2005: The impact of aerosols on simulated ocean temperature and heat content in the 20th century. *Geophysical Research Letters*, 32, doi:10.1029/2005GL024457.
- Dentener, F., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J.J. Hoelzemann, A. Ito, L. Marelli, J.E. Penner, J.-P. Putaud, C. Textor, M. Schulz, G.R. van der Werf, and J. Wilson, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed datasets for AeroCom. *Atmospheric Chemistry and Physics*, 6, 4321-4344.
- Deuzé, J., F. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. *Journal of Geophysical Research*, 106, 4913-4926.
- Diner, D., J. Beckert, T. Reilly, et al., 1998: Multiangle Imaging SptectrRadiometer (MISR) description and experiment overview. *IEEE Transactions on Geoscience and Remote Sensing*, 36, 1072-1087.
- Diner, D., J. Beckert, G. Bothwell and J. Rodriguez, 2002: Performance of the MISR instrument during its first 20 months in Earth orbit. *IEEE Transactions on Geoscience and Remote Sensing*, **40**, 1449-1466.
- Diner, D., T. Ackerman, T. Anderson, et al., 2004: Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON): An integrated approach for characterizing aerosol climatic and environmental interactions. *Bulletin of the American Meteorological Society*, **85**, 1491-1501.
- Doherty, S.J., P. Quinn, A. Jefferson, C. Carrico, T.L. Anderson, and D. Hegg, 2005: A comparison and summary of aerosol optical properties as observed *in situ* from aircraft, ship and land during ACE-Asia. *Journal of Geophysical Research*, 110, D04201, doi: 10.1029/2004JD004964.

- **Dubovik**, O., A. Smirnov, B. Holben, M. King, Y. Kaufman, and Slutsker, 2000: Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky radiance measurements. *Journal of Geophysical Research*, **105**, 9791-9806.
- **Dubovik**, O., and M. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. *Journal of Geophysical Research*, **105**, 20673-20696.
- Dubovik, O., B. Holben, T. Eck, A. Smirnov, Y. Kaufman, M. King, D. Tanré, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. *Journal of the Atmospheric Sciences*, **59**, 590-608.
- Dubovik, O., T. Lapyonok, Y. Kaufman, M. Chin, P. Ginoux, and A. Sinyuk, 2007: Retrieving global sources of aerosols from MODIS observations by inverting GOCART model, *Atmo-spheric Chemistry and Physics Discussions*, 7, 3629-3718.
- Dusek, U., G. P. Frank, L. Hildebrandt, J. Curtius, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, and M. O. Andreae, 2006: Size matters more than chemistry in controlling which aerosol particles can nucleate cloud droplets. *Science*, **312**, 1375-1378.
- Eagan, R.C., P. V. Hobbs and L. F. Radke, 1974: Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires. *Journal of Applied Meteorology*, 13, 553-557.
- Eck, T., B. Holben, J. Reid, O. Dubovik, A. Smirnov, N. O'Neill, I. Slutsker, and S. Kinne, 1999: Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. *Journal of Geophysical Research*, **104**, 31333-31350.

- Eck, T., et al., 2008: Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer. *Journal of Geophysical Research*, **113**, D01204, doi:10.1029/2007JD008944.
- Ervens, B., G. Feingold, and S. M. Kreidenweis, 2005: The influence of water-soluble organic carbon on cloud drop number concentration. *Journal of Geophysical Research*, **110**, D18211, doi:10.1029/2004JD005634.
- Fehsenfeld, F., et al., 2006:International Consortium for *Atmospheric Research* on Transport and Transformation (ICARTT): North America to Europe—Overview of the 2004 summer field study. *Journal of Geophysical Research*, **111**, D23S01, doi:10.1029/2006JD007829.
- Feingold, G., B. Stevens, W.R. Cotton, and R.L. Walko, 1994: An explicit microphysics/LES model designed to simulate the Twomey Effect. *Atmospheric Research*, 33, 207-233.

- Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. *Journal of the Atmospheric Sciences*, 56, 4100-4117.
- Feingold, G., Remer, L. A., Ramaprasad, J. and Kaufman, Y. J., 2001: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach. *Journal of Geophysical Research*, **106**, 22907-22922.
- Feingold, G. W. Eberhard, D. Veron, and M. Previdi, 2003: First measurements of the Twomey aerosol indirect effect using ground-based remote sensors. *Geophysical Research Letters*, 30, 1287, doi:10.1029/2002GL016633.
- Feingold, G., 2003: Modeling of the first indirect effect: Analysis of measurement requirements. *Geophysical Research Letters*, 30, 1997, doi:10.1029/2003GL017967.
- Feingold, G., H. Jiang, and J. Harrington, 2005: On smoke suppression of clouds in Amazonia. *Geophysical Research Letters*, 32, L02804, doi:10.1029/2004GL021369.
- Feingold, G., R. Furrer, P. Pilewskie, L. A. Remer, Q. Min, H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. *Journal of Geophysical Research*, **111**, D05S14, doi:10.1029/2004JD005648.
- Fernandes, S.D., N.M. Trautmann, D.G. Streets, C.A. Roden, and T.C. Bond, 2007: Global biofueluse, 1850-2000. *Global Biogeochemical Cycles*, **21**, GB2019, doi:10.1029/2006GB002836.
- Ferrare, R., G. Feingold, S. Ghan, J. Ogren, B. Schmid, S.E. Schwartz, and P. Sheridan, 2006: Preface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences. *Journal of Geophysical Research*, 111, D05S01, doi:10.1029/2005JD006908.
- Fiebig, M., and J.A. Ogren, 2006: Retrieval and climatology of the aerosol asymmetry parameter in the NOAA aerosol monitoring network. *Journal of Geophysical Research*, **111**, D21204, doi:10.1029/2005JD006545.
- Fishman, J., J.M. Hoell, R.D. Bendura, R.J. McNeal, and V. Kirchhoff, 1996: NASA GTE TRACE A experiment (Septemner-October 2002): Overview. *Journal of Geophysical Research*, **101**, 23865-23880.
- Fitzgerald, J. W., 1975: Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. *Journal of Applied Meteorology*, **14**, 1044-1049.
- Fraser, R. and Y. Kaufman, 1985: The relative importance of aerosol scattering and absorption in Remote Sensing. *Transactions on Geoscience and Remote Sensing*, GE-23, 625-633.

Atmospheric Aerosol Properties and Climate Impacts

- Garrett, T., C. Zhao, X. Dong, G. Mace, and P. Hobbs, 2004: Effects of varying aerosol regimes on low-level Arctic stratus. *Geophysical Research Letters*, **31**, L17105, doi:10.1029/2004GL019928.
- Garrett, T., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. *Nature*, **440**, 787-789.
- Geogdzhayev, I., M. Mishchenko, W. Rossow, B. Cairns, B., and A. Lacis, 2002: Global two-channel AVHRR retrievals of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data. *Journal of the Atmospheric Sciences*, **59**, 262-278.
- Ghan, S., and S.E. Schwartz, 2007: Aerosol properties and processes. Bulletin of the American Meteorological Society, 88, 1059-1083.
- Gillett, N.P., et al., 2002a: Reconciling two approaches to the detection of anthropogenic influence on climate. *Journal of Climate*, **15**, 326–329.
- Gillett, N.P., et al., 2002b: Detecting anthropogenic influence with a multimodel ensemble. *Geophysical Research Letters*, 29, doi:10.1029/2002GL015836.
- Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. *Journal of Geophysical Research*, 20, 20255-20273.
- Ginoux, P., L. W. Horowitz, V. Ramaswamy, I. V. Geogdzhayev, B. N. Holben, G. Stenchikov and X. tie, 2006: Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. *Journal of Geophysical Research*, 111, doi:10.1029/2005JD006707.
- Golaz, J-C., V. E. Larson, and W. R. Cotton, 2002a: A PDFbased model for boundary layer clouds. Part I: Method and model description. *Journal of the Atmospheric Sciences*, **59**, 3540-3551.
- Golaz, J-C., V. E. Larson, and W. R. Cotton, 2002b: A PDF-based model for boundary layer clouds. Part II: Model results. *Journal of the Atmospheric Sciences*, **59**, 3552-3571.
- Grabowski, W.W., 2004: An improved framework for superparameterization. *Journal of the Atmospheric Sciences*, **61**, 1940-52.
- Grabowski, W.W., X. Wu, and M.W. Moncrieff, 1999: Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part III: Effects of cloud microphysics. *Journal of the Atmospheric Sciences*, **56**, 2384-2402.
- **Gregory**, J.M., et al., 2002: An observationally based estimate of the climate sensitivity. *Journal of Climate*, **15**, 3117-3121.

