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A Critical Look at Deriving Monthly Aerosol
Optical Depth From Satellite Data
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Abstract—Satellite-derived aerosol data sets, such as those
provided by NASA’s Moderate Resolution Imaging Spectrora-
diometer (MODIS) instruments, are greatly improving our un-
derstanding of global aerosol optical depth (AOD). Yet, there are
sampling issues. MODIS’ specific orbital geometry, convolved with
the need to avoid bright surfaces (glint, desert, clouds, etc.), means
that AOD can be under- or over-sampled in places. When deriving
downstream products, such as daily or monthly gridded AOD,
one must consider the spatial and temporal density of the mea-
surements relative to the gradients of the true AOD. Additionally,
retrieval confidence criteria should be considered. Averaged prod-
ucts are highly dependent on choices made for data aggregation
and weighting, and sampling errors can be further propagated
when deriving regional or global “mean” AOD. Different choices
for aggregation and weighting result in estimates of regional and
global means varying by 30% or more. The impacts of a particular
averaging algorithm vary by region and surface type and can be
shown to represent different tolerance for clouds and retrieval
confidence.

Index Terms—Aerosol optical depth (AOD), averaging, global,
Moderate Resolution Imaging Spectroradiometer (MODIS),
monthly, sampling.

I. INTRODUCTION

A EROSOLS affect the climate system, but unlike green-
house gases, their distribution, microphysical properties,

and, thus, impact vary widely across multiple spatial and tem-
poral scales. Depending on atmospheric conditions, aerosols
can be transported over long distances from their sources as
discrete plumes, can dissipate by mixing processes within the
atmosphere, or may be quickly redeposited on the surface as a
result of gravitational settling, cloud processing, or dry deposi-
tion. Because aerosol properties exhibit such large gradients on
so many scales, no set of measurements can satisfy all scales
necessary for understanding the true aerosol effect on climate.
Some climate problems, however, can be studied using monthly
statistics of aerosol properties [1].

Aerosol optical depth (AOD) is a first-order quantity in the
Earth’s radiative budget and is determined by certain properties
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(loading, size distribution, and refractive index) of the colum-
nar aerosol. Aerosol direct radiative effect (DRE) is generally
linearly correlated with AOD; thus, characterizing global AOD
is a useful first step [2]. In cloud-free daylight conditions,
AOD can be retrieved from passive satellite observations of
solar reflectance. Given the low expected uncertainty of modern
satellite retrievals [3], [4], it is tempting to use these products
for addressing questions of aerosol trends, radiative forcing, and
aerosol/cloud interactions. In fact, multiyear satellite data are
being compared with each other and to models [5] to assess
AOD trends [6] and to calculate climate effects [7].

Nominal satellite AOD products characterize the state of the
atmosphere in the satellite’s field of view (FOV) at overpass,
so that a month’s data essentially represent a composite of
many overpasses. In hopes of making the data processing and
interpretation less cumbersome for end users, satellite data
teams may provide monthly statistics [8] of their own product.
In addition, new Web-based analysis tools, such as Giovanni
(http://giovanni.gsfc.nasa.gov/) [9], enable a user to easily visu-
alize and analyze monthly AOD products. Although such tools
and products enable a wide range of users to analyze satellite
data, they should be used with caution.

Quantitative analyses of monthly satellite data products re-
quire a good understanding of the uncertainties of the FOV
aerosol retrieval algorithm, as well as the temporal and spa-
tial sampling of the products. The uncertainty in the retrieval
algorithm is often assessed by comparing nominal satellite
products to ground-truth observations, such as those from sun
photometers [3]. For the purpose of this study, we will assume
that, as a result of such “validation” exercises, satellite FOV
data are unbiased during the overpass of the ground sites.
The ground sites, however, have their own uncertainties and
are unevenly distributed globally and temporally. This means
that the ground-truth sun photometer data cannot provide an
independent measure of the satellite sampling, in the way that
radar measurements might provide for satellite estimates of
rainfall [10].

Thus, present monthly aerosol statistics are created on in-
complete sampling of a spatially and temporally inhomoge-
neous field. Since AOD values are derived only within the
clear-sky satellite FOV, they will not represent AOD over
nonobserved locations (e.g., overcast) and times of day (e.g.,
nighttime). In addition, since many of the sensors are in polar
orbit, their sampling patterns exacerbate the problem. Each day,
there are coverage gaps in the tropics, as well as multiple views
of the summertime poles. Therefore, the orbital geometry,
combined with avoidance of clouds and nighttime, leads to non-
uniform and incomplete aerosol sampling. Furthermore, as each

0196-2892/$25.00 © 2009 IEEE

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on April 15, 2009 at 09:32 from IEEE Xplore.  Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

sensor has its own sampling patterns and retrieval algorithms,
comparison of AOD statistics becomes even more difficult.

Without an independent set of high-resolution and tem-
porally continuous global aerosol measurements, a particular
sensor’s sampling errors are impossible to characterize defin-
itively. Nonetheless, for other spatially varying fields, such as
rainfall (comparing radar [10]) and wind speed [11], satellite
sampling errors have been studied. These and other studies
have suggested various methods for aggregating, weighting,
and averaging spatially varying data, but none succeeds in
resolving all the problems of integrating multiple temporal and
spatial scales. Since aerosol properties and their retrieval algo-
rithms are different than for either precipitation or wind speed,
deriving monthly mean aerosol is a new and difficult challenge.
Certain aerosol sampling biases are being studied, including
assessment of subpixel cloud biases within fine- versus coarse-
resolution data [12], [13] and bias adjustment for measurements
at different times of day [14]. The fusion of model predictions
through data assimilation techniques is also helping in under-
standing sample biases in aerosol properties and climate effects
[15], [16], as well as detailed analyses of retrieval algorithm
effects for representative case studies [17]. Nonetheless, there
is still a great need to address issues of sampling in aerosol data,
specifically those inherent in individual data sets.

Thus, we believe that any derivation of AOD statistics from
existing satellite data suffers from sampling biases. Certain
aggregations of the data enhance the clear-sky bias that is
inherently present in nominal satellite retrievals, whereas oth-
ers enhance aerosol signals from certain regions and aerosol
conditions. Although we cannot identify a “best” way to derive
monthly AOD statistics for all locations and aerosol conditions,
derived from any sensor, in this paper, we show how different
choices lead to different results.

We use a particular data set, specifically one year of data
(2003) from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) aboard the Terra satellite. We describe how the
orbital (FOV) data are operationally aggregated and averaged to
yield gridded daily means and then are pixel weighted to derive
standard gridded monthly mean products. We demonstrate how
confidence assessments can be used to derive alternative daily
and monthly gridded data. For simplicity, we assume that
each retrieved FOV aerosol value is sufficiently accurate and
unbiased and represents the daily mean [18] at that location.
We can therefore limit our study to data aggregation, weighting,
and averaging. Nonetheless, we show that different choices for
aggregating and weighting lead to divergent estimates of global
monthly mean AOD. Particular averaging paths accentuate
certain aspects of the global AOD distribution and therefore
require different physical interpretation. While no averaging
path truly captures all aspects of the sampling uncertainty of
the global mean AOD, we might consider results from a range
of approaches as a relative measure of uncertainty.

