

Arkansas 4 Day Max 8-hr Ozone Design Value

Florida 4 Day Max 8-hr Ozone Design Value

Kansas 4 Day Max 8-hr Ozone Design Value

Minnesota 4 Day Max 8-hr Ozone Design Value

Missouri 4 Day Max 8-hr Ozone Design Value

Iowa

Mississippi 4 Day Max 8-hr Ozone Design Value

County Modeled 4th Daily Maximum 8-hr Avg. in ppb

County Modeled 4th Daily Maximum 8-hr Avg. in ppb

Ohio 4 Day Max 8-hr Ozone Design Value

South Dakota 4 Day Max 8-hr Ozone Design Value

Texas 4 Day Max 8-hr Ozone Design Value

The maps represent concentrations predicted by the UAM-V photochemical model. EPA ran the model for a total of 30 days during several episodes in June, July and August of 1995. These model runs used a 2001 base emissions inventory in the CAMx model as developed for the Clears Skies assessment. Eight hour averages were calculated for each day and the maximum 8-hour average for the day was recorded. Each maximum daily 8-hour average was ranked from highest to lowest and the 4th maximum of the 30 days was selected. The model predicts concentrations at receptors (grid points) throughout the OTAG domain. The highest 8-hr daily maximum, grid point concentration within or touching the county boundry is selected to represent the county value. The county value is printed on the map and determines the color of the county.

An air quality 8-hour ozone design value (for the standard) is calculated by taking the average of the 4th maximums of the daily 8-hour averages for three consecutive years. This means that the entire ozone season is monitored for three years. The modeling was only for 30 days in one year. The modeled values have not been calibrated to any measured air quality data.

The data are presented as an indicator of the extent of an 8-hour air quality problem. They should not be used to judge actual compliance with the air quality standard. A value above 84 ppb does not mean that the 8-hour ozone standard is being violated. However, the map can be used to show the differences between the predicted concentrations in counties. It shows a profile of the concentrations across the area or state. If certain counties within a state have higher concentrations than others, it means that the combination of the modeled, meteorology and emission sources indicate more pollution in that area. The model predicts higher concentrations when there are significant emissions affecting the area depending on meteorological conditions. These maps in combination with the maps of sources and monitors are useful in helping to understand what is occurring in an area.

Results from IAQR 2001 Base Year CAMx Modeling

- Model configuration:
 - CAMx, v3.10
 - Thirty modeling days in the summer of 1995
 - Majority of grid is 12km, outer portions are 36km
 - 2001 proxy emissions inventory, IAQR base case
- Plots show highest 8-hour ozone concentration over the episodes.
- Purpose of plots is to show the spatial gradients in the simulated maximum 8-hour ozone levels.
- Conclusion: While ozone is highest in/near the most highly populated regions, there are broad areas of high ozone in more rural areas. The modeling supports using the idea that data from any single monitor should be generally representative of that area as a whole/

Ozone Design Values (Kriging Methodology)

Monitored ozone concentrations from eastern U.S. sites were used to construct a spatial model of ozone design values for 2001-2003. Ordinary kriging was used in estimating the spatial surface of ozone with a software package (FIELDS) written in SPLUS and developed by scientists at NCAR to perform generalized kriging and spatial analysis of large data sets. The model parameters (sill, nugget and range) were estimated with the Krig function using the Generalized Cross Validation (GCV) error as the criterion for parameter estimation. Ozone design values were estimated at each lattice point for a fine spatial grid that covered eastern U.S for longitudes between -99 and -67 and latitudes between 26 and 47 degrees. The uncertainty associated with the predicted values varies spatially depending on monitoring density but ranges from approximately 3 to 5 percent of the measured ozone design values.

Agenda Item 10

North Carolina 8-hour Ozone Modeling Project Status Report

Preliminary Assessment of Effects of NOx Reductions in the Utility and Other Sectors

August 2000

Department of Environment and Natural Resources Division of Air Quality Planning Section

Executive Summary

Introduction:

The North Carolina Division of Air Quality (NCDAQ) has worked on a modeling analysis during the last two years. This report presents preliminary results from this ongoing analysis, particularly related to various levels of controls on utility facilities located in the State. The results in this report are presented for 3 meteorological episodes, 1 in 1995 and 2 in 1996. The fourth episode in 1997 has not been evaluated at the writing of this modeling report.

The results will also be presented relative to the two ozone standards, the 1-hour and 8-hour standards, and the State's ability to achieve those standards. The results presented here are a small portion of the analysis that has been completed. There are currently two web sites, both are being updated daily, where the results can be viewed in more detail. One web site is located at MCNC, the contractor responsible for both the meteorological and air quality modeling. This web site is more technical in nature and contains the project history of all the modeling runs. The web address is:

http://envpro.ncsc.org/NCDAQ/PGM/results

The second web site has been developed by Dr. Harvey Jeffries from the University of North Carolina, School of Public Health. This web site is oriented toward the general public with detailed information on the modeling process and explanations of the various modeling products. The web address is:

http://airchem.sph.unc.edu/

The following historical episodes were selected to model, because they represent typical meteorological conditions in North Carolina when high ozone is observed throughout the state:

- July 10-15, 1995
- June 20-24, 1996
- June 25-30, 1996
- July 10-15, 1997

To date, the episodes that have been evaluated are the 1995 and 1996 episodes. The 1996 episode results have been merged and are discussed as such. The 1997 episode will be evaluated in the Fall of 2000.

There are three types of modeling runs that have been completed. These are:

- 1. Base year simulation a simulation of an historical episode to see if the model reproduces the ozone observed. A performance evaluation is conducted on the base year simulation to determine if the model is appropriate to be used as a predictive tool to evaluate ozone benefits from various control strategies.
- 2. Base controls simulation a simulation of a future year (2007) with the benefits of the control strategies that are already adopted as final rules at either the State or Federal level.

3. Additional controls simulation – a simulation of control strategies beyond the base controls simulation.

The meteorological episodes have been evaluated to see how well the model predicts the ozone for each historical event in each of the base year simulations.

The model was able to reproduce the regional extent of ozone in the three episodes. Certain monitors have excellent model agreement with observed data, particularly in the Charlotte area. It should be noted that the NCDAQ operates a radar profiler at the Charlotte-Douglas International Airport. This equipment generates upper air data. This data is used in the evaluation of the meteorological model, and it is believed that the data results in improved upper air meteorological performance in this area. This can be seen in the modeling results when the Charlotte area generally has better agreement with the observations. The NCDAQ has decided to purchase a second radar profiler to be installed in the Triangle region. It is believed that this data will be helpful in conducting future modeling studies.

Currently, the NCDAQ staff believes the modeling results represent the "State of the Art" in air quality modeling. The model results have been studied to understand any weaknesses in the model predictions, and these areas where the model has only fair performance have been explained. These areas will warrant special consideration when evaluating control strategy effectiveness.

Strategy Evaluation:

After determining that the base year simulation model performance was acceptable, and thereby deciding that the model was appropriate to use as a predictive tool, the next phase of modeling was the future year projections. The first step was to decide on the future year to analyze. North Carolina determined that the future year should be 2007 since this was the attainment year set by EPA in guidance prior to the lawsuit on the 8-hour ozone standard. Adjustments to the future year may need to be made upon resolution of the lawsuit when new guidance is issued. The next step is to project the emission inventories by estimating both the growth and the expected reductions from various control strategies. The meteorological files were kept constant in the future year. The test is: how does the ozone respond to the growth and control of emissions if the same meteorology occurs in the future year.

The controls estimated in the 2007 base controls simulation are those that are in the form of final rules and are as follows:

- Title IV acid rain controls on the power plants
- Tier II automobile standards
- Low sulfur gasoline
- MACT standards
- Nonroad spark engine standards

The first evaluation is to compare how the 2007 base controls simulation ozone levels are impacted by the growth and controls estimated in the future year emissions. These controls resulted in significant improvements in both the 1-hour and 8-hour standards, and the benefits are described in more detail in the report. However, neither standard was achieved through the implementation of the base controls.

Since both ozone standards were not achieved through implementation of the 2007 base controls, additional controls need to be analyzed. The controls in the future year base have positive impacts on both the 1-hour and 8-hour standard, but neither standard is achieved through only the future base controls. Several strategy and sensitivity runs have been completed for each episode and evaluated to see the benefits for attaining the 1-hour and 8-hour ozone standards in North Carolina. The strategy runs that have been completed are listed in Table 1, along with the benefits of each strategy expressed as percent reduction in grid hours greater than 124 ppb, and percent reduction in grid-hours greater than 84 ppb for the 1-hour and 8-hour standards, respectively.

у	Abbreviation	1-hour Standard		8-hour Standard	
		1995	1996	1995	1996
2007 Base Line	2007 Base Control				
Memorandum of Agreement – 0.30#/MMBTU at utilities	MOA	78		20	
0.25#/MMBTU @ all utilities	.25 Utility Run	78	25	26	30
0.15 #/MMBTU @ Big 5 (Belews Creek, Marshall, Allen, Roxboro, Mayo	Big 5	89	18	31	33
NOx SIP Call in NC only	NOx SIP Call in NC	89		47	
NOx SIP Call in 22 States	22 State NOx SIP Call	89	62	68	51
50% reduction in mobile, area and nonroad NOx emissions	50% Low Level NOx	100	93	46	65
50% reduction in mobile, area and nonroad NOx emissions plus 0.15 #/MMBTU @ Big 5 (Belews Creek, Marshall, Allen, Roxboro, Mayo	Big 5/50% Low Level NOx	100	93	75	81

 Table 1: List of Control Strategies Analyzed for the 1995 and 1996 Episodes and Percent Reduction in Cell Hours Exceeding the Ozone Standards

The values presented in Table 1 represent the percent reduction in predicted cell hours that exceed the ozone standards. For the 1-hour standard during the 1995 episode, the .25 utility run and the MOA run both are less effective than the other utility runs, as they each achieved a 78 percent reduction in grid-hours > 124 ppb. The Big 5, the NOx SIP Call in NC, and the 22 State NOx SIP Call runs all achieve an 89 percent reduction in grid-hours >124 ppb. The 50 percent low level NOx run and the Big 5/50 percent low level NOx combination run both achieve a 100 percent reduction in grid-hours > 124 ppb. Using the old attainment test for the 1-hour standard, we would say that the 1-hour standard has been achieved when percent reduction in grid-hours >124 ppb reaches 100 percent.

For the 1-hour standard during the 1996 episode, the Big 5 run achieved an 18 percent reduction in grid-hours > 124 ppb, while the 22 State NOx SIP Call run achieved a 62 percent reduction in grid-hours> 124 ppb. The MOA and the SIP Call in NC were not completed for this episode prior to this report. The 50 percent low level NOx run and the Big 5/50 percent low level NOx combination run both achieve a 93 percent reduction in grid-hours > 124 ppb. For this episode, there are residual grid-hours > 124 ppb. However, the areas where these cells are located represented an area of over-

prediction in the 1996 base year run, and this over-prediction needs further investigation as to the causes.

For the 8-hour standard in the 1995 episode, the Big 5/50 percent low level NOx combination run is most effective in reducing the persistence of grid-hours > 84 ppb, with a reduction of 75 percent. The 22 State NOx SIP call resulted in a reduction of 68 percent of grid-hours > 84 ppb. The 50 percent low level NOx run and the SIP Call in NC run saw similar reductions, with a 46 and 47 percent reduction in grid-hours > 84 ppb, respectively. The MOA run, the .25 utility run and the Big 5 run were the least effective with reductions in the 20 to 31 percent range.

Like the 1995 episode, for the 8-hour standard in the 1996 episode, the Big 5/50 percent low level NOx combination run is most effective in reducing the persistence of grid-hours > 84 ppb, with a reduction of 81 percent. The 50 percent low level NOx run saw a 65 percent reduction in grid-hours > 84 ppb. The 22 State NOx SIP call resulted in a reduction of 51 percent of grid-hours > 84 ppb. The Big 5 run and the .25 utility run had similar results for this episode, with a reduction of 33 and 30 percent in grid-hours > 84 ppb, respectively.

Attaining the 8-hour standard will be much more difficult than achieving the 1-hour standard, as evidenced from the reduction in predicted cell hours that exceed the 8-hour standard presented above. The evaluation of specific control measures will continue over the next few months in an effort to identify the most cost effective control strategies for the state.

Bar graphs showing the reduction in predicted cell hours that exceed the ozone standards follow the conclusions.

Conclusions:

The preliminary results of a select group of control strategies show that although the controls move us in the right direction, no single control will solve the 8-hour ozone problem. The 1-hour ozone problem can be resolved in the 1995 meteorological episode for all but one grid cell. An area to the north of the Triad in the 1996 meteorological episode continues to show 1-hour exceedances under the various additional control simulations. However, the 1-hour exceedances in the large urban areas of the Triangle, the Triad and Charlotte are eliminated through controls in the 1996 episode.

Based on the modeling results, it is believed that the 22 State NOx SIP Call strategy is a step in the right direction for resolving the 8-hour standard. Modeling the utility controls in these three episodes indicates that controls on these sources are a necessary and crucial component of an overall ozone strategy. The 22 State NOx SIP Call strategy results in a reduction of the 8-hour episodic maximum concentration of about 5 ppb in the urban counties, such as Mecklenburg, Forsyth, Guilford and Wake, with areas of maximum benefit of up to 20 and 13 ppb, for the 1995 and 1996 episodes, respectively. Also, attainment of the 8-hour standard cannot be achieved without controls on the utility sector. Further consideration of other industrial control and low level control strategies for area, nonroad and mobile sources are needed. Additional modeling is needed of specific control measures for these sources. The across the board reductions show indications of the expected ozone reductions due to the implementation of low level controls. It is now believed that it will take a combination of aggressive control measures at both utility and industrial sources, as well as mobile, area and nonroad sources to effectively address the 8-hour standard in North Carolina. Modeling of specific control strategies will continue over the next few months to gain further insights to effectiveness of control measures.

ACKNOWLEDGEMENTS

The North Carolina 8-hour ozone modeling project has advanced significantly due to the dedication of the Attainment Planning Branch's staff, the staff at MCNC and the involvement of UNC School of Public Health.

In particular, the efforts of the following people are acknowledged with great appreciation:

DAQ Attainment Planning Staff

Laura Boothe George Bridgers Vicki Chandler Bill Cure Lisa Grosshandler Behshad Norowzi Jill Vitas Bob Wooten Ming Xie Vickie Woods Sheila Holman

MCNC Staff

Zac Adelman Sarav Arunachalam Jo Ellen Brandmeyer Marc Houyoux Don Olerud Jeff Vukovich Aijun Xiu

UNC School of Public Health Dr. Harvey Jeffries

Without the technical expertise and guidance of Dr. Jeffries and the hard work and dedication of the individuals named above, this project would not be to the point it is today.

Evaluation of Modeling Results for Assessing Benefits of Utility Controls

Introduction

The North Carolina Division of Air Quality (NCDAQ) has worked on a modeling analysis for the 1-hour and 8-hour ozone standards for the last three years. This report presents preliminary results from this ongoing analysis, particularly related to various levels of controls on utility facilities located in the State. The results are presented for 3 meteorological episodes, 1 in 1995 and 2 in 1996. The fourth episode in 1997 has not been evaluated at the writing of this modeling report. The results will also be presented relative to the two ozone standards, the older (and now re-instated) 1-hour and the newer 8-hour standards, and the State's ability to achieve those standards. The results presented here are a small portion of the analysis that has been completed. There are currently two web sites, both undergoing changes daily, where the results can be viewed in more detail. One web site is located at MCNC, the contractor responsible for both the meteorological and air quality modeling. This web site is more technical in nature and contains the project history of all the modeling runs. The web address is:

http://envpro.ncsc.org/NCDAQ/PGM/results

The second web site has been developed by Dr. Harvey Jeffries from the University of North Carolina, School of Public Health. This web site is oriented toward the general public with detailed information on the modeling process and explanations of the various modeling products. The web address is:

http://airchem.sph.unc.edu/

Background

The modeling analysis is a complex technical evaluation that begins by selection of the modeling system and selection of the meteorological episodes. NCDAQ decided to use the following modeling system:

- Meteorological Model: MM-5 This model generates hourly meteorological inputs for the emissions model and the air quality model, such as wind speed, wind direction, and surface temperature.
- Emissions Model: Sparse Matrix Operator Kernel Emissions (SMOKE) This model takes daily county level emissions and temporally allocates across the day, spatially locates the emissions within the county, and transfers the total emissions into the chemical species needed by the air quality model.
- Air Quality Model: MAQSIP (Multi-Scale Air Quality Simulation Platform) This model takes the inputs from the emissions model and meteorological model and predicts ozone hour by hour across the modeling domain, both horizontally and vertically.

There are three types of modeling runs that have been completed. These are:

- 4. Base year simulation a simulation of an historical episode to see if the model reproduces the ozone observed. A performance evaluation is conducted on the base year simulation to determine if the model is appropriate to be used as a predictive tool to evaluate ozone benefits from various control strategies.
- 5. Base controls simulation a simulation of a future year (2007) with the benefits of the control strategies that are already adopted as final rules at either the State or Federal level.
- 6. Additional controls simulation a simulation of control strategies beyond the base controls simulation.

Modeling Episodes

The following historical episodes were selected to model, because they represent typical meteorological conditions in North Carolina when high ozone is observed throughout the state:

July 10-15, 1995 – This episode is characterized by an upper level ridge that developed to the west of NC and moved slowly to the east throughout the episode. This episode is a traditional ozone episode with high 1-hour and 8-hour averages throughout most areas of the eastern United States, and was studied extensively during the Ozone Transport Assessment Group (OTAG) effort. Ozone levels were high in the Charlotte area and the Triad area, but the ozone levels were low in Raleigh and the eastern part of the state due to the presence of a surface trough just east of Charlotte. The trough produced southeasterly flow east of its location, which brought cleaner air to eastern NC, and caused a large ozone gradient between Charlotte and Raleigh.

June 20-30, 1996 - The first 1996 episode [21 (Fri) - 24 (Mon) June 1996], is primarily a NC episode. Concentrations in most other areas of the South and East were lower than those in NC. This episode is dominated by the presence of a front to the north and high pressure to the southwest of the state. The movement of the front and the monitored ozone readings indicate possible recirculation during the episode. Light southwesterly flow was present on 22 June and resulted in a 1-hour/8-hour peak of 133/110 ppb and 113/99 ppb northeast of Charlotte and Durham, respectively. As the front moved into northern portions of NC on the 23rd, winds became more northerly and ozone concentrations in the Triad and Raleigh/Durham areas fell. Ozone was pushed back into Charlotte and resulted in exceedances of the 1-hour and 8-hour standards at all three Mecklenburg County ozone monitors. On the 24th, the front retreated north as a warm front and southwesterly winds returned to the entire state. Ozone levels increased throughout northern portions of NC and 8-hour averaged concentrations between 90 and 100 ppb were recorded in all three major urban areas. One exceedance of the 1-hour standard (134 ppb) was measured at the Rockwell site, northeast of Charlotte.

A stronger front moved toward NC on the 25th touching off storms and dropping ozone readings. The front passed through the state by the 26th and concentrations remained low. During the second 1996 episode (June 27-29), an upper level ridge began to build to the west of NC and surface high pressure over Canada moved southward throughout the episode and settled into western NC by the 29th. Northerly winds were predominant at the surface and upper levels. High temperatures remained 90 and below in NC and much of the eastern half of the US during this period. Dewpoint temperatures were relatively low and winds were light enough to produce 8-hour exceedances in

many areas of NC on the 28th and 29th. As high pressure remained over western NC, ozone concentrations continued to rise throughout the episode. Exceedances of the 1-hour standard were measured at two monitors in Charlotte on 29 June.

The two episodes in 1996 were modeled and evaluated at the same time, so the statistics and episode composite plots cover all days of the two episodes (June 20-30), and will often be referred to simply as the 1996 episode.

July 10-15, 1997 - The addition of the July 1997 ozone episode to the modeling effort is necessary to fulfill the episode selection criteria defined in EPA's Draft Modeling Guidance for Ozone Attainment Demonstrations. The previous 1995 and 1996 ozone episodes captured ozone events in Charlotte, the Triad, and parts of the Triangle, but they did not adequately model ozone events in areas such as Greenville, Fayetteville, and Hickory. The previous two episodes also did not demonstrate typical ozone behaviors in the center city areas of the Triangle.

This episode centers around an elevated ozone event that encompassed the entire Mid-Atlantic region. North Carolina, South Carolina and Virginia experienced numerous eight-hour ozone exceedances during this period. The ozone concentrations across North Carolina, especially central and eastern sections, were very close to the then and current design values. In fact, the July 1997 episode is contained within the design value calculation period. The meteorological conditions during the July 1997 episode were very similar to several elevated ozone events during the last two ozone extreme summers, 1998 and 1999.

To date, the episodes that have been evaluated are the 1995 and 1996 episodes. The 1997 episode will be evaluated in the Fall of 2000.

Results

Model Performance Evaluation

There are many aspects of model performance. This section will focus primarily on the methods and techniques recommended by EPA for evaluating the performance of the air quality model. It should be noted that the other parts of the modeling process, the emissions and meteorology, also undergo an evaluation. The meteorological modeling evaluation is documented at the web sites, as is a good portion of the emission inventory evaluation. It is with this knowledge and the desire to keep the report concise, that the air quality model became the primary focus of this report. However, the evaluation of these other two pieces is readily available at the web sites. There is a more detailed explanation of the theory behind model performance evaluation at the public web site, particularly on the evaluation of the model formulation. Again, this is an important element of the overall evaluation that is not covered in this report, but may be of interest to the reader.

The first step in the modeling process is to verify the model's performance in terms of its ability to predict the ozone in the right locations and at the right levels. To do this, the model predictions for the base year simulation are compared to the ambient data observed in the historical episode. This verification is a combination of statistical and graphical evaluations. If the model appears to be producing ozone in the right locations for the right reasons, then the model can be used as a predictive tool to evaluate various control strategies and their effects on ozone. The purpose of the model performance evaluation is to assess how accurately the model predicts ozone levels observed

in the historical episode. The key statistical measures that were used to evaluate model performance are as follows:

- 1. Comparison of modeled mean of ozone to the observed mean of ozone. This metric is an evaluation of how, on average across the episode, the model compares to the observed values.
- 2. Bias in the model which is calculated by taking the difference between the model mean and the observed mean.
- 3. Normalized bias is calculated by taking the bias for each observation/prediction pair, and then dividing by the number of pairs that are used in the calculations. EPA recommends that normalized bias fall between $\pm 5 15$ percent.
- 4. Gross error of all pairs above 60 ppb of ozone. US EPA guidance suggests that gross error can be interpreted as precision of the model. This metric is typically used to compare various modeling applications. EPA recommends that the gross error of all pairs >60 ppb be less than 30-35 percent.

Episode/Domain	Modeled	Observed	Bias (ppb)	Nbias (%)	Gross
	Mean (ppb)	Mean (ppb)			Error (%)
1995/12 km	72.20	77.66	-5.46	6.1	18.9
1995/4 km	78.67	79.58	-0.90	0.0	16.4
1996/12 km	77.08	75.56	1.52	3.0	18.8
1996/4 km	76.33	76.44	-0.11	1.1	14.9

Table 1. Model Statistics

The largest bias was 5.46 ppb in the 12 km domain, with the bias typically around 1 ppb. The normalized bias was well within the recommended \pm 5-15 percent, and the gross error was significantly below the 30-35 percent range. These statistical metrics were used as a first screening of the model performance.

In addition to the statistical measures, various visual displays of the modeled data were also employed to assess model performance. These included:

- 1. Time series plots, which are plots of ozone values on the y-axis against date and time on the x-axis, are used to show how the model's predicted ozone compares to the observed ozone at the monitor within the same grid cell. This is considered the most stringent of the model performance evaluation procedures since it requires the evaluation of the model's ability to predict the observed ozone in the location where it was observed over all hours of the episode. Figures 1, 2 and 3 show where the monitors are located for the three major urban areas.
- 2. Color contour plots, or tile plots, which show the predicted concentration of ozone in each of the model cells as a color on a map of North Carolina, are used to show the predicted maximum 1-hour ozone concentration on one plot, and a second plot shows the measured maximum 1-hour ozone concentration as a color square in the monitor's location on a map of North Carolina. Similar pairs of plots are used for the 8-hour averaged ozone concentrations.

Figure 1. Monitoring sites in the Charlotte area.

Figure 2. Monitoring sites in the Greensboro/Winston-Salem area.

Figure 3. Monitoring sites in the Raleigh/Durham area.

1995 Time Series Plots

Following are two time series plots, one for the Plaza monitor located in Mecklenburg County, where it is believed that we have fairly good model performance, and one for the Hattie Avenue monitor where the model misses the 1-hour exceedance on the 14th of July. This type of test is the more stringent of all the model performance evaluations. It asks the question, does the model predict the ozone values in the 4km grid cell where the monitor is located. The time series presents the observed values (green x's) and the predicted values (red diamonds) over the period from July 12-15. The red line at .125 ppm represents the 1-hour ozone standard. Any value at this line or above is considered an exceedance of the 1-hour standard.

Figure 4. Time Series Plot for the Plaza monitor for the July 1995 episode.

The model predicts the peak well on the 12th and 15th, over-predicts the peak on the 13th, and underpredicts slightly on the 14th. The 14th and 15th are the key model days, so other than the underprediction on the 14th, the model does a credible job of predicting ozone at this site.

Figure 5. Time Series Plot for the Hattie Avenue monitor for the July 1995 episode.

The Hattie Avenue site has good model performance on the first two days of the episode, but not on the latter two days, which are the key days for the 1995 event. We suspect that the under-prediction on both the 14th and 15th is due to the surface trough being located too far east in the model, which changed the mixing height, the clouds and the radiation fields at Hattie Avenue and to the east resulting in the former being predicted too low and the counties to the east and north of Guilford being predicted too high. In fact the model's maximum predictions were in the latter areas. At this time, there is no way to improve model performance in this portion of the model. Because the model is performing reasonably well in other areas, we believe it is appropriate to do future year strategy work, but the model performance in the Triad will be considered in the evaluation of the control strategies.

All of the time series plots for the monitors located in the 4 km domain are included in Appendix A, so the model performance for the entire domain can be evaluated. It should be noted that the model's performance during the night hours should not be as closely scrutinized since there is an incommensurability between the volume of air that the monitor is measuring at night and the volume of air the model is predicting for at night. The layer of the atmosphere closest to the ground at night is extremely thin and stable, which means that the monitor is measuring a small volume, maybe only 10 meters deep at night. However, the model is predicting for a constant 38-meter deep first layer. This means that the model is predicting ozone concentrations for a larger volume than what was actually measured, and the two values cannot be directly compared. Studies have been done to add an extremely fine layer in the model. This resulted in better model performance at night, i.e., the predicted ozone agreed better with the observed ozone during the nighttime hours. However, the model performance did not improve during the daylight hours. The addition of this fine layer in the model resulted in significantly longer runtimes for the model, so it was determined that the increased computer resources do not justify the need to resolve this thin layer during the night since it has no impact on the daytime model performance.

1996 Time Series

Below are three time series for the combined 1996 episodes for three monitors, the Plaza monitor in Charlotte, the McLeansville monitor in Guilford County and the Franklinton monitor in Franklin County, just north of the Triangle. The observed data are plotted as green x's, and the modeled predictions are plotted as red diamonds. The solid red line represents the 1-hour standard (.125 ppm). All of the time series for monitors located in the 4km domain in the 1996 episode are included in Appendix A.

The model captures most of the peaks for the Plaza site in Mecklenburg County (Figure 6). There is a slight under-prediction on the 23rd and 29th, as well as some over-prediction on the 25th and 26th. The over-prediction is to be expected since this was a period of the frontal passage, and the timing must be perfectly achieved in the meteorological modeling in order for the air quality model to correctly simulate the ozone levels during the frontal passage. In general, the model performance at this monitor looks very good.

The model performance at the McLeansville site in Guilford County (Figure 7) is generally good, but there is an over-prediction on the 23rd and 24th, as well as the 25th, but the 25th was the day of the frontal passage. There is an under-prediction in latter part of the episode, especially on the 29th. This is an example of reasonable model performance, but there are days when the model performance would need to be considered when evaluating the effectiveness of control strategies.

Overall the model performance was deemed to be suitable for moving forward to the control strategy evaluation stage.

Figure 6. Time Series Plot for the Plaza monitor for the two June 1996 episodes.

Figure 7. Time Series Plot for the McLeansville monitor for the two June 1996 episodes.

The Franklinton monitor located north of the Triangle sees fairly good model performance except for an under-prediction on the 23rd and the 28th (Figure 8). Otherwise, the model predicts the 1-hour peaks quite well.

Figure 8: Time Series Plot for the Franklinton monitor for the two 1996 episodes.

1-hour Performance Evaluation

1995 Tile Plots

Figures 9 and 10 show the maximum 1-hour ozone levels modeled and observed, respectively, in the 4 km domain for July 14, 1995. The comparison between the modeled and observed patterns is made to determine how well the model is predicting the right amount of ozone in the right locations.

Orange cells in the observed plot are monitors that exceeded the one hour standard on this day. The ozone exceedances are captured in the Charlotte area, but the exceedance in the Triad is missed (the model predicts lower than observed). This underprediction is probably due to a slight shift in the modeled location of the surface trough. However, it is believed that the meteorological modeling is the best that it can be. Therefore, no known way to improve the modeling results in the Triad exists at this time. The model also under-predicts the exceedance in the Spartanburg area of South Carolina. Again, this is probably due to a less detailed inventory for South Carolina than what was produced for North Carolina. Overall, the pattern of predicted 1-hour ozone values are fairly well captured by the model.

Figure 11 is the 1-hour maximum predicted ozone for the 24th, followed by the 1-hour maximum observed ozone (Figure 12). In Figure 12, the orange block in Rowan County represents the only 1-hour exceedance in the state on this day. The model predicts one color range below (yellow), so this is an under-prediction at this site. However, the model does predict in the yellow range over the areas in the Triad and Triangle where the ozone values in the yellow range were observed. There is an over-prediction north of the Triad. Overall the model appears to capture the areas where high ozone levels occurred on this day.

June 29th was also selected to be analyzed as to the model's overall ability to produce the ozone levels across the domain. Figures 13 and Figure 14 are the 1-hour maximum ozone concentrations predicted by the model, then a plot of the maximum 1-hour ozone concentrations observed at the

Figure 9. Plot showing the maximum 1-hour ozone values modeled for July 14, 1995 in the 4km domain.

Figure 10 Maximum observed 1-hour ozone values for July 14, 1995.

Daily 1-h Max O3 : Layer 1

Figure 11. Tile Plot showing the maximum 1-hour ozone values modeled for June 24, 1996 in the 4km domain.

Figure 12. Maximum observed 1-hour ozone values for June 24, 1996

Figure 13. Tile Plot showing the maximum 1-hour ozone values modeled for June 29, 1996 in the 4km domain.

Figure 14. Maximum observed 1-hour ozone values for June 29, 1996.

monitors on June 29th. The model predicts the areas of low ozone in the mountains and in the eastern part of the state on this day. The model predicts the area of elevated ozone from Charlotte through the Triad, but misses the maximum value in Charlotte and over predicts slightly in the Triangle. Overall, the model does predict the observed levels of ozone throughout the domain.

8-hour Performance Evaluation

1995 Tile Plots

Figure 15 is a tile plot showing the maximum 8-hour ozone values modeled for July 14, 1995. This day was selected for analysis as it is the day when the most 1-hour and 8-hour ozone exceedances were observed in the 1995 episode. This image is compared to the plot of the maximum observed ozone values for the same day (Figure 16).

The model predicts the area of elevated ozone from Charlotte to the Triad along the I-85 corridor. The model does not predict the area of high ozone in the Greenville-Spartanburg area of South Carolina. This is probably due to less detailed emission inventories. For the North Carolina portion of the domain, the model appears to do reasonably well.

1996 Tile Plots

June 24th was selected as one of the key episode days to present in this report. There were 8-hour exceedances in several locations in the 4 km domain, including the Charlotte area, the Triad and the Triangle. Figure 17 is the 8-hour maximum predicted ozone for the 24th, followed by Figure 18, the 8-hour maximum observed ozone.

The model over predicts the ozone levels in the Triad area and north of the Triad. However, the model does adequately predict the orange levels observed in Charlotte, the Triangle and the Fayetteville areas. There are also over predictions in Tennessee and the Wilmington area. The issue of most concern is the over prediction in and around the Triad. This over-prediction will be taken into consideration during the evaluation of control strategies. Across the domain, the model does a reasonable job of producing the observed ozone levels.

For June 29th, Figure 19 and Figure 20 are the 8-hour maximum ozone concentrations predicted by the model and the maximum 8-hour ozone concentrations observed at the monitors on this day, respectively.

The model predicts the orange levels in Tennessee, South Carolina, Charlotte, the Triangle, and the Triad. It predicts the red levels in Charlotte, but misses the red area north of the Triad. The model also misses the orange in Fayetteville. However, overall the model does a good job of capturing the ozone levels throughout the domain.

Figure 15. Tile Plot showing the maximum 8-hour ozone values modeled for July 14, 1995 in the 4km domain.

Figure 16. Maximum observed 8-hour ozone values for July 14, 1995.

Daily 8-h Max O3 : Layer 1

Figure 17. Tile Plot showing the maximum 8-hour ozone values modeled for June 24, 1996 in the 4km domain.

Daily 8-h Max O3 : Layer 1 **OBSERVED DATA** MAQSIP Modeling in North Carolina for June 19-30, 1996 0.145 69 0.125 0.105 0.085 0.065 0.045 0.000 1 PPB 120 1 PAVE June 24,1996 0:00:00 ьу мслс Min=0.014 at (8,26), Max=0.107 at (56,34)

Figure 18. Maximum observed 8-hour ozone values for June 24, 1996.

Daily 8-h Max O3 : Layer 1

Figure 19. Tile Plot showing the maximum 8-hour ozone values modeled for June 29, 1996 in the 4km domain.

Daily 8-h Max O3 : Layer 1 **OBSERVED DATA** MAQSIP Modeling in North Carolina for June 19-30, 1996 0.145 69 0.125 0.105 0.085 0.065 0.045 0.000 1 PPB 120 1 PAVE June 29,1996 0:00:00 ьу мслс Min=0.036 at (90,22), Max=0.125 at (49,24)

Figure 20. Maximum observed 8-hour ozone values for June 29, 1996.
Conclusions on Model Performance

The model was able to produce the regional extent of ozone in the three episodes. Certain monitors have excellent model agreement with observed data, particularly in the Charlotte area. As stated earlier, it should be noted that the NCDAQ operates a radar profiler at the Charlotte-Douglas International Airport. This equipment generates upper air data. This data is used in the evaluation of the meteorological model, and it is believed that the data results in improved upper air meteorological performance in this area. This can be seen in the modeling results when the Charlotte area generally has better agreement with the observations. The NCDAQ has decided to purchase a second radar profiler to be installed in the Triangle region. It is believed that this data will be helpful in conducting future modeling studies.

Currently, the technical staff believe the modeling results are the best they can be given the data and tools that are available. The model results have been studied to understand any weaknesses in the model predictions, and these areas where the model has only fair performance have been explained. These areas will warrant special consideration when evaluating control strategy effectiveness.

Future Year Modeling

After determining that the base case model performance was acceptable, and thereby deciding that the model was appropriate to use as a predictive tool, the next phase of modeling was the future year projections. The first step was to decide on the future year to analyze. North Carolina determined that the future year should be 2007 since this was the attainment year set by EPA in guidance prior to the lawsuit. Adjustments to the future year may need to be made upon resolution of the lawsuit when new guidance is issued. The next step was to project the emission inventories by estimating both the growth and the expected reductions from various control strategies. The meteorological files were kept constant in the future year. The test was, how does the ozone respond to the growth and control of emissions if the same meteorology occurs in the future year.

The controls estimated in the 2007 base were those that were already final rules and were as follows:

- Title IV acid rain controls on the power plants
- Tier II automobile standards
- Low sulfur gasoline
- · MACT standards
- Nonroad spark engine standards

The first evaluation is to compare how the future year base ozone levels are impacted by the growth and controls estimated in the future year emissions. Figure 21 shows the episode maximum 8-hour concentration for each 4km grid cell over the course of the July 1995 base year episode. Figure 22 shows a similar plot for the 2007 future year base after the emissions have been grown from the current base year (1995) to the future and controls applied.

There are a variety of metrics to evaluate effectiveness of future year strategies. One metric is to evaluate the geographic benefits on key episode days. One type of plot to accomplish this analysis is a difference plot between the historic base year run and the future year run. Figure 23 presents the difference in the 8 hour maximum value between the 1995 base year run (Figure 21) and the 2007 future base year run (Figure 22) for July 14, 1995, one of the key episode days in this episode. The majority of the 4 km domain in North Carolina observes between a 1 and 5 ppb decrease in the maximum 8-hour values (yellow areas), while sections of the state see between a 5 and 10 ppb decrease (green areas – the mountains, north of Charlotte, north of Greensboro) due to the implementation of the control measures shown above.

Despite the benefits shown in Figure 23, there are still large areas along the I-85 corridor that are still in the orange and red categories, both of which are above the 8-hour ozone standard. This means that additional control strategies will be needed to lower the 8-hour maximum ozone values in the future.

Additionally, the Figure 23 shows some projected increases near large power plants in the domain. Figure 24 show the location of all of the major utility facilities within North Carolina. Two important points need to be made regarding these predicted increases. First, the DAQ staff believes these large increases (up to a 17 ppb increase north of Greensboro) are an artifact of how the power plant plumes are physically treated in this modeling analysis. It appears that the

plume is being mixed down to ground level too quickly, only a couple of grid cells away from the power plant. Two different plume-in-grid treatments have been explored, but neither has been successfully implemented at this stage of the modeling. The effort to analyze a plume-ingrid treatment will continue. A second point is that typically when the increases are predicted by the model, it is in an area where the ozone was low in the base case. That is the NOx emissions in the base year were reacting with the ozone to create an area of low ozone, typically referred to as an ozone hole. When reductions in the NOx emissions are observed in the future year, the ozone levels in the areas of the ozone hole increase because fewer NOx emissions are available to scavenge the ozone.

Figures 25, 26 and 27 show similar plots for the 1996 episodes. For example, Figures 25 and 26 are plots showing the episode maximum 8-hour ozone concentrations for the June 1996 base year and future base year episode runs, respectively. Figure 27 presents the difference plot between the 1996 base year run and the 2007 future year base run with the 1996 meteorological inputs. It should be noted that the future year base for the 1995 episode did not include the vehicle inspection and maintenance (I/M) program while the future year base for the 1996 episode did include this measure. Therefore, comparisons between the two episodes are slightly different since the future year bases are different. The evaluation of the utility controls in the 1995 episode include the benefits of the I/M program, while the evaluation of the utility controls represent only reductions from the utilities. While Figure 27 shows broad geographic benefits from the Federal and State controls expected to be in place in 2007, Figure 26 shows a large area of North Carolina, particularly in the Piedmont region, that the predicted 8-hour maximum ozone concentration for this episode is still in the orange or red category (i.e., still in violation of the 8-hour standard). The result is that additional controls will also be needed for this meteorological episode to mitigate the 8-hour ozone levels in the future.

Diff in Daily 8hr Max O3

Figure 23. Difference plot showing the difference in maximum 8 hour values between the historical 1995 base year run and the 2007 future year base line run

20

North Carolina NOx Utility Sources - 1995 Emissions

Figure 24. Map of major utility facilities located within North Carolina.

Figure 25. Episodic maximum 8-hour ozone concentration for the 1996 base year episode.

Figure 26. Episodic maximum 8-hour ozone concentration for the 2007 future year baseline run for the 1996 episode.

Figure 27. Difference plot showing the difference in maximum 8-hour values between the historical 1996 base year run and the 2007 future year base run.

A second metric is to evaluate the number of 1-hour exceedances predicted in the future year. The following figures present the number of modeled 1-hour exceedances over the entire 1995 episode for the 1995 base year run and the 2007 future year baseline run, respectively. While many of the exceedances predicted in the 1995 base year run have been eliminated by the future control strategies, a few grid cells near Charlotte do still have at least 1 day of 1-hour exceedances.

The 1996 episode is presented in Figures 30 and 31. In Figure 30, the 1-hour exceedances in the base year run are shown. There were exceedances in Charlotte, the Triad and the Triangle, with the Triangle having the most at 2 days. Figure 31 shows the expected number of 1-hour exceedance days across the entire 1996 episode after the 2007 future year baseline controls are considered. The result is there are a few grid cells north of the Triad that are still showing 1 day of 1-hour exceedances. This area represented an over-prediction in the 1996 base year run. Therefore, additional analysis is required to determine if the predicted 1-hour exceedances in the 2007 future year baseline run are valid exceedances, or artifacts of the over-prediction.

Figure 29. Predicted number of modeled 1-hour exceedances in the 2007 future year baseline for the 1995 episode.

Figure 30. Counts of grid cells having 1-hour exceedances in the 1996 base year run.

Figure 31. Counts of days when grid cells have exceedances of the 1-hour standard for the entire 1996 episode during the 2007 future year baseline run.

Additional Strategies

Since both ozone standards were not achieved through implementation of the future year baseline controls, additional controls need to be analyzed. The controls in the future year base line have positive impacts on both the 1-hour and 8-hour standard, but neither standard is achieved through only the base line controls. Several strategy and sensitivity runs have been completed for each episode and evaluated to see the benefits for attaining the 1-hour and 8-hour ozone standards in North Carolina. The following runs have been completed:

Strategy	1995 Episode	1996 Episode
	Complete?	Complete?
2007 Base Line	Yes	Yes
0.15 #/MMBTU @ Big 5 (Belews Creek,	Yes	Yes
Marshall, Allen, Roxboro, Mayo		
0.25#/MMBTU @ all utilities	Yes	Yes
50% reduction in mobile, area and nonroad	Yes	Yes
NOx emissions		
50% reduction in mobile, area and nonroad	Yes	Yes
NOx emissions plus 0.15 #/MMBTU @ Big		
5 (Belews Creek, Marshall, Allen, Roxboro,		
Mayo		
Memorandum of Agreement –	Yes	No
0.30#/MMBTU at utilities		
NOx SIP Call in NC only	Yes	No
NOx SIP Call in 22 States	Yes	Yes

Table 2: List of Control Strategies Analyzed for the 1995 and 1996 Episodes

Description of Control Strategies:

What are the Big 5 controls? The Big 5 controls represent a proposed set of rules that would require a 0.15 lbs of NOx per million BTU limits on the five largest utility sources in NC located near air quality problem areas. The Big 5 facilities are as follows:

Duke Energy:

Belews Creek located in Stokes County Marshall located in Catawba County Allen located in Gaston County

CP&L:

Roxboro located in Person County Mayo located in Person County

One alternative to the Big 5 control strategy was to require a 0.25 lbs of NOx per million BTU limit average for each of the two utility systems. The utility companies could decide how to meet the limit. However, the run was done with the assumption that all utilities would meet the 0.25 limit.

What is the Memorandum of Agreement (MOA)? The MOA was signed between the utility companies and DENR to reflect an agreement for early NOx reductions voluntarily recommended by the utility companies. The agreement is to achieve a 0.30 lbs of NOx per million BTU limit systemwide by 2005. This MOA can be viewed on the Division of Air Quality website: www.daq.state.nc.us

What is the NOx SIP call in NC? This run represents the control level needed in NC to achieve the EPA's NOx SIP call requirements, 0.15 lbs of NOx per million BTU on all large utility and industrial boilers, plus a 90 percent reduction in NOx emissions from internal combustion engines and a 60 percent reduction on other industrial sources of NOx. Emissions in the other states were kept at the 2007 baseline levels.

What is the NOx SIP call in 22 states? This control strategy run reflects the EPA NOx SIP call requirements applied in all 22 states named in the call, i.e., 0.15 lbs of NOx per million BTU on all large utility and industrial boilers, plus a 90 percent reduction in NOx emissions from internal combustion engines and a 60 percent reduction on other industrial sources of NOx.

What are across the board low level reductions? These runs are sensitivity runs where the low level emissions from mobile, nonroad mobile and area sources are reduced by a certain percentage to evaluate how the model will respond to control strategies on these sectors. Two levels have been completed for the 1995 episode, 20% and 50%. In addition, one combination of low level and elevated controls was also completed, 50% low level and 0.15 at the Big 5.

Effectiveness of Various Control Strategies

Again, there are numerous metrics for evaluating the effectiveness of various control measures. Only a few are presented within the report. However, many other ways of looking at the controls are contained on the two web sites mentioned earlier in the report. In this section a comparison of the four strategies will be discussed; 0.15 at the Big 5, 20% low level reductions, 50% low level reductions, and 50% low level reductions with 0.15 at the Big 5.

To see how the emissions are effected by the different control strategies, Figure 32 displays the Statewide NOx emissions for the various strategies in a bar chart. Going from left to right; the "Present" emissions are the 1995 base year emissions; the "Future" are the projected 2007 base line emissions; "I&M" reflect the reductions in mobile source emissions due to the NOx Inspection & Maintenance program; "MOA" reflect the emissions reductions from the Memorandum of Agreement described in the previous section; "0.25 All U" reflect the emission reductions from controlling all of the North Carolina Utilities to 0.25 lbs/MBtu; "0.15 Big5" reflect the emission reductions from the SIP Call controls only in North Carolina; "0.2 LLNOX" reduced the "Future" area, nonroad and mobile emissions by 20%; "0.5 LLNOX" reduce the "Future" area, nonroad and mobile emissions reflect both the reductions from 0.15 at the Big 5 and the 50% reduction in area, nonroad and "I&M" mobile. Most of these same control strategies have been completed for the 1996 episode also.

Only a few of the strategies will be discussed below, 0.15 at the Big 5 for considering impacts on the 1-hour ozone standard and 0.15 at the Big 5, 50% low level reductions and 20% low level reductions for considering impacts on the 8-hour ozone standard.

Figure 32. Statewide NOx emissions for the various control strategies.

1-hour Ozone Impacts

The 1-hour standard will be addressed first, since achieving this standard is much easier to accomplish due to the small geographic nature of the problem, and the marginal nature of the exceedances. Figure 33 presents the difference of 1-hour exceedance day counts between the 2007 future year baseline run and the 0.15 at the Big 5 strategy run for the 1995 meteorological episode. Comparing this plot to Figure 29 above, the 1-hour exceedance days have been reduced to none through the implementation of the 0.15 at the Big 5 strategy for all but one grid cell.

Similarly, Figure 34 shows the benefits from the Big 5 run for the 1996 meteorological episode. Comparing Figure 34 to Figure 31 shows that although the control strategy does reduce the number of grid cells that have 1-hour exceedances, it does not eliminate all of the 1-hour exceedances. These exceedances are occurring outside of the urban areas, however, and the over-prediction in this area in the base case needs further investigation.

Figure 33. Plot showing the difference in 1-hour exceedance days across the entire 1995 episode between the 2007 future year baseline run and the 0.15 at the Big 5 strategy.

Figure 34. Plot showing the difference in the number of days the grid cells exceeded the 1-hour standard between the 2007 future year baseline run and the Big 5 run.

8-Hour Ozone Impacts

Because of the wide geographic spread of the 8-hour problem, episode composite bar charts were prepared to show how the various control strategies impact the number of grid cells in the orange and red categories, where orange and red are defined by EPA's Air Quality Index (AQI) system. The AQI is used for the ozone forecasting in North Carolina, so just like a code orange day, the orange cells represent exceedances of the 8-hour standard, and code red represents a higher level of ozone exceedance that is defined as unhealthy air quality.

Figure 35 shows the number of grid cells in the green, yellow, orange and red categories. The numbers across the top of the bars are the number of grid cells in the red range. For the 1995 meteorological episode, the 2007 future year baseline controls reduce the number of orange cells from 2121 to 1666, and the number of red grid cells from 238 to 94. Each of the subsequent bars presents the resulting number of grid cells in each color code category after the strategy has been applied. The most effective strategies are the 22 State NOx SIP Call and the combination of low level controls (50% reduction in NOx emissions from mobile, nonroad and area sources) and elevated controls (0.15 at the Big 5). These two strategies result in the lowest number of red and orange grid cells. While reducing all grid cells to the yellow or green category is not the actual attainment test, this metric shows how many grid cells are still over the 8-hour standard. The actual attainment test will be applied in the next few weeks.

Figure 36 shows a similar bar chart for the 1996 meteorological episode. The future year baseline controls achieve a 50% reduction in both orange and red cells. The most effective control strategy for this episode is the combination low level and elevated control strategy, which eliminates the code red cells, and reduces the orange grid cells to 955. The low level NOx controls are the second most effective strategy, but again the runs with the 50 percent across the board reductions were done as sensitivity runs. It is impossible in the real world to achieve a 50 percent reduction in these source sectors. It would mean taking every other car off the road, every other semi-truck off the road, every other airplane out of the air, every other lawn mower out of service, etc. The elevated control strategies are also effective, with the Big 5 strategy reducing the number of red cells by about 66 % and the orange cells by about a third. Of the elevated source strategies, the 22 State NOx SIP call is most effective.

Figure 35. Episode composite bar chart of benefits of control strategies for the 1995 episode based on the AQI.

June 21-30, 1996, 8-h Ozone, 40,263 4-km-cell-days

Figure 36. Bar chart comparing the benefits of the various control strategies for the 1996 episode.

Low Level vs. Elevated Controls?

One question that is always asked in strategy modeling is, which is more effective, reductions at low level sources, or reductions at elevated stacks? To examine this question, the 50% low level reduction sensitivity run will be compared to the Big 5 run for these episodes. Figure 37 shows the difference plot between the 2007 future year baseline run and the 50% low level sensitivity run for the 1995 meteorological episode. Broad areas of the state have a 1-5 ppb benefit for the 8-hour maximum concentration, and an area near Charlotte, Hickory and the Triad sees a 5-10 ppb benefit. There is a disbenefit near the Charlotte airport. This is due to the intense NOx emissions generated by various sources at the airport. When the NOx emissions are reduced by 50%, ozone in the area increases. Figure 38 shows the difference plot between the future year baseline run and the Big 5 run. The area of 1-5 ppb benefit is similar, but the area of 5-10 ppb benefit is smaller due to the wind patterns during this episode. For example, Charlotte does not see the same levels of benefits, because the plumes from the Big 5 power plants do not impact Charlotte during this episode. There are disbenefits, or increases in ozone concentrations near the power plants due to the plume treatment in the model.

Although the 50% low level sensitivity shows large broad area benefits, it should be noted that this is an unrealistic and unachievable control strategy. The 50% low level reductions is just a sensitivity run to see how the model performs to large cuts in NOx. A more realistic, although still very difficult to achieve, would be a 20% reduction in low level NOx emissions. Figure 39 shows the difference between the 2007 future year baseline run and a 20% cut in low level NOx. The geographic extent of the benefits is less than the 50% low level reductions and the Big 5 reductions. Additionally, the ozone benefits from a 20% low level reductions resulted in less ozone benefits ranging from 2.5-5 ppb with a small area of 5 ppb benefit. The small area of disbenefit is due to intensity of airport emissions.

Diff in Episodic 8hr Max O3

Figure 38. Difference plot showing the benefit to the maximum 8-hour ozone concentration for the 1995 episode between the 2007 future year baseline run and the Big 5 run.

Diff in Episodic 8-h Max O3: L1

Figure 39. Difference plot showing the benefit to the maximum 8-hour ozone concentration for the 1995 episode between the 2007 future year base and the 20% low level NOx reduction sensitivity.

Similarly for the 1996 meteorological episode, Figures 40 and 41 present the same type of difference plots. Figure 40 shows the benefits for low level reductions. Broad areas of the state see 1-5 ppb, while the Piedmont area sees 5-10 ppb, and areas near the Triad and the Triangle see 10-15 ppb of reduction in the 8-hour episodic maximum. Figure 41 shows the benefits from the Big 5 controls, where a large area sees a 1 to 5 ppb reduction, and downwind areas from the power plants see a 5 to 10 ppb reduction in the 8-hour maximum.

Figure 40. Difference plot showing the benefit to the 8-hour maximum ozone concentration for the 1996 episode between the 2007 future year baseline run and the 50 percent low level source reduction sensitivity run.

Figure 41. Difference plot showing the benefit to the maximum 8-hour ozone concentration for the 1996 episode between the 2007 future year baseline run and the Big 5 run.

NOx SIP Call

Another key question that has been raised is what benefits will be achieved through implementation of the NOx SIP call. The following two difference plots present the episode composite 8-hour maximum benefit between the 2007 future year baseline and the 22 State NOx SIP Call modeling runs for the 1995 and 1996 meteorological episodes, respectively. Figure 42 shows that in the 1995 episode, there are areas in the mountains, Charlotte and east of Charlotte that see 1 to 5 ppb reduction in the episodic maximum, while broad areas of the state in the 4 km domain see between a 5 and 10 ppb reduction. The maximum reductions are achieved in Rutherford, Cleveland, Davidson, Randolph, Guilford and Rockingham Counties, where a benefit of 10-15 ppb is predicted.

Figure 43 shows the episode composite difference plot in the maximum 8-hour ozone concentrations. There are broad areas across the state that see a benefit of between 1 and 5 ppb reduction in the 8-hour maximum concentration, while the green areas along the I-85 corridor and north of the Triad see a benefit of 5 to 10 ppb. Small areas north of the Triad and Triangle see the maximum benefit of 10-15 ppb.

Diff in Episodic 8hr Max O3

Figure 42. Difference plot showing the benefit to the maximum 8-hour ozone concentration for the 1995 episode between the 2007 future year baseline and the SIP Call in 22 States.

Diff in Episodic 8hr Max O3

Figure 43. Difference plot showing the benefit to the maximum 8-hour ozone concentration for the 1995 episode between the 2007 future year baseline and the SIP Call in 22 States.

Conclusions:

The preliminary results of a select group of control strategies show that although the controls move us in the right direction, no single control will solve the 8-hour ozone problem. The 1-hour ozone problem can be resolved in the 1995 meteorological episode for all but one grid cell, but an area to the north of the Triad has some residual problems in the 1996 meteorological episode. However, the 1-hour exceedances in the urban areas are addressed through controls in the 1996 episode.

Based on the modeling results, it is believed that the 22 State NOx SIP Call strategy is a step in the right direction for resolving the 8-hour standard. Modeling the utility controls in these three episodes indicates that controls on these sources are a necessary and crucial component of an overall ozone strategy. The 22 State NOx SIP Call strategy results in a reduction of the 8-hour episodic maximum concentration of about 5 ppb in the urban counties, such as Mecklenburg, Forsyth, Guilford and Wake, with areas of maximum benefit of up to 20 and 13 ppb, for the 1995 and 1996 episodes, respectively. Further consideration of other industrial control and low level control strategies for area, nonroad and mobile sources are needed. Additional modeling is needed of specific control measures for these sources. The across the board reductions show indications of the expected ozone reductions due to the implementation of low level controls. It is now believed that it will take a combination of aggressive control measures at both utility and industrial sources, as well as mobile, area and nonroad sources to effectively address the 8-hour standard in North Carolina. Modeling of specific control strategies will continue over the next few months to gain further insights to effectiveness of control measures.

Appendix A Time Series Plots Time Series Plots for 1995 Episode

Time Series Plots for 1996 Episodes

Number of Days Exceeding 84 ppb (8-hr) of Ozone in Selected Areas by Year

Areas are listed first. Next, lone counties (not in an area) are listed by State then county.

For this report, if there are two monitoring sites in an area, and site A exceeds 84 ppb on the first day of the year and the site B exceeds 84 ppb (8-hr) on the second day of the year, then the area has had two exceedances in the year. This is NOT the way the standard is calculated, but does help indicate the way the wind was blowing on days that measured exceedances of 84 ppb.

The total for the area is a sum of all days for the years 1990 through 1998. Some areas did not have monitoring all years. Some areas did not have complete 1998 data when this report was done. Areas with more monitors are more likely to have more days violating than those with just one monitor.

