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Abstract--A formalism for photon transport in leaf canopies with finite-dimensional scattering 
centers that cross shade mutually is developed. Starting from first principles, expressions for 
the interaction cross sections are derived. The problem of illumination by a monodirectional 
source is studied in detail using a successive collisions approach. A balance equation is 
formulated in R 3 and the interaction between a leaf canopy and the adjacent atmosphere is 
discussed. Although the details are those relating to a leaf canopy, the formalism is equally 
applicable to other media where the constituents cross shade mutually such as planetary 
surfaces, rings and ridged-ice in polar regions, i.e., media that exhibit opposition brightening. 

1. I N T R O D U C T I O N  

A fascinating problem in transport theory is that of describing the transfer of photons in a medium 
of finite-dimensional scattering centers, and one in which the scatterers cross shade mutually. 
Examples of such media are all rough surfaces and layered media, including vegetation canopies, 
bare soil surfaces, ridged-ice in polar regions, decks of broken clouds, and planetary surfaces and 
rings. When these surfaces are illuminated by monodirectional radiation of wavelength much 
smaller than the size of the constituents, a peak in the reflected radiance distribution along the 
retro-illumination direction will be noticed, because of the absence of shadows. This phenomenon 
is known as the opposition effect in astrophysics, Heiligenschein in meterology, and the hot-spot 
effect in aerial photography and optical remote sensing. In this paper, we propose a new formalism 
for photon transport in leaf canopies that explains the hot-spot effect; with necessary modifications, 
the theory can be applied to any layered medium with finite-dimensional scattering centers that 
cross shade mutually. 

The problem of photon transport in plant stands arises in the context of optical remote sensing 
of vegetated land surfaces, land surface climatology and plant physiology. The classical approach 
has been to ignore all plant organs other than leaves and treat this leaf canopy as a gas with 
nondimensional planar scattering centers, i.e., a turbid medium.~ Such an analogy permits the use 
of standard transport theory (radiative transfer), ~'3 with minor modifications to account for the 
angular orientation of the plane-scatterers: In particular, the scattering transfer (phase) functions 
are not rotationally invariant, thereby precluding the use of polynomial expansion methods for 
handling the scattering integral: '5 Consequently, the parameter mean free path depends on the 
direction of photon travel. A modified discrete ordinates method that incorporates the exact kernels 
can be used to solve the resulting transport equation, and this has been done for both one- and 
three-dimensional problems) -7 

If  the size of the scatterers is considered in a formulation of the transport problem, it is necessary 
to include not only the number density of scatterers but also the consequences of introducing finite 
size gaps (holes or voids) in the medium. Standard transport description based on cross sections 
derived from elementary volumes is not applicable because of the presence of voids. Moreover, if 
the far-field assumption is violated, as is the case in a leaf canopy, then the scatterers will cast 
shadows; hence, information on the spatial distribution of scatterers is required to evaluate cross 
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shadowing. A need for such a theory has a strong basis in experimental observations of exiting 
radiations measured in opposition to a monodirectional source, g-l° Standard transport theory 
assumes an infinite number of uncorrelated nondimensional scatterers, thereby affording a 
continuum description of the configuration space. It is clear that point scatterers cannot cast 
shadows and thus, the standard theory fails to predict or duplicate experimental observations of 
exiting radiations about the opposition direction. 

The plan of this paper is as follows. In Secs. 2-6, expressions for the interaction cross sections 
are formulated starting from first principles. The leaf canopy transport problem is discussed in Sec. 
7 and generalized in Sec. 9. In Sec. 8, the leaf canopy problem with a reflecting ground surface 
is considered. The nature of interactions between a leaf canopy and the adjoining atmosphere is 
discussed in Sec. 10. A balance equation is derived in Sec. 11 to gain insight and to motivate the 
physical arguments. Finally, in Sec. 12, a detailed synopsis highlighting the important results and 
relations is given. 

2. ABSTRACTION OF THE LEAF CANOPY 

Consider a natural community of vegetation. A proper description of a plant in this community 
should detail its architecture, i.e., shape, size, orientation, number density, etc. of the various 
components (leaves, twigs, branches and trunk). At the next level, the description should include 
spatial distribution of plants in the community. It appears that the most elegant way of describing 
such natural formations is not through the use of statistical measures, as required in transport 
theory, but by the use of fractals 7 or L-systems. ~ Nevertheless, for purposes of photon transport, 
the problem is greatly simplified if we consider, as a first approximation, only leaves and ignore 
other plant organs. The question now is how to best describe a leaf canopy. 

Leaves of a plant are generally of finite size, the characteristic linear dimension of which is 
significantly greater than the wavelength of the interacting beam. They also have a shape that is 
species-specific. The nature of photon-leaf interactions under study permit us to ignore the 
thickness of a leaf. Therefore, leaves may be idealized as planar, finite-dimensional scatterers. The 
angular orientation of a planar element as described by the normal to its surface (say, upper). Thus, 
it is not the volume occupied by a leaf that is of interest but rather its area and orientation. 

The position of leaves in vegetation canopies tends to be spatially correlated because leaves arise 
on stems, branches, twigs, etc. The position that a particular leaf can take could be excluded by 
the presence of another leaf in the vicinity because leaves cannot grow through one another, i.e., 
steric hindrance. Nevertheless, since leaves arise on branches, they are generally clumped in the 
space around the branch. Consequently, they cast shadows on one another, i.e., the assumption 
that every scattering center is in the far-field of the radiation scattered from any other scattering 
center is violated [at wavelengths ( < 4/~m) of interest]. On the other hand, the branches themselves 
are quite apart spatially. Thus, the distance along any direction between two adjacent leaf centers 
is highly variable in a natural plant stand. If we ignore photon interactions with the optically active 
elements of the atmosphere inside the canopy, the gaps between leaves can be treated as voids. The 
voids are convolutely shaped and multiply connected three-dimensional structures broken along 
those regions where leaves are present. 

A vegetation canopy can thus be idealized as aggregations or clumps of leaves distributed 
randomly in free space (vacuum). The intervening free spaces between the clumps constitute the 
voids. Consequently, a leaf canopy can be abstracted as a binary medium--randomly distributed 
leaf clumps filled densely with phytoelements and voids.~2 So, the idea of a continuum host material 
that is central to transport theory is not provided for in this model of a leaf canopy. A question 
then arises as to the consequences for photon movement in such media where the scattering centers 
are finite-dimensional oriented plates, spatially distributed in clumps, with large intervening free 
spaces. We consider an elementary volume V(x), where x is the phase space coordinate of a photon. 
If V belongs to an aggregation of leaves, the fate of a photon is determined by the standard 
interaction models, ~ or some refinement there of (Sec. 3). On the other hand, if V belongs to the 
free space, the current disposition of a photon is not altered. Hence, the photon mean free path 
(the distance between two successive interactions) is the sum of two random values: the length of 
photon travel in the free space and the length of the photon free path through the leaf aggregation. 
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As we shall see, it is the former that imbues the cross sections with a correlation property that is 
equivalent to ascribing memory to photons traversing the binary medium. 

3. THE TOTAL INTERACTION CROSS SECTION FOR A 
L E A F - A G G R E G A T I O N  

In this section, an expression for the total interaction cross section for an aggregation of  leaves 
is developed. An important assumption here is that the number of leaves in the aggregate is 
sufficiently great such that a continuum description is permitted and statistical measures relevant 
to our discussion can be realized to a desired degree of accuracy. 

The three basic interactions between photons and matter are absorption, scattering and 
emission. 3 In the following we shall ignore emission. Let ~ denote the total interaction cross section, 
i.e., the sum of the absorption and scattering cross sections. In transport theory, # is defined such 
that the probability of a photon being captured in traveling a distance ds is given by # ds. 3 Hence, 
the dimension of ~ is m -  J. 

Let [(2n)-t hL(r, aL, -iL)] be the probability density that a leaf of area aL(m 2) has a normal 
~-L ~ (0L, ~bL), (polar coordinates of the unit vector -ilL), directed away from its upper surface into 
a unit solid angle about -iL" Thus, 

l~daLf2 d-iLhL(r, aL, -iL) =1" 
2re ~÷ 

A key assumption is that all leaf normals are contained in the upper hemisphere (2n+). This 
assumption is always valid since the upper surface of a leaf can be defined as that surface the normal 
to which is contained in the upper hemisphere. If  we assume that the random variables a L and -iL 
are independently distributed, then 

~ &(r, aL,-iL) -- oL(r, aL) gL(r, -iL). 