II. MODIS ORBITAL DATA: L2

MODIS is a 36-channel spectrometer (0.412–14.2 µm) that
views a 2300-km swath from aboard NASA’s Terra and Aqua
satellites at an altitude of 700 km. Each MODIS provides near-

global coverage on 14–15 orbits per day. However, because
MODIS is in polar orbit, there are gaps near the equator and
multiple viewings of the poles. Near swath edges, view angles
exceed 55◦, such that individual pixels can represent three times
the surface area of nadir views.

The current (Collection 5 or C005) MODIS dark-target
aerosol retrieval algorithms [19], [20] derive aerosol proper-
ties over dark land [21] and ocean [3], [22] within MODIS’
FOV. Regardless of surface target, the algorithm carries out
the following: 1) aggregates pixel-level spectral reflectance
observations (at 500 m for most channels) into 10 × 10 km
retrieval regions; 2) discards pixels contaminated by clouds
and other factors; 3) truncates the lowest and highest 25% of
the reflectance histogram if the retrieval is over water and the
lowest 20% and highest 50% if the retrieval is over land; and,
finally, 4) compares the average of the remaining values to a
lookup table to derive AOD and fine-mode aerosol fraction over
water and the fine-“model” aerosol fraction over land. Each
pixel is assumed to represent a statistical sample of the spectral
reflectance over the 10 × 10 km region. During the retrieval
process [19], a wide variety of “quality-assurance” (QA) flags
[23] are set, diagnosing any irregularities encountered during
the retrieval process. Certain QA flags indicate less than optimal
reflectance statistics, lack of clear sky, large standard deviation,
or poor match with assumed lookup tables. At the retrieval’s
conclusion, a single flag is assigned as a summary. This is
known as the “quality confidence” (QC) and is intended to
represent the expected confidence of that particular retrieval.
QC ranges from 3 (high) to 0 (low). A high QC value indicates
that the algorithm performed under optimal conditions, it does
not necessarily mean that the algorithm provided the “correct”
solution. Nonetheless, one should expect the result to have less
uncertainty under higher QC.

The combination of aerosol products and QA information
(including QC), derived in the FOV along orbit tracks, is
known as Level 2 (L2), grouped as files known as MOD04
(specifically MOD04_L2 for Terra and MYD04_L2 for Aqua).
Each derived parameter is known as a scientific data set (SDS).
Over ocean, the retrieved AOD and QA SDSs are as follows:

1) Effective_Optical_Depth_Average_Ocean;
2) Quality_Assurance_Ocean.

Over land, they are as follows:

1) Corrected_Optical_Depth_Land;
2) Quality_Assurance_Land.

The qualifiers Effective, Corrected, and Average relate to the
AOD SDS’ processing heritage [19] and do not have quantita-
tive meaning here. Although both AOD SDSs represent mul-
tiple wavelengths, here, we consider only the reported values
in the mid-visible (0.55 µm). For the QA SDSs, we consider
only the summary QC flag. The joint AOD product, denoted
as the Optical_Depth_Land_And_Ocean SDS, combines the
two separate AOD products into one. In order to create a
more “scientifically” useful product, graduation to the joint
product is limited to higher confidence data (QC ≥ 1) over
land. Currently, there is no QC restriction over ocean. Taking
into account the orbital geometry, and after eliminating bright
(e.g., glint, deserts, and snow) and completely overcast targets,
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retrieved high-confidence AOD data represent less than 10% of
the globe each day.

MODIS AOD products have been validated by compar-
ing with ground-truth sun-photometer measurements, usually
obtained from the quality-controlled Aerosol Robotic Net-
work (AERONET) [24]. Here, “validated” means that, in the
cases where both MODIS and sun photometer provide high-
confidence data, two-thirds of the ordered pairs (one standard
deviation) match within some expected uncertainty. Although
the C005 products have not yet been extensively validated,
it is expected that sufficiently high confidence mid-visible
AOD from MODIS will match within ±0.03 ± 5% over ocean
(QC ≥ 1; [20]), and ±0.05 ± 20% over land (QC = 3; [21]).
Although the published fits are not exactly one-to-one, we
will assume that MODIS provides an unbiased estimate of
the “true” AOD, with lower uncertainty being associated with
higher confidence.

III. DAILY GRIDDED AOD (D3 PRODUCTS)

Chemical transport and general circulation models compute
fields on grids at regular temporal and spatial resolutions. They
are designed to provide continuous data that do not have “holes”
or inconsistent sampling. Even when limited to 10% coverage
of the globe daily, MODIS data are attractive for comparison
with models [5], [7] and assimilation [15].

MODIS L2 data, however, while nominally 10 × 10 km,
are not derived on a regular grid. Some pixels represent larger
surface area than others, and the same orbit is repeated only
every 16 days. Also, processing one day of L2 means stitching
together approximately 135 segments (granules) that use nearly
1 GB of file space. One way to make the data manipulation
easier for users is to provide statistics of the L2 data on a regular
grid. These statistics (including mean, standard deviation, and
histograms) are known as Level 3 products (or L3) [8] and, in
the case of MODIS, are provided at 1◦ × 1◦ resolution daily
(L3-Daily or D3). In addition to providing useful spatial and/or
temporal summaries, L3 data enable meaningful visualization
(i.e., maps) of AOD distributions.

A. Equal-Weighted (Simple) Mean

To understand the standard D3 products (MOD08_D3 for
Terra and MYD08_D3 for Aqua files), we assume that each
retrieved 10-km L2 AOD value is as follows: 1) measured
independently; 2) unbiased; and 3) representative of the daily
mean at that location [18]. Let us further assume that the
assigned QC value is inversely related to retrieval uncertainty.
For a collection of L2 values (τν,j,l) in grid cell l and day j, the
generic daily mean (τ̄j,l) is

τ̄j,l =
∑

i

Wi,j,lτi,j,l

/ ∑

i

Wi,j,l (1)

where Wi,j,l is a weighting assigned to each L2 value. If each
measurement is weighted equally, regardless of sampling or
quality, then Wi,j,l = 1, and (1) represents the simple mean

(τ̄Mean
j,l ). The simple mean of the L2 AOD SDS’s (ocean, land

and combined), are reported in D3 as the respective SDS’s:
1) Effective_Optical_Depth_Average_Ocean_Mean;
2) Corrected_Optical_Depth_Land_Mean;
3) Optical_Depth_Land_And_Ocean_Mean.