No. Days		
Exceeding		
84 ppb	Area	
114		Albany-Schenectady-Troy, NY
12	1980	
3	1981	
8	1982	
9	1983	
2	1984	
б	1985	
2	1986	
4	1987	
23	1988	
4	1989	
4	1990	
9	1991	
5	1992	
5	1993	
б	1994	
3	1995	
4	1996	
3	1997	
2	1998	
11		Albuquerque, NM
2	1981	
1	1982	
2	1987	

1	1988	
2	1990	
1	1994	
1	1995	
1	1996	
337	A	llentown-Bethlehem-Easton, PA
46	1980	
19	1981	
17	1982	
40	1983	
18	1984	
21	1985	
13	1986	
22	1987	
34	1988	
11	1989	
10	1990	
14	1991	
3	1992	
6	1993	
9	1994	
17	1995	
б	1996	
13	1997	
18	1998	
132	Δ	ltoona, PA
2 - 3	1980	
3	1981	
5	1982	
12	1983	
2	1984	
4	1985	
3	1986	
8	1987	
32	1988	
2	1989	
3	1990	
9	1991	
2	1992	
4	1993	
б	1994	

8	1995	
2	1996	
7	1997	
17	1998	
56		Appleton-Oshkosh-Neenah,
4	1980	
3	1981	
3	1982	
8	1983	
1	1984	
5	1985	
1	1986	
2	1987	
14	1988	
4	1989	
2	1991	
1	1992	
4	1995	
1	1996	
2	1997	
1	1998	
28		Asheville, NC
6	1980	
7	1983	
2	1986	
1	1987	
7	1988	
5	1998	
617		Atlanta, GA
27	1980	
23	1981	
10	1982	
38	1983	
19	1984	
20	1985	
37	1986	
43	1987	
46	1988	
20	1989	
53	1990	

WI

24	1991
21	1992
46	1993
15	1994
47	1995
31	1996
36	1997
61	1998

- 2 1991 2 1992
- 8 1993

4 5 7 10 35	1994 1995 1996 1997 1998	
89 4 9 8 2 5 7 2 3 7 4 4 3 1 2 4 12 6 6	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1997 1998	Austin-San Marcos,
812 65 43 44 65 37 43 42 51 58 28 30 50 23 48 40 36	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	Baltimore, MD

ТΧ

28	1996
30	1997
51	1998
14	Bangor, ME
1	1980
2	1981
1	1982
1	1991
2	1992
1	1993
2	1994
2	1995
435 31 35 15 18 15 22 24 24 24 24 24 24 17 34 16 12 27 16 30 17 30 28	Baton Rouge, LA 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
337	Beaumont-Port Arthur, TX
40	1980
24	1981
18	1982
23	1983
23	1984
13	1986

oula, MS
oula, MS

345		Birmingham, AL	
29	1980		
42	1981		
21	1982		
17	1983		
4	1984		
9	1985		
24	1986		
23	1987		
32	1988		
5	1989		
28	1990		
5	1991		
12	1992		
10	1993		
б	1994		
32	1995		
15	1996		
8	1997		
23	1998		
435		Boston-Lawrence-Wor	Costor (F MA) MA-NH
	1980	DOBCOII-Dawrence-wor	Cester (E. MA), MA-MI
21	1981		
20	1982		
44	1983		
39	1984		
28	1985		
20	1986		
20	1987		
39	1988		
18	1989		
15	1990		
24	1991		
17			
	1992		
15	1992 1993		
15 17	1992 1993 1994		
15 17 20	1992 1993 1994 1995		
15 17 20 14	1992 1993 1994 1995 1996		
15 17 20 14 22	1992 1993 1994 1995 1996 1997		
15 17 20 14 22 11	1992 1993 1994 1995 1996 1997 1998		

1	1998			
191 13 14 11 19 12 8 8 24 31 4 7 9 3 1 4 6 3 1 4 6 3 1 13	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Buffalo-Niagara Fa	alls,	NY
21 2 2 1 1 3 1 2 4 2 1	1980 1982 1983 1984 1985 1988 1989 1991 1992 1993 1996	Burlington, VT		
226 11 8 15 20 6	1980 1981 1982 1983 1984	Canton-Massillon,	ОН	

5	1986		
18	1987		
35	1988		
8	1989		
7	1990		
19	1991		
9	1992		
13	1993		
7	1994		
14	1995		
6	1996		
3	1997		
16	1998		
10		Cedar Rapids, IA	
3	1983	······	
1	1984		
1	1987		
4	1988		
1	1989		
103		Champaign-Urbana, IL	
8	1983		
4	1984		
2	1985		
4	1987		
27	1988		
9	1000		
/ 1 E	1990 1001		
15	1002		
ے 1	1002		
т б	1995		
10	1995		
±0 6	1996		
2	1998		
54		Charleston-North Charleston,	SC
2	1980		
3	1981		
1	1983		
3	1984		
7	1986		

8	1987		
10	1988		
4	1989		
1	1990		
1	1991		
2	1993		
2	1994		
1	1995		
3	1996		
3	1997		
3	1998		
104		Charleston, WV	
1	1980		
2	1982		
9	1983		
5	1984		
2	1985		
7	1986		
13	1987		
32	1988		
2	1989		
2	1990		
8	1991		
1	1994		
6	1995		
2	1996		
1	1997		
11	1998		
511		Charlotte-Gastonia-Rock Hill,	NC-SC
39	1980		
26	1981		
12	1982		
40	1983		
17	1984		
14	1985		
41	1986		
39	1987		
45	1988		
13	1989		
32	1990		
13	1991		

11	1992		
29	1993		
15	1994		
20	1995		
23	1996		
31	1997		
51	1998		
221		Chattanooga, TN-GA	
21	1980		
13	1981		
9	1982		
17	1983		
10	1984		
7	1985		
10	1986		
20	1987		
25	1988		
5	1989		
14	1990		
1	1991		
1	1992		
10	1993		
6	1994		
8	1995		
8	1996		
8	1997		
28	1998		
468		Chicago-Gary-Kenosha,	IL-IN-WI
40	1980		
19	1981		
18	1982		
47	1983		
33	1984		
15	1985		
14	1986		
24	1987		
52	1988		
34	1989		
29	1990		
40	1991		
11	1992		
6	1993		

10 27	1994 1995	
27 14	1995	
14	1997	
21	1998	
18		Chico-Paradise, CA
4	1985	
1	1986	
3	1987	
3	1988	
1	1989	
1	1990	
⊥ ⊃	1991	
∠ 1	1005	
⊥ 1	1000	
T	TAAO	
545		Cincinnati-Hamilton, OH-KY-IN
44	1980	
25	1981	
36	1982	
48	1983	
21	1984	
19	1985	
28	1986	
50	1987	
62	1988	
23	1989	
23	1990	
28	1991	
6	1992	
20	1993	
21	1994	
∠8 20	1006	
22 16	1007	
25	1997	
20	TJJO	
13		Clarksville-Hopkinsville, TN-KY
5	1994	
1	1995	
1	1997	

64		Columbus,	GA-AL
3	1980		
3	1981		
2	1982		
8	1983		
5	1984		
10	1986		
8	1987		
2	1988		
1	1990		
1	1991		
1	1992		
1	1994		
7	1995		
2	1996		
2	1997		
8	1998		
267		Columbus,	ОН
17	1980		
б	1981		
13	1982		
20	1983		
б	1984		
5	1985		
6	1986		
10	1987		
24	1988		
	1000		
⊥∠ 20	1990 1001		
20 6	1002		
13	1992		
14	1994		
19	1995		
20	1996		
14	1997		
23	1998		
95		Corpus Ch	risti. TX
16	1980		
11	1981		

6	1982			
4	1983			
4	1984			
5	1985			
2	1986			
7	1987			
6	1988			
б	1989			
4	1990			
1	1991			
2	1992			
3	1993			
3	1994			
8	1995			
3	1996			
1	1997			
3	1998			
39		Cumberland,	MD-WV	
9	1983			
5	1984			
2	1985			
2	1987			
20	1988			
1	1991			
763		Dallas-Fort	Worth,	тх
48	1980			
44	1981			
41	1982			
58	1983			
52	1984			
60	1985			
45	1986			
44	1987			
50	1988			
28	1989			
32	1990			
26	1991			
22	1992			
18	1993			
44	1994			
49	1995			

28	1996	
36	1997	
38	1998	
63		Davenport-Moline-Rock Island, IA-IL
14	1980	
1	1981	
1	1983	
1	1985	
3	1987	
21	1988	
6	1989	
1	1990	
3	1991	
4	1992	
2	1994	
3	1995	
2	1996	
1	1998	
323		Dayton-Springfield, OH
10	1000	
19	1980	
19 23	1980 1981	
19 23 32	1980 1981 1982	
19 23 32 35	1980 1981 1982 1983	
19 23 32 35 7	1980 1981 1982 1983 1984	
19 23 32 35 7 8	1980 1981 1982 1983 1984 1985	
19 23 32 35 7 8 12	1980 1981 1982 1983 1984 1985 1986	
19 23 32 35 7 8 12 25	1980 1981 1982 1983 1984 1985 1986 1987	
19 23 32 35 7 8 12 25 37	1980 1981 1982 1983 1984 1985 1986 1987 1988	
19 23 32 35 7 8 12 25 37 10	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	
19 23 32 35 7 8 12 25 37 10 13	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	
19 23 32 35 7 8 12 25 37 10 13 12	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	
19 23 32 35 7 8 12 25 37 10 13 12 2	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	
19 23 32 35 7 8 12 25 37 10 13 12 2 11	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	
19 23 32 35 7 8 12 25 37 10 13 12 2 11 14	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994	
19 23 32 35 7 8 12 25 37 10 13 12 2 11 14 11	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995	
19 23 32 35 7 8 12 25 37 10 13 12 2 11 14 11 18	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	
19 23 32 35 7 8 12 25 37 10 13 12 2 11 14 11 18 13	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997	
19 23 32 35 7 8 12 25 37 10 13 12 2 11 14 11 18 13 21	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	
19 23 32 35 7 8 12 25 37 10 13 12 2 11 14 11 18 13 21	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	
19 23 32 35 7 8 12 25 37 10 13 12 21 14 11 18 13 21 3	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Daytona Beach, FL

22		Decatur,	AL
3	1982		
5	1993		
1	1994		
2	1995		
7	1996		
4	1998		

38		Decatur,	IL
1	1980		
1	1983		
2	1984		
1	1985		
2	1986		
1	1987		
12	1988		
3	1989		
1	1990		
5	1991		
1	1992		
1	1994		
2	1995		
5	1996		

TD/

Denver-Boulder-Greeley, CO

7	1980
13	1981
16	1982
23	1983
8	1984
1	1985
10	1986
13	1987
24	1988
10	1989
4	1990
2	1991
4	1992
6	1993
2	1994
3	1995
2	1996

9	1998			
40 15 24 1	1980 1983 1984	Des Moines,	IA	
343 29 22 28 11 8 12 19 36 21 13 31 10 8 12 18 14 12 18 14 12	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Detroit-Ann	Arbor-Flint, MJ	C
6 6	1980	Eau Claire,	WI	
115 4 3 9 13 12 14 11 5 5 6	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	El Paso, TX		

1	1991
3	1992
3	1993
7	1994
7	1995
2	1996
1	1997
6	1998

49		Elmira,	NY
3	1980		
2	1981		
2	1982		
5	1983		
1	1985		
1	1986		
3	1987		
20	1988		
1	1989		
1	1990		
6	1991		
1	1993		
1	1996		
2	1998		

PA

175		Erie,
26	1980	
9	1981	
9	1982	
17	1983	
2	1984	
4	1985	
4	1986	
12	1987	
25	1988	
11	1989	
3	1990	
10	1991	
3	1992	
3	1993	
8	1994	
8	1995	
3	1996	

6 12	1997 1998	
26		Eugene-Springfield, OR
5	1981	
1	1985	
2	1986	
3	1987	
7	1988	
1	1992	
б	1996	
1	1998	
335		Evansville-Henderson, IN-KY
3	1980	
7	1981	
19	1982	
22	1983	
4	1984	
10	1985	
8	1986	
29	1987	
42	1988	
18	1989	
21	1990	
39	1991	
1	1992	
9	1993	
24	1994	
26	1995	
16	1996	
19	1997	
18	1998	
144		Fayetteville, NC
2	1981	
4	1982	
22	1983	
1	1985	
10	1986	
9	1987	
14	1988	
6	1989	

10	1990
3	1991
2	1992
8	1993
5	1994
5	1995
11	1996
7	1997
25	1998
3	Flagstaff, AZ-UT
3	1982
88 5 4 9 10 2 4 19 2 3 9 1 3 2 1 6 3 5	Flint, MI 1980 1981 1982 1983 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
2	Florence, AL
2	1994
6	Fort Collins-Loveland, CO
2	1986
1	1988
1	1990
1	1993
1	1998
6	Fort Myers-Cape Coral, FL

1	1989					
1	1994					
4	1998					
1		Fort	Pierce-	-Port	St.	Lucie,
1	1998					
203	1000	Fort	wayne,	ΤN		
∠⊥ 1 2	1980 1001					
10	1000					
20 10	1002					
<u>ح</u> ۵	1984					
8	1985					
1	1986					
- 7	1987					
24	1988					
7	1989					
5	1990					
6	1991					
6	1992					
3	1993					
14	1994					
12	1995					
10	1996					
7	1997					
8	1998					
C 1		~ 1				
64	1001	Gadsc	len, AL			
10	1000					
4 1 0	1002					
13	1984					
2	1985					
17	1986					
	_,					
13		Gaine	sville	, FL		
2	1980					
1	1997					
10	1998					
		a 7				
11	1000	Glens	s Falls,	, NY		
3	1980					

 \mathbf{FL}

7	1982
1	1983
215 14 7 15 10 7 8 17 36 17 36 17 10 25 4 2 6 11 6	Grand Rapids, MI 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1995
6	1997
7	1998
1	Great Falls, MT
1	1981
627 58 46 58 75 44 33 18 30 44 21 22 33 18 24 24	Greater Connecticut 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

20	1995	
13	1996	
26	1997	
20	1998	
44		Green Bay, WI
б	1980	
1	1981	
6	1983	
3	1985	
2	1987	
9	1988	
4	1989	
1	1991	
3	1995	
6	1996	
1	1997	
2	1998	
272		Greensboro-Winston Salem-High Point, NC
14	1980	
11	1981	
10	1982	
14	1983	
12	1984	
7	1985	
19	1986	
14	1987	
44	1988	
5	1989	
13	1990	
5	1991	
5	1992	
22	1993	
9	1994	
13	1995	
8	1996	
17	1997	
30	1998	
58		Greenville, NC
4	1983	
1	1984	

3	1985	
13	1988	
3	1989	
1	1991	
1	1992	
8	1993	
2	1995	
4	1996	
11	1997	
7	1998	
228		Greenville-Spartanburg-Anderson, SC
26	1980	
11	1981	
6	1982	
30	1983	
3	1984	
7	1985	
8	1986	
13	1987	
35	1988	
3	1989	
11	1990	
3	1991	
5	1992	
9	1993	
5	1994	
7	1995	
7	1996	
10	1997	
29	1998	
104		Hancock & Waldo Cos, ME
4	1982	
14	1983	
7	1984	
8	1985	
4	1986	
6	1987	
18	1988	
3	1989	
6	1990	
7	1991	

3	1992		
3	1993		
5	1995		
3	1996		
5	1997		
8	1998		
282		Harrisburg-Lebanon-Carlisle,	PA
13	1980		
8	1981		
19	1982		
39	1983		
7	1984		
12	1985		
9	1986		
20	1987		
39	1988		
10	1989		
10	1990		
21	1991		
1	1992		
15	1993		
12	1994		
13	1995		
3	1996		
9	1997		
22	1998		
4 /	1001	HICKOry-Morganton-Lenoir, NC	
Ţ	1981		
10	1002		
TO	1983		
∠ 2	1984		
3	1987		
1	1988		
⊥ ₁	1001 1001		
⊥ ₁	1002		
⊥ 2	1993		
3 1	1005		
1	1995 1005		
4	1997		
Τ./	TAA8		

31	Houma, LA
1	1983
1	1989
2	1990
1	1991
4	1994
14	1995
2	1997
б	1998
1,150	Houston-Galveston-Brazoria, TX
79	1980
72	1981
75	1982
95	1983
69	1984
77	1985
64	1986
70	1987
83	1988
44	1989
56	1990
39	1991
39	1992
34	1993
52	1994
/3	1995
3Z	1996
54 40	1997
43	1998
293	Huntington-Ashland, WV-KY-OH
5	1980
15	1981
14	1982
34	1983
17	1984
18	1985
4	1986
26	1987
32	1988
13	1989
16	1990

15 3 14 15 15 6 8 23	1991 1992 1993 1994 1995 1996 1997 1998	
86 1 4 7 25 3 4 6 2 3 6 4 11	1980 1981 1982 1983 1987 1988 1991 1992 1993 1994 1995 1996 1997 1998	Huntsville, AL
374 38 29 21 35 17 14 13 18 40 15 9 13 8 11 22 21 16	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	Indianapolis, IN

12 22	1997 1998	
35 2 18 10 4 1	1981 1983 1984 1988 1990	Iowa City, IA
35 10 6 3 1 1 1 3 1 2 4	1980 1981 1982 1983 1984 1985 1987 1988 1989 1990 1998	Jackson, MS
8 1 7	1993 1994	Jackson, TN
62 10 3 2 3 2 1 5 4 4 3 2 3 3 1 2	1980 1981 1982 1983 1984 1985 1987 1988 1989 1990 1992 1993 1994 1995 1996	Jacksonville, FL

4	1997		
10	1998		
27		Jamestown, NY	
1	1991		
3	1992		
2	1993		
5	1995		
2	1996		
5	1997		
9	1998		
98		Janesville-Beloit, WI	
3	1980		
10	1981		
3	1982		
13	1983		
3	1984		
2	1985		
3	1986		
4	1987		
15	1988		
11	1989		
1	1990		
9	1991		
2	1992		
1	1993		
2	1994		
4	1995		
5	1996		
4	1997		
3	1998		
158		Johnson City-Kingsport-Bristol, TN-	-VA
18	1980		
3	1981		
14	1982		
29	1983		
6	1984		
6	1985		
3	1986		
4	1987		
4	1988		

3 14	1989 1990
- Z	1992
6	1993
2	1994
13	1995
13	1995
т Л	1007
- 1 	1000
21	1990
179	Johnstown, PA
32	1980
9	1981
5	1982
5	1983
5	1984
4	1985
1	1986
8	1987
39	1988
5	1989
5	1990
14	1991
1	1992
9	1993
5	1994
9	1995
3	1996
7	1997
13	1998
36	Kalamazoo-Battle Creek,
2	1991
8	1992
3	1993
2	1994
8	1995
5	1996
4	1997
4	1998
251	Kansas City, MO-KS
34	1980

MI

19	1981						
5	1982						
18	1983						
28	1984						
12	1985						
5	1986						
9	1987						
24	1988						
4	1989						
2	1990						
11	1991						
1	1992						
3	1993						
10	1994						
23	1995						
10	1996						
18	1997						
15	1998						
125		Kent	&	Queen Ar	nne's	Cos,	MD
8	1989						
7	1990						
15	1991						
8	1992						
21	1993						
11	1994						
15	1995						
5	1996						
19	1997						
16	1998						
121		Knox	&	Lincoln	Cos,	ME	
12	1984						
8	1985						
3	1986						
9	1987						
22	1988						
7	1989						
9	1990						
16	1991						
9	1992						
4							
	1993						

7 2 6 3	1995 1996 1997 1998		
398 24 14 20 8 14 13 20 25 36 2 25 36 2 23 10 7 25 16 29 23 37 52	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Knoxville,	TN
5 2 3	1980 1983	La Crosse,	WI-MN
47 1 2 6 2 6 7 2 1 1 1 1 2 1 1	1983 1984 1985 1986 1987 1988 1990 1992 1994 1995 1996 1997	Lafayette,	LA

1998	
Lafayette, IN 1987 1988 1989 1990 1995	
Lake Charles, LA <pre> 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1997 1998</pre>	
Lake Tahoe South Shore, C. 1995	!A
Lakeland-Winter Haven, FL 1992 1993 1997 1998	
Lancaster, PA 1980 1981 1982 1983 1984	
6	1985
----	--------------------------
5	1986
19	1987
32	1988
4	1989
6	1990
19	1991
4	1992
12	1993
6	1994
18	1995
4	1996
21	1997
27	1998
77	Lansing-East Lansing, MI
9	1980
2	1982
8	1983
2	1984
1	1985
3	1986
5	1987
18	1988
2	1989
3	1990
3	1991
3	1992
3	1993
1	1994
5	1995
5	1996
1	1997
3	1998
1	Las Cruces, NM
1	1996
66	Las Vegas, NV-AZ
5	1980
7	1981
8	1982
5	1983

1 3 5 1 2 3 3 3 4 11	1984 1985 1986 1987 1988 1989 1990 1992 1993 1994 1996 1998	
2 1 1	1995 1998	Lawton, OK
72 4 5 4 6 8 7 1 2 10 3 4 4 3 2 3 1 2 3	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1996 1997 1998	Lewiston-Auburn, ME
190 18 3 4 27 10	1980 1981 1982 1983 1984	Lexington, KY

4	1985						
10	1986						
20	1987						
27	1988						
15	1989						
5	1990						
3	1991						
4	1993						
9	1994						
15	1995						
4	1996						
4	1997						
8	1998						
78		Lima,	ОН				
3	1982						
5	1983						
2	1985						
3	1987						
б	1988						
б	1989						
3	1990						
11	1991						
2	1992						
4	1993						
8	1994						
8	1995						
7	1996						
3	1997						
7	1998						
88		Little	e Rock	-North	Little	Rock,	AR
19	1980						
1	1981						
1	1982						
8	1983						
5	1984						
5	1985						
9	1986						
11	1987						
9	1988						
1	1989						
1	1990						

3	1991						
2	1993						
2	1994						
7	1995						
1	1996						
1	1997						
2	1998						
141		Long	gview-Ma	rshall,	, TX		
15	1980						
9	1981						
7	1982						
12	1983						
4	1984						
4	1985						
4	1987						
7	1988						
4	1989						
8	1990						
3	1991						
3	1992						
4	1993						
3	1994						
28	1995						
3	1996						
8	1997						
15	1998						
3,051		Los	Angeles	South	Coast	Air	Ва

3,051		Los	Angeles	South	Coast	Air	Basin,	CA
179	1980							
198	1981							
166	1982							
169	1983							
190	1984							
180	1985							
189	1986							
179	1987							
194	1988							
181	1989							
159	1990							
160	1991							
173	1992							
161	1993							

Louisville, KY-IN
Lynchburg, VA
Macon, GA
Madison, WI

2 11 4 2 3 1 1 1	1987 1988 1989 1991 1992 1995 1996 1997 1998
79 14 4 5 4 1 5 18 2 3 4 2 4 1 2 3 3	Manchester, NH 1980 1981 1982 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
56	Mansfield, OH
9	1989
3	1990
23	1991
8	1992
4	1993
4	1994
5	1995
14	Medford-Ashland, OR
2	1980
2	1982
1	1984
1	1988

2	1992	
1	1996	
5	1998	
6		Melbourne-Titusville-Palm Bay, FL
1	1994	
1	1997	
4	1998	
321		Memphis, TN-AR-MS
31	1980	
11	1981	
6	1982	
19	1983	
4	1984	
10	1985	
21	1986	
17	1987	
46	1988	
6	1989	
22	1990	
9	1991	
13	1992	
13	1993	
10	1994	
21	1995	
18	1996	
17	1997	
27	1998	
95		Miami-Fort Lauderdale-W. Palm Beach, FL
11	1980	
7	1981	
5	1982	
3	1983	
2	1984	
4	1985	
7	1986	
6	1987	
10	1988	
7	1989	
2	1990	
1	1991	

4	1992		
8	1993		
2	1994		
3	1995		
1	1996		
3	1997		
9	1998		
319		Milwaukee-Racine, WI	
24	1980		
22	1981		
14	1982		
34	1983		
17	1984		
12	1985		
13	1986		
27	1987		
43	1988		
20	1989		
10	1990		
25	1991		
3	1992		
4	1993		
1C	1994 1005		
ТQ	1995		
5	1990		
12	1997		
12	1990		
56		Minneapolis-St. Paul,	MN-WI
9	1980		
2	1981		
⊥ ⊂	1002		
0	1004		
4 1	1005		
⊥ 1	1905 1906		
⊥ ג	10Q7		
16	1907 1988		
2	1929		
1	1990		
1	1991		
2	1992		

5	1995	
1	1996	
T	1998	
83		Mobile, AL
6	1980	
21	1981	
4	1982	
9	1983	
9	1984	
1	1985	
4	1986	
3	1987	
3	1988	
6	1990	
1	1991	
1	1992	
1	1995	
3	1996	
3	1997	
8	1998	
24		Monroe, LA
24 8	1981	Monroe, LA
24 8 2	1981 1985	Monroe, LA
24 8 2 3	1981 1985 1987	Monroe, LA
24 8 2 3 9	1981 1985 1987 1988	Monroe, LA
24 8 2 3 9 1	1981 1985 1987 1988 1994	Monroe, LA
24 8 2 3 9 1	1981 1985 1987 1988 1994 1995	Monroe, LA
24 8 2 3 9 1 1 87	1981 1985 1987 1988 1994 1995	Monroe, LA Monterey Bay CA
24 8 2 3 9 1 1 87 87	1981 1985 1987 1988 1994 1995	Monroe, LA Monterey Bay, CA
24 8 2 3 9 1 1 87 87 8	1981 1985 1987 1988 1994 1995 1980 1981	Monroe, LA Monterey Bay, CA
24 8 2 3 9 1 1 87 87 8 4 3	1981 1985 1987 1988 1994 1995 1980 1981 1983	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 87 8 4 3 5	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 87 8 4 3 5 26	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1987	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 87 8 4 3 5 26 6	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1987 1988	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 87 8 4 3 5 26 6 3	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1987 1988 1989	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 87 8 4 3 5 26 6 3 4	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1985 1987 1988 1989 1990	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 84 3 5 26 3 4 3	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1987 1988 1989 1990 1991	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 87 8 4 35 26 6 3 4 3 4	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1987 1988 1989 1990 1991 1992	Monroe, LA Monterey Bay, CA
24 8 2 9 1 1 87 84 3 5 26 3 4 3 4 2	1981 1985 1987 1988 1994 1995 1980 1981 1983 1985 1987 1988 1989 1980 1990 1991 1992 1993	Monroe, LA Monterey Bay, CA

3	1995	
9	1996	
1	1997	
5	1998	
101	1	Montgomery, AL
4	1980	
5	1981	
1	1982	
15	1986	
27	1987	
14	1988	
4	1990	
1	1992	
8	1993	
2	1994	
6	1995	
1	1996	
13	1998	
237		Muskegon, MI
16	1980	
8	1981	
8 6	1981 1982	
8 6 17	1981 1982 1983	
8 6 17 6	1981 1982 1983 1984	
8 6 17 6 11	1981 1982 1983 1984 1985	
8 6 17 6 11 12	1981 1982 1983 1984 1985 1986	
8 6 17 6 11 12 27	1981 1982 1983 1984 1985 1986 1987	
8 6 17 6 11 12 27 27	1981 1982 1983 1984 1985 1986 1987 1988	
8 17 6 11 12 27 27 16	1981 1982 1983 1984 1985 1986 1987 1988 1989	
8 6 17 6 11 12 27 27 27 16 14	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	
8 6 17 6 11 12 27 27 16 14 23	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	
8 6 17 6 11 12 27 27 16 14 23 4	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	
8 6 17 6 11 12 27 27 16 14 23 4 3	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	
8 6 17 6 11 12 27 27 16 14 23 4 3 11	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994	
8 6 17 6 11 12 27 27 16 14 23 4 3 11 14	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	
8 6 17 6 11 12 27 27 16 14 23 4 3 11 14 6	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	
8 6 17 6 11 12 27 27 16 14 23 4 3 11 14 6 5	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997	
8 6 17 6 11 12 27 27 16 14 23 4 3 11 14 6 5 11	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996 1997 1998	
8 6 17 6 11 12 27 27 16 14 23 4 3 11 14 6 5 11 350	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Nashville, TN
8 6 17 6 11 12 27 27 16 14 23 4 3 11 14 6 5 11 350 11	1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Nashville, TN

2	1982				
17	1983				
13	1984				
7	1985				
16	1986				
13	1987				
55	1988				
10	1989				
31	1990				
13	1991				
б	1992				
18	1993				
21	1994				
34	1995				
25	1996				
24	1997				
32	1998				
202		New	Orleans	, LA	
10	1980				
б	1981				
17	1982				
12	1983				
11	1984				
12	1985				
11	1986				
25	1987				
25	1988				
4	1989				
б	1990				
2	1991				
5	1992				
б	1993				
8	1994				
20	1995				
8	1996				
7	1997				
7	1998				
			_		
932		New	York-N.	New	Jersey-L.Island,NY-NJ-CT-PA
88	1980				
58	1981				
63	1982				

73	1983	
53	1984	
55	1985	
46	1986	
50	1987	
56	1988	
37	1989	
47	1990	
56	1991	
26	1992	
45	1993	
39	1994	
32	1995	
32	1996	
31	1997	
45	1998	
226		Norfolk-Virginia Beach-Newport News, VA-NC
24	1980	
11	1981	
10	1982	
25	1983	
б	1984	
7	1985	
10	1986	
17	1987	
22	1988	
4	1989	
8	1990	
7	1991	
8	1992	
19	1993	
6	1994	
6	1995	
4	1996	
17	1997	
15	1998	
2		Ocala, FL
2	1998	
-		
5		Odessa-Midland, TX
1	1980	

1982 1983 1984	
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Oklahoma City, OK
1980 1984 1985 1988 1990	Omaha, NE-IA
1980 1981 1983 1985 1986 1987 1988 1989 1990 1991	Orlando, FL
	1982 1983 1984 1980 1981 1982 1983 1984 1985 1986 1987 1988 1990 1991 1992 1993 1994 1995 1996 1997 1998 1990 1997 1998 1980 1980 1980 1985 1988 1980 1985 1988 1989 1980 1981

4	1992		
4	1993		
3	1994		
1	1995		
1	1996		
5	1997		
14	1998		
219		Owensbord	, 1
6	1980		
2	1981		
7	1982		
33	1983		
7	1984		
6	1985		
16	1986		
23	1987		
37	1988		
7	1989		
28	1990		
1	1991		
1	1992		
3	1993		
7	1994		
9	1995		
5	1996		
8	1997		
13	1998		
127		Paducah,	ку
8	1981		
3	1982		
19	1983		
3	1984		
2	1985		
8	1986		
11	1987		
21	1988		
2	1989		
3	1991		
5	1993		
6	1994		
7	1995		

KΥ

4	1996		
10	1997		
15	1998		
237		Parkersburg-Marietta,	WV-OH
23	1983		
9	1984		
9	1985		
14	1986		
15	1987		
34	1988		
11	1989		
7	1990		
24	1991		
4	1992		
19	1993		
21	1994		
16	1995		
5	1996 1007		
4	1997		
22	1998		
110		Pensacola, FL	
110 5	1980	Pensacola, FL	
110 5 7	1980 1981	Pensacola, FL	
110 5 7 5	1980 1981 1982	Pensacola, FL	
110 5 7 5 2	1980 1981 1982 1983	Pensacola, FL	
110 5 7 5 2 6	1980 1981 1982 1983 1984	Pensacola, FL	
110 5 7 5 2 6 2	1980 1981 1982 1983 1984 1985	Pensacola, FL	
110 5 7 5 2 6 2 6	1980 1981 1982 1983 1984 1985 1986	Pensacola, FL	
110 5 7 5 2 6 2 6 9	1980 1981 1982 1983 1984 1985 1986 1987	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7	1980 1981 1982 1983 1984 1985 1986 1987 1988	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15 2 7	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15 2 7 3	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15 2 7 3 4	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15 2 7 3 4 7	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15 2 7 3 4 7 2	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996	Pensacola, FL	
110 5 7 5 2 6 2 6 9 7 2 15 2 7 3 4 7 2 7 3 4 7 2 7	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997	Pensacola, FL	

47		Peoria-Pekin, IL
1	1980	
1	1981	
1	1982	
8	1983	
1	1984	
1	1986	
6	1987	
13	1988	
3	1989	
2	1991	
2	1992	
1	1994	
6	1995	
1	1998	
962		Philadelphia-Wilmington-Trenton,PA-NJ-DE-MD
88	1980	
50	1981	
51	1982	
68	1983	
50	1984	
70	1985	
49	1986	
62	1987	
58	1988	
46	1989	
45	1990	
62	1991	
29	1992	
58	1993	
36	1994	
40	1995	
25	1996	
33	1997	
42	1998	
• • •		
240		Phoenix-Mesa, AZ
15	1980	
9	1981	
6	1982	
22	1983	
21	1984	

15 2 3 9 5 15 8 17 25 7 20 16 14 11	1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	
439 39 26 24 45 16 11 27 43 16 11 27 43 16 11 21 9 15 20 25 12 20 43	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Pittsburgh, PA
234	1980	Portland, ME

 234
 Portland, ME

 15
 1980

 8
 1981

 12
 1982

 17
 1983

 21
 1984

 16
 1985

8	1986	
7	1987	
32	1988	
10	1989	
11	1990	
13	1991	
10	1992	
13	1993	
9	1994	
11	1995	
4	1996	
10	1997	
7	1998	
66		Portland-Vancouver AQMA, OR-WA
7	1981	
5	1982	
2	1983	
3	1984	
5	1985	
7	1986	
5	1987	
3	1988	
8	1990	
3	1991	
6	1992	
1	1994	
2	1995	
6	1996	
3	1998	
136		Portsmouth-Dover-Rochester, NH
9	1980	
6	1981	
5	1982	
6	1983	
4	1985	
5	1986	
9	1987	
23	1988	
9	1989	
3	1990	
8	1991	

6	1992	
7	1993	
9	1994	
7	1995	
6	1996	
9	1997	
5	1998	
108		Poughkeepsie, NY
1	1980	
1	1981	
5	1983	
1	1986	
1	1987	
11	1988	
1	1989	
5	1990	
14	1991	
7	1992	
10	1993	
б	1994	
13	1995	
10	1996	
10	1997	
12	1998	
278		Providence-Fall River-Warwick, RI-MA
32	1980	
24	1981	
16	1982	
24	1983	
28	1984	
15	1985	
11	1986	
17	1987	
18	1988	
9	1989	
13	1990	
20	1991	
5	1992	
7	1993	
8	1994	
11	1995	

4	1996				
11	1997				
5	1998				
23	1	Provo-Ore:	m, UT		
1	1981				
1	1982				
2	1983				
4	1985				
2	1986				
2	1988				
2	1989				
1	1996				
8	1998				
394	1	Raleigh-D	urham-Chapel	Hill,	NC
48	1980				
9	1981				
1	1982				
29	1983				
11	1984				
5	1985				
25	1986				
39	1987				
36	1988				
13	1989				
17	1990				
9	1991				
4	1992				
27	1993				
17	1994				
17	1995				
20	1996				
26	1997				
41	1998				
325	I	Reading,	PA		
54	1980				
24	1981				
22	1982				
25	1983				
12	1984				
14	1985				

10 18 33 12 15 22 5 10 4 11	1986 1987 1988 1989 1990 1991 1992 1993 1994 1995		
10 19	1997 1998		
202		Redding, CA	
24	1980		
20	1981		
20	1982		
4	1983		
2	1984		
9	1985		
9	1986		
21	1987		
3	1988		
13	1990		
11	1991		
10	1992		
1	1993		
8	1994		
14	1996		
6	1997		
45	1998		
24		Reno, NV	
3	1982		
4	1984		
1	1985		
8	1986		
1	1988		
1	1989		
6	1990		
373		Richmond-Petersburg,	VA

18	1980
16	1981
13	1982
48	1983
17	1984
22	1985
9	1986
34	1987
37	1988
11	1989
б	1990
18	1991
8	1992
30	1993
13	1994
19	1995
5	1996
21	1997
28	1998
83	Roanoke, VA
3	1980
б	1981
4	1982
5	1983
4	1984
1	1985
3	1986
12	1987
22	1988
2	1991
2	1993
2	1994
2	1995
2	1997
13	1998
4	Rochester (Olmsted County), MN
3	1980
1	1981
142	Rochester, NY

8 1980

7	1981
13	1982
13	1983
6	1984
6	1985
10	1986
10	1987
24	1988
5	1989
5	1990
16	1991
2	1992
1	1994
б	1995
б	1997
4	1998
39	
1	1980

Rockford, IL

\perp	T980
2	1982
5	1983
1	1984
3	1985
1	1986
2	1987
12	1988
2	1989
1	1991
2	1992
2	1994
4	1995
1	1996

61		Rocky	Mount,	NC
4	1983			
2	1984			
5	1985			
18	1987			
3	1990			
14	1993			
8	1997			
7	1998			
7	1998			

869		Sacramento-Yolo, CA
51	1980	
53	1981	
44	1982	
42	1983	
46	1984	
38	1985	
49	1986	
65	1987	
66	1988	
53	1989	
43	1990	
58	1991	
55	1992	
23	1993	
42	1994	
42	1995	
48	1996	
19	1997	
32	1998	
14		Saginaw-Bay City-Midland, MI
6	1980	
8	1981	
562		St Louis, MO-IL
63	1980	
21	1981	
17	1982	
51	1983	
39	1984	
22	1985	
25	1986	
34	1987	
45	1988	
26	1989	
25	1990	
34	1991	
16	1992	
9	1993	
32	1994	
41	1995	
23	1996	

14	1997	
25	1998	
19		Salem, OR
3	1981	
2	1984	
2	1985	
1	1986	
10	1996	
1	1998	
203		Salt Lake City-Ogden,
24	1980	1 0 1
21	1981	
13	1982	
14	1983	
10	1984	
16	1985	
11	1986	
5	1987	
15	1988	
14	1989	
6	1990	
3	1991	
4	1993	
9	1994	
5	1995	
12	1996	
2	1997	
19	1998	
112		San Antonio, TX
10	1980	
5	1981	
11	1982	
6	1983	
/	1984 1995	
5	1985 1006	
4	1007	
0 7	1000	
י ג	1900 1990	
2 4	1909	
1	エノノ()	

UT

3	1991
1	1992
3	1993
4	1994
18	1995
3	1996
3	1997
7	1998

1,536	San	Diego,	CA	
138	1980			
133	1981			
83	1982			
99	1983			
98	1984			
109	1985			
81	1986			
99	1987			
119	1988			
122	1989			
96	1990			
67	1991			
66	1992			
58	1993			
46	1994			
48	1995			
31	1996			
16	1997			
27	1998			
287	San	Francis	sco-Oakland-San d	Jose, CA
24	1980			
23	1981			
13	1982			
26	1983			
32	1984			
17	1985			
13	1986			
28	1987			
20	1988			
13	1989			
7	1990			
6	1991			

6	1992							
5	1993							
4	1994							
18	1995							
14	1996							
1	1997							
17	1998							
2,135		San J	oaqı	ıin	Valley	, CA		
97	1980							
96	1981							
107	1982							
81	1983							
116	1984							
127	1985							
134	1986							
147	1987							
140	1988							
133	1989							
105	1990							
121	1991							
119	1992							
103	1993							
111	1994							
111	1995							
115	1996							
96	1997							
76	1998							
4.0				oh -	ano 34			Debler
40 2	1000	San L	urs	Lao	.spo-at	ascau	ero-Paso	Robles,
∠ 2	1002							
2 2	100/							
∠ 1	1005							
2 1	1096							
2 2	1987							
2 1	1988							
2 R	1989							
2	1991							
1	1992							
- 1	1992							
- 1	1994							
- 1	1995							
±	101							

CA

10 10	1996 1998	
296		Santa Barbara-Santa Maria-Lompoc, CA
8	1980	
9	1981	
7	1982	
10	1983	
12	1984	
9	1985	
23	1986	
24	1987	
28	1988	
28	1989	
27	1990	
25	1991	
17	1992	
13	1993	
11	1994	
16	1995	
19	1996	
4	1997	
6	1998	
23		Sarasota-Bradenton, FL
2	1980	
2	1983	
1	1988	
2	1989	
1	1990	
2	1991	
⊥ ≏	1993	
2	1994	
1	1995	
⊥ ⊃	1996 1007	
۲ ۲	1000	
0	TAAQ	
243		Scranton-Wilkes-Barre-Hazleton, PA
33	1980	
8	1981	
17	1982	
23	1983	

12	1984		
6	1985		
4	1986		
10	1987		
30	1988		
6	1989		
9	1990		
17	1991		
3	1992		
10	1993		
7	1994		
12	1995		
4	1996		
16	1997		
16	1998		
60		Seattle-Tacoma-Bremerton,	WA
3	1980		
8	1981		
4	1982		
2	1983		
1	1984		
4	1985		
4	1986		
3	1987		
3	1988		
8	1990		
3	1991		
3	1992		
3	1994		
6	1996		
1	1997		
4	1998		
178		Sheboygan, WI	
20	1980		
5	1981		
6	1982		
20	1983		
16	1984		
4	1985		
5	1986		
22	1987		
27	1988		

7	1989
3	1990
17	1991
1	1992
2	1994
8	1995
3	1996
5	1997
7	1998
114 3 16 4 1 11 3 13 13 13 13 10 4 4 9 2 2 2 4 10	Shreveport-Bossier City, LA 1980 1981 1982 1984 1985 1986 1987 1988 1989 1989 1989 1989 1989 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 1994 1995 1996 1997 1998
2	Sioux City, IA-NE
2	1980
197 19 10 18 27 6 10 1 7 28	South Bend-Elkhart, IN <pre>1980 1981 1982 1983 1984 1985 1986 1986 1987 1988</pre>

2	1989
4	1990
10	1991
6	1992
1	1993
7	1994
14	1995
11	1996
7	1997
9	1998

2,454		Southeast	Desert	Modified	AQMA,	CA
144	1980					
154	1981					
126	1982					
126	1983					
139	1984					
138	1985					
150	1986					
147	1987					
152	1988					
153	1989					
127	1990					
127	1991					
141	1992					
132	1993					
128	1994					
100	1995					
89	1996					
105	1997					
76	1998					
54		Springfiel	ld, IL			
2	1980					
1	1981					
1	1982					
4	1983					
4	1984					
3	1985					
3	1986					
3	1987					
16	1988					
3	1989					

2 3 1 3 2 2	1990 1991 1992 1993 1994 1995 1996						
16 1 2 4 1 1 4 1 1 305	1980 1983 1986 1988 1992 1994 1995 1996 1998	Spring	field,	, MO	arn I	ИД)	ма
22 13 13 47 22 22 11 9 29 11 18 18 14 13 12 9 5 10 7	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998		,				
111 7 29 3	1987 1988 1989	State	Colleg	je, PA			

8 14 6 12 8 7 2 7 8	1990 1991 1992 1993 1994 1995 1996 1997 1998	
104 18 3 1 27 4 20 1 2 4 13 2 4 13 2 6	1980 1982 1983 1986 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998	Steubenville-Weirton,
23 1 3 1 4 2 3 2 3	1981 1984 1986 1988 1989 1993 1994 1995 1996 1998	Sunland Park, NM
94 4 6 7 5	1980 1981 1982 1986	Syracuse, NY

OH-WV

14 22 3 12 4 1 5 2 3	1987 1988 1989 1990 1991 1992 1993 1994 1995 1997 1998		
6		Tallahassee, FL	
3	1980		
2	1981		
1	1982		
160		Tampa-St. Petersburg-Clearwater,	FL
13	1980		
11	1981		
8	1982		
15	1983		
15	1984		
10	1985		
13	1986		
29	1987		
8	1988		
5	1989		
6	1990		
1	1991		
2	1992		
1	1993		
3	1994		
2	1995		
3	1996		
4	1997		
11	1998		
94		Terre Haute, IN	
9	1983		
6	1984		
6	1985		
4	1986		

	1987 1989 1990 1991 1994 1995 1996 1997 1998	6 5 4 7 17 4 20 3 3
Toledo,	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	206 26 25 20 1 3 5 6 29 8 3 6 29 8 3 6 29 8 3 6 2 7 9 9 11 5 6
Tucson,	1980 1981 1982 1983 1984 1985 1990 1992 1993 1994 1995	30 4 1 6 5 1 5 1 1 1 1 3

OH

 \mathbf{AZ}

		1997	1
	Culsa, OK	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	262 29 14 6 24 29 13 10 18 23 5 16 12 1 4 12 21 14 7 4
AL	Cuscaloosa,	1982	1 1
	Yler, TX	1994 1995 1996 1997 1998	35 1 15 5 6 8
NY	Jtica-Rome,	1980 1981 1982 1983 1986 1987 1988 1990 1991	67 11 4 3 1 9 16 5 7
1 1 1	1992 1995		
-------------	----------------------	---	
T	1998		
24	Victoria, TX		
5	1989		
6	1991		
3	1993		
2	1994		
1	1995		
731	Washington, DC-MD-VA	A	
50	1980		
34	1981		
40	1982		
60	1983		
31	1984		
45	1985		
43	1986		
49	1987		
54	1988		
25	1989		
27	1990		
51	1991		
15	1992		
53	1993		
22	1994		
34	1995		
19	1996		
3⊥ 40	1997		
48	1998		
8	Wausau, WI		
1	1980		
2	1983		
1	1984		
2	1987		
1	1992		
1	1998		
77	Wheeling, WV-OH		
3	1982		

7 2 9 23 3 7 2 1 5 4 3 4	1983 1985 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	
27 1 6 1 4 4 1 2 3 3	1980 1983 1985 1986 1988 1990 1991 1995 1996 1997 1998	Wichita, KS
46 3 7 2 4 15 3 2 3	1981 1982 1983 1984 1985 1988 1991 1996 1998	Williamsport, PA
25 2 2 2	1980 1981 1982	Wilmington, NC

2	1984
1	1988
2	1990
3	1992
2	1994
1	1996
3	1997
5	1998

308		York,	PA	
32	1980			
6	1981			
5	1982			
29	1983			
7	1984			
17	1985			
10	1986			
15	1987			
42	1988			
8	1989			
13	1990			
29	1991			
2	1992			
21	1993			
11	1994			
22	1995			
8	1996			
13	1997			
18	1998			
262	1	Young	stown-Warren-Sharon,	OH-PA
10	1980			
12	1981			
16	1982			
21	1983			
5	1984			
9	1985			
4	1986			
1 / 2 0	1987			
39	1000			
T.5	1989			
8	1990 1991			
24	TAAT			

10	1992	
11	1993	
8	1994	
12	1995	
10	1996	
10	1997	
24	1998	
71	Yuba Ci	ty,
2	1982	
3	1983	
9	1984	
8	1985	
11	1986	
1	1987	
2	1989	
2	1991	
12	1992	
2	1993	
6	1994	
4	1995	
4	1996	
5	1998	
24	Yuma, A	Z
9	1980	
2	1983	
1	1984	
4	1985	
2	1986	
3	1987	
1	1988	
1	1989	
1	1996	

CA

Lone Counties Listed by State then County

26 Clay Co, AL

1 1 2 1 8 1 3 1 1 1 11 1	1993 1994 1995 1996 1997 1998	
36 1 1 15 1 2 1 2 1 6 1 8 1 2 1	1989 1990 1991 1992 1993 1995 1996	De Kalb Co, AL
7 7 1	1980	Monroe Co, AL
2 2 1	1981	Valdez-cordova Ed, AK
4 1 1 1 1 2 1	1987 1989 1991	Apache Co, AZ
1 1 1	1980	Cochise Co, AZ
1 1 1	1982	Yavapai Co, AZ
4 1 1 1 1 2 1	1989 1994 1995	Clark Co, AR
11 11 1	1991	Mississippi Co, AR
1 1 1	1998	Montgomery Co, AR

1		Newton Co, AR
1	1998	
66		Amador Co, CA
11	1992	
5	1993	
15	1994	
18	1995	
14	1996	
3	1997	
75		Calaveras Co, CA
34	1994	
19	1995	
18	1996	
4	1997	
54		Colusa Co, CA
3	1981	
1	1982	
1	1983	
5	1984	
4	1985	
5	1986	
21	1987	
3	1992	
2	1993	
2	1994	
2	1995	
4	1996	
1	1998	
25		Glenn Co, CA
1	1980	
3	1983	
1	1984	
3	1985	
8	1987	
1	1990	
4	1992	
2	1994	
1	1995	

1	1998			
298 32 5 10 3 1 3 24 24 47 49 34 50 16	1980 1981 1985 1988 1989 1991 1992 1993 1994 1995 1996 1997 1998	Imperial	Co,	CA
4 3 1	1994 1998	Inyo Co,	CA	
193 22 20 4 20 31 9 12 24 30 7 14	1987 1988 1989 1990 1991 1992 1994 1995 1996 1997 1998	Mariposa	Co,	CA
44 1 2 13 2 6 3 9	1983 1984 1985 1986 1987 1988 1990 1992	Mono Co,	CA	

4 5 6
Nevada Co, CA
Plumas Co, CA
San Bernardino Co, CA
Siskiyou Co, CA
Tehama Co, CA 0 1 2 3 4 5 7 8
Tuolumne Co, CA 8 3 4 5 6 7 8

1,605		Ventura Co, CA
116	1980	
115	1981	
123	1982	
104	1983	
107	1984	
96	1985	
120	1986	
87	1987	
110	1988	
94	1989	
70	1990 1001	
92	1002	
57	1002	
40 64	1993	
67	1995	
61	1996	
46	1997	
30	1998	
218		Sussex Co, DE
218 6	1980	Sussex Co, DE
218 6 34	1980 1983	Sussex Co, DE
218 6 34 11	1980 1983 1984	Sussex Co, DE
218 6 34 11 20	1980 1983 1984 1985	Sussex Co, DE
218 6 34 11 20 10	1980 1983 1984 1985 1986	Sussex Co, DE
218 6 34 11 20 10 20	1980 1983 1984 1985 1986 1987	Sussex Co, DE
218 6 34 11 20 10 20 20	1980 1983 1984 1985 1986 1987 1988	Sussex Co, DE
218 6 34 11 20 10 20 20 5	1980 1983 1984 1985 1986 1987 1988 1989	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14	1980 1983 1984 1985 1986 1987 1988 1989 1990	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 14 4	1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 4 4 12	1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 4 12 3	1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 14 4 12 3 5	1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 14 4 12 3 5 5 5	1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 4 12 3 5 5 14	1980 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996 1997	Sussex Co, DE
$218 \\ 6 \\ 34 \\ 11 \\ 20 \\ 10 \\ 20 \\ 20 \\ 5 \\ 14 \\ 14 \\ 4 \\ 12 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 21 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 21 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 21 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 3 \\ 5 \\ 5 \\ 14 \\ 21 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	1980 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996 1997 1998	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 4 12 3 5 5 14 21	1980 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996 1997 1998	Sussex Co, DE
218 6 34 11 20 10 20 20 5 14 14 14 4 12 3 5 5 14 21 1	1980 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Sussex Co, DE Calhoun Co, FL

47		Dawson Co, GA
7	1987	-
16	1988	
3	1989	
7	1990	
1	1991	
1	1992	
6	1993	
1	1994	
⊥ 1	1995	
⊥ 1	1990	
2	1998	
6		Fannin Co, GA
2	1994	
1	1996	
3	1998	
3		Glvnn Co, GA
1	1997	
2	1998	
19		Sumter Co, GA
7	1988	
3	1002	
乙 1	1992	
1 1	1994	
4	1997	
1	1998	
15		Adams Co, IL
1	1980	
3	1983	
∠ 2	1900	
2	1992	
3	1996	
2	1998	
9	1000	Crawford Co, IL
9	T 9 8 0	

61	1	Effingham Co, IL
б	1983	
4	1984	
4	1985	
3	1986	
2	1987	
23	1988	
2	1989	
4	1991	
1	1992	
2	1994	
5	1006	
2	1007	
2 1	1998	
±	1))0	
1 1	1998	Hamilton Co, IL
7	Ċ	Jo Daviess Co, IL
2	1994	
2	1995 1006	
3	1990	
6	1	La Salle Co, IL
2	1980	
4	1981	
20]	Livingston Co, IL
11	1988	
1	1989	
7	1991	
1	1992	
6	1	Logan Co. II.
5	1991	
1	1992	
0.0	-	
שע 0	1000	nacoupin CO, IL
2 0	190U	
5	1983	
-		

7 6 5 29 3 7 1 1 4 4 6 1	1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	
7 1 3 1 1	1992 1994 1995 1996 1998	Randolph Co, IL
21 6 11 1 2	1980 1983 1984 1985 1986	Williamson Co, IL
7 1 6	1989 1990	Bartholomew Co, II
5 1 1 3	1989 1990 1991	Carroll Co, IN
3 3	1991	Jasper Co, IN
117		Knox Co, IN

IN

10 5 6 9 36 4 7 10 4 3 9 7 7	1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	
8 1 3 4	1980 1981 1995	Kosciusko Co, IN
84 1 14 6 9 21 10 10 13	1990 1991 1992 1994 1995 1996 1997 1998	La Porte Co, IN
4 4	1997	Lawrence Co, IN
49 9 5 10 5 6 10 4	1989 1990 1991 1992 1994 1995 1996	Wabash Co, IN
20 20	1988	Washington Co, IN

1 1	1998	Harrison Co, IA
6 3 2 1	1980 1983 1984	Madison Co, IA
2 1 1	1991 1992	Van Buren Co, IA
1 1	1983	Jefferson Co, KS
3 3	1998	Linn Co, KS
7 1 1 1 4	1994 1995 1996 1998	Bell Co, KY
36 29 6 1	1988 1989 1990	Boyle Co, KY
18 9 3 6	1980 1981 1983	Calloway Co, KY
2 2	1983	Clay Co, KY
59 3 4 10 18	1985 1986 1987 1988	Edmonson Co, KY

2 1 6 2 4 7	1989 1990 1994 1995 1996 1997 1998	
4 4	1982	Floyd Co, KY
11 2 4 5	1981 1982 1983	Fulton Co, KY
9 1 1 2 5	1991 1996 1997 1998	Graves Co, KY
39 3 8 5 12 8 1 2	1980 1983 1993 1994 1995 1996 1998	Hardin Co, KY
15 4 11	1982 1983	Henry Co, KY
22 2 1 19	1980 1981 1983	Hopkins Co, KY
14 2 1	1991 1992	Lawrence Co, KY

1 5 3 2	1993 1994 1995 1998	
12 11 1	1988 1992	Letcher Co, KY
2 2	1983	Logan Co, KY
72 7 3 10 8 6 10 8 2 3 1 2 2 4 5	1980 1981 1983 1984 1986 1987 1988 1990 1991 1992 1993 1994 1995 1997 1998	Mc Cracken Co, KY
29 1 2 13 5 2 2 4	1991 1993 1994 1995 1996 1997 1998	Mc Lean Co, KY
11 7 2 2	1980 1981 1983	Mercer Co, KY

6 1 5	1982 1983	Metcalfe Co, KY
20 8 10 2	1994 1995 1996	Morgan Co, KY
25 8 1 1 14 1	1980 1981 1982 1983 1984	Muhlenberg Co, KY
11 3 8	1980 1983	Ohio Co, KY
3 1 1 1	1992 1994 1995	Perry Co, KY
15 3 8 4	1994 1995 1998	Pike Co, KY
14 3 1 2 2 3	1981 1983 1993 1994 1995 1998	Pulaski Co, KY
22 1 1 3 1	1991 1993 1995 1996	Simpson Co, KY

4	1997
12	1998
38 1 2 5 1 6 7 8 3 2 3	Trigg Co, KY 1981 1982 1983 1984 1988 1994 1995 1996 1997 1998
1	Warren Co, KY
1	1982
35 3 1 3 11 12 3	Washington Co, KY 1990 1991 1992 1993 1994 1995 1996
16 3 1 1 3 2 3 2	Beauregard Par, LA 1990 1991 1992 1993 1994 1995 1997 1998
7	Grant Par, LA
2	1980
1	1989
3	1995
1	1998

St Mary Par, LA	1989 1990 1993 1995 1997 1998	22 1 1 1 10 2 7
Aroostook Co, ME	1991 1992	2 1 1
Franklin Co, ME	1987	1 1
Oxford Co, ME	1982 1992 1994 1995	8 5 1 1
Somerset Co, ME Washington Co, ME	1991 1992 1993 1996 1984 1985 1989 1990 1991 1992 1993 1995	4 1 1 27 7 2 1 9 3 2 2
Dorchester Co, MD	1995 1996	24 19 5
Wicomico Co, MD	1985 1986	31 16 15

89 3 24 3 11 15 8 8 17	1990 1991 1993 1994 1995 1996 1997 1998	Allegan Co, MI
39 13 1 2 4 7 4 3 5	1991 1992 1993 1994 1995 1996 1997 1998	Benzie Co, MI
84 6 4 2 11 7 1 11 16 12 7 7	1980 1983 1985 1991 1992 1993 1994 1995 1996 1997 1998	Cass Co, MI
13 8 4 1	1991 1992 1993	Delta Co, MI
11 3 3 2	1987 1988 1989	Dickinson Co, MI

1 2	1992 1993	
1 1	1988	Houghton Co, MI
23 10 1 3 1 2 2 4	1980 1993 1994 1995 1996 1997 1998	Huron Co, MI
40 12 7 2 7 2 2 2 2 6	1988 1989 1990 1991 1992 1993 1994 1995	Manistee Co, MI
2 2	1980	Marquette Co, MI
60 14 10 5 12 6 7	1991 1993 1994 1995 1996 1997 1998	Mason Co, MI
2 2	1996	Mecosta Co, MI
1 1	1998	Missaukee Co, MI

13 13	1991	Montcalm Co, MI
19 19	1991	Oceana Co, MI
9 9	1983	Osceola Co, MI
2 2	1996	Roscommon Co, MI
36 4 5 7 3 2 2 6 1	1988 1989 1990 1991 1992 1993 1994 1995 1996	Tuscola Co, MI
2 2	1980	Blue Earth Co, MN
3 1 2 7 1 1 2 3	1980 1988 1995 1996 1997 1998	Lake Co, MN Adams Co, MS
3 1 2	1993 1995	Franklin Co, MS
3 1 1 1	1995 1996 1998	Lauderdale Co, MS

10		Lee Co, MS
1 1 1 7	1994 1995 1997 1998	·
12 12	1998	Panola Co, MS
7 2 2 2 1	1993 1994 1995 1996	Sharkey Co, MS
6 2 1 3	1994 1996 1998	Warren Co, MS
9 1 2 1 2 2	1989 1990 1991 1993 1994 1995	Yalobusha Co, MS
4 4	1998	Cedar Co, MO
28 15 4 2 7	1980 1981 1982 1983	Madison Co, MO
32 13 4 4 1	1988 1991 1992 1994	Monroe Co, MO

3	1995
5	1996
1	1997
1	1998
16	Ste Genevieve Co, MO
10	1996
6	1998
8	Douglas Co, NV
3	1983
1	1986
4	1988
28	Carson City, NV
6	1984
18	1985
4	1986
1	Belknap Co, NH
1	1997
18 2 7 1 2 1 2 1 1 1	Cheshire Co, NH 1981 1982 1983 1991 1992 1993 1996 1997 1998
11 2 1 5 1 2	Coos Co, NH 1982 1985 1991 1992 1997
4	Grafton Co, NH
1	1991
2	1992

	1996	1
Sullivan Co, NH	1991 1993 1994 1996 1997	5 1 1 1 1
Essex Co, NY	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	$ 144 \\ 18 \\ 6 \\ 7 \\ 5 \\ 6 \\ 3 \\ 30 \\ 6 \\ 7 \\ 16 \\ 8 \\ 1 \\ 8 \\ 2 \\ 3 3 $
Hamilton Co, NY	1992 1993 1995 1997 1998	7 2 1 2 1 1
Jefferson Co, NY	1986 1987 1988 1989 1991	93 4 18 23 11 10

3 2 4 6 8 4	1992 1993 1994 1995 1997 1998	
53 25 1 2 8 5 4 2 4 2	1988 1989 1990 1991 1992 1993 1994 1995 1996	Tompkins Co, NY
44 12 7 10 2 6 2 4 1	1991 1992 1993 1994 1995 1996 1997 1998	Ulster Co, NY
16 1 5 1 3 2 3	1989 1990 1991 1992 1993 1994 1998	Avery Co, NC
19 3 1 4 1 4	1988 1990 1992 1993 1994	Camden Co, NC

3 2 1	1995 1997 1998	
1 1	1994	Carteret Co, NC
60 10 3 4 7 17 19	1993 1994 1995 1996 1997 1998	Caswell Co, NC
20 4 2 1 11	1992 1993 1994 1997 1998	Duplin Co, NC
44 6 8 24	1995 1996 1997 1998	Haywood Co, NC
5 4 1	1980 1982	Jones Co, NC
8 8	1998	Lenoir Co, NC
12 9 1 1	1988 1989 1992 1994	Macon Co, NC
15 5	1984	Martin Co, NC

1 4 2 3	1985 1986 1992 1998	
33 9 11 3 3 2 1 3	1983 1984 1991 1992 1993 1994 1995 1996	Montgomery Co, NC
14 3 5 6	1995 1997 1998	Northampton Co, NC
44 3 4 3 12 1 1 5 14	1983 1984 1985 1986 1988 1992 1995 1997 1998	Person Co, NC
28 6 4 5 13	1983 1984 1985 1988	Robeson Co, NC
33 3 8 6 11 5	1993 1994 1996 1997 1998	Rockingham Co, NC

1 1	1998	Swain Co, NC
26 3 6 2 15	1992 1993 1994 1995	Yancey Co, NC
1 1	1980	Dunn Co, ND
3 3	1989	Mercer Co, ND
1 1	1988	Oliver Co, ND
233 19 17 12 33 7 17 19 5 12 19 2 7 15 15 15 12 6 16	1980 1981 1982 1983 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Clinton Co, OH
3 2 1	1981 1982	Hocking Co, OH
3		Huron Co, OH

	1990	3
Knox Co, OH	1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	57 32 4 7 4 6 5 5 8 4 9
Logan Co, OH	1990 1991 1992 1993 1994 1995 1996 1997 1998	67 13 18 6 3 10 6 4 5 2
Noble Co, OH	1994 1995	26 10 16
Preble Co, OH	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	139 7 12 29 6 3 2 1 4 29 7

5 6 2	1995 1996 1997 1998	
4 4	1988	Sandusky Co, OH
4 1 3	1993 1994	Tuscarawas Co, OH
38 8 21 4 5	1990 1991 1992 1998	Union Co, OH
3 3	1997	Latimer Co, OK
1 1	1998	Muskogee Co, OK
2 1 1	1997 1998	Okmulgee Co, OK
28 12 16	1997 1998	Clearfield Co, PA
36 8 12 4 2 3 1	1989 1990 1991 1992 1993 1995 1996	Elk Co, PA
32 3	1996	Franklin Co, PA

7 22	1997 1998	
26 10 16	1997 1998	Greene Co, PA
79 2 8 7 5 3 1 6 24 3 2 3 1 2 3 2 4 2	1980 1981 1982 1983 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	Lawrence Co, PA
20 1 1 3 1 13	1992 1993 1994 1995 1997 1998	Abbeville Co, SC
52 7 10 1 10 3 3 2	1987 1988 1989 1990 1991 1992 1994	Barnwell Co, SC

3 13	1997 1998	
3 2 1	1981 1982	Beaufort Co, SC
136 15 8 9 25 4 8 11 10 2 7 2 4 1 6 2 5 17	1980 1981 1982 1983 1984 1986 1987 1988 1989 1990 1990 1992 1993 1994 1995 1996 1997 1998	Chester Co, SC
11 3 1 2 5	1990 1992 1994 1998	Colleton Co, SC
17 1 3 1 4 8	1993 1994 1996 1997 1998	Darlington Co, SC
15 1 2 2	1991 1993 1994	Oconee Co, SC

1 9	1995 1998
48 3	Union Co, SC 1984
1	1985
7	1986
12	1987
5	1988
2	1990
3	1993
3 2	1994
2 1	1995
1	1997
8	1998
5	Williamsburg Co, SC
1	1991
2	1992
2	1993
17	Bradley Co, TN
5	1983
5	1984
⊥ ⊃	1985
2	1007
J	1997
17 10	Claiborne Co, TN
1	1001
⊥ 1	1993
2	1994
3	1995
2	Coffee Co, TN
2	1998
11	De Kalb Co, TN
2	1990
1	1991
2	1992

1993 1994		} -	1993 1994	3 2
) 	1990	⊥ 2
1995	CO, IN	5	1995	3
Giles Co, TN 1980 1982 1983	3 Co, TN	G:	1980 1982 1983	54 19 5 5
1984 1986 1987 1988 1996		5	1984 1986 1987 1988 1996	2 1 1 19 2
Hamblen Co, TN 1994 1997	len Co,	Ha	1994 1997	7 3 4
Haywood Co, TN 1993 1994 1995 1996 1997 1998	ood Co,	Ha	1993 1994 1995 1996 1997 1998	27 4 5 1 4 2 11
Humphreys Co, TN 1996	nreys Co	Hu	1996	2 2
Jefferson Co, TN 1992 1993 1994 1995 1996 1997 1998	erson Co		1992 1993 1994 1995 1996 1997 1998	128 6 26 5 29 15 19 28
Lawrence Co, TN 1997	ence Co,	La ,	1997	6 1

5	1998	
1 1	1993	Marshall Co, TN
11 2 6 1 1	1980 1990 1991 1993 1994	Maury Co, TN
17 4 13	1997 1998	Putnam Co, TN
16 1 13 2	1982 1983 1984	Roane Co, TN
5 2 3	1987 1988	Culberson Co, TX
12 6 2 1 2 1	1987 1988 1989 1990 1992	Tyler Co, TX
1 1	1987	Wise Co, TX
12 9 1 2	1980 1981 1982	Addison Co, VT
46 3 14	1987 1988	Bennington Co, VT
Number of 8-hr Ozone Days in Selected Areas

1 5 2 3 2 3 3 2	1989 1990 1991 1992 1993 1994 1995 1996 1997	
12 1 2 3 6	1982 1983 1984 1985	Windham Co, VT
31 1 9 17 1 1 1	1985 1986 1987 1988 1990 1992 1993	Augusta Co, VA
33 12 1 3 1 7 9	1993 1994 1995 1996 1997 1998	Caroline Co, VA
23 1 2 4 1 4 10	1992 1993 1994 1995 1996 1997 1998	Frederick Co, VA
6		Henry Co, VA

	1994 1995 1996	1 1 4
Madison Co, VA	1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	94 1 9 31 4 8 7 1 7 3 10 1 6 5
Montgomery Co, VA	1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	70 10 34 6 4 5 1 4 4 1 1
Northampton Co, V	1980 1981 1982 1983 1984 1985 1986 1987 1988 1989	138 15 11 10 26 12 11 10 19 14 4

VA

6	1990
33 12 3 4 4 1 4 2 3	Prince Edward Co, VA <pre>1988 1989 1990 1991 1992 1993 1994 1995</pre>
59 5 4 1 2 19 2 14 1 5 2 1	Smyth Co, VA 1980 1982 1983 1984 1985 1986 1987 1988 1989 1994 1995 1996
17 3 3 1 1 6	Wythe Co, VA 1990 1993 1994 1995 1997 1998
36 22 4 5 3 2	Gilmer Co, WV 1988 1990 1991 1993 1994
93 1	Greenbrier Co, WV 1985

 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1995 1996 1997 1998 	
Tucker Co, WV 1988 1989 1990 1991 1993 1994 1995 1996	
Columbia Co, W 1980 1981 1981 1982 1983 1984 1985 1985 1988 1989 1991 1995 1991 1992 1995 1991 1995 1991 1992 1995 1995 1996 1997	T
Dodge Co, WI 1982 1983	

1	1984
3	1985
8	1987
5	1988
1	1989
2	1991
1	1992
2	1995
1	1996
2	1997
1	1998
66	Door Co, WI
7	1989
9	1990
13	1991
1	1993
7	1994
9	1995
6	1996
7	1997
7	1998
5	Dunn Co, WI
5	1980
11 1 7 1 1	Florence Co, WI 1987 1988 1989 1996 1998
29 1 4 2 10 3 3 2 2 1	Fond Du Lac Co, WI 1984 1985 1987 1988 1989 1992 1995 1996 1997

1 1998	
Grant Co, WI 3 1980 2 1981 5 1983 1 1984	
4 Jefferson Co, W 2 1985 1 1986 4 1987 7 1988 5 1989 2 1990 2 1991 2 1992 1 1995 2 1996 2 1998	ΥT
7 Kewaunee Co, WI 5 1985 2 1986 3 1987 1 1988 3 1989 5 1990 5 1991 1 1993 5 1994 6 1995 2 1996 5 1997 4 1998	E
1 Manitowoc Co, W 2 1984 1 1985 4 1986 0 1987 6 1988	1I

7 9 14 1 10 16 10 8	1989 1990 1991 1992 1993 1994 1995 1996 1997	
12	1998	
2 2	1980	Oconto Co, WI
1 1	1998	Oneida Co, WI
1 1	1998	Polk Co, WI
4 3 1	1995 1998	Sauk Co, WI
11 11	1980	Taylor Co, WI
1 1	1998	Vernon Co, WI
72 6 22 6 1 16 4 3 5 2 2 3	1980 1981 1988 1989 1990 1991 1992 1994 1995 1996 1997 1998	Walworth Co, WI

1 **Wood Co, WI** 1 1980

11/20/99

11 Factor Analyses for Tri-Cities

The following is the 11 factor analysis for Johnson City-Kingsport-Bristol TN-VA. The Johnson City-Kingsport-Bristol TN-VA MSA contains the counties of Carter, Hawkins, Sullivan, Unicoi and Washington. Tennessee s revised submittal recommended that only Sullivan County be designated nonattainment. EPA s analysis of the 11 factors indicates that based on emissions levels, population and VMT that Hawkins County, TN should be included in the Johnson City-Kingsport-Bristol TN-VA nonattainment area. Due to low emissions, low population and low contribution to VMT in the core county of Sullivan, EPA believes the remaining Tennessee MSA counties should be designated as attainment. The December 3, 2003 letter to Virginia agreed that the Virginia counties should be attainment.