Models for the probability density of leaf normal orientation gL are available in literature. 4 If  the 
probability density of the leaf size distribution PL is independent of r, the mean leaf area ~i L is given 
by 

~l L ~ -  daLPL(aL)a L 
0 

and can be used to parameterize the characteristic leaf dimension f~ if some reasonable assumption 
is made regarding the shape of the leaves, viz. EL = X/~L or fL = 2 ~ ,  where ~L is the diameter 
of ~i L. Other details regarding the parameterization of E L c a n  be found in Nilson and Kuusk. 13 

Let hE(r, aL) be an empirical function (m -3) that relates the number of leaves in the volume 
element dr to leaf size a L. The number of  leaves in dr with sizes in da L and orientations in d- i  L 
is 

n --- n(r, aL, -~L) = nL(r, aL)PL(r, aL) l g L ( r ,  -iL) daL d-it  dr. 

The total number of leaves in dr is 

f0 f N - N(r) = da L d-iLn(r, aL, -iL) dr. 
J2n + 

The position of leaves in plant canopies tends to be spatially correlated because leaves arise on 
stems, branches, twigs, etc. The position of a leaf is also restricted by the presence of another leaf 
in the vicinity due to steric hindrance. To account for this fact, the N-leaf distribution function 
can be introduced. ~4'~5 However, this problem is far from trivial and we shall leave it for a later 
analysis. 

Let m ( a L , ~ L ;  r, -i) daL d-iL dr be the area projected by leaves in dr with size in da L and 
orientation in d- i  L on a plane perpendicular to -i, where 

m (aL, -iL ; r, -i) = n (r, aL, -iL)aL I -i" -iLI Z (r, aL, -iL, -i). (1) 
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The function X (dimensionless) is the fraction of nonoverlapped to total projected area of 
n(r, aL, ~L) leaves with respect to _ft. Integrating the above relation over all leaf sizes aL and 
orientations -ill and dividing by dr gives the total interaction cross section 

fo°f  0(r, O) = daL dQLn(r, aL, OL)aL ] t') " OL[ x(r, aL,OL, O). 
7t+ 

In terms of quantities introduced earlier, the total interaction cross section ~ is 

~(r, _~) = daLaLnL(r, aL)PL(r, aL)G(r, ~; aL), (2) 

where the dimensionless function G is the so-called geometry factor that denotes the nonoverlapped 
area, per unit leaf area, that is projected on a plane perpendicular to the direction _~, namely, 

G (r, ~; aL) = ~ dfl_ L gL (r, OL)I-~" ~L I Z (r, aL, ~L, 0). (3) 
~+ 

The leaf area density function UL(r) (in m ~) introduced by R o s s  4 is equivalent to 

UL(r) = daLaLnL(r, aL)0L(r, aL). (4) 

If all of the leaves in dr are assumed to be of size ao then pL(r, aL) = 6(aL -- ao), and 

~(r, ~) = aonL(r, ao)a(r, ~_; a0) = uL(r)G(r, _~; a0). (5) 

We now consider the process ao ~ 0. To have the same leaf area density UL (r), the number of leaves 
in the elementary volume N ( r ) ~  oo at the same rate as ao-*0. Therefore, in the limit of 
nondimensional leaves, there is no mutual shading between leaves and 

lim G ( r , ~ ; a 0 ) =  1 f2 d-~LgL(r'~-L)IK~'~-LI" 
a0~0 - ~ n+ 

This definition of the geometry factor was originally introduced by Ross and his colleagues. 4 The 
fact that Ross' theory refers to the limit [N ~ 0o, ao--* 0] is not surprising since the resulting 
radiative transfer equation is essentially a linearized form of the Boltzmann equation, which 
describes the evolution of an N-particle system in the limit N ~ oo and a ~ 0 (a is size of the 
particle)) 4 

As a matter of fact, Ross' theory of radiative transfer for a leaf canopy contains two 
contradictory assumptions. 4 On the one hand, it is assumed that the elementary volume is so small 
that no mutual shading exists along any direction within it. On the other hand, the number of leaves 
in the elementary volume is assumed to be so great that the functions UL(r) and 1/2rt gL(r, -~L) may 
be defined with adequate accuracy. These assumptions are valid only in case of infinitely small 
leaves. 

The geometric factor G can be accurately evaluated if detailed measurements of leaf spatial 
coordinates, size, shape, and orientation distribution are available. Accurate collection of such data 
is tedious and expensive. In practice, one must resort to ad hoc models. We propose to approximate 
;t by the exponential function 

Z( r, a L ,  -~L, -~) ~" exp[ - A~n(r, a L , -~L, ~-)], 

where Ash is a fraction of the total projected area of n leaves with size aL and orientation ~L in 
a unit volume around r when illuminated along _fl (adjustable parameter, say). If the leaves are 
assumed to be nondimensional, then Ash ---- 0, i.e., no cross shading between leaves and ;( = 1. On 
the other hand, if all the leaves are totally shaded by a single leaf of area ao, then [see Eqs. (4)-(5)] 

0 < Ash(r, aL, fl-L, -~) = 1 - -  ao/uL(r), 

and z(r, a0, OL, O) ~ exp( -- 1). 
A further simplification is to suppose that 

Ash (r, aL, OL, O) = Ash (r, aL) I -~" ~-L l, 
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where 0 ~< A~h ~< 1 is the mean area projected by n leaves of  size a L and orientation -~L o n  a plane 
perpendicular to _ft. The evaluation of  the geometry factor is considerably simplified now. For 
instance, if the leaf normals are randomly distributed, then [cf. Eq. (3)] 

G(r, ~_; aL) = ,/Tsh ( r  , aL)-2{l -- e x p [ -  Ash(r , aL) ] - -  2sh(r , aL)exp[ --/lsh (r, aL)] } 

and, if,'Tsh-, 0, then G --, 0.5, which is the correct result for nondimensional leaves. 4 For  horizontal 
leaves, the geometry factor is 

G(r, fl_; ag) = ~ exp[ -- .4sh (r, aL)~] , 

where cos-  */~ is the direction of  photon travel. Numerical examples of  the geometry factor for 
various leaf normal orientations can be found in a companion article, l: 

4. THE M O D I F I E D  TOTAL I N T E R A C T I O N  CROSS SECTION 

In Sec. 2, a leaf canopy was abstracted as a binary medium with aggregates of  finite-size leaves 
interspersed in free space creating convolutely shaped and multiply connected voids. To describe 
the rules of  photon movement in such a medium, one has to know not only the interaction cross 
sections for the leaf aggregates (See. 3) but also the distribution of  voids along the path of  photon 
travel. ~6 So, we postulate the following picture of  photon interactions in a leaf canopy. 

We suppose that the event A = {two successive interactions between photons and leaves occurred 
in the neighborhoods of  r" and r', where r' = r" + s'fl_', s '  > 0} is realized (Fig. 1). Then, the total 
interaction cross section at r (r = r' + s_~; s > 0) for those photons with previous phase space state 
(r", ~ ' )  can be represented as the product of the interaction cross section for the leaf aggregate 
#(r, ~)  and the probability [1 - q ( r ,  _fllr", (1')] of encountering a clump filled densely with leaves 
at (r, ~)  for photons from (r", ~ ')  with a scattering event at r' where the direction of  travel is 
changed from ~ '  to _~. The latter clearly depends on the photons'  previous phase space state (r", ~').  
The realization of  the event A means that the interval between the points r" and r' is free of  
interaction centers. In which case, a photon from r' can unimpededly reach the previous site of  
interaction r" along -_~'. Moreover, this interval is assumed to extend to a small cone depending 
on the dimensions of  the scattering centers. 12 This will provide us the proper mechanism for 

y \  , 

Fig. 1. Radiative transfer process in a medium with finite-dimensional scattering centers. Here, r, r', etc. 
are the points of interaction and f~, fl', etc. are the directions of photon travel. 
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describing the hot spot effect or opposition brightening. These considerations are the foundation 
for our development of  the interaction cross sections and the resulting transport description. 