The qualifier Mean that is appended to the L2 SDS name refers
to this particular aggregation (simple mean) from L2 to D3.
The numbers of L2 pixels represented by each grid cell are
known as pixel counts (PC or Pj,l) and are reported in D3
as SDSs with the appended qualifier Pixel_Counts. Generally,
PC ranges from 0 to 120 and depends on season, latitude,
and local conditions. Additional L2 statistics (e.g., standard
deviation, max, min, etc.) are also included in D3 but are not
discussed further in this paper. Note that the joint land-and-
ocean Mean product represents the L2 data that have already
been QC filtered (QC ≥ 1 over land). Compared to < 10%
daily coverage of the L2 individual 10-km-resolution retrieval
regions, the D3 data effectively increase global coverage (of
1◦ × 1◦ boxes) to ∼30% per day, depending on the season.

Whether a particular 1◦ × 1◦ value represents a “true” daily
mean AOD depends on the L2 sampling compared to true AOD
spatial and temporal variability. Anderson et al. [2] suggest that
the spatial scale of aerosol coherence is somewhere between
40 and 200 km, depending on the situation. The degree of
correlation between AOD data on 0.5◦ (50 × 50 km) and
point measurements provides the basis for many satellite AOD
product validations [25], including those for MODIS. Where
AOD gradients are small (far from clouds and sources), the
average over a 1◦ box should be statistically sufficient for
calculating the representative mean for that box. On the other
hand, where AOD gradients are large or the sampling in the
box is too small, the simple averages may not be representative.
One should note that the D3 processing does not eliminate the
pathological case of a single L2 pixel (10× 10 km) representing
an entire 1◦ × 1◦ box.

B. Confidence-Weighted Mean

Since we expect lower uncertainty for higher confi-
dence data, we might consider weighting the average to-
ward higher confidence data. This daily confidence-weighted
mean QA_Mean AOD product (sometimes called quality
weighted) is

τ̄QA_Mean
j,l =

∑

i

Qi,j,lτi,j,l

/∑

i

Qi,j,l (2)

where the weights are set to the L2 QC values (Wi,j,l = Qi,j,l).
Thus, the lowest confidence data (QC = 0) receive zero weight.
The daily total confidence (Qj,l) for a given grid cell is the
sum of the QC-value histogram (Qj,l =

∑
i Qi,j,l) and has a

maximum possible value of about 360 (i.e., 120 × 3). In D3,
there are two QA_Mean products that are as follows:

1) Effective_Optical_Depth_Average_Ocean_QA_Mean;
2) Corrected_Optical_Depth_Land_QA_Mean.

The QC-value histogram associated with each 1◦ × 1◦ cell
is also retained in D3. Note that there is no corresponding
QA_Mean for the joint product (which is not QA weighted).
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Compared to the Mean product, the filtered QA_Mean prod-
uct reduces global coverage by 1% or less. Differences between
the D3 Mean and D3 QA_Mean AOD values are generally
small (|∆τ | < 0.01) but systematic. Over land, a higher AOD
is often associated with brighter scenes (e.g., near dust aerosol
sources). Because of brighter surfaces, higher AOD values for
these scenes will have lower QC, resulting in QA_Mean <
Mean. Over ocean, a very low AOD (small aerosol retrieval
signal-to-noise ratios) is often associated with larger retrieval
fitting errors, resulting in lower QC for low AOD values. Thus,
the low AOD pixels get less weight, leading to QA_Mean >
Mean. This is especially common over the Southern Hemi-
sphere (SH), where AOD is commonly low.

Currently, the Giovanni Web tool allows for analysis of
the joint Mean SDS (Optical_Depth_Land_And_Ocean_Mean)
only but provides the ability to average over each surface
separately. Because the joint product only includes higher
confidence data, its interpretation should be different than that
if using the separate ocean and land (QA_Mean or Mean)
products. Except for the most basic exploratory analysis, we
suggest using the separate products rather than the joint.

IV. MONTHLY GRIDDED AOD
(INCLUDING M3 PRODUCTS)

For climate applications, such as computing aerosol DRE [1],
monthly averaged data would be more convenient than the daily
aggregates. They have fewer holes than the daily data, and are
far less computationally expensive to process, globally. The
question is how to compute monthly data. Gridded monthly
products can be derived either from the original L2 or from
the D3 aggregates of the L2. If we believe that the D3 SDS
(e.g., Mean, QA_Mean, PC and QC-value histograms) capture
sufficient statistics of the L2, then we prefer to use the D3
because they are much less computationally demanding.

Starting from D3, the generic monthly mean AOD (τk,l) for
month k and grid cell l is

τk,l =
∑

j

Xj,lτ̄j,l

/∑

j

Xj,l (3)

where Xj,l is the weighting chosen for the day j and
location l and τ̄j,l may be either the Mean or the QA_Mean
D3 product. When assigning weights, we need to decide
whether each day’s D3 value should have equal weighting or
should reflect L2 sampling in some way. For this section, we
will assume that, no matter the sampling of L2, each day’s
D3 product is a good representation of the “true” daily mean.
As long as there are minimal day-to-day changes in the AOD
and each day’s retrieval has high confidence, only a few days
may be needed to represent the monthly mean. This means that
equal day weighting (i.e., Xj,l = 1) would be appropriate. For
conditions of low cloud fraction and regularly occurring aerosol
plumes (e.g., Saharan dust over ocean during springtime), if the
relative maxima and minima are sampled proportionally to their
occurrence, equal day weighting may also be appropriate.

Fig. 1(a) shows a gridded map of the number of daily AOD
values used in computing a monthly mean (May 2003) from the

D3 data (Terra). Fig. 1(b) shows the equal-day-weighted mean

derived from the D3 Mean (τDay,Mean
k,l ). Although the over-land

and over-ocean data are treated separately, they are presented
as combined plots in the figure. Typical known springtime
aerosol features (e.g., Saharan dust transport and east Asian
dust/pollution plume) are clearly evident. From the ∼30%
global coverage of D3 Mean during each day of May 2003, the
monthly product increases 1◦ × 1◦ grid coverage to nearly 70%.
Presumably, the remaining 30% of the globe is avoided due to
polar night, snow cover, bright surface, or persistent cloudiness.

A. Threshold Equal Day Weighting

In the path of a midlatitude storm (having complex cloud and
aerosol features), one particular day may be represented only
by a single L2 value. Unless we used a mean value pixel, or
the AOD has minimal spatial gradients each day, the D3 value
will be biased. However, we might expect that a day with a
hundred L2 pixels will enable a better estimate of the mean.
Instead of biasing our result to poorly sampled days, we may
include only days having at least some minimal sampling. Here,
we introduce the threshold equal day weighting, where we
assign a minimum sample of L2 pixels (Pj,l > t) for that day’s
AOD information to be included in the grid location’s monthly
mean, e.g.,

τDayPt
k,l =

∑

j(Pj,l>t)

τ̄j,l

/ ∑

j(Pj,l>t)

1. (4)

The results are sensitive to the chosen value of t. As we
increase t, we tend to reduce not only the “anomalous” of very
high (and likely unrealistic) values of monthly mean AOD but
also global coverage. We find that setting the threshold to 5
(i.e., Pj,l > 5) visually balances minimal anomalous features
and hole-free monthly maps, reducing global coverage by only
2% compared to the nonthreshold approach. Fig. 1(c) shows the
number of days meeting the PC threshold (“Day5”), whereas
Fig. 1(d) is the difference between the “Day5” monthly mean

and that shown as Fig. 1(b) (e.g., τDayP5,Mean
k,l − τDay,Mean

k,l ).
Specifically over cloudy storm tracks (in both hemispheres),
the PC threshold reduces the number of days included in the
aggregation. The resulting AOD map shows some increases

and some decreases, but generally, τDayP5,Mean
k,l ≤ τDay,Mean

k,l
over both land and ocean for most of the globe. Because poorly
sampled days are often due to extensive cloudiness, threshold
equal day weighting tends to eliminate cloud contamination.
In other words, the application of the threshold will bias the
result toward the clear-sky AOD that generally has a lower
magnitude. However, since cloudiness is not the only reason
for low sampling (also orbital gaps, snow, glint, and bright
surfaces), differences at every location must be interpreted
separately.