- Gunn, R. and B. B. Phillips. 1957: An experimental investigation of the effect of air pollution on the initiation of rain. *Journal of Meteorology*, 14, 272-280.
- Han, Q., W. B. Rossow, J. Chou, and R. M. Welch, 1998: Global survey of the relationship of cloud albedo and liquid water path with droplet size using ISCCP. *Journal of Climate*, 11, 1516-1528.
- Han, Q., W.B. Rossow, J. Zeng, and R. Welch, 2002: Three different behaviors of liquid water path of water clouds in aerosol-cloud interactions. *Journal of the Atmospheric Sciences*, 59, 726-735.
- Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. *Journal of Geophysical Research*, 102, 6831-6864.
- Hansen, J., et al., 2005: Efficacy of climate forcings. Journal of Geophysical Research, 110, doi:10.1029/2005JD005776, 45pp.
- Hansen, J. et al., 2007: Climate simulations for 1880-2003 with GISS model E. *Climate Dynamics*, **29**, 661-696.
- Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadowband radiometer: An instrument for optical depth and radiation measurements. *Applied Optics*, 33, 5118-5125.
- Harvey, L.D.D., 2004: Characterizing the annual-mean climatic effect of anthropogenic CO₂ and aerosol emissions in eight coupled atmosphere-ocean GCMs. *Climate Dynamics*, 23, 569-599.
- Haywood, J. M., V. Ramaswamy, and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. *Science*, 283(5406), 1299-1303.
- Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. *Reviews of Geophysics*, 38, 513-543.
- Haywood, J., P. Francis, S. Osborne, M. Glew, N. Loeb, E. Highwood, D. Tanré, E. Myhre, P. Formenti, and E. Hirst, 2003: Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1.Solar spectrum. *Journal of Geophysical Research*, **108**, 8577, doi:10.1029/2002JD002687.
- Haywood, J., and M. Schulz, 2007: Causes of the reduction in uncertainty in the anthropogenic radiative forcing of climate between IPCC (2001) and IPCC (2007). *Geophysical Research Letters*, 34, L20701, doi:10.1029/2007GL030749.
- Haywood, J., et al., 2008: Overview of the Dust and Biomass burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0. *Journal of Geophysical Research*, **113**, D00C17, doi:10.1029/2008JD010077.
- Heald, C. L., D. J. Jacob, R. J. Park, L. M. Russell, B. J. Huebert, J. H. Seinfeld, H. Liao, and R. J. Weber, 2005: A large organic aerosol source in the free troposphere missing from current models. *Geophysical Research Letters*, **32**, L18809, doi:10.1029/2005GL023831.

- Heintzenberg, J., et al., 2009: The SAMUM-1 experiment over Southern Morocco: Overview and introduction. *Tellus*, 61B, in press.
- Henze, D. K. and J.H. Seinfeld, 2006: Global secondary organic aerosol from isoprene oxidation. *Geophysical Research Letters*, 33, L09812, doi:10.1029/2006GL025976.
- Herman, J., P. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data. *Journal of Geophysical Research*, 102, 16911-16922.
- Hoell, J.M., D.D. Davis, S.C. Liu, R. Newell, M. Shipham, H. Akimoto, R.J. McNeal, R.J. Bemdura, and J.W. Drewry, 1996: Pacific Exploratory Mission-West A (PEM-WEST A): September-October, 1991. *Journal of Geophysical Research*, 101, 1641-1653.
- Hoell, J.M., D.D. Davis, S.C. Liu, R. Newell, M. Shipham, H. Akimoto, R.J. McNeal, R.J. Bemdura, and J.W. Drewry, 1997: The Pacific Exploratory Mission-West Phase B: February-March, 1994. *Journal of Geophysical Research*, 102, 28223-28239.
- Hoff, R. et al., 2002: Regional East Atmospheric Lidar Mesonet: REALM, in *Lidar Remote Sensing in Atmospheric and Earth Sciences*, edited by L. Bissonette, G. Roy, and G. Vallée, pp. 281-284, Def. R&D Can. Valcartier, Val-Bélair, Que.
- Hoff, R., J. Engel-Cox, N. Krotkov, S. Palm, R. Rogers, K. Mc-Cann, L. Sparling, N. Jordan, O. Torres, and J. Spinhirne, 2004: Long-range transport observations of two large forest fire plumes to the northeastern U.S., in 22nd International Laser Radar Conference, ESA Spec. Publ., SP-561, 683-686.
- Holben, B., T. Eck, I. Slutsker, et al., 1998: AERONET—A federated instrument network and data archive for aerosol characterization. *Remote Sensing of the Environment*, **66**, 1-16.
- Holben, B., D. Tanré, A. Smirnov, et al., 2001: An emerging groundbased aerosol climatology: aerosol optical depth from AERO-NET. *Journal of Geophysical Research*, **106**, 12067-12098.
- Horowitz, L. W., et al., 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MO-ZART, version 2. *Journal of Geophysical Research*, **108**, 4784, doi:10.1029/2002JD002853.
- Horowitz, L., 2006: Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. *Journal of Geophysical Research*, **111**, D22211, doi:10.1029/2005JD006937.
- Hoyt, D., and C. Frohlich, 1983: Atmospheric transmission at Davos, Switzerland 1909-1979. *Climatic Change*, 5, 61-71.
- Hsu, N., S. Tsay, M. King, and J. Herman, 2004: Aerosol properties over bright-reflecting source regions.*IEEE Transactions* on Geoscience and Remote Sensing, 42, 557-569.


- Huebert, B., T. Bates, P. Russell, G. Shi, Y. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts. *Journal of Geophysical Research*, **108**, 8633, doi:10.1029/2003JD003550.
- Huneeus, N., and O. Boucher, 2007: One-dimensional variational retrieval of aerosol extinction coefficient from synthetic LI-DAR and radiometric measurements. *Journal of Geophysical Research*, **112**, D14303, doi:10.1029/2006JD007625.
- Husar, R., J. Prospero, and L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. *Journal of Geophysical Research*, **102**, 16889-16909.
- **IPCC**, 1992: *Climate Change 1992: The Supplementary Report* to the IPCC Scientific Assessment. J. T. Houghton, B. A. Callander and S. K. Varney (eds). Cambridge University Press, Cambridge, UK, 198 pp.
- IPCC (Intergovernmental Panel on Climate Change), 1995: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios, in Climate Change 1994, Cambridge Univ. Press, New York, Cambridge University Press, 1995.
- **IPCC** (Intergovernmental Panel on Climate Change), 1996: *Radiative forcing of climate change, in Climate Change 1995,* Cambridge Univ. Press, New York, Cambridge University Press, 1996.
- **IPCC** (Intergovernmental Panel on Climate Change), 2001: *Radiative forcing of climate change, in Climate Change 2001,* Cambridge Univ. Press, New York, Cambridge University Press, 2001.
- **IPCC** (Intergovernmental Panel on Climate Change), 2007: Changes in Atmospheric Constituents and in Radiative forcing, in Climate Change 2007, Cambridge University Press, New York, Cambridge University Press, 2007.
- Ito, A., and J.E. Penne, 2005: Historical estimates of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. *Global Biogeochemical Cycles*, **19**, GB2028, doi:10.1029/2004GB002374.
- Jacob, D., J. Crawford, M. Kleb, V. Connors, R.J. Bendura, J. Raper, G. Sachse, J. Gille, L. Emmons, and C. Heald, 2003: The Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: design, execution, and first results. *Journal of Geophysical Research*, **108**, 9000, 10.1029/2002JD003276.
- Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop, 2000: Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. *Aerosol Science and Technology*, 33, 49-70.

- Jeong, M., Z. Li, D. Chu, and S. Tsay, 2005: Quality and Compatibility Analyses of Global Aerosol Products Derived from the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer. *Journal of Geophysical Research*, **110**, D10S09, doi:10.1029/2004JD004648.
- Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. *Journal of Geophysical Research*, 111, D01202, doi:10.1029/2005JD006138.
- Jiang, H., H. Xue, A. Teller, G. Feingold, and Z. Levin, 2006: Aerosol effects on the lifetime of shallow cumulus. *Geophysical Research Letters*, 33, doi: 10.1029/2006GL026024.
- Jiang, H., G. Feingold, H. H. Jonsson, M.-L. Lu, P. Y. Chuang, R. C. Flagan, J. H. Seinfeld, 2008: Statistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). *Journal of Geophysical Research*, 113, D13205, doi:10.1029/2007JD009304.
- **Johnson**, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. *Journal of the Atmospheric Sciences*, **39**, 448-460.
- Jones, G.S., et al., 2005: Sensitivity of global scale attribution results to inclusion of climatic response to black carbon. *Geophysical Research Letters*, **32**:L14701, doi:10.1029/2005GL023370.
- Junker, C., and C. Liousse, 2008: A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. *Atmospheric Chemistry and Physics*, 8, 1195-1207.
- Kahn, R., P. Banerjee, D. McDonald, and D. Diner, 1998: Sensitivity of multiangle imaging to aerosol optical depth, and to pure-particle size distribution and composition over ocean. *Journal of Geophysical Research*, **103**, 32195-32213.
- Kahn, R., P. Banerjee, and D. McDonald, 2001: The sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. *Journal of Geophysical Research*, **106**, 18219-18238.
- Kahn, R., J. Ogren, T. Ackerman, et al., 2004: Aerosol data sources and their roles within PARAGON. *Bulletin of the American Meteorological Society*, 85, 1511-1522.
- Kahn, R., R. Gaitley, J. Martonchik, D. Diner, K. Crean, and B. Holben, 2005a: MISR global aerosol optical depth validation based on two years of coincident AERONET observations. *Journal of Geophysical Research*, **110**, D10S04, doi:10.1029/2004JD004706.
- Kahn, R., W. Li, J. Martonchik, C. Bruegge, D. Diner, B. Gaitley, W. Abdou, O. Dubovik, B. Holben, A. Smirnov, Z. Jin, and D. Clark, 2005b: MISR low-light-level calibration, and implications for aerosol retrieval over dark water. *Journal of the Atmospheric Sciences*, 62, 1032-1052.