The necessity for introducing the probability of photon arrival (1 - q) at an interaction site arises 
from our abstraction of  the leaf canopy. If size of the scatterers is considered in a formulation of 
the transport problem, it is necessary to include not only the number density of  scatterers but also 
the consequences of  introducing finite size gaps (holes or voids) in the medium. Standard transport 
description based on cross sections derived from elementary volumes is not applicable because of 
the presence of voids. Moreover, if the far-field assumption is violated, as is the case in a leaf 
canopy, then the scatterers will cast shadows; hence, information on the spatial distribution of 
scatterers is required to evaluate mutual shadowing. A need for such a theory has a strong basis 
in experimental observations of  exiting radiations measured in opposition to a monodirectional 
source. 8-1° Standard transport theory assumes an infinite number of uncorrelated nondimensional 
scatterers thereby affording a continuum description of the configuration space. It is clear that point 
scatterers cannot cast shadows and thus, the standard theory fails to predict or duplicate 
experimental observations of exiting radiations about the opposition direction. 

Kuusk, 16 in an attempt to model the hot-spot effect of leaf canopies, considered the distribution 
of voids along the path of photon travel with respect to space and angular variables. The 
probability Q that a point r inside a leaf canopy can be viewed from two points r' and r" was 
calculated as 

[fo o,] I;o ,] - ' t)_, 9 ' ) ,  Q = exp - t't~[r(t'), _ exp d t ' ~ [ r ( t ' ) , -  _fl' Cas(r ,s ,s  , 

where s = I r - r"l, s' = I r - r' l, -fl = (r - r")/s, ~ '  = (r' - r)/s ' ,  and C.s is a correction factor. The 
subscript HS is connected with the so-called hot spot effect. 13't6 The product 

[/0 ",] / p / 

Q'(r, s, s , ~_, ~ ')  = exp - dt a[r(t ), CMs(r, s;" ' s , ~ ,  ~_ ) 

can be interpreted as a distribution function of voids from the point r along the direction ~ of 
photon travel. The function Q '  clearly depends on the point r' and direction _~'. If r " =  r', 
(~ = - ~ ' )  then Q ' =  1, and this provides a model for the hot spot effect [i.e., the elements that 
are lit by parallel beams incident along ~ '  are visible along - ~ '  with unit probability]. It was this 
idea of Kuusk that led us to imbue the cross sections with the property of dependence on the phase 
space coordinates of the previous interaction site via the probability q. 

A precise definition of the previous phase space state of a photon is as follows. Consider Fig. 
1. A photon at r = r' + s_fl (s > 0) traveling along _fl has a previous state (r", _fl'), if two successive 
interactions between the photon and scattering elements occurred in the neighborhoods of r" and 
r ' =  r " +  s'_fl' ( s ' >  0). The interaction center about r' at which the direction of photon travel 
changed from _~' to _t') due to a scattering event, is still the current (or most-recent) interaction 
center. Thus the phrase "previous phase space state". 

The total interaction cross section a (r, _t')l r", t')_ ') is defined such that the probability of a photon, 
in an elementary volume about r with previous state (r", _fl'), being captured in traveling a distance 
ds along ~ is a d s .  Let [ 1 - q ( r ,  fl_lr",~')] be the probability of photons encountering an 
aggregation of  leaves at the state (r, D_) provided that the event {two successive interactions between 
photons and leaves occurred in the neighborhoods of r" and r'} was realized. Then, the total 
interaction cross section at r for photons with previous state (r", _t')') traveling along _fl is 

a(r, OIr", _~') = ~(r, 9)[1 - q(r, 91r", ~')] (6) 

where 8 is the total interaction cross section for the aggregates filled densely by leaves [Eq. (2)]. 
Recently Verstraete et a119 described a physically-based model for predicting the bidirectional 

reflectance of vegetation canopies. They found that "the transmittance of  the scattered radiation 
in a porous medium is not independent of that of the incoming direct radiation: the two optical 
paths actually share a common volume, free of scatterers, near the scatterer that causes the 
reflection". Two volumes, defined by the incoming beam of direct solar radiation and the direction 
of observation, were considered. The optical depth for the scattered beam was represented as the 
product of a classical optical depth defined as an integral of # and a ratio of the two volumes. Their 
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approach corresponds to ours if the correction factor (the ratio between the two volumes) can be 
considered as the probability of  encountering a leaf aggregation. 

The interaction rate for photons traveling along 0 in an elemental volume about r in a region 
belonging to an aggregation of leaves is determined by [0(r, fl)]. But the probability 
[1 - q (r, _~[r", 0')] depends upon the location of their previous interaction center. Thus, the overall 
outcome of a current interaction for a photon is influenced by its history [cf. Eq. (7)]. In this sense, 
one may attribute memory to a photon.t  Of special importance is the fact that the fundamental 
element of transfer is no longer a straight line but a broken line (cf. Fig. 1). This is a consequence 
of considering the distribution of voids along the path of photon travel. 

The modified total interaction cross section a should satisfy the following four criteria: 
(1) Convergence 

lira ¢ (r, 0 J r", _D') = ~ (r, _D). (7) 
t'L~0 

(2) Positivity 

0 ~< tr(r, Olr", 0 ' )  ~< 0(r, 0)- 

(3) Continuity of a(r '  + s O ,  Olr", 0 ' )  with respect to s and _ft. 
(4)  N o  interactions along ( 0  = - 0 ' )  that explains opposition brightening. 
A simple model for the probability q of encountering a void and which imbues the cross sections 
with the above desired properties can be derived as follows. 

We assume that a photon at (r, 0) with previous state (r", 0 ')  can encounter a void only inside 
the sphere S of radius So = )r" - r'] centered at r', i.e. 

S(r', so) = {r : l r  - r'[ ~< So}. 

We also assume that q depends only on the distance d between the point r and vector 0 ' ,  and the 
angle ~ between the vectors D_ and _~' (Fig. 2). We define a continuous function Z(0t) such that, 
it is equal to 0 if ~ = 0 (0 = D_') and equal to 1 if ~t = lr (~_ = -_~'). An example is the linear 
function: Z ( x )  = 0.5 (1 - x), where x = cos r~ = (0" 0'). To describe the dependence of q on the 
distance d we shall use the results of Nilson and KuuskJ 3 They approximated the covariance 
between two indicator functions for viewing the point r' along -fl_ and O' by an exponential 
function. The radius of  correlation was expressed through the characteristic leaf dimension #L" The 
distance 

I_fl' x ( r -  r")[ 
d =  = s  sin g, 0t 6 (0, zc), 

)_ill 

can be used for the covariance shift. 
Approximating the covariance by an exponential function results in 

~L(S, ~) = exp( -- d/EL) = exp( --s sin 0t/EL). 

Thus, a probable model for the probability q of encountering a void is 

q(s,  So, et) = Z(cos Ot ) FtL (S, et ) H  (so -- s ), (8) 

where H ( x )  is the Heaviside function 

1, x~>0, 
H ( x ) =  0, x < 0 .  (9) 

More details can be found in a compansion paper. ~2 

tRecently Lumme et al investigated the problem of light reflection from a stochastically bounded semi-infinite mediumJ 7 
They find that classical transport theory is not applicable in studies of light reflection from planetary regoliths where 
the scattering media are bounded by a rough particulate surface. These surfaces, like leaf canopies, show opposition 
brightening, a phenomenon not predicted by standard transport theory. They write that "For reflection from a rough 
surface, however, the future of a photon does strictly depend on its entire past history within the boundary region". 
Although in the final analysis they have not considered correlated probability of photon travel, their qualitative 
discussion of the issues operative in the physical problem is strikingly similar to the discussion here. 
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Fig. 2. Schematic illustration for the derivation of the probability q of encountering a void. 

5. THE LENGTH OF PHOTON FREE PATH 

The process of radiative energy transfer in a medium can be described as a homogeneous Markov 
chain of interactions between photons and the scatterers. A photon can interact with the medium 
as a consequence of movement only. This fact is reflected in the definition of the cross sections 
by using the phrase "in traveling an elementary distance". In this context it is appealing to discuss 
a related parameter, the length of photon free path. This is the straight line trajectory of photon 
travel between two successive points of interaction and is denoted here as L In order to define this 
length, from the point r0 along _fl, it is convenient to introduce the probability density function of 
the photon free path 

fr(t)=~[r(t)]expl- f/dt'#[r(t')]l; I ff dt~(t')= l 1, (10) 

where r(t) = ro + tO. The integral term in the exponent is called the optical depth of the interval 
[r0, r(t)]. In slab geometry, it is defined as 

e(Z, Zo)=f:idt' (t3. (11) 

Similarly, the probability density fe in slab geometry is 

fr(z;z,)=~expl f(z, z ' ) ]  

where cos- ~ ~ is the direction of photon travel. In a leaf canopy the scatterers generally exhibit 
a distribution in OL in which case the total interaction cross section depends on the direction of 
photon travel 0 [viz. Eq. (2)]. 4 Thus, 6 = 6(r, 0), f - - f ( t ,  0), and fe--fe( t ;  0). 