Area	EPA Recommnedation	State Recommendation
Johnson City-Kingsport-	Full counties:	Full counties:
Bristol TN-VA	Hawkins, Sullivan, TN	Sullivan
		Drop counties:
		Carter, Hawkins, Unicoi,
		Washington

Factor 1: Emissions and air quality in adjacent areas

Region 4's analysis for factor 1 looked at nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions, emission in the MSA counties. The following table has the NOx and VOC emissions for the counties in the Johnson City-Kingsport-Bristol (Tri-Cities) MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Carter	2246	4	4801	10	7	14
	(458)		(380)			
Hawkins	17952	31	5899	12	37	12
	(165)		(334)			
Sullivan	25353	43	23867	48	61	58
	(116)		(101)			
Unicoi	831 (495)	1	1021	2	5	6
			(498)			
Washington	5217	9	7425	15	16	23
	(367)		(290)			
Bristol City,	1479	3	1841	4	123	153

VA						
Scott, VA	2017	3	1534	3	4	3
Washington ,VA	3721	6	3250	7	7	6

Most of the emissions of NOx and VOC are in Sullivan and Hawkins, County in Tennessee. Based on these emission levels, Hawkins County contributes to the violations at the Sullivan County monitor and the remaining MSA counties do not. Carter County contributes only 4 % of the NOx and 10 % of the VOC, Unicoi County contributes only 1 % of the NOx and 2 % of the VOC, Washington contributes 9 % of the NOx and 15 % of the VOC as compared to the contribution of Sullivan County of 43 % of the NOx and 48 % of the VOC. Carter, Unicoi, and Washington Counties also have very low emission densities.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Tri-Cities MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. Although Washington County, TN has the second largest population and population density to that of Sullivan County in the TN portion of the MSA indicating potential contribution to air quality levels in Sullivan County, coupled with the prevailing wind direction and the low design value, discussed below, EPA does not believe that Washington County is contributing to the violation. The remaining counties have very small population and very small population density. Carter County has about 1/3 the number of people and a population density less than half of Sullivan County. Unicoi County is even smaller with only 17,667 people and a population density less than 100.

County	2000 Population	Population Density
Carter	56,742 (388)	166
Hawkins	53,563 (398)	110
Sullivan	153,048 (219)	369
Unicoi	17,667 (493)	95
Washington	107,198 (297)	329
Bristol City, VA	17,367	1447
Scott, VA	23,403	44
Washington, VA	51,103	91

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Sullivan: 1 ozone monitor 2001-2003 .086ppm

Sullivan County has a monitor showing a violation of the 8-hour standard based on 2001-2003 ambient air monitoring data of 0.086 parts per million (ppm), only 0.002 ppm above the standard. However, further examination of the 11 factors shows that Hawkins County likely contributes to the violation recorded in Sullivan County.

Factor 4: Location of emission sources

Most of the large stationary sources of ozone precursors are located in Hawkins and Sullivan Counties. Washington County, TN contains approximately 9 % of the MSA point VOC sources. Mobile source emissions, discussed in detail under factor 5, were evaluated using vehicle miles traveled and traffic patterns as surrogates. The location of large emissions sources in Hawkins County indicates a contribution to air quality levels in Sullivan County. Washington County, TN contains approximately 9 % of the MSA point VOC sources, however, the emissions in Washington County, TN are significantly less than those in Sullivan and Hawkins Counties, indicating no appreciable contribution. There are no large point sources in Carter or Unicoi counties with very small percentage of point source emissions in those counties.

- Hawkins: Point source NOx 39% of overall NOx for MSA Point source VOC 9% of overall VOC for MSA
- Sullivan- Point source NOx 54% of overall NOx for MSA Point source VOC 67% of overall VOC for MSA
- Washington- Point source NOx 1% of overall NOx for MSA Point source VOC 9% of overall VOC for MSA
- Carter- Point source NOx 2% of overall NOx for MSA Point source VOC 6% of overall VOC for MSA
- Unicoi- Point source NOx less than 1% of overall NOx for MSA Point source VOC 1% of overall VOC for MSA
- Scott- Point source NOx less than 1% of overall NOx for MSA Point source VOC 2% of overall VOC for MSA
- Washington, VA- Point source NOx 3% of overall NOx for MSA Point source VOC 6% of overall VOC for MSA

Factor 5: Traffic and commuting patters

<u>Commuting Information</u> - Following is an analysis of the commuting in Sullivan County including commuters from the other MSA counties. As described below, 72 % of the Sullivan County commuters remain in Sullivan County, contributing 76 of the

commuting in Sullivan County. People from Hawkins and Washington Counties commute to Sullivan County contributing approximately 10 and 11 %, respectively. There is a small amount of commuting from Carter County to Sullivan, contributing on 3 % of the total commuters in Sullivan County. This level of commuting indicates a potential contribution from Hawkins and Washington Counties in Tennessee, but not from the other counties.

Sullivan County, the design value county, has a total of 67,101 commuters.

- Commuters from Sullivan County to Washington County: 7,171
- Commuters from Sullivan County to Bristol City, VA: 4,233
- Commuters from Sullivan County to Washington County, VA: 2,530
- Commuters from Sullivan County to Hawkins County: 1,494
- Commuters who remain in Sullivan County: 48,100

Washington County, an MSA county, has a total of 50,659 commuters.

- Commuters from Washington County to Sullivan County: 7,211
- Commuters from Washington County to Carter County: 1,217
- Commuters who remain in Washington County: 37,367

Carter County, an MSA county, has a total of 25,043 commuters.

- Commuters from Carter County to Washington County: 9,688
- Commuters from Carter County to Sullivan County: 1,860
- Commuters who remain in Carter County: 10,899

Hawkins County, an MSA county, has a total of 22,167 commuters.

- Commuters from Hawkins County to Sullivan County: 5,953
- Commuters who remain in Hawkins County: 10,899

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Macon MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. Carter County has less than 1/3 of the amount of VMT in Sullivan County and Unicoi less than 10 % of the VMT in Sullivan.

County	% drive to work	VMT
Carter	92	503 (422)
Hawkins	82	449 (434)
Sullivan	96	1798 (200)
Unicoi	93	135 (494)
Washington	92	1184 (280)
Bristol City, VA	95	315
Scott, VA	89	320
Washington, VA	86	698

Factor 6: Expected growth

The following table has the population and population growth figures for the Tri-Cities MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states. The population growth has been relatively high for Hawkins and Washington counties, 20.2 and 16.1 %, respectively. Carter experienced a 10.2 % growth and Unicoi a 6.8 % growth from 1990 to 2000. These growth levels are not particularly high especially when the very small base populations of Carter and Unicoi counties. The growth level in Hawkins County, however, indicates a potential contribution to the air quality levels in the area.

County	2000 Population	% growth (90-00)	% growth (00-10)	2010-2000 (1000's)
Carter	56742 (388)	10.2	-5.5	-3
Hawkins	53563 (398)	20.2	1.8	1
Sullivan	153048 (219)	6.6	2.3	4
Unicoi	17667 (493)	6.8	2.2	0
Washington	107198 (297)	16.1	8.2	9
Bristol City,	17367	-5.7	-3.3	-1
VA				
Scott, VA	23403	0.9	-3.4	-1
Washington,	51103	11.4	4.9	3
VA				

Factor 7: Meteorology

The major wind direction during the summer months when ozone forms are is westerly indicating a strong likelihood of contribution from Hawkins County and less likelihood of contribution from the other counties. However, 10.9 % of the time there are minor winds from the SSW/S/SSE which indicates potential contribution to air quality levels in the area from Washington, Carter and Unicoi Counties. However, these counties are not in the prevailing wind direction and although there are minor winds from the direction of those counties, coupled with the low emissions, there is not indication of contribution based on winds.

Factor 8: Geography/topography

Hawkins- located in the ridge and valley terrain of the East Grand Division of the state, North of I-81 and just West of the Kingsport area bordering Virginia. Sullivan- located in the Valley and Ridge region of the Appalachian Mountains in the East Grand Division of the state, along the I-81 corridor.

Washington- located in the Valley and Ridge region of the East Grand Division of the State, in the SE portion of the MSA. SE portion of county is in elevated terrain within the boundary of the Cherokee National Forest.

Factor 9: Jurisdictional boundaries

This factor did not play a significant role in the decision making process.

Factor 10: Level of control of emission sources

Hawkins, Sullivan, Washington- Subject to Prevention of Significant Deterioration (PSD) requirements, Maximum Achievable Control Technology (MACT) for Hazardous Air Pollutants (HAP), New Source Performance Standards (NSPS), and the NOx SIP call.

Factor 11: Regional emissions reductions

Tennessee is subject to the NOx SIP call. However, the John Sevier TVA plant located in Hawkins County does not have NOx SIP call level of controls, indicating a contribution to the nonattainment levels in Sullivan County.

11 Factor Analyses for Nashville

The following is the 11 factor analysis for Nashville, TN. The Nashville, TN MSA contains the counties of Cheatham, Davidson, Dickson, Robertson, Rutherford, Sumner, Williamson, and Wilson. Tennessee recommended that the one hour maintenance area of Davidson, Rutherford, Sumner, Williamson, and Wilson counties be designated nonattainment. Based on air quality data for 2001-2003, only one monitor in Sumner County continues to violate the 8-hour ozone standard. EPA s analysis of the 11 factors indicates that based on emissions levels, population and VMT that the five MSA counties recommended by the State should be included in the Nashville, TN nonattainment area.

Area	EPA Recommendation	State Recommendation
Nashville, TN	Full counties:	Full counties:
	Davidson, Rutherford,	Davidson, Rutherford,
	Sumner, Williamson,	Sumner, Williamson,
	Wilson	Wilson
		Drop:
		Cheatham, Dickson,
		Robertson

Factor 1: Emissions and air quality in adjacent areas

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Nashville MSA with the percent of the MSA totals. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VO	NOx Density	VOC Density
Cheatham	2207 (459)	2	2595 (465)	3	7	9
Davidson	38238 (70)	42	36682 (48)	41	76	73
Dickson	3124 (436)	3	5418 (492)	6	6	11
Robertson	4461 (387)	5	5485 (355)	6	9	12
Rutherford	9654 (258)	11	13601 (181)	15	16	22
Sumner	21946 (137)	24	10655 (217)	12	42	20
Williamson	7107 (305)	8	8244 (267)	9	12	14
Wilson	4930 (378)	5	6378 (320)	7	9	11

Most of the emissions of NOx and VOC are in Davidson, Sumner, and Rutherford counties. The emissions in Cheatham, Dickson, and Robertson counties are much less with the combination of the three counties contributing only 10 % of the NOx, the primary precursor of concern and only 15% of the VOC emissions in the MSA. Based on emissions, Cheatham, Dickson and Robertson, combined with the other factors discussed below, are not contributing to the Sumner County violations.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Nashville MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. The five counties recommended by the State have the most of the population of the MSA. The remaining three counties have population levels that less than 10 % of the core county of Davidson and population densities at 10 % or lower than that of Davidson, indicating no contribution to the violations at the Sumner County monitor.

County	2000 Population	Population Density
Cheatham	35,912 (448)	118
Davidson	569,891 (75)	1138
Dickson	43,156 (426)	88
Robertson	54,433 (396)	114
Rutherford	182,023 (196)	300
Sumner	130,449 (257)	247
Williamson	126,638 (265)	217
Wilson	88,809 (331)	156

<u>Factor 3: Monitoring data representing ozone concentration in local</u> <u>areas and larger areas</u>

- Sumner: 1 ozone monitor 2001-2003 0.086 ppm 1 ozone monitor 2001-2003 0.08 ppm
- Davidson: 1 ozone monitor 2001-2003 0.077 ppm
- Rutherford: 1 ozone monitor 2001-2003 0.080 ppm

Williamson: 1 ozone monitor 2001-2003 0.084 ppm

Wilson: 1 ozone monitor 2001-2003 0.082 ppm

Sumner County has a monitor showing a violation of the 8-hour standard based on 2001-2003 ambient air monitoring data of 0.086 parts per million. However, further examination of the 11 factors shows that the MSA counties of Cheatham, Dickson and Robertson do not contribute to the violations recorded in Sumner County.

Factor 4: Location of emission sources

Most of the large stationary sources of ozone precursors are located in Davidson, Rutherford, and Sumner Counties. Williamson County, TN contains approximately 10 % of the MSA point VOC sources. Mobile source emissions, discussed in detail under factor 5, were evaluated using vehicle miles traveled and traffic patterns as surrogates. Cheatham, Dickson and Robertson Counties do not contain large point sources that contribute to air quality levels in Sumner County.

- Cheatham: Point source NOx less than 1% of overall NOx for MSA Point source VOC 3% of overall VOC for MSA
- Davidson: Point source NOx 32% of overall NOx for MSA Point source VOC 33% of overall VOC for MSA
- Dickson: Point source NOx 1% of overall NOx for MSA Point source VOC 7% of overall VOC for MSA
- **Robertson:** Point source NOx 1% of overall NOx for MSA Point source VOC 6% of overall VOC for MSA
- Rutherford: Point source NOx 3% of overall NOx for MSA Point source VOC 19% of overall VOC for MSA
- Sumner: Point source NOx 59% of overall NOx for MSA Point source VOC 16% of overall VOC for MSA
- Williamson: Point source NOx 1% of overall NOx for MSA Point source VOC 10% of overall VOC for MSA
- Wilson: Point source NOx 3% of overall NOx for MSA Point source VOC 6% of overall VOC for MSA

Factor 5: Traffic and commuting patters

<u>Commuting Information</u> - Following is an analysis of the commuting in Sumner County including commuters from the other MSA counties. As described below, 49 % of the Sumner County commuters remain in Sumner County, contributing 91 % of the commuting in Sumner County. People from Cheatham, Robertson and Wilson Counties commute to Sumner County contributing approximately 1, 5 and 3 %, respectively. NO

people from Dickson County commute to Sumner County. This level of commuting indicates no appreciable contribution to the violations in Sumner County from the three counties the State recommended as attainment. The remaining MSA Counties do not have people that commute to Sumner County

Sumner County, the design value county, has a total of 64,756 commuters.

- Commuters from Sumner County to Davidson County: 26,168
- Commuters from Sumner County to Robertson County: 1,262
- Commuters from Sumner County to Williamson County: 1,013
- Commuters who remain in Sumner County: 31,914

Cheatham County, an MSA county has a total of 17,985 commuters

- Commuters that remain in Cheatham County: 4,934
- Commuters from Cheatham County to Davidson County: 10,899
- Commuters from Cheatham County to Sumner County: 311
- Remainder commute to other MSA counties and the adjacent county of Montgomery

Robertson County, an MSA county, has a total of 27,248 commuters

- Commuters that remain in Robertson County: 11,871
- Commuters from Robertson County to Davidson County: 11,100
- Commuters from Robertson County to Sumner County: 1,784
- Remainder commute to other MSA counties and the adjacent county of Montgomery

Wilson County, an MSA county, has a total of 45,839 commuters.

- Commuters who remain in Wilson County: 20,124
- Commuters from Wilson County to Davidson County: 20,626
- Commuters from Wilson County to Sumner County: 885

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Nashville MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. The counties of Cheatham, Dickson, and Robertson have much lower VMT than the other counties in the MSA.

County	% drive to work	VMT
Cheatham	95	366 (455)
Davidson	96	7513 (39)
Dickson	91	536 (414)
Robertson	96	844 (353)
Rutherford	96	1971 (188)
Sumner	95	1375 (254)
Williamson	92	1338 (260)
Wilson	97	1038 (318)

Factor 6: Expected growth

The following table has the population and population growth figures for the Nashville MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states. The population growth has been relatively high for all of the MSA counties with the core county of Davidson having he least growth. Although Cheatham, Dickson, and Robertson counties experienced growth levels of 32.3 %, 23.1 %, and 31.2 %, respectively, from 1990 to 2000, these relatively high percentages were of very low base population levels. Despite this growth level, the violations have been reduced in the Nashville area to 0.086 ppm at only one of the 6 monitors in the area.

County	2000 Population	% growth (90-00)	% growth (00-10)	2010-2000 (1000's)
Cheatham	35912 (448)	32.3	38.5	14
Davidson	569891 (75)	11.6	0.8	4
Dickson	43156 (426)	23.1	24.2	10
Robertson	54433 (396)	31.2	16.0	7
Rutherford	182023 (196)	53.5	18.3	33
Sumner	130449 (257)	26.3	21.3	28
Williamson	126638 (265)	56.3	21.3	27
Wilson	88809 (331)	31.2	21.4	19

Factor 7: Meteorology

The predominant wind direction is from the south during the ozone season indicating contribution from the counties the State recommended as nonattainment. Cheatham, Dickson, and Robertson Counties are on the west side of the MSA and not in the prevailing wind direction.

Factor 8: Geography/topography

The Nashville area is located in the rolling terrain of the Middle Grand Division of the state along the I-40 corridor nearly midway between Knoxville and Memphis. Lies almost entirely on the Central Basin with the western edge of the county bounding the edge of the Highland Rim.

The Nashville area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

This factor did not play a significant role in the decision making process.

Factor 10: Level of control of emission sources

Davidson, Rutherford, Sumner, Williamson, Wilson: Subject to Prevention of Significant Deterioration (PSD) requirements, Control Technology Guidelines Reasonable Available Control Technology (CTG RACT), Maximum Achievable Control Technology (MACT) for Hazardous Air Pollutants (HAP), New Source Performance Standards (NSPS)

Factor 11: Regional emissions reductions

Tennessee is subject to the NOx SIP call. TVA has installed SCR on all three units at the Paradise power plant in KY and the Cumberland plant in Sumner County. These area the two plants that have the most affect on the Nashville air quality.

11 Factor Analysis for Macon, GA

The following is the 11 factor analysis for Macon, GA. The Macon, GA MSA contains the counties of Bibb, Houston, Jones, Peach, and Twiggs. Georgia recommended only that Bibb County, containing the violating monitor, be designated nonattainment. EPA s analysis of the 11 factors indicates that based on emissions levels, population, the location of large emission sources, and VMT that in addition to Bibb County, the Macon nonattainment area should include a portion of Monroe County, an adjacent county. EPA s analysis agreed with Georgia s that Houston, Jones, Peach and Twiggs be classified as attainment.

Factor 1: Emissions and air quality in adjacent areas

Region 4's analysis for factor 1 looked at nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions, emission densities and air quality in Monroe County adjacent and upwind of the MSA. The following table has the NOx and VOC emissions for the counties in the Macon area with the percent of the area totals. The number in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	NOx	%NOX	VOC	%VOC	NOx Density	VOC Density
Bibb	11,800 (237)	17	10,365 (221)	45	47	41.0
Houston	6,103 (336)	9	5,652 (347)	24	16	15
Jones	1,471	2	1,510	7	4	4
Peach	2,029	3	2,220	10	13	15
Twiggs	2,257	3	1,187	5	6	3
Monroe	46,479 (54)	66	2,296 (472)	10	117	6

The emission levels of NOx in Monroe County indicates contribution to the violations at the Bibb County monitor. Monroe County does not have an ozone monitor. However, considering the emissions levels of NOx in Monroe County, the fact that it is upwind of Bibb County would indicate a strong likelihood of contribution to the violations at the Bibb County monitor. While Houston is similar to Bibb County in population, its NOx and VOC emissions are approximately half that of Bibb. The level of emissions coupled with prevailing winds discussed below would indicate that Houston County is not contributing. Jones, Peach, and Twiggs Counties have much less emissions and are not contributing counties to the nonattainment area.

Factor 2: Population density and degree of urbanization including commercial <u>development</u>

The following table has the populations for the counties in the Macon MSA. The number in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. Although Houston County has similar population to that of Bibb County, the population density in Houston County does not indicate contribution to violations in Bibb County. The remaining counties, including the adjacent county, Monroe, have much less population and very small population density. The very low population density in Monroe County supports designation of only a part of this county.

	2000 population	Population Density
Bibb	153,887 (218)	608
Houston	110,765 (290)	292
Jones	23,639	60
Peach	23,668	156
Twiggs	10,590	29
Monroe	21,757 (483)	55

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Bibb County has the only ozone monitor in or around the MSA. This monitor is showing a violation of the 8-hour standard based on 2001-2003 ambient air monitoring data of 0.086 parts per million. Analysis of all of the 11 factors indicates that Monroe County likely contributes to the violation recorded in Bibb County, but that Houston County does not.

Factor 4: Location of emission sources

There are large stationary sources of ozone precursors located in Bibb, Houston, and Monroe counties. Mobile source emissions, discussed in detail under factor 5, were evaluated using vehicle miles traveled and traffic patterns as surrogates. Additionally, Warner Robins Air Force Base is located in Houston County. However, analysis of the level of emissions and VMT contributed by Houston County indicates that the emissions in Houston County do not contribute to the violations in Bibb County. The location of a large NOx emissions source in Monroe County does indicate a contribution to air quality levels in Bibb County.

Factor 5: Traffic and commuting patterns

<u>Commuting Information</u> - Following is an analysis of the commuting in Bibb County including commuters from the other MSA counties and the adjacent county, Monroe. As described below,

86 % of the Bibb County commuters remain in Bibb County. Houston and Monroe Counties contribute approximately 11 % and 5 %, respectively of the commuting in Bibb County, the core county of the MSA. This level of commuting would not indicate contribution due to commuting by any of the other MSA counties or the adjacent county of Monroe. Additionally, the VMT in Bibb County is over 40 % greater than the VMT in Houston County and more than three times that in the other counties including Monroe.

Bibb County, the design value county, has a total of 63,229 commuters.

- Commuters from Bibb County to Houston County: 3,703
- Commuters from Bibb County to Peach County: 721
- Commuters from Bibb County to Monroe County: 806
- Commuters who remain in Bibb County: 54, 125

Houston County, an MSA county, has a total of 53,089 commuters.

- Commuters from Houston County to Bibb County: 8,570
- Commuters from Houston County to Peach County: 1,561
- Commuters that remain in Houston County: 39, 954

Monroe County, an adjacent county, has a total of 10,316 commuters.

- Commuters from Monroe County to Bibb County: 3,262
- Commuters that remain in Monroe County: 4,116

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Macon MSA. The number in parentheses represent the national ranking for 50s counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	% drive to work	VMT
Bibb	94	1,464 (238)
Houston	95	907 (337)
Jones	85	237 (479)
Peach	87	440
Twiggs	79	412
Monroe	34	499 (424)

Factor 6: Expected growth

The following table has the population and population growth figures for the Macon MSA counties. The number in parentheses represents the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states. The population growth has

been relatively high for Houston and Monroe counties, 24 % and 27 %, respectively. These growth levels indicate a potential contribution to the air quality levels in the Macon area. However, these growth percentages are applied to low base populations, indicating the growth in these counties does not contribute to the violations.

	2000 population	% growth (90-00)	% growth (00-10)
Bibb	153,887 (218)	3	-1
Houston	110,765 (290)	24	17
Jones	23,639	14	17
Peach	23,668	12	15
Twiggs	10,590	8	0
Monroe	21,757 (483)	27	13

Factor 7: Meteorology

In their February 6, 2004, letter the State provided information indicating that the prevailing winds during the summer months when ozone forms are from the N/NW direction, indicating a strong likelihood of contribution from the large emission source in Monroe County and less likelihood of contribution from Houston County. Although, 22 % of the time there are winds from the south which indicates potential contribution to air quality levels in the Macon area from Houston County, these winds are minor and not likely to produce a contribution.

Factor 8: Geography/topography

The Macon area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

This factor did not play a significant role in the decision making process.

Factor 10: Level of control of emission sources

In their February 6, 2004, letter the State refers EPA to ambient air quality modeling conducted by Georgia Tech known as the Fall Line Air Quality Study (FAQS) for the Macon area which predicts design values for the area of less than 0.085 ppm by 2007, with no additional controls after the full implementation of the Atlanta SIP. In April 2003, Plant Scherer, in Monroe

County, converted two of the four units to Powder River Basin (PBR) coal and will convert the remaining two units to PBR coal prior to the 2004 ozone season. This fuel conversion will result in an estimated NOx reduction of 28 tons/day, which has not yet been included in the FAQS air quality modeling simulations. Although this is a substantial reduction in emissions from this source, additional emission reductions may be necessary, which have not yet been determined. Therefore the portion of Monroe County that includes the large emission source has been included in the Macon nonattainment area.

Factor 11: Regional emission reductions

Although Georgia is not yet subject to the NOx SIP Call, the emission reductions from the Atlanta 1-hour ozone plan achieves nearly the same NOx emission reductions as will be required for Georgia in EPA s Phase II NOx SIP Call rulemaking. Beginning in 2004, the controls on Plant Scherer will be consistent with the NOx SIP Call at an emission rate in the range of 0.13 to 0.15 lb NOx/mmBTU. However, these reductions are not yet federally enforceable nor included in the Georgia SIP or the title V permit for the source.

11 Factor Analysis for Columbia, SC

The Table below summarizes the boundary recommendations by the State of South Carolina for the nonattainment boundary for the Columbia area. Based on EPA s 11 factor analysis for the area, EPA agrees with the State s recommendation for partial county boundaries for both counties. The portions left out are very rural and any sources in those counties are already being controlled. More detailed information can be obtained from the technical support provided by the State in the docket.

Area	EPA Recommendation	State Recommendation
Columbia SC	Partial counties: Richland, Lexington	Partial counties: Richland, Lexington

Factor 1: Emissions and air quality

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Columbia MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Lexington	16,389 (185)	38	18,724 (130)	42	23.2	26.5
Richland	26,490 (113)	62	26,094 (91)	58	34.8	34.2

Based on the analysis for this factor there are two significant NOx sources in Richland County in the portion recommended as attainment by the State, the South Carolina Electric and Gas (SCE&G) Wateree and the International Paper (IP) Eastover facilities. The sources are large NOx emitters, but have significant NOx controls already in place. The SCE&G Wateree plant has installed SCR and significantly reduced the emissions from 38.4 tons per day to 12.94 tons per day, achieving a 66 % reduction. The IP Eastover plant is subject to the NOx SIP Call because of large commercial boilers. The current controls including low NOx fuels, overfired air and advanced combustion controls with a composite emission rate of approximately 0.2 lb NOx/mmBTU, which results in emissions well below the facility s SIP call allocation. IP has committed in a letter to the State to consider further controls including taking a permit limit on their allowable emissions. The emission levels at these facilities achieve reductions that eliminate the potential contribution of the portion of Richland County recommended as attainment to the violations in the MSA.

The recommended partial nonattainment boundary for Lexington County encompasses 99.7 % of the NOx and 97.9 % of the VOC point sources, indicating no appreciable emissions in the part of the county recommended as attainment.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Columbia MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	2000 population	Population Density
Lexington	216,014 (177)	305.5
Richland	320,677 (128)	420.8

The recommended partial nonattainment boundary for both counties encompasses all of the densely population centers with a population density of 496.6 persons per square mile which includes 92.14 % of the MSA population. By contrast the recommended portions have population density of only 91.84, indicating no contribution from these areas due to population.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

The Columbia 3 ozone monitors all located in Richland County:

Richland- 3 ozone monitors 2001-2003 1 ozone monitor 2001-2003 - 0.089 ppm 1 ozone monitor 2001-2003 - 0.080 ppm 1 ozone monitor 2001-2003 - 0.077 ppm

The violating monitor is located in the northeast quadrant of Richland County. The other two monitors, one slightly to the east of the violating monitor and one in the southern portion of the county (the portion recommended as attainment) both have data showing attainment. Lexington County does not have a monitor and back trajectories to the violating monitor suggest little if any impact due to winds from Lexington County. Additionally, the two Richland County monitors closest to Lexington County are attaining as well as the monitors in adjacent Aiken County. Therefore, EPA believes the air quality date coupled with the other factors indicates that the portions of Richland and Lexington Counties recommended to be nonattainment are the appropriate boundary.

Factor 4: Location of emission sources

As noted above in the Factor 1 discussion, there are two significant NOx sources in Richland

County in the portion recommended as attainment by the State, the South Carolina Electric and Gas (SCE&G) Wateree and the International Paper (IP) Eastover facilities. The sources are large NOx emitters, but have significant NOx controls already in place. (See Factor 1 for details) emissions. The emission levels at these facilities achieve reductions that eliminate the potential contribution of the portion of Richland County recommended as attainment to the violations in the MSA. The recommended partial nonattainment boundary for Lexington County encompasses 99.7 % of the NOx and 97.9 % of the VOC point sources, indicating no appreciable emissions in the part of the county recommended as attainment. Therefore, EPA believes the portion of the area recommended by the State is the appropriate boundary for the Columbia nonattainment area.

Factor 5: Traffic and commuting patterns

<u>Commuting Information</u> - 83 % of the Richland County commuters work in Richland County and 12 % commute to Lexington County, resulting in 95 % of Richland County commuters remaining in the MSA. Richland County commuters contribute over 70 % of the commuting in the violating county, Richland. 54% of the Lexington County commuters work in Lexington County and 40 % commute to Richland County for a total of 94 % of the Lexington County commuters remaining in the MSA. Data from the Department of Motor Vehicles indicates that over 90 % of the commuters in the Columbia MSA are in the recommended nonattainment area. This level of coverage is expected to continue at least through 2025. Therefore, EPA agrees based on this commuting information and the analysis of the other factors that the boundary recommended by South Carolina is the appropriate boundary for the nonattainment area.

There are a total of 155,968 commuters in Richland County

- Commuters that remain in Richland County: 129, 047
- Commuters from Richland County, SC, to Lexington County: 18, 860
- Remainder of Richland County commuters go to surrounding counties

There are a total of 109,259 commuters in Lexington County: 109, 259

- Commuters that remain in Lexington County: 58, 998
- Commuters from Lexington County, SC, to Richland Count: 44, 237
- Remainder of Lexington County commuters go to surrounding counties

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Columbia MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	% drive to work	VMT
Lexington	94	2,399 (154)
Richland	95	3,315 (113)

The Recommended area includes the MPO boundary. Over 90 % of the VMT in the Columbia MSA is captured in the boundary recommended by the State. Projections indicate this will continue at least through 2025. Therefore, EPA agrees with the boundary recommended by the State.

Factor 6: Expected growth

The following table has the population and population growth figures for the Columbia MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	2000 population	% growth (99-00)	% growth (00-10)
Lexington	216,014 (177)	28.9	13.2
Richland	320,677 (128)	12.2	2.6

Although there has been significant growth in the Columbia area in recent years, the rate of growth has slowed. That fact coupled with the fact that most of the population and all of the densely populated areas are encompassed by the State s boundary recommendation, the EPA agrees with the partial county recommendation for both counties.

Factor 7: Meteorology

There is a large southwesterly and northeasterly wind component in the Columbia area during the ozone season. Back trajectories for the violating monitor indicate that the majority of the winds on came from either the North or South. Therefore, the southern portion of Richland County does have some potential to affect the violating monitor. However, the portion the State proposed as attainment is the portion of the county that is most distant from the violating monitor. Also, based on the back trajectories, there appears to be little affect from the portion Lexington County the State proposed as attainment.

Factor 8: Geography/topography

The Columbia area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

The presumptive boundary for the nonattainment area is the MSA. South Carolina did not present any jurisdictional data to counter the presumptive boundary.

Factor 10: Level of control of emission sources

Lexington and Richland counties are participating in Early Action Compacts. New sources locating in these counties are subject to PSD. Sources in the county are also subject to any appropriate MACT standards. Additionally, South Carolina has statewide VOC RACT in all but 6 counties. The State is in the process of adopting more stringent new source requirements statewide as part of the EAC effort.

Factor 11: Regional emission reductions

South Carolina is subject to the NOx SIP Call. As discussed elsewhere in this analysis, all sources subject to the NOx SIP Call except two are located within the recommended boundary. Those two sources have significant controls already installed to meet the NOx SIP Call

11 Factor Analysis for Knoxville

The following is the 11 factor analysis for Knoxville, TN. The Knoxville, TN MSA contains the counties of Anderson, Blount, Knox, Loudon, Sevier and Union. Jefferson County is downwind and adjacent of the Knoxville MSA and contains a violating monitor. Tennessee s revised recommendation included all of the MSA counties except Union and the Great Smoky Mountain National Park (GSMNP) portion of Blount and Sevier Counties, and that Jefferson County be partial. The revised recommendation asked that the GSMNP, including the portion of Cocke County that is in GSMNP, be designated as a separate area from Knoxville. Based on air quality data for 2001-2003, seven of the eight monitors in the Knoxville area are violating the 8-hour ozone standard, including three monitors located in the GSMNP. EPA s analysis of the 11 factors indicates that based on emissions levels, population and VMT that all of the MSA counties except for Union County should be included in the Knoxville, TN nonattainment area. Union County has very small emissions, very low population and population density, very low VMT and is North of the rest of the MSA while the prevailing winds are from the south west. EPA s analysis also indicates that for at least some of the high ozone levels measured at the monitors in the GSMNP, the rest of the Knoxville MSA is contributing to the violations at those monitors indicating that the Park should not be designated as a separate nonattainment area. In EPA s December 3, 2003 letter to North Carolina, it was agreed that the North Carolina portion of the GSMNP would be designated as a separate nonattainment area. It is not part of a violating MSA and is on the other side of the Ridge from the Tennessee portion.

Area	EPA Recommendation	State Recommendation
Knoxville, TN	Full counties: Anderson, Blount, Knox, Loudon, Jefferson, Sevier GSMNP: Drop: Union	Full counties: Anderson, Blount*, Knox, Loudon, Sevier* Partial: Jefferson GSMNP: *Portions of Bount, Sevier and Cocke in the Park boundary Drop: Union

Factor 1: Emissions and air quality in adjacent areas (including TN park <u>area)</u>

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and

square miles. The following table has the NOx and VOC emissions for the counties in the Knoxville MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Anderson	19303 (229)	31	5343 (362)	9	57	16
Blount	5393 (361)	9	8202 (270)	14	10	15
Knox	24176 (126)	39	30872 (69)	52	48	61
Loudon	5997 (339)	10	5320 (363)	9	26	23
Jefferson	3333 (427)	5	4314 (405)	7	13	16
Sevier	2907 (443)	5	4610 (392)	8	5	8
Union	1018 (490)	2	1067 (496)	2	5	5

Most of the emissions of NOx and VOC are in Knox, Anderson and Blount counties. However, the other MSA counties except for Union and the adjacent county of Jefferson have emissions that have a potential to contribute to the violations at the violating monitors. Union County has only 2 % of the NOx and VOC emissions and is not in the direction of the prevailing winds.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Knoxville MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. The counties recommended by the State have the most of the population of the MSA. However, Union County s population is less than half that of the next smallest county and a population density less than 100, indicating that it does not contribute to air quality levels in the MSA.

County	2000 Population	Population Density
Anderson	71330 (363)	210
Blount	105823 (299)	190
Knox	382032 (111)	755
Loudon	39086 (439)	66

Jefferson	44294 (422)	167
Sevier	71170 (365)	121
Union	17808 (492)	82

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Anderson- 2001-2003 ozone monitor 0.087 ppm

Blount- 2 ozone monitors: Elevated monitor - 0.092ppm Valley monitor - 0.076 ppm

Jefferson- 2001-2003 ozone monitor 0.091 ppm

Knoxville- 2 ozone monitors: ozone monitors 2001-2003 ozone monitor 0.092 ppm ozone monitors 2001-2003 ozone monitor 0.088 ppm

Loudon- no ozone monitor

Sevier- 2 ozone monitors in GSMNP. both at. 0.092ppm

Union- no ozone monitor

All violating monitor sites were included in the recommended nonattainment area. There are no monitors in Union and Loudon counties. Although, the pervasiveness of the ozone violations throughout the monitored portion of the MSA suggests that these counties are likely to also be violating, Union County is to the north of the rest of the MSA and not in the direction of the prevailing winds, indicating less likelihood of violations.

Factor 4: Location of emission sources

Most of the large stationary sources of ozone precursors are located in Anderson and Knox Counties. However, all of the counties in the MSA and Jefferson County have point sources that have emissions with a potential to contribute to the violations in the MSA, Union County has only 1 % of the NOx sources and only 2 % of the VOC point sources, which coupled with the prevailing wind direction indicates no contribution to the violations in the MSA. Mobile source emissions, discussed in detail under factor 5, were evaluated using vehicle miles traveled and traffic patterns as surrogates.

- Anderson- Point source NOx 52% of overall NOx for MSA Point source VOC 9% of overall VOC for MSA
- Blount- Point source NOx 9% of overall NOx for MSA Point source VOC 12% of overall VOC for MSA
- Jefferson- Point source NOx less than 1% of overall NOx for MSA Point source VOC 7% of overall VOC for MSA
- Knoxville- Point source NOx 32% of overall NOx for MSA Point source VOC 58% of overall VOC for MSA
- Loudon- Point source NOx 5% of overall NOx for MSA Point source VOC 8% of overall VOC for MSA
- Sevier- Point source NOx less than 1% of overall NOx for MSA Point source VOC 5% of overall VOC for MSA
- Union- Point source NOx 2% of overall NOx for MSA Point source VOC 1% of overall VOC for MSA

Factor 5: Traffic and commuting patters

<u>Commuting Information</u> - Following is an analysis of the commuting in the Knoxville MSA, including commuters from the adjacent county of Jefferson. Knox County has the most commuters of any of the MSA counties. As described below, 86 % of the Knox County commuters remain in Knox County, contributing 79 % of the commuting in Knox County. People from Blount and Anderson Counties commute to Knox County contributing approximately 7% and 4 %, respectively, with the remaining MSA counties and the adjacent county of Jefferson contributing 3 % or less. Union County contributes the least amount of commuting to Knox County of any of the MSA counties.

Knox County, the core MSA county, has a total of 184,824 commuters.

- Commuters who remain in Knox County: 158,292
- Commuters from Knox County to Anderson County: 11,014
- Commuters from Knox County to Blount County: 5,328

Anderson County, an MSA county has a total of 30,688 commuters

- Commuters that remain in Anderson County: 20,029
- Commuters from Anderson County to Knox County: 8,115
- Commuters from Anderson County to Blount County: 354
- Remainder commute to other MSA counties and the adjacent county of Roane

Blount County, an MSA county, has a total of 49,250 commuters

- Commuters that remain in Blount County: 31,298
- Commuters from Blount County to Knox County: 13,611
- Commuters from Blount County to Sevier County: 915
- Remainder commute to other MSA counties and the adjacent county of Monroe

Loudon County, an MSA county, has a total of 17,671 commuters.

- Commuters who remain in Loudon County: 8,951
- Commuters from Loudon County to Knox County: 4,580
- Commuters from Loudon County to Blount County: 1,076
- Commuters from Loudon County to Anderson County: 804
- Remainder commute to other MSA counties and the adjacent county of Monroe

Sevier County, an MSA county, has a total of 34,389 commuters

- Commuters who remain in Sevier County: 25,388
- Commuters from Sevier County to Knox County: 6,522
- Commuters from Sevier County to Blount County: 904
- Remainder commute to other MSA counties and the adjacent county of Jefferson

Union County, an MSA county, has a total of 7,302 commuters

- Commuters who remain in Union County: 2,573
- Commuters from Union County to Knox County: 3,873
- Commuters from Union County to Anderson County: 331
- Remainder commute to other MSA counties and the adjacent county of Claiborne

Jefferson County, an adjacent downwind violating county, has 20,211 commuters

- Commuters who remain in Jefferson County: 9,007
- Commuters from Jefferson County to Knox County: 4,381
- Commuters from Jefferson County to Sevier County: 1,756
- Remainder commute to other MSA or adjacent counties

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Knoxville MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states.

County	% drive to work	VMT
Anderson	94	819 (360)
Blount	96	1111 (298)
Knox	96	4786 (73)
Loudon	87	673 (389)
Jefferson	32	657 (394)
Sevier	96	670 (391)
Union	95	111 (497)

Knox and Anderson counties contain 54 % and 13 % of the VMT in the area, respectively. The remaining counties contribute less than 10 % each of the area VMT

Factor 6: Expected growth

The following table has the population and population growth figures for the Knoxville MSA counties. The population growth has been relatively high for all of the MSA counties except Anderson, indicating potential contribution to the ozone levels in the MSA, Although Union County experienced a 30 % growth between 1990 and 2000, that percentage was applied to a very small base population.
County	2000 Population	% growth (90-00)	% growth (00-10)
Anderson	71330	4.5	6.5
Blount	105823	23.1	8.8
Knox	382032	13.8	5.9
Loudon	39086	25.1	15.0
Jefferson	44294	34.2	13.3
Sevier	71170	39.4	15.3
Union	17808	30.0	13.5

Factor 7: Meteorology

The predominant wind direction during the ozone season is from the southwest, indicating contribution from the counties of Loudon and Blount to the violating monitors throughout the area. Union County is north of the rest of the MSA and not in the direction of the prevailing winds. Coupled with the very small emissions in Union County, this indicates that Union County does not contribute.

Factor 8: Geography/topography

The southwestern portions of Blount and Sevier Counties are located in the GSMNP.

Factor 9: Jurisdictional boundaries

The presumptive boundary for the nonattainment area is the MSA. The boundaries for the GSMNP span the North Carolina and Tennessee border, but the counties located within the Knoxville MSA are located fully within the State of Tennessee.

Factor 10: Level of control of emission sources

Anderson, Blount, Jefferson, Loudon, Sevier- Subject to Prevention of Significant Deterioration (PSD) requirements, Control Technology Guidelines Reasonable Available Control Technology (CTG RACT, Maximum Achievable Control Technology (MACT) for Hazardous Air Pollutants (HAP), New Source Performance Standards (NSPS)

Factor 11: Regional emissions reductions

Tennessee is subject to the NOx SIP call. TVA has installed SCR on many of its facilities. The Kingston facility located in Roane County, adjacent and to the west of Knoxville will have SCR

operating on 6 of the 9 units by the beginning of the ozone season in 2004.

11 Factor Analysis for Charlotte -Gastonia, NC- Rockhill/York County, SC

The Table below summarizes the boundary recommendations by the States of North and South Carolina for the nonattainment boundary for the Charlotte-Gastonia.NC-Rockhill/York County, SCrea. There are seven counties in the Charlotte-Gastonia,NC-Rockhill/York County, SC MSA: Cabarrus, Gaston, Lincoln, Mecklenburg, Rowan, Union and York. There is also an adjacent county, Iredell, that North Carolina recommended as a partial county because of commuting into Mecklenburg from the southern portion of the county. The State of North Carolina recommended the full counties of Gaston and Mecklenburg; partial counties of Cabarrus, Lincoln, Rowan, Union, and Iredell. The State of South Carolina recommended that York County be designated attainment. Based on air quality levels, emissions, population, prevailing winds, and commuting patterns, EPA believes that all but one of the MSA counties should be designated nonattainment in their entirety, and that York County, South Carolina, should be designated as a partial county. EPA agrees that Iredell County should be a partial county based on the low emissions, low population and population density, and that the VMT in Iredell County that is affecting Mecklenburg County is contained in the portion the State recommended as nonattainment. EPA agrees that York County should be a partial county based on the low emissions, low population and population density in the area outside the nonattainment boundary, and that the VMT in York County that is affecting Mecklenburg County is contained in the portion that is being designated nonattainment. More detailed information can be obtained from the technical support provided by the two States in the docket.

Area	EPA Recommendation	State Recommendation
Charlotte -Gastonia, NC Rockhill/York County, SC	Full counties: Cabarrus, Gaston, Lincoln, Mecklenburg, Rowan, Union Partial: York Iredell (adjacent)	Full counties: Gaston, Mecklenburg Partial- Cabarrus, Lincoln, Rowan, Union, Iredell

Factor 1: Emissions and air quality in adjacent areas (including adjacent C/MSAs)

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions in tons for the counties in the Charlotte-Gastonia-Rock Hill MSA with the percent of the Area totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	NOx	%NOX	VOC	%VOC	NOx Density	VOC Density
Cabarrus	7,104 (307)	7%	8,472 (261)	7%	20	23
Gaston	24,901 (119)	23%	15,405 (162)	13%	70	43
Lincoln	2,973 (441)	3%	4,423 (400)	4%	10	15
Mecklenburg	30,404 (96)	28%	35,341 (56)	30%	58	67
Rowan	12,246 (232)	11.5%	11,295 (208)	10%	24	22
Union	5,120 (372)	5%	7,998 (279)	7%	8	13
York	12,271 (231)	11.5%	16,584 (144)	14%	18	24
Iredell	11,719 (239)	11%	16,454 (147)	14%	20	29

51 % of the NOx and 43 % of the VOC emissions are in the two counties that were the 1-hour ozone area. Rowan, York, and Iredell Counties also have appreciable emissions of both precursors indicating they should be designated nonattainment in their entirety. However, Yorka and Iredell Counties are located on the fringe of the nonattainment area boundary and are significantly rural outside of the nonattainment area boundary. Iredell is a large county north of the MSA with most of the county not near the Charlotte nonattainment area. Since the partial county area recommended by the State is closest to the Charlotte area, all of the emissions from that county do not impact Charlotte and therefore the partial county proposal is acceptable for both of these counties. The majority of York County s VMT and emissions that impact the nonattainment area are located within the nonattainment boundary, and attaining ozone monitors are located in the attainment portion of the county. Although the counties of Lincoln and Union have very small emissions, they contain violating monitors with design values of 0.,092 ppm and 0.088 ppm, therefore, they should be designated nonattainment in their entirety.

Factor 2: Population density and degree of urbanization including commercial <u>development</u>

The following table has the populations for the counties in the Charlotte-Gastonia-Rock Hill MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	2000 population	Population Density
Cabbarrus	131,063 (254)	360
Gaston	190,365 (189)	533
Lincoln	63,780 (375)	214

Mecklenburg	695,454 (57)	1317
Rowan	130,340 (258)	251
Union	123,677 (267)	193
York	164,614 (210)	240
Iredell	122,660 (271)	213

The two counties with the highest populations and population densities have been recommended as nonattainment in their entirety. With the exception of Lincoln County, the other counties have appreciable population and population densities indicating a nonattainment designation. However, Iredell County, as noted above, is a very large county north of most of the MSA, and York County is on the southern side of the MSA with attainment data and very rural, therefore the partial recommendation is acceptable. Although Lincoln County has small population and population density, it has a violating monitor with a design value of 0.092 ppm indicating it should be designated nonattainment in its entirety.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

The Charlotte-Gastonia,NC-Rockhill/York County, SC area has eight ozone monitors:

Lincon: 1 ozone monitor 0.092 ppm

Mecklenburg- 3 ozone monitors: 1 ozone monitor 0.098 ppm 1 ozone monitor 0.096 ppm 1 ozone monitor 0.084 ppm

Rowan- 2 ozone monitors 1 ozone monitor 0.100 ppm 1 ozone monitor 0.099 ppm

Union-1 ozone monitor 0.088ppm

York-1 ozone monitor 0.084ppm

All exceeding monitors have been captured in the proposed nonattainent boundary. The four counties with violating monitors should be designated as nonattainment in their entirety. Although Cabarrus County does not have a monitor, it has emissions and population indicating nonattainment for the entire county. Iredell County, which is adjacent and North (downwind) of the MSA also does not contain an ozone monitor. However, based on other factors, the partial county recommendation of the State is appropriate.

Factor 4: Location of emission sources

There are two large stationary NOx sources and 1 large stationary VOC source in York County, primarily located within the boundaries of the metropolitan planning organization (MPO), which is the nonattainment boundary. These emissions support a nonattainment designation of this part of the county. As noted elsewhere, Iredell County is a very large county located generally downwind of the MSA, supporting the partial county recommendation.

Factor 5: Traffic and commuting patterns

<u>Commuting Information</u>: There are approximately 809,000 thousand commuters in the are. Of those, 452,000 (56 %) are from the two core counties of Gaston and Mecklenburg. The other MSA counties contribute another 37 % with the adjacent county of Iredell contributing 7 %. The partial county recommendations for Iredell and York Counties encompass the majority of the traffic commuting into the area. The other MSA counties recommended as partial contribute over a third of the commuters in the area and coupled with the other factors, that indicates the full counties should be designated as nonattainment. There is significant commuting among the MSA counties as indicated below.

Gaston County has 89, 341 commuters

- Commuters that remain in Gaston County: 56, 321
- Commuters from Gaston County to Mecklenburg County: 23, 101
- Commuters from Gaston County to Lincoln County: 1, 868
- Commuters from Gaston County to York County: 1, 602
- Commuters from Gaston County to Rowan County 1,046
- Remainder commute outside the area

Mecklenburg County has 362,991 commuters

- Commuters that remain in Mecklenburg County 329,498
- Commuters from Mecklenburg County to Cabarrus County: 6,694
- Commuters from Mecklenburg County to Union County: 4,853
- Commuters from Mecklenburg County to York County: 4, 217
- Commuters from Mecklenburg County to Gaston County: 3,948

Cabarrus County has 65,982 commuters

- Commuters that remain in Cabarrus County: 35,032
- Commuters from Cabarrus County to Mecklenburg County: 22,693
- Commuters from Cabarrus County to Rowan County: 4,025
- Commuters from Cabarrus County to Iredell County: 877
- Remainder commute outside the area

Lincoln County has 31,803 commuters

- Commuters that remain in Lincoln County: 15,249

- Commuters from Lincoln County to Mecklenburg County: 6,545
- Commuters from Lincoln County to Gaston County: 3,166
- Commuters from Lincoln County to Iredell County: 521
- Commuters from Lincoln County to Rowan County: 320

Rowan County has 60,299 commuters

- Commuters that remain in Rowan County: 40,721
- Commuters from Rowan County to Cabarrus County: 8,155
- Commuters from Rowan County to Mecklenburg County: 4,942
- Commuters from Rowan County to Iredell County: 1,982
- Remainder commute outside the area

Union County has 61,217 commuters

- Commuters that remain in Union Country: 32,613
- Commuters from Union County to Mecklenburg County: 24,892

York County has 79,996 commuters

- Commuters that remain in York County: 47,898
- Commuters from York County to Mecklenburg County: 23,907
- Commuters from York County to Gaston County: 2,526
- Remainder commute outside the area

Iredell County has 60,191 commuters

- Commuters that remain in Iredell County: 41,787
- Commuters from Iredell County to Mecklenburg County: 91604
- Commuters from Iredell County to Rowan County: 1,958
- Commuters from Iredell County to Cabarrus County: 926
- Remainder commute outside the area

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Charlotte-Gastonia-Rock Hill MSA.

	% drive to work	VMT
Cabarrus	96	1,404
Gaston	95	2,253
Lincoln	81	558
Mecklenburg	97	7,619
Rowan	90	1,555
Union	96	1,049

York	94	1,679
Iredell	22	1817

All of the MSA counties except Lincoln have VMT greater than a million miles per year indicating contribution. Due to the ozone levels and the other factors, all of the MSA counties should be designated as nonattainment in their entirety. As noted above, Iredell and York Counties contributions to the area VMT are contained in the areas that are included in the nonattainment area boundary.

Factor 6: Expected growth

The following table has the population and population growth figures for the Charlotte-Gastonia-Rock Hill MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	2000 population	% growth (99-00)	% growth (00-10)	2000-1990 (1000s)
Cabbarrus	131,063 (254)	32.5	28	36
Gaston	190,365 (189)	8.7	7.4	14
Lincoln	63,780 (375)	26.8	22.1	14
Mecklenburg	695,454 (57)	36	29.3	204
Rowan	130,340 (258)	17.8	16.2	21
Union	123,677 (267)	46.9	35.7	44
York	164,614 (210)	25.2	12.3	20
Iredell	122,660 (271)	32	26	32

All of the counties in the area except Gaston have experienced significant growth on a percentage basis indicating that the MSA counties should all be included in the nonattainment area in their entirety. For reasons stated elsewhere in this document, the partial recommendation for Iredell and York Counties is appropriate.

Factor 7: Meteorology

The prevailing winds during the ozone season have strong southwesterly component, indicating that the part of York County that includes the majority of the population and commuting traffic should be included in the nonattainment area. The northern most counties in the MSA have

violating monitors with design values at or greater than 0.092 ppm, indicating they should be included in their entirety. Iredell is downwind of most of the MSA indicating the partial county proposed by the State is appropriate.

Factor 8: Geography/topography

The Charlotte-Gastonia-Rock Hill area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

The presumptive boundary for the nonattainment area is the MSA. A number of nonattainment areas span across state boundaries.

Factor 10: Level of control of emission sources

York County is participating in an Early Action Compact and the Charlotte SEQL project which are expected to achieve additional emission reductions in York County by 2005, further justifying the partial county boundary in this area.

Factor 11: Regional emission reductions

Both states are subject to the NOx SIP call.

11 Factor Analysis for Clarksville-Hopkinsville, TN-KY

The following is a brief summary of the 11 criteria for Montgomery County, TN and Christian County, TN. These analyses were based on existing available data.

Factor 1: Emissions and air quality

Tennessee recommended that Montgomery County, which is the only Clarksville-Hopkins CMSA county located in Tennessee, be designated attainment.

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Clarksville-Hopkinsville MSA with the percent of the MSA totals. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS.

	NOx	%NOX	VOC	%VOC	NOx Density	VOC Density
Montgomery	5,709 (348)	49	8,202 (269)	56	10.5	15.1
Christian	5,856 (343)	51	6,371 (322)	44	8.1	8.8

Based on the analysis for this factor there appear to be emissions that contribute to air quality in Christian County, KY which contains the violating monitor. (DV = 0.085 ppm)

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Clarksville-Hopkinsville MSA. The number in parentheses represent the national ranking for 505 counties in nonattainment areas done by OAQPS. Urban population figures were not available.

	2000 population	Population Density
Montgomery	134,768 (251)	250
Christian	72,265 (361)	100

65% of the MSA population live in Montgomery County.

Based on the analysis for this factor, there appears to be population sufficient to represent a contribution to Christian County which contains the violating monitor.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Christian County has a monitor showing a violation of the 8-hour standard based on 2001-2003 ambient air monitoring data at 0.085 ppm. Montgomery County does not have an ambient air monitoring station. Analysis of the criteria shows that Montgomery County is likely contributing to the violation recorded in Christian County.

Factor 4: Location of emission sources

There are no large stationary sources in Montgomery County or Christian County. Mobile source emissions were evaluated using vehicle miles traveled and traffic patterns as surrogates. Mobile factors are discussed more under criteria 5. Additionally, Fort Campbell is located in this area and is likely the single largest contributor to mobile source emissions.

Factor 5: Traffic and commuting patterns

Commuting Information

Commuters from Montgomery County, TN, to Christian County, KY: 15, 706 Commuters in Christian County, KY, who work in Christian County: 28, 878 Total commuters in/to Christian County: 44, 584

Commuters from Montgomery County, TN, account for roughly 1/3 of the commuters in Christian County, KY

Commuters from Montgomery County, TN, to Davidson County (Nashville), TN: 4,968 Commuters in Davidson County, TN, who work in Davidson County: 248,866 Total commuters in/to Davidson County: 253,834

Commuters from Montgomery County, TN, account for less than 2 percent of the commuters in Davidson County (Nashville), TN

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Clarksville-Hopkinsville MSA. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS.

	% drive to work	VMT
Montgomery	86	1,216 (276)
Christian	94	942 (331)

Based on the analysis for this factor there is contribution to air quality in Christian County which contains the violating monitor. This level of commuting indicates a potential contribution from Montgomery County to the air quality in Christian County.

Factor 6: Expected growth

The following table has the population and population growth figures for the Clarksville-Hopkinsville MSA counties. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS.

	2000 population	% growth (99-00)	% growth (00-10)
Montgomery	134,768 (251)	34.1 (69)	22 (95)
Christian	72,265 (361)	4.8 (386)	3.5 (352)

Based on the analysis for this factor, there appears to be significant growth in Montgomery County on a percentage basis to indicate a contribution to the air quality in Christian County.

Factor 7: Meteorology

Tennessee provided no information regarding this factor.

Factor 8: Geography/topography

The Clarksville-Hopkinsville area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

The presumptive boundary for the nonattainment area is the MSA. Tennessee did not present any jurisdictional data to counter the presumptive boundary. A number of nonattainment areas span across state boundaries.

Factor 10: Level of control of emission sources

There are no additional controls on the existing or any new stationary sources in Montgomery County or Christian County. This criteria did not play a major role in determining the attainment status of Montgomery County since there are no large stationary sources in the county.

Factor 11: Regional emission reductions

Both Tennessee and Kentucky are subject to the NOx SIP Call. TVA has installed significant controls on the Cumberland and Paradise plants which are the ones that would most likely contribute to violations in the MSA. SCRs were operational on three units at Paradise and on unit at Cumberland in 2003. An additional unit at Cumberland will have an SCR in 2004.

11 Factor Analysis for Greenville - Spartanburg - Anderson, SC

Factor 1: Emissions and air quality

In July 2003, South Carolina recommended that parts of Greenville, Spartanburg, Anderson, Pickens, and Cherokee counties be designated as nonattainment. In December 2003, South Carolina revised their recommendation to only include parts of Greenville, Spartanburg and Anderson counties. EPA intends to modify the State s recommendation to include the entire counties of Greenville, Spartanburg, Anderson counties in the nonattainment area. The recommended boundaries in Greenville, Spartanburg and Anderson are contained in the Metropolitan Planning Organizations for that county. The State submitted supplementary information for each of these counties on February 20, 2004 and February 27, 2004, which is currently under staff review.

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Greenville - Spartanburg - Anderson MSA with the percent of the MSA totals. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS.

	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Anderson	12,366 (229)	21	15,765 (154)	18	17	22
Cherokee	4,245 (399)	7	4,411 (402)	5	11	11
Greenville	16,221 (188)	28	31,994 (63)	36	20	40
Pickens	5,028 (374)	9	9,191 (243)	10	10	18
Spartanburg	19,73519,735	(153 34 9,73	5 £15;65 ;826,658	(853)0	33	24

Based on the analysis for this factor, there appears to be emissions in Greenville County that contribute to the air quality in Spartanburg and Anderson counties, which both contain violating monitors.

Based on this factor, Pickens and Cherokee counties do not significantly contribute to violations in Spartanburg and Anderson counties.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Greenville-Spartanburg-Anderson

MSA. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS. Urban population figures were not available.

	2000 population	Population Density
Anderson	165,740 (209)	231
Cherokee	52,537 (400)	133
Greenville	379,616 (114)	478
Pickens	110,757 (291)	222
Spartanburg	253,791 (157)	312

The table below has the populations for the recommended areas, as of December 2003, in the counties of Greenville, Spartanburg, and Anderson.

	2000 population	Population Density
Anderson	98, 475	339
Greenville	359,875	759
Spartanburg	176,796	547

Based on the analysis for this factor, there appears to be population sufficient to represent contributions to Spartanburg and Anderson counties, which both contain violating monitors.

Based on this factor, Pickens and Cherokee counties do not significantly contribute to violations in Spartanburg and Anderson counties.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Anderson County has a monitor, Powdersville, showing a violation of the 8-hour standard based on 2001-2003 ambient air monitoring data, with a design value of 0.086 ppm. Spartanburg County has a monitor, North Spartanburg Fire Station, showing a violation of the 8-hour standard based on 2001-2003 ambient air monitoring data, with a design value of 0.087 ppm. Greenville County does not have an ambient air monitoring station because of the location of the core of the population in here and the Powdersville monitor best reflects the air quality in the area. Other counties surrounding and within the MSA, Abbeville, Pickens and Oconee, have monitors showing attainment of the 8-hour standard based on 2001-2003 ambient air monitoring data.

Based on this factor, Pickens and Cherokee counties do not significantly contribute to

violations in Spartanburg and Anderson counties.

Factor 4: Location of emission sources

In the information provided, all of the emissions sources in South Carolina are mentioned, however, there is no information provided on the specific controls or reductions planned or installed at these facilities for this area.

Factor 5: Traffic and commuting patterns

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Greenville - Spartanburg - Anderson MSA. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS.