- Kahn, R., W. Li, C. Moroney, D. Diner, J. Martonchik, and E. Fishbein, 2007a: Aerosol source plume physical characteristics from space-based multiangle imaging. *Journal of Geophysical Research*, **112**, D11205, doi:10.1029/2006JD007647.
- Kahn, R., et al., 2007b: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. *Journal of Geophysical Research*, **112**, D18205, doi:10.1029/2006JD008175.
- Kalashnikova, O., and R. Kahn, 2006: Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Part 2. Sensitivity over dark water. *Journal of Geophysical Research*, 111:D11207, doi:10.1029/2005JD006756.
- Kapustin, V.N., A.D. Clarke, Y. Shinozuka, S. Howell, V. Brekhovskikh, T. Nakajima, and A. Higurashi, 2006: On the determination of a cloud condensation nuclei from satellite: Challenges and possibilities. *Journal of Geophysical Research*, 111, D04202, doi:10.1029/2004JD005527.
- Kaufman, Y., 1987: Satellite sensing of aerosol absorption. *Journal of Geophysical Research*, **92**, 4307-4317.
- Kaufman, Y.J., A. Setzer, D. Ward, D. Tanre, B. N. Holben, P. Menzel, M. C. Pereira, and R. Rasmussen, 1992: Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A). *Journal of Geophysical Research*, 97, 14581-14599.
- Kaufman, Y. J. and Nakajima, T., 1993: Effect of Amazon smoke on cloud microphysics and albedo—Analysis from satellite imagery. *Journal of Applied Meteorology*, **32**, 729-744.
- Kaufman, Y. and R. Fraser, 1997: The effect of smoke particles on clouds and climate forcing. *Science*, 277, 1636-1639.
- Kaufman, Y., D. Tanré, L. Remer, E. Vermote, A. Chu, and B. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. *Journal of Geophysical Research*, **102**, 17051-17067.
- Kaufman, Y.J., P. V. Hobbs, V. W. J. H. Kirchhoff, P. Artaxo, L. A. Remer, B. N. Holben, M. D. King, D. E. Ward, E. M. Prins, K. M. Longo, L. F. Mattos, C. A. Nobre, J. D. Spinhirne, Q. Ji, A. M. Thompson, J. F. Gleason, and S. A. Christopher, 1998: Smoke, clouds, and radiation—Brazil (SCAR-B) experiment. *Journal of Geophysical Research*, 103, 31783-31808.
- Kaufman, Y., D. Tanré, and O. Boucher, 2002a: A satellite view of aerosols in the climate system. *Nature*, **419**, doi:10.1038/ nature01091.
- Kaufman, Y., J. Martins, L. Remer, M. Schoeberl, and M. Yamasoe, 2002b: Satellite retrieval of aerosol absorption over the oceans using sunglint. *Geophysical Research Letters*, 29, 1928, doi:10.1029/2002GL015403.

- Kaufman, Y., J. Haywood, P. Hobbs, W. Hart, R. Kleidman, and B. Schmid, 2003: Remote sensing of vertical distributions of smoke aerosol off the coast of Africa. *Geophysical Research Letters*, **30**, 1831, doi:10.1029/2003GL017068.
- Kaufman, Y., O. Boucher, D. Tanré, M. Chin, L. Remer, and T. Takemura, 2005a: Aerosol anthropogenic component estimated from satellite data. *Geophysical Research Letters*, 32, L17804, doi:10.1029/2005GL023125.
- Kaufman, Y., L. Remer, D. Tanré, R. Li, R. Kleidman, S. Mattoo, R. Levy, T. Eck, B. Holben, C. Ichoku, J. Martins, and I. Koren, 2005b: A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. *IEEE Transactions on Geoscience and Remote Sensing* 43, 2886-2897.
- Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld and Y. Rudich, 2005c: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. *Proceedings of the National Academy of Sciences*, **102**, 11207-11212.
- Kaufman, Y. J. and Koren, I., 2006: Smoke and pollution aerosol effect on cloud cover. *Science*, **313**, 655-658.
- Kerr, R., 2007: Another global warming icon comes under attack. *Science*, **317**, 28.
- Kiehl, J. T., 2007: Twentieth century climate model response and climate sensitivity. *Geophysical Research Letters*, 34, doi:10.1029/2007GL031383.
- Kim, B.-G., S. Schwartz, M. Miller, and Q. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. *Journal of Geophysical Research*, 108, 4740, doi:10.1029/2003JD003721.

- Kim, M.-K., K.-M. Lau, M. Chin, K.-M. Kim, Y. Sud, and G. K. Walker, 2006: Atmospheric teleconnection over Eurasia induced by aerosol radiative forcing during boreal spring. *Proceedings of the National Academy of Sciences*, **19**, 4700-4718.
- King, M., Y. Kaufman, D. Tanré, and T. Nakajima, 1999: Remote sensing of tropospheric aerosols: Past, present, and future. *Bulletin of the American Meteorological Society*, **80**, 2229-2259.
- King, M., S. Platnick, C. Moeller, Revercomb, and D. Chu, 2003: Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000. *Journal of Geophysical Research*, 108, 8502, doi:10.1029/2002JD003207.
- Kinne, S., M. Schulz, C. Textor, et al., 2006: An AeroCom initial assessment—optical properties in aerosol component modules of global models. *Atmospheric Chemistry and Physics*, 6, 1815-1834.

- Kirchstetter, T.W., R.A. Harley, N.M. Kreisberg, M.R. Stolzenburg, and S.V. Hering, 1999: On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. *Atmospheric Environment*, 33, 2955-2968.
- Kristjánsson, J. E., Stjern, C. W., Stordal, F., Fjæraa, A. M., Myhre, G., and Jónasson, K., 2008: Cosmic rays, cloud condensation nuclei and clouds—a reassessment using MODIS data, *Atmospheric Chemistry and Physics*, 8, 7373-7387.
- Kleinman, L.I. et al., 2008: The time evolution of aerosol composition over the Mexico City plateau. *Atmospheric Chemistry and Physics*, 8, 1559-1575.
- Kleidman, R., N. O'Neill, L. Remer, Y. Kaufman, T. Eck, D. Tanré, O. Dubovik, and B. Holben, 2005: Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. *Journal of Geophysical Research*, **110**, D22205, doi:10.1029/2005JD005760.
- Knutti, R., T.F. Stocker, F. Joos, and G.-K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. *Nature*, 416, 719-723.
- Knutti, R., T.F. Stocker, F. Joos, and G.-K. Plattner, 2003: Probabilistic climate change projections using neural networks. *Climate Dynamics*, 21, 257-272.
- Koch, D., and J. Hansen, 2005: Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment. *Journal of Geophysical Research*, 110, D04204, doi:10.1029/2004JD005296.
- Koch, D., G. Schmidt, and C. Field, 2006: Sulfur, sea salt and radionuclide aerosols in GISS ModelE. *Journal of Geophysical Research*, 111, D06206, doi:10.1029/2004JD005550.
- Koch, D., T.C. Bond, D. Streets, N. Unger, G.R. van der Werf, 2007: Global impact of aerosols from particular source regions and sectors, *Journal of Geophysical Research*, **112**, D02205, doi:10.1029/2005JD007024.
- Kogan, Y. L., D. K. Lilly, Z. N. Kogan, and V. Filyushkin, 1994: The effect of CCN regeneration on the evolution of stratocumulus cloud layers. *Atmospheric Research*, 33, 137-150.
- Koren, I., Y. Kaufman, L. Remer, and J. Martins, 2004: Measurement of the effect of Amazon smoke on inhibition of cloud formation. *Science*, 303, 1342.
- Koren, I., Y.J. Kaufman, D. Rosenfeld, L.A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. *Geophysical Research Letters*, 32, doi:10.1029/2005GL023187.
- Koren, I., L.A. Remer, and K. Longo, 2007a: Reversal of trend of biomass burning in the Amazon. *Geophysical Research Letters*, 34, L20404, doi:10.1029/2007GL031530.