The optical depth of the interval [r', r] in a canopy of finite-dimensional leaves depends on (r", 0 ' )  
[cf. Eq. (6)] as follows: 

z(t, O)lr", ~ ')  = [ '  dt'tr[r(t'), _~lr", ~']. 
J0 
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The probability density f< in this case is given by [cf. Eq. (10)] 

f<(t; _OI r", -0') = air(l), ,01 r", ,0']exp[ - r(t, '01 r", '0')], 

where r(t) = r' + t,0. The point r' can be uniquely defined as the point of intersection of two vectors, 
[(r, - -0) and (r", '0')], that belongs to one plane. In a slab geometry the optical depth between z '  
and z is 

f: z(z,z',f~ z" f2"~ dt'a(t',z',glz",9'), (12) - I  , - I = J z "  

and the probability density f< is 

. . . .  = [ z(z'z"-0 z"''0') 1 (13) f<(z, z ,-0[z , _fl') a(z, z', ~)z",  _~') exp 

The dependence of z and f< on z'  in Eqs. (12) and (13) is explicit because it is not possible to 
uniquely determine it from [(z, --0) and (z", -0')] in slab geometry. Thus, it is not possible to pose 
the transport problem in a strict slab geometry framework if the scattering centers have a finite 
size (area). As will be shown later, the independence of the cross sections at (r, _fl) on the spatial 
coordinates of the current interaction center (r' in Fig. 1) in R 3 permits the derivation of an 
integro-differential balance equation. 

It is noteworthy that in media with finite-dimensional scattering centers, radiative energy transfer 
cannot be described as a Markov chain because the probability densityft depends on the interaction 
history of a photon [Eq. (13)]. So, an integral equation describing energy transfer between 
successive phase space states does not exist. Knyazikhin considered the case where a depends only 
on the previous direction of photon travel [a ---a(r, '01-0')] (Markovian transport) and derived an 
integral transport equation the corresponding integro-differential equation of which does not 
exist. J s 

6. THE D I F F E R E N T I A L  SCATTERING CROSS SECTION 

A captured photon may be scattered resulting in a change of both photon frequency v and 
direction; we shall ignore frequency shifting interactions here. As with photon capture, the 
scattering interaction can be described by the scattering cross section 6s,, defined 3 such that the 
probability that a photon will be scattered in traveling a distance ds is 0s. ds. Thus, the ratio 6~./0 
is the albedo of single scattering, o), denoting the probability of scattering given that a collision 
has occurred. However, since the scattering event serves to change the direction of photon travel, 
it is convenient to introduce the differential scattering cross section 0~. This cross section is defined 3 
such that the probability that a photon, in traveling a distance ds, will be scattered from -0' to a 
unit solid angle about -0 is a, ds. Hence, the dimensions of a, are m - lsr- ~ of -0. The cross section 
6~ is related to the scattering cross section 0~, as 

t f ~ t. t a~,(r, _~') = d_Q as(r, ~ ~ 9 ) .  (14) 
J, 

For an aggregation of finite-dimensional leaves the differential scattering cross section can be 
expressed as 

;0";, Os(r';-0'--*-0) = daL d-0Lm(aL,'0L;r',-0')yL(r',-0L;O'-*-0), (15) 
~+ 

where m is given by Eq. (1), 7L is the single-leaf scattering phase function (in sr-  1 of ~'~_). For a 
leaf about r' with outward normal -~L, this phase function is the fraction of the intercepted energy 
(from photons initially traveling in direction _~') that is scattered into a unit solid angle about _~.~ 
Equation (15) can be written in a more appealing form as 

f0 ~ 1 F(r'; -0' ~ f~; aL). 6s(r'; O' --+ O) = daLaLnL(r', aL)PL (r', aL) ~ 
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The function F/~ (sr- 1 of 9 )  is the area scattering phase function 4 for an aggregation of finite-size 
leaves 

1 F(r'; 9 '  ~ ~-; a L ) r ~  =2-~1 f2~+ dgLgL (r" 9L) I f)- ' " -~L I z(r" aL' 9L' ~- ')TL(r" ~L ; f~' ~ 9 ) ' -  - 

which, in general, is not rotationally invariant because of  the distribution function gL- In the case 
of constant leaf size pL(r', aL)= 6 ( a L -  a0), the differential scattering cross section is given by 

0~(r', 9 ' - -+9)  = UL(r') _1 r(r ' ;  9 ' - - ' 9 ;  a0). 

And, if the scattering centers are nondimensional (Z = 1) and gL(r', 9L) = 1 (spherical orientation), 
then F(r'; 9 ' - -+9)  = F(r ' ;9 '  • 9). 

The scattering cross section in view of Eqs. (14) and (15) can be written as 

~< (r', 9 ' )  = dgLcoL(r', 9 ' ;  OL) daLmL(aL, ~-L; r', ~_') (16) 

where co L is the leaf-albedo: 

COL(r', 9 ' ;  9L) = ~ dO TL(r', ~-L; O'--+9). 
34 r~ 

The two important mechanisms of scattering are specular reflection at the leaf surface, in which 
case, 6 

~OL(r', 9 ' ;  9L) ---- e)L[r', ( 9 ' '  OL)], 

and multiple reflections inside the leaf due to numerous refractive index discontinuities. For 
the latter, the bi-Lambertian model 5 is often used and CoL(r',9';OL)=~oL(r'). Within this 
approximation the scattering cross section can be written as 

6~ (r', 9 ' )  = COL (r')0 (r', 9 ' )  (17) 

and thus, the leaf-albedo co L is equivalent to the single scattering albedo ~o admitted by the transport 
equation. 

In the discussion leading to Eq. (6) it was emphasized that the spatial distribution of voids along 
the path of photon travel must be accounted in order to describe its attenuation probabilities. In 
view of the fact that a collision preceeds a scattering interaction, the modified differential scattering 
cross section as is (Fig. 1) 

as(r'; O' ~ 91r",  9") = ~(r ' ,  O'--+ 9)[1 - q(r', O' Ir", 9")] (18) 

where q is the probability of  encountering a void [Eq. (8)]. Thus, if I r ' - r " l  ~< I r ' " - r " l  and 
9 ' =  - 9 " ,  then q = 1 and as = 0; which must be since a(r', 9 ' l r " ,  _f2")= 0. The scattering cross 
section as, is [cf. Eqs. (14) and (16)] 

a~.(r',f~' r" 0 " ) =  f d O a ~ ( r ' ; f 2 ' ~  r'" f~")= ~ , ( r ' , ~ ' ) [ 1 -  q ( r ' ,~ ' l r " ,9" ) ] .  _ , _ - -  , . . . .  

,/4 n 

The two-dimensional probability density function fo that describes the distribution of scattering 
directions is defined by the relation 3 

/ t _ _ ) ,  . . v t  ~'r ~ , " .  , '  a~(r ;9 OIr ,9 ) =a~( r ,  _fl ~ 9 )  
fe (9 ;  r', 9 '  Ir", 9 '3 = 

a<(r', 9 ' l r ' ,  9") #~, (r', 9 ' )  

Thus, despite dependence of a~ and a~. on (r", ~_"), the probability density f_o is independent of the 
previous phase space state of the incident photon 

fo(O; r', O' I r", 0") =fo(O;  r', 0 ') ,  
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unlike the probability densityft of the distribution of the length of photon free path [Eq. (13)]. 
For the case of bi-Lambertian scattering by leaves, the densityfo can be written more meaningfully 
as [Eq. (17)] 

1 ~.(r'; 0 ' - *  _fl) 
f a ( ~ ;  r ' ,  _~') = - -  

OgL(r' ) #(r', 0 ' )  

since co = coL- 

7. THE SLAB GEOMETRY PROBLEM 

The main features of photon-leaf interaction in a leaf canopy idealized as a binary medium have 
been detailed in the previous sections (3-6). In this section the equation of photon travel from phase 
space points xi to xj is introduced and the "slab geometry" problem is discussed. Here, xi -" (Ci, _~) 
and xj ~ (Cj, Oj) are the points of the phase space X, C is the depth-coordinate, and 0 is the direction 
of photon travel. 