	% drive to work	VMT
Anderson	94	1,949 (191)
Cherokee	89	690 (385)
Greenville	97	3,397 (109)
Pickens	93	986 (323)
Spartanburg	96	3,275 (116)

Commuting Information

Commuters from Anderson County, SC, to Greenville County, SC: 13, 766 Commuters from Spartanburg County, SC, to Greenville County, SC: 14, 586 Commuters in Greenville County, SC, who work in Greenville County, SC: 161, 906 Total commuters in Greenville County: 185, 461

Most of the commuting within Greenville County, SC comes from the Greenville County residents.

Commuters from Anderson County, SC, to Spartanburg County, SC: 1, 264 Commuters from Greenville County, SC, to Spartanburg County, SC: 11, 205 Commuters in Spartanburg County, SC, who work in Spartanburg County, SC: 95, 496 Total commuters in Spartanburg County: 117, 096

Most of the commuting within Spartanburg County, SC comes from the Spartanburg County residents.

Commuters from Greenville County, SC, to Anderson County, SC: 3, 367 Commuters from Spartanburg County, SC, to Anderson County, SC: no data Commuters in Anderson County, SC, who work in Anderson County, SC: 52, 133 Total commuters in Anderson County: 76, 098

There is no available data for the commuters from Spartanburg County, SC to Anderson County, SC. Most of the commuting within Anderson County, SC comes from the Anderson County residents.

Over 90% of Greenville County residents work in Greenville County and over 37% of the entire MSA commuter flow is contained within Greenville County.

Spartanburg County retains 88.64% of Spartanburg County residents that work within the county, and 22.08% of the entire MSA commuter flow is contained within Spartanburg County.

Anderson has a very rural road network, with approximately 75% of the roads in the county classified as rural. Over 72% of Anderson County residents work in Anderson County, and only 12.05% of the entire MSA commuter flow is contained in Anderson County. The boundary captures 100% of the interstate Daily Vehicle Miles Traveled (DVMT).

Based on this factor, Pickens and Cherokee counties do not significantly contribute to violations in Spartanburg and Anderson counties.

Factor 6: Expected growth

The following table has the population and population growth figures for the Greenville -Spartanburg - Anderson MSA counties. The number in parentheses represent the national ranking for counties in nonattainment areas done by OAQPS.

	2000 population	% growth (99-00)	% growth (00-10)
Anderson	165,740 (209)	14	6
Cherokee	52,537 (400)	18	4
Greenville	379,616 (114)	19	4
Pickens	110,757 (291)	18	13
Spartanburg	253,791 (157)	12	9

Based on the analysis for this factor, there appears to be moderate growth in Anderson, Pickens, and Spartanburg Counties on a percentage basis to indicate a contribution to the air quality in the MSA.

Factor 7: Meteorology

The information submitted by South Carolina indicates the Bermuda High, a large ridge of stable, sinking air, is normally situated just off the Atlantic seaboard and its circulation is centered due east of South Carolina. The Bermuda High provides a southwesterly flow of tropical air from the Gulf of Mexico. This normally provides conditions non-conducive to the formation of elevated levels of ozone. When this ridge becomes anomalously shifted from its normal position, which occurs once every 4 to 5 years, conditions conducive to the formation of elevated ozone may occur in many areas of South Carolina. Air stagnation under a anomalous Bermuda High occurs far too sparingly to account for every elevated ozone event.

Based on this factor, Pickens and Cherokee counties do not significantly contribute to violations in Spartanburg and Anderson counties.

Factor 8: Geography/topography

The Greenville - Spartanburg - Anderson area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

The presumptive boundary for the nonattainment area is the MSA. South Carolina did not present any jurisdictional data to counter the presumptive boundary.

Factor 10: Level of control of emission sources

Anderson, Greenville, Spartanburg, Pickens and Cherokee counties are participating in Early Action Compacts. Anderson, Greenville, and Spartanburg counties are also exploring countywide local control strategies to be implemented no later than April 2005. These strategies include designating an ozone action coordinator; encouraging the use of hybrid vehicles and alternative fuels; evaluating the use of high occupancy vehicle lanes; implementing open burning restrictions; and supporting Department statewide efforts. They will continue to implement federally required programs and have created a program, Spare the Air initiative to educate citizens about air quality and its relationship to their health.

Factor 11: Regional emission reductions

South Carolina is subject to the NOx SIP Call. To aid with NOx reductions, South Carolina utilizes Tier 2, an emissions rule that sets new and more stringent exhaust standards, gasoline sulfur standards, standards for heavy-duty engines, highway diesel fuel sulfur standards, and non-road diesel engines and fuel.

11 Factor Analyses for Hickory-Morganton-Lenoir

Area	EPA Recommendation	NC State Recommendation	
Hickory-Morganton-Lenoir	Full counties- Alexander and Catawba Partial counties- Burke and Caldwell	Partial- Burke, Caldwell, Catawba, Alexander	

Factor 1: Emissions and air quality in adjacent areas

County	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Alexander	1028 (489)	2	3147 (445)	7	4	12
Burke	4825 (380)	11	7864 (281)	18	10	16
Caldwell	3610 (422)	8	11743 (202)	27	8	25
Catawba	34840 (81)	79	19962 (123)	47	88	50

All areas partially contribute to the NOx and VOC emissions in the area. Catawba county emissions, although the highest, have had controls installed. (Alexander DV = 0.088 ppm), (Caldwell DV = 0.084 ppm).

Factor 2: Population density and degree of urbanization including commercial development

County	2000 Population	Population Density	Recommended attainment density
Alexander	33603 (458)	130	81
Burke	89148 (329)	177	119
Caldwell	77415 (351)	164	41
Catawba	141685 (242)	358	139

All areas have an overall low population density that neither supports nor denies their recommendation. The State s proposed recommendation encompassed most of the population and all of the urbanized portion (the MPO) with a population density outside the recommended nonattainment area of < 140 people per square mile.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Alexander: 2001-2003 0.088ppm

Caldwell: 2001-2003 0.084ppm

Burke: no monitor

Catawba: no monitor

The Alexander violating monitor has been included in the nonattainment boundary.

Factor 4: Location of emission sources

Alexander: 3 Title V NOx sources within boundary 2 outside of boundary 2 Title V VOC sources outside of boundary

Burke: All Title V sources are within boundary

Caldwell: All Title V sources are within boundary

Catawba: Marshall Steam Station is subject to the Federal NOx SIP call and North Carolina s Clean Smokestack Act controls. The Marshall Steam Station has 4 units. The State s EAC modeling modeled the units at 0.17, 0.17, 0.19, and 0.24 lbs NOx/MMBTU. These limits will be made federally enforceable through EPA s approval of the December 2004, SIP submittal and added to the title V permit.

Factor 5: Traffic and commuting patters

County	% drive to work	VMT
Alexander	86	217
Burke	95	1061
Caldwell	97	701
Catawba	90	1956

Alexander has a driving population of 17,999. Of those 51% (9142) remain in Alexander. 5779

drive to Catawba and the remainder drive to Caldwell and Burke. Alexander contributes 35% of commuters to other MSA counties.

Burke has a driving population of 42214. Of those 69% (29123) remain in Burke. 8366 travel to Catawba and 2405 to Caldwell. Burke contributes 26% of commuters to other MSA counties.

Caldwell has a driving population of 38970. Of those 69% (26932) remain in Caldwell. 8011 travel to Catawba, 2297 to Burke and the remainder to Alexander. Caldwell contributes 28% of commuters to other MSA counties.

Catawba has a driving population of 73984. Of those 84% (62459) remain in Catawba. 1883 travel to Burke, 1552 to Caldwell and the remainder to Alexander. Catawba contributes less than 1% of commuters to other MSA counties.

County	2000 Population	% growth (99-00)	% growth (00-10)	2010-2000 (1000's)
Alexander	33603	22	18.8	6
Burke	89148	17.7	14.5	13
Caldwell	77415	9.5	7.4	71
Catawba	141685	19.7	17.1	146

Factor 6: Expected growth

Minor growth is expected in areas except Catawba.

Factor 7: Meteorology

Alexander: climatologically downwind of the urbanized portion of the MSA. The county is often impacted by transport from the Charlotte and Triad urban areas.

Burke: strongly influenced by Charlotte and Hickory urban areas under southernly flow and recirculation commonly observed during high ozone events.

Caldwell: strongly influenced by Charlotte and Hickory urban areas under southernly flow and recirculation commonly observed during high ozone events.

Catawba: strongly impacted by upstream urban areas (Triad and Charlotte) during high ozone events. Recirculation within the MSA is also a factor high ozone events during the summertime.

Factor 8: Geography/topography

Burke: Mountain range along western part of county-recommended as attainment.

Caldwell: Mountain range along western part of county-recommended as attainment.

Factor 9: Jurisdictional boundaries

All areas follow MPO boundaries.

Factor 10: Level of control of emission sources

Burke, Caldwell, Catawba: I/M program implementation

Factor 11: Regional emissions reductions

NOx SIP Call CSA Controls

Due to NC self-initiative of such programs such as expanded I/M programs along with CSA controls and the Clean Smokestacks initiative, we believe that NC recommendation and justifications for partial counties for Burke and Caldwell are reliable and representative of past, current and future efforts for clean air. Alexander and Catawba Counties are recommended for full counties based on air quality and level of emissions.

11 Factor Analyses for Raleigh/Durham/Chapel Hill, NC

The Table below summarizes the boundary recommendations by the State of North Carolina for the nonattainment boundary for the Raleigh/Durahm/Chapel Hill area. There are six counties in the Raleigh/Durham/Chapel Hill MSA: Chatham, Durham, Franklin, Johnston, Orange, and Wake. There are also two adjacent counties with violating monitors: Granville and Person. The State of North Caolina recommend the full counties of Durham, Orange and Wake; partial counties of Chatham, Franklin, Granville, Johnston, and Person. Based on air quality levels, emissions, population, prevailing winds, and commuting patterns, EPA believes that Durham, Orange, Wake, Franklin, Johnston, Granville and Person Counties should be designated nonattainment in their entirety. EPA agrees that Chatham County should be designated as partial based on the air quality levels, and the emissions and populations captured in the partial designation. Based on the violating monitors and the level of air quality in Franklin, Granville, Johnston and Person Counties, EPA believes these counties should be designated as nonattainment in their entirety. More detailed information can be obtained from the technical support provided by the State in the docket.

Area	EPA Recommendation	State Recommendation
Raleigh/Durham/Chapel Hill	Full counties: Durham, Orange, Wake, Franklin, Johnston, Granville and Person Partial: Chatham,	Full counties : Durham, Orange, Wake Partial: Chatham, Franklin, Granville, Johnston, Person

Factor 1: Emissions and air quality in adjacent areas

EPA's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Raleigh/Durham/Chapel Hill MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Chatham	8171 (289)	7	4734 (386)	6	12	7
Durham	10607 (245)	9	12653 (192)	17	36	43
Franklin	1933 (472)	2	3081 (448)	4	4	6
Johnston	8427 (286)	7	8617 (251)	12	11	11

Orange	6624 (319)	6	6878 (308)	9	17	17
Wake	26992 (110)	23	31534 (65)	43	32	37
Granville	3215 (434)	3	3499 (431)	5	6	7
Person	50425 (41)	43	2812 (455)	4	90	7

Durham, Orange and Wake Counties account for 38 % of the NOx and 69 % of the VOC emissions in the area and are the three counties the State recommended as nonattainment in their entirety. The NOx emissions listed for Person County (43%) are based on the 1999 emissions, prior to the SCR being installed on the units at the Mayo and Roxboro power plants. However, Person County contains a violating monitor and should be designated as nonattainment. Although Franklin and Granville Counties comprise on ly 5 and 9 % or the NOx and VOC emissions, respectively, they contain violating monitors with design values at 0.090 ppm or above. Chatham and Johnston Counties contain a moderate amount of emissions. Chatham County has three consecutive three year periods of the attainment data supporting a partial designation and should be designated as partial nonattainment. However, Johnston County has a violating monitor and should be designated nonattainment in its entirety.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Raleigh/Durham/Chapel Hill MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	2000 Population	Population Density	Contribution to MSA
Chatham	49329 (410)	70	
Durham	223314 (173)	749	
Franklin	47260 (416)	96	
Johnston	121965 (274)	153	
Orange	118227 (282)	296	
Wake	627846 (66)	735	
Granville	48498 (411)	91	
Person	35623 (449)	90	

The population reflected in Durham, Orange and Wake Counties, the three counties recommended by the state as whole nonattainment counties, represent over 76 % of the area s population. Although Franklin, Granville, and Person Counties have low population and low population densities, they have monitors with design values at or above 0.090 ppm.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

The Raleigh/Durahm/Chapel Hill area has 10 monitors, nine of which are violating the ozone standard. The attaining monitor is located in Chatham County.

Durham: 1 ozone monitor 2001-2003 0.089 ppm

Wake: 4 ozone monitors:

1 ozone monitor 2001-2003 0.092 ppm

1 ozone monitor 2002-2003 0.091 ppm

- 1 ozone monitor 2001-2003 0.088 ppm
- 1 ozone monitor 2001-2003 0.085 ppm

Chatham: 1 ozone monitor 2001-2003 0.082 ppm

Franklin: 1 ozone monitor 2001-2003 0.090 ppm

Granville: 1 ozone monitor 2001-2003 0.094 ppm

Johnston: 1 ozone monitor 2001-2003 0.085 ppm

Person: 1 ozone monitor 2001-2003 0.091 ppm

All exceeding monitors have been captured in the nonattainment boundary. The six violating counties have monitors with design values at or above 0.090 ppm and should be designated as nonattainment in their entirety. Chatham County s monitor is monitoring attainment and has for three consecutive three years of data supporting a partial county designation.

Factor 4: Location of emission sources

As summarized below, most of the large sources of NOx and VOC sources located in the recommended nonattainment area. Three power plants located in Chatham and Person Counties are outside the nonattainment area. As discussed above, the plants in Person County have SCR controls, however Person County has a violating monitor with a high design value and should be designated nonattainment in its entirety. Chatham County has several sources, including a moderate sized power plant; however the county is monitoring attainment, therefore we believe it should be a partial nonattainment county to encompass this large source.

Durham: All Title V sources are within boundary.

Orange: All Title V sources are within boundary.

Wake: All Title V sources are within boundary.

Chatham: 3 of the Title V NOx and VOC sources are located outside of the state recommended boundary.

Franklin: All except 1 Title V source are located within the state recommended boundary.

Granville: 3 Title V sources are within the state recommended boundary; 1 is outside

Johnston: All Title V sources are within state recommended boundary.

Person: All Title V sources (3 NOX, 6 VOC) are outside of the state recommended boundary.

Factor 5: Traffic and commuting patters

<u>Commuting Information</u>: There are approximately 654,000 thousand commuters in the area, 512,000 (78 %) are from the three core counties of Durham, Orange and Wake. The other three counties in the MSA comprise 16 % and the two adjacent provide the other 6 %. There is significant commuting among the MSA counties as indicated below.

Durham County has112,433 commuters

- Commuters who remain in Durham County: 84,262 (75 %)
- Commuters from Durham County to Wake County: 13,929
- Commuters from Durham County to Orange County: 9,262
- Commuters from Durham County to Granville County:1,410

Orange County has 60,860 commuters

- Commuters who remain in Orange County: 35,053 (58 %)
- Commuters from Orange County to Durham County: 16,470
- Commuters from Orange County to Wake County: 4,212
- Commuters from Orange County to Chatham County: 792
- Remainder commute outside the area

Wake County has 338,602 commuters

- Commuters who remain in Wake County: 272,432 (80 %)
- Commuters from Wake County to Durham County: 43,351
- Commuters from Wake County to Johnston County: 4,050
- Commuters from Wake County to Orange County: 3,552
- Remainder commute outside the area

Chatham County has 24,657 commuters

- Commuters who remain in Chatham County: 11,018 (45 %)
- Commuters from Chatham County to Orange County: 4,206
- Commuters from Chatham County to Wake County: 2,743
- Commuters from Chatham County to Durahm County: 2,739
- Remainder commute outside the area

Franklin County has 22,248 commuters

- Commuters who remain in Franklin County: 7,772 (35 %)
- Commuters from Franklin County to Wake County: 10,347
- Commuters from Franklin County to Durham County: 951
- Commuters from Franklin County to Granville County: 616
- Commuters from Franklin County to Johnston County: 282
- Remainder commute outside the area

Johnston County has 58,675 commuters

- Commuters who remain in Johnston County: 26,971 (46 %)
- Commuters from Johnston County to Wake County: 23,628
- Commuters from Johnston County to Durham County: 1,645
- Remainder commute outside the area

Granville County has 20,494 commuters

- Commuters who remain in Granville County: 10,957 (53 %)
- Commuters from Granville County to Durham County: 4,609
- Commuters from Granville County to Wake County: 2,489
- Commuters from Granville County to Orange County: 249
- Commuters from Granville County to Franklin County: 238
- Commuters from Granville County to Person County: 221
- Remainder commute outside the area

Person County has 16,531 commuters

- Commuters who remain in Person County: 9,609 (58 %)
- Commuters from Person County to Durham County: 3,939
- Commuters from Person County to Orange County: 671
- Commuters from Person County to Wake County: 614
- Commuters from Person County to Granville County: 562
- Remainder commute outside the area

The following table has the percent who drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Raleigh/Durahm/Chapel Hill MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County % drive to work	VMT
------------------------	-----

Chatham	84	408 (443)
Durham	96	2439 (151)
Franklin	87	412 (442)
Johnston	90	1760 (202)
Orange	93	1423 (342)
Wake	96	6763 (46)
Granville	37	707 (280)
Person	32	316 (468)

Most of the MSA VMT, 75 %, occurs in the three counties recommended as whole counties. The other three MSA counties recommended as partial contribute a total of 18 % of the area VMT, and the two adjacent counties contribute 7 %. All but one of the partial counties, Chatham, have violating monitors. One, Johnston County is close to the standard.

Factor 6: Expected growth

The following table has the population and population growth figures for the Raleigh-Durham-Chapel Hill MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	2000 Population	% growth (99-00)	% growth (00-10)	2000-1990 (1000's)
Chatham	49329 (410)	27.3	21.8	11
Durham	223314 (173)	22.8	15.6	35
Franklin	47260 (416)	29.8	24.8	12
Johnston	121965 (274)	50.0	38.0	46
Orange	118227 (282)	26.0	19.1	23
Wake	627846 (66)	48.3	36.5	229
Granville	48498 (411)	26.5	20.3	10
Person	35623 (449)	18.0	14.8	5

All of the counties in the area have experienced significant growth on a percentage basis. The actual population increase in number of people has primarily occurred in the largest county Wake where 48 % of the growth has occurrd in Wake County, the largest county in the area. Chatham

County has experienced only 2 % of the actual growth supporting the partial county recommendation. Person, Franklin and Granville also have low actual growth, but have violating monitors with design values at or greater than 0.090 ppm, almost 10 % of the growth has occurred in Johnston County.

Factor 7: Meteorology

The prevailing winds during the ozone season have strong southwesterly component. The counties of Person, Granville and Franklin are on the north/northeast of the MSA and not in the prevailing wind direction. However, these counties have violating monitors with design values at or above 0,090 ppm.

Factor 8: Geography/topography

None.

Factor 9: Jurisdictional boundaries

There are no jurisdictional boundaries that have a bearing on this designation.

Factor 10: Level of control of emission sources

Clean Smokestacks Act/NOx SIP Call

Reduce NOx from large coal-fired boilers

Year round reductions for coal-fired power plants
State has modeled the plants in this area at the following emission rates which will be submitted as part of the EAC SIP in December 2004

- " Belews Creek- both units at 0.10 NOx/nnbtu
- " Dan River- 2 units at 0.35

1 unit at 0.17

Clean Air Bill

- **Reduce NOx and VMT**
- Encourage purchase of low-emission vehicles

OBDII Emissions Inspection Program

Address NOx, VOC and CO

Requires 1996 and newer vehicles to receive emissions inspections

Lease Control Program Initiative

- □□ Mecklenburg County has increased local sales tax to fund new transit operations
 - Regional Rail
 - Public Transportation
- EAC establishing local control measures

- Sustainable Environment for Quality of Life (SEQL)
- \Box Clean Cities
- **Breathe Initiative**
- Great Triangle Regional Council
- U Wake County Air Quality Task Force

Factor 11: Regional emissions reductions

Durham, Orange, Wake, Chatham, Franklin: NOx SIP Call and CSA will produce significant NOx reductions from the Cape Fear Steam Station in Chatham Co.

Granville, Person: NOx SIP Call and CSA will require significant NOx reductions from Roxboro and Mayo units in neighboring Person County that have SCR.

San Joaquin Valley / Eastern Kern County

Topography 8320

China Lake (Dry)

Indian Wells Valley

6698

El Paso Mtns.

5244

Rand Mtns.

EASTERN KERN 3145

Nonattainment Area Boundary

8451

7294

8-hour Ozone Standard

Topography

Section Contours (1000 ft interval)

Selected Mountain Peak Elevations (feet) ۲

50 Miles

STATE OF

Bill Owens, Governor Douglas H. Benevento, Executive Director

Dedicated to protecting and improving the health and environment of the people of Colorado

8100 Lowry Blvd.

(303) 692-3090

4300 Cherry Creek Dr. S. Denver, Colorado 80246-1530 Phone (303) 692-2000 TDD Line (303) 691-7700 Located in Glendale, Colorado

http://www.cdphe.state.co.us

April 7, 2004

EPA Docket Center U.S. Environmental Protection Agency 1301 Constitution Avenue, NW ATTN: Docket No. 2003-0090 Room B108 Mail Code 6102-T Washington, D.C. 20460

Colorado Department of Public Health and Environment

Enclosed, please find compact discs (CDs) that contain the materials supporting the portion of Colorado's 8-hour ozone designations final rule that addresses EAC areas.

Specifically, the CDs contain the State's transmittal letter (memorandum) dated 3/30/04, the "Early Action Compact Ozone Action Plan, Proposed Revision to the State Implementation Plan", as approved by the Colorado Air quality Control Commission (AQCC) on March 12, 2004, Colorado's Regulation No. 7 and Regulation No. 11 as approved by AQCC on March 12, 2004, the Common SIP Provisions and Ambient Air Regulation, both as approved by the AQCC on March 12, 2004, and each of the Technical Support Document appendices ("A" through "O") as listed on the State's website at: http://apcd.state.co.us/documents/eac.

Sincerely,

heila Burns

Sheila Burns Program Manager **Technical Services Program** Air Pollution Control Division 303-692-3223 Enclosure

cc: Margie Perkins, APCD* Mike Silverstein, APCD* Tim Russ, EPA, Region VIII* *no enclosure

P4.21 AN EXAMINATION OF THE OPERATIONAL PREDICTABILITY OF MESOSCALE TERRAIN-INDUCED FEATURES IN EASTERN COLORADO FROM SEVERAL MODELS

Edward J. Szoke^{*†} and Brent L. Shaw^{*} NOAA Forecast Systems Laboratory Boulder, Colorado 80303

1. INTRODUCTION

With the improvement of radar and surface observations, forecasters have become increasingly aware of the importance of mesoscale circulations, which can have a significant impact on the sensible weather. In the past such features were difficult to observe with real-time data and were seldom captured by operational numerical models. However, with increased grid resolution of operational models and the availability of locally run smaller-scale models, it is now possibile to resolve and predict features on the mesoscale. In this study we look at the predictability of two well-known mesoscale features that occur in northeastern Colorado by examining forecasts from the latest versions of the Eta and RUC models, as well as from a local model run quasi-operationally at the NOAA Forecast Systems Laboratory (FSL) for the collocated Boulder Weather Forecast Office (WFO).

The features of interest are known locally as the "Denver Cyclone" and the "Longmont Anticyclone," both of which have been well-documented at conferences and in the literature, through observational studies and numerical modeling using various research models (see, for example, Szoke et. al. 1984, Szoke 1991 and the references in that paper, and Wesley 1995). Both features are induced by the interaction of the synoptic flow with terrain. The resultant weather changes that can arise in association with these features range from dramatic variation in the wind field to mesoscale distribution of precipitation and localized occurrence of severe weather during winter and convective seasons. Clearly, there is high interest in trying to make operational forecasts of these features. Before the advent of higher resolution models, forecasters generally used synoptic flow forecasts and their understanding of the potential mesoscale features that could develop under such flow conditions to predict the occurrence of the two flow features. Numerical models provide the possibility for more accurate predictions of the occurrence of these important phenomena.

Although local-scale models have been running at FSL (and made available to the Boulder WFO) for years, there has not been a consistent verification effort aimed at these two northeast Colorado flow features. Also, a recent change of the local-scale model to a version of the MM5, with somewhat better resolution of the lower levels, has improved the overall ability to forecast the circulations. Meanwhile, the reduction of the grid resolution of the operational Eta to 22 km allows it to make better forecasts of both features. The new 20-km version of the Rapid Update Cycle (RUC-2) model (Benjamin et. al. 2000) has also demonstrated predict-Here we present a ability of these features. subjective examination of the three models' predictions of the Denver Cyclone and Longmont Anticylone. Comparison is made with sensible weather using detailed observations (METAR and local mesonet), coupled with the Local Analysis and Prediction System (LAPS, McGinley et al. 1991) analysis for the verification times. In addition, we examine the model point forecasts for some of the sites where the Boulder WFO is required to make a Terminal Aviation Forecasts (TAF), as a further test of model performance and utility. We mainly concentrate here on predictions of the Denver Cyclone, and hope to show additional cases that include the Longmont Anticyclone at the poster session during the conference.

2. OVERVIEW OF THE MODELS

FSL has been testing the potential of running a local-scale model at a WFO for years (Shaw et al. 2001), using the Boulder (formerly Denver) WFO as a test site. FSL's key idea behind local modeling is to initialize the model utilizing a local analysis based on a variety of data, some of which may only be available at a WFO (as opposed to a national center). In this regard, LAPS has been used to initialize various models that have been run locally at FSL at a grid resolution of 10 km, including the Eta, SFM (Scalable Forecast Model, a version of the Colorado State University RAMS model), and MM5 (NCAR/Penn State University Mesoscale Model-Version 5). Since the mid-1990s all three of the local models were run, usually twice daily, with output to the FSL Webpage (Szoke et al. 1998). To better demonstrate the feasibility of local modeling at a WFO, over the last two years one local model (the SFM) was run within the Boulder WFO, using a separate multiprocessor computer connected inside the firewall to their Advanced Weather Interactive Processing System (AWIPS, Wakefield 1998) The project successfully demonworkstation. strated the capabilities of such an approach, using

^{*} In collaboration with the Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado.

[†] Corresponding Author address: Ed Szoke, 325 Broadway R/E/FS1 Boulder, CO 80303. Email: szoke@fsl.noaa.gov
LAPS analyses to initialize the model for four runs per day out to 18 h.

More recently (over the last year) FSL has made a few changes to the local modeling system, including replacing the SFM with the NCAR/PSU MM5 model, employing a "hot-start" through LAPS to initialize the model (Shaw et al. 2001), and running the model over an expanded domain that is considerably larger than the WFO forecast area (still at 10-km horizontal grid resolution) of 125 by 105 points. The vertical grid consists of 41 levels, with the highest resolution contained within the boundary layer. The Schultz explicit microphysics and the Kain-Fritsch convective parameterization are employed. The rapid radiative transfer model (RRTM) scheme is used as the longwave radiation package, and the Blackadar scheme is used for the PBL parameterizations. Although the model conceivably could still run on the same machine that was used for the SFM, with the availability of the new FSL supercomputer and collocation of the Boulder WFO, the model was run by FSL using some nodes of the supercomputer with the results transmitted to the WFO for display on their AWIPS. Four runs are made each day, with output expanded to go out to 24 h. The model output is also available online through the FSL LAPS homepage at http://laps.fsl.noaa.gov.

Although they are not run at the same 10-km grid resolution, two other models are applicable for the forecast problem of mesoscale circulations and were used in this study. One is the new 20-km RUC-2 model (online documentation and access to this model is available at http://ruc.fsl.noaa.gov/). The RUC model provides high-frequency mesoscale analyses and short-range forecasts for the domain of the continental United States (CONUS). Extensive documentation of the RUC model can be found at the Web site and through Benjamin et al. (2000). The RUC is quite a different model than the MM5 or Eta, being an isentropic model with sigma levels closer to the surface (40 levels are used in the new 20-km RUC ("RUC20")). Another aspect of the RUC model is its ability to ingest off-synoptic-time data from sources like ACARS, satellite, and surface data in its analysis scheme. Some of the model characteristics, such as radiation and microphysics schemes, are versions of those used in the MM5, but other schemes are designed especially for the RUC. For this paper we used output from the "RUC20" that was available online, concentrating on predictions of the surface wind. The RUC is updated hourly, with forecasts made hourly out to 3 h, and out to 12 h at 6-h intervals. In addition, 24-h forecasts (made twice per day) were also available online. As of this writing, the 20-km RUC is still considered experimental (with the 40-km RUC operational at the National Center for Environmental Prediction (NCEP)), but is sceduled for implementation soon.

The final model that was used for comparison is the Eta model, which for the period of comparison (beginning in the fall of 2000) was being run by NCEP at a resolution of 22 km (Black 1994). Output from this model is available out to 48 or 60 h for runs every 6 h at WFOs nationwide through AWIPS, with the best resolution output distributed for a subsection of the CONUS under the title of "Mesoeta" (Black 1994). The 22-km output is actually interpolated to a 20-km grid, with surface output transmitted for display on AWIPS at this highest resolution. An online description of the mesoeta can be found at http:// nimbo.wrh.noaa.gov/wrhq/96TAs/TA9606/ta96-06.html. Note that for the MM5 and RUC-2 models, their native output of 10 km and 20 km grids (respectively) were used.

3. OVERVIEW OF THE DENVER CYCLONE AND LONGMONT ANTICYCLONE

Because of limited space here, we concentrate on the modelling of the Denver Cyclone, but hope to also show cases of the Longmont Anticyclone feature at the conference.

3.1 Denver Cyclone

The Denver Cyclone is a mesoscale flow feature that was documented when data became available from a mesonetwork of automated surface stations installed by FSL in 1980 for the purpose of testing the utility of such data. A schematic of the feature is shown in Fig. 1. Also known as the Denver Convergence-Vorticity Zone (DCVZ), because it may appear as an approximate north-south zone of low -level convergence and cyclonic vorticity rather than a full fledged circulation, it is a relatively common feature, appearing on 20 to 30% of warm season days (Szoke et al. 1984). Numerous successful modeling studies (summarized in Szoke 1991) with

Fig. 1. Schematic of the DCVZ, along with terrain (m) and METAR sites. Background map shows county outlines.

research models have helped establish a likely cause of the feature, which is the response of southerly component flow passing over the terrain feature known as the Palmer Divide (the east-west ridge south of Denver depicted in Fig. 1) under conditions of appropriate stability. One of the reasons the DCVZ is important for local weather in the Boulder WFO forecast area is its influence on winds, which can be important enough to determine the takeoff/landing configuration at Denver's International Airport (DIA), since this site often lies close to the DCVZ and so at times can either experience 20-25 knot plus southerly flow, or north to northwest flow at around 10 knots (airport LLWAS sensors have even documented cases where a portion of a runway experienced one flow while the opposite end had the other). Also, the DCVZ is often the location of initial convection and later severe storms (particularly nonsupercell tornadoes, because of its association with regions of localized cyclonic vertical vorticity). For this paper we use the wind forecast problem associated with the Denver Cyclone as a test of the model, verifying the various models against the observed winds at the sites where the Boulder WFO has responsibity for issuing TAFs (see Fig. 1).

In addition to the various modeling studies of the DCVZ noted above, many years ago the RUC model was used in a nested grid formulation of 80 km (the operational RUC at that time) for the outer domain and 20 km for the inner domain to successfully model a single Denver Cyclone case (Benjamin et al. 1986). Because of the larger grid used for that study, it was the first modeling demonstration of a DCVZ-like feature north of two east-west terrain ridges along the Front Range that are similar to the Palmer Divide, the Raton Mesa near the Colorado-New Mexico border, and the Cheyenne Ridge near the Colorado-Wyoming border.

3.2 Longmont Anticyclone

The Longmont Anticyclone is another flow feature that results from the interaction of the lower level flow with the terrain in the area. In this case, northwesterly flow across southern Wyoming apparently interacts with some of the higher terrain of the Rockies and the Chevenne Ridge, causing the flow to turn to north or northeast as it enters Colorado and moves southward along the Front Range (Wesley et al. 1995). In more extreme cases the flow will turn all the way to the southeast along the Front Range, with the center of the circulation sometimes located near the town of Longmont (~20 km northeast of Boulder), hence the name. The feature is sometimes associated with enhanced precipitation near the Front Range, and of course is important for determining low-level wind direction and speed.

4. A DCVZ FORECAST EXAMPLE

A Denver Cyclone case from 24 March 2001 is used to illustrate the ability of the three models considered to predict the feature. This date happened to be when FSL was running the "RUC20" out to 24 h in support of the Pacific Land-falling Jets Experiment (PACJET), so we took advantage of this opportunity to compare 24-h forecasts from the three models, all initialized on 23 March 2001 at 1800 UTC. It is useful to recall that one of the differences among the models is the initialization scheme, with the LAPS analysis used for the "MM5hot" run, with boundary conditions provided by the Eta model (in this case the 1200 UTC run). The verifying LAPS analysis for 1800 UTC on 24 March is shown in Fig. 2. Comparison of the analy-

Fig. 2. LAPS analysis of surface wind (long barb = 10 kts) and MSL pressure for 1800 UTC on 24 March 2001.

sis to surface observations (shown later in Table 1) reveal that the LAPS analysis does a good job of depicting the location of what is a full Denver Cyclone circulation for this case, centered about 15-20 km to the east of Denver. The different 24-h forecasts are shown in Figs 3a-c, with all the runs valid for the time of the LAPS analysis in Fig. 2.

As an overview, perusal of the three predictions in Fig. 3 indicates that all three models were able to forecast a Denver Cyclone. Considering that these are 24-h forecasts, this result alone is considered to be quite impressive, and nicely shows the capabilities of modeling at finer grid resolution. Although all three models generally show the Denver Cyclone in approximately the same area, there are some differences. The "MM5hot" solution shows an elongated circulation in the east-west direction rather than more circular, and appears to be centered about 30 km too far east. While there is some possibility that the actual circulation could be a little farther east than the LAPS analyses indicates (since observations become more spotty east

Fig. 3a. "MM5hot" 24 h forecast of surface winds (background is temperature) valid 1800 UTC 24 March.

Fig. 3b. As in Fig. 3a but for the Mesoeta.

of DIA), we believe the LAPS analysis is a close representation of where the Denver Cyclone was located in this case. The Mesoeta forecast in Fig. 3b has a more circular Denver Cyclone and its position is farther west than the "MM5hot" fore-

Fig. 3c. As in Fig. 3a but for the RUC-20 km run. Note that the background color in this case is wind speed.

cast, actually positioned a bit too far west and south but really quite a good forecast. The "RUC20" forecast shown in Fig. 3c is presented without the county background map shown in the other figures, as it was captured from a Web presentation at a larger scale. However, it is possible to get an indication of where its forecast of the Denver Cyclone is by comparing it to Fig. 3b (using the state boundaries), since the wind barbs in both figures are displayed at 20-km intervals and positioned in approximately the same location. Such a comparison indicates that the forecast position of the center of the Denver Cyclone from the "RUC20" is about 20 km northwest of the Mesoeta position in Fig. 3b, with a similar circular shape. Comparison of each forecast with the LAPS analysis in Fig. 2 again indicates that all are good forecasts, with the best forecast perhaps a consensus location from the three models for this time.

Examination of other times (not shown) using the LAPS analyses indicates that at 1200 UTC on 24 March the Denver Cyclone was centered more over southern portions of Denver, and then moved slowly east-northeastward through midafternoon (2100 UTC). The model forecasts varied on this evolution; the "MM5hot" came fairly close to forecasting what was observed at 1200 UTC, and moved the circulation off correctly to the eastnortheast, but was somewhat premature compared to what was observed. The Mesoeta tended to anchor the circulation close to the position indicated in Fig. 3b, while the "RUC20" moved the circulation in a manner like the MM5 between 1200 and 1500 UTC, but then strengthened the circulation with some retrogression to the position in Fig. 3c, before moving it somewhat northeastward by 2100 UTC. In the experimental simulation by Crook et al. (1990) the Denver Cyclone circulation moved north-northeastward with time, but observations suggest that while this may be true in some cases (Szoke 1991), there are many variations that include a relatively stationary circulation. For this case it appears the "MM5hot" may have been closest to simulating the observed motion of the circulation. To get a better idea how the different models actually verified for point wind forecasts, we examined some forecast hours for this and other cases for the DEN METAR site, which is located at DIA, and is therefore of interest to operational forecasters who are required to issue TAFs for this and other locations. The results are shown in Table 1.

Date (all 2001) & Time (UTC) &	METAR Obs	Model Forecast Wind (direction and speed (kts))						
station	003	MM5hot	RUC20	Mesoeta				
DCVZ case, for models initialized at 1800 UTC 23 Mar								
24 Mar/12/DEN	10011	10005	12010	09010				
24 Mar/15/DEN	08009	calm	19010	08005				
24 Mar/18/DEN	05008	calm	18005	06005				
DCVZ case, for mod	DCVZ case, for models initialized at 1200 UTC 17 Apr							
17 Apr/18/DEN	14006	12005	16005	14005				
17 Apr/21/DEN	14007 12010		19005	13005				
18 Apr/00/DEN	18007	14010	16005	15005				
DCVZ case, for mo	lels initial	ized at 12	00 UTC 1'	7 Apr				
17 Apr/18/BJC	27005	09005	06005	calm				
17 Apr/21/BJC	03003	11005	12005	calm				
18 Apr/00/BJC	34006	05005	10005	18003				
LGM Anticyclone; 1	nodels ini	tialized at	1800 UTC	C 30 Apr				
30 Apr/21/DEN	30013	32015	31520	32005				
1 May/00/DEN	09006	34010	34010	26005				
30 Apr/21/BJC	30012	34005	30015	29005				
1 May/00/BJC	18006	11005	30010	24005				

The trends discussed for the first case (24 March) are reflected in the point wind forecasts for DEN. The second case was more of a DCVZ rather than a circulation, with the convergence zone starting out near DIA then gradually moving slightly westward with time. There are no major differences in the wind forecasts for this case for DEN listed in Table 1, though examination of the

individual forecasts showed that the "MM5hot" best captured the position of the DCVZ, with the "RUC20" pushing the southeast flow too far west and the Mesoeta too weak without much turning of This is generally reflected in the the wind. verification for station BJC (Broomfield-Jeffco Airport), south of Boulder, which remained on the west side of the DCVZ. The final case shown is for a Longmont Anticyclone, which as seen by the wind observations created a turning of the flow to south/east from the prevailing northwest flow between 2100 and 0000 UTC. For this case, only the "MM5hot" captured this wind turning, perhaps because this is a rather weak case that could not be handled well at 20-km grid resolution.

5. SUMMARY AND CONCLUSIONS

In general all three models showed skill in resolving the Denver Cyclone, with an edge to the finer resolution MM5hot for the weaker cases. These limited results are encouraging, and suggest that local models can provide significant support to forecasting even at the 24-h range.

6. ACKNOWLEDGMENTS

We wish to thank Nita Fullerton and Joe Golden of FSL for reviews of this paper.

7. REFERENCES

Benjamin, S.G., R. Brummer, E. Hsie, EJ. Szoke, and J.M. Brown, 1986: Numerical simulations of a local topographically induced circulation using a nested grid model. *11th Conf. on Weather Forecasting and Analysis*. Kansas City, MO, Amer. Meteor. Society, 370-374.

Benjamin, S.G., G.A. Grell, J.M. Brown, K.J. Brundage, D. Devenyi, D. Kim, B. Schwartz, T.G. Smirnova, T.L. Smith, S.S. Weygandt, and G.A. Manikin, 2000: The 20-km version of the Rapid Update Cycle. *9th Conf. on Aviation, Range, and Aerospace Meteorology*, Ame. Meteor. Soc., Orlando, FL, 421-423.

Black, T.L., 1994: The new NMC mesoscale eta model: Description and forecast examples. *Weather and Forecasting*, **9**, 265-278.

Crook, N.A., T.L. Clark and M.W. Moncrieff, 1990: The Denver Cyclone. Part I: Generation in low Froude number flow. *J. Atmos. Sci.*, **47**, 2725-2742.

McGinley, J.A., S.C. Albers, and P.A. Stamus, 1991: Validation of a composite convective index as defined by a real-time local analysis system. *Weather and Forecasting*, **6**, 337-356.

Shaw, B.L., E.R. Thaler, and E.J. Szoke, 2001: Operational evaluation of the LAPS-MM5 "hot start" local foreast model. *14th Conf. on Numerical Weather Prediction.* Ft. Lauderdale, FL, Amer. Meteor. Society, xxx-xxx.

Szoke, E.J., M.L. Weisman, J.M. Brown, F. Caracena and T.W. Schlatter, 1984: A subsynoptic analysis of the Denver tornadoes of 3 June 1981. *Mon. Wea. Rev.*, **112**, 790-808.

Szoke, E.J., 1991: Eye of the Denver Cyclone. Mon. Wea. Rev., 119, 1283-1292.

Szoke, E.J., J.A. McGinley, P. Schultz, and J.S. Snook, 1998: Near operational short-term forecasts from two mesoscale models. *12th Conf. on Numerical Weather Prediction*. Phoenix, Arizona, American Meteorological Society, 320-323.

Wakefield, J.S., 1998: Operational risk reduction: Easing AWIPS into the field. *14th IIPS Conf.* Phoenix, Arizona, American Meteorological Society, 389-391.

Wesley, D.A., R.M. Rasmussen, and B.C. Bernstein, 1995: Snowfall associated with a terrain-generated convergence zone during the Winter Icing and Storms Project. *Mon. Wea. Rev.*, **123**, 2957-2977.

Surface Streamlines for May. 19, 1999 at 13:15 MDT

13.5

12

10.5

9

7.5

6

4.5

1.5

3

11 Factor Analyses for Chattanooga TN-GA

The Table below summarizes the boundary recommendations by the States of Tennessee and Georgia for the nonattainment boundary for the Chattanooga area. Based on EPA s 11 factor analysis for the area, EPA believes that the nonattainment area should be comprised of Hamilton, Catoosa and Meigs counties in. EPA agrees with the States recommendations that Dade and Walker counties in GA and Marion County in Tennessee be designated as attainment. These counties have low emissions, low VMT, low population and population density, indicating they are not contributing to the violations in Hamilton County.

Area	EPA Recommendation	State Recommendation
Chattanooga TN_GA	Full counties: Hamilton, Meigs, TN, Catoosa, GA Attainment: Marion, TN, Dade, Walker, GA	Full counties: Hamilton Partial counties: Meigs Drop: Marion, TN Dade, Catoosa, Walker, GA

Factor 1: Emissions and air quality in adjacent areas

Region 4's analysis for factor 1 looked at nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions, emission densities and air quality in Meigs County adjacent to the MSA. The following table has the NOx and VOC emissions for the counties in the Chattanooga area with the percent of the area totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Catoosa	2735 (445)	9	3248 (440)	8	17	20
Dade	2419	8	1572	4	14	9
Walker	2403 (452)	8	4131 (415)	10	5	9

Hamilto n	20062 (151)	63	27103 (84)	68	37	50
Marion	3272 (431)	10	2736 (457)	7	6	5
Meigs	882 (494)	3	874 (499)	2	5	5

The emission levels of NOx and VOC in Hamilton County are significantly larger than the emissions from the other counties in the MSA and the adjacent county of Meigs, indicating little, if any, contribution to the violations at the Hamilton County monitors. The adjacent county of Meigs also has a violating ozone monitor.

<u>Factor 2: Population density and degree of urbanization including</u> <u>commercial development</u>

The following table has the populations for the counties in the Chattanooga MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states. Although, Walker and Catoosa Counties have the second and third largest populations, respectively, of the MSA counties, the population of Hamilton County is more than five times that of these counties and more than 10 times that of Marion County. All of the MSA counties outside of Hamilton, as well as the adjacent county, Meigs, have much less population density than Hamilton County.

County	2000 Population	Population Density
Catoosa	53282 (399)	329
Dade	15154	86
Walker	61053 (381)	137
Hamilton	307896 (131)	571
Marion	27776 (472)	54
Meigs	11086 (502)	59

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

The Chattanooga area has 3 ozone monitors. They area sited as follows:

Hamilton- 2 ozone monitors 2001-2003 .088ppm and .087ppm

Meigs- 1 ozone monitor 2001-2003 .088ppm

Marion, Catoosa and Walker- no ozone monitor

All violating counties have been recommended as nonattainment, at least in part. In recent years air data has shown a large decrease in the design value for the area from 0.097ppm in 2000 to 0.088 ppm in 2003. Since the values are now so close to the ozone standard and the emission levels in the other counties, it is unlikely that they area contributing to the levels in Hamilton and Meigs County.

Factor 4: Location of emission sources

As indicated below, most of the large stationary sources of ozone precursors in the Chattanooga area are located in Hamilton County. Mobile source emissions, discussed in detail under factor 5, were evaluated using vehicle miles traveled and traffic patterns as surrogates. The lack of large emissions sources in Marion, Walker, and Catoosa Counties indicates no contribution to air quality levels in Hamilton and Meigs County from point source emissions.

- Hamilton- Point source NOx 91% of overall NOx for MSA Point source VOC 71% of overall VOC for MSA
- Meigs- Point source NOx less than 1% of overall NOx for MSA Point source VOC approximately 1% of overall VOC for MSA
- Catoosa- Point source NOx 1% of overall NOx for MSA Point source VOC 8% of overall VOC for MSA
- Dade- Point source NOx less than 1% of overall NOx for MSA Point source VOC 3% of overall VOC for MSA
- Walker- Point source NOx 5% of overall NOx for MSA Point source VOC 12% of overall VOC for MSA
- Marion- Point source NOx 3% of overall NOx for MSA Point source VOC 5% of overall VOC for MSA

Factor 5: Traffic and commuting patterns

<u>Commuting Information</u> - Following is an analysis of the commuting into Hamilton County including commuters from the other MSA counties and the adjacent county, Meigs As described below, 91 % of the commuters in Hamilton County stay in Hamilton County, contributing 82 % of the commuting in Hamilton County. The other two TN counties, Marion and Meigs contribute approximately 2.6 % and 0.3 %, respectively of the commuting in Hamilton County, the core county of the MSA. The Georgia counties of Catoosa and Walker contribute 7.6 % and 5.6 %, respectively. This level of commuting would not indicate contribution from the counties outside of Hamilton County due to commuting. Additionally, the VMT in Hamilton County is 6 times greater than the VMT in either Marion or Catoosa Counties, the next two largest VMT counties in the area.

Hamilton has a working population of 146,824. Of those, 133,644 (91%) stay in Hamilton county contributing 82% of the commuting in Hamilton County; 2151 travel to Catoosa County and 1695 travel to Walker County. The remainder travel outside the MSA.

Meigs has a working population of 4353. Of those 1434 remain in Meigs. 916 travel to Bradley, 834 travel to McMinn, 529 (21 %) travel to Hamilton. The remainder travel outside the MSA.

Marion has a working population 11766. Of those 48%(5596) remain of Marion. 4271 (36%) travel to Hamilton, and the remainder travel outside the MSA

Dade has a working population of 6983. Of those, 44% (3091) travel to Hamilton. 2363 remain in Dade, 747 travel to Walker and 137 or less travel to Catoosa, Marion and outside the MSA

Catoosa has a working population of 26710. Of those, 46% (12320) travel to Hamilton. 7167 remain in Catoosa, 1937 to Walker and the remainder travel outside the MSA. **Walker** has a working population of 27223. Of those 41%(11244) remain in Walker. 9098 (33%) travel to Hamilton, 2795 travel to Catoosa, 2067 travel outside the MSA.

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Chattanooga MSA, including the adjacent county of Meigs. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	% drive to work	VMT
Catoosa	80	600 (404)
Dade	92	446

Walker	85	533 (416)
Hamilton	94	3609 (98)
Marion	85	601 (403)
Meigs	12	97 (498)

Factor 6: Expected growth

The following table has the population and population growth figures for the Chattanooga MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states. The population growth has been relatively high for Meigs and Catoosa counties, 38 % and 25.5, respectively. These growth levels indicate a potential contribution to the air quality levels in the Chattanooga area. However, the high percent growth is applied to a very low base population, particularly Meigs County.

County	2000 Population	% growth (90-00)	% growth (00-10)	2010-2000 (1000's)
Catoosa	53282 (399)	25.5	25.2	13
Dade	15154	15.3	16.8	3
Walker	61053 (381)	4.7	9.7	6
Hamilton	307896 (131)	7.8	-0.7	-2
Marion	27776 (472)	11.7	7.8	2
Meigs	11086 (502)	38.0	4.2	>1

Factor 7: Meteorology

The prevailing winds during the summer months when ozone forms are from the south direction, indicating a likelihood of contribution from Walker and Catoosa counties and less likelihood of contribution from Marion County which is west of Hamilton County.. However, the emission levels in these counties are so much less than those in Hamilton County, it is unlikely that they area contributing to the violations due to the prevailing winds.

Factor 8: Geography/topography

Chattanooga is located on the western fringe of the Valley and Ridge physiographic province of the East Grand Division of the State along the I-24 corridor near the GA/TN state line.

Factor 9: Jurisdictional boundaries

This factor did not play a significant role in the decision making process.

Factor 10: Level of control of emission sources

Sources in the Chattanooga area are subject to Prevention of Significant Deterioration (PSD) requirements, Control Technology Guidelines Reasonable Available Control Technology (CTG RACT) - (Hamilton County only}, Maximum Achievable Control Technology (MACT) for Hazardous Air Pollutants (HAP), New Source Performance Standards (NSPS), and the NOx SIP call.

Factor 11: Regional emissions reductions

Tennessee is subject to the NOx SIP call. TVA has put controls on their plants in Alabama, Kentucky and Tennessee, including SCR on a total of 17 units. Due to the prevailing winds, the SCR put on two units at the Widows Creek power plant in Jackson County, Alabama would have the most effect.

11 Factor analyses for Greensboro-Winston Salem-High Point (TRIAD), NC

The Table below summarizes the boundary recommendations by the State of North Carolina for the nonattainment boundary for the Greensboro-Winston Salem-High Point area. There are eight counties in the Greensboro-Winston Salem-High Point MSA: Alamance; Davidson: Davie; Forsyth; Guilford; Randolph; Stokes and Yadkin. There are also two adjacent counties with violating monitors: Caswell and Rockingham. The State of North Carolina recommend the full counties of Alamance, Davidson, Forsyth, and Guilford; partial counties of Davie, Randolph, Caswell, and Rockingham. They recommended that Stokes and Yadkin be designated attainment. Based on air quality levels, emissions, population, prevailing winds, and commuting patterns, EPA believes that Alamance, Davidson, Davie, Forsyth, Guilford, Randolph, Caswell and Rockingham Counties be designated nonattainment in their entirety. EPA agrees that based on the low emissions, low population and population density, and low VMT that Yadkin County be designated attainment. Based on low population and low population density, low VMT and the fact that the very large power plant in the county has SCR on both units that Stokes County should be designated attainment. More detailed information can be obtained from the technical support provided by the State in the docket.

Area	EPA Recommendation	State Recommendation
Greensboro-Winston-	Full counties-	Full counties-
Salem-High Point	Alamance, Davidson,	Alamance, Davidson,
	Davie, Forsyth, Guilford	Forsyth, Guilford
	Randolph, Caswell,	Partial-
	Rockingham	Davie, Randolph, Caswell,
	Drop-	Rockingham
	Stokes, Yadkin	Drop-
		Stokes, Yadkin

Factor1: Emissions and air quality in adjacent areas

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Greenville - Spartanburg - Anderson MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VOC	NOx	VOC
					Density	Density
Alamance	5880	4	9154	8	14	21
	(342)		(244)			
Davidson	11756	8	15209	13	22	28

	(238)		(164)			
Davie	2123	1	3265	3	8	12
	(465)		(438)			
Forsyth	15563	10	21616	19	38	53
	(195)		(113)			
Guilford	20509	14	35295	31	32	54
	(147)		(58)			
Randolph	6168	4	10316	9	8	13
	(331)		(223)			
Stokes	70054	47	2575	2	155	6
	(18)		(466)			
Yadkin	2207	1	2283	2	7	7
	(460)		(473)			
Caswell	1103	1	1619	1	3	4
	(487)		(487)			
Rockingham	13086	9	12737	11	23	58
	(214)		(189)			

With the exception of Stokes County, most of the precursor emissions are in the four counties the State recommended as nonattainment in their entirety. The NOx emissions listed for Stokes County are based on the 1999 emissions, prior to the SCR being installed on both units. Those SCR will reduce the summer day emissions by over 90 %. Caswell County has only 1 % of the NOx and VOC emissions in the area. The emissions data supports an attainment designation for both of these counties. Although the counties of Davie, Randolph, Caswell, and Rockingham also have relatively low emissions, they contain violating monitors, therefore, they should be designated nonattainment in their entirety.

Factor 2: Population Density and degree of urbanization including commercial development

The following table has the populations for the counties in the Greenville-Spartanburg-Anderson MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	2000 Population	Population Density	Attainment portion
			density
Alamance	130800 (225)	302	
Davidson	147246 (230)	269	
Davie	34835 (454)	131	124
Forsyth	306067 (132)	743	
Guilford	421048 (107)	647	
Randolph	130454 (256)	165	131
Stokes	44711 (421)	99	

Yadkin	36348 (445)	108	
Caswell	23501 (479)	55	55
Rockingham	91928 (321)	162	162

The four counties with the highest populations and population densities have been recommended as nonattainment in their entirety. Of the eight MSA counties, Stokes and Yadkin, rank 6th and 7th, respectively, and have low population densities, supporting the State s recommendation of attainment. Although the counties of Davie, Randolph, Caswell and Rocking have low population and population densities, they contain violating monitors. Therefore, they should be designated as nonattainment in their entirety.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

The Greensboro-Winston Salem-High Point area has nine ozone monitors:

Davie- 1 ozone monitor 0.093 ppm

Forsyth- 4 ozone monitors:

1 ozone monitor 0.093 ppm 1 ozone monitor 0.089 ppm 1 ozone monitor 0.088 ppm 1 ozone monitor 0.082 ppm

Guilford- 1 ozone monitor 0.089ppm

Randolph- 1 ozone monitor 0.085ppm

Caswell- 1 ozone monitor 0.088ppm

Rockingham- 1 ozone monitor 0.091ppm

All exceeding monitors have been captured in the nonattainment boundary. The six counties with violating monitors should be designated as nonattainment in their entirety. Although Alamance and Davidson Counties do not contain monitors, the State recommended them as nonattainment and EPA agrees with the State. Neither Stokes or Yadkin County contain an ozone monitor. However, the other factors support a designation of attainment.

Factor 4: Location of emission sources

As summarized below, most of the large sources of NOx and VOC sources located in the recommended nonattainment area with the exception of two power plants located in Stokes and Rocking ham Counties. As discussed above, the Bellews Creek plant in Stokes County has SCR installed on both units. Rockingham County has a violating monitor and should be designated

nonattainment in its entirety.

Alamance: All Title V sources are within the recommended boundary.

Davidson: All Title V sources are within the recommended boundary.

Forsyth: All Title V sources are within the recommended boundary.

Guilford: All Title V sources are within the recommended boundary.

Caswell: There are no Title V facilities.

Davie: One Title V facility that is outside of the recommended boundary.

Randolph: All Title V sources are within the recommended boundary.

Rockingham: All except 2 Title V sources are outside the recommended boundary.

Stokes: All sources are outside of the recommended boundary.

Yadkin: All sources are outside of the recommended boundary.

Factor 5: Traffic and commuting patters:

<u>Commuting Information</u>: There are approximately 670,000 thousand commuters. Of those, 361,000 (54 %) are from the two core counties of Forsyth and Guilford. The other two counties the State recommended as whole counties, Alamance and Davidson, contribute another 133,000 (20 %), indicating that 74 % of the commuters are from those four counties. The two counties recommended as attainment contribute about 39,000 which is only 6 %, supporting the attainment designation. The other four counties recommended as partial all have violating monitors. There is significant commuting among the MSA counties as indicated below.

Alamance County has a total of 63,698 commuters

- Commuters who remain in Alamance County: 47,734 (75 %)
- Commuters from Alamance County to Guilford County: 6,443
- Remainder commute outside the area

Davidson County has 72,893 commuters

- Commuters who remain in Davidson County: 40,621 (56 %)
- Commuters from Davidson County to Guilford County: 14,668
- Commuters from Davidson County to Forsyth County: 11,062
- Commuters from Davidson County to Randolph County: 2,540
- Commuters from Davidson County to Rowan County: 1,530

Davie County has 16634 commuters

- Commuters who remain in Davie County: 7710 (46 %)

- Commuters from Davie County to Forsyth County: 5242

- Commuters from Davie County to Rowan County: 999

- Commuters from Davie County to Davidson County: 521

- Commuters from Davie County to Guilford County: 410

- Commuters from Davie County to Yadkin County: 327

- Remainder commute outside the area

Forsyth County has 147,838 commuters

-Commuters who remain in Forsyth County: 119,233 (81%)

-Commuters from Forsyth County to Guilford County: 16515

- Commuters from Forsyth County to Davidson County: 4136

Guilford County has 213,079 commuters

- Commuters who remain in Guilford County: 187150 (88 %)

- Commuters from Gulford County to Forsyth County: 7636

- Commuters from Guilford County to Alamance County: 4050

- Coumuters from Guilford County 3984 travel to Randolph

- Commuters from Guilford County to Davidson County: 2982

Randolph has 65803 commuters

- Commuters who remain in Randolph County: 38,637 (59 %)

- Commuters from Randolph to Guilford County: 20,278

- Commuters from Randolph County to Forsyth County: 694

Stokes County has 21,709 commuters

- Commuters remaining in Stokes County: 6330 (29 %)

- Commuters from Stokes County to Forsyth County: 10,259

- Commuters from Stokes County to Guilford County: 1,620

- Commuters from Stokes County to the adjacent county of Rockingham: 1,360

- Commuters from Stokes County to Davidson County: 252

- Remainder drive outside the area

Yadkin County has 17,267 commuters

- Commuters remaining in Yadkin County: 7,572 (40 %)

- Commuters from Yadkin County to Forsyth County: 5504

- Commuters from Yadkin County to Davie County: 541

- Commuters for Yadkin County to Guilford County: 323

- Remainder commute outside the area

Caswell County has 9,917 commuters

- Commuters who remain in Caswell County: 2693 (27 %)

- Commuters from Caswell County to Alamance County: 2,388

- Commuters from Caswell County to Rockingham County: 844

- Commuters from Caswell County to Guilford County: 800

- Remainder drive outside the area

Rockingham County has 41,638 commuters

- Commuters who remain in Rockingham County: 25,523 (61 %)
- Commuters from Rockingham County to Guilford Coutny: 11,960
- Commuters from Rockingham County to Forsyth County: 870
- Commuters from Rockingham County to Stokes County: 511
- Commuters from Rockingham County to Alamance County: 503

The following table has the percent who drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Greensboro-Winston Salem-High Point MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	% drive to work	VMT
Alamance	86	1499 (232)
Davidson	96	1669 (209)
Davie	86	455 (432)
Forsyth	97	3651 (96)
Guilford	97	4947 (69)
Randolph	95	1406 (248)
Stokes	86	390 (449)
Yadkin	82	493 (425)
Caswell	33	216 (483)
Rockingham	34	872 (346)

Most of the MSA VMT, 75 %, occurs in the four counties recommended as whole counties. The two counties recommended as attainment contribute only a total of 6 % of the area s VMT, supporting the attainment recommendation. Although the other four counties represent only 19 % of the VMT, they contain violating monitors supporting a nonattainment designation for the full counties.

Factor 6: Expected Growth

The following table has the population and population growth figures for the Greensboro-Winston Salem-High Point MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	2000 Population	% Growth (99-00)	% Growth (00-10)	2010-2000 (1000's)
Alamance	130800 (255)	20.9	18.9	25
Davidson	147246 (230)	16.2	13.6	20
Davie	34835 (454)	25.0	20.8	7
Forsyth	306067 (132)	15.1	13.7	42

Guilford	421048 (107)	21.2	18.5	78
Randolph	130454 (256)	22.4	19.7	26
Stokes	44711 (421)	20.1	16.2	7
Yadkin	36348 (445)	19.2	17.7	6
Caswell	23501 (479)	13.6	12.2	3
Rockingham	91928 (321)	6.8	5.6	5

All of the counties in the area have experienced significant growth on a percentage basis except for Rockingham County which has a violating monitor. Although Stokes and Yadkin Counties have experienced 20 and 19 % growth, respectively, those percentages were applied to low base populations supporting the attainment designation as recommended by the State.

Factor 7: Meteorology

The prevailing winds during the ozone season have strong southwesterly component. Yadkin and Stokes Counties are east and northeast, respectively of the MSA, supporting the attainment violation. The two adjacent counties of Caswell and Rockingham are upwind of the MSA but have violating monitors supporting a designation of the full counties as nonattainment.

Factor 8: Geography/topography

No geographic or topographic factors limiting this airshed.

Factor 9: Jurisdictional boundaries

There are no jurisdictional boundaries that have a bearing on this designation.