- Koren, I., L.A. Remer, Y.J. Kaufman, Y. Rudich, and J.V. Martins, 2007b: On the twilight zone between clouds and aerosols. *Geophysical Research Letters*, 34, L08805, doi:10.1029/2007GL029253.
- Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. *Science*, **321**, 946, doi: 10.1126/science.1159185.
- Kroll, J. H., N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld, 2006: Secondary organic aerosol formation from isoprene photooxidation. *Environmental Science and Technology*, 40, 1869-1877.
- Kruger, O. and H. Grasl, 2002: The indirect aerosol effect over Europe. *Geophysical Research Letters*, 29, doi:10.1029/2001GL014081.
- Lack, D., E. Lovejoy, T. Baynard, A. Pettersson, and A. Ravishankara, 2006: Aerosol absorption measurements using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. *Aerosol Science and Technology*, 40, 697-708.
- Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions. *Journal of the Atmospheric Sciences*, 58, 1978-1996.
- Larson, V.E., J.-C. Golaz, H. Jiang and W.R. Cotton, 2005: Supplying local microphysics parameterizations with information about subgrid variability: Latin hypercube sampling. *Journal* of the Atmospheric Sciences, 62, 4010-4026.
- Lau, K., M. Kim, and K. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing—the role of the Tibetan Plateau. *Climate Dynamics*, **36**, 855-864, doi:10.1007/ s00382-006-10114-z.
- Lau, K.-M., and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. *Geophysical Research Letters*, 33, L21810, doi:10.1029/2006GL027546.
- Lau, K.-M., K.-M. Kim, G. Walker, and Y. C. Sud, 2008: A GCM study of the possible impacts of Saharan dust heating on the water cycle and climate of the tropical Atlantic and Caribbean regions. *Proceedings of the National Academy of Sciences,* (submitted).
- Leahy, L., T. Anderson, T. Eck, and R. Bergstrom, 2007: A synthesis of single scattering albedo of biomass burning aerosol over southern Africa during SAFARI 2000. *Geophysical Research Letters*, 34, L12814, doi:10.1029/2007GL029697.
- Leaitch, W. R., G.A. Isaac, J.W. Strapp, C.M. Banic and H.A. Wiebe, 1992: The Relationship between Cloud Droplet Number Concentrations and Anthropogenic Pollution—Observations and Climatic Implications. *Journal of Geophysical Research*, 97, 2463-2474.

- Leaitch, W. R., C. M. Banic, G. A. Isaac, M. D. Couture, P. S. K. Liu, I. Gultepe, S.-M. Li, L. Kleinman, J. I. MacPherson, and P. H. Daum, 1996: Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. *Journal of Geophysical Research*, 101, 29123-29135.
- Lee, T., et al., 2006: The NPOESS VIIRS day/night visible sensor. Bulletin of the American Meteorological Society, 87, 191-199.
- Lelievel, J., H. Berresheim, S. Borrmann, S., et al., 2002: Global air pollution crossroads over the Mediterranean. *Science*, **298**, 794-799.
- Léon, J., D. Tanré, J. Pelon, Y. Kaufman, J. Haywood, and B. Chatenet, 2003: Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing. *Journal of Geophysical Research*, 108, 8575, doi:10.1029/2002JD002774.
- Levin, Z. and W. R. Cotton, 2008: Aerosol pollution impact on precipitation: A scientific review. Report from the WMO/ IUGG International Aerosol Precipitation Science, Assessment Group (IAPSAG), World Meteorological Organization, Geneva, Switzerland, 482 pp.
- Levy, R., L. Remer, and O. Dubovik, 2007a: Global aerosol optical properties and application to MODIS aerosol retrieval over land. *Journal of Geophysical Research*, **112**, D13210, doi:10.1029/2006JD007815.
- Levy, R., L. Remer, S. Mattoo, E. Vermote, and Y. Kaufman, 2007b: Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance. *Journal of Geophysical Research*, **112**, D13211, doi:10.1029/2006JD007811.
- Lewis, E.R. and S.E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review. Geophysical Monograph Series Vol. 152, (American Geophysical Union, Washington, 2004), 413 pp. ISBN: 0-87590-417-3.
- Li, R., Y. Kaufman, W. Hao, I. Salmon, and B. Gao, 2004: A technique for detecting burn scars using MODIS data. *IEEE Transactions on Geoscience and Remote Sensing*, 42, 1300-1308.
- Li, Z., et al., 2007: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). *Journal of Geophysical Research*, 112, D22s00, doi:10.0129/2007JD008853.
- Lindesay, J. A., M.O. Andreae, J.G. Goldammer, G. Harris, H.J. Annegarn, M. Garstang, R.J. Scholes, and B.W. van Wilgen, 1996: International Geosphere Biosphere Programme/International Global Atmospheric Chemistry SAFARI-92 field experiment: Background and overview. *Journal of Geophysical Research*, 101, 23521-23530.
- Liou, K. N. and S-C. Ou, 1989: The Role of Cloud Microphysical Processes in Climate: An Assessment From a One-Dimensional Perspective. *Journal of Geophysical Research*, 94, 8599-8607.

- Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman and H. Cachier, 1996: A three-dimensional model study of carbonaceous aerosols. *Journal of Geophysical Research*, 101, 19411-19432.
- Liu, H., R. Pinker, and B. Holben, 2005: A global view of aerosols from merged transport models, satellite, and ground observations. *Journal of Geophysical Research*, **110**, D10S15, doi:10.1029/2004JD004695.
- Liu, L., A. A. Lacis, B. E. Carlson, M. I. Mishchenko, and B. Cairns, 2006: Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground-based measurements: A comparison study. *Journal of Geophysical Research*, 111, doi:10.1029/2006JD007334.
- Liu, X., J. Penner, B. Das, D. Bergmann, J. Rodriguez, S. Strahan, M. Wang, and Y. Feng, 2007: Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. *Journal of Geophysical Research*, **112**, D11212, doi: **10**.1029/2006JD008216.
- Liu, Z., A. Omar, M. Vaughan, J. Hair, C. Kittaka, Y. Hu, K. Powell, C. Trepte, D. Winker, C. Hostetler, R. Ferrare, and R. Pierce, 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. *Journal of Geophysical Research*, **113**, D07207, doi:10.1029/2007JD008878.
- Lockwood, M., and C. Frohlich, 2007: Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. *Proceedings of the Royal Society A*, 1-14, doi:10.1098/rspa.2007.1880.
- Loeb, N., and S. Kato, 2002: Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument. *Proceedings of the National Academy of Sciences*, **15**, 1474-1484.
- Loeb, N., and N. Manalo-Smith, 2005: Top-of-Atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. *Journal of Climate*, 18, 3506-3526.
- Loeb, N. G., S. Kato, K. Loukachine, and N. M. Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Terra Satellite. part I: Methodology. *Journal of Atmospheric and Oceanic Technology*, 22, 338–351.
- Lohmann, U., J. Feichter, C. C. Chuang, and J. E. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. *Journal of Geophysical Research*, **104**, 9169-9198.
- Lohmann, U., et al., 2001: Vertical distributions of sulfur species simulated by large scale atmospheric models in COSAM: Comparison with observations. *Tellus*, **53B**, 646-672.
- Lohmann, U. and J. Feichter, 2005: Global indirect aerosol effects: a review. *Atmospheric Chemistry and Physics*, **5**, 715-737.

- Lohmann, U., I. Koren and Y.J. Kaufman, 2006: Disentangling the role of microphysical and dynamical effects in determining cloud properties over the Atlantic. *Geophysical Research Letters*, 33, L09802, doi:10.1029/2005GL024625.
- Lu, M.-L., G. Feingold, H. Jonsson, P. Chuang, H. Gates, R. C. Flagan, J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. *Journal of Geophysical Research*, 113, D15201, doi:10.1029/2007JD009354.
- Lubin, D., S. Satheesh, G. McFarquar, and A. Heymsfield, 2002: Longwave radiative forcing of Indian Ocean tropospheric aerosol. *Journal of Geophysical Research*, **107**, 8004, doi:10.1029/2001JD001183.
- Lubin, D. and A. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. *Nature*, 439, 453-456.
- Luo, Y., D. Lu, X. Zhou, W. Li, and Q. He, 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. *Journal of Geophysical Research*, **106**, 14501, doi:10.1029/2001JD900030.
- Magi, B., P. Hobbs, T. Kirchstetter, T. Novakov, D. Hegg, S. Gao, J. Redemann, and B. Schmid, 2005: Aerosol properties and chemical apportionment of aerosol optical depth at locations off the United States East Coast in July and August 2001. *Journal of the Atmospheric Sciences*, 62, 919-933.
- Malm, W., J. Sisler, D. Huffman, R. Eldred, and T. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United States. *Journal of Geophysical Research*, 99, 1347-1370.
- Martins, J., D. Tanré, L. Remer, Y. Kaufman, S. Mattoo, and R. Levy, 2002: MODIS cloud screening for remote sensing of aerosol over oceans using spatial variability. *Geophysical Research Letters*, **29**, 10.1029/2001GL013252.
- Martonchik, J., D. Diner, R. Kahn, M. Verstraete, B. Pinty, H. Gordon, and T. Ackerman, 1998a: Techniques for the Retrieval of aerosol properties over land and ocean using multiangle data. *IEEE Transactions on Geoscience and Remote Sensing*, 36, 1212-1227
- Martonchik, J., D. Diner, B. Pinty, M. Verstraete, R. Myneni, Y. Knjazikhin, and H. Gordon, 1998b: Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging. *IEEE Transactions on Geoscience and Remote Sensing*, 36, 1266-1281.
- Martonchik, J., D. Diner, K. Crean, and M. Bull, 2002: Regional aerosol retrieval results from MISR. *IEEE Transactions on Geoscience and Remote Sensing*, **40**, 1520-1531.
- Massie, S., O. Torres, and S. Smith, 2004: Total ozone mapping spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. *Journal of Geophysical Research*, 109, D18211, doi:10.1029/2004JD004620.