B. Pixel Weighting

Another way to reduce the impact of poorly sampled days,
but without reducing global coverage, is by applying pixel
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Fig. 1. May 2003 monthly mean dark-target AOD on 1◦ × 1◦ grid, calculated from equal-day- and pixel-weighted D3 Mean data. Separate land and ocean
products are combined on each map. (a) Number of days with valid data. (b) Monthly mean computed from equal day weighting. (c) Number of days where
Pj,l > 5. (d) Difference between means computed from pixel (Pj,l > 5) and equal day weightings. (e) Total monthly PCs. (f) Difference between means
computed from pixel and equal day weightings. Note the different color scales to the right of each panel.

weighting, such that we weight each day’s contribution by its
PC, i.e.,

τPixel
k,l =

∑

j

Pj,lτ̄j,l

/∑

j

Pj,l (5)

where Pj,l is the daily PC for day j and location l. Days with
a hundred L2 measurements are weighted a hundred times
more than days with a single measurement. Fig. 1(e) shows
the monthly total gridded PC (i.e., Pk,l =

∑
j Pj,l) for May

2003. Not surprisingly, monthly PC distribution is generally
correlated with the number of days for which there are valid ob-
servations [Fig. 1(a)]. However, for some regions, (e.g., North
America), a larger number of days does not necessarily relate to
higher PC. This area may be characterized with cloud fields that
are on the order of 10 km (reducing daily PC), which are not
covering the entire 1◦ × 1◦ box. Fig. 1(f) shows the differences
between the pixel- and equal-day-weighted means, both derived

from the D3 Mean (e.g., τPixel,Mean
k,l − τDay,Mean

k,l ). Similar to
the application of a daily threshold, pixel weighting tends to
derive lower AOD values over much of the globe (both land and
ocean). Yet, pixel weighting does not reduce global coverage,
as does the threshold screening.

An interesting property of the pixel-weighted monthly mean
derived from the D3 Mean is that it exactly preserves the sam-
pling of the L2 data for the month. In other words, combining
(1) and (4), it is easy to show that the pixel-weighted D3 Mean
is equivalent to simple averaging of the L2, i.e.,

τPixel,Mean
k,l =

∑

j

Pj,lτ̄
Mean
j,l

/∑

j

Pj,l =
∑

i,j

τi,j,l

/∑

i,j

1. (6)

The pixel-weighted mean represents the sampling pattern of
a given sensor, and different sensors will provide different
estimates of a location’s monthly mean. All may be biased esti-

mates of the “true” monthly AOD. As with the pixel-threshold
equal-day-weighted mean (described in Section IV-A), the
pixel-weighted mean reduces the impact of cloud and bright
surface contamination. Thus, it is also clear sky and darker
target biased, which, in general, avoids the larger values (anom-
alous) of AOD. Although pixel weighting tends to provide
reduced AOD over much of the globe compared to equal day
weighting, there are regions where the opposite is true.

C. Threshold Pixel Weighting

To ensure even less contamination from clouds and bright
surfaces, one may choose to combine both pixel weighting
(Pixel) and daily PC (P5) thresholds for computing a monthly
aggregate. Generally, the threshold value of t = 5 (Pj,l > 5)
will remove poorly sampled days without sacrificing global
distribution and without noticeably reducing the number of L2
pixels available for the aggregate [e.g., Fig. 2(a)]. We can use
(4) and (5) to derive the PixelP5-weighted monthly mean from

the D3 Mean, (τPixelP5,Mean
k,l ), i.e.,

τPixelP5,Mean
k,l =

∑

j(Pj,l>5)

Pj,lτ̄
Mean
j,l

/ ∑

j(Pj,l>5)

Pj,l. (7)

In fact, the operational monthly aggregation algorithm com-
putes this quantity, which is called the Mean_Mean product.
In the standard gridded monthly MOD08_M3 (or M3) files [8],
the Mean_Mean AOD products include the following:

1) Effective_Optical_Depth_Average_Ocean_Mean_Mean;
2) Corrected_Optical_Depth_Land_Mean_Mean;
3) Optical_Depth_Land_And_Ocean_Mean_Mean.
Fig. 2(b) shows May 2003’s PixelP5-weighted Mean

monthly product (the M3 Mean_Mean product), computed
over ocean and land separately and combined as one image.
Compared to our gridded equal-day-weighted mean [Fig. 1(b)],
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Fig. 2. May 2003 monthly mean dark-target AOD on 1◦ × 1◦ grid, calculated from pixel-weighted D3 Mean and QA_Mean data. Separate land and ocean prod-
ucts are combined on each map. (a) Total monthly PCs summed for days where Pj,l > 5. (b) Monthly mean computed from pixel weighting of the Mean for the
days with Pj,l > 5. (c) Difference if counting pixels that meet both PC and QC thresholds (Pj,l > 5 and Qi,j,l ≥ 1). (d) Difference if pixel weighting is applied
to the QA_Mean instead of the Mean. Note the different color scales to the right of each panel. Also note that panel A is equivalent to the M3 Mean_Mean product.

some of the extremely high values over NH midlatitude storm
belts have been reduced, whereas the main features of the global
aerosol distribution remain intact. Except for a few grid boxes
that have all days screened by the daily PC threshold, most
PixelP5 values will be very similar to straight Pixel Mean values
(not plotted).