Consider a leaf canopy confined between the depth interval ~ = C0 = 0 (top of the canopy) and 
C = Cn = H; where H is the physical depth of the canopy. Assume that the leaf canopy is bounded 
by an absorbing soil surface at depth ~n; this assumption will be relaxed in Sec. 8. Let the leaf 
canopy be illuminated by a monodirection beam of intensity B0 along -fls (/A < 0) at C0. The 
uncollided intensity at x ~ (~, 0) is given by 

Io(x)= B0 exp[~ z(~, ~0, O' ~-l ,  D~)] 6 ( t ) -  t~) 6(_D,0 -- _~D, (19) 

where C 1 is an arbitrary point above the canopy. A detailed discussion of Bo in the presence diffuse 
sky radiation is given in See. 10. Let the kernel kl denote the interactions as photons travel from 
x~ to x~÷l, provided their previous points of interaction were xi_ ~ and x~_2 [Fig. 3(a)], namely 

~ e x p  T(~i+l,~i, Oi+l]~i_l,Oi) 

kl(Xi-"~Xi+llXi-I'~i-2)= X O's(Ci; -~i ~_i+llCi-i,Oi-l,~i-2), for(Ci+l-~i)[2i+l<O, 

[ 0 ,  for (~,+~-C,)/zi+~ >0.  (20) 

In Eq. (20), the optical depth z and the differential scattering cross section G are as defined by 
Eqs. (•2) and (18). The description of particle transport as a scattering event followed by the length 
of photon free path is usual in adjoint transport problems. However, this description is used here 
for notational ease. 

The intensity of first collision photons It can be evaluated by applying the integral operator with 
kernel k~ to I0 as follows: 

= fxdx, k,(x,-.x Ix0. ¢_ i)I0(xl), Ii (x) 

where xo ~ (~o, 00), and X = [0, H] ® 4;t is the phase-space. The intensity of the second collision 
photons at x can be evaluated as 

( dXl f d x z k l ( x 2  ~ x l x l ,  ¢0)kl (Xl ~x2 Ix0, C-I)Io(xl). lax) 
dx dx 

By analogy, the intensity of kth collision photons at x is evaluated as 

I,(x)=fxdXl...fxdx, K~(x,-.x:-."-,x,-,XlXo.¢_,)Io(X,). (21) 

where the product-kernel Kk is 

k 

K,(x~-~ x2- . .  . .-~ xk-~ xk+~lXo, ¢_~) = I ]  k~(x~-* x~+~lx~_~, ~,-2). (22) 
i=l 

QSRT 46/4--D 
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Finally, the total intensity at x is given by sum 

I(x) = ~., L(x). (23) 
i = 0  

Thus, it is seen that the transfer process defined by Eqs. (21) and (22) is not a Markov chain because 
of the dependence on the previous points of  interaction, and hence, it is not possible to derive an 
integral equation depicting this process. 

8. T H E  L E A F  C A N O P Y  P R O B L E M  W I T H  SOIL  R E F L E C T I O N  

In this section the leaf canopy problem in slab geometry with a reflecting soil surface at ¢ = H 
is considered. Let p~(fl_'~ _~) be the soil reflection function, i.e. 

1 
~' d~'ps (f~' --> f~)l ~ '11(n,  ~'), I(H, 9) Jz . -  - - - /x>O. (24) 

(a) 
.~r..,~ ~___ i + I i-,~ i J e ' ~  i'1 

~i-2 

(b) ~1-1 ,* 1~1-2 
• 

~l - ~  - "  
- 1  

~i ~-H 

(c) P~i ~i-1 
_., +>.....--",,, /-.... ,, 

P,i+l ~ "~i-2 
(d) ~i-1 1~i+1 

~i e~i.2 

(e) ~i+1 ~:-1 • ~i-2 
• , ,  , ,  / 

- - i  H "~ ~ - H ~-  

(i) 

Fig. 3. Possible case of the transfer kernel k in a medium with a reflecting boundary at depth ¢ = H. 
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As in Sec. 7 let the kernel kl (x, ~ xg+~l x~_ ~, ~i-2) denote the interactions as photons travel from 
x ,~  (~, 0~) to Xj+l ~ (~;+l, O;+j), given that the relevant previous states were x;_~ and ~-2 [Eq. 
(20); Fig. 3(a)]. Similarly, let the kernel k2(x, ~ x,-+~10;, x~_ ~, ~i-2) denote the interactions as 
photons travel from x~ to x,+t but with an intermediate interaction (reflection) at the soil surface 
[(H, O;)] [Fig. 3(d)], i.e. 

k2 (Xi --'* Xi + t I O;, Xi- ~, ~i- 2 ) 

/ I - /  

× a~(~,; O,~O;IX,-l ,  ~-2,), 

0, otherwise. 

~i,O;)I!P~(O;"*O,+,)exp[~z(H, ¢,, O;[ ¢,-,, O,)] 

for p'j < 0, #i+ 1 > 0 ,  

(25) 

For each of  the kernels kl and k2, three unique cases can be distinguished depending upon whether 
a reflection at the soil has occured or not; Figs. 3(a)-(c) illustrate the kernel k~ and Figs. 3(d)-(f) 
the kernel k2. These cases are designated as AI [Figs. 3(a) and (d)], A2 [Figs. 3(b) and (e)] and 
B [Figs. 3(c) and (f)]. Let l? be the sum of kernels k~ and k2; then, 

7i(x, --, x I 0 ; ,  x ,  _ ,  ,, _ , ,  ~ ;_,  ) = kl (x,  --, x Ix, _ ,  ,, _ , ,  ~; , ),~ (O; - O °) 

+ k2 (x, --* x [ O;, x,_,,,_ l, ~ ]- i ), (26) 

where 0 ° is an arbitrary direction. In Eq. (26), the variables x~_ L,i-t and ~ _  ~ take the following 
values: 

r(¢,,O,),  AI ,A2,  
Xi ' i  = [(H,  9;) ,  B, i = 1, 2 . . . . .  

(~i-I ,  AI, 
~ ; = l  H, A2, 

~i, B , i = 2 , 3  . . . . .  

, = ~'~', A1,A2 

~1 [~,, B, 

and ~ = Go = 0, Xo,o = (~', _D,). 
The uncollided radiation field at x ~ (~, O) is given by the sum 

where 

Io(X)  = Qm(x, ¢ ' )  + Q2(x ,  ~') ,  

Q2 (x, ~ ') = B0 exp z (H, 0, _D.ol ~ _,,  ~ )  ~ p~ (tD, --. O) 

x - e x p  ~(~,/-/,OlO,_f~) 6 ( ¢ ' - t t ) .  
/1 

Here, ~' is a discrete variable that is either 0 or H. 
The intensity of  the first collision photons can be evaluated as 

I; Ii(x) = d~'  d~ 1 dO, d O ~ [ Q ? ( X l , ~ ' ) + Q ~ ( x , , ~ ' ) ] t ( x , - ~ x l O ~ , x o , o , ~ ) ,  
n:l: n -  
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where ( T )  indicates that Q i- should be integrated over 2n -  and likewise Q~ over 2n +. The 
intensity of second collision photons is given by 

Is(x) = d~l d~l d ~  d~2 d~_2 d ~  
dO n~ ~- df~* n- 

x [Q i- (xl, ~ ') + Q~- (xt, ~')1 

x ~(x~--, x210~, x0,0, ~;)t?(xs--, x I _t3;, x1,1, ~ ) ,  

where t2* = 4r~ (cases A1 and A2) or 2n ÷ (case B). By analogy, the intensity o f k t h  collision photons 
is given by 

x . . .  d~_,[QC(x,,~')+Q~(x~,~')] 1-]li(x~x~+~l~_~,x~_,.,_,,~:_,). (27) 
* i = 1  

The total intensity is evaluated as in Eq. (23). 
The three cases A1, A2 and B can be recognized in the following manner. If the product in Eq. 

(27) is expanded, we realize a combination, say, k~ kl k2kt k2k2k~ ~. The last k~ (i = 1, 2) corresponds 
either to AI or A2 if the previous kernel is kt or to case B if the previous kernel is ks. The case 
A1 can be distinguished from A2 if the pre-previous kernel is kl. 