- Matheson, M. A., J. A. Coakley Jr., W. R. Tahnk, 2005: Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. *Journal of Geophysical Research*, **110**, D24204, doi:10.1029/2005JD006165.
- Matsui, T., and R. Pielke, Sr., 2006: Measurement-based estimation of the spatial gradient of aerosol radiative forcing. *Geophysical Research Letters*, **33**, L11813, doi:10.1029/2006GL025974.
- Matsui, T., H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, Y. J. Kaufman, 2006: Satellitebased assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. *Journal of Geophysical Research*, **111**, D17204, doi:10.1029/2005JD006097.
- Matthis, I., A. Ansmann, D. Müller, U. Wandinger, and D. Althausen, 2004: Multiyear aerosol observations with dualwavelength Raman lidar in the framework of EARLI-NET. *Journal of Geophysical Research*, 109, D13203, doi:10.1029/2004JD004600.
- McComiskey, A., and G. Feingold, 2008: Quantifying error in the radiative forcing of the first aerosol indirect effect, *Geophysical Research Letters*, 35, L02810, doi:10.1029/2007GL032667.
- McComiskey, A., S.E. Schwartz, B. Schmid, H. Guan, E.R. Lewis, P. Ricchiazzi, and J.A. Ogren, 2008a: Direct aerosol forcing: Calculation from observables and sensitivity to inputs. *Journal of Geophysical Research*, **113**, D09202, doi:10.1029/2007JD009170.
- McComiskey, A, G. Feingold, A. S. Frisch, D. Turner, M. Miller, J. C. Chiu, Q. Min, and J. Ogren, 2008b: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. *Journal of Geophysical Research*, submitted.
- McCormick, R., and J. Ludwig, 1967: Climate modification by atmospheric aerosols. *Science*, **156**, 1358-1359.
- McCormick, M. P., L. W. Thomason, and C. R. Trepte 1995: Atmospheric effects of the Mt. Pinatubo eruption. *Nature*, **373**, 399-404.
- McFiggans, G., P. Artaxo, U. Baltensberger, H. Coe, M.C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, T. F. Mentel, D. M. Murphy, C. D. O'Dowd, J. R. Snider, E. Weingartner, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. *Atmospheric Chemistry and Physics*, 6, 2593-2649.
- Menon, S., A.D. Del Genio, Y. Kaufman, R. Bennartz, D. Koch, N. Loeb, and D. Orlikowski, 2008: Analyzing signatures of aerosolcloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. *Journal of Geophysical Research*, **113**, D14S22, doi:10.1029/2007JD009442.

- Michalsky, J., J. Schlemmer, W. Berkheiser, et al., 2001: Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links program. *Journal of Geophysical Research*, **106**, 12099-12108.
- Min, Q., and L.C. Harrison, 1996: Cloud properties derived from surface MFRSR measurements and comparison with GEOS results at the ARM SGP site. *Geophysical Research Letters*, 23, 1641-1644.
- Minnis P., E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling. and W. L. Smith. Jr., 1993: Radiative climate forcing by the Mount Pinatubo eruption. *Science*, 259, 411-1415.
- Mishchenko, M., I. Geogdzhayev, B. Cairns, W. Rossow, and A. Lacis, 1999: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. *Applied Optics*, 38, 7325-7341.
- Mishchenko, M., et al., 2007a: Long-term satellite record reveals likely recent aerosol trend. *Science*, **315**, 1543.
- Mishchenko, M., et al., 2007b: Accurate monitoring of terrestrial aerosols and total solar irradiance. *Bulletin of the American Meteorological Society*, **88**, 677-691.
- Mishchenko, M., and I. V. Geogdzhayev, 2007: Satellite remote sensing reveals regional tropospheric aerosol trends. *Optics Express*, 15, 7423-7438.
- Mitchell, J. Jr., 1971: The effect of atmospheric aerosols on climate with special reference to temperature near the Earth's surface. *Journal of Applied Meteorology*, 10, 703-714.
- Molina, L. T., S. Madronich, J.S. Gaffney, and H.B. Singh, 2008: Overview of MILAGRO/INTEX-B Campaign. IGAC activities, *Newsletter of International Global Atmospheric Chemis*try Project 38, 2-15, April, 2008.
- **Moody**, E., M. King, S. Platnick, C. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products. *IEEE Transactions on Geoscience and Remote Sensing*, **43**, 144-158.
- Mouillot, F., A. Narasimha, Y. Balkanski, J.-F. Lamarque, and C.B. Field, 2006: Global carbon emissions from biomass burning in the 20th century. *Geophysical Research Letters*, 33, L01801, doi:10.1029/2005GL024707.
- Murayama, T., N. Sugimoto, I. Uno, I., et al., 2001: Ground-based network observation of Asian dust events of April 1998 in East Asia. *Journal of Geophysical Research*, **106**, 18346-18359.
- NRC (National Research Council), 2001: *Climate Change Sciences: An analysis of some key questions*, 42pp., National Academy Press, Washington D.C..
- NRC (National Research Council), 2005: Radiative Forcing of Climate Change: Expanding the Concept and Addessing Uncertainties, National Academy Press, Washington D.C. (Available at http://www.nap.edu/openbook/0309095069/html).

- Nakajima, T., Higurashi, A., Kawamoto, K. and Penner, J. E., 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. *Geophysical Research Letters*, 28, 1171-1174.
- Norris, J., and M. Wild, 2007: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar "dimming", and solar "brightening". *Journal of Geophysical Research*, **112**, D08214, doi:10.1029/2006JD007794.
- Novakov, T., V. Ramanathan, J. Hansen, T. Kirchstetter, M. Sato, J. Sinton, and J. Sathaye, 2003: Large historical changes of fossil-fuel black carbon emissions. *Geophysical Research Letters*, **30**, 1324, doi:10.1029/2002GL016345.
- **O'Dowd**, C. D., et al. 1999: The relative importance of sea-salt and nss-sulphate aerosol to the marine CCN population: An improved multi-component aerosol-droplet parameterization. *Quarterly Journal of the Royal Meteorological Society*, **125**, 1295-1313.
- O'Neill, N., T. Eck, A. Smirnov, B. Holben, and S. Thulasiraman, 2003: Spectral discrimination of coarse and fine mode optical depth. *Journal of Geophysical Research*, **108**(D17), 4559, doi:10.1029/2002JD002975.
- Patadia, F., P. Gupta, and S.A. Christopher, 2008: First observational estimates of global clear-sky shortwave aerosol direct radiative effect over land. *Journal of Geophysical Research*, 35, L04810, doi:10.0129/2007GL032314.
- Penner, J., R. Dickinson, and C. O'Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. *Science*, 256, 1432-1434.
- Penner, J., R. Charlson, J. Hales, et al., 1994: Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols, *Bulletin of the American Meteorological Society*, 75, 375-400.
- Penner, J.E., H. Eddleman, and T. Novakov, 1993: Towards the development of a global inventory for black carbon emissions. *Atmospheric Environment*, 27, 1277-1295.
- Penner, J. E. et al., 2002: A comparison of model- and satellitederived aerosol optical depth and reflectivity. *Journal of the Atmospheric Sciences*, **59**, 441-460.
- Penner, J. E., et al. 2006: Model intercomparison of indirect aerosol effects. Atmospheric Chemistry and Physics, 6, 3391-3405.
- Pincus, R., and S.A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. *Journal of Geophysical Research*, 105, 27059-27065.
- Pinker, R., B. Zhang, and E. Dutton, 2005: Do satellites detect trends in surface solar radiation? *Science*, 308, 850-854.
- Procopio, A. S., P. Artaxo, Y. J. Kaufman, L. A. Remer, J. S. Schafer, and B. N. Holben, 2004: Multiyear analysis of Amazonian biomass burning smoke radiative forcing of climate. *Journal of Geophysical Research*, 31, L03108, doi: 10.1029/2003GL018646.

- Qian, Y., W. Wang, L Leung, and D. Kaiser, 2007: Variability of solar radiation under cloud-free skies in China: The role of aerosols. *Geophysical Research Letters*, 34, L12804, doi:10.1029/2006GL028800.
- Quaas, J., and O. Boucher, 2005: Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data. *Geophysical Research Letters*, **32**, L17814.
- Quaas, J., O. Boucher and U. Lohmann, 2006: Constraining the total aerosol indirect effect in the LMDZ GCM and ECHAM4 GCMs using MODIS satellite data. *Atmospheric Chemistry and Physics Discussions*, **5**, 9669-9690.
- Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. *Journal of Geophysical Research*, **113**, D05204, doi:10.1029/2007JD008962.
- Quinn, P.K., T. Anderson, T. Bates, R. Dlugi, J. Heintzenberg, W. Von Hoyningen-Huene, M. Kumula, P. Russel, and E. Swietlicki, 1996: Closure in tropospheric aerosol-climate research: A review and future needs for addressing aerosol direct shortwave radiative forcing. *Contributions to Atmospheric Physics*, 69, 547-577.
- Quinn, P.K., D. Coffman, V. Kapustin, T.S. Bates and D.S. Covert, 1998: Aerosol optical properties in the marine boundary layer during ACE 1 and the underlying chemical and physical aerosol properties. *Journal of Geophysical Research*, **103**, 16547-16563.
- Quinn P.K., T. Bates, T. Miller, D. Coffman, J. Johnson, J. Harris, J. Ogren, G. Forbes, G., T. Anderson, D. Covert, and M. Rood, 2000: Surface submicron aerosol chemical composition: What fraction is not sulfate? *Journal of Geophysical Research*, 105, 6785-6806.
- Quinn, P.K., T.L. Miller, T.S. Bates, J.A. Ogren, E. Andrews, and G.E. Shaw, 2002: A three-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. *Journal of Geophysical Research*, **107**(D11), doi:10.1029/2001JD001248.
- Quinn, P.K., and T. Bates, 2003: North American, Asian, and Indian haze: Similar regional impacts on climate? *Geophysical Research Letters*, **30**, 1555, doi:10.1029/2003GL016934.
- Quinn, P.K., D.J. Coffman, T.S. Bates, E.J. Welton, D.S. Covert, T.L. Miller, J.E. Johnson, S. Maria, L. Russell, R. Arimoto, C.M. Carrico, M.J. Rood, and J. Anderson, 2004: Aerosol optical properties measured aboard the Ronald H. Brown during ACE-Asia as a function of aerosol chemical composition and source region. *Journal of Geophysical Research*, 109, doi:10.1029/2003JD004010.
- Quinn, P.K. and T. Bates, 2005: Regional Aerosol Properties: Comparisons from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. *Journal of Geophysical Research*, **110**, D14202, doi:10.1029/2004JD004755.