Instead of only a PC threshold, we might consider a QC
threshold for screening low-confidence data. Although the joint
product (Optical_Depth_Land_And_Ocean) is QC screened in
L2 (Qi,j,l ≥ 1 over land), it does not retain the QC information
in D3. Since the separate over-land and over-ocean D3 products
retain the QC-value histogram, one can use QC to exclude lower
confidence days from the monthly aggregate. Thus, the separate
products allow for more freedom in their analysis. For example,

τPixelP5Q123,Mean
k,l represents the monthly mean, computed by

pixel weighting only days having more than five pixels and at
least marginal confidence (Qi,j,l ≥ 1), i.e.,

τPixelP5Q123,Mean
k,l

=
∑

j(Pj,l≥5)

P
(Qi,j,l≥1)
j,l τ̄Mean

j,l

/ ∑

j(Pj,l≥5)

P
(Qi,j,l≥1)
j,l (8)

where P
(Qi,j,k≥1)
j,l represents the number of pixels having

Qi,j,l ≥ 1. In effect, we have reduced the pixel weighting of
lower quality D3 data. Fig. 2(c) shows the differences between
this PixelP5Q123 and the PixelP5 (M3 Mean_Mean) products
shown in Fig. 2(b). Over ocean, the largest differences can be
seen in the clean SH. Since both AOD and QC are lower there,
removing some of the very lowest AOD values tends to increase
the mean. Over land, the differences are generally small but
tend to be slightly negative. Differences are largest over brighter
surfaces (e.g., North America, eastern Asia), where retrievals
are likely to have lower confidence. Applying both the QC and
PC thresholds to pixel weight, the over-land SDS produces re-
sults similar to those for which only the PC threshold is applied,
but the process is not exactly equivalent to pixel weighting the
over-land portion of the combined product. Applying both QA
and PC thresholds further decreases global coverage by 1%.
Over land, there are few QC values of 1 or 2, so changing the
threshold to QC ≥ 2 provides little additional screening.

D. Confidence Weighting

Operational M3 processing uses threshold (P > 5) pixel
weighting to aggregate PCs [e.g., Fig. 2(a)] and to derive
monthly products from the D3 QA_Mean product. This aggre-

gation (τPixelP5,QA_Mean
k,l ) is only derived from the separate

land and ocean SDSs. In the standard M3 products, these
parameters are known as the QA_Mean_Mean. Fig. 2(d) shows
the differences between the PixelP5-weighted D3 QA_Mean
(equivalent to the M3 QA_Mean_Mean) and the PixelP5-
weighted D3 Mean (equivalent to the M3 Mean_Mean). Over
land, QA_Mean_Mean < Mean_Mean, primarily due to lower
confidence over brighter and cloudier targets. Over ocean,
differences are generally small but are slightly positive (yellow
patches) in some regions.

This means that L2 measurement quality is used as a weight
when calculating the D3 QA_Mean product; however, day-
to-day quality differences are not assessed when forming the
standard M3 QA_Mean_Mean product. For example, consider
a pathological case of one day having 100 pixels, where one
pixel has QC = 3, and the rest have QC = 0. Although the
D3 QA_Mean represents the sole high QC pixel, the M3
QA_Mean_Mean would weight this day as 100 pixels. The
QA_Mean_Mean does not preserve the L2 confidence informa-
tion, and thus, it can inconsistently weight days with high PC
but zero (or low) confidence.

Starting with the D3 QA_Mean product, and setting
daily weights to the total confidence [e.g., Xj,l = Qj,l in
(3)] we can derive the confidence-weighted monthly mean

(τConf,QA_Mean
k,l ). If no pixel or QA thresholds are applied,

this formulation preserves the confidence sampling of the L2.
Fig. 3(b) shows the total monthly confidence (Qk,l =

∑
j Qj,l)

for May 2003, over dark land and ocean separately, combined
as one map. One can see how the distribution of total confidence
is not triple the PCs. Fig. 3(c) shows how this new confidence-
weighted monthly mean differs from that produced as the
standard M3 QA_Mean_Mean product [Fig. 3(a)]. Over ocean,
the confidence-weighted AOD tends to be larger by 0.02–0.05,
even over the SH where the AOD is low to begin with. We
believe that the monthly confidence weighting magnifies the
confidence weighting of the D3 QA_Mean (Section III), accen-
tuating situations with strong aerosol signal. Over land, most
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Fig. 3. May 2003 monthly mean dark-target AOD on 1◦ × 1◦ grid, calculated
from pixel- and confidence-weighted D3 QA_Mean data. Separate land and
ocean products are combined on each map. (a) Monthly mean computed from
pixel weighting of the QA_Mean for the days with Pj,l > 5. (b) Total monthly
confidence. (c) Difference if confidence weighting is applied to the QA_Mean
instead of pixel weighting (days with Pj,l > 5). Note the different color scales
to the right of each panel. Also note that panel A is equivalent to the M3
QA_Mean_Mean product.

differences are smaller and nearly always negative. Due to the
structure of the QA assessment, there are very few L2 pixels
with QC = 1 or QC = 2, so that the number of QC = 0 is sim-
ilar to QC = 3. Thus, differences between our new confidence-
weighted mean and the standard M3 QA_Mean_Mean are
small. Over both land and ocean, some aerosol hotspots (e.g.,
African dust and Asian dust/pollution plumes) show large
positive differences, although the Asian plume is marked by
both large increases and large decreases. Presumably, as the
Asian plume is entrained within midlatitude weather systems,
optically thick and inhomogeneous aerosol could be confused
with clouds.

V. MONTHLY GLOBAL MEAN AOD

In Section III, we explained how MODIS data are aggregated
from L2 to D3. In Section IV, we showed how different choices
for aggregating and weighting D3 lead to standard M3, as
well as alternative monthly gridded products. At each step, we
essentially asked whether the data to be aggregated should be
considered equally representative of some “truth” or whether
we need to apply selection (PC or QC thresholds) or weighting
(e.g., pixel or confidence) schemes. We also considered whether
this information should be propagated to subsequent aggrega-
tions. Equal weighting (whether from L2 to D3, or D3 and on)
assumes that each data value is equally representative of the
“true” mean value. Pixel weighting biases the result towards re-
gions or days with larger L2 data sampling, whereas confidence
weighting biases the result towards regions or days with higher
L2 confidence. Thresholds may be added to completely remove
regions or days with poor sampling or confidence. Although

each aggregation method provides a different solution, all tend
to introduce clear-sky biases.

These considerations can be taken to the next step, i.e., com-
putation of monthly global mean AOD. Regardless of whether
it makes real physical sense to do so, climate models tend
to lean on satellite data to provide guidance (e.g., [1]). How
do different choices for aggregation, weighting, and averaging
propagate when deriving the monthly global mean AOD (τk)?
Let us begin with our D3 products (Mean, QA_Mean, PC, and
QC-value histogram).

A. Monthly Global L2 Sampling and Confidence

Before considering the computation of monthly global mean
AOD, we shall consider the monthly global L2 sampling (total
PC) and confidence (total Q). Although oceans dominate the
surface area of the globe, the stricter requirements for over-
ocean retrieval (avoidance of glint, coastlines, and ice) are
such that the number of attempted L2 retrievals (1.1 × 108

per month) is surprisingly similar to that attempted over land.
Including multiply sampled data (the summertime pole), valid
AOD values are retrieved for only about 6% and 12% of
the pixels over land and ocean surfaces, respectively. High-
confidence data (QC = 3) account for approximately 60% and
25% of the valid data over land and ocean, respectively, while
at least marginal-confidence data (QC ≥ 1) account for about
85% and 98%, respectively. Although this may seem counter
to the understanding that over-ocean AOD should be more ac-
curate than over-land AOD, the seeming inconsistency reflects
the algorithms’ stricter criteria for high confidence over ocean.
Weak aerosol signal over ocean (low AOD and extensive cloud
decks) is common and flagged by low QC.