Factor 10: Level of control of emission sources

Clean Smokestacks Act/NOx SIP Call

Reduce NOx from large coal-fired boilers
Year round reductions for coal-fired power plants

State has modeled the plants in this area at the following emission rates which will be submitted as part of the EAC SIP in December 2004

- " Belews Creek- both units at 0.10 NOx/nnbtu
 - Dan River- 2 units at 0.35

1 unit at 0.17

Clean Air Bill

Reduce NOx and VMT

Encourage purchase of low-emission vehicles

OBDII Emissions Inspection Program

□□ Address NOx, VOC and CO

Requires 1996 and newer vehicles to receive emissions inspections Lease Control Program Initiative

- □□ Mecklenburg County has increased local sales tax to fund new transit operations
 - Regional Rail
 - Public Transportation
- EAC establishing local control measures
- Sustainable Environment for Quality of Life (SEQL)
- Clean Cities
- **Breathe Initiative**
- Great Triangle Regional Council
- Image: Wake County Air Quality Task Force

Factor 11: Regional emission reductions

NOx SIP call CSA

11 Factor Analysis for the Memphis, Tennessee Area

The following is the 11 factor analysis for Memphis, TN. The Memphis, TN MSA contains the counties of Crittenden in Arkansas, DeSoto in Mississipi, and Shelby, Fayette and Tipton in Tennessee. There are four monitors in the MSA, one in Crittenden County (design value monitor), Arkansas, one in DeSoto County, Mississippi and two in Shelby County, Tennessee. The monitor in Arkansas and one of the monitors in Shelby County, Tennessee are violating the ozone standar based on 2001-2003 air quality data. EPA s analysis of the 11 factors indicates that based on emissions levels, population and VMT that DeSoto, Fayette, and Tipton counties are not contributing to the violations in the rest of the MSA.

Area	EPA Recommendation	State Recommendation
Memphis, TN	Full counties: Crittenden, AK Shelby, TN Drop: DeSoto, MS Fayette, Tipton, TN	Full counties: Crittenden, AK Shelby, TN Drop: DeSoto, MS Fayette, Tipton, TN

Factor 1: Emissions and air quality in adjacent areas (including adjacent C/MSAs)

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the counties in the Memphis MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	NOx	%NOX	VOC	%VOC	NOx Density	VOC Density
Crittenden	8,956 (270)	9	6,815 (313)	8	14.1	10.7
DeSoto	8,847 (274)	9	8,091 (275)	9	17.8	16.3
Fayette	3,096 (438)	3	3,336 (433)	4	4.4	4.7
Shelby	73,785 (16)	75	69,366 (12)	76	94.2	88.5
Tipton	5,093 (373)	4	3,132 (446)	3	10.7	6.6

DeSoto County has less than 10 % of the NOx and VOC emissions in the MSA. Fayette and Tipton Counties contribute even less. Shelby County contributes about 75 % of the precursor

emissions and has a much larger emissions density than the other counties in the MSA. Based on the low level of emissions and the low emission density, DeSoto, Fayette and Tipton counties do not contribute appreciable ozone precursor emissions. Crittenden County, AK also has very low emissions and emission density but has a violating monitor.

Factor 2: Population density and degree of urbanization including commercial development

The following table has the populations for the counties in the Memphis MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

	2000 population	Population Density
Crittenden	50,866 (406)	83
DeSoto	107,199 (296)	224
Fayette	28,806 (468)	409
Shelby	897,472 (35)	1189
Tipton	51,271 (404)	112

A large portion of the MSA population, 79%, live in Shelby County. DeSoto County has only 9% of the population and Fayette and Tipton counties have even lower population. DeSoto, Fayette, and Tipton Counties are mostly very rural with little urbanization indicating no contribution to the violations of the ozone standard in the Memphis MSA.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

Crittenden - 2001-2003 ozone monitor 0.092 ppm

DeSoto - 2001-2003 ozone monitor 0.081 ppm

Shelby- 2 ozone monitors:

2001-2003 ozone monitor - 0.089 ppm 2001-2003 ozone monitor - 0.084 ppm

There are 4 monitors in the Memphis MSA: one in Crittenden County, AK; one in DeSoto County; MS and two in Shelby County, TN. The design value monitor is located in Crittenden County, AK with a design value of 0.092 parts per million (ppm). One of the monitors in Shelby County is monitoring attainment at 0.084 ppm and the other is violating a 0.089 ppm. Although the DeSoto County violated the standard for each 3-year period from 1994-1996

through 2000-2002, based on the quality assured data for 2001-2003, the DeSoto County monitor is not violating the 8 hour ozone standard (0.081 ppm). Fayette and Tipton Counties are on the north and east side of the nonattainment area, respectively, and less likely to be violating the standard. Additionally, Tipton County is adjacent to Haywood County which is monitoring attainment with the standard (0.081 ppm).

Factor 4: Location of emission sources

There are no large stationary sources in DeSoto, Fayette or Tipton Counties, indicating no point source contribution to the violations in the MSA. Mobile factors are discussed in more detail under factor 5.

Factor 5: Traffic and commuting patterns

<u>Commuting Information</u> - Following is an analysis of the commuting in the Memphis MSA, . Shelby County has the most commuters of any of the MSA counties. Shelby County has 402,560 commuters with 95% of the those commuters staying in Shelby County contributing 87 % of the commuting in Shelby County. DeSoto has 52,647 commuters and 53 % of those commute to Shelby County contributing only 6.4 % of the Shelby County commuting Crittenden, Fayette and Tipton Counties together contribute 6.1 % of the commuters in Shelby. These commuting levels do not indicate contribution to the violations in the MSA.

Shelby County, the core MSA county, has a total of 402,560 commuters.

- Commuters who remain in Shelby County: 383,198
- Commuters from Shelby County to DeSoto County: 7,589

DeSoto County has a total of 52,647 commuters

- Commuters who remain DeSoto County: 18,913
- Commuters from DeSoto County to Shelby County: 27,938

Crittenden County has a total of 20,154 commuters

- Commuters who remain in Crittenden: 11,972
- Commuters from Crittenden County to Shelby County: 6,757

Fayette County has a total of 12,558 commuters.

- -Commuters who remain in Fayette County: 4,103
- Commuters from Fayette County to Shelby County: 7,825

Tipton County has a total of 23,192 commuters.

- Commuters who remain in Tipton County: 9,601
- Commuters from Tipton County to Shelby County: 12,220

The following table has the percent drive to work within the MSA and vehicle miles traveled (millions of miles) for the counties in the Memphis MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states.

	% drive to work	VMT
Crittenden	94	786 (364)
DeSoto	90	1,119 (294)
Fayette	96	500 (423)
Shelby	98	8,359 (30)
Tipton	95	447 (435)

Shelby County contains 75 % of the VMT in the area accounting for most of the MSA VMT. The other counties contribute 10 % or less to the total VMT in the MSA.

Factor 6: Expected growth

The following table has the population and population growth figures for the Memphis MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment per EPA s December 3, 2003 letters to states.

	2000 population	% growth (99-00)	% growth (00-10)	1990-2000 population (1000s)
Crittenden	50,866 (406)	1.9 (427)	0.2 (422)	0.1
DeSoto	107,199 (296)	57.9 (16)	34.4 (41)	37
Fayette	28,806 (468)	12.7 (244)	11.9 (198)	4
Shelby	897,472 (35)	8.6 (310)	5.2 (367)	71
Tipton	51,271 (404)	36.5 (61)	8.4 (307)	4

Although there has been significant growth in DeSoto County on a percentage basis, its population is less than 10 percent of the total MSA population. Despite the large growth

experienced in this county, the ozone levels have decreased and the DeSoto County monitor is now monitoring attainment. Also, from 1990 to 2000, the actual population increase in Shelby County was almost twice that of DeSoto County. Actual population growth in the other counties is even less than in DeSoto.

Factor 7: Meteorology

Prevailing wind during the ozone season has a southerly component. However, analysis of the winds during high ozone in the MSA produces inconclusive results regarding the contribution, if any, from DeSoto County. Shelby County has a high level of contribution to high levels of ozone in DeSoto County.

Factor 8: Geography/topography

The Memphis area does not have any geographical or topographical boundaries limiting its airshed.

Factor 9: Jurisdictional boundaries

The presumptive boundary for the nonattainment area is the MSA. Mississippi did not present any jurisdictional data to counter the presumptive boundary. A number of nonattainment areas span across state boundaries.

Factor 10: Level of control of emission sources

There are no additional controls on the existing sources in DeSoto, Fayette, and Tipton Counties. New sources locating in these counties are subject to PSD. Any sources subject to a MACT will have to put on those controls. Additionally, VOC sources in Shelby County are subject to RACT and there are sources subject to the NOx SIP call.

Factor 11: Regional emission reductions

Arkansas and Mississippi are not subject to the NOx SIP call, however, Tennessee is and TVA has installed SCR on all units at the Allen Power Plant located in Shelby County.

11 Factor Analysis for Rocky Mount, NC

The Table below summarizes the boundary recommendations by the State of North Carolina for the nonattainment boundary for the Rocky Mount area. There are two counties in the Rocky Mount MSA: Edgecombe and Nash. The State of North Caolina recommended a partial county for Edgecombe, based on the municipality boundaries of Leggett, which is the location of the violating ozone monitor. The State recommended that Nash County, which does not contain an ozone monitor, be designated attainment. Based on air quality levels, emissions, population, prevailing winds, and commuting patterns, EPA believes that Edgecombe County should be designated non-attainment in its entirety. EPA also believes that Nash County should be designated non-attainment. More detailed information can be obtained from the technical support provided by the State, which is contained in the docket.

Area	EPA Recommendation	State Recommendation
Rocky Mount	Full counties: Edgecombe	Partial county: Edgecombe (Leggett Municipality) Drop: Nash

Factor 1: Emissions and air quality in adjacent areas

Region 4's analysis for factor 1 looked at NOx and VOC emissions and emission densities and square miles. The following table has the NOx and VOC emissions for the two counties in the Rocky Mount MSA with the percent of the MSA totals. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states.

County	NOx	%NOx	VOC	%VOC	NOx Density	VOC Density
Edgecombe	4981 (377)	46	4783 (382)	36	10	10
Nash	5750 (346)	54	8372 (263)	64	11	16

Evidence of transport from the Raleigh area most likely affects this area s air quality. Both of these counties have relatively low emissions, as shown by the national rankings. However, since Edgecombe County contains a violating monitor, this county should be designated nonattainment.

Factor 2: Population density and degree of urbanization including <u>commercial development.</u>

The following table has the populations for the counties in the Rocky Mount MSA. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003, letters to states.

County	2000 Population	Population Density		
Edgecombe	55606 (390)	110		
Nash	87420 (336)	162		

Both of these counties have fairly low populations, as demonstrated by their national ranking in the three-hundreds, and very low population density. However, due to its location between violating ozone monitors, Nash County is recommended as nonattainment in its entirety. Although Edgecombe County has a low population density, it contains a violating monitor and therefore should be designated as nonattainment in its entirety.

Factor 3: Monitoring data representing ozone concentration in local areas and larger areas

The Rocky Mount area contains one ozone monitor which is located in Edgecombe County. Its design value is of 0.089 ppm based on 2001-2003 data which, according to the State s information, is representative of Raleigh wind flow. Nash County does not contain an ozone monitor. However, due to its location between violating ozone monitors, Nash County is recommended as nonattainment in its entirety

Factor 4: Location of emission sources

In Edgecombe County, all of the major sources are located outside of the State s recommended nonattainment boundary, which supports designation of the entire county as nonattainment. Although there are not significant large point sources in Nash County, its location between violating ozone monitors results in it being designated nonattainment in its entirety

Factor 5: Traffic and commuting patterns

The following table has the population and population growth figures for the Rocky Mount MSA counties. The numbers in parentheses represent the national ranking for 506 counties in nonattainment areas per EPA s December 3, 2003 letters to states

County	% drive to work	VMT

Edgecombe	(22,191 workers) 56% of commuters stay in Edgecombe, 30% commute to Nash	534 (415)		
Nash	(33,844 workers) 69% of commuters stay in Nash and 10% commute to Edgecombe (an additional 7% commute to Wake County (RDU))	1158 (287)		

Nash has a working population of 38,844. Of those, 69 percent (26,654) remain in Nash and 10 percent (3,738) travel to Edgecombe, which accounts for over one-third of the workers in Edgecombe County. Therefore, Nash County is designated nonattainment in its entirety.

Factor 6: Expected growth

County	2000 Population	% growth (99-00)	% growth (00-10)	2010-2000 (1000's)	
Edgecombe	55,606 (390)	-1.7	-3.0	-2	
Nash	87,420 (336)	14.0	11.8	10	

The growth rate for Nash County was fourteen percent between 1990 and 2000, indicating that it should be designated nonattainment.

Factor 7: Meteorology

Edgecombe: The State s submittal indicated that the Leggett monitor is impacted by transported pollution from the Raleigh area, under westerly flow. There appears to be a strong correlation between high ozone concentrations in Raleigh and the values at the Leggett monitor. The Leggett monitor can also be impacted by emissions from Fayetteville and the I-95 corridor.

Nash: Under the conditions discussed above for Edgecombe County, Nash County is also impacted by transported pollution from the Raleigh area, under westerly flow, as well as by pollution from Fayetteville and the I95 corridor under typical SW flow. Therefore this county should be designated as nonattainment.

Factor 8: Geography/topography

No geographic or topographic factors limiting this airshed.

Factor 9: Jurisdictional boundaries

There are no jurisdictional boundaries that have a bearing on this designation.

Factor 10: Level of control of emission sources

Edgecombe and Nash: January 2005 I/M program implementation

Factor 11: Regional emissions reductions

NOx SIP Call Clean Smokestack Act (CSA) Controls

Although the State does have several regional reduction programs in place, due to the violating air quality in Edgecombe County, and the location of Nash County between violating areas, both of these counties are recommended for full nonattainment designations based on air quality and level of emissions.

Justification for GSMNP Designation

The North Carolina portion of the Great Smokey Mountain National Park, was recommended by the State, in its entirety, as nonattainment. This is due to the violations that occur only at ozone monitors located at high elevations in the park. The Park area is adjacent to an attaining urban area (Asheville, NC). The U.S. National Park Service supported this nonattainment boundary recommendation in a letter from them to the State of North Carolina on May 25, 2000, and, again, in a letter to the Environmental Protection Agency, Region 4, in February 2004.

The area within the Park represents the area observing 8-hour violations, since the nearby valley sites are attaining the standard. Additionally, the exceedances are occurring in the middle of the night, rather than in the afternoon. This timing of the exceedances is indicative of transport and not local generation of ozone, since the ozone chemisty stops once the sun goes down. The Figure 1 (Comparison of diurnal ozone profile for Purchase Knob (High Elevation Site), Bent Creek (Valley Site in Buncombe County), and one of the Charlotte area sites) below shows the difference in the timing of the ozone exceedances. The red line shows the ozone peak occurs at the Purchase Knob site in the nighttime, which is at the high elevation, when the valley or low elevation sites observe lower ozone levels. The areas where the violations are occurring are very sparsely populated and the emissions densities are low compared to urban areas of North Carolina. The trajectories of air parcels suggest most pollution is being transported to the mountain sites from Georgia, Tennessee, and the Ohio Valley. North Carolina will carefully analyze strategies expected to be implemented in these areas and work closely with these states to define any additional controls to reduce the pollution in the mountains.

Figure 1: Comparison of diurnal ozone profile for Purchase Knob (High Elevation Site), Bent Creek (Valley Site in Buncombe County), and one of the Charlotte area sites.

April 12, 2004

MEMORANDUM

FROM:	Fred Dimmick, Leader Air Quality Trends Analysis Group (C304-01)						
TO:	Tom Helms, Leader Ozone Program and Strategies Group (C539-02)						
SUBJECT:	Syracuse (Onondaga County) New York						

Last week, I was asked to investigate the monitoring data associated with the pending designation of Syracuse New York with respect to the 8-hour ozone NAAQS. In response to this request, I reviewed the air quality data for areas with levels just exceeding the standard (i.e., at 85 ppb). Twenty-two counties had monitors with design values of 85 ppb based on data from 2001 - 2003. As is commonly understood, air quality varies from year to year and, in some areas, the air quality may be "just above" then "just below" any particular "cut off" level from year to year.

I looked into these 22 counties in more detail. In reviewing these counties, three had not exceeded the level of the standard for at least 5 consecutive years. The other areas had exceeded the level of the standard regularly throughout this period. For these three counties, 2 are associated with other counties with air quality existing the level of the standard. Douglas County Colorado is located in the Denver Colorado MSA where Jefferson County had two monitors that exceeded the level of the standard. Ingram County Michigan is located within the Lansing-East Lansing MSA where Clinton County had a monitor with a design value of 86 ppb. The remaining county is Onondaga County New York, which is located with Madison and Oswego Counties, neither had design values exceeding the level of the standard, in the Syracuse MSA.

In reviewing the air quality data for Onondaga County, I found, in discussions with Region 2 staff, that the monitor is properly sited and, through our quality assurance staff, no quality assurance problems have been identified. In this area, ozone levels have deteriorated over the last several years but had never exceeded the 8-hour (nor the 1-hour) ozone standard. However, an unusual situation concerned elevated levels of ozone that had occurred overnight, when at least one time when the monitor measured air quality exceeding the level of the standard across midnight, reporting two days with high ozone levels. Such ozone measurements are indicative of long-range transport. In general local ozone and long-range transport of ozone combine to elevate ozone levels of the 8-hour ozone standard. Given the closeness of this monitor to the standard and the apparent unique situation for this county, it may be appropriate to further review the data.

Comparison of counties with 2001 - 2003 design values of 85 ppb

	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	
County name	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	(C)MSA/County Name (notes)
Amador Co, CA Tuolumne Co,		91	91	93	90	95	96	99	91	88	85	Amador Co, CA
CA	75	85	87	88	88	92	92	96	92	91	85	Tuolumne Co, CA
Douglas Co, CO					75	78	77	79	77	80	85	Denver-Boulder-Greeley, CO (adjacent monitors exceed)
Gwinnett Co, GA					91	95	100	104	94	89	85	Atlanta, GA
Murray Co, GA										87	85	Murray Co, GA
Hendricks Co, IN										88	85	Indianapolis, IN
Jackson Co, IN										85	85	Jackson Co, IN
Morgan Co, IN							90	90	87	88	85	Indianapolis, IN
Warrick Co, IN	87	89	93	94	93	93	94	89	84	84	85	Evansville-Henderson, IN-KY
Boone Co, KY	79	80	83	85	82	83	85	86	85	86	85	Cincinnati-Hamilton, OH-KY-IN
Christian Co, KY			82	81	78	82	86	86	85	85	85	Clarksville-Hopkinsville, TN-KY
Kenton Co, KY	79	84	92	95	90	87	88	89	86	88	85	Cincinnati-Hamilton, OH-KY-IN
Ingham Co, MI Onondaga Co,	80	79	82	84	83	80	82	82	83	82	85	Lansing-East Lansing, MI (adjacent monitor exceeds)
NY			82	79	79	77	82	80	81	83	85	Syracuse, NY (stand alone county with violating monitor)
Queens Co, NY	87	78	86	88	91	89	93	88	86	84	85	New York-N. New Jersey-L.Island,NY-NJ-CT-PA
Haywood Co, NC				79	85	91	94	94	87	87	85	Haywood Co, NC
Johnston Co, NC Randolph Co,					87	89	95	91	87	85	85	Raleigh-Durham-Chapel Hill, NC
NC											85	Greensboro-Winston Salem-High Point, NC
Blair Co, PA Lackawanna Co,	85	85	89	88	90	92	95	89	84	84	85	Altoona, PA Scranton-Wilkes-Barre-Hazleton, PA
PA	93	87	89	86	86	86	90	87	86	85	85	
Frederick Co, VA		80	83	82	84	88	90	87	83	85	85	Frederick Co, VA
Roanoke Co, VA	77	80	82	78	78	85	90	89	86	87	85	Roanoke, VA

Data obtained through AQSSD website; Data from AQS on 03/11/2004, without exceptional events.

8 - Hour Ozone Designations

New Jersey Department of Environmental Protection March 19, 2004

Contents

- Recommendation
- Background Information
- Technical Information
- Planning Area Issues
- Conclusion
- Next Steps
Recommendation

- New Jersey Recommends
 - Ocean County, NJ be placed in the Philadelphia 8 - hour Ozone Nonattainment area, and
 - The USEPA seriously consider placing Cecil County, MD in a Baltimore / Washington DC nonattainment area

Background Information

- 1 Hour Ozone Nonattainment Area
- Air Quality in the Region
- Colliers Mills Site History
- Clean Air Act Definition of Nonattainment Area

Existing 1 Hour Non-Attainment Areas

Colliers Mills Site History

- The NJDEP operated an ozone monitoring instrument at a site located within the McGuire AFB, Burlington County from 1974 through 1992.
- Based on modeling information, the USEPA Region II requested a site east of the McGuire AFB site be established in 1985.
- For two years (1985 1986), the Colliers Mills site was operated concurrently with the McGuire AFB site.
 - Similar ozone concentrations were found at the two sites; the Colliers Mills site was closed.
- NJDEP was asked to leave the McGuire AFB site in 1992. The Colliers Mills site was reestablished 1992.

Clean Air Act Definition of Nonattainment Area

 "any area that does not meet (or that contributes to ambient air quality in a nearby area that does not meet the national primary or secondary ambient air quality standard for the pollutant" (emphasis added) Section 107(d)(1)(A)(i)

Technical Information

- Wind Trajectories
- Results from Interstate Air Quality Rule Modeling
- Utilization of the USEPA Eleven (11) Point Evaluation

2001 Backward Trajectories Starting at 6 PM Show Southerly Winds

Differences in Wind Trajectories On 4th Highest Ozone Day When HYSPLIT is started at 11 AM and at 6 PM - 2001 Period

8hour O3 for 2001

 4^{th} High = 108 ppb

2003 8hour O3 Ocean Co. DV = 106 ppb

> Trajectories corresponding to the day of the 4th high for 2001 is shown for the Ocean County, NJ monitor

NOAA HYSPLIT MODEL Backward trajectories ending at 23 UTC 04 May 01 EDAS Meteorological Data

2002 Backward Trajectories Starting at 6 pm show Southwesterly Winds

Differences in Wind Trajectories On 4th Highest Ozone Day When HYSPLIT is started at 11 AM and at 6 PM - 2002 Period

8hour O3 for 2002

4th High = 116 ppb

74.41 W

40.06 N

at

Source

Meters AGL

2003 8hour O3 Ocean Co. DV = 106 ppb

> Trajectories corresponding to the day of the 4th high for 2002 is shown for the Ocean County, NJ monitor

NOAA HYSPLIT MODEL Backward trajectories ending at 23 UTC 17 Jul 02 EDAS Meteorological Data 1500 1000 1000 500 00 18 12 00 12 07/17 07/16 Job ID: 39203 Job Start: Mon Mar 8 15:44:36 GMT 2004 lat: 40.06 lon.: -74.41 hgts: 10, 500, 1000 m AGL Trajectory Direction: Backward Duration: 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Produced with HYSPLIT from the NOAA ARL Website (http://www.arl.noaa.gov/readv/)

2003 Backward Trajectories Starting at 6 PM Show Westerly and Southern Winds

Differences in Wind Trajectories On 4th Highest Ozone Day When HYSPLIT is started at 11 AM and at 6 PM - 2003 Period

8hour O3 for 2003

 4^{th} High = 95 ppb

2003 8hour O3 Ocean Co. DV = 106 ppb

> Trajectories corresponding to the day of the 4th high for 2003 is shown for the Ocean County, NJ monitor

NOAA HYSPLIT MODEL Backward trajectories ending at 23 UTC 27 Jun 03 EDAS Meteorological Data 2500 2000 1500 1000 500 500 00 18 12 06 00 18 12 06 06/27 06/26 Job Start: Mon Mar 8 15:46:27 GMT 2004 Job ID: 39218 lat: 40.06 lon.: -74.41 hgts: 10, 500, 1000 m AGL Trajectory Direction : Backward Duration : 48 hrs Vertical Motion Calculation Method: Model Vertical Velocity Produced with HYSPLIT from the NOAA ARL Website (http://www.arl.noaa.gov/ready/)

U.S. Environmental Protection Agency Office of Air and Radiation

Update on Interstate Transport Rule

Catch-up Conference Call With State/Local Partners October 10, 2003

Local vs. Upwind Contribution to 2010 Residual Ozone Nonattainment (ppb)

For each downwind area, how much of 2010 ozone problem is local and how much is due to transport?

Blue indicates portion of ozone attributable to area's own emissions.

Orange indicates portion of ozone attributable to transport.

IAQR Contribution Analysis

Average 4-Episode Cont									
	Contributing State								
Downwind 2010 Nonattainment Receptor County	NJ	СТ	NY	Total CT & NY		PA	MD	DE	Total PA, MD & DE
Ocean, NJ	-	0%	0%	0%		35%	14%	10%	59%
Mercer, NJ	-	0%	1%	1%		46%	10%	7%	63%
Camden, NJ	-	0%	0%	0%		26%	21%	15%	62%
Monmouth, NJ	-	0%	1%	1%		37%	9%	6%	52%
Middlesex, NJ	-	0%	2%	2%		39%	5%	4%	48%
Morris, NJ	-	0%	2%	2%		42%	4%	3%	49%
Hudson, NJ	-	0%	3%	3%		29%	4%	2%	35%
Cecil, MD	0%	0%	0%	0%	Τ	9%	-	0%	-
Reference: TSD for the Interstate Air Quality Rule Air Quality Modeling Analyses, January 2004, Appendix G									

Analysis of the USEPA Eleven Factors

USEPA Eleven Factors	Ocean County Evaluation	Technical Support
Meteorology (P)	Days above the 8 hour standard in 1997-9 were looked at and the 'backward' wind trajectories using the NOAA hy-split model at 500m were determined. The 'envelope' of backward wind trajectories shows that >90% of air coming into Ocean County is from areas NW/W/SW of Ocean County. Therefore, there is little impact on the Ocean County monitor from the New York metropolitan area.	Enclosure 5-1
Monitoring data (P)	Regional monitoring data clearly shows that the Colliers Mills, Ocean County monitor is affected by the Philadelphia urban area. The design value at Colliers Mills is greater than all the design values in Southern New Jersey, i.e. at the Ancora, Camden, Clarksboro, Millville and Rider monitors.	Enclosure 2
Emissions (P) Location of emission sources (S)	Modeling performed for the USEPA's recently released Interstate Air Quality Rule quantifies the impacts of upwind emission sources and shows that the states of Pennsylvania, Maryland, Delaware, Ohio and Virginia contribute, on average, 52 parts per billion to ozone levels in Ocean County and the states of New York, Connecticut, Rhode Island, Massachusetts, New Hampshire, Vermont, and Maine provide 0 ppb to ozone levels in Ocean County.	Enclosure 5-2
Population density & degree of urbanization (S)	Ocean County is at the outer southern edge of the Census Bureaus' New York CMSA. It is much less developed and has a lower population density than other counties in the CMSA and does not significantly contribute to the higher monitored design unless in the New York CMSA. As such, there is no reason why it could not be included with the Philadelphia metropolitan area where it more appropriately belongs.	Enclosure 5-3

Enclosure 5 Analysis of Ocean County Using the Eleven USEPA Factors

USEPA Eleven Factors	Ocean County Evaluation	Technical Support
Traffic and commuting	An analysis of commuting patterns in Ocean County shows that	Enclosure 5-4
patterns (S)	>65% of people who live in Ocean County work there or in areas	
	south of there. The contribution to the total vehicle miles traveled in	
	the New York area from Ocean County residents is small. Therefore,	
	commuting patterns from Ocean County do not have as great an	
	affect on Northern New Jersey and the New York area.	
Expected growth (S)	Growth rates in Ocean County have been and are expected to remain	
	fairly high. However, statewide requirements for State of the Art	
	controls on new or modified sources, new source performance	
	standards, and turn-over of older, more polluting vehicles and	
	equipment, a statewide enhanced inspection and maintenance	
	program and federal Tier 1 & 2 onroad vehicle standards are	
	expected to offset any emission increases from growth sources.	
Geography (S)	The Northeastern Megalopolis is oriented SW to NE, as is the coast	
	line and Appalachian Mountains. As a consequence, the low level jet	
	which frequently develops during summer ozone events, increases	
	the transport of ozone and precursors from SW of Ocean County	
	towards the monitor at Colliers Mills.	
Level of control of	New Jersey has been a leader in reducing emissions from all source	
emission sources (S)	sectors statewide. VOC and NOx emissions are already highly	
	controlled in this State. The Department is considering further	
	controls on smaller sources to reduce ambient ozone levels on a	
	Statewide basis. These statewide controls will help reach attainment	
	in those areas of the State and downwind regions that are not meeting	
	the standard.	

Ocean County Evaluation	Technical Support
All states in the region are participating in the NOx SIP Call, as well	
as national strategies to reduce emissions from vehicles, engines and	
fuels. In addition, many states in the region are participating in Ozone	
Transport Commission reduction measures for consumer products,	
mobile equipment refinishing, portable fuel containers and	
architectural coatings.	
County boundaries were considered here. The southern New Jersey	
counties of Burlington, Camden, Gloucester, Salem, and Cumberland	
are included in the Philadelphia/Camden/ Wilmington Combined	
Statistical Area. The northern New Jersey counties of Bergen,	
Hudson, Passaic, Essex, Hunterdon, Morris, Sussex, Union,	
Middlesex, Monmouth, Ocean, Somerset, and Mercer are included in	
the New York/Newark/Bridgeport, NY-NJ-CI-PA Combined	
Statistical Area (CSA). A Combined Statistical Area is made up of two	
or more Metropolitan Statistical Areas (MSA's) when a high degree of	
employment interchange exists between the MISA's. The U.S. Census	
Bureau defines an MISA as a core area containing a substantial	
degree of social and economic integration with that core " These	
degree of social and economic integration with that core. These	
urban areas and higher amissions, are not as relevant to the over riding	
principles used by New Jersey to designets "nearby" group that	
contribute to violations of an ambient air quality standard. New Jersey	
believes that the quantity of emissions in an area and the meteorology	
that moves those emissions from its point of release to a recentor are	
more important than the social economic or employment interchange	
in an area. The definition of an MSA or CSA should not therefore be	
a primary factor in the selection of the size of the nonattainment area	
	All states in the region are participating in the NOx SIP Call, as well as national strategies to reduce emissions from vehicles, engines and fuels. In addition, many states in the region are participating in Ozone Transport Commission reduction measures for consumer products, mobile equipment refinishing, portable fuel containers and architectural coatings. County boundaries were considered here. The southern New Jersey counties of Burlington, Camden, Gloucester, Salem, and Cumberland are included in the Philadelphia/Camden/ Wilmington Combined Statistical Area. The northern New Jersey counties of Bergen, Hudson, Passaic, Essex, Hunterdon, Morris, Sussex, Union, Middlesex, Monmouth, Ocean, Somerset, and Mercer are included in the New York/Newark/Bridgeport, NY-NJ-CT-PA Combined Statistical Area (CSA). A Combined Statistical Area is made up of two or more Metropolitan Statistical Areas (MSA's) when a high degree of employment interchange exists between the MSA's. The U.S. Census Bureau defines an MSA as " a core area containing a substantial population nucleus, together with adjacent communities having a high degree of social and economic integration with that core." These factors used by the U.S. Census Bureau, while potential indicators of urban areas and higher emissions, are not as relevant to the over-riding principles used by New Jersey to designate "nearby" areas that contribute to violations of an ambient air quality standard. New Jersey believes that the quantity of emissions in an area and the meteorology that moves those emissions from its point of release to a receptor are more important than the social, economic or employment interchange in an area. The definition of an MSA or CSA should not, therefore, be a primary factor in the selection of the size of the nonattainment area.

Note: All this data was presented to the USEPA on May 22, 2003

(P) primary

(S) secondary

Cecil County, MD

Local vs. Upwind Contribution to 2010 Residual Ozone Nonattainment (ppb)

For each downwind area, how much of 2010 ozone problem is local and how much is due to transport?

Blue indicates portion of ozone attributable to area's own emissions.

Orange indicates portion of ozone attributable to transport.

IAQR Contribution Analysis

	Contributing State							
Downwind 2010								
Nonattainment				Total CT				Total PA,
Receptor County	NJ	СТ	NY	& NY	PA	MD	DE	MD & DE
Ocean, NJ	-	0%	0%	0%	35%	14%	10%	59%
Mercer, NJ	-	0%	1%	1%	46%	10%	7%	63%
Camden, NJ	-	0%	0%	0%	26%	21%	15%	62%
Monmouth, NJ	-	0%	1%	1%	37%	9%	6%	52%
Middlesex, NJ	-	0%	2%	2%	39%	5%	4%	48%
Morris, NJ	-	0%	2%	2%	42%	4%	3%	49%
Hudson, NJ	-	0%	3%	3%	29%	4%	2%	35%
Cecil, MD	0%	0%	0%	0%	9%	-	0%	-
Reference: TSD for the Interstate Air Quality Rule Air Quality Modeling Analyses, January 2004, Appendix G								

Planning Area Issues

- Transportation Conformity
- Ozone Action

Metropolitan Planning Organizations in New Jersey

Conclusion

- Ocean County, NJ is significantly impacted by sources outside of New Jersey including the greater Philadelphia area.
 - The USEPA's IAQR analysis indicates almost 60% of the 4episode average contribution to Ocean County is from Pennsylvania, Maryland, and Delaware.
- New York and Connecticut can not solve the ozone nonattainment problem detected at the Colliers Mills monitor.
- Ocean County, NJ should be aligned with the nearby source contribution area which includes the greater Philadelphia area.

Conclusion (Continued)

- Cecil County, MD is significantly impacted by local sources outside of New Jersey.
 - The USEPA's IAQR analysis indicates no contribution to the 4-episode average from New Jersey to Cecil County Maryland
- Cecil County, MD should be aligned with the nearby source contribution area.

Next Steps

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Emissions Analysis and Monitoring Division Research Triangle Park, NC 27711

January 2004

I. Introduction

This document was prepared to describe the air quality modeling performed by EPA in support of the proposed Interstate Air Quality Rule (IAQR). Included is information on (1) the air quality models and the development of model inputs, (2) the performance of the models as compared to measured data, (3) the procedures for projecting current air quality to future year emissions scenarios, (4) the evaluation of interstate contribution to ozone and PM2.5 in downwind nonattainment areas, (5) an analysis of the potential air quality improvements from locally applied controls, (6) an assessment of the expected air quality improvements from the regional SO2 and NOx emissions reductions, and (7) an analysis of the effects of SO2 emissions reductions on nitrate concentrations. The following is an outline of the main sections of this document:

- I. Introduction
- II. Emissions Inventories
- III. Base Year Episodic Ozone Modeling
- IV. Base Year PM2.5, Visibility, and Deposition Modeling
- V. Procedures for Projecting Ozone and PM2.5 for Future Year Scenarios
- VI. Modeling to Assess Interstate Ozone Contributions
- VII. Modeling to Assess Interstate PM2.5 Contributions
- VIII. Ozone Sensitivity Modeling of Local Emission Reductions
- IX. PM2.5 Modeling of Locally Applied Emissions Reductions
- X. Modeling of Regional SO2 and NOx Emissions Reductions
- XI. Modeling to Examine Nitrate Replacement
- XII. References
- Appendix A. Emissions Summary
- Appendix B. CAMx Model Performance Evaluation
- Appendix C. REMSAD Model Performance Evaluation
- Appendix D. 8-Hour Ozone Concentrations at Nonattainment Counties for the 2010 Base Case and 2015 Base Case
- Appendix E. Procedures for Estimating Future PM2.5 Values by Application Speciated Model Attainment Test (SMAT)
- Appendix F. PM2.5 Concentrations Projected for the 2010 Base Cases and 2015 Base Case
- Appendix G. Metrics for 8-Hour Ozone Contributions to Downwind Nonattainment Counties in 2010
- Appendix H. PM2.5 Contributions to Downwind Nonattainment Counties in 2010
- Appendix I. Background Information on the Development of Local Control Measures for PM2.5
- Appendix J. 290 Counties Included in the Local Control Study
- Appendix K Summary Emission Reductions from Local Control Measures for the 290 County Study
- Appendix L. Summaries of Impacts on PM2.5 and PM2.5 Speices from Local Control Measures for the 290 County Study
- Appendix M. Projected Visibility Summaries for 20% Best and 20% Worst Days at IMPROVE Monitoring Sites

II. Emissions Inventories

A. Overview of Emissions Scenarios

In order to support the air quality modeling analyses for the proposed rule, emissions inventories were developed for the 48 contiguous States and the District of Columbia. Inventories were developed for a 2001 base year, for 2010 and 2015 future baseline scenarios, and for 2010 and 2015 future control scenarios. The 2001 base year and 2010 and 2015 future base case inventories were in large part derived from a 1996 base year inventory and projections of that 1996 inventory to 2007 and 2020 as developed for previous EPA rulemakings for Heavy Duty Diesel Engines (HDDE)(EPA, 2000a; www.epa.gov/otaq/models/hd2007/r00020.pdf) and Land-based Non-road Diesel Engines (LNDE)(EPA, 2003a; www.epa.gov/nonroad/454r03009.pdf).

The inventories were prepared at the county level for on-road vehicles, non-road engines, and area sources. Emissions for electric generating units (EGUs) and large industrial and commercial sources (non-EGUs) were prepared as individual point sources. The inventories contain both annual and typical summer season day emissions for the following pollutants: oxides of nitrogen (NOx); volatile organic compounds (VOC); carbon monoxide (CO); sulfur dioxide (SO2); direct particulate matter with an aerodynamic diameter less than 10 micrometers (PM10) and less than 2.5 micrometers (PM2.5); and ammonia (NH3).

B. 2001 Base Year Emissions Inventory

Emissions inventory inputs representing the year 2001 were developed to provide a base year for forecasting future air quality. Because the complete 2001 National Emissions Inventory (NEI) and future year emissions projections consistent with that NEI were not available in a form suitable for air quality modeling when needed for this analysis, the following approach was used to develop a reasonably representative "proxy" inventory for 2001 in model-ready form that retained the same consistency with the existing future year projected inventories as the 1996 model-ready inventory that was used as the basis for those projected inventories.

The EPA had available model-ready emissions input files for a 1996 Base Year and a projected 2010 Base Case from a previous analysis. In addition, robust NEI estimates were available for 2001 for three of the five anthropogenic emissions sectors: EGUs; on-road vehicles; and non-road engines. NEI estimates for the 2001 Base Year were not available on a basis consistent with the 1996 and 2010 modeling files for the remaining two emission sectors: non-EGU point sources and area sources. The 2001 Proxy modeling files were therefore developed in a slightly different manner for each sector, as described below.

For the EGU sector, State-level emissions totals from the NEI 2001 were divided by similar totals from the 1996 modeling inventory to create a set of 1996 to 2001 adjustment ratios. Ratios were developed for each State and pollutant. These ratios were applied to the

model-ready 1996 EGU emissions file to produce the 2001 EGU emissions file. Adjustments were thus made in the modeling file to account for emissions reductions that had occurred between 1996 and 2001, but at an aggregated State-level, rather than for each individual source.

As previously stated, the NEI 2001 emissions estimates for the on-road vehicles and non-road engines sectors were available from the MOBILE6 and NONROAD2002 models, respectively. Because both of these models were updates of the versions used to produce the existing 1996 model-ready emissions files and their associated projection year files, an approach was developed to capture the relative 1996-to-2001 growth and control changes for these two sectors, rather than producing absolute tonnage values in the 2001 Proxy modeling files that would match the 2001 NEI.

The updated MOBILE6 and NONROAD2002 models were used to develop revised 1996 annual emissions estimates that were consistent with the 2001 NEI estimates. A set of 1996-to-2001 adjustment ratios were then created by dividing State-level total emissions for each pollutant for 2001 by the corresponding consistent 1996 emissions. These adjustment ratios were then multiplied by the older methodologies' existing gridded model-ready 1996 emissions for these two sectors to produce model-ready files for 2001. These model-ready 2001 files, therefore, maintain consistency with the future year projection files that were based on the older emission model versions but also capture the effects of the 1996 to 2001 emission changes as indicated by the latest versions of the two emissions models.

NEI estimates for the 2001 Base Year were not available on a basis consistent with the 1996 and 2010 modeling files for the non-EGU point source and area source sectors. Linear interpolations were performed between the gridded 1996 emissions and the gridded 2010 Base Case emissions to produce the 2001 gridded emissions files for these two sectors. These interpolations were done separately for each of the two sectors, for each grid cell, for each pollutant. As the 2010 Base Case inventory was itself a projection from the 1996 inventory, this approach maintained consistency of methods and assumptions between the 2001 and 2010 emissions files, and also attempted to capture likely changes in the inventory from 1996 to 2010. (Note that the gridded area source files had been split into livestock versus non-livestock categories. The grid cell by grid cell interpolations were therefore done separately for each of these two sub-sectors of the area source inventory).

Appendix A, Tables 1 through 3 show the adjustment ratios that were developed for EGUs, on-road vehicles and off-road engines. Tables 4 through 9 show the resulting State-level emissions totals for the 2001 Proxy modeling inventory for these three sectors, as well as for the non-egu and area source sectors which were developed from linear interpolation and a table for all sectors combined. Because the gridded 1996 modeling files contained pollutant PM-coarse (calculated from PM10 minus PM2.5), the three ratio tables include adjustment factors for PM-coarse rather than PM10.

C. 2010 and 2015 Base Case and IAQR Regional Control Case Emissions Inventories

The future Base Case scenarios represent predicted emissions in the absence of any further controls beyond those State, local, and Federal measures already promulgated plus other significant measures expected to be promulgated before the final IAQR is promulgated. Any additional local control programs which may be necessary for areas to attain the annual PM2.5 NAAQS and the ozone NAAQS are not included in the future base case projections. The future base case scenarios do reflect projected economic growth.

Specifically, the future base case scenarios include the effects of the LNDE as proposed, the HDDE standards, the Tier 2 tailpipe standards, the NOx SIP Call as remanded (excludes controls in Georgia and Missouri), and Reasonably Available Control Techniques (RACT) for NOx in 1-hour ozone nonattainment areas. Adjustments were also made to the non-road sector inventories to include the effects of the Large Spark Ignition and Recreational Vehicle rules; and to the non-EGU sector inventories to include the SO2 and particulate matter co-benefit effects of the proposed Maximum Achievable Control Technology (MACT) standard for Industrial Boilers and Process Heaters. The future base case scenarios do not include the NOx co-benefit effects of proposed MACT regulations for Gas Turbines or stationary Reciprocating Internal Combustion Engines, which we estimate to be small compared to the overall inventory; or the effects of NOx RACT in 8-hour ozone nonattainment areas, because these areas have not yet been designated.

The 2010 and 2015 Base Case inventories used for this proposal were derived from interpolations and adjustments to projection inventories developed for previous EPA rulemakings. In particular, the 2007 inventory used to represent the control case for the Heavy Duty Diesel Engines (HDDE) rule and the 2020 inventory used to represent the control case for the Land-based Non-road Diesel Engines (LNDE) rule were used with appropriate adjustments for this proposal. Full documentation of the procedures used to develop these earlier projection inventories is available at www.epa.gov/otaq/models/hd2007/r00020.pdf and www.epa.gov/nonroad/454r03009.pdf, respectively. A description of the adjustments that were made beyond what is documented in those earlier documents is described in subsections 1. through 4., below.

The control case inventories for 2010 and 2015 were developed by replacing the EGU emissions in the base case inventories with the projected EGU emissions under a proposed emissions cap scenario. Appendix A, Tables 10 thru 21 contain the State-level emissions summaries for each of the five sectors for the IAQR Base Case inventories for 2010 and 2015. Tables 22 thru 27 contain the Control Case summaries for the EGU sector, all sectors combined, and the differences from the Base Cases for the two years.

1. Development of Emissions Inventories for Electric Generating Units

Base and Control Case EGU emissions for 2010 and 2015 used for the air quality strategy modeling runs were obtained from version 2.1.6 of the Integrated Planning Model (IPM) (www.epa.gov/airmarkets/epa-ipm/index.html). However, results from this version of the IPM

model were not available at the time that the air quality model runs used to determine interstate contributions ("zero-out runs") were started. Therefore, EGU emissions from a previous IPM version (v2.1.5) were used for the zero-out runs. Updates applied to the IPM model between versions 2.1.5 and 2.1.6 include the update of coal and natural gas supply curves and the incorporation of several State-mandated emission caps and New Source Review (NSR) settlements. In this document we refer to the 2010 Base Case used in the zero out runs as 2010 Base-1¹, and the 2010 Base Case used for the control strategy runs as 2010 Base-2. The 2010 Base-2 and 2015 Base Case were developed from the same IPM. The 2010 Base-2 emissions are also the same as the 2010 Base Case used for modeling in the 2003 Clear Skies analysis. Appendix A Tables 28 and 29 compare the State-level emissions totals of NOx and SO2 for 2010 Base-1 versus 2010 Base-2.

2. Development of Emissions Inventories for On-road Vehicles

The 2010 and 2015 Base Case emissions files used for this proposal were developed as straight-line interpolations between the 2007 on-road file used for the control case of the HDDE rule and the 2020 on-road file used for both the base and control cases of the LNDE rule. Note that the 2020 on-road vehicle emissions file developed for the LNDE rule includes the reductions expected from implementation of the earlier HDDE rule. No adjustments were made for on-road vehicles beyond the linear interpolations to produce the two intervening years.

As described in the referenced documents for the earlier rules, the 2007 and 2020 on-road vehicle files were developed using a version of the MOBILE5b model which had been adjusted to simulate the MOBILE6 model that was under development at that time. The 1996 on-road vehicle emission file (and therefore the derived 2001 Proxy modeling file) had been developed using the same adjusted version of MOBILE5b.

3. Development of Emissions Inventories for Non-road Engines

The 2010 and 2020 non-road emissions files developed for EPA's analysis of the preliminary controls of the LNDE rule (and as documented at www.epa.gov/nonroad/454r03009.pdf) were modified to reflect that rule as finally proposed (68 FR 28327, May 23, 2003) and to incorporate the effects of the Large Spark Ignition and Recreational Vehicle rules. These modifications were done using adjustment ratios developed from national-level estimates of the benefits of these two rules. A 2015 emissions file for this sector was then developed as a straight-line interpolation between the modified 2010 and 2020 files. Note that a 2010 emissions file for the non-road sector had been developed in a consistent manner as the 2020 and 2030 files that were actually modeled for the LNDE proposal. However,

¹Revisions to PM2.5 emissions from EGU sources were made to the 2010 Base-1 for sources in Iowa, Louisiana, and North Dakota. These revisions were incorporated into an updated baseline referred to as 2010 Base-1a. The 2010 Base-1a was used as the baseline for the zero-out REMSAD modeling of Iowa, Louisiana, North Dakota combined with Vermont, Colorado, Montana, New Mexico, and Wyoming. Information on the zero-out modeling to assess interstate contributions to PM2.5 can be found in section VII.
2010 emissions files were not available from the LNDE analyses for the other emission sectors.

4. Development of Emissions Inventories for Non-EGU Point Sources and Area Sources

The 2010 and 2015 emissions files for these sectors that were used as part of the interpolation to 2001 were themselves developed as straight-line interpolations between the 2007 and 2020 inventories described above for the on-road vehicle sector. The interpolated 2010 and 2015 emissions were adjusted to reflect the SO2, PM10, and PM2.5 co-control benefits of the proposed Industrial Boiler and Process Heater MACT (68 FR 1660, January 13, 2003). The 2007 and 2020 projection inventories had been developed by applying State- and 2-digit SIC-specific economic growth ratios to the 1996 NEI, followed by application of any emissions control regulations.

5. Preparation of Emissions for Air Quality Modeling

The annual and summer day emissions inventory files were processed through the Sparse Matrix Operator Kernel Emissions (SMOKE) Modeling System (Houyoux, 2000) to produce 36-km gridded input files for annual PM2.5 air quality modeling and 12-km input files for episodic ozone air quality modeling. In addition to the U.S. anthropogenic emission sources described above, hourly biogenic emissions were estimated for individual modeling days using the BEIS model version 3.09 (ftp.epa.gov/amd/asmd/beis3v09/). Emissions inventories for Canada and for U.S. offshore oil platforms were merged in using SMOKE to provide a more complete modeling data set. The single set of biogenic, Canadian, and offshore U.S. emissions was used in all scenarios modeled. That is, the emissions for these sources were not varied from run to run.

III. Base Year Episodic Ozone Modeling

Air quality modeling analyses for ozone were conducted with the Comprehensive Air Quality Model with Extensions (CAMx). CAMx is a non-proprietary computer modeling tool that can be used to evaluate the impacts of proposed emissions reductions on future air quality levels. For more information on the CAMx model, please see the model user's guide (Environ, 2002). Version 3.10 of the CAMx model was employed for these analyses.

The modeling analyses were completed for an Eastern U.S. domain as shown in Figure III-1. The domain has nested horizontal grids of 36 and 12 km. The model was applied and evaluated over three episodes that occurred during the summer of 1995. Ozone model runs were performed for emissions in 1996 in order to evaluate the ability of the model to replicate measured concentrations. In addition, model runs were preformed for the 2001 Base Year and the 2010 and 2015 Base and control case scenarios for all episodes. The model outputs from the 2001 base year and 2010 and 2015 base and control cases, combined with current air quality data, were used to: 1) determine the degree and geographic extent of expected future nonattainment, 2) determine the potential impacts of local controls on future nonattainment, 3) assess the potential for transport of ozone and ozone precursors, and 4) determine the

contribution from transport to future 8-hour ozone nonattainment.

Figure III-1. Map of the Eastern U.S. modeling domain. The outer box denotes the entire modeling domain (36 km) and the inner box shaded indicates the fine grid location (12 km).

A. Modeling Episodes

There are several considerations involved in selecting episodes for an ozone modeling analysis (EPA, 1999a). In general, the goal is to model several differing sets of meteorological conditions leading to ambient ozone levels similar to an area's design value. Warm temperatures, light winds, cloud-free skies, and stable boundary layers are some of the typical characteristics of ozone episodes. On a synoptic scale, these conditions usually result from a combination of high pressure aloft (e.g., at the 500 millibar pressure level) and at the surface. On the local scale, the conditions that lead to ozone exceedances can vary from location to location based on factors such as wind direction, sea/lake breezes, etc. The ozone episodes modeled for the IAQR are listed in Table III-1. The meteorological and resultant ozone patterns for these episodes are discussed in more detail in previous technical support documents for the Tier-2/Low Sulfur rule (EPA, 1999b) and the Heavy-Duty Engine rule (EPA, 2000b). The first three days of each period are considered ramp-up days and the results from these days were not used in the analyses. In all, 30 episode days were modeled.

	Ozone Episodes
Episode 1	June 12-24, 1995
Episode 2	July 5-15, 1995
Episode 3	August 7-21, 1995

Table III-1. Dates of Ozone Episodes Modeled Including Ramp-Up Days.

In order to determine whether the modeling days correspond to commonly occurring and ozone-conducive meteorology, EPA has applied a multi variate statistical approach for characterizing daily meteorological patterns and investigating their relationship to 8-hour ozone concentrations in the Eastern U.S. (Battelle, 2004). The approach applies procedures presented in Eder, et al. (1994). These analyses were conducted using meteorological data from the most recent seven to ten years at 16 sites. In most locations, there were five to six distinct sets of meteorological conditions, called regimes, that occurred during the ozone seasons studied. An analysis of the 8-hour daily maximum ozone concentrations for each of the meteorological regimes determined the distribution of ozone concentrations for each regime and the frequency of regime occurrence. These two terms were combined to identify which regimes contribute the most to ozone concentrations in the locations under investigation. Using the data base in which each day in 1995 is assigned a meteorological regime, EPA determined that between 60 and 70 percent of the episode days modeled are associated with the most frequently occurring, high ozone potential, meteorological regimes. In general, these results provide support that the episodes modeled are representative of conditions present when elevated ozone is observed throughout the modeling domain.

B. Modeling Domain and Grid Configuration

As with episode selection, there are also several considerations involved in selecting the domain and grid configuration to be used in the ozone modeling analysis. The modeling domain should encompass the area of intended analysis with an additional buffer of grid cells to minimize the effects of, sometimes uncertain, boundary condition inputs. When possible, grid resolution should be equivalent to the resolution of the primary model inputs (emissions, winds, etc.) and equivalent to the scale of the air quality issue being addressed. The CAMx modeling was performed for the coarse and fine grid domains as defined below in Table III-2.

	Eastern US Domain			
Coarse Grid J		Fine Grid		
Map Projection latitude/longitude		latitude/longitude		
Grid Resolution	1/2° longitude, 1/3° latitude (~ 36 km)	1/6° longitude, 1/9° latitude (~ 12 km)		
East/West extent	-99 W to -67 W	-92 W to -69.5 W		
North/South extent	26 N to 47 N	32 N to 44 N		
Vertical extent	9 Layers: surface to 4 km 9 Layers: surface to 4 km			
Dimensions 64 by 63 by 9 137 by 1		137 by 110 by 9		

	Table II	I-2. Con	figuration	of Ozone	Modeling	Domain.
--	----------	----------	------------	----------	----------	---------

C. Meteorological and Other Model Inputs

In order to solve for the change in pollutant concentrations over time and space, the air quality model requires certain meteorological inputs that, in part, govern the formation, transport, and destruction of pollutant material. In particular, the CAMx model used in these analyses requires seven meteorological input files: wind (u- and v-vector wind components), temperature, water vapor mixing ratio, atmospheric air pressure, cloud cover, rainfall, and vertical diffusion coefficient. Fine grid values of wind, pressure, and vertical diffusivity are also used; the other fine grid meteorological inputs are interpolated from the coarse grid files.

The gridded meteorological data for the three historical 1995 episodes were developed using the Regional Atmospheric Modeling System (RAMS), version 3b. RAMS (Pielke *et. al.*, 1992) is a numerical meteorological model that solves the full set of physical and thermodynamic equations which govern atmospheric motions. The output data from RAMS, which is run in a polar stereographic projection and a sigma-p coordinate system, are then mapped to the CAMx grid. Two separate meteorological CAMx inputs, cloud fractions and rainfall rates, were developed based on observed data.

RAMS was run in a nested-grid mode with three levels of resolution: 108 km, 36 km, and 12 km with 28-34² vertical layers. The top of the surface layer was 16.7 m in the 36 and 12km grids. The two finer grids were at least as large as their CAMx counterparts. In order to keep the model results in line with reality, the simulated fields were nudged to an European Center for Medium-Range Weather Forecasting (ECMWF) analysis field every six hours. This assimilation

² The inner nests were modeled with 34 layers while the outer 108 km domain was modeled with 28 layers.

data set was bolstered by every four-hourly special soundings regularly collected as part of the North American Research Strategy on Tropospheric Ozone (NARSTO) field study in the northeast U.S.

A limited model performance evaluation (Lagouvardos et al., 2000) was completed for a portion of the 1995 meteorological modeling (July 12-15). Observed data not used in the assimilation procedure were compared against modeled data at the surface and aloft. In general, the model accurately reproduced the synoptic meteorological conditions of the episode days. Furthermore, the meteorological fields were compared before and after being processed into CAMx inputs. It was concluded that this preprocessing did not distort the meteorological fields.

In addition to the meteorological data, the photochemical grid model requires several other types of data. In general, most of these miscellaneous model files have been be taken from existing regional modeling applications. Clean conditions were used to initialize the model and were also used as lateral and top boundary conditions as in previous regional modeling applications. The model also requires information regarding land use type and surface albedo for all layer 1 grid cells in the domain. Existing regional data were used for these non-day-specific files. Photolysis rates were developed using the JCALC preprocessor. Turbidity values were set equal to a constant thought to be representative of regional conditions.

D. CAMx Model Performance Evaluation

The goal of the 1995 Base Year modeling was to reproduce the atmospheric processes resulting in high ozone concentrations over the eastern United States during the three 1995 episodes selected for modeling. Note that the base year of the emissions was 1996 while the eastern U.S. episodes are for 1995. The effects on model performance of using 1996 emissions for the 1995 episodes are not known, but are not expected to be major. The ozone model performance evaluation procedures and results are provided in Appendix B.

IV. Base Year PM2.5, Visibility, and Deposition Modeling

A. Introduction

This section describes the REgional Modeling System for Aerosols and Deposition (REMSAD) model which was used as the tool for simulating base year and future concentrations of PM, visibility, and deposition in support of the IAQR air quality assessments (ICF Kaiser, 2002). Model runs were made for the 1996 and 2001 Base Years as well as for the 2010 and 2015 Base and control scenarios. As described below, each of these emissions scenarios was simulated using 1996 meteorological data in order to provide the PM2.5 concentrations needed for the projecting PM2.5, visibility and deposition for the future year baseline and control scenarios.

Two versions of REMSAD were used for the IAQR modeling. Version 7.03 was the most current version available when EPA began the IAQR model runs. During the course of the modeling process updates were made to REMSAD and incorporated into version 7.06. The updates made to REMSAD between version 7.03 and 7.06 are noted below in the section describing the scientific features of the model. Table IV-1 lists the IAQR emissions scenarios and the version of REMSAD used for modeling each scenario.

Table IV-1.	Emissions S	Scenarios	Modeled a	and REMSAD	Model Version.

Model Version	2001 Proxy	2010 Base-1	2010 Base-2	2010 Zero-Out Runs	2010 Control Runs ^a	2015 Control Runs ^a
7.03	Х	Х	-	Х	Х	Х
7.06	Х	-	Х	X ^b	-	-

a. The 2010 and 2015 Control runs include the IAQR regional strategy and a local control scenario for each of these projection years.

b. The zero-out model run for New Jersey was rerun using the 2010 Base-2 emissions because the emissions of SO2 in this State dropped by more than 10 percent compared to the emissions in the 2010 Base-1 scenario. Since the 2010 Base-2 scenario was modeled using version 7.06, the run of the New Jersey zero-out was also modeled with version 7.06.

B. REMSAD Model Description

The basis for REMSAD is the atmospheric diffusion equation (also called the species continuity or advection/diffusion equation). This equation represents a mass balance in which all of the relevant emissions, transport, diffusion, chemical reactions, and removal processes are expressed in mathematical terms. REMSAD employs finite-difference numerical techniques for the solution of the advection/diffusion equation.

REMSAD was run using a latitude/longitude horizontal grid structure in which the horizontal grids are generally divided into areas of equal latitude and longitude. The vertical layer structure of REMSAD is defined in terms of sigma-pressure coordinates. The top and bottom of the domain are defined as 0 and 1 respectively. The vertical layers are defined as a percent of the atmospheric pressure between the top and bottom of the domain. For example, a vertical layer of 0.50 sigma is exactly halfway between the top and bottom of the domain as defined by the local atmospheric pressure. The vertical layers were defined to match the vertical layer structure of the meteorological model used to generate the REMSAD meteorological inputs.

1. Gas Phase Chemistry

REMSAD simulates gas phase chemistry using a reduced-form version of Carbon Bond (CB4) chemical mechanism termed "micro-CB4" (mCB4) which treats fewer VOC species

compared to the full CB4 mechanism. The inorganic and radical parts of the reduced mechanism are identical to CB4. In this version of mCB4 the organic portion is based on three primary species (VOC, ISOP, and TERP) and one primary and secondary carbonyl species (CARB). The VOC species was incorporated with kinetics representing an average anthropogenic hydrocarbon species. The other two primary VOC species represent biogenic emissions of isoprene and terpenes and are included with kinetic characteristics representing isoprene and terpenes and are included with kinetic characteristics representing isoprene and terpenes respectively. The intent of the mCB4 mechanism is to (a) provide a physically faithful representation of the linkages between emissions of ozone precursor species and secondary PM precursors species, (b) treat the oxidizing capacity of the troposphere, represented primarily by the concentrations of radicals and hydrogen peroxide, and (c) simulate the rate of oxidation of the nitrogen oxide ($_{NOx}$) and sulfur dioxide (SO₂) PM precursors. Box model testing of mCB4 has found that it performs very closely to the full CB4 that is contained in UAM-V (Whitten, 1999).

REMSAD version 7 (7.03 and 7.06) includes several updates to the mCB4 mechanism relative to earlier versions of REMSAD. A new treatment for the NO₃ and N₂O₅ species has been implemented which results in improved agreement with rigorous solvers such as Gear and eliminates nitrogen mass inconsistencies. Also, several additional reactions have been added to the mCB4 mechanism which may be important for regional scale and annual applications where wide ranges in temperature, pressure, and concentrations may be encountered. The reactions are OH + H, OH + NO₃, and HO₂ + NO₃. For the same reason three reactions involving peroxy nitric acid (PNA), which were included in the original CB4 mechanism, were added to mCB4.

2. PM Chemistry

Primary PM emissions in REMSAD are treated as inert species. They are advected and deposited without any chemical interaction with other species. Secondary PM species, such as sulfate and nitrate are formed through chemical reactions within the model. SO_2 is the gas phase precursor for particulate sulfate, while nitric acid is the gas phase precursor for particulate nitrate. Several other gas phase species are also involved in the secondary reactions.

There are two pathways for sulfate formation; gas phase and aqueous phase. Aqueous phase reactions take place within clouds, rain, and/or fog. In-cloud processes can account for the majority of atmospheric sulfate formation in many areas. In REMSAD, aqueous SO₂ reacts with hydrogen peroxide (H_2O_2), ozone (O_3), and/or oxygen (O_2) to form aerosol sulfate. REMSAD version 7 reflects upgrades to include all three aqueous phase sulfate reactions. Previous versions only contained the hydrogen peroxide reaction. The rate of the aqueous phase reactions depends on the concentrations of the chemical reactants as well as cloud water content. SO₂ also reacts with OH radicals in the gas phase to form aerosol sulfate. The aqueous phase and gas phase sulfate is typically added together to get the total sulfate concentration.

An equilibrium algorithm is used to calculate particulate nitrate concentrations. REMSAD version 7 uses the MARS-A equilibrium algorithm (Saxena et al., 1986) and (Kim et al., 1993). In REMSAD, particulate nitrate is calculated in an equilibrium reaction between nitric acid, sulfate, and ammonia. Nitric acid is a product of gas phase chemistry and is formed through the mCB4 reactions. The acids are neutralized by ammonia with sulfate reacting more quickly than nitric acid. An equilibrium is established among ammonium sulfate and ammonium nitrate which strongly favors ammonium sulfate. If the available ammonia exceeds twice the available sulfate then particulate nitrate is allowed to form as ammonium nitrate. Nitrate is then partitioned between particulate nitrate and gas phase nitric acid. The partitioning of nitrate depends on the availability of ammonia as well meteorological factors such as temperature and relative humidity.