- Quinn, P.K., et al., 2005: Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization. *Geophysical Research Letters*, **32**, L22809, doi:101029/2005GL024322.
- Quinn, P.K., G. Shaw, E. Andrews, E.G. Dutton, T. Ruoho-Airola, S.L. Gong, 2007: Arctic Haze: Current trends and knowledge gaps. *Tellus*, **59B**, 99-114.
- Radke, L.F., J.A. Coakley Jr., and M.D. King, 1989: Direct and remote sensing observations of the effects of ship tracks on clouds. *Science*, **246**, 1146-1149.
- Raes, F., T. Bates, F. McGovern, and M. van Liedekerke, 2000: The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results. *Tellus*, **52B**, 111-125.
- Ramanathan, V., P. Crutzen, J. Kiehl, and D. Rosenfeld, 2001a: Aerosols, Climate, and the Hydrological Cycle. *Science*, 294, 2119-2124.
- Ramanathan, V., P. Crutzen, J. Lelieveld, et al., 2001b: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. *Journal of Geophysical Research*, **106**, 28371-28398.
- Ramanathan, V., and P. Crutzen, 2003: Atmospheric Brown "Clouds". *Atmospheric Environment*, **37**, 4033-4035.
- Ramanathan, V., et al., 2005: Atmospheric brown clouds: Impact on South Asian climate and hydrologic cycle. *Proceedings of the National Academy of Sciences*, USA, 102, 5326-5333.
- Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. *Bulletin of the American Meteorological Society*, 84, 1547-1564.
- Rao, S., K. Riahi, K. Kupiainen, and Z. Klimont, 2005: Longterm scenarios for black and organic carbon emissions. *Envi*ronmental Science, 2, 205-216.
- Reddy, M., O. Boucher, N. Bellouin, M. Schulz, Y. Balkanski, J. Dufresne, and M. Pham, 2005a: Estimates of multi-component aerosol optical depth and direct radiative perturbation in the LMDZT general circulation model. *Journal of Geophysical Research*, 110, D10S16, doi:10.1029/2004JD004757.
- Reddy, M., O. Boucher, Y. Balkanski, and M. Schulz, 2005b: Aerosol optical depths and direct radiative perturbations by species and source type. *Geophysical Research Letters*, 32, L12803, doi:10.1029/2004GL021743.
- Reid, J., J. Kinney, and D. Wesphal, et al., 2003: Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). *Journal of Geophysical Research*, **108**, 8586, doi:10.1029/2002JD002493.

- Reid, J., et al., 2008: An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf. *Journal of Geophysical Research*, **113**, D14213, doi:10.1029/2007JD009435.
- Remer, L., S. Gassó, D. Hegg, Y. Kaufman, and B. Holben, 1997: Urban/industrial aerosol: ground based sun/sky radiometer and airborne *in situ* measurements. *Journal of Geophysical Research*, 102, 16849-16859.
- Remer, L., D. Tanré, Y. Kaufman, C. Ichoku, S. Mattoo, R. Levy, D. Chu, B. Holben, O. Dubovik, A. Smirnov, J. Martins, R. Li, and Z. Ahman, 2002: Validation of MODIS aerosol retrieval over ocean. *Geophysical Research Letters*, **29**, 8008, doi:10.1029/2001/GL013204.
- Remer, L., Y. Kaufman, D. Tanré, S. Mattoo, D. Chu, J. Martins, R. Li, C. Ichoku, R. Levy, R. Kleidman, T. Eck, E. Vermote, and B. Holben, 2005: The MODIS aerosol algorithm, products and validation. *Journal of the Atmospheric Sciences*, 62, 947-973.
- Remer, L., and Y. Kaufman, 2006: Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. *Atmospheric Chemistry and Physics*, 6, 237-253.
- Remer, L., et al., 2008: An emerging aerosol climatology from the MODIS satellite sensors, *Journal of Geophysical Research*, 113, D14S01, doi:10.1029/2007JD009661.
- Rissler, J., E. Swietlicki, J. Zhou, G. Roberts, M. O. Andreae, L. V. Gatti, and P. Artaxo 2004: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-todry season transition—comparison of modeled and measured CCN concentrations. *Atmospheric Chemistry and Physics*, 4, 2119-2143.
- Robock, A., 2000: Volcanic eruptions and climate. *Reviews of Geophysics*, 38(2), 191-219.
- Robock, A., 2002: Pinatubo eruption: The climatic aftermath. *Science*, **295**, 1242-1244.
- Roderick, M. L. and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. *Science*, **298**, 1410-1411.
- **Rosenfeld**, D., and I. Lansky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. *Bulletin of the American Meteorological Society*, **79**, 2457-2476.
- Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. *Science*, **287**, 1793-1796.
- Rosenfeld, D., 2006: Aerosols, clouds, and climate. *Science*, **312**, 10.1126/science.1128972.
- Ruckstuhl, C., et al., 2008: Aerosol and cloud effects on solar brightening and recent rapid warming. *Geophysical Research Letters*, 35, L12708, doi:10.1029/2008GL034228.

- Russell, P., S. Kinne, and R. Bergstrom, 1997: Aerosol climate effects: local radiative forcing and column closure experiments. *Journal of Geophysical Research*, **102**, 9397-9407.
- Russell, P., J. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, P. Durkee, and P. Hobbs, 1999: Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: comparison of values calculated from sun photometer and *in situ* data with those measured by airborne pyranometer. *Journal of Geophysical Research*, **104**, 2289-2307.
- Saxena, P., L. Hildemann, P. McMurry, and J. Seinfeld, 1995: Organics alter hygroscopic behavior of atmospheric particles. *Journal of Geophysical Research*, **100**, 18755-18770.
- Schmid, B., J.M. Livingston, P.B. Russell, P.A. Durkee, H.H. Jonsson, D.R. Collins, R.C. Flagan, J.H. Seinfeld, S. Gasso, D.A. Hegg, E. Ostrom, K.J. Noone, E.J. Welton, K.J. Voss, H.R. Gordon, P. Formenti, and M.O. Andreae, 2000: Clearsky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne *in situ*, space-borne, and ground-based measurements. *Tellus*, 52, 568-593.
- Schmid, B., R. Ferrare, C. Flynn, et al., 2006: How well do stateof-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? *Journal of Geophysical Research*, 111, doi:10.1029/2005JD005837, 2006.
- Schmidt, G. A., et al., 2006: Present-day atmospheric simulations using GISS Model E: Comparison to *in situ*, satellite and reanalysis data. *Journal of Climate*, **19**, 153-192.
- Schulz, M., C. Textor, S. Kinne, et al., 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and preindustrial simulations. *Atmospheric Chemistry and Physics*, 6, 5225-5246.

- Schwartz, S. E., R. J. Charlson and H. Rodhe, 2007: Quantifying climate change—too rosy a picture? *Nature Reports Climate Change* 2, 23-24.
- Sekiguchi, M., T. Nakajima, K. Suzuki, et al., A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. *Journal of Geophysical Research*, 108, D22, 4699, doi:10.1029/2002JD003359, 2003
- Seinfeld, J.H., et al., 1996. *A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change*. National Research Council. 161 pp.
- Seinfeld, J. H., G.R. Carmichael, R. Arimoto, et al. 2004: ACE-Asia: Regional climatic and atmospheric chemical effects of Asian dust and pollution. *Bulletin of the American Meteorological Society*, 85, 367-380.
- Sheridan, P., and J. Ogren, 1999: Observations of the vertical and regional variability of aerosol optical properties over central and eastern North America. *Journal of Geophysical Research*, 104, 16793-16805.