Fig. 4 shows the time series (Terra, 2003) of monthly total PC
(Pk =

∑
i,j,l Pi,j,l) and total confidence (Qk =

∑
i,j,l Qi,j,l),

as well as the PC distribution associated with each QC value.
One can see strong maxima in both PC and confidence over land
during the northern summer, with much less seasonal depen-
dence over ocean. Interestingly, over ocean, the maximum in
PC is not associated with the maximum in confidence. Note that
because of different QA criteria, land is dominated by QC = 3,
whereas the ocean is usually QC = 1.

B. Ordering of Spatial and Temporal Averaging

To obtain a monthly global mean AOD, we are essentially
performing temporal averaging over all days j and spatial
averaging over all grid cells l. These operations are not nec-
essarily commutative, meaning that we must also consider their
order. Consistent with Section IV, we will consider temporal
averaging to be associated with weighting X and assume that
all measurements within a 1◦ × 1◦ grid cell are random samples
from the same population. Spatial averaging will be associated
with weighting Y . We may first derive a monthly map, as in
Section IV, and then take the average of the map, i.e.,

τ
j then l

k =
∑

l

Yl




∑

j

Xj,lτ̄j,l

/ ∑

j

Xj,l




/∑

l

Yl (9)

Authorized licensed use limited to: NASA Goddard Space Flight. Downloaded on April 15, 2009 at 09:32 from IEEE Xplore.  Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Time series (Terra, 2003) of monthly total counts over (a) land and (b) ocean. For each panel, the black circles represent the monthly total PCs (Pk), the
squares are the total PCs that are a given QC value, and the red triangles are the total confidence for that month (i.e., Qk =

∑
i
Qi,k). Note the different seasonal

dependences of the curves.

or we might reverse the order of averaging, such that

τ
l then j

k =
∑

j

Xj

(
∑

l

Yj,lτ̄j,l

/∑

l

Yj,l

) /∑

j

Xj (10)

where the first step creates daily global means and the second
one derives the monthly mean. In either case, different weight-
ings and thresholds can be applied at either or both steps. As
before, only specific combinations preserve the L2 sampling
and/or QA information.

For a noncommutative spatiotemporal average, each D3
cell’s value is anchored to a particular day and grid-cell lo-
cation. However, if each D3 cell is assumed to be spatially
and temporally independent (anchoring forgotten), then we can
derive the straightforward monthly average from all available
D3 grid cells, i.e.,

τ
straight

k =
∑

j,l

Zj,lτ̄j,l

/ ∑

j,l

Zj,l (11)

where Zj,l represents the weighting given to a particular cell.
One can show that setting Zj,l = Pj,l (pixel weighting, with
no thresholds) exactly preserves the sampling of L2 during a
month. Similarly, setting Zj,l = Qj,l exactly preserves the L2
QA information. Setting Zj,l = 1 presumes equal cell weight-
ing (each grid/location is independent). Of course, since aerosol
properties in neighboring L2 pixels are rarely independent, the
straightforward average should not be expected to approximate
global AOD. Nonetheless, this straightforward average is useful
because it best approximates the sensor’s sampling, in essence
its “perception” of the global average.

Fig. 5 uses D3-like AOD data for four days and nine grid cells
to illustrate how the choice of ordering can lead to divergent
estimates of the global monthly mean AOD. On day 1, the AOD
is homogeneous with low magnitude (τ = 0.1, light blue). On
days 2–4, an aerosol plume (with τ = 0.5, red) passes from
the top left to the bottom right of our domain. On day 3, the

middle cell is completely cloudy (no retrieval). The paths of
“temporal then spatial” (9), “spatial then temporal” (10), and
“straightforward” (11) are presented from left to right, top to
bottom, and diagonal, respectively. Here, we used “equal cell
weighting” (where all weights are 1). Along each path, the
number of cells that were averaged is given in parentheses.
The color of a grid cell approximately represents the AOD
magnitude retrieved during that step. The result of our example
case is that the final “global” AOD will range between 0.189
and 0.194, meaning that there is 2.7% difference due only to our
choice of ordering. The ordering is noncommutative when there
is missing sampling, and this fact is not reflected in weighting
computation.

What if there exist gradients of sampling, as well as gradients
of AOD? Fig. 6 assumes the same initial AOD distribution as
Fig. 5 but includes L2 PC as information (in parentheses) within
each grid cell. In our artificial case, generally, we see higher PC
associated with lower AOD. For our first step, we apply pixel
weighting in the first step and equal cell weighting in the second
step. From left to right, the first step is analogous to operational
M3 processing (temporal averaging with pixel weighting). The
second step is equivalent to deriving a global average from
the M3 map. The path from top to bottom represents spatial
(with pixel weighting) then temporal averaging. The diagonal
path is straightforward averaging (assuming pixel weighting
only). Here, the global mean differences range by more than
16% (from 0.164 to 0.191). In this case, the pixel weighting
results in a clear-sky bias toward lower AOD but not for all
orderings.

As mentioned before, straightforward averaging is equivalent
to ordered averaging with consistent application of weights.
If there are no empty grid cells for any day (as in model
or continuously interpolated data), or there are empty cells
but all weights are computed and applied consistently, the
ordering is commutative, and all paths yield the same result
as straightforward averaging. However, if there are missing or
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Fig. 5. Different paths to estimating the global monthly mean AOD from four days and nine grids of artificial AOD data. The AOD is homogenous with low
magnitude (τ = 0.1; light blue) on day 1. Days 2–4 show a plume (τ = 0.5; red) moving from the top left to bottom right. On day 3, the middle cell has no value
retrieved, presumably due to cloud. Paths from left to right, top to bottom, and diagonal represent the “”different ordering of “temporal then spatial,” “spatial then
temporal,” or “straightforward” averages, respectively. All weighting is “equal cell.” The number of grid cells used in the average is given in parentheses along
the path. The color of a grid cell approximately represents its magnitude.

Fig. 6. Different paths to estimating the global monthly mean AOD from four days and nine grids of artificial AOD data, having the same magnitudes and
distribution as for Fig. 5, but with the L2 PC presented (in parentheses) for each grid cell. Paths from left to right, top to bottom, and diagonal represent the
different ordering of “temporal then spatial,” “spatial then temporal,” or “straightforward” averages, respectively. Pixel weighting (no thresholds) is applied for
the first step, while equal cell weighting is used for the second step. The number of grid cells used in the average is given in parentheses along the path. The color
of a grid cell approximately represents its magnitude.

sparse observations, and weights are not changed accordingly,
the ordering will be noncommutative.