9. G E N E R A L I Z A T I O N :  T R A N S P O R T  BETWEEN ASSEMBLIES 

We consider the slab geometry problem with vacuum boundary conditions introduced in 
Sec. 7 in detail. Let ~/~ (x0, ~ _ t ) be the initial coordinates of the incident beam. Also, we combine 
three successive points of interaction and denote the new nine-dimensional (x ~ ~, #, 4~) combi- 
nation as 

Xi_l , i . i+ I = ( X i _ l , X i ,  X i + l )  , i = 2 , 3  . . . . .  

This procedure will facilitate subsequent analysis since the kernel k~ depends on two previous points 
of interaction [Eq. (20), Fig. 3(a)]. For notational ease, let k~ = k~(x~x~+~lx~_~,x~ 2), thus 
including -~-2 although k I is independent of  _II~_ 2. The functions J~, can now be introduced 
according to the recurrent relation (cf. Fig. 4) 

Ji~+t(xi_L~.~+~)=rdx~_skt(x~x~+~lx,_t,x~_2)J~(X,_zj_lj), i = 3 , 4  . . . . .  (28) 
j x  

and 

J3n(xt.2.3) = kl (xl ~ x21xo, ~ _ l )kl (x2 ---* x3 [ xl , xo )Jo (xl l q ), 

where Jo(xjlrl) is the uncoUided radiation field at xl [Eq. (19)]. The function 
J~, (xg 2.~-i.,) = J~ (x~[ x~_ 2, x~_ i) is the partial intensity of those photons at x~ that had experienced 
(i - 1) collisions and whose previous phase space states were x~_t and x~_2. The full intensity of 
(i - 1)-times collided photons (i = 3, 4 . . . .  ) at x can be evaluated via J~ as 

I~(x)= I dx,_t f xdx , -2J~(x lx , -2 ,x i - i ) .  
dx 

(29) 

Let Yi be the ith assembly of the triad (x3~_2, x3~_ I, x3J starting with i = 1. For  instance (Fig. 4), 
Yt ~ (x~, x2, x3) for the first assembly, Y2 "" (x4, xs, x6) for the second, and so on. Clearly, photon 
transport from one assembly to the next does not depend on the previous assembly. Thus, one can 
construct a Markov chain, but the elements of  this chain are now assemblies of three phase space 
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points and not the individual points themselves. So, an integral operator T that relates the partial 
intensity of the ith assembly to the partial intensity of ( i -  l)-assembly can be defined, namely, 

Jy dyl ~(y, -~y2)J~(y~) = J~(Y2), (rJ~)(y2) 
= (dy2z(y2-*y3)J~(y2)  = J~(Y3), (TyD(y3) 

d F 

and so on. Here, Y = X ® X ® X  and the new kernel z of  operator T is 

z (yi -* Yi + ~ ) = kl (x3, -~ Xai + j [x3,_ l, x3~- :)kl (x3~ + i -~ x3i + 2 [x3~, x3i- j ) 

X k I (x3i + 2 --~ )c3(i + l)I x3i + l, x3~). (30) 

The degree of  the operator T is defined as 

; r  d Y l " "  : r  dYmz(Y' "-*Y2)Z(Y2"-*Y3)'' 'z(Y"'-'Ym+J)~P(Yl)' (T"~p)(y,,,+ 1)  

where tp is some function. From the equality (T~p, ~p) = (cp, T*~k), where the scalar product (~p, ~b) 
is 

;,dy~P(Y)~P(Y)=;xfxfx~P(X,,X2,X3)C'(x,,x2,x3)dXldx~dx3 

ff';  f : ; ' ;  = d¢~ dp~ de,  . - .  d~3 d~3 d4,3¢,(~1, ~ ,  ¢~ . . . . .  ~3, ~/3, ~3) 

x $ ( ¢ , , , , ,  ¢, . . . . .  ¢~,,~, ¢3), 

"~~ 7 - -  " 

x 5 

.J 

Y~ 

Fig. 4. Markov transfer process between assemblies (Yl, Y2 and Y3) of  throe successive phase-space points 
[(xt, xz, x3), etc.; x ~ (~, fl)]. The functions J~ (i = 3, 4 . . . .  ) are the partial intensities of  triads [Eq. (28)], 

with ~- representing the initial coordinates of  the incident beam. 
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we obtain 

(T*~)(y~) = f dy2~(y ~ --+ y2)~//(y2). 
d Y 

Here, T* is the operator adjoint to T. It can be seen that the kernel T defined by Eq. (30) is, in 
general, not symmetric [z (y~--+ Y2) # z (Y: + Y~ )] because of the dependence on the previous phase 
space points, and thus, the theorem of optical reciprocity is inapplicable. 

Since photon transport between phase space triads is a Markov process, an integral equation 
for the partial intensities J can be written as 

J ,=  TJ, + J~ (31) 

where r/ are the initial coordinate of the incident photon. The solution of this equation can be 
expressed by the Neumann series 

J, J ' ,+TJ~+ 2 3 = T J , + ' . "  

which represents the partial intensity J,(xilxi_ 2, xi ~) at any point x i provided the previous states 
of the photons were xi_ ~ and xi_ 2. To obtain the full intensity I(&) it is sufficient to integrate the 
partial intensity over the states x~ ~ and xi_ 2 [see Eq. (29); a more precise definition can be found 
in Eqs. (40)-(42)]. 

It can be shown that the integral equation (31) collapses to the classical integral transport 
equation in the case of nondimensional scattering centers. From Sec. 4 it is known that if (e ~ 0 
then a -* ff [Eq. (7)], and thus, as ~ 6s. Let To denote the integral operator in the classical sense, 
i.e. 

( ToI) (x ) = .Ix dx'kl (x' X ) / ( X ' ) .  (32) 

and let the initial full intensity be 

Q ( x ) =  f dx '  f dx"JS~(xlx",x'). 
dX dx 

Integrating both sides of Eq. (31) over all previous and pre-previous photon states gives 

which is the standard integral equation of transfer. It should be noted that T03 is the third degree 
of the operator To defined by Eq. (32). 

It must be emphasized that the partial intensity at the point of interaction (immediately after 
scattering) depends only on the previous point of interaction and its dependence on the 
pre-previous point disappears and it can be defined as 

[" d{i 2 ~  d~-i- ,J ,({,_~i]{i- , ,~_i-, ,{,-2)-,({;"i--+~]{, ,,f~, , ,{, 2 ) = / p ( { , , , { ~ _ , , , , ) .  (33) 
d V ,.]4= 

Finally, the following two remarks are noteworthy. First, it is not possible to write an integral 
equation for the full intensity in the same way. Second, it is not difficult to generalize the above 
point of view--photon trajectories depending on n previous states of the photon; one then has 
assemblies of n points, and the transport operator T can be applied to the partial intensity of each 
assembly since photon transport from one assembly to another is Markovian. 

10. INTERACTION BETWEEN THE LEAF CANOPY 
AND ATMOSPHERE 

In Sec. 7 we considered the problem of photon transport in a horizontally homogeneous leaf 
canopy subject to incidence by a stream of "first flight" photons, i.e., photons that have not 
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experienced a collision either in the leaf canopy or in the atmosphere adjacent to it. In the general 
case, however, a leaf canopy will also be illuminated by photons that have experienced one or more 
collisions in the atmosphere (diffuse sky light). And, considering the nature of cross sections 
discussed earlier (Secs. 4 and 6), a leaf canopy subject to an incidence of a diffuse photon field will 
be re-entrant. This leads to a dynamical coupling of radiative processes between the leaf canopy 
and the adjacent atmosphere, and this topic is addressed here. 

We consider the following boundary-value problem for a plane parallel atmosphere: 

- .  ~ ~(¢, _n) + ~(¢)~(¢, _n) = f,~ d n'~,(¢; _n' • _n)~(¢, n'), 

q~(- T, 9)=lsr(fl_ -O_,), /~>0, 

~0(0, 9) =fr  (9),/a > 0, (34) 

where fr(_I)) is the intensity reflected from a leaf canopy, 

/T(_~) = I dx' [ dx"S(O,~_lx',x"),. >0. (35) 
dx  dX 

Here, J" is the partial intensity obtained as a solution of Eq. (31), and the assembly (x", x', x~), 
[x o -,~ (0, Q), # > 0], is the triad introduced in Sec. 9. In Eq. (34), Is is the intensity of uncollided 
solar radiation incident in ~-s, q~ is collided intensity in the atmosphere, and T (in m) is the 
geometrical height of the atmosphere. The cross sections # and #s are the standard functions 
encountered in atmospheric radiative transfer. 