- Shindell, D.T., M. Chin, F. Dentener, et al., 2008a: A multi-model assessment of pollution transport to the Arctic. *Atmospheric Chemistry and Physics*, 8, 5353-5372.
- Shindell, D.T., H. Levy, II, M.D. Schwarzkopf, L.W. Horowitz, J.-F. Lamarque, and G. Faluvegi, 2008b: Multimodel projections of climate change from short-lived emissions due to human activities. *Journal of Geophysical Research*, **113**, D11109, doi:10.1029/2007JD009152.
- Singh, H.B., W.H. Brune, J.H. Crawford, F. Flocke, and D.J. Jacob, 2008: Chemistry and Transport of Pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B Campaign Overview and First Results. *Atmospheric Chemistry and Physics Discussions*, submitted.
- Sinyuk, A., O. Dubovik, B. Holben, T. F. Eck, F.-M. Breon, J. Martonchik, R. A. Kahn, D. Diner, E. F. Vermote, Y. J. Kaurman, J. C. Roger, T. Lapyonok, and I. Slutsker, 2007: Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. *Remote Sensing of the Environment*, **107**, 90-108, doi: 10.1016/j.rse.2006.07.022.
- Smirnov, A., B. Holben, T. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud screening and quality control algorithms for the AERONET database. *Remote Sensing of the Environment*, **73**, 337-349.
- Smirnov, A., B. Holben, T. Eck, I. Slutsker, B. Chatenet, and R. Pinker, 2002: Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites. *Geophysical Research Letters*, 29, 2115, doi:10.1029/2002GL016305.
- Smirnov, A., B. Holben, S. Sakerin, et al., 2006: Shipbased aerosol optical depth measurements in the Atlantic Ocean, comparison with satellite retrievals and GOCART model. *Geophysical Research Letters*, 33, L14817, doi: 10.1029/2006GL026051.
- Smith Jr., W.L., et al., 2005: EOS Terra aerosol and radiative flux validation: An overview of the Chesapeake Lighthouse and aircraft measurements from satellites (CLAMS) experiment. *Journal of the Atmospheric Sciences*, **62**, 903-918.
- Sokolik, I., D. Winker, G. Bergametti, et al., 2001: Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. *Journal of Geophysical Research*, 106, 18015-18027.
- Sotiropoulou, R.E.P, A. Nenes, P.J. Adams, and J.H. Seinfeld, 2007: Cloud condensation nuclei prediction error from application of Kohler theory: Importance for the aerosol indirect effect. *Journal of Geophysical Research*, **112**, D12202, doi:10.1029/2006JD007834.
- Sotiropoulou, R.E.P, J. Medina, and A. Nenes, 2006: CCN predictions: is theory sufficient for assessments of the indirect effect? *Geophysical Research Letters*, 33, L05816, doi:10.1029/2005GL025148

- Spinhirne, J., S. Palm, W. Hart, D. Hlavka, and E. Welton, 2005: Cloud and Aerosol Measurements from the GLAS Space Borne Lidar: initial results. *Geophysical Research Letters*, 32, L22S03, doi:10.1029/2005GL023507.
- Squires, P., 1958: The microstructure and colloidal stability of warm clouds. I. The relation between structure and stability. *Tellus*, 10, 256-271.
- Stanhill, G., and S. Cohen, 2001: Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. *Agricultural and Forest Meteorol*ogy, 107, 255-278.
- Stephens, G., D. Vane, R. Boain, G. Mace, K. Sassen, Z. Wang, A. Illingworth, E. O'Conner, W. Rossow, S. Durden, S. Miller, R. Austin, A. Benedetti, and C. Mitrescu, 2002: The CloudSat mission and the A-Train. *Bulletin of the American Meteorological Society*, 83, 1771-1790.
- Stephens, G. L. and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. *Geophysical Research Letters*, 34, L20805, doi:10.1029/2007GL030259.
- Stern, D.I., 2005: Global sulfur emissions from 1850 to 2000. *Chemosphere*, **58**, 163-175.
- Stevens, B., G. Feingold, R. L. Walko and W. R. Cotton, 1996: On elements of the microphysical structure of numerically simulated non-precipitating stratocumulus. *Journal of the Atmospheric Sciences*, 53, 980-1006.
- Storlevmo, T., J.E. Kristjansson, G. Myhre, M. Johnsud, and F. Stordal, 2006: Combined observational and modeling based study of the aerosol indirect effect. *Atmospheric Chemistry and Physics*, 6, 3583-3601.
- Stott, P.A., et al., 2006: Observational constraints on past attributable warming and predictions of future global warming. *Journal of Climate*, **19**, 3055-3069.
- Strawa, A., R. Castaneda, T. Owano, P. Baer, and B. Paldus, 2002: The measurement of aerosol optical properties using continuous wave cavity ring-down techniques. *Journal of Atmospheric and Oceanic Technology*, 20, 454-465.
- Streets, D., T. Bond, T. Lee, and C. Jang, 2004: On the future of carbonaceous aerosol emissions. *Journal of Geophysical Research*, **109**, D24212, doi:10.1029/2004JD004902.
- Streets, D., and K. Aunan, 2005: The importance of China's household sector for black carbon emissions. *Geophysical Research Letters*, 32, L12708, doi:10.1029/2005GL022960.
- Streets, D., Y. Wu, and M. Chin, 2006a: Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. *Geophysical Research Letters*, **33**, L15806, doi:10.1029/2006GL026471.

- Streets, D., Q. Zhang, L. Wang, K. He, J. Hao, Y. Tang, and G. Carmichael, 2006b: Revisiting China's CO emissions after TRACE-P: Synthesis of inventories, atmospheric modeling and observations *Journal of Geophysical Research*, 111, D14306, doi:10.1029/2006JD007118.
- Svensmark, H. and E. Friis-Christensen, 1997: Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. *Journal of Atmospheric and Solar-Terrestrial Physics*, 59, 1225-1232.
- Takemura, T., T. Nakajima, O. Dubovik, B. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. *Proceedings of the National Academy of Sciences*, 15, 333-352.
- Takemura, T., T. Nozawa,S. Emori, T. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. *Journal of Geophysical Research*, **110**, D02202, doi:10.1029/2004JD005029.
- Tang, Y., G. Carmichael, I. Uno, J. Woo, G. Kurata, B. Lefer, R. Shetter, H. Huang, B. Anderson, M. Avery, A. Clarke and D. Blake, 2003: Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model. *Journal of Geophysical Research*, 108, 8824, doi:10.1029/2002JD003110.
- Tang, Y., G. Carmichael, J. Seinfeld, D. Dabdub, R. Weber, B. Huebert, A. Clarke, S. Guazzotti, D. Sodeman, K. Prather, I. Uno, J. Woo, D. Streets, P. Quinn, J. Johnson, C. Song, A. Sandu, R. Talbot and J. Dibb, 2004: Three-dimensional simulations of inorganic aerosol distributions in East Asia during spring 2001. *Journal of Geophysical Research*, **109**, D19S23, doi:10.1029/2003JD004201.
- Tanré, D., Y. Kaufman, M. Herman, and S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/ EOS spectral radiances. *Journal of Geophysical Research*, 102, 16971-16988.
- Tanré, D., J. Haywood, J. Pelon, J. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. Highwood, and G. Myhre, 2003: Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE). *Journal of Geophysical Research*, **108**, 8574, doi:10.1029/2002JD003273.
- Textor, C., M. Schulz, S. Guibert, et al., 2006: Analysis and quantification of the diversities of aerosol life cycles within AERO-COM. *Atmospheric Chemistry and Physics*, 6, 1777-1813.
- **Textor**, C., et al., 2007: The effect of harmonized emissions on aerosol properties in global models—an AeroCom experiment. *Atmospheric Chemistry and Physics*, **7**, 4489-4501.

- Tie, X. et al., 2005: Assessment of the global impact of aerosols on tropospheric oxidants. *Journal of Geophysical Research*, 110, doi:10.1029/2004JD005359.
- Torres, O., P. Bhartia, J. Herman, Z. Ahmad, and J. Gleason, 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical bases. *Journal of Geophysical Research*, **103**, 17009-17110.
- Torres, O., P. Bhartia, J. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. *Journal of the Atmospheric Sciences*, 59, 398-413.
- Torres, O., P. Bhartia, A. Sinyuk, E. Welton, and B. Holben, 2005: Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 groundbased observations. *Journal of Geophysical Research*, **110**, D10S18, doi:10.1029/2004JD004611.
- Turco, R.P., O.B. Toon, R.C. Whitten, J.B. Pollack, and P. Hamill, 1983: The global cycle of particulate elemental carbon: a theoretical assessment, in *Precipitation Scavenging, Dry Deposition, and Resuspension*, ed. H.R. Pruppacher et al., pp. 1337-1351, Elsevier Science, New York.
- Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. *Journal of the Atmospheric Sciences*, 34, 1149-1152.
- van Ardenne, J. A., F.J. Dentener, J. Olivier, J. Klein, C.G.M. Goldewijk, and J. Lelieveld, 2001: A 1° x 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. *Global Biogeochemical Cycles*, **15**, 909-928.
- Veihelmann, B., P. F. Levelt, P. Stammes, and J. P. Veefkind, 2007: Simulation study of the aerosol information content in OMI spectral reflectance measurements. *Atmospheric Chemistry and Physics*, 7, 3115-3127.
- Wang, J., S. Christopher, F. Brechtel, J. Kim, B. Schmid, J. Redemann, P. Russell, P. Quinn, and B. Holben, 2003: Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. *Journal of Geophysical Research*, 108, 8657, 10.1029/2003JD003580.
- Wang, S., Q. Wang, and G. Feingold, 2003: Turbulence, condensation and liquid water transport in numerically simulated nonprecipitating stratocumulus clouds. *Journal of the Atmospheric Sciences*, 60, 262-278.
- Warner, J., and S. Twomey, 1967: The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. *Journal of the Atmospheric Sciences*, **24**, 704-706.
- Warner, J., 1968: A reduction of rain associated with smoke from sugar-cane fires—An inadvertent weather modification. *Journal of Applied Meteorology*, **7**, 247-251.