In addition to those choices detailed earlier, there are other
valid choices for aggregation and weighting. We may apply
thresholds (e.g., PC ≥ 5) or other weightings at any step along
the way. We should also consider whether to weight each
1◦ × 1◦ grid-cell location into the global average. Since Earth

is a sphere, grid-cell surface area decreases toward the poles.
“Latitude” weighting, or weighting a grid location by the cosine
of latitude, is roughly equivalent to equal area weighting.
Latitude weighting better represents a true global field (as in
modeled or other uniformly gridded data) but may exaggerate
latitudinal differences for a polar-orbiting instrument, where
sampling is partially a function of latitude. In the next section,
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Fig. 7. Area-weighted global mean daily D3 (blue) and monthly M3 (red) AOD (over land and ocean separately) time series for 2003, obtained from the Giovanni
Web site http://giovanni.gsfc.nasa.gov/. Note that the Giovanni tool utilizes only the D3 and M3 combined products (Optical_Depth_Land_And_Ocean_Mean and
Optical_Depth_Land_And_Ocean_Mean_Mean) but provides the ability to average over each surface separately.

we apply some reasonable thresholds and tests toward deriving
global averages of real MODIS data.

C. Global AOD From MODIS

Fig. 7 uses Giovanni-produced time series to demonstrate
that the problem of noncommutative averaging order applies to
MODIS data in particular. Giovanni easily creates global time
series by computing equal area (latitude-weighted) averages
from either monthly (M3) or daily (D3) aggregations of the
combined AOD product. Shown in Fig. 7 are monthly (2003)
time series from Terra, separated into over-dark-land (left)
and over-ocean (right) surfaces. For each panel, blue points
represent spatial averages of the MODIS standard D3 Mean
product, whereas red points are spatial averages of the M3
Mean_Mean product. The M3 time series are systematically
lower than the daily ones by about 10%, because this M3 prod-
uct is a pixel-weighted product, whereas the D3 product is not.
In general, the pixel weighting tends to bias the result toward
lower AOD observations that represent clear-sky conditions.
However, the bias varies by surface type and season, and it is
beyond the scope of this paper to analyze the interplay of orbital
geometry, bright surface avoidance, cloud cover, and true AOD.
Although a casual user can easily compute global means from
available data products, Fig. 7 shows why proper interpretation
is necessary.

Table I presents the global monthly mean (for May 2003)
computed from Terra-MODIS D3 Mean products over land
and ocean separately. Presented are results from 28 different
schemes for aggregation, ordering, and weighting. Choices
include which D3 parameter to use (D3 Mean: #1–19 or D3
QA_Mean: #20–28), which ordering to apply (temporal then
spatial: #1–8 and #20–24; spatial then temporal: #9–16 and
#24–26; or straightforward: #17–19 and #27–28), and which
weighting to use (equal cell/day, pixel and/or confidence, with
or without thresholds, and latitude weighting). The last col-
umn lists aggregations of other MODIS products (e.g., L2 or
M3) that derive equivalent results. For the choices presented
here, global AOD over land ranges from 0.213 to 0.320 (50%
difference), and that over ocean ranges from 0.153 to 0.222
(45% difference). The maximum values (shown in red font)

for both ocean and land are derived from temporal (equal day
weighting) then spatial (equal cell weighting) averaging (#1).
Minimum values (shown in blue) are derived from different
schemes. Each choice of averaging order has a maximum
value when weights are assumed equal at each step (#1, #9,
#17, #20, #24, and #27). In comparison, lower mean AODs
are derived when either threshold or pixel weighting is intro-
duced. Confidence weighting leads to the lowest results over
land, whereas pixel weighting leads to the lowest values over
ocean.

Let us take a “base” result (#5: 0.257 for land and 0.184 for
ocean; shown in bold font) to be the case that starts with the
D3 Mean product; performing first temporal averaging using
pixel weighting (P > 5 threshold) and then applying equal area
weights for a spatial average. This is equivalent to equal area
weighting of the M3 Mean_Mean product, which is essentially
what is derived from a tool such as Giovanni (the red symbols
in Fig. 6). If we had chosen to forego the pixel threshold in
the monthly grid calculations, we would have increased our
monthly averages by ∼0.01 (#4). If we had no knowledge
of pixel weighting, instead of deriving equal day averages at
each grid (#2), we would have increased our values by nearly
0.05 over land and 0.03 over ocean. Applying only the daily
pixel (P > 5) threshold (#3) yields similar results to simple
(nonthreshold) pixel weighting (#4).

By keeping the same ordering of averaging, but instead of
starting from the D3 QA_Mean product (#22), we would have
decreased the result by 0.008 (to 0.249) over land but intro-
duced no change to the result over ocean. If we derived a con-
sistent confidence-weighted result (#23) from the QA_Mean,
we would have reduced the over-land result by only −0.003 but
increased over ocean by nearly 0.02 (to 0.202).

For May 2003, if the red symbols shown in Fig. 6 are
considered to be our base case (#5), then taking the equal
day average (or taking the average visually) of the blue points
represents case #14. Over land, this estimate of the mean AOD
would be larger by 0.04 (to 0.295). Over ocean, the increase
is much less, only 0.003 (to 0.187). These two cases represent
logical conclusions of using M3 (#5) versus using D3 (#14)
data. If, instead, a user chose to describe the average from
available L2 sampling (e.g., #18), then both over-land and
over-ocean estimates would derive smaller results (than #5).
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TABLE I
GLOBAL MEAN AOD OVER LAND AND OCEAN DERIVED FROM DIFFERENT AGGREGATIONS OF TERRA-MODIS D3: MAY 2003

Estimates using #7 and #15 are equivalent to that using #18,
as expected with consistent application of weighting. For the
same reason, results of #8 and #16 are the same as that of #19
(confidence-weighted L2). Clearly, the choices made during the
averaging process have a major impact on the results and must
be properly documented.

Fig. 8 shows the 2003 time series for land and ocean
separately, computed by some of the schemes listed in Table I
(#2, #5, #14, #16, #18, #19, #21, #23, and #28). Aggregations

of D3 products are indicated as small symbols with connecting
lines, whereas aggregations of L2 or M3 are marked with large
symbols. Equivalent aggregations are plotted with the same
color and will have nearly overlapping symbols. For example,
our base case time series, which is computed from the D3
Mean (#5; small open black squares), is equivalent to that
computed from the M3 Mean_Mean (large black squares). We
also see that, although the maximum AOD over both land and
ocean seems to be in May, not all aggregations agree.
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Fig. 8. Time series (Terra, 2003) of the monthly mean AOD computed from different aggregation/ordering/weighting methods over (a) land and (b) ocean.
For each panel, values are computed from (large circles) L2, (large squares and diamonds) M3, and (small shapes and curves) D3. Each legend entry describes the
type of averaging, including from which product the ordering and the weightings (in parentheses) are. For the ordering, they are listed by first (1) and second (2)
and whether spatial (S) or temporal (T). Pairs of like colors (large shapes/small shapes) show equivalence. For example, “L2: (Confidence) ” is equivalent to
“D3 QA_Mean: Straight (Confidence).” The purple and orange triangles represent a case of reversing the spatial/temporal ordering.