The updates to the REMSAD that were made between version 7.03 and 7.06 affect the dry deposition velocity of all gas phase species and in particular ammonia. Several assumptions contained in the REMSAD dry deposition code were removed. In previous versions of REMSAD, the surface resistance (Rc) for ammonia gas was set equal to 30 s/m at all times for the landuse categories of agriculture, range, and mixed agriculture and range. In addition, for the landuse types of deciduous forest, coniferous forest, and mixed forest, the ammonia surface resistance was set equal to the stomatal resistance only. Both of these assumptions were removed from the code. As a result, version 7.06 more closely follows the original work by Wesley (Wesley, 1989).

Organic aerosols can contribute a significant amount to the PM in the atmosphere. Primary organic aerosols (POA) are treated as a directly emitted species in REMSAD. In REMSAD version 7, a calculation of the production of secondary organic aerosols (SOA) due to atmospheric chemistry processes was added³. A peer review of the REMSAD model (Seigneur et al., 1999) recommended an SOA module based on the equilibrium approach of Pankow (Odum et al., 1997), (Griffin et al., 1999). The implementation of the SOA treatment in version 7 of REMSAD follows the recommendation of the peer review. This includes SOA formation from anthropogenic and biogenic organic precursors. For both anthropogenic and biogenic organics REMSAD includes gas phase secondary organic species and the corresponding aerosol phase species.

C. REMSAD Modeling Domain

The REMSAD domain used for the IAQR modeling is shown in Figure IV-1. The geographic characteristics of the domain are as follows:

120 (E-W) X 84 (N-S) grid cells Cell size (~36 km) ½ degree longitude (0.5) 1/3 degree latitude (0.3333) E-W range: 66 degrees W - 126 degrees W

³An error was found in the SOA mechanism of REMSAD v7.01. This was corrected in version 7.03. The reference temperature from the literature to calculate the partitioning coefficient (K) was assumed to be 298K when it should have been \sim 308K.

N-S range: 24 degrees N - 52 degrees N Vertical extent: Ground to 16,200 meters (100mb) with 12 layers

Figure IV-1. REMSAD Modeling Domain.

D. Meteorological and Other Model Inputs

REMSAD requires input of winds (u- and v-vector wind components), temperatures, surface pressure, specific humidity, vertical diffusion coefficients, and rainfall rates. The meteorological input files were developed from a 1996 annual MM5 model run that was developed for previous projects. MM5 is the Fifth-Generation NCAR / Penn State Mesoscale Model. MM5 (Grell et al., 1994) is a numerical meteorological model that solves the full set of physical and thermodynamic equations which govern atmospheric motions. MM5 was run in a nested-grid mode with 2 levels of resolution: 108 km, and 36km with 23 vertical layers sigma layers extending from the surface to the 100 mb pressure level. The model was simulated in five day segments with an eight hour ramp-up period. The MM5 runs were started at 00Z, which is 7:00 p.m. EST. The first eight hours of each five day period were removed before being input into REMSAD. Table IV-2 provides the vertical grid structures for the MM5 and REMSAD domains. Further detailed information concerning the development and evaluation of the 1996 MM5 datasets can be found in (Olerud, 2000).

REMSAD Layer	MM5 Layer	Sigma	Approximate Height (m)	Pressure (mb)
0	0	1.000	0.0	1000.0
1	1	0.995	38.0	995.5
2	2	0.988	91.5	989.2
	3	0.980	152.9	982.0
3	4	0.970	230.3	973.0
	5	0.956	339.5	960.4
4	6	0.938	481.6	944.2
	7	0.916	658.1	924.4
5	8	0.893	845.8	903.7
	9	0.868	1053.9	881.2
6	10	0.839	1300.7	855.1
	11	0.808	1571.4	827.2
7	12	0.777	1849.6	799.3
	13	0.744	2154.5	769.6
8	14	0.702	2556.6	731.8
	15	0.648	3099.0	683.2
9	16	0.582	3805.8	623.8
	17	0.500	4763.7	550.0
10	18	0.400	6082.5	460.0
	19	0.300	7627.9	370.0
11	20	0.200	9510.5	280.0
	21	0.120	11465.1	208.0
	22	0.052	13750.2	146.0
12	23	0.000	16262.4	100.0

Table IV-2. Vertical Grid Structure for 1996 MM5 and Clear Skies REMSAD Domains. Layer Heights Represent the Top of each Layer. The First Layer is from the Ground up to 38 meters.

The MM5 model output cannot be directly input into REMSAD due to differences in the grid coordinate systems and file formats. A postprocessor called MM5-REMSAD was developed to convert the MM5 data into REMSAD format. This postprocessor was used to develop hourly average meteorological input files from the MM5 output. Documentation of the MM5REMSAD code and further details on the development of the input files is contained in (Mansell, 2000).

Application of the REMSAD modeling system requires data files specifying the initial species concentration fields and lateral boundary species concentrations. Due to the extent of the proposed modeling domains and the large-scale modeling domain, these inputs were developed based on "clean" background concentration values. The IAQR modeling used temporally and spatially (horizontal) invariant data for both initial and boundary conditions. Species concentration values were allowed to decay vertically for most species.

Land use characteristics were perpared for input to the REMSAD simulations. These data provide the fraction in each grid cell of the 11 land specified in REMSAD. Land use characteristics are used in the model for the calculation of deposition parameters. For this task, land use data was obtained from the United States Geological Survey Global vegetation database which contains the same data used in the 1996 MM5 models runs. This dataset provides 24 landuse categories, including urban. For the REMSAD application the 24 vegetation categories were remapped to those required for application of REMSAD.

E. REMSAD Model Performance Evaluation

The goal of the 1996 Base Year REMSAD modeling was to reproduce the atmospheric processes resulting in formation and dispersion of fine particulate matter across the U.S. An operational model performance evaluation for PM2.5 and its related speciated components (e.g., sulfate, nitrate, elemental carbon etc.) for 1996 was performed in order to estimate the ability of the modeling system to replicate Base Year concentrations. A description of the evaluation procedures and the results are provided in Appendix C.

V. Procedures for Projecting Ozone and PM2.5 for Future Year Scenarios

A. Introduction

In this section we describe the procedures used to project current air quality concentrations to the future year baseline and control scenarios covered in this TSD. For this analysis we started with current ambient 8-hour ozone and annual average PM2.5 design values as calculated by EPA for individual monitoring sites. The development of these design values is described in the report Air Quality Data Analysis Technical Support Document for the Proposed Interstate Air Quality Rule (EPA, 2004)⁴. The procedures for projecting ozone concentrations is presented first followed by the procedures for projecting PM2.5 concentrations. In general, the

⁴The ambient PM2.5 design values used for projecting future year concentrations were obtained for monitoring sites which meet the completeness criteria in 40CFR Part 50, Appendix N and do not reflect the application of any data substitution tests to fill in for incomplete data. However, the design values reported in the Air Quality Data Analysis TSD do reflect the data substitution. As a consequence of this difference, 2000-2002 design values reported in the Air Quality Data Analysis TSD may be higher than those used in the modeling analysis for the following counties: New Haven, CT, Richmond, GA, Lake, IN, Philadelphia, Hamilton, TN.

procedures for projecting ozone and PM2.5 follow the same general approach. This approach involves using the predictions from Base Year and future case air quality model runs in a relative sense to adjust current design value concentrations up or down, depending on the modeling results, to reflect expected future concentrations.

B. Projection of Future 8-Hour Ozone Concentrations

Ozone modeling for the 2001 Base Year was coupled with modeling for the future year scenarios in 2010 and 2015 to project which counties are expected to be nonattainment for the future year emissions scenarios. In general, the approach for projecting future 8-hour ozone concentrations involves using the model in a relative sense to estimate the change in ozone between 2001 and each future scenario. Concentrations of ozone in 2010 were estimated by applying the relative change in model predicted ozone from 2001 to 2010 with present-day 8hour ozone design values (2000-2002). The procedures for calculating future case ozone design values are consistent with EPA's draft modeling guidance (EPA, 1999a) for 8-hour ozone attainment demonstrations, "Draft Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-Hour Ozone NAAQS." The draft guidance specifies the use of the higher of the design values from (a) the period that straddles the emissions inventory Base Year or (b) the design value period which was used to designate the area under the ozone NAAQS. In this case, 2000-2002 is the design value period which straddles the 2001 Base Year inventory and is also the latest period which is available for determining designation compliance with the NAAQS. Therefore, 2000-2002 was the only period used as the basis for projections to the future years of 2010 and 2015.

The procedures in the guidance for projecting future 8-hour ozone nonattainment are as follows:

<u>Step 1</u>: Hourly model predictions are processed to determine daily maximum 8-hour concentrations for each episode day modeled. A relative reduction factor (RRF) is then determined for each monitoring site. First, the multi-day mean (excluding ramp-up days) of the 8-hour daily maximum predictions in the nine grid cells that include or surround the site is calculated using only those predictions greater than or equal to 70 ppb, as recommended in the guidance. This calculation is performed for the base year 2001 scenario and the future-year scenario. The RRF for a site is the ratio of the mean prediction in the future-year scenario (e.g., 2010) to the mean prediction in the 2001 base year scenario. The RRFs were calculated on a site-by-site basis.

<u>Step 2</u>: The RRF for each site is then multiplied by the 2000-2002 ambient design value for that site, yielding an estimate of the future design value at that particular monitoring location. In calculating the projected design values, any amount of the concentration less than 1 ppb (i.e., to the right of the decimal) were discarded (i.e., the concentrations were truncated to an integer ppb value).

<u>Step 3</u>: For counties with only one monitoring site, the value at that site was selected as the value for that county. For counties with more than one monitor, the highest value in the county was selected as the value for that county. Counties with projected 8-hour ozone design values of 85 ppb or more are projected to be nonattainment

As an example, consider Clay County, Alabama which has one ozone monitor. The 2000-2002 8-hour ambient ozone design value is 82 ppb. In the 2001 base year simulation, 24 of the 30 episode modeling days have CAMx values of 70 ppb or more in one of the nine grid cells that include or surround the monitor location. The average of these predicted ozone values is 88.62 ppb. In 2010, the average of the predicted values for these same grid cells was 70.32 ppb. Therefore, the RRF for this location is 0.79, and the projected 2010 design value is 82 multiplied by 0.79 equals 65.07. All projected future case design values are truncated to the nearest ppb (e.g., 65.07 becomes 65). Since there are no other monitoring locations in Clay County, Alabama, the projected 2010 8-hour design value for this county is 65 ppb.

The RRF approach described above was applied for the 2010 and 2015 Base Case scenarios. The 2010 Base and 2015 Base Case design values are provided in Appendix D. Of the 287 counties that were nonattainment based on 2000-2002 design values, 47 are forecast to be nonattainment in 2010 and 34 in 2015. None of the counties that were measuring attainment in the period 2000-2002 are forecast to become nonattainment in the future. Those counties projected to be nonattainment for the 2010 and 2015 Base Case are listed in Table V-1. The counties projected to be nonattainment for the 2010 Base Case are the nonattainment receptors used for assessing the contribution of emissions in upwind States to downwind nonattainment and for analyzing the impacts of emissions control scenarios.

State	2010 Base-2	2015 Base Case
AR	Crittenden	Crittenden
СТ	Fairfield, Middlesex, New Haven	Fairfield, Middlesex, New Haven
DC	Washington, D.C.	Washington D.C.
DE	New Castle	None
GA	Fulton	None
IL	None	Cook
IN	Lake	Lake
MD	Anne Arundel, Baltimore, Cecil, Harford, Kent, Prince Georges	Anne Arundel, Cecil, Harford
MI	None	Macomb

 Table V-1. Counties Projected to be Nonattainment for the 8-Hour Ozone NAAQS in the

 2010 and 2015 Base Cases.

NJ	Bergen, Camden, Cumberland, Gloucester, Hudson, Hunterdon, Mercer, Middlesex, Monmouth, Morris, Ocean	Bergen, Camden, Gloucester, Hunterdon, Mercer, Middlesex, Monmouth, Morris, Ocean
NY	Erie, Putnam, Richmond, Suffolk, Westchester	Erie, Richmond, Suffolk, Westchester
NC	Mecklenburg	None
ОН	Geauga, Summit	Geauga
PA	Allegheny, Bucks, Delaware, Montgomery, Philadelphia	Bucks, Montgomery, Philadelphia
RI	Kent	Kent
ΤX	Denton, Harris, Tarrant	Harris
VA	Arlington, Fairfax	Arlington, Fairfax
WI	Kenosha, Racine, Sheboygan	Kenosha, Sheboygan

C. Projection of Future PM2.5 Concentrations

As with ozone, the approach for identifying areas expected to be nonattainment for PM2.5 in the future involves using the model predictions in a relative way to forecast current PM2.5 design values to 2010 and 2015. The modeling portion of this approach includes annual simulations for 2001 emissions and for the 2010 and 2015 Base Case emissions scenarios. As described below, the predictions from these runs were used to calculate RRFs which were then applied to current PM2.5 design values. The approach we followed is consistent with the procedures in the draft PM2.5 air quality modeling guidance (EPA, 2001) "Guidance for Demonstrating Attainment of Air Quality Goals for PM2.5 and Regional Haze." It should be noted that the approach for PM2.5 differs from the approach recommended for projecting future year 8-hour ozone design values in terms of the base period for design values. The approach for ozone uses the higher of the ambient design values for two 3-year periods, as described above. In contrast, the PM2.5 guidance recommends selecting the highest design value from among the three periods that straddle the base emissions year (i.e., 2001). The three periods that straddle this year are 1999-2001, 2000-2002, and 2001-2003. The data from the first two design value periods are readily available, but the data from the 2001-2003 period could not be used since the 2003 data were not yet available. Thus, we have relied on the data for the two periods 1999-2001 and 2000-2002. The design values from the period 2000-2002, which is the most recent period with available data, were used to identify which monitors are currently measuring nonattainment (i.e., annual average PM2.5 of 15.05 μ g/m³ or more). To be consistent with procedures in the modeling guideline, we selected the higher of the 1999-2001 or 2000-2002 design value from each nonattainment monitor for use in projecting future design values. The recommendation in the guidance for selecting the highest values from among 3 periods is applicable for nonattainment counties, but not necessarily for attainment counties. Thus, for monitors that are measuring attainment (i.e., PM2.5 less than $15.05 \ \mu g/m^3$) using the most recent 3 years of data, we used the 2000-2002 design values as the starting point for projecting future year design values. Note that none of the counties that are attainment for the period 2000-2002 are forecast to become nonattainment in 2010 or 2015.

The modeling guidance recommends that model predictions be used in a relative sense to estimate changes expected to occur in each major PM2.5 species. These species are sulfate, nitrate, organic carbon, elemental carbon, crustal and un-attributed mass. Un-attributed mass is defined as the difference between FRM PM2.5 and the sum of the other five components. The procedure for calculating future year PM2.5 design values is called the Spectate Modeled Attainment Test (SMAT). Details on the SMAT procedure are provided in Appendix E.

We are using the FRM data for projecting future design values since these data will be used for nonattainment designations. In order to apply SMAT to the FRM data, information on PM2.5 speciation is needed for the location of each FRM monitoring site. Only a small number of the FRM sites have collocated species measurements. Therefore, spatial interpolation techniques were applied to the spectate component averages from the IMPROVE and Speciation Trends Network (STN) data to estimate concentrations of species mass at each FRM PM2.5 monitoring site.

The following is a brief summary of SMAT as applied to data for a given monitoring site:

<u>Step 1</u>: Calculate quarterly mean ambient concentrations (averaged over 3 years) for each of the six major components of PM2.5 using the species concentrations estimated for the FRM site. This is done by multiplying the monitored quarterly mean concentration of FRM-derived PM2.5 by the estimated fractional composition of PM2.5 species for each quarter in 3 consecutive years (e.g., 20 percent sulfate multiplied by 15 μ g/m³ PM2.5 equals 3 μ g/m³ sulfate).

<u>Step 2</u>: For each quarter, calculate the ratio of future (e.g., 2010) to current (i.e., 2001) model predictions for each component specie using the model output for the grid cell containing the monitoring site. The result is a component-specific RRF (e.g., assume that 2001 predicted sulfate for the grid cell containing the FRM site is 10 μ g/m³ and the 2010 Base concentration in this same grid cell is 8 μ g/m³, then the RRF for sulfate at this site is 0.8).

<u>Step 3</u>: For each quarter and each component specie, multiply the current quarterly mean component concentration (Step 1) by the component-specific RRF obtained in Step 2. This produces an estimated future quarterly mean concentration for each component (e.g., $3 \mu g/m^3$ sulfate multiplied by 0.8 equals future sulfate of 2.4 $\mu g/m^3$).

<u>Step 4</u>: Average the four quarterly mean future concentrations to get an estimated future annual mean concentration for each component specie. Sum the annual mean concentrations of the 6 components to obtain an estimated future annual average concentration for PM2.5. In calculating the projected design values, any amount of the concentration less than 0.01 μ g/m³ (i.e., more than two places to the right of the decimal) were discarded (i.e., truncated).

The preceding procedures for determining future year PM2.5 concentrations were applied for each FRM site. For counties with only one FRM site, the forecast design value for that site was used to determine whether or not the county will be nonattainment in the future. For counties with multiple monitoring sites, the site with the highest future concentration was selected for that county. Those counties with future year concentrations of 15.05 μ g/m³ or more are predicted to be nonattainment.

The SMAT technique was used for estimating future year PM2.5 concentrations for all the scenarios modeled. For the 2010 Base-2 scenario there are 61 counties in the East that are forecast to be nonattainment. Of these, 41 are forecast to remain nonattainment for the 2015 Base Case. The PM2.5 nonattainment counties for the 2010 Base-2 and 2015 Base Case are listed in Table V-2. These nonattainment counties were used as receptors for quantifying the impacts of the local control strategies and regional control strategies described in sections IX and X, respectively.

State	2010 Base-2	2015 Base Case		
AL	DeKalb, Jefferson, Montgomery, Russell, Talladaga	Jefferson, Montgomery, Russell, Talladaga		
СТ	New Haven	New Haven		
DC	Washington, D.C.	None		
DE	New Castle	None		
GA	Clarke, Clayton, Cobb, DeKalb, Floyd, Fulton, Hall, Muscogee, Paulding, Richmond, Wilkinson	Clarke, Clayton, Cobb, DeKalb, Floyd, Fulton, Hall, Muscogee, Richmond, Wilkinson		
IL	Cook, Madison, St. Clair, Will	Cook, Madison, St. Clair		
IN	Clark, Marion	Clark, Marion		
KY	Fayette, Jefferson	Jefferson		
MD	Baltimore City	Baltimore City		
MI	Wayne	Wayne		
MO	St. Louis	None		
NY	New York (Manhattan)	New York (Manhattan)		
NC	Catawba, Davidson, Mecklenburg	None		
ОН	Butler, Cuyahoga, Franklin, Hamilton, Jefferson, Lawrence, Mahoning, Scioto, Stark, Summit, Trumbull	Butler, Cuyahoga, Franklin, Hamilton, Jefferson, Scioto, Stark, Summit		
PA	Allegheny, Bucks, Lancaster, York	Allegheny, York		

Table V-2. Counties Projected to be Nonattainment for the PM2.5 NAAQS for the 2010Base and 2015 Base Case.

SC	Greenville	None
TN	Davidson, Hamilton, Knox, Roane, Sullivan	Hamilton, Knox
WV	Brooke, Cabell, Hancock, Kanawha, Marshal, Wood	Brooke, Cabell, Hancock, Kanawha, Wood

As noted above in section II, the 2010 Base Case used for the zero-out PM2.5 modeling included EGU emissions from an earlier simulation of the Integrated Planning Model. Of the 61 2010 Base-2 nonattainment counties listed in Table V-2, 4 counties (i.e., Catawba Co., NC, Trumbull Co., OH, Greenville Co., SC, and Marshall Co., WV) were projected to be in attainment in the 2010 Base-1 used for the zero-out modeling. Thus, 57 nonattainment counties (i.e., the 61 counties in Table V-2 less these 4 counties) were used as downwind receptors for the State-by-State zero-out modeling in the assessment of interstate PM2.5 contributions described in section VII. The 2010 Base-1, 2010 Base-2, and 2015 Base Case PM2.5 concentrations projected for each county that was nonattainment in the Base Year, are provided in Appendix F.

VI. Modeling to Assess Interstate Ozone Contributions

This section documents the procedures used by EPA to quantify the impact of ozone precursor emissions in specific upwind States on air quality concentrations in projected downwind 8-hour ozone nonattainment areas. These procedures are the first of the two-step process for determining significant contribution, in which the second step involves a control cost assessment to determine the amount of upwind emissions that should be reduced. In this section we use the phase "significant contribution" to refer to the ozone air quality step of the significance determination.

Included in this section are descriptions of: 1) the analytic approach for modeling the contribution of upwind States to ozone in potential downwind nonattainment areas, 2) the methodology for analyzing the modeling results, 3) the decision rules used to determine whether individual States make a significant contribution (before considering cost), and d) the results of the interstate ozone significant contribution analysis. As discussed in section III, the air quality modeling analyses for ozone were conducted for an Eastern U.S. domain with CAMx, version 3.10. The air quality modeling for the interstate ozone contribution analysis focuses on the 47 counties predicted to be nonattainment for 8-hour ozone in the 2010 Base Case. These counties are identified in section V. It should be noted that the approach used to identify the nonattainment receptors for this analysis differed from that used in the NOX SIP Call where we aggregated on a State-by-State basis all grid cells which were both (a) associated with counties that violated the 8-hour NAAQS (based on 1994-1996 data) and (b) had future base case predictions of 85 ppb or more. For the IAQR analysis of interstate ozone contributions, we have treated each individual county projected to be nonattainment in the future as a downwind nonattainment receptor.

A. Zero Out and Source Apportionment Techniques

The modeling approach used by EPA to quantify the impact of emissions in specific upwind States on projected downwind nonattainment areas for 8-hour ozone includes two different techniques, zero-out and source apportionment. The outputs of the two types of modeling were used to calculate certain measures of contribution, called "metrics". The metrics were evaluated in terms of three key contribution factors to determine which States make a significant contribution to downwind ozone nonattainment. The significant contribution analysis completed for the IAQR analysis uses the same modeling techniques, the same metrics, and the same three contribution factors as those used by EPA for the State-by-State determination in the NOx SIP Call.

The zero-out and source apportionment modeling techniques provide different technical approaches to quantifying the downwind impact of emissions in upwind States. The zero-out modeling provides an estimate of downwind impacts by calculating the difference between the model estimates from a base case run to the estimates from a simulation in which the base case man-made emissions of NOx and VOC are removed from a specific State. Because of the gridded nature of the modeling, State boundaries can only be approximated to the nearest grid. For grid cells that straddle State borders, assignments are made to the State in which the majority of the grid cell resides. Thus, for low-level sources (i.e., onroad, nonroad, area, and point sources with low plume rise) emissions were removed in the zero-out runs in grid cells which closely approximate the State. However, because elevated point source emissions are located in the model based on their actual latitude and longitude, only those sources within the State boundaries had emissions removed in the zero-out runs.

EPA also used the source apportionment technique as part of the modeling analysis to evaluate the downwind contributions of emissions in upwind States. The source apportionment technique in CAMx was developed to provide modelers with a means of estimating the contributions of many different source areas/categories to ozone formation in one single model *run*. This is achieved by using multiple tracer species to track the fate of ozone precursor emission (VOC and NOx) and the ozone formation caused by these emissions within a CAMx simulation. The methodology is designed so that all ozone and precursor concentrations are attributed to the selected source areas/categories at all times. Thus, for all receptor locations and times, the ozone, VOC, and NOx concentrations predicted by the CAMx are attributed to the source areas/categories selected for analysis. EPA used the Anthropogenic Precursor Culpability Assessment (APCA) option in the IAQR source apportionment modeling. The key feature of APCA is that it allocates the ozone production to the manmade precursor emissions, either through reactions among various manmade sources and/or through reactions between manmade emissions and biogenic emissions. Additional information on the source apportionment technique can be found in the CAMx User's Guide (Environ, 2002). In general, EPA found that the source apportionment modeling tends to show greater magnitude and frequency of contributions than the zero-out modeling for individual linkages. However, because there is no technical evidence showing that one technique is clearly superior to the other for evaluating contributions to ozone from various emission sources; both approaches were given equal consideration in the significance analysis.

The EPA performed State-by-State zero-out modeling and source apportionment modeling for 31 States in the Eastern U.S. These States are as follows: Alabama, Arkansas, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia, and Wisconsin. In both types of modeling, emissions from the District of Columbia were combined with those from Maryland.

B. Ozone Contribution Factors and Metrics

EPA selected several metrics to quantify the projected downwind contributions from emissions in upwind States. The metrics were designed to provide information on three fundamental factors for evaluating whether emissions in an upwind State make large and/or frequent contributions to downwind nonattainment. These factors are: a) the magnitude of the contribution, b) the frequency of the contribution, and c) the relative amount of the contribution.

The magnitude of contribution factor refers to the actual amount of ozone contributed by emissions in the upwind State to nonattainment in the downwind area. The frequency of the contribution refers to how often contributions above certain thresholds occur. The relative amount of the contribution is used to compare the total ozone contributed by the upwind State to the total amount of nonattainment ozone in the downwind area. These factors are the basis for eight separate metrics that can be used to assess a particular impact. These metrics are described below for the zero-out modeling and for the source apportionment modeling. Table VI-1 lists the four metrics for each factor.

Factor:	Zero-out Metrics	Source Apportionment Metrics	
Magnitude of Contribution	1) Maximum contribution	5) Maximum contribution; and	
		6) Highest daily average contribution (ppb and percent)	
Frequency of Contribution	2) Number and percent of exceedances with contributions in various concentration ranges	7) Number and percent of exceedances with contributions in various concentration ranges	
Relative Amount of Contribution	3) Total contribution relative to the total exceedance ozone in the downwind area	8) Total average contribution to exceedance ozone in the downwind area	
	4) Population-weighted total contribution relative to the total population-weighted exceedance ozone in the downwind area		

Table	VI-1.	Ozone	Contribution	Factors	and Metrics
-------	-------	-------	--------------	---------	-------------

The values for each metric were calculated using only those periods during which modelpredicted 8-hour average ozone concentration were of 85 ppb or more in at least one of the model grid cells that are associated with the receptor county. That is, we only analyzed interstate ozone contributions for the nonattainment receptor counties when the model predicted an exceedance in the 2010 Base Case. Grid cells were linked to a specific nonattainment county if any part of the grid cell covered any portion of the projected 2010 nonattainment county. In cases where a grid cell covered two or more nonattainment counties, the grid was tied to the nonattainment county that contained the largest portion of the area of the grid cell. The exception to that rule involves cells that encompass a border of two adjacent States and more than two counties. In that case, grids are assigned to the county in the State with the largest area of the grid cell.

As in the NOx SIP Call, the ozone contribution metrics are calculated and evaluated for each upwind State to each downwind nonattainment receptor. These source-receptor pairs are referred to as "linkages".

1. Zero-out Metrics

A central component of several of the metrics is the number of predicted exceedances in the 2010 Base Case for each nonattainment receptor. The number of exceedances in a particular nonattainment receptor is determined by the total number of daily predicted peak 8-hour concentrations of 85 ppb or more across all the episode days in the model grid cells assigned to the receptor. For example, the Fairfield County, CT receptor area consists of 11 grid cells. There are 30 days in the modeling simulations. Thus, the maximum possible number of exceedances for this area is 330. The actual number of exceedances for this area was 27 griddays.

The Maximum Contribution Metric (metric 1) for a particular upwind State to an individual downwind nonattainment receptor is determined by first calculating the concentration differences between the 2010 Base Case and the zero-out simulation for that upwind State. This calculation is performed for all 2010 Base Case exceedances predicted within the grid cells associated with the nonattainment county. The largest difference (i.e., contribution) for the linkage across all of the exceedances at the downwind receptor is identified as the maximum contribution.

The Frequency of Contribution Metric (metric 2) for a particular linkage is determined by first sorting the contributions by concentration range (e.g., ≥ 2 ppb, ≥ 5 ppb, etc.). The number of impacts in each range is used to assess the frequency of contribution. Frequency of Contribution is also expressed in terms of the percent of the 2010 Base exceedances that receive contributions in each range. For example, Ohio contributes 2 ppb or more to 9 of the 27 exceedances in Fairfield County, CT. Thus, Ohio contributes ≥ 2 ppb to 33% of the exceedances predicted in this county.

Determining the Total Ozone Contribution Relative to the Base Case Exceedance Metric

(metric 3) for a particular linkage involves first calculating the total ozone of 85 ppb or more in the 2010 Base Case and in the upwind State's zero-out run. The calculation is performed by summing the amount of ozone above the NAAQS for each predicted exceedance at the downwind receptor area. Second, the amount of ozone above the NAAQS from the zero-out run is subtracted from the amount of ozone above the NAAQS in the 2010 Base run. The difference in contribution (between the base and zero-out run) is then divided by the total ozone above the NAAQS in the base run to form this metric. For example in Fairfield County CT, the sum of the ozone above 85 ppb for the 2010 Base run in the 27 exceedances equals 319.5 ppb. When the emissions from Ohio are zeroed, the total ozone above the NAAQS equals 271.0 ppb. The difference between the base and zero-out amounts is 48.5 ppb. Thus, the total relative contribution from emissions in Ohio is 15 percent (48.5 divided by 319.5).

The Population-Weighted Relative Contribution Metric (metric 4) is similar to the total ozone contribution metric described in the preceding paragraph, except that during the calculation the amount of ozone above the NAAQS in both the base case and the zero-out simulation is weighted by (i.e., multiplied by) the 2000 population in the receptor grid cell. Note that this metric is used solely to provide an additional perspective. It is not considered as an independent metric and it did not provide the basis for any decisions.

2. Source Apportionment Metrics

Despite the fundamental differences between the zero out and source apportionment techniques, the definitions of the source apportionment metrics are generally similar to the zero out metrics. One exception is that all 8-hour periods with averages above or equal to 85 ppb are considered in the source apportionment metrics, as opposed to just the peak 8-hour average per day. Similar analyses completed as part of the NOx SIP call concluded that the differences resulting from considering only daily maximum 8-hour averages (zero out) versus considering all 8-hour periods (source apportionment) was very small and did not influence the significance determinations. Therefore, the number of "exceedance periods" are the total number of 8-hourly predicted concentrations greater than or equal to 85 ppb within the downwind area on a cell-by-cell basis. Again using the Fairfield County, CT receptor area as an example, the maximum possible number of exceedances for this area is 5,610 (11 cells * 30 days * 17 eight-hour averages per day). The actual number of exceedance periods for this area was 110.

For a given upwind State to downwind nonattainment receptor linkage, the Maximum Contribution Metric (metric 5) is the highest contribution from among the contributions to all exceedances at the downwind receptor.

The Highest Daily Average Contribution Metric (metric 6) is determined for each day with predicted exceedances at the downwind receptor. The metric is calculated by first summing the contributions for that linkage over all exceedances on a particular day, then dividing by the number of exceedances on that day to produce a daily average contribution to nonattainment. The daily average contribution values across all days with exceedances are examined to identify the highest value which is then selected for use in the determination of significance. We also express this metric as a percent by dividing the highest daily average contribution by the corresponding ozone exceedance concentration on the same day. As an example of how this metric is calculated, consider the following two modeling days in Fairfield County, CT.

7/13/95: There were 4 exceedance periods. The total contribution from Ohio was 11 ppb. Therefore, the daily average contribution from Ohio to Fairfield County, CT was 2.8 ppb on that day. The average exceedance ozone on that day was 87 ppb, so the percentage contribution from Ohio on that day was 3.1 percent.

<u>7/14/95:</u> There were 68 exceedance periods. The total contribution from Ohio was 503 ppb for those cell-hours. Therefore the daily average contribution from Ohio to Fairfield County, CT was 7.4 ppb on that day. The average exceedance ozone on that day was 103 ppb, so the percentage contribution from Ohio to Fairfield County, CT (7.4 ppb) of any of the highest daily average contribution from Ohio to Fairfield County, CT (7.4 ppb) of any of the 30 modeling days, so the ppb and percent contributions on this day were used as the values for this metric.

The Frequency of Contribution Metric (metric 7) for the source apportionment technique is also determined in a similar way to which this metric is calculated for the zero-out modeling. Looking at the impact of Ohio man-made NOx and VOC emissions on Fairfield County, CT as an example, 77 of the 110 exceedance hours (70 percent) were reduced by at least 2 ppb.

The Total Average Contribution Metric is determined for each of the three episodes individually as well as for all 30 days (i.e., all three episodes) combined. There are three parts to the calculation of this metric. In step 1, the ozone values for each of the exceedance periods in a particular downwind area are summed over the episode(s). In step 2, the total ozone from the previous step that is due to anthropogenic sources is calculated based on the source apportionment results. In step 3, the contributions from a given source region to this downwind area are summed over the exceedance periods. The total contribution calculated in step 3 is then divided by the total ozone resulting from manmade sources in step 2 to determine the fraction of ozone that is due to emissions from the upwind source area. This fraction can be multiplied by 100 to express the result as a percentage. For example, for the 110 exceedance periods in Fairfield County, CT there is a total of 10,720 ppb of ozone. Of the total base ozone, the source apportionment results indicate that 8,613 ppb is due to anthropogenic sources. The sources in Ohio contribute a total of 535 ppb which is 6.2 percent of the base case total (i.e., 535 divided by 8,613).

C. Basis for Identifying which Linkages are Significant

EPA compiled the 8-hour metrics by downwind nonattainment receptor county (referred to below as "downwind area") in order to evaluate the contributions to downwind nonattainment in 2010. The contribution metrics were reviewed to determine how large of a contribution a particular upwind State makes to nonattainment in each downwind area in terms of the magnitude of the contribution, the frequency of the contributions, and the relative amount of the

total contribution. Determining whether a particular linkage indicated a significant amount of transport from an upwind source State to a downwind county is a four step process.

The first step in evaluating the contribution factors was to screen out linkages for which the contributions were clearly small. This initial screening was based on: 1) a maximum contribution of less than 2 ppb from either of the two modeling techniques and/or, 2) a percent of total nonattainment of less than 1 percent. Any upwind State that contributed to a particular downwind area in amounts that were less than the screening criteria was considered not to make a significant contribution to that downwind area. As an example, Mississippi had a maximum contribution of 3 ppb on Fulton County, GA in both the source apportionment and the zero out modeling exercises, however, the percent of total nonattainment metric was less than 1 percent. Therefore, Mississippi was concluded not to have a significant impact on nonattainment in Fulton County, GA in both the source apportionment and the zero out modeling, but the percent of total nonattainment metric for Virginia/Fulton was 1 percent. This linkage was carried on for further analysis.

Those linkages that had contributions which exceeded the screening criteria were evaluated further in steps 2 through 4. In step 2 we evaluated the contributions in each linkage based on the zero-out modeling and in step 3 we evaluated the contributions in each linkage based on the source apportionment modeling. In step 4 we considered the results of both step 2 and step 3 to determine which of the linkages are significant. For both techniques, EPA determined whether the linkage is significant by evaluating the magnitude, frequency, and relative amount of the contributions. Each upwind State that made relatively large and/or frequent contributions to nonattainment in the downwind area, based on these factors, is considered as contributing significantly to nonattainment in the downwind area. The EPA believes that each of the factors provides an independent legitimate measure of contribution. However, there had to be at least two different factors that indicate large and/or frequent contributions in order for the linkage to be found significant. In this regard, the finding of a significant contribution for an individual linkage was not based on any single factor.

As indicated above, in step 4 we considered the results of evaluating the contributions zero-out contributions from step 1 and source apportionment contributions from step 2. For many of the individual linkages the analyses of zero-out and source apportionment contributions yield a consistent result (i.e., either large and/or frequent contributions or small and infrequent contributions). Indeed, for each affected State, EPA's proposed determination that the State contributes significantly downwind is based on at least one linkage for which each of the factors indicates large and/or frequent contributions. For some of the linkages, however, not all of the factors are consistent. For upwind-downwind linkages in which some of the factors indicate high and/or frequent contributions while other factors do not, EPA considered the overall number and magnitude of those factors that indicate large and/or infrequent contributions compared to those factors that do not. As part of the process of evaluating these types of linkages, we required that two of the three factors had to indicate large and frequent contributions for at

least one factor in the other modeling technique in order to find that the linkage was significant. Thus, based on an assessment of all the factors in such cases, EPA determined that the upwind State contributes significantly to nonattainment in the downwind area if, on balance, the factors indicate large and frequent contributions from the upwind State to the downwind area. Table V-2, below, provides examples of the four step process to illustrate how the metrics were evaluated to determine whether individual linkages are significant. Contribution tables containing the values of the metrics for each linkage are provided in Appendix G.

D. Results of Interstate Ozone Contribution Analysis

Using the procedures described above, EPA determined which States contribute significantly to nonattainment in the 47 specific downwind counties. Of the 31 States included in the assessment of interstate ozone contributions, 25 States were found to have emissions which make a significant contribution to downwind 8-hour ozone nonattainment. These States are listed in Tables V-3 and V-4. The linkages which EPA found to be significant are listed in Tables V-3 (by upwind State) and V-4 (by downwind nonattainment county) for the 8-hour NAAQS. Each upwind State contributed to nonattainment problems in counties in at least two downwind States (except for Louisiana and Arkansas which contributed to nonattainment only in Texas counties). Of the 31 States included in the assessment of interstate ozone transport, the following six States are found to not make a significant contribution to downwind nonattainment: Florida, Maine, Minnesota, New Hampshire, Rhode Island, and Vermont.

Receptor	Steps	Evaluation of Contributions
Middlesex Co. Connecticut	Step 1: Evaluation of Contributions Against Screening Criteria	 - 23 upwind States had contributions that did not exceed either or both of the screening criteria. These linkages were not evaluated further. As an example, the contribution from WV did exceed the screening criteria for the Source Apportionment modeling but did not exceed the criteria for the zero-out modeling, so this linkage was deemed not significant. Of the 23 linkages that passed the screening criteria (i.e., were not significant), 16 were not significant in both modeling techniques. - 7 upwind States (MA, VA, MD, OH, NJ, PA, and NY) had contributions that exceeded both screening criteria and were carried forward for evaluation in Steps 2 - 4.
	Step 2: Evaluation of Contributions from Zero-Out Modeling	 Of the 7 States that exceeded the screening criteria, 6 (VA, MD, OH, NJ, PA, and NY) made contributions that were significant considering the metrics for all three factors. Contributions from VA, MD, OH, NJ, PA, and NY: + Magnitude: values ranged from 4.0 ppb (VA) up to 15.2 ppb (NY) + Frequency: values ranged from VA which contributed 2 ppb or more to 19% of the exceedances up to both NJ and NY which contributed 2 ppb or more to all of the exceedances Contributions from MA were large in terms of two of the three factors: + Magnitude: the maximum contribution was 7.0 ppb + Frequency: MA contributed 2.0 ppb or more to 6% of the exceedances
	Step 3: Evaluation of Contributions from Source Apportionment Modeling	 The findings from the source apportionment modeling were similar to that of the zero-out modeling in that 6 of the 7 States that exceeded the screening criteria (VA, MD, OH, NJ, PA, and NY) made contributions that were significant considering the metrics from all three factors: Contributions from VA, MD, OH, NJ, PA, and NY: + Magnitude: values ranged from 7 ppb (VA) to 28 ppb (NJ and NY) + Frequency: values ranged from VA which contributed 2 ppb or more to 44% of the exceedances up to both NJ and NY which contributed 2 ppb or more to all of the exceedances Contributions from MA were large in terms of two of the three factors: + Magnitude: the maximum contribution was 7 ppb + Frequency: MA contributed 2.0 ppb or more to 10% of the exceedances
	Step 4: Final Determination of Significance	- Since all 7 States had large and frequent contributions to Middlesex Co for at least two of the three contribution factors based on each modeling technique, we determined that each of these States makes a significant contribution to nonattainment in this county.

Table VI-2a. Evaluation of the Contribution to Downwind Nonattainment in Middlesex Co., CT.

Receptor	Steps	Evaluation of Contributions
Bergen Co. New Jersey	Step 1: Evaluation of Contributions Against Screening Criteria	 25 upwind States had contributions that did not exceed either or both of the screening criteria. These linkages were not evaluated further. As an example, the contribution from DE did exceed the screening criteria for the Source Apportionment modeling but did not exceed the criteria for the Zero-Out modeling, so this linkage was deemed not significant. Of the 25 linkages that passed the screening criteria (i.e., were not significant), 17 were not significant in both modeling techniques. 5 upwind States (PA, VA, MD, OH, and MI) had contributions that exceeded both screening criteria and were carried forward for evaluation in Steps 2 - 4.
	Step 2: Evaluation of Contributions from Zero-Out Modeling	 Of the 5 States that exceeded the screening criteria, 3 (PA, VA, and OH) made contributions that were significant considering the metrics for all three factors. Contributions from PA, VA, and OH: Magnitude: values ranged from 5.2 ppb (OH) up to 26.5 ppb (PA) Frequency: values ranged from OH which contributed 2 ppb or more to 60% of the exceedances up to PA which contributed 2 ppb or more to all of the exceedances Relative Amount: values ranges from 21% (VA) up to 92% (PA) Contributions from MD were large in terms of two of the three factors: Frequency: MD contributed 2.0 ppb or more to 30% of the exceedances Relative Amount: the total contribution from MD is 12% of the total amount of nonattainment Contributions from MI were large in terms of one of the three factors: Relative Amount: the total contribution from MI is 5% of the total amount of nonattainment
	Step 3: Evaluation of Contributions from Source Apportionment Modeling	 In the source apportionment modeling 4 of the 5 States that exceeded the screening criteria (MD, OH, PA and VA) made contributions that were significant considering the metrics from all three factors: Contributions from (MD, OH, PA and VA): Magnitude: maximum contributions ranged from 9 ppb (MD, OH and VA) to 37 ppb (PA) Frequency: values ranged from MD which contributed 2 ppb or more to 61% of the exceedances up to PA which contributed 2 ppb or more to all of the exceedances Relative Amount: values ranged from 4% (MD and VA) up to 31% (PA) Contributions from MI were large in terms of two of the three factors: Magnitude: maximum contribution was 6 ppb Frequency: MI contributed 2.0 ppb or more to 21% of the exceedances
	Step 4: Final Determination of Significance	- 4 of the States (MD, OH, PA and VA) had large and frequent contributions to Bergen Co. for at least two of the three contribution factors based on each modeling technique. Therefore, we determined that each of these States makes a significant contribution to nonattainment in this county. In addition, the contributions from MI were large and frequent for two factors based on the Source Apportionment modeling and large based on one factor in the Zero-Out modeling. Therefore, we determined that MI makes a significant contribution to Bergen Co.

Table VI-2b. Evaluation of the Contribution to Downwind Nonattainment in Bergen Co., NJ.

Receptor	Steps	Evaluation of Contributions				
Suffolk Co. New York	Step 1: Evaluation of Contributions Against Screening Criteria	 19 upwind States had contributions that did not exceed either or both of the screening criteria. These linkages were not evaluated further. As an example, the contribution from IL did exceed the screening criteria for the Source Apportionment modeling but did not exceed the criteria for the Zero-Out modeling, so this linkage was deemed not significant. Of the 19 linkages that passed the screening criteria (i.e., were not significant), 17 were not significant in both modeling techniques. 11 upwind States (NJ, PA, CT, VA, MD, DE, NC, OH, MA, WV, and MI) had contributions that exceeded both screening criteria and were carried forward for evaluation in Steps 2 - 4. 				
	Step 2: Evaluation of Contributions from Zero-Out Modeling	 Of the 11 States that exceeded the screening criteria, 8 States (NJ, PA, CT, VA, MD, NC, OH, and DE) made contributions that were significant considering the metrics for all three factors. Contributions from NJ, PA, CT, VA, MD, NC, OH, and DE: Magnitude: values ranged from 3.6 pb (OH) up to 46.5 ppb (NJ) Frequency: values ranged from NC which contributed 2 ppb or more to 8% of the exceedances up to NJ which contributed 2 ppb or more to all of the exceedances Relative Amount: values ranges from 3% (NC) up to 69% (NJ) Contributions from MI and WV were large in terms of two of the three factors: Frequency: MI contributed 2.0 ppb or more to 3% of the exceedances; WV contributed 2.0 ppb or more to 5% of the exceedances Relative Amount: the total contribution from MI is 3% of the total amount of nonattainment; the total contribution from WV is 3% of the total amount of nonattainment in Suffolk Co Contributions from MA exceeded the screening criteria in step 1, but the Zero-Out metrics were determined to be not significant: Magnitude: the maximum contribution (2.8 ppb) was just above the value of the screening criteria Frequency: MA contributed 2 ppb or more to only 1% of the exceedances Relative Amount: the total contribution from MA was only 1% of the total amount of nonattainment in Suffolk Co. 				
	Step 3: Evaluation of Contributions from Source Apportionment Modeling	 In the source apportionment modeling 5 of the 11 States that exceeded the screening criteria (NJ, PA, VA, MD, and DE) made contributions that were significant considering the metrics from all three factors: Contributions from NJ, PA, VA, MD, and DE: Magnitude: maximum contributions ranged from 8 ppb (DE) to 64 ppb (NJ) Frequency: values ranged from VA which contributed 2 ppb or more to 37% of the exceedances up to NJ which contributed 2 ppb or more to all of the exceedances Relative Amount: values ranged from 3% (VA) up to 29% (NJ) Contributions from CT, NC, OH, MA, WV, and MI were large in terms of two of the three factors: Magnitude: the maximum contributions ranged from 3 ppb (WV) to 23 ppb (CT) Frequency: values ranged from 6% (MA) to 25% (CT) 				
	Step 4: Final Determination of Significance	- 10 States (NJ, PA, CT, VA, MD, DE, NC, OH, WV, and MI) had large and frequent contributions to Suffolk Co. for at least two of the three contribution factors based on each modeling technique. Therefore, we determined that each of these States makes a significant contribution to nonattainment in this county. Although the contributions from MA based on the Source Apportionment modeling were found to be large and frequent for two of the factors, the metrics based on the Zero-Out modeling did not indicate large or frequent contributions for any factor. Therefore, we determined that MA does not make a significant contribution to Suffolk Co.				

Table VI-2c. Evaluation of the Contribution to Downwind Nonattainment in Suffolk Co., NY

Receptor	Steps	Evaluation of Contributions					
Fulton Co. Georgia	Step 1: Evaluation of Contributions Against Screening Criteria	 - 23 upwind States had contributions that did not exceed either or both of the screening criteria. These linkages were not evaluated further. As an example, the contribution from FL did exceed the screening criteria for the Zero-Out modeling but did not exceed the criteria for the Source Apportionment modeling, so this linkage was deemed not significant. Of the 23 linkages that passed the screening criteria (i.e., were not significant), 18 were not significant based on both modeling techniques. - 7 upwind States (AL, SC, TN, NC, KY, VA, and WV) had contributions that exceeded both screening criteria and were carried forward for evaluation in Steps 2 - 4. 					
	Step 2: Evaluation of Contributions from Zero-Out Modeling	 Of the 7 States that exceeded the screening criteria 5 States (AL, SC, TN, NC, and KY) made contributions that were significant considering the metrics for all three factors. Contributions from AL, SC, TN, NC, and KY: Magnitude: values ranged from 3.6 ppb (KY) up to 22.2 ppb (AL) Frequency: values ranged from KY which contributed 2 ppb or more to 12% of the exceedances up to TN which contributed 2 ppb or more to 40% of the exceedances Relative Amount: values ranges from 4% (NC) up to 11% (TN) Contributions from WV were large in terms of one of the three factors: Frequency: WV contributed 2.0 ppb or more to 5% of the exceedances Contributions from VA exceeded the screening criteria in step 1, but the Zero-Out metrics were determined to be not significant: Magnitude: the maximum contribution (2.9 ppb) was just above the value of the screening criteria Frequency: VA contributed 2 ppb or more to only 2% of the exceedances Relative Amount: the total contribution from VA was only 2% of the total amount of nonattainment in Fulton Co. 					
	Step 3: Evaluation of Contributions from Source Apportionment Modeling	 In the source apportionment modeling 3 of the 7 States that exceeded the screening criteria (AL, TN, and KY) made contributions that were significant considering the metrics from all three factors: Contributions from AL, TN, and KY: Magnitude: maximum contributions ranged from 7 ppb (KY) to 25 ppb (AL) Frequency: values ranged from AL which contributed 2 ppb or more to 40% of the exceedances up to TN which contributed 2 ppb or more to 78% of the exceedances Relative Amount: values ranged from 3% (KY) up to 5% (TN) Contributions from NC, SC, VA, and WV were large in terms of two of the three factors: Magnitude: the maximum contributions ranged from 3 ppb (VA and WV) to 9 ppb (SC) Frequency: values ranged from 6% (VA) to 29% (SC) 					
	Step 4: Final Determination of Significance	- 5 States (AL, TN, KY, SC, and NC) had large and frequent contributions to Fulton Co. for at least two of the three contribution factors based each modeling technique. Therefore, we determined that each of these States makes a significant contribution to nonattainment in this county. In addition, the contributions from WV based on the Source Apportionment modeling were large and frequent for two of the three factors (magnitude and frequency) and the contributions based on the Zero-Out modeling were large for one of the factors (frequency). Therefore, we determined that WV makes a significant contribution to Fulton Co. Although the contributions from VA based on the Source Apportionment modeling were found to be large and frequent, this was not the case for any of the factors based on the Zero-Out modeling. Therefore, we determined that the contribution from VA was not significant.					

Table VI-2d. Evaluation of the Contribution to Downwind Nonattainment in Fulton Co, GA.

Table VI-3. Projected Downwind Counties to Which Sources in Upwind States ContributeSignificantly for the 8-Hour NAAQS.

Upwind State	Downwind 2010 Nonattainment Counties
AL	Crittenden AR, Fulton GA, Harris TX
AR	Harris TX, Tarrant TX
СТ	Kent RI, Suffolk NY
DE	Bucks PA, Camden NJ, Cumberland NJ, Delaware PA, Gloucester NJ, Hunterdon NJ, Mercer NJ, Middlesex NJ, Monmouth NJ, Montgomery PA, Morris NJ, Ocean NJ, Philadelphia PA, Richmond NY, Suffolk NY
GA	Crittenden AR, Mecklenburg NC
IA	Kenosha WI, Lake IN, Racine WI
IL	Allegheny PA, Crittenden AR, Erie NY, Geauga OH, Kenosha WI, Lake IN, Racine WI, Sheboygan WI, Summit OH
IN	Allegheny PA, Crittenden AR, Geauga OH, Kenosha WI, Racine WI, Sheboygan WI, Summit OH
KY	Allegheny PA, Crittenden AR, Fulton GA, Geauga OH
LA	Harris TX, Tarrant TX
MA	Kent RI, Middlesex CT
MD	Arlington VA, Bergen NJ, Bucks PA, Camden NJ, Cumberland NJ, Delaware PA, Erie NY, Fairfax VA, Fairfield CT, Gloucester NJ, Hudson NJ, Hunterdon NJ, Mecklenburg NC, Mercer NJ, Middlesex CT, Middlesex NJ, Monmouth NJ, Montgomery PA, Morris NJ, New Haven CT, Newcastle DE, Ocean NJ, Philadelphia PA, Putnam NY, Richmond NY, Suffolk NY, Summit OH, Washington DC, Westchester NY
MI	Allegheny PA, Anne Arundel MD, Baltimore MD, Bergen NJ, Bucks PA, Camden NJ, Cecil MD, Cumberland NJ, Delaware PA, Erie NY, Geauga OH, Gloucester NJ, Harford MD, Hudson NJ, Hunterdon NJ, Kenosha WI, Kent MD, Lake IN, Mercer NJ, Middlesex NJ, Monmouth NJ, Montgomery PA, Morris NJ, Newcastle DE, Ocean NJ, Philadelphia PA, Prince Georges MD, Racine WI, Richmond NY, Suffolk NY, Summit OH
МО	Crittenden AR, Geauga OH, Kenosha WI, Lake IN, Racine WI, Sheboygan WI
MS	Crittenden AR, Harris TX
NC	Anne Arundel MD, Baltimore MD, Camden NJ, Cecil MD, Cumberland NJ, Fulton GA, Gloucester NJ, Harford MD, Kent MD, Newcastle DE, Ocean NJ, Philadelphia PA, Suffolk NY
NJ	Bucks PA, Delaware PA, Erie NY, Fairfax VA, Fairfield CT, Kent RI, Middlesex CT, Montgomery PA, New Haven CT, Philadelphia PA, Putnam NY, Richmond NY, Suffolk NY, Westchester NY
NY	Fairfield CT, Hudson NJ, Kent RI, Mercer NJ, Middlesex CT, Middlesex NJ, Monmouth NJ, Morris NJ, New Haven CT
ОН	Allegheny PA, Anne Arundel MD, Arlington VA, Baltimore MD, Bergen NJ, Bucks PA, Camden NJ, Cecil MD, Cumberland NJ, Delaware PA, Fairfax VA, Fairfield CT,

	Gloucester NJ, Harford MD, Hudson NJ, Hunterdon NJ, Kenosha WI, Kent MD, Kent RI, Lake IN, Mercer NJ, Middlesex CT, Middlesex NJ, Monmouth NJ, Montgomery PA, Morris NJ, New Haven CT, Newcastle DE, Ocean NJ, Philadelphia PA, Prince Georges MD, Racine WI, Richmond NY, Suffolk NY, Washington DC, Westchester NY
РА	Anne Arundel MD, Arlington VA, Baltimore MD, Bergen NJ, Camden NJ, Cecil MD, Cumberland NJ, Erie NY, Fairfax VA, Fairfield CT, Gloucester NJ, Harford MD, Hudson NJ, Hunterdon NJ, Kenosha WI, Kent MD, Kent RI, Lake IN, Mecklenburg NC, Mercer NJ, Middlesex CT, Middlesex NJ, Monmouth NJ, Morris NJ, New Haven CT, Newcastle DE, Ocean NJ, Prince Georges MD, Putnam NY, Racine WI, Richmond NY, Suffolk NY, Summit OH, Washington DC, Westchester NY
SC	Fulton GA, Mecklenburg NC
TN	Crittenden AR, Fulton GA, Lake IN, Mecklenburg NC, Tarrant TX
VA	Anne Arundel MD, Baltimore MD, Bergen NJ, Bucks PA, Camden NJ, Cecil MD, Cumberland NJ, Delaware PA, Erie NY, Fairfield CT, Gloucester NJ, Harford MD, Hudson NJ, Hunterdon NJ, Kent MD, Kent RI, Lake IN, Mecklenburg NC, Mercer NJ, Middlesex CT, Middlesex NJ, Monmouth NJ, Montgomery PA, Morris NJ, New Haven CT, Newcastle DE, Ocean NJ, Philadelphia PA, Prince Georges MD, Putnam NY, Richmond NY, Suffolk NY, Summit OH, Washington DC, Westchester NY
WI	Erie NY, Lake IN
WV	Allegheny PA, Anne Arundel MD, Baltimore MD, Bucks PA, Camden NJ, Cecil MD, Cumberland NJ, Delaware PA, Fairfax VA, Fairfield CT, Fulton GA, Gloucester NJ, Harford MD, Hunterdon NJ, Kent MD, Mercer NJ, Middlesex NJ, Monmouth NJ, Montgomery PA, Morris NJ, New Haven CT, Newcastle DE, Ocean NJ, Philadelphia PA, Prince Georges MD, Suffolk NY, Summit OH, Washington DC, Westchester NY

Table VI-4. Upwind States that Contain Emissions Sources that Contribute Significantlyto Projected 8-Hour Nonattainment in Downwind States.

Downwind Nonattainment Counties	Upwind States								
Crittenden AR	AL	GA	IL	IN	KY	MO	MS	TN	
Fairfield CT	MD	NJ	NY	OH	PA	VA	WV		
Middlesex CT	MA	MD	NJ	NY	OH	PA	VA		
New Haven CT	MD	NJ	NY	OH	PA	VA	WV		
Washington DC	MD	OH	PA	VA	WV				
Newcastle DE	MD	MI	NC	OH	PA	VA	WV		
Fulton GA	AL	KY	NC	SC	TN	WV			
Lake IN	IA	IL	MI	MO	OH	PA	TN	VA	WI
Anne Arundel MD	MI	NC	OH	PA	VA	WV			
Baltimore MD	MI	NC	OH	PA	VA	WV			
Cecil MD	MI	NC	OH	PA	VA				

Harford MD	MI	NC	OH	PA	VA	WV			
Kent MD	MI	NC	OH	PA	VA	WV			
Prince Georges MD	MI	OH	PA	VA	WV				
Mecklenburg NC	GA	MD	SC	TN	VA				
Bergen NJ	MD	MI	OH	PA	VA				
Camden NJ	DE	MD	MI	NC	OH	PA	VA	WV	
Cumberland NJ	DE	MD	MI	NC	OH	PA	VA	WV	
Gloucester NJ	DE	MD	MI	NC	OH	PA	VA	WV	
Hudson NJ	MD	MI	NY	OH	PA	VA			
Hunterdon NJ	DE	MD	MI	OH	PA	VA	WV		
Mercer NJ	DE	MD	MI	NY	OH	PA	VA	WV	
Middlesex NJ	DE	MD	MI	NY	OH	PA	VA	WV	
Monmouth NJ	DE	MD	MI	NY	OH	PA	VA	WV	
Morris NJ	DE	MD	MI	NY	OH	PA	VA	WV	
Ocean NJ	DE	MD	MI	NC	OH	PA	VA	WV	
Erie NY	IL	MD	MI	NJ	PA	VA	WI		
Putnam NY	MD	NJ	PA	VA					
Richmond NY	DE	MD	MI	NJ	OH	PA	VA		
	СТ	DE	MD	MI	NC	NJ	OH	PA	VA
Suffolk NY	WV								
Westchester NY	MD	NJ	OH	PA	VA	WV			
Geauga OH	IL	IN	KY	MI	MO				
Summit OH	IL	IN	MD	MI	PA	VA	WV		
Allegheny PA	IL	IN	KY	MI	OH	WV			
Bucks PA	DE	MD	MI	NJ	OH	VA	WV		
Delaware PA	DE	MD	MI	NJ	OH	VA	WV		
Montgomery PA	DE	MD	MI	NJ	OH	VA	WV		
Philadelphia PA	DE	MD	MI	NC	NJ	OH	VA	WV	
Kent RI	СТ	MA	NJ	NY	OH	PA	VA		
Denton TX	None o signifi	of the up cant cont	wind Stat tribution (es exami (before c	ined in thi onsidering	s analysi g cost) to	s were fo this non	ound to ma attainmen	ake a it receptor
Harris TX	AL	AR	LA	MS					
Tarrant TX	AR	LA	TN						
Arlington VA	MD	OH	PA						
Fairfax VA	MD	NJ	OH	PA	WV				
Kenosha WI	IA	IL	IN	MI	МО	OH	PA		
Racine WI	IA	IL	IN	MI	МО	OH	PA		
Sheboygan WI	IL	IN	MO						

As a refinement to the preceding procedures for evaluating the contributions for each linkage, EPA prepared the following criteria for the three contribution factors to distinguish between the values which comprise a significant contribution versus those that do not:

<u>Magnitude Metrics</u>: considered large enough to be significant if the contribution is ≥ 3 ppb. <u>Frequency Metrics</u>: considered frequent enough to be significant if there is a 3 ppb or more contribution to at least 3 percent of the exceedances and, for linkages in which the maximum contribution was in the range of ≥ 2 to < 3 ppb, there has to be contributions in this range to at least two exceedances in the downwind area.

<u>Relative Amount Metrics</u>: considered large enough to be significant if the total contribution relative to the total amount of nonattainment is ≥ 3 percent.

Applying these criteria to the contribution metrics for each linkage in the evaluation steps 2 through 4 yields the same result in terms of which linkages are significant, as provided in Tables V-3 and V-4.

VII. Modeling to Assess Interstate PM2.5 Contributions

This section documents the procedures used by EPA to quantify the impact of emissions in specific States on projected downwind nonattainment for annual average PM2.5. The analytic approach for modeling the contribution of upwind States to PM2.5 in downwind nonattainment areas and the methodology for analyzing the modeling results are described in subsection A and the findings as to whether individual States meet the air quality component of the significant contribution test is provided in subsection B. These procedures are the first of the two-step process for determining significant contribution, in which the second step involves a control cost assessment to determine the amount of upwind emissions that should be reduced. In this section we use the phase "significant contribution" to refer to the PM2.5 air quality step of the significance determination.

A. Analytical Techniques for Modeling Interstate Contributions to Annual Average PM2.5 Nonattainment

1. State-by-State Zero-Out Modeling

The EPA performed State-by-State zero-out modeling to quantify the contribution from emissions in each State to future PM2.5 nonattainment in other States. As part of the zero-out modeling technique we removed the 2010 Base Case anthropogenic emissions of SO2 and NOx for 41 States on a State-by-State basis in different model runs. The States EPA analyzed using zero-out modeling are: Alabama, Arkansas, Colorado, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, Montana, Nebraska, New Hampshire, New Mexico, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Texas, Vermont, Virginia, West Virginia, Wisconsin, and Wyoming⁵. Emissions from the District of Columbia were combined with those from Maryland.

In processing emissions for zero-out modeling we removed the emissions of SO2 and NOx from all anthropogenic source sectors in the given State. For elevated point sources, the emissions were removed from individual sources located within the State. For low-level sources (i.e., onroad, nonroad, area, and low-level point sources) we removed emissions using data in the gridded emissions files. Thus, in order to zero-out emissions for these four source types we identified the set of grid cells that covered the State then removed the emissions from just these grid cells. In some cases a grid cell assigned to one State overlapped a portion of a neighboring State in which a nonattainment receptor was located. In these situations the receptor was not considered as a "downwind" receptor for that zero-out State.

The model predictions from the zero-out runs were used to calculate the contribution from each State to PM2.5 at nonattainment receptors in other States through the following procedures:

Step 1: The SMAT technique was applied for each zero-out run to calculate PM2.5 concentrations at each FRM site. That is, the outputs from each zero-out run was coupled with the outputs from the 2001 proxy run to create specie-specific RRFs which were then applied to ambient species concentrations estimated for the FRM sites in order to calculate PM2.5 concentrations at each site for each zero-out run.