As a first approximation, assume that the intensity reflected from the leaf canopy~ (~_) is known 
or that some reasonable initial guess about its magnitude and behavior can be made. Then, by 
solving the boundary-value problem of Eq. (34), the solution ~ at any point ~_ 2 e A (A being the 
atmosphere) in any direction Q_ i e 4~ is known. The partial intensity at the point ~_ ~ ~ A in the 
direction -~0 [the intitial point of t/,-~ (x0, ~_ ~), Sec. 9] can be evaluated as (Fig. 5) 

I~(~_,, _t).01 ~_2, _~_,)= kA[(~_2, 9_,)--* (~_,, _~)]~0(~_2, _fl_,), /~0 < 0, 

-T 
Atmosphere 

. 1 . ~ ~ _ .  1 " ~-2 

/ \  

- - '  - -  0 

° - - -  I 

Leaf canopy • 
I 

P,-a [ 

Soil H 

Fig. 5. Interaction between a leaf canopy and the adjacent atmosphere. 
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where the kernel k A characterizes the probability density of  photon travel from the point x '  to x 
in the atmosphere 

= I ~ l '  e x p [ 1  (~ ,~ , ) ]~s (~ ;2 , . , n ) ,  i f ( ~ - ~ ' ) / ~ ' < 0 ;  
kA(X' "~ X) 

[0__ if (~ - ¢ ')#'  > 0. 

The optical depth f(~, ~') was defined earlier [Eq. (ll)]. 
By extension, photons that have experienced collisions in the leaf canopy can also reach the point 
] (Fig. 5). If I p ( ¢ ' 2 , 2 - J [ ~ - 3 , 2 - 2 )  is the partial intensity at the point of interaction ~ '2  

[immediately after scattering into direction 'n-~, (# , >  0) in the leaf canopy; see Eq. (33)], then 

Ip(~ 1, -n0t ~' 2. _n_,)= n_ _,. da_:f u _  - r  d~-slP(~'-2 ~ ' 1 ~ '  - - 3'~- -- 2) 

' Z [ ; ;  ]1 x - - e x p  dttr(t, f2_tl~ 3 , -n_2)+f (~_~ ,0)  , /~o<0, 
] '1-1 '-2 

where (Fig. 5) 

= C~_ 3, if ¢_ 3 e leaf canopy; 
~-3 ~ 0, if ~_3~A. 

The incident partial intensity B 0 [cf. Equation (19)] can be evaluated as 

B0(0,_D.0,~ , )=B0(~0 ,21¢  , ,~ )=kA[(~_ , ,_~) - - ' (~o , -n ) ]  

x _, d~_flpa(~_,, 201~_2,-n ) 
- T  

where /~0 < 0, and/x < 0. The corresponding incident full intensity is simply 

f~(2)= dO0 d~_,B0(2.2o.~ , ) . . < 0 .  (36) 
7t- --T 

In radiative transfer it is customary to characterize the scattering behavior of a medium by its 
reflection operator ~ that defines the fraction of incident radiation that is reflected [cf. Eq. (24)]: 

1 f2 d2p¢(2, _)1/~ I f i ( -  ), /a > 0 ,  ( 3 7 )  _ , , f ~  , f~ ,  fr (2) = (~f t ) (9)  = x ~_ 

where Pc('n', 2)  is the canopy bidirectional reflection function. To ensure uniqueness of ~ ,  it is 
defined such that it depends only on the characteristics of the medium in question. For instance, 
in the case of a leaf canopy with nondimensional leaves, 

-- ~(canopy parameters). (38) 

However, in the presence of finite-dimensional scattering centers; it is not sufficient to specify the 
full intensity incident on the canopy; one requires partial intensities as well, and these depend on 
the interaction cross sections @ and #s of the atmosphere. To prove this, we consider two equal 
incident intensities f ~ ( 2 ) = ~ ( 2 )  that may result from two differnt partial intensities 
I~(0, ~_, 2 ' )  4: I~(0, 2,  2 ' )  and two different differential scattering cross sections 
¢7~(2'' ~) ¢- ~ ( 2 ' "  2), then [cf. Eq. (36)], 

f [ ( 2 )  = f d2 '0~(2 '  • 2)I~(0, 2 ,  2') ,  
. /4 

= F d2'e~(,n'- ,n)/~(0, 2, ,n'). f~('n) 
d 4  ff 
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Since I~ # Ip:, we obviously get two different partial intensities J in the leaf canopy [Eq. (31)], and, 
thus, different intensitiesfr reflected from the leaf canopy [Eq. (35)]. This means that for the same 
incident intensity f~, the reflected intensity from the leaf canopy fr can be different, even if all the 
parameters characterizing the leaf canopy are held constant! It follows from this that the canopy 
reflection operator ~ depends not only on the canopy parameters but also on the atmospheric 
parameters as well, i.e. [cf. Eq. (38)] 

~ -  ~¢(canopy and atmospheric parameters). (39) 

In this context, the leaf canopy can be considered as a live system, as opposed to the classical black 
box representation. 

11. BALANCE E Q U A T I O N  IN R 3 

In Secs. 7-10, various transport problems in slab geometry were discussed. The cross sections 
a(z, z', ~_)lz", ~') and a,(z'; ~_'--.I)_lz", ~_", z") lead naturally to the concept of a partial intensity 
J~ (z, _~ I z", _fl", z', ~'), with r/denoting the incident states. In particular, an integral equality relating 
partial intensities J, between successive collision orders [Eq. (28)] was found to exist. And also that 
photon transport between phase space triads can be expressed by an integral equation (31) 
involving partial intensities of assemblies of triads. Unlike the slab geometry problem, in R", 
n = 2, 3 the interaction cross sections do not depend on the current site of  interaction, i.e., 
tr = a ( r ,  _~]r",9') and a,=a~(r';~_'~fl_lr",~_"); (Fig. 1). This is so since the point r' can be 
uniquely defined as the point of  intersection of two vectors [ ( r , -  _fl) and (r", 0')] that belong to 
one plane. In this section an integro-differential balance equation for partial intensity in R 3 will 
be formulated. 

To derive a formal statement of  balance for the partial intensity Ip(r, _fllr', ~ ')  in R 3 w e  begin 
with the relation between the partial intensity Ip and the full intensity L Let the function 
Ip(r + ~ ,  _~[r', fl'), ~ > 0, be the partial intensity of  those photons at (r + ~_~, _fl) whose previous 
phase space states were (r', _~') and (r, _~). The full intensity I and the partial intensity Ip are 
connected by the following relationship 

where 

I(r, ~ )  = lira Ip(r + ~_~, ~-I r, 0 ) ,  (40) 
~ 0 +  

I is(if) 
I0(r + ~O,D_ Ir, O) = d~ '  ds '  Ip(r + ~_, _~lr' - s '~ ' ,  _~'). (41) 

J 4 n  - dO  

Here, s(O') is the distance between r and the boundary of V along the direction - O ' .  In the case 
~_ = ~ ' ,  we need an additional definition 

( "  
I ( r - ,  0 ' )  = ] d r ' Ip ( r - ,  O'l r', 0 ') ,  (42) 

3v~ 03 

where r -  = r' + I r - r'l _fl'. 
A balance equation for partial intensity Ip can be written, provided ~ # 0 '  and r ¢ r' (Fig. 6) 

a-~Ip(r+~O, OIr' ,O')+a(r+~O, OIr',~_')lp(r+~O, OIr',O')=S(r+,~lr' , f l ')6(~), (43) 

where 

= f  f " " _~"). (44) S(r +,OIr',O') dr" dO"a,(r-,~_'--,~_ lr",fl_")Ip(r-,O'lr , 
d V J4n 

Here, r + --- lim e ~ 0+ r + ~0. The Dirac delta-function on the right-hand part of  Eq. (43) means that 
the integral term in Eq. (44) has an impulse nature, i.e., valid at the point of  interaction r only. 
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On the assumption that the canopy is non re-entrant, the following boundary condition to 
Eq. (43) can be written: 

Ip(rs, DIr0, D0) = B0(rs, D)6 (rs - r0)6(D - D0), n.  Q < 0, 

where B0 is the incident full intensity, r~ is a point on the boundary of the leaf canopy of volume 
V, n is an outward normal vector at the point rs and (r0, D0) is the initial phase space point. 