Generally, the different aggregations derive a range of values
for every month (> 30%) that are similar to that discussed
for May only (in Table I). Compared to our base case (black
squares), choosing straightforward pixel weighting (red circles;
e.g., (9) with W = P ) derives similar or reduced mean AOD
in all months over ocean but larger values during the fall and
winter over land. Applying confidence weighting (blue circles)
reduces the derived mean AOD over land by an additional
0.01–0.02 but tends to increase values over ocean. Over land,
choosing to start from the D3 QA_Mean (green squares)
rather than Mean leads to differences of about 0.01 for most
months. Over ocean, the difference is negligible. Our consistent
confidence weighting scheme (maroon triangles) gives results
close to that of the current M3 product (QA_Mean_Mean;
green) over land but higher values (by about 0.01) over ocean.
Generally, the maximum monthly values are derived from
temporal (with equal day weighting) then spatial (with equal
area weighting) aggregation of the D3 Mean product (small
maroon triangles).

Over land, QC tends to be lower over brighter surfaces near
dust and biomass burning source regions, so that applying
confidence weighting derives lower global mean values. Over
ocean, QC tends to be higher where there is larger aerosol
signal, so that applying confidence weighting derives higher
values. We suspect that pixel weighting itself leads to lower val-
ues over the ocean because the clean SH ocean represents such
a large percentage of the total ocean surface area (as well as
the L2 sampling). On the other hand, the same region has lower
confidence, so confidence weighting reduces its global impact
on the global mean (making the result higher). Interestingly,
comparisons with sun-photometer data show that the retrieved
AOD values with QC = 1 are almost as accurate as those with
QC = 3, so the best scheme is probably a combination of both
pixel and confidence weightings.

Straightforward ordered pixel-weighted D3 with no daily PC
threshold preserves L2 sampling (equivalence of red shapes).
Similarly, straightforward confidence-weighted D3 preserves

L2 QA information (blue shapes). Because the M3 product
assumes daily PC threshold, it does not represent the orig-
inal L2. Nonetheless, based on our understanding of spatial
and temporal homogeneity of AOD properties, this threshold
(Pj,l > 5) seems to derive realistic gridded results without
sacrificing much coverage. We believe that neither equal day
weighting (with no thresholds; maroon) gives a realistic global
mean over land nor straightforward confidence weighting (blue)
is the answer, due to the subjectivity of the assigned QC.
Although we cannot conclude that any averaging scheme is
the correct one in all conditions, we believe that each one can
provide insight into the “true” global statistics, and collectively,
they can be used to help describe the uncertainty.

VI. CONCLUSION

Global AOD is an inhomogeneous but not random physical
property. It can exhibit large gradients, on scales ranging from
tens of meters to hundreds of kilometers. Due to complications
of orbital geometry, regions of persistent cloudiness, and other
factors, satellite sampling varies greatly with season and loca-
tion. Based on analysis of a specific year (2003) and month
(May) of MODIS orbital (L2) and gridded (D3 and M3) AOD
products, we have learned the following.

1) Pixel, confidence, equal cell, and equal area weight-
ings, with or without PC or QA thresholds, are options
for summarizing MODIS AOD. Straight pixel weight-
ing exactly represents L2 sampling, whereas confidence
weighting represents L2 confidence sampling. Applying
a reasonable PC threshold (P > 5) screens regions with
poor sampling statistics at the expense of reducing global
coverage by 1%–2%.

2) Both standard monthly (M3) data products are pixel
weighted and tend to provide similar results within a
larger range of other aggregations.
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3) Different aggregation, weighting, and averaging-order
choices can lead to very different regional and global
average mean values.

4) Depending on the regionally varying relationship be-
tween AOD spatial gradients, clouds, and instrument
sampling, different averages emphasize different at-
tributes of the true aerosol field.

5) The ordering of spatial and temporal aggregation is non-
commutative when data gaps are not accounted for in the
weighting scheme.

6) The choice of averaging process will affect the interpre-
tation of aerosol effects on climate.

7) The use of an exploratory tool like Giovanni shields the
complexity of the data aggregation and should not be used
exclusively for answering scientific questions.

Generally, application of either PC thresholds or pixel
weighting tends to approximate L2 sampling. However, since
MODIS L2 sampling is, by definition, biased toward clearer
sky, as well as to darker surfaces, it is not necessarily represen-
tative of aerosol properties everywhere.

Compared to equal cell weighting, pixel weighting generally
derives lower AOD over both land and ocean, because retrievals
tend to be more abundant under clearer sky conditions. Apply-
ing confidence weighting tends to bias toward higher AOD over
ocean and lower AOD over land, because there is often lower
confidence in very low AOD retrievals over ocean, whereas
over land, bright surfaces tend to produce lower confidence
retrievals.

Satellite-retrieved aerosol products provide the means to
characterize the global AOD field and estimate aerosol effects
on climate. Yu et al. [7] calculate the (observationally based)
aerosol DREs to be −5.5 ± 0.2 and −4.9 ± 0.7 W · m−2 over
ocean and land, respectively. If we assume that DRE is linearly
related to AOD (when AOD ' 1.0) [26], then a global mean
AOD error of 10% leads to an error of 10% on the DRE
estimate. In a recent paper, Mishchenko et al. [27] pointed out
that differences between different satellite’s estimates of global
DRE are more than 10%. Based on MODIS data, we showed
that simply choosing different but otherwise reasonable averag-
ing schemes can create differences that exceed 10% or even
30%. Thus, uncertainties in global AOD, and consequently,
the uncertainty of DRE derived by a particular sensor may be
greater in magnitude than differences among multiple sensors.
This issue must be evaluated as part of any large-scale or long-
term multi-satellite comparison.

We note that the standard D3 products (Mean and QA_Mean)
are computed based on the assumption that the derived L2
AODs are normally distributed within the 1◦ × 1◦ grid cell.
However, it has been shown that global AOD demonstrates
something closer to a lognormal probability distribution [28].
Consequently, one might consider deriving statistics based on
the logarithms of the AOD within a grid box, which will likely
result in a different value for the mean. Other assumptions of the
distribution would lead to other values for the same area. It can
be shown [29] that, in some areas, the difference may be several
percent. However, even without the additional uncertainty of
the AOD probability distribution, we showed here how different

choices of aggregation, averaging, and weighting are capable of
giving a wide range of results.

Clearly, more study is necessary to quantify how different
averaging algorithms respond to sampling, confidence, clouds,
and retrieval fitting errors, particularly on a regional basis. More
generally, while beyond the scope of this paper, advanced spa-
tial statistics techniques (e.g., [30]) could be applied to the L2
data to create new aerosol fields and uncertainty measurements
based on the aggregate of available information.

Nonetheless, assessing the variability of different aggrega-
tions is key to understanding the uncertainty of satellite aerosol
products for large-scale and long-time series applications. De-
pending on the regionally varying relationship between AOD
spatial gradients, clouds, and instrument sampling, different
averages will emphasize different attributes of the true aerosol
field. Regional, rather than global, summaries will have advan-
tages, in that they are likely to aggregate over fewer underlying
spatial, temporal, and quality sampling differences.
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