<u>Step 2</u>: For the 57 receptor sites that were nonattainment in the 2010 Base-1, we calculated the difference between the 2010 Base-1 PM2.5 concentration at the receptor and the PM2.5 concentration for the zero-out run at that same receptor. This difference is the contribution from the zero-out State to the downwind nonattainment receptor. The contribution from each State to each downwind nonattainment receptor is provided in Appendix H.

2. Interstate PM2.5 Contribution Metrics

As described above in section VI, EPA used three fundamental factors for evaluating the contribution of upwind States to downwind nonattainment, i.e., the magnitude, frequency, and relative amount of contribution. One of these factors, the frequency of contribution, is not relevant for an annual average NAAQS and thus, frequency was not considered in the evaluation of interstate contributions to nonattainment of the PM2.5 NAAQS.

The EPA considered a number of metrics to quantify the magnitude and relative amount of the PM2.5 contributions. These metrics are listed in Table VII-1. The EPA is proposing to

⁵For computational efficiency we performed zero-out modeling for six States as combination runs in which emissions from two very distant States were removed (i.e., zero-out) in the same model run. The States we combined in three separate runs are: Nebraska and Maine, South Dakota and New Hampshire, and North Dakota and Vermont.

use the maximum downwind contribution metric as the means for evaluating the significance of interstate PM2.5 transport. The maximum contribution from a given State is the highest contribution made by that State when considering all downwind receptors.

Metric	Description		
Maximum Contribution	Highest contribution from a given State to any downwind nonattainment receptor		
Sum of Contributions	Sum of the contributions from a given State to all downwind nonattainment receptors		
Maximum Contribution per MM Tons of SO2+NOx	Divide Maximum contribution from a given upwind State by the total SO2+NOx emissions in that State		
Sum of Contributions per MM Tons of SO2+NOx	Divide the Sum of contributions from a given upwind State by the total SO2+NOx emissions in that State		
Sum Population-Weighted Contribution	Multiply the contributions from a give State to each downwind receptor by the population in the county in which the receptor is located; then sum these population weighted values		
Maximum Percent of Downwind Nonattainment	For a given State, divide the contribution to each receptor by the exceedance amount at that receptor (i.e., the difference between the 2010 Base concentration and 15.05 μ g/m ³); express this value as a percent; then select the highest value from among all downwind receptors for that State		
Maximum Percent of Downwind PM2.5	For a given State, divide the contribution to each receptor by the 2010 Base Case concentration at that receptor; express this value as a percent; then select the highest value from among all downwind receptors for that State		

Table VII-1. PM2.5 Contribution Metrics Considered by EPA.

The procedures for calculating the maximum contribution metric are as follows:

<u>Step 1</u>: Examine the contribution from each upwind State to PM2.5 at each downwind nonattainment receptor;

<u>Step 2</u>: Select the highest contribution from among those determined in Step 1. This is the maximum downwind contribution.

B. Evaluation of Upwind State Contributions to Downwind PM2.5 Nonattainment

The EPA is proposing to use a criterion of $0.15 \,\mu\text{g/m}^3$ for determining whether emissions in a State make a significant contribution to PM2.5 nonattainment in another State. The rationale for choosing this criterion is described in the IAQR preamble. The maximum

downwind contribution from each upwind State to a downwind nonattainment county is provided in Table VII-2. Of the States analyzed for this proposal, 28 States and the District of Columbia contribute 0.15 μ g/m³ or more to nonattainment in other States and therefore are found to make a significant contribution to PM2.5. Although we are proposing to use 0.15 μ g/m³ as the air quality criterion, we have also analyzed the impacts of using 0.10 μ g/m³ Based on our current modeling, two additional States, Oklahoma and North Dakota, would be included if we were to adopt 0.10 μ g/m³ as the air quality criterion. Table VII-3 provides a count of the number of downwind counties that received contributions of 0.15 μ g/m³ or more from each upwind State. This table also provides the number of downwind counties that received contributions of 0.10 μ g/m³ or more from each upwind State.

Upwind State	Maximum Downwind Contribution	Downwind Nonattainment County of Maximum Contribution
Alabama	1.17	Floyd, GA
Arkansas	0.29	St. Clair, IL
Connecticut	0.07	New York, NY
Colorado	0.04	Madison, IL
Delaware	0.17	Berks, PA
Florida	0.52	Russell, AL
Georgia	1.52	Russell, AL
Illinois	1.50	St. Louis, MO
Indiana	1.06	Hamilton, OH
Iowa	0.43	Madison, IL
Kansas	0.15	Madison, IL
Kentucky	1.10	Clark, IN
Louisiana	0.25	Jefferson, AL
Maryland/District of Columbia	0.85	York, PA
Maine	0.03	New Haven, CT
Massachusetts	0.21	New Haven, CT
Michigan	0.88	Cuyahoga, OH
Minnesota	0.39	Cook, IL
Mississippi	0.30	Jefferson, AL
Missouri	0.89	Madison, IL
Montana	0.03	Cook, IL
Nebraska	0.08	Madison, IL

Table VII-2. Maximum Downwind PM2.5 Contribution ($\mu g/m^3$) for each of 41 Upwind States.

New Hampshire	0.06	New Haven, CT
New Jersey	0.45	New York, NY
New Mexico	0.03	Knox, TN
New York	0.85	New Haven, CT
North Carolina	0.41	Sullivan, TN
North Dakota	0.12	Cook, IL
Ohio	1.90	Hancock, WV
Oklahoma	0.14	Madison, IL
Pennsylvania	1.17	New Castle, DE
Rhode Island	0.01	New Haven, CT
South Carolina	0.72	Richmond, GA
South Dakota	0.04	Madison, IL
Tennessee	0.57	Floyd, GA
Texas	0.37	St. Clair, IL
Vermont	0.06	New Haven, CT
Virginia	0.67	Washington, DC
West Virginia	0.89	Allegheny, PA
Wisconsin	1.00	Cook, IL
Wyoming	0.05	Madison, IL

Table VII-3. Number of Downwind PM2.5 Nonattainment Counties that Receive Contributions 0.15 µg/m³ or More and 0.10 µg/m³ or More from each Upwind State.

Upwind State	Number of Downwind Nonattainment Counties with Contributions of 0.10 µg/m ³ or More	Number of Downwind Nonattainment Counties with Contributions of 0.15 µg/m ³ or More
Alabama	43	32
Arkansas	27	4
Delaware	4	1
Florida	23	19
Georgia	38	27
Illinois	53	53
Indiana	54	53
Iowa	30	13
Kansas	4	2
Kentucky	52	50
Louisiana	33	25
-------------------------------	----	----
Maryland/District of Columbia	9	7
Massachusetts	2	1
Michigan	55	39
Minnesota	18	8
Mississippi	28	18
Missouri	47	31
New Jersey	8	7
New York	16	12
North Carolina	35	28
North Dakota	4	0
Ohio	47	47
Oklahoma	3	0
Pennsylvania	52	46
South Carolina	23	19
Tennessee	50	43
Texas	48	36
Virginia	35	17
West Virginia	46	32
Wisconsin	48	29

VIII. Ozone Sensitivity Modeling of Local Emission Reductions

As noted in the Preamble to the proposed rule, it is expected that reducing upwind precursor emissions will assist downwind 8-hour ozone nonattainment areas in achieving the National Ambient Air Quality Standards. Furthermore, it is expected that regional controls will result in a more certain, equitable, and cost effective approach to attainment than by only local emission reductions in the nonattainment areas. This section documents the procedures used in, and presents the results of, a sensitivity modeling analysis designed to quantify the impact of local ozone precursor emissions on projected residual nonattainment in 2010.

As discussed in more detail in section III, the air quality modeling analyses completed to assess the effect of local emission reductions on 8-hour ozone nonattainment were conducted for an Eastern U.S. domain using CAMx, version 3.10. Two sets of modeling analyses were completed focusing on nonattainment counties projected to be nonattainment in 2010. The first analysis used the CAMx source apportionment probing tool, as discussed in section VI. The total average contribution metric was used to determine the percentage of ozone that was formed due to in-State vs. out-of-State emissions. The results are shown in Table VIII-1.

Table VIII-1. Projected 8-Hour Ozone Design Values and the Percent of Total Average Contribution Resulting from Emissions in Upwind States⁶

2010 Nonattainment	Projected	Percent of 8-Hour Ozone due to Out-of-State
Counties	2010 Design	Transport
Now Hoven CT	v aiue 01	96
Middlesex CT	97	90
Ocean NJ	99	86
Cumberland NJ	85	86
Kent RI	87	85
Sheboygan WI	86	81
Fairfield CT	94	78
Ozaukee WI	86	77
Monmouth NJ	87	74
Middlesex NJ	93	71
Morris NJ	87	69
Gloucester NJ	92	68
Camden NJ	93	66
Door WI	85	65
Delaware PA	86	60
Hudson NJ	91	59
Montgomery PA	93	55
Richmond NY	92	54
Lehigh PA	86	54
Westchester NY	88	52
Kent MD	86	47
Anne Arundel MD	91	44
Bucks PA	98	43
Erie NY	85	43
Mercer NJ	99	41
Baltimore MD	85	40
New Castle DE	86	39
Kenosha WI	89	37
Prince Georges MD	87	37
Lake IN	85	36
Lancaster PA	85	36
Arlington VA	85	36

⁶ Table VIII-1 was completed early in the analysis process and used 1999-2001 ambient data to project the future design values. This results in a slightly different set of projected nonattainment counties (37 of the 47 using 2000-2002 data are the same). The differing ambient data base is not expected to impact the results.

Fairfax VA	85	36
Galveston TX	92	35
Washington DC	87	35
Cecil MD	92	34
Harris TX	104	31
Northhampton PA	87	30
Harford MD	93	29
Tarrant TX	87	29
Shelby TN	85	29
Hunterdon NJ	93	28
Fulton GA	93	25
DeKalb GA	89	23
Rockdale GA	87	23
Denton TX	89	22
Collin TX	88	22

As seen from Table VIII-1, ozone transport constitutes a sizable portion of the projected nonattainment problem in most eastern areas in 2010 (even after implementation of the NOx SIP call). In many cases, over 50 percent of the ozone nonattainment problem is due to emissions in other States. All of the future nonattainment areas show at least a 20 percent impact from transported ozone or ozone precursors.

The second analysis considered the effects of 10 percent, 25 percent, and 50 percent reductions in man-made NOx + VOC emissions in possible future nonattainment areas. Figure VII-1 shows the counties in which the sensitivity controls were applied. In all, there were 271 counties over 29 possible future nonattainment areas. These projections were made using the Clear Skies 2010 Base Case (EPA, 2003b) and 1999-2001 ambient data as a starting point. For areas that might possibly be classified as marginal under the new 8-hour ozone implementation rule, and therefore require a 2007 attainment date, the 2010 projections were interpolated to 2007 in order to assess future nonattainment. The sensitivity controls were applied to the 2010 Clear Skies control case (i.e., after the application of a regional NOx reduction strategy). Only the effects of the 25 percent controls were analyzed; this control level is indicative of substantial local control. The results of the sensitivity modeling are shown in Table VIII-2.

Figure VIII-1. Counties in which Sensitivity Controls were Applied.

Table VIII-2.	Results of CAMx 25	percent Local NOx +	- VOC Control in	Projected Future
Nonattainmen	it Areas.			

				CSA 2010
	CSA 2007	CSA 2010	CSA 2010	Control +
CMSA-MSA	Interpolated	Base	Control	Local
Allentown-Bethlehem-Easton PA-NJ		87	86	81
Atlanta GA		93	92	86
Baton Rouge, LA	85	83	83	79
Boston-Lawrence-Worcester (E. MA-NH)	88	84	84	77
Buffalo-Niagara Falls, NY		85	84	81
Charlotte-Gastonia-Rock Hill NC-SC	89	84	85	80
Chicago-Gary-Lake County, IL-IN (WI)		89	88	86
Cincinnati-Hamilton, OH-KY-IN	85	81	80	77
Cleveland-Akron, OH	86	83	82	78
Dallas-Fort Worth, TX		89	89	84
Detroit-Ann Arbor-Flint, MI	85	84	83	84
Grand Rapids-Muskegon-Holland, MI	86	83	82	78
Greater Connecticut, CT		93	93	88
Green Bay-Appleton-Oshkosh-Neenah-Door, WI		85	82	79
Harrisburg-Lebanon-Carlisle, PA	86	83	82	78
Houston-Galveston-Brazoria, TX		104	104	103
Knoxville, TN	85	79	79	76
Lancaster, PA		85	85	80
Longview-Marshall, TX	85	80	82	80

Memphis, TN-AR-MS		85	85	83
Milwaukee-Racine, WI		89	88	86
New York-New Jersey-Long Island NY-NJ-CT-		99	99	93
Philadelphia-Wilmington-Atlantic City, PA-NJ-		98	98	93
Pittsburgh, PA (WV)	86	84	83	80
Providence (All RI), RI		86	85	80
Raleigh-Durham-Chapel Hill, NC	85	81	80	76
Reading, PA	87	84	84	78
Sheboygan, WI		86	85	81
Washington-Baltimore, DC-MD-VA-WV		93	93	87

Table VIII-2 shows that eight metropolitan areas (Atlanta, Greater Connecticut, Chicago, Houston, Milwaukee, New York, Philadelphia, and Baltimore-Washington are projected to remain above the standard in 2010, despite the application of significant amounts of local control.

IX. PM2.5 Modeling of Locally Applied Control Measures

The purpose of this section is to discuss modeling studies aimed at a preliminary understanding of the effect of possible local control measures on PM2.5. We conducted two air quality modeling analyses to assess the impact on PM2.5 concentrations of applying measures only within the nonattainment areas. Both analyses were conducted :

- Identify a list of local control measures that could be applied in addition to those measures already in place or required to be in place in the near future;
- Determine the emissions inventory categories that would be affected by those measures, and the estimated percentage reduction;
- Apply those percentage reductions to sources within a selected geographic area; and
- Conduct regional air quality modeling using REMSAD to estimate the ambient impacts from these control measures and the degree to which the measures would reduce the expected number of nonattainment areas.

A. Control Measures and Percent Reductions

For the analysis of local controls, we developed a list of emission control measures as a surrogate for measures that State, local and tribal air quality agencies might include in their PM implementation plans. The list includes measures that such agencies might be able to carry out to reach attainment in 2009 or as soon thereafter as possible. The measures addressed a broad

range of point, area, and mobile sources. In general, the measures represent what we consider to be a highly ambitious but achievable level of control. We identified measures for direct PM2.5 and also for the following PM2.5 precursors: SO2, NOx, and VOC. We did not attempt to address ammonia emissions, in part due to lower emissions of ammonia and the likelihood of fewer controllable sources within the urban areas targeted for the analysis.

The percent reduction in emissions associated with each control measure was developed in two ways. First, we developed percent reduction estimates for specific technologies to the extent that information was available. These estimates were based on both the percent control that might be achieved for sources applying that technology and the percent of the inventory the measures might be applicable to (i.e., rule penetration). For example, assume that a given technology is expected to reduce emissions of an individual source by 90 percent and it is reasonable to install this technology on only 30 percent of the sources in this category. In this case we applied a 27 percent reduction to all sources in this category (i.e., 90 percent control efficiency multiplied by 30 percent of the source covered yields an overall reduction of 27 percent.

Second, there were some groups of control measures where data and resources were not available to develop technology-specific estimates in this manner. For these, we felt it preferable to make broad judgments on the level of control that might be achieved rather than to leave these control measures out of the analysis entirely. For example, the analysis reflects a reduction of 3 percent from onroad mobile source emissions relative to a 2010 and 2015 baseline. We judged this 3 percent estimate to represent a reasonable upper bound on the degree to which transportation control measures and other measures for reducing mobile source emissions could reduce the overall inventory of mobile source emissions in a given area.

Additionally, we believe that it may be possible to improve the performance of emissions control devices such as baghouses and electrostatic precipitators for point sources, and in some cases to upgrade to a more effective control device. In our current emissions inventories, we have incomplete data on control equipment currently in use. As a result, data are not available to calculate for each source the degree to which the control effectiveness could be improved. Nonetheless, we believed it important to include assumptions concerning point source controls for direct PM. For this analysis, we assumed a 25 percent across-the-board that reduction in PM2.5 emissions at all point sources.

Table IX-1 shows the control measures selected for the analysis, the pollutants reduced and the percentage reduction estimates. Documentation and references for the local control measures are provided in Appendix I.

Table IX-1. Control Measures, Pollutants, and Percentage Reductions for the Local Measures Analysis

Source Description	Control Measure	SO2		NOx			PM2.5			Tol+Xyl (VOC)	
		Eff	Eff	Арр	% Red	Eff	Арр	% Red	Eff	Арр	% Red
Utility boilers	FGD scrubber for some or all unscrubbed units	See table IX-2									
Coal-fired industrial boilers > 250 MMBTU/hr	Coal switching	50									
Petroleum fluid catalytic cracking units	Wet gas scrubber	50									
Refinery process heaters - oil-fired	Switch to natural gas	50									
Sulfuric acid plants	Meet NSPS level	42-96									
Coal-fired industrial boilers	SNCR		50	20	10						
Gas-fired industrial boilers (large & medium)	SNCR		45	20	9						
Gas-fired industrial boilers (small)	Low NOx burner		50	20	10						
Gas-fired IC Engines (reciprocating)	NSCR		94	10	9.4						
Gas-fired turbine & cogeneration	SCR		90	10	9						
Asphalt Concrete, Lime Manufacture	Low NOx burner		27	50	14						
Cement Manufacturing	Tire derived fuel & mid- kiln firing		34	50	18						
Petroleum Refinery Gas- fired Process Heaters	Ultra-low NOx burner & SNCR		93	50	46.5						
All direct PM2.5 points sources	Improve existing controls (baghouses, ESPs)							25			
Wood fireplaces and woodstoves ²	Natural gas inserts for fireplaces					80	30	24			
	Replace woostoves with certified noncatalytic wood stoves					71	30	21.4			
HDDV including buses ^a	Engine Modifications, Diesel oxidation catalyst		40	5	2						

Source Description	Control Measure	SO2		NOx	_	PM2.5			Tol+Xyl (VOC)		
		Eff	Eff	Арр	% Red	Eff	Арр	% Red	Eff	Арр	% Red
	Particulate filter					90	30	27			
	Idling reduction ⁴				1.7			1.7			1.7
Off-highway diesel construction and mining	Engine modifcations, diesel oxidation catalyst		40	73	29						
equipment	particulate filter					25	73	18			
Diesel Marine Vessels	esel Marine Vessels SCR		75	5	4						
	Particulate filter					90	30	27			
Diesel locomotives SCR			72	5	4						
	Electrification of yard	2.5	2.5	6	0.2	2.5	6	0.2	2.5	6	0.2
Unpaved roads	Gravel covering					60	30	18			
Construction road	Watering					50	30	15			
Open burning Ban			100	75	75	10 0	75	75	100	75	75
Agricultural tilling Soil conservation measures, unspecified						20	30	6			
LDGV and LDGT1 Combination of unspecified measures to reduce highway vehicle miles and emissions					3			3			3

^a For the 1996 inventory woodstoves and fireplaces are combined into one SCC category. We assumed for purpose of this analysis that woodstoves and fireplaces each comprise half of the total wood burned for the category overall. Thus, the total percentage reduction is (24+21.4)/2 = 22.7 percent.

B. Development of Two Local Control Measure Studies

We conducted two studies for identifying the geographic area to which the control measures were applied. These two studies were intended to address two separate issues related to the effects of urban-based control measures.

The first study (3 City Study) was intended to illustrate the effect of the selected local control measures within the geographic area to which controls were applied. For this, we applied the control measures and associated emissions reductions to the inventories for three cities — Birmingham, Chicago, and Philadelphia. We selected these three urban areas because each area was predicted to exceed the PM2.5 standard in 2010, albeit to varying degrees. Additionally, the three urban areas were selected because they are widely separated. Accordingly, we were able to conduct a single air quality analysis with less concerns for overlapping impacts due to transport than if less separated cities were selected.

The 3 City Study control measures were applied to the projected 2010 Base Case emission inventories for all counties within those Primary Metropolitan Statistical Areas (PMSAs)⁷. Thus, for Chicago, measures were applied to the 10 counties in Illinois, but were not applied in northwest Indiana or Wisconsin. For Philadelphia, measures were applied to the New Jersey and Pennsylvania counties within the Philadelphia urban area. For Birmingham, measures were applied to 4 Alabama counties.

The second Study (290 County Study) was intended to address the cumulative impact of local control measures applied within nonattainment areas. In this study we applied the control measures identified in IX-1 to all counties in Consolidated Metropolitan Statistical Areas (CMSAs) which contained at least one county that was projected to be nonattainment in the future baseline. A list of the counties included in this study is in Appendix J. The 290 County Study included the application of the local control package in model runs for 2010 and 2015.

Judgments evolved over the process of conducting these two scenarios which resulted in some differences in the measures that were applied. Table IX-2 outlines the differences in control assumptions between the two studies.

⁷For the three-city study we chose the PMSA counties rather than the larger list of counties in the consolidated metropolitan statistical area (CMSA). Both the PMSA and the CMSA classifications for metropolitan areas are created by the Office of Management and Budget (OMB). For this study, we used the classifications of counties in place as of spring 2003, rather than the revised classifications released by OMB on June 6, 2003.

Pollutant	Controls in 3 City Study, but not in 290 County Study	Controls in 290 County Study, but not in 3 City Study
SO2	50% reduction from switch to natural gas in oil-fired commercial and industrial boilers	50% reduction from oil-fired refinery process heaters
	For unscrubbed utility coal-fired boilers, scrub to 0.15 lb/MMBTU	For unscrubbed utility coal-fired boilers, apply 50% reduction
		Sulfuric acid plants meet NSPS
NOx	[no differences]	
VOC	75% for solvent substitution for cold cleaning	
	70% reduction for area source coating use solvent substitution	
	75% reduction from metal pipe coating solvent substitution	
Direct PM	22.5% reduction from paved roads for street sweeping	No reductions for PM2.5 for street sweeping on advice from Tom Pace.
Measures that apply to all pollutants	Mobile source across the board assumption was 3% for Chicago and Philadelphia, 5% for Birmingham	We assumed 3% across the board
	Open burning 100% control, 30% applicability	Open burning 100% control, 75% applicability
	No assumptions for idling	Truck idling reductions
		Diesel locomotive switching yard reductions

Table IX-2. Differences Between the Two Local Control Studies.

C. Results of the Two Local Control Studies

Table IX-3 shows the results of applying the package of control measures in each of the three urban areas addressed in the 3 City Study. The emission reductions were estimated to achieve ambient PM2.5 reductions of about 0.5 to about 0.9 μ g/m³, less than needed to bring any of the cities into attainment in 2010.

Metro Area	2010 Base PM2.5 (μg/m ³)	PM2.5 Reduction (μg/m³)	Final PM2.5 (µg/m³))	Attainment Achieved?
Birmingham, AL	20.07	-0.84	19.23	No
Chicago, IL	18.01	-0.93	17.07	No
Philadelphia, PA	15.6	052	15.08	No

Table IX-3. Im	pact on PM2.5 in	2010 of the	Emissions 1	Reductions	in the 3	City S	Study.
----------------	------------------	-------------	--------------------	------------	----------	--------	--------

The results of the 290 County Study are summarized in Table IX-4. We were interested in what part of the PM2.5 improvement that was attributable to SO2 reductions due to local emissions reductions and due to emissions reductions in upwind States. Part B of Table IX-4 shows a re-analysis of the modeling results in which the observed sulfate reductions were not considered in calculating the PM2.5 effects of the control package. If, as we expect, the observation from the earlier described modeling of Birmingham and two other cities that local SO2 reductions have relatively small local effects on sulfate applies more generally, then the difference between Parts A and B of Table IV-7 would generally represent the effect of upwind reductions in SO2 from power plants and other sources in other urban areas.

Table IX-4.	Impact on	PM2.5 of the	e Emissions	Reductions	in 2010 for	r the 290	County
Study.							

	2010 Base-2	With Local Controls	
Part A - Full Modeling Results Considering All Pollutants and Species			
Number of nonattainment counties	61	26	
Average Reduction in PM2.5 Design Value	Not Applicable	1.26 μg/m ³	
Part B - Results Not Counting Reductions in Sulfate Component of PM2.5			
Number of nonattainment counties	61	48	
Average Reduction in PM2.5 Design Value	Not Applicable	0.37 μg/m ³	

The results of the two scenarios show that much of the difference between the baseline case and the local control case is due to the sulfate component.

D. Analysis of the 290 County Study

The application of control measures to emissions in the 290 counties generally resulted in a somewhat modest percent reduction in emissions within an urban area in terms of the tons reduced and percent reduction. This occurs because a substantial part of the local emissions are attributable to mobile sources, small business, and household activities for which practical, large-reduction, and quick-acting emission reductions measures could not be identified at this time. Table IX-5 displays a ranking of measures by tons reduced for the various pollutants and where available along with the costs associated with those measures, in \$/ton.

We also note that the baseline emissions inventory used for this analysis has some known gaps. For example, direct PM2.5 and VOC from commercial cooking (e.g., charbroiling) is not included because no robust estimates were available for the 1996 base year used for this analysis. Also, excess PM2.5 due to deterioration of engines in service, and emissions from open burning of refuse, may not be well represented.

Pollutant	Category/Measure	Total tons reduced in the 290 counties	\$/ton, if available
SO2	Utility boilers achieve 50 % reduction overall	1,400,000	N/A
	Industrial boilers >250 MMBTU/hr / switch to lower sulfur coal to achieve 50% reduction	73,000	N/A
	Petroleum refinery catalytic cracking units/ Wet gas scrubber	36,000	N/A
	Sulfuric acid plant/ Meet NSPS	8,300	N/A
	Petroleum refinery oil-fired process heaters / Switch to natural gas	6,000	N/A

Table IX-5. Emission Reductions and Costs of Local Measures for the Second Scenario.

Pollutant	Category/Measure	Total tons reduced in the 290 counties	\$/ton, if available
NOx	Off-highway diesel construction and mining equipment/particulate filter	45,000	N/A
	Heavy duty diesel vehicles including buses / engine modifications	20,000	N/A
	Petroleum refinery gas-fired process heaters / ultra-low NOx burner + SNCR	18,000	\$800
	Combination of unspecified measures to reduce highway vehicle miles and emissions	15,000	N/A
	Coal-fired industrial boilers / SNCR	9,000	\$1100
	Open burning / ban open burning	8,300	N/A
	Small Gas-fired industrial boilers / Low NOx burner	7,000	\$10,000
	Diesel locomotives / SCR	5,900	
	Large and medium Gas-fired industrial boilers / SNCR	4,800	\$5000-5300
	Diesel marine vessels / SCR	4,400	
	Cement manufacturing / mid-kiln firing	4,000	\$150-680
	Gas-fired reciprocating IC engines / NSCR	2,800	\$230
	Asphalt plants, lime manufacturing / Low NOx burner	2,400	\$440 - \$940
	Gas-fired turbines and cogeneration / SCR	<1000	\$1500
Direct PM2.5	open burning / ban	42,000	N/A
	All point source SCCs / 25% reduction based upon improving existing controls	30,000	N/A
	Construction roads / watering	10,000	\$2000

Pollutant	Category/Measure	Total tons reduced in the 290 counties	\$/ton, if available
Direct PM2.5	Unpaved roads / gravel covering	4,600	\$2100-5900
	Heavy duty diesel vehicles including buses / particulate filter	4,300	< \$4000
	Fireplaces / natural gas inserts	3,600	\$7500
	Woodstoves / replace with certified noncatalytic wood stove	3,200	\$3800
	Diesel marine vessels / particulate filter	2,600	< \$4000
	Off-highway diesel construction and mining equipment / particulate filter	2,100	< \$4000
	Agricultural tilling / unspecified soil conservation measures	< 1000	\$19
	Combination of unspecified measures to reduce highway vehicle miles and emissions	300	N/A

Appendix K contains a detailed listing of the tons of each pollutant for each of the urban areas included in the modeling. This Appendix contains nine individual tables, which show the emissions reductions from the local control measures for the years 2010 and 2015 for the following pollutants:

(1) SO2

(2) NOx

(3) VOC

(5) Total directly-emitted PM 2.5

(6 - 10), Individual primary PM2.5 species: elemental carbon (PEC), organic aerosol (POA), primary nitrate (PNO3), primary sulfate(GSO4), and "other" (PMFINE, generally crustal)

Each table compares emissions for a future year base case with a future year control case reflecting the collection of control measures described in Tables IX-1 and IX-2. These tables show varying degrees of control for the different pollutants. Because the patterns for 2010 and 2015 are very similar, this paragraph will focus on 2010 only. For 2010, total direct PM2.5 reductions ranged from 17 to 43 percent, and typically exceeded 25 percent. Reductions in primary organic carbon ranged from 16 to 24 percent and primary elemental carbon reductions ranged from 20-35 percent. NOx emissions in all areas were reduced by less than 10 percent. VOC emissions were typically less than 10 percent, except for a few areas which had reductions

as high as15 percent. For SO2, emissions reductions were more variable across the area and are highly dependent on whether unscrubbed coal-fired utility boilers were located in the area. Some areas had SO2 emissions reductions approaching 50 percent, while other areas showed very little reduction in SO2. Overall, the greatest cumulative reductions over the entire 290 county area was for SO2. Emissions of SO2 in the 2010 Base Case 4.2 million tons, which were reduced to about 2.6 million tons in the control case. By comparison, total direct 2010 PM2.5 emissions for the 290 county area were reduced from about 380,000 tons to about 280,000 tons per year.

Appendix L contains tables (the year 2010 and the year 2015) summarizing REMSAD modeled air quality impacts from the control measures. In each table, the modeled impacts and the difference from the base case are noted for each of the geographic areas in which controls were applied:

- total PM2.5, and PM2.5 species:

- + crustal
- + elemental carbon
- + organic aerosol
- + ammonium sulfate
- + ammonium nitrate

Because most of the geographic areas consist of more than one county, each of these tables indicates a "maximum" impact (i.e., in county with the greatest reduction in concentrations), a "minimum" impact (i.e., in county with the smallest reduction in concentrations), and the average impact across all counties in the metropolitan area.

It is interesting to compare the year 2010 air quality impact to the emissions reductions described above. The largest impact in terms of modeled reductions was for ammonium sulfate, which is consistent with the sizeable emission reductions for SO2. As noted above, the overall average total PM2.5 reduction across all the metropolitan areas was 1.26 µg/m³. The detailed tables in Appendix L show that in nearly all the areas, sulfate reductions were 2/3 or more of this amount. For organic aerosol, Appendix L shows modeled reductions less than 10 percent and typically 5-7 percent, which is significantly lower than the 16-24 percent reduction in primary organic carbon emissions in the 290 counties. Because crustal and elemental carbon concentrations are low, the overall reductions in emissions from these components do not have a significant effect on PM2.5 reductions. The ammonium nitrate concentrations showed slight increases for the control case, in all cases less than 0.1 μ g/m³. The increase in nitrate is likely to reflect "nitrate replacement" which is a phenomena whereby SO2 emissions reductions lead to an increase in nitrate concentrations. In the local control scenario, it is likely that the NOx controls included in the local control packet were insufficient to overcome the formation of additional nitrate as a result of the SO2 reductions. For more information on nitrate replacement please see section XI.

X. Modeling of Regional SO2 and NOx Emissions Reductions

A. Introduction

In this section, we describe the air quality modeling performed to determine the projected impacts on PM2.5 and 8-hour ozone of the proposed regional SO2 and NOx emissions reductions. The regional emissions reductions are associated with State emissions budgets in 2010 and 2015, as explained in the IAQR preamble. The impacts of the regional reductions in 2010 and 2015 are determined by comparing air quality modeling results for each of these regional control scenarios to the modeling results for the corresponding 2010 and 2015 Base Case scenarios. Descriptions of the 2010 Base-2 and 2015 Base Case are provided in section II. Note that neither the base cases nor the regional control strategy scenarios include any of the local control measures discussed in section IX. Also note that the 2015 Base Case does not include any 2010 emissions reductions from the regional strategy.

The 2010 and 2015 regional strategy budgets cover emissions from the power generation sector in 28 eastern States plus the District of Columbia that contribute significantly to both PM2.5 and ozone nonattainment in downwind States.⁸ These annual SO2 and NOx budgets are provided in the IAQR preamble.

The EPA modeled a two-phase cap and trade strategy for SO2 and for NOx using the IPM to assess the impacts of the budgets on air quality. For the purposes of air quality modeling, we used a scenario that assumes a 48-State SO2 trading area and SO2 allowances. Most of the SO2 emissions reductions in this scenario occur in the 28-State and DC control region; there are only small changes in nearly all States.⁹ We do not expect these latter changes to actually occur; but, because they are only small changes, the results of using this IPM scenario are expected to be very similar to the actual results of the IAQR proposal. For NOx, EPA modeled a NOx trading scenario covering 31 States, DC, and the eastern half of Texas. The 31 States include Arkansas, Iowa, Louisiana, Minnesota, Missouri, and all other States to the east of these five States. Thus, the modeled strategy does not match the NOx reductions required in the IAQR proposal for Kansas and western Texas. In addition, the modeled strategy includes NOx reductions in Maine, New Hampshire, Rhode Island, and Vermont which do not have any required reductions in the IAQR proposal.

Phase 1 of the regional strategy is forecast to reduce total EGU SO2 emissions in the 28-States plus DC by 40 percent in 2010. Phase 2 is forecast to provide a 44 percent reduction in

9

⁸In addition, summer season only EGU NOx controls are proposed for Connecticut which significantly contributes to ozone, but not PM2.5 nonattainment in other States.

The modeled scenario reduces EGU emissions in the five New England States not covered by the IAQR proposal by less than 3,000 tons per year. In the 15 States located to the west of the region covered by the IAQR proposal, total EGU SO2 emissions decline by 17 percent.

EGU SO2 emissions compared to the base case in 2015. The net effect of the strategy on total SO2 emissions in the 28-State plus DC States, considering all sectors of emissions, is a 27 percent reduction in 2010 and a 28 percent reduction in 2015. For NOx, Phase 1 of the strategy is forecast to reduce EGU emissions by 44 percent and total emissions by 10 percent in the 28-States plus DC in 2010. In Phase 2, EGU NOx emissions are projected to decline by 53 percent in 2015. Total NOx emissions are projected to be reduced by 14 percent in 2015. The percent change in emissions by State for SO2 and NOx in 2010 and 2015 for the regional strategy are provided in the Appendix A.

B. PM2.5 Modeling of the Proposed Regional SO2 and NOx Strategy

The PM modeling platform described in section IV was used by EPA to model the impacts of the proposed SO2 and NOx emissions reductions on annual average PM2.5 concentrations and visibility. In brief, we ran the REMSAD model for the meteorological conditions in the year of 1996 using our nationwide modeling domain. Modeling was performed for both 2010 and 2015 to assess the expected effects of the proposed regional strategy in each of these years on projected PM2.5 concentrations and nonattainment. The procedures used to project future PM2.5 design values and nonattainment are described in section V. The counties that are projected to be nonattainment for the PM2.5 NAAQS are listed in Table X-1 for the 2010 Base-2 and the 2010 regional strategy scenario and in Table X-2 for the 2015 Base Case and 2015 regional strategy scenario. The projected 2010 Base-2 and control scenario PM2.5 design values are provided in Table X-3. The projected 2015 Base Case and control PM2.5 design values are provided in Table X-4.

State	2010 Base-2	2010 Regional Strategy
AL	DeKalb, Jefferson, Montgomery, Russell, Talladaga	Jefferson, Russell, Talladaga
СТ	New Haven	None
DC	Washington D.C.	None
DE	New Castle	None
GA	Clarke, Clayton, Cobb, DeKalb, Floyd, Fulton, Hall, Muscogee, Paulding, Richmond, Wilkinson	Clarke, Clayton, Cobb, DeKalb, Floyd, Fulton, Muscogee, Wilkinson
IL	Cook, Madison, St. Clair, Will	Cook, Madison, St. Clair
IN	Clark, Marion	None
KY	Fayette, Jefferson	None

 Table X-1. Projected PM2.5 Nonattainment Counties for 2010 Base Case and SO2+NOx

 Regional Strategy.

MD	Baltimore City	None
MI	Wayne	Wayne
MO	St. Louis	None
NY	New York (Manhattan)	New York (Manhattan)
NC	Catawba, Davidson, Mecklenburg	None
ОН	Butler, Cuyahoga, Franklin, Hamilton, Jefferson, Lawrence, Mahoning, Scioto, Stark, Summit, Trumbull	Cuyahoga, Hamilton, Jefferson, Scioto, Stark
PA	Allegheny, Berks, Lancaster, York	Allegheny
SC	Greenville	None
TN	Davidson, Hamilton, Knox, Roane, Sullivan	Knox
WV	Brooke, Cabell, Hancock, Kanawha, Marshal, Wood	None

Table X-2. Projected PM2.5 Nonattainment Counties for 2015 Base Case and SO2+NOxRegional Strategy.

State	2015 Base Case	2015 Regional Strategy
AL	Jefferson, Montgomery, Russell, Talladaga	Jefferson, Russell
СТ	New Haven	None
GA	Clarke, Clayton, Cobb, DeKalb, Floyd, Fulton, Hall, Muscogee, Richmond, Wilkinson	Clayton, DeKalb, Fulton
IL	Cook, Madison, St. Clair	Cook
IN	Clark, Marion	None
KY	Jefferson	None
MD	Baltimore City	None
MI	Wayne	Wayne
NY	New York County (Manhattan)	None
ОН	Butler, Cuyahoga, Franklin, Hamilton, Jefferson, Scioto, Stark, Summit	Cuyahoga, Hamilton, Jefferson, Scioto
PA	Allegheny, York	Allegheny
TN	Hamilton, Knox	Knox
WV	Brooke, Cabell, Hancock, Kanawha, Wood	None

State	County	2010 Base-2	2010 Regional Strategy
Alabama	DeKalb	15.22	13.92
Alabama	Jefferson	20.03	18.85
Alabama	Montgomery	15.69	14.60
Alabama	Russell	17.07	15.77
Alabama	Talladega	16.44	15.26
Connecticut	New Haven	15.43	14.50
Delaware	New Castle	15.43	14.12
District of Columbia	District of Columbia	15.48	13.70
Georgia	Clarke	17.04	15.56
Georgia	Clayton	17.73	16.43
Georgia	Cobb	16.80	15.56
Georgia	DeKalb	18.26	16.92
Georgia	Floyd	16.99	15.65
Georgia	Fulton	19.79	18.37
Georgia	Hall	15.62	14.24
Georgia	Muscogee	16.68	15.41
Georgia	Paulding	15.40	14.17
Georgia	Richmond	15.99	14.65
Georgia	Wilkinson	16.68	15.51
Illinois	Cook	17.90	16.90
Illinois	Madison	16.41	15.33
Illinois	St. Clair	16.31	15.11
Illinois	Will	15.21	14.25
Indiana	Clark	15.86	14.34
Indiana	Marion	15.89	14.39
Kentucky	Fayette	15.21	13.55
Kentucky	Jefferson	15.79	14.23
Maryland	Baltimore City	16.58	14.82
Michigan	Wayne	18.78	17.65
Missouri	St. Louis City	15.25	14.14
New York	New York	16.30	15.25
North Carolina	Catawba	15.26	13.87
North Carolina	Davidson	15.52	14.22
North Carolina	Mecklenburg County	15.18	13.92
Ohio	Butler	16.01	14.53
Ohio	Cuyahoga	19.13	17.68
Ohio	Franklin	16.69	15.04
Ohio	Hamilton	17.75	15.96

Table X-3. Projected PM2.5 Design Values for the 2010 Base Case and SO2 + NOxRegional Strategy.

Ohio	Jefferson	18.04	16.06
Ohio	Lawrence	15.48	13.67
Ohio	Mahoning	15.39	13.76
Ohio	Scioto	18.40	16.33
Ohio	Stark	17.09	15.19
Ohio	Summit	16.35	14.71
Ohio	Trumbull	15.13	13.56
Pennsylvania	Allegheny	19.52	16.92
Pennsylvania	Berks	15.39	13.84
Pennsylvania	Lancaster	15.46	13.71
Pennsylvania	York	15.68	13.93
South Carolina	Greenville	15.06	13.75
Tennessee	Davidson	15.36	13.92
Tennessee	Hamilton	16.14	14.74
Tennessee	Knox	18.36	16.60
Tennessee	Roane	15.18	13.69
Tennessee	Sullivan	15.24	13.77
West Virginia	Brooke	16.60	14.77
West Virginia	Cabell	16.39	14.41
West Virginia	Hancock	16.69	14.85
West Virginia	Kanawha	17.11	14.81
West Virginia	Marshall	15.53	13.25
West Virginia	Wood	16.30	14.15

Table X-4. Projected PM2.5 Design Values for the 2015 Base Case and SO2+NOx RegionalStrategy.

State	County	2015 Base Case	2015 Regional Strategy
Alabama	Jefferson	19.57	18.11
Alabama	Montgomery	15.35	14.05
Alabama	Russell	16.68	15.05
Alabama	Talladega	15.97	14.57
Connecticut	New Haven	15.13	14.13
Georgia	Clarke	16.46	14.58
Georgia	Clayton	17.26	15.49
Georgia	Cobb	16.28	14.37
Georgia	DeKalb	17.93	16.22
Georgia	Floyd	16.51	14.71
Georgia	Fulton	19.44	17.62
Georgia	Hall	15.05	13.16
Georgia	Muscogee	16.31	14.71

Georgia	Richmond	15.51	13.82
Georgia	Wilkinson	16.40	14.88
Illinois	Cook	17.52	16.40
Illinois	Madison	16.03	14.88
Illinois	St. Clair	15.91	14.67
Indiana	Clark	15.40	13.69
Indiana	Marion	15.31	13.79
Kentucky	Jefferson	15.32	13.57
Maryland	Baltimore City	16.11	14.20
Michigan	Wayne	18.28	17.06
	New York		
New York	(Manhattan)	15.82	14.69
Ohio	Butler	15.39	13.77
Ohio	Cuyahoga	18.58	17.05
Ohio	Franklin	16.18	14.46
Ohio	Hamilton	17.07	15.15
Ohio	Jefferson	17.49	15.51
Ohio	Scioto	17.62	15.49
Ohio	Stark	16.42	14.52
Ohio	Summit	15.78	14.14
Pennsylvania	Allegheny	18.64	16.09
Pennsylvania	York	15.13	13.26
Tennessee	Hamilton	15.63	13.91
Tennessee	Knox	17.73	15.59
West Virginia	Brooke	16.10	14.26
West Virginia	Cabell	15.70	13.71
West Virginia	Hancock	16.18	14.33
West Virginia	Kanawha	16.45	14.10
West Virginia	Wood	15.58	13.49

As described in section V, the air quality modeling results indicate that 61 counties in the East are expected to be nonattainment for PM2.5 in the 2010 Base-2. Of these 61 counties, 38 are projected to come into attainment in 2010 following the SO2 and NOx emissions reductions resulting from the regional control strategy. The 23 counties projected to remain nonattainment after the application of the regional strategy are expected to experience a sizeable reduction in PM2.5 from this strategy, which will bring them closer to attainment. Specifically, the average reduction in these 23 residual 2010 nonattainment counties is $1.50 \text{ }\mu\text{g/m}^3$ with a range of 0.93 to $2.60 \text{ }\mu\text{g/m}^3$.

In 2015, the SO2 and NOx reductions are expected to reduce the number of PM2.5 nonattainment counties in the East from 41 to 13. The regional strategy is predicted to provide large reductions in PM2.5 in those 13 residual nonattainment counties. Specifically, the average reduction in these 13 residual 2015 nonattainment counties is $1.70 \ \mu g/m^3$ with a range of 1.00 to $2.54 \ \mu g/m^3$.

Thus, the SO2 and NOx emissions reductions will greatly reduce the extent of PM2.5 nonattainment by 2010 and beyond. These emissions reductions are expected to substantially reduce the number of PM2.5 nonattainment counties in the East and make attainment easier for those counties that remain nonattainment by substantially lowering PM2.5 concentrations in these residual nonattainment counties.

C. Ozone Modeling of the Proposed Regional NOx Strategy

The EPA used the ozone modeling platform described in section III to model the impacts of the proposed EGU NOx controls on 8-hour ozone concentrations. In brief, we ran the CAMx model for the meteorological conditions in each of the three 1995 ozone episodes using the Eastern U.S. modeling domain. Ozone modeling was performed for both 2010 and 2015 to assess the projected effects of the regional strategy in each of these years on projected 8-hour ozone nonattainment.

The results of the regional strategy ozone modeling are expressed in terms of the expected reduction in projected 8-hour design value concentrations and the implications for future nonattainment. The procedures used to project future 8-hour ozone design values and nonattainment are described in section V. The counties that are projected to be nonattainment for the 8-hour ozone NAAQS are listed in Table X-5 for the 2010 Base-2 and the 2010 regional strategy scenario and in Table X-6 for the 2015 Base Case and 2015 regional strategy scenario. The projected 2010 Base Case and control scenario 8-hour ozone design values are provided in Table X-7. The projected 2015 Base and control 8-hour ozone design values are provided in Table X-8. Predicted exceedance counts for the 2010 Base-2 and control scenarios are provided in Tables X-9 for those counties that are projected to be nonattainment in the 2010 Base Case. The same information is provided in Table X-10 for the 2015 Base and control scenarios.

 Table X-5. Projected 8-Hour Ozone Nonattainment Counties for 2010 Base and NOx

 Regional Strategy.

State	2010 Base-2	2010 Regional Strategy
AR	Crittenden	Crittenden
СТ	Fairfield, Middlesex, New Haven	Fairfield, Middlesex, New Haven
DC	Washington D.C.	Washington D.C.
DE	New Castle	New Castle

GA	Fulton	Fulton
IL	None	None
IN	Lake	Lake
MD	Anne Arundel, Baltimore, Cecil, Harford, Kent, Prince Georges	Anne Arundel, Baltimore, Cecil, Harford, Kent, Prince Georges
MI	None	None
NJ	Bergen, Camden, Cumberland, Gloucester, Hudson, Hunterdon, Mercer, Middlesex, Monmouth, Morris, Ocean	Bergen, Camden, Cumberland, Gloucester, Hunterdon, Mercer, Middlesex, Monmouth, Morris, Ocean
NY	Erie, Putnam, Richmond, Suffolk, Westchester	Erie, Putnam, Richmond, Suffolk, Westchester
NC	Mecklenburg	Mecklenburg
ОН	Geauga, Summit	Geauga
PA	Allegheny, Bucks, Delaware, Montgomery, Philadelphia	Bucks, Delaware, Montgomery, Philadelphia
RI	Kent	Kent
TX	Denton, Harris, Tarrant	Denton, Harris, Tarrant
VA	Arlington, Fairfax	Arlington, Fairfax
WI	Kenosha, Racine, Sheboygan	Kenosha, Racine, Sheboygan

Table X-6. Projected 8-Hour Ozone Nonattainment Counties for 2015 Base Case and NOxRegional Strategy.

State	2015 Base Case	2015 Regional Strategy
AR	Crittenden	None
СТ	Fairfield, Middlesex, New Haven	Fairfield, Middlesex, New Haven
DC	Washington D.C.	Washington D.C.
DE	None	None
GA	None	None
IL	Cook	None
IN	Lake	Lake
MD	Anne Arundel, Cecil, Harford	Anne Arundel, Cecil, Harford
MI	Macomb	None
NJ	Bergen, Camden, Gloucester, Hunterdon, Mercer, Middlesex, Monmouth, Morris, Ocean	Bergen, Camden, Gloucester, Hunterdon, Mercer, Middlesex, Monmouth, Ocean
NY	Erie, Richmond, Suffolk, Westchester	Erie, Richmond, Suffolk, Westchester

NC	None	None
ОН	Geauga	None
PA	Bucks, Montgomery, Philadelphia	Bucks, Montgomery, Philadelphia
RI	Kent	None
ΤХ	Harris	Harris
VA	Arlington, Fairfax	Arlington
WI	Kenosha, Sheboygan	Kenosha

Table X-7. Projected 8-Hour Ozone Design Values for the 2010 Base Case and NOxRegional Strategy.

State County		2010 Base-2	2010 Regional Strategy
Arkansas	Crittenden	86	86
Connecticut	Fairfield	94	94
Connecticut	Middlesex	91	91
Connecticut	New Haven	92	92
District of Columbia	District of Columbia	88	88
Delaware	New Castle	87	86
Georgia	Fulton	86	85
Indiana	Lake	87	86
Maryland	Anne Arundel	91	91
Maryland	Baltimore	85	85
Maryland	Cecil	90	90
Maryland	Harford	93	93
Maryland	Kent	89	88
Maryland	Prince Georges	86	85
New Jersey	Bergen	88	87
New Jersey	Camden	93	92
New Jersey	Cumberland	86	85
New Jersey	Gloucester	95	95
New Jersey	Hudson	85	84
New Jersey	Hunterdon	89	89
New Jersey	Mercer	98	98
New Jersey	Middlesex	95	95
New Jersey	Monmouth	89	89
New Jersey	Morris	88	87
New Jersey	Ocean	105	104
New York	Erie	90	89
New York	Putnam	85	85

New York	Richmond	90	89
New York	Suffolk	90	90
New York	Westchester	86	85
North Carolina	Mecklenburg	85	86
Ohio	Geauga	88	88
Ohio	Summit	85	84
Pennsylvania	Allegheny	85	84
Pennsylvania	Bucks	97	97
Pennsylvania	Delaware	87	86
Pennsylvania	Montgomery	90	89
Pennsylvania	Philadelphia	92	92
Rhode Island	Kent	89	88
Texas	Denton	87	87
Texas	Harris	100	100
Texas	Tarrant	88	87
Virginia	Arlington	88	88
Virginia	Fairfax	87	87
Wisconsin	Kenosha	94	93
Wisconsin	Racine	86	85
Wisconsin	Sheboygan	90	89

Table X-8. Projected 8-Hour Ozone Design Values for the 2015 Base Case and NOxRegional Strategy.

State	County	2015 Base Case	2015 Regional Strategy
Arkansas	Crittenden	85	83
Connecticut	Fairfield	94	93
Connecticut	Middlesex	89	88
Connecticut	New Haven	90	89
District of Columbia	District of Columbia	86	85
Illinois	Cook	85	84
Indiana	Lake	87	86
Maryland	Anne Arundel	87	86
Maryland	Cecil	86	85
Maryland	Harford	89	88
Michigan	Macomb	86	84
New Jersey	Bergen	87	86
New Jersey	Camden	91	90
New Jersey	Gloucester	93	92
New Jersey	Hunterdon	87	86

New Jersey	Mercer	96	95
New Jersey	Middlesex	92	92
New Jersey	Monmouth	87	86
New Jersey	Morris	85	83
New Jersey	Ocean	102	101
New York	Erie	88	86
New York	Richmond	87	87
New York	Suffolk	89	89
New York	Westchester	86	85
Ohio	Geauga	85	83
Pennsylvania	Bucks	95	94
Pennsylvania	Montgomery	89	88
Pennsylvania	Philadelphia	91	90
Rhode Island	Kent	85	84
Texas	Harris	99	98
Virginia	Arlington	87	86
Virginia	Fairfax	85	84
Wisconsin	Kenosha	93	91
Wisconsin	Sheboygan	86	84

Table X-9. Count of Predicted 8-Hour Ozone Exceedances for the 2010 Base and NOxRegional Strategy.

State FIPs	County FIPs	State	County	2010 Base-2	2010 Regional Strategy
5	35	Arkansas	Crittenden	36	36
9	1	Connecticut	Fairfield	27	26
9	7	Connecticut	Middlesex	31	30
9	9	Connecticut	New Haven	35	34
10	3	Delaware	New Castle	25	22
11	1	D.C.	Washington	2	2
13	121	Georgia	Fulton	204	205
18	89	Indiana	Lake	36	32
24	3	Maryland	Anne Arundel	56	53
24	5	Maryland	Baltimore	71	68
24	15	Maryland	Cecil	31	31
24	25	Maryland	Harford	37	36
24	29	Maryland	Kent	30	29
24	33	Maryland	Prince Georges	56	52
34	3	New Jersey	Bergen	10	10
34	7	New Jersey	Camden	37	36

34	11	New Jersey	Cumberland	16	13
34	15	New Jersey	Gloucester	26	25
34	17	New Jersey	Hudson	5	5
34	19	New Jersey	Hunterdon	36	30
34	21	New Jersey	Mercer	17	17
34	23	New Jersey	Middlesex	37	34
34	25	New Jersey	Monmouth	63	60
34	27	New Jersey	Morris	45	41
34	29	New Jersey	Ocean	75	71
36	29	New York	Erie	13	13
36	79	New York	Putnam	14	14
36	85	New York	Richmond	8	8
36	103	New York	Suffolk	176	171
36	119	New York	Westchester	17	16
37	119	North Carolina	Mecklenburg	24	27
39	55	Ohio	Geauga	21	21
39	153	Ohio	Summit	45	42
42	3	Pennsylvania	Allegheny	118	112
42	17	Pennsylvania	Bucks	40	36
42	45	Pennsylvania	Delaware	11	11
42	91	Pennsylvania	Montgomery	22	16
42	101	Pennsylvania	Philadelphia	13	12
44	3	Rhode Island	Kent	22	22
48	121	Texas	Denton	6	6
48	201	Texas	Harris	324	320
48	439	Texas	Tarrant	3	3
51	13	Virginia	Arlington	3	2
51	59	Virginia	Fairfax	25	24
55	59	Wisconsin	Kenosha	17	17
55	101	Wisconsin	Racine	33	32
55	117	Wisconsin	Sheboygan	12	11

State	County				2015 Regional
FIPs	FIPs	State	County	2015 Base	Strategy
5	35	Arkansas	Crittenden	31	23
9	1	Connecticut	Fairfield	30	25
9	7	Connecticut	Middlesex	26	22
9	9	Connecticut	New Haven	30	28
11	1	D.C.	Washington	3	3
18	89	Indiana	Lake	29	24
24	3	Maryland	Anne Arundel	42	37
24	15	Maryland	Cecil	21	18
24	25	Maryland	Harford	30	27
34	3	New Jersey	Bergen	11	10
34	7	New Jersey	Camden	28	27
34	15	New Jersey	Gloucester	20	19
34	19	New Jersey	Hunterdon	22	16
34	21	New Jersey	Mercer	17	17
34	23	New Jersey	Middlesex	32	31
34	25	New Jersey	Monmouth	57	57
34	27	New Jersey	Morris	38	30
34	29	New Jersey	Ocean	59	56
36	29	New York	Erie	12	9
36	85	New York	Richmond	9	9
36	103	New York	Suffolk	169	161
36	119	New York	Westchester	20	20
39	55	Ohio	Geauga	9	8
42	17	Pennsylvania	Bucks	28	25
42	91	Pennsylvania	Montgomery	12	10
42	101	Pennsylvania	Philadelphia	12	12
44	3	Rhode Island	Kent	17	16
48	201	Texas	Harris	292	279
51	13	Virginia	Arlington	2	2
51	59	Virginia	Fairfax	18	16
55	59	Wisconsin	Kenosha	15	15
55	117	Wisconsin	Sheboygan	8	8

Table X-10. Count of Predicted 8-Hour Ozone Exceedances for the 2015 Base and NOxRegional Strategy.

In the 2010 Base-2, 47 counties in the East are forecast to be nonattainment for ozone. With the implementation of the proposed regional NOx strategy, three of the 47 2010 Base Case nonattainment counties are forecast to come into attainment. Of the 44 counties that are projected to remain nonattainment in 2010 after the regional controls, 12 are projected to have design values within 2 ppb of attainment (i.e., counties that have design values of 85 or 86 ppb). In addition, the model predicted exceedances in nonattainment areas of the East show an overall decline of 4 percent between the 2010 Base Case and the control case¹⁰. Among the areas predicted to have the largest percent reduction in exceedances in 2010 are Montgomery Co., PA (27 percent reduction), Cumberland Co., NJ (19 percent reduction), and Hunterdon Co., NJ (17 percent reduction).

In 2015, the number of nonattainment counties is expected to decline from 34 counties in the Base Case to 26 counties after the NOx emissions reductions in the IAQR proposal. The proposed regional NOx strategy is projected to reduce nonattainment ozone design values in the East by 1 to 2 ppb in all but three of the 34 2015 Base Case nonattainment counties. Of the 26 counties that are forecast to remain nonattainment in the control case, ten are projected to be within 2 ppb of attainment. In addition, the overall number of model predicted exceedances in nonattainment areas of the East are projected to decline by 8 percent in 2015 with the regional strategy NOx reductions. Among the areas predicted to have the largest percent reduction in exceedances in 2015 are Morris Co., NJ (21 percent reduction), Fairfield Co., CT (17 percent reduction), and Anne Arundel Co., MD (12 percent reduction). Thus, our modeling indicates that by 2010 and 2015 the regional NOx controls will reduce ozone concentrations throughout the East and help bring areas into attainment with the 8-hour ozone NAAQS.

D. Visibility Modeling of the Proposed Regional SO2 and NOx Strategy

The impacts of the regional SO2 and NOx emissions reductions were examined in terms of the projected improvements in visibility on the 20 percent best and worst days from 1996 at each IMPROVE site with complete data. The future year base and control visibility was calculated using a methodology which applies modeling results in a relative sense similar to SMAT. The draft modeling guidance recommends the calculation of future year changes in

¹⁰In 2010, the modeling predicts an increase in the number of exceedances. This increase in ozone is caused by local predicted NOx increases in the IPM model from certain power plants. These power plants were predicted to be controlled under the NOxSIP call trading program (which is assumed in the 2010 IAQR Base Case). Under the IAQR regional control case, the plants trade under a new trading program which is year-round and expanded to additional states. The predicted emissions patterns from IPM are slightly different under the two trading programs. Therefore, some power plants that were predicted to put on controls under the NOxSIP call may not be predicted to do so under the IAQR (and vice versa). It is important to note that the overall summer utility NOx emissions in the States with NOxSIP call area are predicted to be lower under IAQR than under the NOxSIP call. So overall, the IAQR will provide regional ozone benefits in the NOxSIP call area.

visibility in a similar manner to the calculation of changes in PM2.5. The extinction coefficient and deciview values are made up of individual component species (sulfate, nitrate, organics, etc). The predicted change in visibility (on the 20 percent best and worst days) is calculated as the percent change in the extinction coefficient for each of the PM species (on a daily basis). The individual daily species extinction coefficients are summed to get a daily total extinction value. The daily extinction coefficients are then converted to deciviews and averaged across all 20 percent best and worst days (best and worst days separately). In this way, we can calculate an average change in deciviews from the base case to a future case at each IMPROVE site. Additionally, subtracting the future IAQR control case deciview values from the future base case deciview values gives an estimate of the visibility benefits in Class I areas from the SO2 + NOx regional strategy.

Appendix M contains an example calculation of the predicted improvement in visibility on the 20 percent worst days at an IMPROVE site. The predicted improvements in visibility at Class I areas on the 20 percent best visibility days and the 20 percent worst visibility days for the 2010 and 2015 base and regional control scenarios are also provided in Appendix M. There is a separate table in this appendix for the 20 percent best days and 20 percent worst days. The calculated reductions in deciviews is based on the model predicted changes in PM species between the 2001 proxy Base Year and the 2010 and/or 2015 model runs. The 1996 ambient data were used as a starting point to calculate the deciview reductions and thus, the visibility improvements are from a 1996 ambient baseline.¹¹ The visibility benefits solely from the regional strategy are also provided in Appendix M.

As an example, the expected improvement in visibility at the Great Smoky Mountain National Park (GRSM) from 2001 to the 2010 Base Case on the 20 percent worst visibility days is 1.38 deciviews. The expected improvement from 2001 to 2010 with the regional SO2+NOx controls (in addition to all other expected controls) is 3.55 deciviews. The improvement in visibility due only to the regional strategy in 2010 is 2.17 deciviews. The expected improvement in visibility in 2015 is even larger. The visibility improvement from 2001 to the 2015 Base is 1.94 deciviews. The improvement from 2001 from 2015 with the regional strategy emissions reductions is 4.52 deciviews. The improvement in 2015 between the base case and the regional strategy is 2.58 deciviews. The modeling predicts smaller improvements in visibility on the 20 percent best days forecast for both 2010 and 2015. Note that there are no cases in which visibility deteriorated due to the regional strategy.

¹¹ The 1996 data was used because it is coincident with the REMSAD meteorology. The changes in visibility are representative of emissions changes from 2001 into the future (not 1996). Due to the lack of complete IMPROVE baseline ambient data and due to the fact that 1996 meteorology was used, it was not possible to replicate the Regional Haze guidance (the modeling guidance and the procedures for calculating the baseline 20 percent best and worst days.) The resultant values are believed to be representative of the expected improvement in visibility.

XI. Modeling to Examine Nitrate Replacement

The chemical interactions involved in the formation of sulfates and nitrates have consequences for the effectiveness of SO2 emissions reductions in lowering regional and urban PM2.5 concentrations. The formation of ammonium nitrate is favored by availability of ammonia and nitric acid vapor, low temperatures, high relative humidity, and the absence of acid sulfate particles. At higher summer temperatures when photochemical processes and meteorological conditions in the East produce high sulfate levels, ammonia and nitric acid vapor tend to remain in the gas phase rather than forming ammonium nitrate particles. In winter months, with cooler temperatures and lower sulfur-related acidity, the presence of sufficient nitric acid and ammonia favors formation of nitrate particles. The air quality modeling, as described in section X, indicates that regional SO2 reductions are effective at reducing sulfates and PM2.5. When SO2 reductions reach a certain point in relation to other relevant reactants and conditions, however, the ammonia formerly associated with sulfate can react with excess nitric acid vapor to form nitrate particles, effectively replacing at least part of the PM2.5 reduction due to sulfate. This phenomenon is termed "nitrate replacement". The EPA performed several air quality modeling sensitivity simulations to provide information on the potential magnitude of nitrate replacement. The model simulations include zero-out runs with REMSAD for nine States in which emissions of SO2 from all source sectors were removed from an individual State. These nine States we modeled are: Alabama, Indiana, Michigan, Missouri, North Carolina, Pennsylvania, Tennessee, Texas, and West Virginia. These States were chosen to obtain information on nitrate replacement in various parts of the East that experience different meteorological conditions.