To reduce Eqs. (43)-(44) to standard expressions, the independence of a and ~rs on the previous 
phase state (r', D') should be supposed, i.e., a = 5 and crs = as. Then [cf. Eq. (41)], 

S ( r+ ,  Dlr',  D ' )=  6s(r; Q'-*D)j4~t dD"fv dr" /p(r - ,  ~_' r", D") 

f fs o, = 0~(r; 9'--* _~) df~"_ ds'Ip ( r -  , D ' l r ' -  s'Q"_, f~"~_, 
d,~ do 

-- ~s(r; O ' - , D ) I p ( r - ,  D ' l r ' ,  _l/). 

We now integrate Eq. (43) with respect to r' and ~ '  to obtain [cf. (42)] 

f4 d_fl'f d r 'S ( r+ ,Ol r ' , f l_ ' )=  f4 dfl_'a~(r;D'---,~)f d r ' I p ( r - ,Q ' l r ' ,D ' )  
n . I V  rr V 

=f4 ~ dD'5~(r;~-'--*D)I(r-'~-')=f4, dD'Ss (r; _~'--*O)I(r, D'). 

By analogy, 

f4 dDf dr'5(r+~D'DIr"~')Ip(r+~D'DIr"D')= v 

= t7 (r H- ~ _~, _~) f4n d D ' f v  dr Ip (r + ~ ~, D I r', D') = #(r + ~ D, _fl)Ip(r + ~ _~, D I r, ~). 

Leaf canopy space ~ 

t ~ ~ ~ ~ '  ,, 

r. 

Fig. 6. Schematic illustration of photon transport in R 3 [cf. Eq. (40)]. 
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We next consider the last expression at the point ¢ = 0 + .  Using Eq. (40) gives 

I ( r  + ¢ 0 ,  0)1  + n),rO',_ n)_ = _ _ f l '~f l)  I(r, 9'), 
c~¢ 1~=o J2 

which is a standard integro-differential equation of transfer in R 3. 
It can be seen that the equality 

Ip(r+, OIr', 0 3  = S ( r + ,  _f2lr', 0 3  (45) 

is valid as an analogue of  Eq. (33) in R 3. Then, solving formally Eq. (43) with Eq. (45), we obtain 

lp(r+~_,f2_l ,O)=1p(r+,Olr',O')exp - dta(r+tO, fl_lr',fl_') H(~), (46) 

where H(~) is a Heaviside function defined in Eq. (9). Finally, substituting Eq. (46) in Eq. (44), 
we have 

S ( r + , ~ J r ' , ~ ' ) =  f dr" f d _ ~ " a s ( r - ; ~ ' ~ l r " ,  _~") 
d v J4~ 

ft-r 'l  
x + ,  f~'[ r", f~")exp /p(r' _ _ I - f o  ds'O'(r'+s'~-"fl-'lr"'O")l" 

12. S Y N O P S I S  

In this paper an attempt at developing a formalism for photon transport in media with 
finite-dimensional scattering centers has been made. Although the details are those relating to a 
leaf canopy, it appears that the principles developed here are also applicable in studies on light 
scattering from rough surfaces that show opposition brightening." 

A vegetation canopy can be idealized as aggregations or clumps of  leaves distributed randomly 
in free space (vacuum). The intervening free spaces between the clumps constitute the voids. The 
voids are convolutely shaped and multiply connected three-dimensional structures broken along 
those regions where leaves are present. Consequently, a leaf canopy can be abstracted as a binary 
medium of randomly distributed leaf clumps and voids) 2 

The transport of  energy by radiation can be visualized as consisting of two events; the mean 
length of photon free path (along this length a photon streams without a change in its direction 
of flight) and the scattering event (where the direction of photon travel is altered). These two events 
are characterized by the total interaction cross section a and the differential scattering cross section 
a~. Starting with leaf size, orientation and spatial distribution functions, the interaction cross 
sections are derived for an aggregation of  finite dimensional leaves [Eqs. (2) and (15)]. 

In order to describe the rules of photon movement in media with finite-size leaves and voids, 
one has to know not only the interaction cross sections for the leaf aggregates (Sec. 3) but also 
the distribution of voids along the path of photon travel) 6 So, we proposed the following picture 
of photon interactions in a leaf canopy. Suppose that the event A - {two successive interactions 
between photons and leaves occurred in the neighborhoods of r" and r', where r' = r" + s'~_', s '  > 0} 
is realized (Fig. l). Then, the total interaction cross section at r (r = r' +s~;s > 0) for those 
photons with previous phase space state (r", ~')  can be represented as the product of the interaction 
cross section for the leaf aggregate #(r, O) and the probability [l - q(r, _~lr", _fl')] of encountering 
a leaf aggregate at (r, _~) traveling from (r", ~')  [Eq. (6)]. Since a collision proceeds a scattering 
event, the scattering cross section must be similarly modified [Eq. (I 8)]. The realization of the event 
A means that there are no interaction centers between r" and r'. In which case, a photon from r' 
can unimpededly reach the previous site of interaction r" along - 0 %  This will provide us the proper 
mechanism for describing the hot spot effect or opposition brightening. 

The two cross sections can be succiently written as a transfer kernel kt that denotes the 
interactions as photons travel from phase space point xi to x~+ ~, provided their previous points 
of  interaction were xi_ ~ and xi_ 2 [Eq. (20); Fig. 3(a)]. Thus, photon transport between successive 
points of  interaction cannot be described as a Markov chain. Conceptually, this means that the 
transfer kernel cannot be visualized as consisting of two jointed straight lines, as in classical 
transport theory, but as two jointed broken lines (Fig. 3). 
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Yet another interesting feature is that the slab geometry problem does not exist if one considers 
scattering centers of  finite area. It is, however, possible to introduce the parameter characteristic 
length of the scatterer and assume horizontal homogeneity in a statistical sense, and consider 
dependence on the depth variable ~ only. Nevertheless, in this "slab geometry", one must retain 
explicitly the depth coordinate of the most recent point of interaction in the argument lists [as in 
Eq. (13)]. In R", n = 2, 3, however, the coordinates of this point can be uniquely defined as the 
intersection of two vectors. The standard problem of illumination by a monodirectional source in 
slab geometry (Sec. 7) with a reflecting boundary (Sec. 8) can be formulated as a successive 
collisions approach [Eqs. (21) and (27), respectively]. In the latter case, it is necessary to define the 
transfer kernel ~ [Eq. (26)] as the sum of two kernels: k~--between two points of  interaction in 
the canopy [Eq. (20); Figs. 3(a)-(c)], and k2--between the same two points but through an 
intermediary reflection event at the soil surface [Eq. (25); Figs. 3(d)-(f)]. 

Although photon travel between successive points of interaction is not a Markov process, 
transport between successive assemblies of three points is Markovian because such transport is 
independent of the previous triad (Fig. 4). This recognition requires us to introduce the concept 
of a partial or a conditional intensity J [Eq. (28)] or Ip [Eq. (33)] that describes the energy fluence 
at any phase space point comprising of photons that have had a common history; to obtain the 
full intensity I it is only needed to summarize over all photon histories [Eq. (29)]. One can now 
relate partial intensities of successive triads by an integral equation (31), the kernel of which is the 
superposition of transfer from one point of interaction to the next. 

A topic of some interest is that dealing with the interactions between a leaf canopy and the 
adjacent atmosphere. To solve the leaf canopy problem it is necessary to specify as initial data the 
partial intensity incident from the atmosphere. One important result is that the reflection operator 

of the canopy, as defined by Eq. (37), depends not only on the leaf canopy characteristics [cf. 
Eq. (38)], but also on the atmospheric parameters as well [Eq. (39)]. 

Finally, to gain physical insight, we derived in R 3 the integro-differential balance equation 
[Eqs. (43)-(44)] supposing that Eq. (40)-(42) are valid. However, we cannot derive the one- 
dimensional analogue of this balance equation because it is not possible to pose the strict slab 
geometry problem for a canopy with finite area scatterers. With respect to full intensity there exist 
neither an integro-differential nor even an integral transport equation. An ancilliary point is that, 
in the event the size of the scatterers tends to zero, the proposed formalism collapses to the standard 
transport theoryJ 
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