- Welton, E., K. Voss, P. Quinn, P. Flatau, K. Markowicz, J. Campbell, J. Spinhirne, H. Gordon, and J. Johnson, 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars. *Journal of Geophysical Research*, 107, 8019, doi:10.1029/2000JD000038.
- Welton, E., J. Campbell, J. Spinhirne, and V. Scott, 2001: Global monitoring of clouds and aerosols using a network of micropulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, N. Sugimoto, (eds.), *Proceedings of SPIE*, 4153, 151-158.
- Wen, G., A. Marshak, and R. Cahalan, 2006: Impact of 3D clouds on clear sky reflectance and aerosol retrieval in a biomass burning region of Brazil. *IEEE Geoscience and Remote Sensing Letters*, **3**, 169-172.
- Wetzel, M. A. and Stowe, L. L.: Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing. 1999: *Journal of Geophysical Research*, 104, 31287-31299.
- Wielicki, B., B. Barkstrom, E. Harrison, R. Lee, G. Smith, and J. Cooper, 1996: Clouds and the Earth's radiant energy system (CERES): An Earth observing system experiment. *Bulletin of the American Meteorological Society*, 77, 853-868.
- Wild, M., H. Gilgen, A. Roesch, et al., 2005: From dimming to brightening: Decadal changes in solar radiation at Earth's surface. *Science*, 308, 847-850.
- Winker, D., R. Couch, and M. McCormick, 1996: An overview of LITE: NASA's Lidar In-Space Technology Experiment. *Proceedings of IEEE*, **84**(2), 164-180.
- Winker, D., J. Pelon, and M. McCormick, 2003: The CALIP-SO mission: spaceborne lidar for observation of aerosols and clouds. *Proceedings of SPIE*, **4893**, 1-11.
- Xue, H., and G. Feingold, 2006: Large eddy simulations of tradewind cumuli: Investigation of aerosol indirect effects. *Journal of the Atmospheric Sciences*, 63, 1605-1622.
- Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. *Journal of the Atmospheric Sciences*, 65, 392-406.
- Yu, H., S. Liu, and R. Dickinson, 2002: Radiative effects of aerosols on the evolution of the atmospheric boundary layer. *Journal of Geophysical Research*, 107, 4142, doi:10.1029/2001JD000754.
- Yu, H., R. Dickinson, M. Chin, Y. Kaufman, B. Holben, I. Geogdzhayev, and M. Mishchenko, 2003: Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. *Journal of Geophysical Research*, **108**, 4128, doi:10.1029/2002JD002717.

- Yu, H., R. Dickinson, M. Chin, Y. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. Holben, 2004: The direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations. *Journal of Geophysical Research*, **109**, D03206, doi:10.1029/2003JD003914.
- Yu, H., Y. Kaufman, M. Chin, G. Feingold, L. Remer, T. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, 2006: A review of measurement-based assessments of aerosol direct radiative effect and forcing. *Atmospheric Chemistry and Physics*, 6, 613-666.
- Yu, H., R. Fu, R. Dickinson, Y. Zhang, M. Chen, and H. Wang, 2007: Interannual variability of smoke and warm cloud relationships in the Amazon as inferred from MODIS retrievals. *Remote Sensing of the Environment*, **111**, 435-449.
- Yu, H., L.A. Remer, M. Chin, H. Bian, R. Kleidman, and T. Diehl, 2008: A satellite-based assessment of trans-Pacific transport of pollution aerosol. *Journal of Geophysical Research*, **113**, D14S12, doi:10.1029/2007JD009349.
- Zhang, J., and S. Christopher, 2003: Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra. *Geophysical Research Letters*, 30, 2188, doi:10.1029/2003GL018479.
- Zhang, J., S. Christopher, L. Remer, and Y. Kaufman, 2005a: Shortwave aerosol radiative forcing over cloud-free oceans from Terra. I: Angular models for aerosols. *Journal of Geophysical Research*, **110**, D10S23, doi:10.1029/2004JD005008.
- Zhang, J., S. Christopher, L. Remer, and Y. Kaufman, 2005b: Shortwave aerosol radiative forcing over cloud-free oceans from Terra. II: Seasonal and global distributions. *Journal of Geophysical Research*, **110**, D10S24, doi:10.1029/2004JD005009.
- Zhang, J., J. S. Reid, and B. N. Holben, 2005c: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. *Geophysical Research Letters*, **32**, L15803, doi:10.1029/2005GL023254.
- Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker, and E.J. Hyer, 2008: A system for operational aerosol optical depth data assimilation over global oceans. *Journal of Geophysical Research*, **113**, doi:10.1029/2007JD009065.
- Zhang, Q. et al., 2007: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophysical Research Letters*, 34, L13801, doi:10.1029/2007GL029979.
- Zhang, X., F.W. Zwiers, and P.A. Stott, 2006: Multi-model multisignal climate change detection at regional scale. *Journal of Climate*, **19**, 4294-4307.

- Zhang, X., F.W. Zwiers, G.C. Hegerl, F.H. Lambert, N.P. Gillett, S. Solomon, P.A. Stott, T. Nozawa, 2006: Detection of human influence on twentieth-century precipitation trends. *Nature*, 448, 461-465, doi:10.1038/nature06025.
- Zhao, T. X.-P., I. Laszlo, W. Guo, A. Heidinger, C. Cao, A. Jelenak, D. Tarpley, and J. Sullivan, 2008a: Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. *Journal of Geophysical Research*, 113, D07201, doi:10.1029/2007JD009061.
- Zhao, T. X.-P., H. Yu, I. Laszlo, M. Chin, and W.C. Conant, 2008b: Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans. *Journal of Quantitative Spectroscopy and Radiative Transfer*, **109**, 1162-1186.
- Zhou, M., H. Yu, R. Dickinson, O. Dubovik, and B. Holben, 2005: A normalized description of the direct effect of key aerosol types on solar radiation as estimated from AERONET aerosols and MODIS albedos. *Journal of Geophysical Research*, 110, D19202, doi:10.1029/2005JD005909.

Agricultural practices also affect air quality, such as leaving bare soil exposed to wind erosion, and burning agricultural waste. Photo taken from the NASA DC-8 aircraft during ARCTAS-CARB field experiment in June 2008 over California. Credit: Mian Chin, NASA.

Photography and Image Credits

Cover/Title Page/Table of Contents:

Image 1: Fire in the savanna grasslands of Kruger National Park, South Africa, during the international Southern African Fire-Atmosphere Research Initiative (SAFARI) Experiment, September 1992. Due to extensive and frequent burning of the savanna grass, Africa is the "fire center" of the world. Credit: Joel S. Levine, NASA.

Image 2: Urban pollution in Hong Kong, May 2007. The persistent pollution haze significantly reduces the visibility. Credit: Mian Chin, NASA.

Image 3: Dust storms of northwest Africa captured by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on February 28, 2000. Credit: SeaWiFS Project at NASA Goddard Space Flight Center.

Image 4: Breaking ocean waves - a source of sea salt aerosols. Credit: Mian Chin, NASA.

Image 5: Clouds at sunset. Clouds and aerosols scatter the sun's rays very effectively when the sun is low in the sky, creating the bright colors of sunrise and sunset. Credit: Mian Chin, NASA.

Image 6: Ship tracks appear when clouds are formed or modified by aerosols released in exhaust from ship smokestacks. Image from MODIS. Credit: NASA.

For other images in this report, please see the captions/credits located with each image.

Contact Information

Global Change Research Information Office c/o Climate Change Science Program Office 1717 Pennsylvania Avenue, NW Suite 250 Washington, DC 20006 202-223-6262 (voice) 202-223-3065 (fax) The Climate Change Science Program incorporates the U.S. Global Change Research Program and the Climate Change Research Initiative.

To obtain a copy of this document, place an order at the Global Change Research Information Office (GCRIO) web site: http://www.gcrio.org/orders.

Climate Change Science Program and the Subcommittee on Global Change Research

William Brennan, Chair Department of Commerce National Oceanic and Atmospheric Administration Director, Climate Change Science Program

Jack Kaye, Vice Chair National Aeronautics and Space Administration

Allen Dearry Department of Health and Human Services

Anna Palmisano Department of Energy

Mary Glackin National Oceanic and Atmospheric Administration

Patricia Gruber Department of Defense

William Hohenstein Department of Agriculture

Linda Lawson Department of Transportation

Mark Myers U.S. Geological Survey

Tim Killeen National Science Foundation

Patrick Neale Smithsonian Institution Jacqueline Schafer U.S. Agency for International Development

Joel Scheraga Environmental Protection Agency

Harlan Watson Department of State

EXECUTIVE OFFICE AND OTHER LIAISONS

Robert Marlay Climate Change Technology Program

Katharine Gebbie National Institute of Standards & Technology

Stuart Levenbach Office of Management and Budget

Margaret McCalla Office of the Federal Coordinator for Meteorology

Robert Rainey Council on Environmental Quality

Daniel Walker Office of Science and Technology Policy

U.S. Climate Change Science Program 1717 Pennsylvania Avenue, NW • Suite 250 • Washington, D.C. 20006 USA 1-202-223-6262 (voice) • 1-202-223-3065 (fax) http://www.climatescience.gov