The results of the sensitivity runs were examined to determine the increase in nitrate concentrations in counties (i.e., receptors) projected to be nonattainment in the 2010 Base Case. Receptor specific impacts were calculated using the SMAT technique described in section V. Table XI-1 provides the mean and maximum annual average increase in nitrate particles calculated from these model runs. Mean and maximum values are given for both in-State impacts and impacts across all downwind nonattainment receptors and are expressed in terms of the concentration increase in $\mu g/m^3$ and as a percent of the 2010 Base nitrate concentration at the receptor location. The results indicate that the amount of nitrate replacement can be substantial for both in-State impacts and downwind impacts. The in-State maximum increase in nitrate ranges from 0.08 μ g/m³ (North Carolina and Tennessee) up to 0.59 μ g/m³ (West Virginia). Mean in-State increases range from 0.05 μ g/m³ (Missouri and North Carolina) up to 0.13 μ g/m³ (Alabama and Indiana). In terms the percent of base nitrate concentration, the amount of in-State nitrate replacement ranges from 2 percent (both mean and maximum) up to 10 percent, as a statewide mean value and 14 percent, as a statewide maximum value. Considering the amount of nitrate replacement in downwind States, the maximum amount ranges from less than 0.05 μ g/m³ (locations downwind of Alabama, Missouri, North Carolina, Tennessee, and Texas) up to more than 0.10 µg/m³ (locations downwind of Indiana, Michigan, Pennsylvania, and West Virginia). The maximum downwind increases in nitrate represent amounts that are between 2 percent and 7 percent of the 2010 Base nitrate concentration at downwind locations.

	In-State Increase in Nitrates				Downwind Increase in Nitrates			
	Maxi	mum	Me	ean	Maximum		Mean	
State	$\mu g/m^3$	percent	$\mu g/m^3$	percent	$\mu g/m^3$	percent	$\mu g/m^3$	percent
AL	0.19	14%	0.13	10%	0.04	7%	0.02	1%
IN	0.17	5%	0.13	4%	0.10	4%	0.04	2%
MI	0.32	6%	0.32	6%	0.18	4%	0.03	1%
МО	0.05	2%	0.05	2%	0.04	2%	0.01	1%
NC	0.08	6%	0.05	4%	0.02	2%	< 0.01	< 1%
РА	0.18	5%	0.11	4%	0.20	7%	0.03	1%
TN	0.08	7%	0.06	5%	0.04	3%	0.02	1%
ТХ	NA	NA	NA	NA	0.03	2%	0.01	1%
WV	0.59	25%	0.27	12%	0.11	4%	0.02	1%

 Table XI-1.
 Results of Nitrate Replacement Sensitivity Modeling.

The preceding information is useful for indicating the possible extent of nitrate replacement associated with all SO2 emissions in States in the East. Although not examined in this analysis, one would expect that the amount of nitrate replacement would be a function of the amount of SO2 emissions removed together with meteorological conditions and the amount of ammonia present in the State and in downwind areas. Also, these results are based single State model runs. One would expect that the amount of nitrate replacement would be larger for SO2 emissions reductions made across a multi-State region compared to the amount that would result from a single State.

XII. References

Battelle, 2004: Technical Report: Application of Automated Classification Scheme to Identify Meteorological Regimes and Their Relationship to Ozone Concentrations in the Eastern United States, Contract No. 68-D-02-061, Work Assignment 1-12, September 2003.

Battelle, 2004: Draft Paper: Identification of Meteorological Regimes and Their Relationship to Ozone Concentrations, in conjunction with US EPA and Sonoma Technology Inc., January 2004.

Eder, B.K., J.M. Davis, P. Bloomfield, (1994), "A Characterization of the Spatiotemporal Variability of Non-urban Ozone Concentrations over the Eastern United States", Atmospheric Environment, 30 (14), 2615-2625.

Environ, 2002: User's Guide: Comprehensive Air Quality Model with Extensions (CAMx), Novato, CA.

EPA, 1999a: Draft Guidance on the Use of Models and Other Analyses in Attainment Demonstrations for the 8-Hour Ozone NAAQS, Office of Air Quality Planning and Standards, Research Triangle Park, NC.

EPA, 1999b: Technical Support Document for the Tier 2/Gasoline Sulfur Ozone Modeling Analyses, EPA420-R-99-031, Research Triangle Park, NC.

EPA, 2000a: Procedures for Developing Base Year and Future Year Mass and Modeling Inventories for the Heavy Duty Engine and Vehicle Standards and Highway Diesel Fuel (HDD) Rulemaking: Air Quality Modeling Analyses, EPA420-R-00-0208, Research Triangle Park, NC.

EPA, 2000b: Technical Support Document for the Heavy Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements: Air Quality Modeling Analyses, EPA420-R-00-0208, Research Triangle Park, NC.

EPA, 2001: Guidance for Demonstrating Attainment of Air Quality Goals for PM_{2.5} and Regional Haze; Draft 1.1, Office of Air Quality Planning and Standards, Research Triangle Park, NC.

EPA, 2003a: Procedures for Developing Base Year and Future Year Mass Emissions Inventories for the Nonroad Diesel Engine Rulemaking, Office of Air Quality Planning and Standards, Research Triangle Park, NC.

EPA, 2003b: Technical Support Document for the Clear Skies Act 2003: Air Quality Modeling Analyses, Office of Air Quality Planning and Standards, Research Triangle Park, NC. Available at http://www.epa.gov/clearskies/aq_modeling_tsd_csa2003.pdf

EPA, 2004: Air Quality Data Analysis Technical Support Document for the Proposed Interstate Air Quality Rule, Office of Air Quality Planning and Standards, Research Triangle Park, NC.

Grell, G., J. Dudhia, and D. Stauffer, 1994: A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), *NCAR/TN-398+STR*., 138 pp, National Center for Atmospheric Research, Boulder CO.

Griffin, R.J., D.R. Cocker III, R.C. Flagan, and J.H. Seinfeld, 1999: "Organic aerosol formation from the oxidation of biogenic hydrocarbons" *J. Geophysical Research*, Vol. 104, pp. 3555-3567.

Houyoux, M.; Vukovich, J.; Brandmeyer, J. *Sparse Matrix Operator Kernal Emissions Modeling System (SMOKE) User Manual*, Version 1.1.2 Draft, MCNC-North Carolina Supercomputing Center Environmental Programs, 2000. (Updates at http://www.cmascenter.org/modelclear.html#smoke)

IMPROVE, 2000. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report III. Cooperative Institute for Research in the Atmosphere, ISSN: 0737-5352-47.

ICF Kaiser, 2002: User's Guide to the Regional Modeling System for Aerosols and Deposition (REMSAD) Version 7, San Rafael, CA.

Kim, Y.P., J.H. Seinfeld, and P. Saxena, 1993. "Atmospheric Gas-Aerosol Equilibrium I. Thermodynamic Model." *Aerosol Science and Technology*, Vol. 19, pp. 157-181.

Lagouvardos, K., G. Kallos, V. Kotroni, and S.T. Rao, 2000: "An Analysis of the Meteorological and Air Quality Conditions during an Extreme Ozone Episode over the Northeastern USA." *Int. J. Environment and Pollution*, Vol. 14, Nos. 1-6, pp. 581-587.

Mansell, G., 2000: User's Instructions for the Phase 2 REMSAD Preprocessors, Environ International, Novato, CA.

NCAR Fields Manual. Home page of the Geophysical Statistic Project. URL address located: http://www.cgd.ucar.edu/stats/Software/Fields/MAN.shtml.

Odum, J.R., T.P.W. Jungkamp, R.J. Griffin, R.C. Flagan, and J.H. Seinfeld, 1997: "The Atmospheric Aerosol-Forming Potential of Whole Gasoline Vapor." *Science*, Vol. 276, pp. 96-99.

Olerud, D., K. Alapaty, and N. Wheeler, 2000: Meteorological Modeling of 1996 for the United States with MM5. MCNC-Environmental Programs, Research Triangle Park, NC.

Pielke, R.A., W.R. Cotton, R.L. Walko, C.J. Tremback, W.A. Lyons, L.D. Grasso, M.E.

Nicholls, M.D. Moran, D.A. Wesley, T.J. Lee, and J.H. Copeland, 1992: A Comprehensive Meteorological Modeling System - RAMS, *Meteor. Atmos. Phys.*, Vol. 49, pp. 69-91.

RTI, Analysis of Speciation Network Carbon Blank Data. Draft Report submitted to EPA, August 30, 2002 under Work Assignment 4-05 for contract 68-D-032, Research Triangle Institute.

SAIC, 2001: "Interpolating Relative Humidity Weighting Factors to Calculate Visibility Impairment and the Effects of Improve Monitor Outliers" EPA Contract No. 68-D-98-113. http://vista.cira.colostate.edu/improve/Publications/GuidanceDocs/DraftReportSept20.pdf

Saxena, P., A.B. Hudischewskyj, C. Seigneur, and J.H. Seinfeld, 1986: "A Comparative Study of Equilibrium Approaches to the Chemical Characterization of Secondary Aerosols." *Atmospheric Environment*, Vol. 20, pp. 1471-1483.

Seigneur, C., G. Hidy, I. Tombach, J. Vimont, P. Amar, 1999: "Scientific Peer-Review of the Regulatory Modeling System for Aerosols and Deposition (REMSAD)." The KEVRIC Company, Inc., Durham, NC.

Wesley, M.L., 1989: "Parameterization of Surface Resistances to Gaseous Dry Deposition in Regional-Scale Numerical Models" Atmospheric Environment, Vol. 23, No 6, pp. 1293-1304.

Whitten, Gary Z., 1999: Computer Efficient Photochemistry for Simultaneous Modeling of Smog and Secondary Particulate Precursors, Systems Application International, San Rafael, CA.

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix A

Emissions Summary
	Table 1. 1996 to 2001 Adjustment Ratios for EGU Sector									
FIPS	State	VOC	NOX	CO	SO2	PM-coarse	PM2_5	NH3		
01	Alabama	2.0945	0.7681	1.1934	0.7969	0.8595	0.9529	1.0436		
04	Arizona	1.3613	1.3129	1.3961	0.6095	0.5264	0.6819	4.0316		
05	Arkansas	0.7825	0.9404	0.5202	0.8248	0.8655	0.7512	0.8460		
06	California	1.6865	1.3923	2.4643	1.0738	2.8898	1.7167	7.3337		
08	Colorado	1.4226	0.9013	1.2024	1.0024	0.7279	0.6510	1.4924		
09	Connecticut	1.1894	0.9765	1.6837	0.9366	4.0814	2.3472	0.9930		
10	Delaware	0.9918	0.6944	1.0597	0.8404	0.8406	0.7182	0.9574		
11	DC	1.1666	1.8784	1.2121	1.0117	1.2383	1.2122	1.2692		
12	Florida	1.3012	1.0128	1.3290	0.8771	1.0521	0.9264	1.3229		
13	Georgia	1.0956	0.9934	1.1147	1.0328	1.1189	1.1291	1.4102		
16	Idaho	1.0000	4.4955	1.0000	4.3333	1.0000	1.0000	1.0000		
17	Illinois	1.3303	0.6952	1.3984	0.5023	0.9420	0.9096	1.0347		
18	Indiana	1.2160	0.8405	1.1252	0.8521	1.0061	1.0316	11.7019		
19	Iowa	1.4793	1.0019	1.2398	0.8813	0.8670	0.9725	1.3102		
20	Kansas	0.7806	0.9094	1.1991	1.0276	0.9523	1.0961	1.4990		
21	Kentucky	1.1045	0.6294	1.0966	0.8337	0.6247	0.6187	1.0824		
22	Louisiana	1.2568	1.0345	1.2482	1.1145	0.5666	1.5345	1.3203		
23	Maine	14.2874	1.7712	32.0844	1.2063	1.3772	1.1463	1.7137		
24	Maryland	1.1110	0.6790	0.9630	1.0031	0.8429	0.7690	1.7242		
25	Massachusetts	0.9275	0.9876	0.7850	0.9846	1.0107	1.0057	1.1115		
26	Michigan	1.0462	0.7862	1.0577	0.9271	0.9150	0.9218	2.2040		
27	Minnesota	1.5712	0.9240	1.2561	1.0802	0.7451	0.9564	0.9518		
28	Mississippi	3.4328	1.2552	2.3265	1.2550	1.2216	3.6208	1.8421		
29	Missouri	1.2171	0.7866	1.2667	0.6590	0.9751	1.1990	1.1486		
30	Montana	1.3587	1.5482	1.3393	1.4233	1.4576	1.4746	1.9565		
31	Nebraska	1.3671	1.0020	1.5316	1.0726	1.4117	1.2847	1.6633		
32	Nevada	1.3512	0.7309	1.2092	1.0276	0.4602	0.5897	1.4032		
33	New Hampshire	1.2334	0.4080	3.2519	0.9537	1.2403	1.4975	0.5677		
34	New Jersey	0.8673	0.9647	0.9575	1.1145	1.4005	1.1526	1.6309		
35	New Mexico	1.0206	1.0315	0.9533	0.7943	0.9587	1.0431	1.1756		
36	New York	1.2013	1.0838	1.1562	1.0434	1.0883	1.2421	2.3763		
37	North Carolina	1.2398	0.5313	1.4623	0.9668	0.6209	0.6342	1.4202		
38	North Dakota	1.0464	0.7430	0.7585	0.8744	1.1621	0.9900	0.8977		
39	Ohio	0.9924	0.5990	1.0266	0.7610	1.0138	1.0206	2.4965		
40	Oklahoma	1.0905	0.9463	1.1384	0.9517	1.0056	0.9837	0.9736		
41	Oregon	2.7528	2.5515	2.4914	3.2359	3.2808	1.7384	3.4427		
42	Pennsylvania	1.1263	0.7977	1.3806	0.9321	0.3768	0.4114	1.2189		
44	Rhode Island	5.7597	0.7888	37.1047	0.5263	1.0000	1.0000	1.0000		
45	South Carolina	1.2868	0.7422	2.3359	1.0050	0.7064	0.7648	1.8615		
46	South Dakota	3.5138	1.0131	1.9764	0.9704	3.8807	2.1509	1.1248		
47	Tennessee	1.0430	0.6030	1.0546	0.6968	0.1049	0.4203	1.0864		
48	Texas	0.9678	0.7840	0.8039	0.8134	1.1211	0.8143	0.9183		
49	Utah	1.2401	0.9868	1.2064	0.8844	0.5453	0.6310	3.2197		
50	Vermont	0.8178	1.1201	5.6593	2.0400	0.6224	0.8198	12.7125		
51	Virginia	1.6943	0.7934	2.1968	1.1288	0.7839	0.9162	5.1739		
53	Washington	1.4558	0.8584	2.5344	0.8549	0.9737	1.0384	1.4307		
54	West Virginia	0.9693	0.6890	0.9683	0.7566	0.9728	0.7952	1.0238		
55	Wisconsin	1.1978	0.9573	1.2889	0.9176	0.8599	1.1143	1.3196		
56	Wyoming	0.9763	0.8176	1.0194	0.8735	0.5601	0.7204	1.0506		

	Table	2. 1996 to	2001 Adj	justment	Ratios for	On-road	Sector	
FIPS	State	VOC	NOX	CO	SO2	PM-coarse	PM2_5	NH3
01	Alabama	0.7921	0.9455	0.9426	0.9799	0.9421	0.7064	1.1782
04	Arizona	0.8660	1.0318	1.0214	1.0388	1.0229	0.7686	1.2647
05	Arkansas	0.7667	0.8962	0.8963	0.8812	0.8830	0.6488	1.1260
06	California	0.7416	0.9204	1.0026	0.5488	0.9669	0.6912	1.1723
08	Colorado	0.8154	1.0213	0.9620	1.0486	0.9924	0.7418	1.2387
09	Connecticut	0.7150	0.8973	0.9489	0.6109	0.9550	0.6885	1.1697
10	Delaware	0.7211	0.8890	0.8945	0.5618	0.9307	0.6682	1.1505
11	DC	0.7098	0.8526	0.8479	0.5638	0.9389	0.6826	1.1255
12	Florida	0.8953	1.0240	1.0343	1.0738	1.0183	0.7710	1.2524
13	Georgia	0.8298	1.0239	1.0084	1.0723	1.0227	0.7773	1.2605
16	Idaho	0.7623	0.8834	0.9239	0.8737	0.8771	0.6426	1.1229
17	Illinois	0.7498	0.8955	0.9216	0.7417	0.9269	0.6825	1.1378
18	Indiana	0.7669	0.9042	0.9112	0.8881	0.9133	0.6756	1.1476
19	lowa	0.7649	0.9227	0.8885	0.9143	0.9289	0.6875	1,1753
20	Kansas	0.7932	0.9219	0.9140	0.9807	0.9231	0.6875	1,1637
21	Kentucky	0 7819	0.9379	0.9388	0.8669	0.9399	0.6952	1 1782
22	Louisiana	0 7660	0.9250	0.9246	0.9267	0.9146	0.6800	1 1500
23	Maine	0.8104	0.9358	1 0091	0.9751	0.9328	0 6934	1 1890
24	Maryland	0 7257	0.9071	0 8797	0.6208	0.9487	0.6885	1 1618
25	Massachusetts	0.6854	0.8681	0.8712	0.5968	0.9283	0.6713	1 1301
26	Michigan	0 7759	0.9279	0.9063	0.9851	0.9360	0 7046	1 1607
27	Minnesota	0 8794	1 0129	1 0523	1 0043	1 0157	0 7561	1 2678
28	Mississippi	0.8498	0.9955	1 0044	0.9816	0.9853	0 7316	1 2477
29	Missouri	0 7758	0.9360	0.9442	0.8585	0.9460	0 7012	1 1750
30	Montana	0.7165	0.8800	0.8455	0.8827	0.8833	0.6557	1,1235
31	Nebraska	0.7840	0.9446	0.9189	0.9706	0.9480	0.7076	1.1942
32	Nevada	0.9011	1.0912	1.0166	1.0844	1.0667	0.7880	1.3366
33	New Hampshire	0.7663	0.9189	0.9491	0.8093	0.9324	0.6841	1,1733
34	New Jersev	0 7978	0.9189	1 0095	0.5730	0.9489	0.6836	1 1562
35	New Mexico	0.7579	0.9313	0.9130	0.9029	0.9015	0.6722	1,1351
36	New York	0.7352	0.9139	0.9565	0.7961	0.9502	0.7047	1,1627
37	North Carolina	0.8378	0.9672	0.9896	1 0177	0.9697	0 7247	1 2159
38	North Dakota	0 7138	0.8911	0.8432	0 8847	0.9014	0.6650	1 1503
39	Ohio	0 7173	0.8779	0.8560	0 8964	0.8893	0.6676	1 1000
40	Oklahoma	0.8252	0.9677	0.9687	0.9885	0.9588	0 7203	1 1936
41	Oregon	0.8475	0.9925	1.0541	0.9960	0.9941	0.7465	1,2366
42	Pennsylvania	0 7216	0.8973	0.8938	0.8358	0.9132	0.6778	1 1338
44	Rhode Island	0.8221	0.9877	1 0529	0.6615	1 0345	0 7502	1 2544
45	South Carolina	0.8351	0.9873	0.9816	1 0239	0.9750	0 7296	1 2287
46	South Dakota	0 7248	0.9033	0.8532	0 8917	0.9091	0.6698	1 1626
47	Tennessee	0.8238	0.9739	0.9773	1 0069	0.9688	0 7284	1 2051
48	Texas	0.8054	1 0203	0.9450	0.9160	1 0353	0.7720	1 2693
49	Utah	0.8311	1 0171	0.9663	1 0568	1 0006	0 7546	1 2393
50	Vermont	0 7473	0.8897	0.0000	0.8857	0 9016	0.6657	1 1473
51	Virginia	0.7885	0.8964	0.9465	0.8587	0.9006	0.6657	1 1249
53	Washington	0 7781	0.9445	1 0120	0.9335	0.9361	0 7003	1 1558
54	West Virginia	0 7935	0 9268	0 9375	0 9205	0.0001	0.6800	1 1682
55	Wisconsin	0.7000	0.0200	0.007.0	0.8263	0.0100	0.0000	1 1628
56	Wyoming	0.7-00	0.0110	0.0309	0.0200	0.0201	0.6874	1 1817
	yonning	0.1750	0.00-0	0.3210	0.000	0.0200	0.0074	1.1017

	Table 3. 1996 to 2001 Adjustment Ratios for Non-road Sector									
FIPS	State	VOC	NOX	CO	SO2	PM-coarse	PM2_5	NH3		
01	Alabama	0.9292	0.9691	1.0168	1.0317	0.9431	0.9293	1.1155		
04	Arizona	0.8653	1.0032	1.0109	1.0871	0.9564	0.9495	1.1309		
05	Arkansas	0.9601	0.9729	1.0126	1.0524	0.9001	0.9022	1.0235		
06	California	0.8583	1.0381	1.0142	1.0299	0.9448	0.9443	1.1219		
08	Colorado	0.8731	1.0020	1.0134	1.1052	0.9320	0.9200	1.0590		
09	Connecticut	0.8701	1.0457	1.0121	1.1156	0.9540	0.9558	1.1423		
10	Delaware	0.8935	0.9633	1.0054	1.0225	0.9382	0.9314	1.1113		
11	DC	0.8376	1.0263	0.9958	1.1578	0.9232	0.9268	1.1369		
12	Florida	0.8799	1.0358	1.0143	1.1087	0.9622	0.9620	1.1448		
13	Georgia	0.8817	1.0058	1.0160	1.0885	0.9403	0.9363	1.1283		
16	Idaho	0.9581	0.9747	1.0168	1.0729	0.9019	0.8993	0.9785		
17	Illinois	0.8677	0.9941	1.0131	1.0628	0.9177	0.9117	1.0618		
18	Indiana	0.8754	0.9709	1.0085	1.0427	0.9032	0.9003	1.0661		
19	Iowa	0.8925	0.9857	1.0073	1.1038	0.8822	0.8793	0.9174		
20	Kansas	0.8617	0.9784	1.0059	1.0911	0.8829	0.8783	0.9295		
21	Kentucky	0.9247	0.9718	1.0125	1.0332	0.9334	0.9295	1.0800		
22	Louisiana	0.9315	0.9369	1.0094	0.9908	0.9228	0.9213	1.0380		
23	Maine	0.9669	0.9599	1.0148	1.0434	0.9323	0.9295	1.1165		
24	Maryland	0.8708	1.0024	1.0110	1.0427	0.9400	0.9407	1.1242		
25	Massachusetts	0.8655	1.0124	1.0073	1.1220	0.9429	0.9348	1.1470		
26	Michigan	0.9333	0.9825	1.0124	1.0376	0.9396	0.9351	1.1092		
27	Minnesota	0.9474	0.9792	1.0114	1.0629	0.9115	0.9103	1.0072		
28	Mississippi	0.9559	0.9569	1.0132	1.0218	0.9171	0.9139	1.0578		
29	Missouri	0.9001	0.9831	1.0137	1.0553	0.9199	0.9168	1.0464		
30	Montana	0.9467	0.9588	1.0115	1.0258	0.8956	0.8899	0.8104		
31	Nebraska	0.8837	0.9668	1.0062	1.0533	0.8863	0.8821	0.8616		
32	Nevada	0.8676	0.9947	1.0056	1.1029	0.9385	0.9333	1.1374		
33	New Hampshire	0.9382	1.0759	1.0154	1.1534	0.9582	0.9636	1.1422		
34	New Jersey	0.8685	1.0525	1.0173	1.1165	0.9597	0.9604	1.1498		
35	New Mexico	0.8963	0.9638	1.0119	1.0166	0.9371	0.9308	1.0637		
36	New York	0.8909	1.0073	1.0214	1.0724	0.9427	0.9423	1.1413		
37	North Carolina	0.8850	1.0076	1.0116	1.0917	0.9317	0.9264	1.1207		
38	North Dakota	0.9015	0.9754	0.9979	1.1070	0.8647	0.8631	0.6901		
39	Ohio	0.8785	0.9935	1.0110	1.0655	0.9361	0.9300	1.0997		
40	Oklahoma	0.8934	0.9850	1.0118	1.0836	0.9034	0.8982	1.0116		
41	Oregon	0.9125	1.0457	1.0159	1.1528	0.9537	0.9540	1.1035		
42	Pennsylvania	0.8877	1.0295	1.0141	1.1004	0.9568	0.9541	1.1251		
44	Rhode Island	0.8622	1.0748	1.0166	1.1242	0.9748	0.9707	1.1415		
45	South Carolina	0.8945	1.0658	1.0114	1.1901	0.9770	0.9678	1.1215		
46	South Dakota	0.9097	0.9904	1.0034	1.1430	0.8640	0.8615	0.7545		
47	Tennessee	0.9116	0.9894	1.0136	1.0558	0.9378	0.9327	1.1084		
48	Texas	0.8641	1.0222	1.0136	1.1053	0.9555	0.9504	1.0514		
49	Utah	0.9300	0.9833	1.0063	1.1129	0.9241	0.9203	1.0980		
50	Vermont	0.9513	1.0456	1.0151	1.1495	0.9398	0.9390	1.1075		
51	Virginia	0.8715	0.9221	1.0086	0.9495	0.9179	0.9023	1.1177		
53	Washington	0.8970	0.9501	1.0137	1.0128	0.9170	0.9105	1.1027		
54	West Virginia	1.0198	1.2908	1.0381	1.4083	1.1704	1.1798	1.1019		
55	Wisconsin	0.9376	1.0042	1.0122	1.0909	0.9275	0.9224	1.0743		
56	Wyomina	0.9638	0.9543	1.0133	1.0050	0.9204	0.9137	0.9932		
	ر و					5.0201	5.0.01			

	Table 4. 2001 Proxy Inventory for EGU Sector (Annual Tons)										
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3			
01	Alabama	2,084	168,221	9,629	466,155	8,385	4,161	16			
04	Arizona	885	97,966	7,482	73,361	5,418	2,842	98			
05	Arkansas	441	47,557	2,314	78,708	1,289	847	51			
06	California	3,757	25,318	34,892	2,152	1,395	1,292	3,608			
08	Colorado	888	75,288	9,431	92,963	1,530	844	24			
09	Connecticut	404	11,196	2,176	34,147	1,270	756	152			
10	Delaware	136	10,915	1,032	35,431	414	213	40			
11	DC	9	348	31	934	45	43	5			
12	Florida	3,672	299,320	27,833	569,980	9,119	5,739	1,197			
13	Georgia	973	162,672	8,204	490,399	8,582	4,042	23			
16	Idaho	0	0	0	0	0	0	0			
17	Illinois	2,433	203,139	16,467	371,106	5,719	3,170	78			
18	Indiana	2,144	310,458	15,759	802,556	11,765	6,431	325			
19	Iowa	847	81,129	6.428	139,735	3.064	1.845	15			
20	Kansas	907	87,177	7,034	120,358	2,349	1,550	60			
21	Kentucky	1,420	231,062	13,427	536,744	11,207	5,053	16			
22	Louisiana	1.709	80.365	14.625	112.806	3.550	2.882	794			
23	Maine	491	2,105	3.821	6.818	84	73	32			
24	Marvland	551	71,741	3.216	253.060	2.205	1.041	92			
25	Massachusetts	721	34,945	3.785	103.451	1.534	963	267			
26	Michigan	1.339	144,125	10.568	351.578	5.586	3.211	87			
27	Minnesota	1.014	83,896	6.256	94.327	3,799	2.086	13			
28	Mississippi	1,401	57,881	8.228	138,563	2,689	2.171	222			
29	Missouri	1.577	147.125	10.896	240.199	3.526	2.460				
30	Montana	349	39,553	2,743	24,402	6,030	3,023	6			
31	Nebraska	468	48,868	4,110	70,541	1,424	958	9			
32	Nevada	612	44,186	3,579	54,701	2,464	1,259	66			
33	New Hampshire	152	6,831	2,049	48,137	331	244	15			
34	New Jersey	3,597	66,513	18,767	68,210	7,493	7,213	32			
35	New Mexico	578	83,864	4,332	62,355	8,874	4,186	59			
36	New York	2,121	83,487	9,272	255,982	3,849	2,731	1,259			
37	North Carolina	985	130,946	10,323	415,113	7,161	3,299	16			
38	North Dakota	860	79,188	7,268	155,308	3,813	2,067	8			
39	Ohio	1,657	336,761	14,008	1,145,322	15,143	6,950	61			
40	Oklahoma	1,183	83,476	11,532	101,444	2,309	1,602	191			
41	Oregon	137	24,683	1,641	28,316	395	283	1			
42	Pennsylvania	1,556	203,131	14,968	945,019	10,911	5,330	119			
44	Rhode Island	68	118	1,381	0	0	0	0			
45	South Carolina	478	82,157	7,321	202,573	6,269	2,779	10			
46	South Dakota	271	17,849	723	14,363	139	81	1			
47	Tennessee	1,081	157,993	7,323	375,899	8,856	7,270	10			
48	Texas	7,110	333,280	67,832	542,067	19,966	13,071	1,511			
49	Utah	545	71,518	4,257	28,335	2,213	1,052	25			
50	Vermont	44	1,125	987	109	45	43	1			
51	Virginia	864	81,841	7,666	217,847	3,617	1,937	126			
53	Washington	247	18,863	3,689	67,027	1,921	1,346	3			
54	West Virginia	1,008	204,344	8,050	497,988	8,336	3,739	16			
55	Wisconsin	928	102,564	8,070	190,060	3,316	2,212	15			
56	Wyoming	784	87,879	6,506	87,906	4,643	2,979	9			
	Total	57,485	4,824,967	451,932	10,714,558	224,044	129,369	10,803			

FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3
01	Alabama	80.573	92 760	201 009	120 101	37 338	22 005	3 778
04	Arizona	18 674	92 129	21 293	104 999	29 821	16 264	5
05	Arkansas	13 492	22 446	104 432	16 953	30,709	18 147	15 767
06	California	73 353	131 142	84 548	42 289	30,602	17 268	15 218
08	Colorado	37 403	47 126	29 186	14 689	20 649	12 432	278
00	Connecticut	6 947	10 887	2 831	7 586	1 120	844	59
10	Delaware	7 058	10,307	15 271	40 499	1,120	839	668
11	Delaware	7,000	809	250	2 235	1,170	72	10
12	Elorida	243	55 868	54 511	86 525	15 870	10 533	7 153
12	Georgia	40.220	65 153	171 012	85.644	20 481	20 604	15 114
10	Idaba	40,220	6 4 1 9	171,012	24 057	12 129	20,004	10,114
10	Illinois	427	122 107	4,009	24,907	97 262	1,731	10 150
10	Indiana	149,200	52 975	222 002	201,232	15 629	40,092	12,100
10	Inularia	41,041	55,675	233,903	145,365	15,626	12,335	0,094
19	Iowa	8,897	25,759	0,957	84,608	8,095	4,483	0,401
20	Kansas	22,298	102,792	79,014	14,701	12,801	8,802	13,083
21	Кепциску	01,734	34,908	00,523	40,369	16,560	10,650	1,205
22	Louisiana	112,092	280,691	/36,/3/	1/2,/82	34,625	25,928	66,094
23	Maine	5,108	15,124	10,220	22,379	5,220	3,437	132
24	Maryland	7,493	21,665	44,471	22,879	4,000	2,349	311
25	Massachusetts	7,622	18,656	7,547	15,795	3,543	2,569	89
26	Michigan	82,758	159,031	125,560	130,191	22,522	12,818	502
27	Minnesota	35,312	78,404	86,078	40,256	82,519	36,493	1,114
28	Mississippi	55,415	68,081	109,202	69,182	14,095	10,101	26,768
29	Missouri	57,813	28,190	102,988	121,869	49,152	18,367	23,645
30	Montana	6,639	18,323	49,602	30,902	11,681	6,285	459
31	Nebraska	10,865	13,368	11,907	6,810	8,561	3,327	14
32	Nevada	1,438	5,064	11,898	2,924	13,020	4,556	8
33	New Hampshire	5,144	4,049	6,059	8,066	1,340	839	23
34	New Jersey	85,237	48,657	20,754	71,990	11,017	7,651	497
35	New Mexico	11,224	70,418	21,847	106,197	7,836	5,932	35
36	New York	54,443	41,428	30,814	188,988	49,686	34,209	225
37	North Carolina	78,423	66,906	77,927	90,282	21,250	14,930	113
38	North Dakota	261	7,499	3,614	62,497	1,418	1,263	13
39	Ohio	70,331	83,068	685,198	354,237	39,673	26,678	2,756
40	Oklahoma	48,837	120,822	221,112	36,790	10,161	6,246	17,616
41	Oregon	13,433	16,493	77,785	6,496	10,483	7,684	15
42	Pennsylvania	64,364	190,652	379,584	143,330	39,804	26,123	6,224
44	Rhode Island	4,909	871	1,716	2,578	1,240	912	8
45	South Carolina	40,208	45,743	65,518	58,738	8,134	5,937	55
46	South Dakota	1,516	4,518	0	1,308	857	448	1
47	Tennessee	108,302	88,697	102,384	135,863	18,367	10,738	80
48	Texas	243,265	505,461	404,608	303,841	37,478	25,726	1,318
49	Utah	18,849	28,769	117,815	27,835	21,530	17,629	1,218
50	Vermont	1,555	765	1,452	2,050	993	615	3
51	Virginia	55,898	70,598	65,376	111,065	16,083	10,187	746
53	Washington	18,682	41,059	177,380	46,629	10,818	7,308	5,049
54	West Virginia	23,097	52,440	110,439	64,213	11,661	7,339	409
55	Wisconsin	52,047	51,745	60,878	87,850	15,243	10,855	897
56	Wyoming	18,537	47,994	73,459	56,385	29,758	17,471	458
	Total	1.985.624	3.180.835	5.196.881	3.696.048	963.181	581.654	258.025

Table 6. 2001 Prox	y Inventor	y for On-road	Sector	(Annual	Tons)
--------------------	------------	---------------	--------	---------	-------

FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3
01	Alabama	9 0 0 0 0 F 7	101 356	1 255 115	6 311	1 026	3 631	5 562
04	Arizona	65 225	150 0/6	7/12 126	5 3 3 5	4,500 1 122	3,031	1 200
05	Arkansas	13 201	107 0//	587 136	3,000	2 6/1	1 057	2 856
06	California	504 308	741 570	4 917 346	18 346	2,0+1	16 412	30 442
08	Colorado	57 520	142 004	782 750	10,040	25,104	2 505	1 124
00	Connecticut	20,000 20 122	08 070	503 159	2 NR1	2,240	2,595	3 065
10	Delaware	10,403	27 642	123 413	2,001 520	2,302	522	3,005 816
11	DC	4 485	21,042 2 200	54 361	529 214	244	170	352
12	Florida	267 721	481 541	3 330 510	16 035	12 3/0	R 051	15 152
13	Georgia	162 666	354 467	2 234 620	11 820	0 052	6 648	10 372
16	Idaho	20 070	<u>4</u> 0 766	304 002	1 451	1 210	0,0 - 0 Q01	1 325
17	Illinois	136 417	313 673	1 830 288	9,624	7 703	5 495	10 225
18	Indiana	111 670	213,073	1 617 507	0,024 7 375	6 101	0,490 1 101	6 070
10	lowa	111,079	110 104	672 726	2 1/5	0,121 2 604	1 000	0,810 2 2 2 2
20	Kansas	40,407	10,104	610 175	3, 143 2 210	2,004	1,990	2,003
21	Kentucky	67 842	168 2/6	013,413	J,Z 10	∠,400 / 129	1,004 2 0/12	2,100
22		68 122	1/0 575	903,010	4,000	3 601	5,040 2 7/2	4,090
22	Maine	20 205	53 102	211 775	+,440 1 615	1 221	2,142 001	1 2 2 2
20	Maryland	20,290 ⊿R 129	127 8/12	600 022	3 120	3 624	904 2 565	1,000
25	Massachusette	56 206	135 7/1	722 620	3,429 3 165	3,034	2,000	5 270
26	Michigan	137 830	208 757	2 046 372	10 830	7 211	2,421 5 636	0.683
27	Minnesota	84 020	101 2/0	1 063 057	5 522	4 540	2,030	5 1 9,003
28	Mississinni	5/ 007	127 807	727 002	3,302	2 261	0,009 0 101	3,107
20	Missouri	76 320	210 112	1 121 261	5,0 4 7 6 /20	5 2201	2,421 2 866	6 622
30	Montana	1/ /00	210,112	212 829	1 NRE	0,00	3,000 709	0,022
31	Nehraska	27 /21	66 127	£13,020	2 006	1 6/12	1 212	1 770
32	Nevada	20 512	50,437	316 200	1 806	1 450	1 061	1 751
33	New Hampshire	17 581	43 07/	246 304	1 120	1 065	785	1 180
34	New Jersey	81 706	181 109	038 311	4 202	4 581	2 182	6 730
35	New Mexico	37 571	84 822	523 730	2 480	2 083	1 545	2 230
36	New York	155 161	356 584	2 155 370	11 236	2,000 9 163	6 400	12 832
37	North Carolina	104 114	258,350	1 421 369	9 849	6 736	4 837	8 821
38	North Dakota	11 308	28 534	167 804	775	681	-,007 508	703
39	Ohio	157 237	351 502	2 226 531	11 390	8 908	6 502	10 486
40	Oklahoma	67 750	151 575	967 480	4 860	3 831	2 817	4 330
41	Oregon	47 206	126.382	615 341	3 799	3 114	2 299	3 445
42	Pennsylvania	148 739	345 513	1.982.662	9 888	8 730	6 433	10 106
44	Rhode Island	13 196	25 718	166 301	560	621	<u></u>	837
45	South Carolina	72 321	166 086	971 279	5 192	4 157	3 086	4 460
46	South Dakota	12,321	34 152	184 761	910	805	602	4, 1 00 823
47	Tennessee	101 361	229 694	1 411 463	7 331	5 695	4 183	6 488
48	Texas	292 834	704 713	3 405 481	20 436	19 312	14 295	21 839
49	Utah	39 742	79 109	562 108	2 551	1 920	1 406	2 240
50	Vermont	10 829	26 182	164 165	728	628	467	665
51	Virginia	99 235	246 828	1.347 176	7 572	6 448	4 741	7 395
53	Washington	79 260	184 161	1.070.697	5 649	4 395	3 195	5 297
54	West Virginia	28 180	73 972	411 936	2 106	1 798	1 340	1 878
55	Wisconsin	69 708	191 803	1 015 476	5 429	5 085	3 753	5 630
56	Wyoming	12 049	32 946	187 636	913	767	573	790
		12,073	52,540	107,000	515	101	515	100
	Total	3,948,588	8,694,038	51,089,610	261,526	225,193	163.798	270.740

EIDE	State	VOC	NOv	60	802	DM 10	DM 2.5	
	State	VUC	NUX	004 404	302	PIVI-10	FIVI-2.3	INFIS
01	Alabama	49,843	64,704	384,401	6,271	6,415	5,426	641
04	Arizona	49,263	51,488	516,299	4,207	8,060	5,038	497
05	Arkansas	30,576	41,132	235,198	3,940	4,174	3,776	426
06	California	253,515	438,815	2,747,237	13,734	26,413	23,456	4,532
80	Colorado	41,018	68,051	418,847	5,344	5,722	4,817	720
09	Connecticut	29,589	21,401	302,235	2,125	2,292	2,096	468
10	Delaware	10,349	17,079	82,028	1,372	1,345	1,210	96
11	DC	2,173	5,990	19,165	396	2//	246	69
12	Florida	208,411	166,054	1,795,514	26,118	21,351	18,432	1,682
13	Georgia	70,317	79,983	728,751	9,392	8,031	7,091	1,196
16	Idaho	21,578	20,394	149,004	1,869	2,795	2,111	187
17	Illinois	102,314	176,679	1,053,290	13,858	13,599	12,380	1,970
18	Indiana	50,657	108,974	569,186	10,011	7,986	7,280	1,103
19	Iowa	35,447	69,050	329,620	7,523	7,788	7,129	591
20	Kansas	26,047	96,062	285,058	9,694	7,768	7,002	612
21	Kentucky	37,055	80,563	305,463	18,042	5,993	5,333	570
22	Louisiana	59,991	202,756	403,665	31,907	11,551	10,467	1,541
23	Maine	26,934	10,722	146,963	1,192	1,479	1,329	138
24	Maryland	49,250	43,271	481,748	12,020	4,666	4,147	494
25	Massachusetts	53,835	83,928	544,236	8,099	6,810	6,194	929
26	Michigan	141,309	75,516	1,016,464	6,835	9,160	8,337	1,535
27	Minnesota	99,352	75,615	578,010	7,845	9,473	8,678	891
28	Mississippi	33,202	49,193	226,986	5,452	4,810	4,192	395
29	Missouri	55,302	73,101	504,459	6,683	7,261	6,540	885
30	Montana	13,426	39,733	99,677	2,869	3,174	2,813	158
31	Nebraska	19,307	67,930	195,153	6,660	5,812	5,293	341
32	Nevada	19,029	29,938	178,300	2,592	3,213	2,421	172
33	New Hampshire	18,797	7,943	130,522	785	1,156	1,009	169
34	New Jersey	72,143	99,953	735,916	69,747	9,796	8,933	1,186
35	New Mexico	13,768	11,905	128,337	1,192	2,176	1,654	198
36	New York	135,077	107,083	1,287,956	11,061	11,727	10,556	2,084
37	North Carolina	74,100	74,746	744,771	7,285	9,049	7,784	1,334
38	North Dakota	14,378	49,288	111,394	5,433	5,586	5,059	196
39	Ohio	107,455	139,873	1,102,599	16,300	17,243	14,367	1,887
40	Oklahoma	33,152	47,907	305,507	4,872	5,170	4,554	823
41	Oregon	42,483	67,131	359,989	5,146	4,246	3,881	504
42	Pennsylvania	96,413	99,336	985,292	12,070	8,727	7,813	1,634
44	Rhode Island	6,994	6,864	80,475	3,779	698	638	120
45	South Carolina	41,617	39,206	379,582	4,630	4,064	3,630	546
46	South Dakota	12,046	29,095	96,483	3,424	3,843	3,484	170
47	Tennessee	55,168	149,755	477,648	17,540	8,229	7,510	894
48	Texas	163,338	491,346	1,831,200	56,608	30,521	26,142	5,006
49	Utah	25,881	38,389	201,705	3,912	3,593	3,124	322
50	Vermont	9,312	4,766	62,366	474	598	535	77
51	Virginia	61,874	82,788	611,529	9,959	9,383	7,942	739
53	Washington	61,445	85,804	543,499	14,625	7,787	6,782	836
54	West Virginia	17,107	77,029	129,518	49,287	5,575	5,096	231
55	Wisconsin	80,529	63,844	569,468	5,469	6,673	6,036	<u>91</u> 9
56	Wyoming	9,537	27,106	61,747	1,553	1,478	1,278	160
	Total	2.741.704	4.059.278	25.234.462	531.203	354.734	311.039	42.879

	Table	8. 2001 Pi	roxy Inve	ntory for A	Area Secto	or (Annua	l Tons)	
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3
01	Alabama	156.928	66.927	547,935	52,248	194.840	80.885	80.092
04	Arizona	141.063	72,837	219,632	4.079	122,689	70,962	31,535
05	Arkansas	128,066	42,433	233 465	20,366	141,399	46,361	141,454
06	California	451,587	125,210	721 418	10,724	365,655	123,700	166,925
08	Colorado	123,489	55,752	79,398	4,552	144,770	35,401	97,929
09	Connecticut	85 850	10 601	129 781	531	37 799	7 030	5 357
10	Delaware	23 057	7 115	19 566	10 450	12 476	5 907	11 008
11	DC	9 477	2 033	870	6 029	1 573	611	983
12	Elorida	351 830	52 481	501 295	43 645	235 571	89 998	69 625
13	Georgia	262 571	72 717	1 139 960	6 571	349 662	155 621	82 562
16	Idabo	71 583	27 822	1,155,300	8 324	185 906	66 120	62,002
17	Illinois	202 488	125 113	84 547	37 260	248 897	57 565	130 7/0
10	Indiana	292,400	36 584	81 033	2 079	150,097	32 724	04 342
10	lowa	122 200	20,004	54 105	12,079	155,593	25 220	206 205
20	Kansas	120.074	70,000	91 009	2 294	217 100	47 607	230,303
20	Kantuaku	120,974	70,409	01,990	5,304	217,109	47,097	213,171
21	Kenlucky	140,700	101 024	164,388	02 697	120,002	30,130	66 540
22	Louisiana	123,090	101,234	151,015	93,007	139,903	30,072	00,040
23	Mandand	49,242	5,555	58,526	12,387	26,470	12,555	6,064
24	Maryland	67,466	16,652	92,986	815	61,053	14,317	23,992
25	Massachusetts	139,347	26,696	48,451	65,893	/1,51/	20,102	8,128
26	Michigan	292,289	121,040	174,268	34,249	148,878	48,123	61,016
27	Minnesota	187,817	24,178	100,651	5,932	233,041	53,342	186,179
28	Mississippi	144,824	54,080	389,556	78,950	149,265	60,216	65,945
29	Missouri	156,821	14,252	160,545	31,955	332,368	72,527	180,671
30	Montana	56,138	18,172	239,130	1,415	150,392	45,230	88,533
31	Nebraska	77,465	14,811	23,181	9,962	160,061	30,602	227,271
32	Nevada	37,930	7,539	14,057	3,637	38,129	9,103	14,815
33	New Hampshire	36,337	13,649	38,526	89,896	19,396	8,567	2,170
34	New Jersey	158,069	84,626	52,949	46,291	76,027	24,380	8,677
35	New Mexico	57,522	28,830	99,253	8,462	265,621	50,899	45,681
36	New York	357,680	108,956	156,257	136,978	191,008	61,562	54,759
37	North Carolina	367,929	36,056	786,318	33,098	168,657	79,942	158,947
38	North Dakota	57,186	19,519	14,250	59,452	100,334	19,926	87,818
39	Ohio	302,230	83,225	136,451	62,840	176,768	54,446	79,446
40	Oklahoma	102,999	31,221	69,593	5,201	252,911	50,579	186,990
41	Oregon	148,786	39,443	897,808	19,715	278,811	132,568	59,039
42	Pennsylvania	273,343	121,781	228,637	92,518	153,451	55,278	79,834
44	Rhode Island	20,324	3,185	6,246	4,801	7,582	2,623	1,091
45	South Carolina	155,638	24,801	303,014	14,765	119,894	47,430	27,600
46	South Dakota	39,619	7,183	26,981	20,903	109,024	23,323	128,208
47	Tennessee	252,289	50,799	268,451	45,530	123,923	53,156	78,194
48	Texas	563,395	40,784	322,518	9,014	857,360	177,511	454,360
49	Utah	63,761	20,626	37,317	11,828	63,460	15,507	30,345
50	Vermont	24,406	13,383	31,272	13,462	22,136	7,788	8,845
51	Virginia	213,685	45,048	373,847	9,388	146,335	30,034	66,400
53	Washington	166,279	21,779	248,796	3,532	121,003	50,183	46,611
54	West Virginia	61,474	22,148	83,522	11,458	46,182	18,010	15,735
55	Wisconsin	193,368	60,381	151,495	44,669	115,160	38,924	119,948
56	Wyoming	19,796	67,208	44,209	16,403	177,504	30,896	47,944
	Total	7.686.575	2.220.728	10.346.847	1.379.810	7.780.035	2.352.479	4.299.503

	Table 9. 2001 Proxy Inventory for All Sectors (Annual Tons)									
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3		
01	Alabama	380.395	583.967	2.398.089	651.086	251.915	116.107	90.095		
04	Arizona	275,120	474,366	1,507,841	191,981	170,120	98,120	37.023		
05	Arkansas	215.970	260.611	1.162.845	123,114	180.213	71.089	160.555		
06	California	1.286.520	1.462.055	8.505.442	87.245	447.250	182,129	220,725		
08	Colorado	260.328	389,121	1.319.611	122,250	176,217	56,089	103.085		
09	Connecticut	163.272	152,156	940,181	46,470	44,861	12,422	9,100		
10	Delaware	51,556	73.068	241.310	88.282	16,124	8.691	12.628		
11	DC	16.386	17,570	74.687	9,809	2.240	1,142	1,420		
12	Florida	854.529	1.055.264	5.709.673	743.202	294,260	133.652	94.810		
13	Georgia	536,746	734.992	4.282.547	603.836	404.814	194.007	109.267		
16	Idaho	114.567	104.400	913.142	36.602	202.057	76.863	63.756		
17	Illinois	682.907	951.800	3.104.135	692,100	363,180	124,302	164,179		
18	Indiana	429.975	754,446	2.518.378	967,405	201,494	63.261	110.842		
19	lowa	223,929	316,211	1,070,926	248,992	177,223	50,687	308,274		
20	Kansas	211,429	457,195	1,072,580	151,408	242,572	66,885	229,696		
21	Kentucky	308,758	588,465	1,453,618	656,321	140,377	62,221	94,873		
22	Louisiana	365,911	814,622	2,212,640	415,627	193,322	100,891	138,986		
23	Maine	102,069	86,908	531,305	44,392	34,573	18,377	7,750		
24	Maryland	172,888	291,171	1,223,353	292,204	75,558	24,419	29,873		
25	Massachusetts	257,730	299,965	1,326,658	196,704	86,893	32,255	14,692		
26	Michigan	655,525	798,470	3,373,233	533,683	193,956	78,124	72,823		
27	Minnesota	407,534	453,434	1,834,051	153,942	333,380	103,938	193,385		
28	Mississippi	289,749	357,132	1,471,065	295,994	174,121	79,102	96,802		
29	Missouri	347,893	472,780	1,910,149	407,134	397,636	103,760	211,842		
30	Montana	90,961	155,573	604,980	60,674	172,224	58,059	90,118		
31	Nebraska	135,587	211,414	650,798	95,979	177,501	41,398	229,407		
32	Nevada	88,522	145,952	524,033	65,750	58,286	18,400	16,811		
33	New Hampshire	78,010	76,445	423,460	148,013	23,289	11,444	3,556		
34	New Jersey	400,842	480,947	1,766,697	260,441	108,914	51,360	17,122		
35	New Mexico	120,664	279,839	777,500	180,685	286,590	64,216	48,202		
36	New York	704,481	697,539	3,639,669	604,245	265,433	115,547	71,159		
37	North Carolina	625,552	567,003	3,040,707	555,627	212,852	110,791	169,232		
38	North Dakota	84,083	184,028	304,421	283,465	111,832	28,824	88,738		
39	Ohio	638,909	994,519	4,164,787	1,590,091	257,735	108,942	94,635		
40	Oklahoma	253,931	435,001	1,575,225	153,176	274,383	65,798	209,951		
41	Oregon	252,045	274,132	1,952,563	63,471	297,050	146,714	63,006		
42	Pennsylvania	584,415	960,412	3,591,144	1,202,826	221,623	100,978	97,918		
44	Rhode Island	45,490	36,756	256,208	11,718	10,141	4,612	2,056		
45	South Carolina	310,262	357,994	1,726,715	285,898	142,518	62,861	32,671		
46	South Dakota	65,850	92,796	308,948	40,908	114,669	27,939	129,203		
47	Tennessee	518,201	676,938	2,267,269	582,163	165,069	82,857	85,667		
48	Texas	1,269,942	2,075,584	6,031,639	931,966	964,637	256,744	484,034		
49	Utah	148,777	238,410	923,202	74,462	92,716	38,718	34,151		
50	Vermont	46,145	46,221	260,242	16,822	24,401	9,448	9,591		
51	Virginia	431,556	527,102	2,405,594	355,830	181,866	54,841	75,407		
53	Washington	325,914	351,666	2,044,061	137,462	145,924	68,814	57,795		
54	West Virginia	130,866	429,934	743,465	625,052	73,552	35,524	18,269		
55	Wisconsin	396,581	470,337	1,805,388	333,476	145,477	61,781	127,409		
56	Wyoming	60,703	263,132	373,558	163,161	214,150	53,197	49,362		
	Total	16,419,976	22,979,846	92,319,732	16,583,144	9,547,186	3,538,339	4,881,950		

	Table 10. IAQR 2010 Base EGU Annual Emissions (Tons)										
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3			
01	Alabama	1.073	134,134	21.015	473.043	8.322	4.323	9			
04	Arizona	642	84,567	25,830	47,779	3,707	2,016	4			
05	Arkansas	393	52.511	8.429	122.667	1.724	1.213	3			
06	California	1.606	17.671	56,798	17,317	2,432	1,138	707			
08	Colorado	446	82,714	7.924	73.089	1.594	888	4			
09	Connecticut	99	5.168	5.984	6.284	829	282	0			
10	Delaware	79	10.271	1.377	46.355	688	319	1			
11	DC	0	42	41	0	1	1	0			
12	Florida	1.224	161.846	44.976	233.241	9.414	4.225	62			
13	Georgia	1,163	150,582	18,179	609,154	10,114	4.877	10			
16	Idaho	21	1,197	2,273	0	38	38	0			
17	Illinois	1.386	171,443	10,401	600.836	6.503	3.709	10			
18	Indiana	1,704	239,713	14,292	670,365	12,150	6,408	37			
19	lowa	463	86.090	4.314	169,861	3,228	1,983	4			
20	Kansas	538	100,942	4,234	63,532	2,800	1,734	4			
21	Kentucky	1.352	195,883	13,849	363,145	8.874	4,092	11			
22	Louisiana	459	49,767	11,683	112,534	3,378	1,384	3			
23	Maine	48	2,103	4.592	3.210	349	148	0			
24	Maryland	424	60.629	4.263	232,229	3.374	1.445	4			
25	Massachusetts	239	10.392	10.920	15.650	1.237	646	23			
26	Michigan	973	125,394	11,972	387.627	6,121	3.517	19			
27	Minnesota	525	104,535	6,899	91,561	3,205	1,676	4			
28	Mississinni	275	43 163	8,384	73 467	2 072	855	2			
29	Missouri	1 150	137 009	9 132	293 093	3,950	2 685	9			
30	Montana	220	38 465	2 021	17 923	2 874	1 378	2			
31	Nebraska	299	57,826	2,452	97,630	1,285	881	3			
32	Nevada	271	37,403	7.037	16,408	2.467	1.322	11			
33	New Hampshire	113	3.647	4,437	7,289	363	252	0			
34	New Jersev	196	29.322	5,790	41,255	2.037	796	1			
35	New Mexico	359	76,400	3,233	48.577	1,939	919	3			
36	New York	863	68 413	18 085	214 077	3 818	1 790	252			
37	North Carolina	943	62,069	9,471	219,369	9.074	3,806	9			
38	North Dakota	670	77,927	7,726	160,938	3,219	1,574	5			
39	Ohio	1.664	266,798	15,149	1,258,684	15,245	6,907	16			
40	Oklahoma	603	82.115	15.056	133.009	2.759	1,714	39			
41	Oregon	132	13.346	9.654	15,187	381	310	0			
42	Pennsylvania	1.483	209.760	16.238	853,431	15.288	6.453	14			
44	Rhode Island	22	1.440	2,383	0	40	40	0			
45	South Carolina	507	64.737	5.691	199.745	10.059	4.553	5			
46	South Dakota	64	11.748	546	36.304	327	74	1			
47	Tennessee	746	102.819	5.839	306.082	3.953	2.079	7			
48	Texas	3.711	200.909	102.753	487.740	20.215	12,771	445			
49	Utah	369	69.368	3.080	31.541	2.329	1.041	3			
50	Vermont	0	1	2	0	_,=_00	0	0			
51	Virginia	471	55.530	5.863	187.772	5,761	2.133	4			
53	Washington	266	28.432	16.403	5.959	811	635				
54	West Virginia	1.204	155,157	9,764	550,629	11.006	4.817	11			
55	Wisconsin	697	111.540	8.011	214.063	3.124	2.046	6			
56	Wyoming	506	90.500	4.241	47.276	3.145	2.090	5			
-	Total	32,660	3,943,438	588,685	9,856,926	217,623	109,983	1,783			

	Table 11. IAQR 2010 Base non-EGU Annual Emissions (Tons)								
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3	
01	Alabama	59,099	83,403	217,668	121,267	38,080	22,112	4,054	
04	Arizona	14.898	118,162	26.092	120.829	36.813	19,730	5	
05	Arkansas	12.038	23,484	117,195	17.464	31.597	18.058	17.198	
06	California	61.577	137.347	88.706	43.980	32.863	18,143	15,950	
08	Colorado	37.311	44.879	28.358	15.909	24.074	14,406	351	
09	Connecticut	5.811	11.252	3,160	7.567	1.151	869	59	
10	Delaware	5.447	8,492	16.025	38.381	1,174	855	692	
11	DC	239	812	273	2.123	97	71	8	
12	Florida	21.531	59.032	57.372	90.435	15.931	10.385	6.816	
13	Georgia	34.833	71,428	202.252	92.752	29.824	20.856	17,460	
16	Idaho	327	6.645	4.906	26.758	10.629	7,184	2	
17	Illinois	131.654	134,916	125,786	277.244	94,437	48,689	13.677	
18	Indiana	38.674	45,385	250,845	152,198	16,468	12,993	8,996	
19	lowa	5,985	26,522	7,708	84.015	8,213	4,603	9,147	
20	Kansas	16,738	108.813	84.638	16.013	13.728	9,370	14.038	
21	Kentucky	61,947	34,826	76,182	42,912	18,374	11,864	1,469	
22	Louisiana	87,220	297,110	822,849	193,555	35,295	26,138	73,111	
23	Maine	4.940	15.551	10.688	22.206	4.877	3,173	132	
24	Marvland	7.167	19,129	44.248	22.514	3.756	2.230	285	
25	Massachusetts	7.064	18.221	8.024	15.337	3.491	2,561	89	
26	Michigan	72,709	160,968	134,751	134,973	23,650	13,316	586	
27	Minnesota	29,586	83,849	101.257	41,178	91,600	40.064	1.331	
28	Mississippi	52 402	74 439	123 188	77 530	12 636	9 042	29,901	
29	Missouri	55,860	29,745	111.022	128,569	54,393	20,189	26.844	
30	Montana	5.225	20,759	55,176	34,720	14.252	7,546	562	
31	Nebraska	10.840	14,459	13.092	7.302	9.751	3.699	14	
32	Nevada	1.750	5.988	12.717	3.461	15.792	5.525	9	
33	New Hampshire	4.866	4,231	6.268	7.948	1.341	816	23	
34	New Jersev	76.222	51.016	21.876	70.783	10.870	7.590	472	
35	New Mexico	9.044	68,718	21.539	115.204	7.556	5,504	37	
36	New York	50.073	36.692	31.657	168.553	44.612	31,918	206	
37	North Carolina	75.673	63,283	88,170	95,437	23.043	16,194	120	
38	North Dakota	179	7.225	3,568	56.097	1.446	1.304	13	
39	Ohio	56.202	77,462	724,782	337.560	37.671	25.030	2.962	
40	Oklahoma	36,190	120,968	239,431	41,168	11,259	6,938	19,773	
41	Oregon	8.578	16,785	82,183	6.558	9.217	6.617	16	
42	Pennsylvania	48,210	172,998	350,381	141,002	39,014	25,787	6,842	
44	Rhode Island	3,250	876	1,793	2,423	1,278	942	7	
45	South Carolina	30,894	45,978	76,025	63,865	8,143	6,017	60	
46	South Dakota	1,887	4,722	0	1,366	864	449	1	
47	Tennessee	96,883	78,009	113,496	134,335	18,933	11,290	83	
48	Texas	203,123	523,815	437,225	318,637	40,730	27,852	1,420	
49	Utah	15,180	31,647	127,753	30,303	23,711	19,349	1,398	
50	Vermont	1.413	780	1.540	2.024	975	575	3	
51	Virginia	52,649	66,479	74,527	112,675	16,836	10,587	849	
53	Washington	13.992	47.008	190.821	51.577	11.164	7,504	5.821	
54	West Virginia	20.753	50.132	113.347	62.211	11.426	7,309	412	
55	Wisconsin	45.276	54.295	66.172	88.506	16.203	11,496	986	
56	Wyoming	13.652	49.464	82.803	59.741	35.812	20.952	533	
	Total	1,707,060	3,228,201	5,599,537	3,799,163	1,015,051	605,691	284,824	

	Table 12. IAQR 2010 Base On-road Annual Emissions (Tons)									
FIPS	State	VOC	NOx	со	SO2	PM-10	PM-2.5	NH3		
01	Alabama	80.971	110.191	1.200.284	604	3,783	2.448	6.480		
04	Arizona	48.868	91.317	600.172	555	3,302	2,102	5,990		
05	Arkansas	40.377	64,910	578.870	335	2.216	1,459	3,561		
06	California	255.609	401.906	2.528.853	3.446	20.857	13.333	38.090		
08	Colorado	42.946	80,596	666.048	466	2.840	1.824	5.015		
09	Connecticut	19.334	48,516	259,998	326	2.008	1.291	3,596		
10	Delaware	8,754	17.423	137.544	92	606	399	1.008		
11	DC	2,386	4.821	40.218	41	219	133	457		
12	Florida	225.359	293.897	3.610.060	1.728	9.938	6.254	18,742		
13	Georgia	102.256	189,194	1.570.358	1,137	6,898	4,419	12.257		
16	Idaho	18,591	32,658	319,856	164	1,080	710	1,740		
17	Illinois	91,971	177,741	1,489,301	1,121	6,471	4.054	12,296		
18	Indiana	85,881	142,865	1,526,256	769	4,872	3,163	8,261		
19	lowa	35,789	61,607	641,840	308	2.032	1,338	3,282		
20	Kansas	33,953	59,091	591,143	309	1,973	1,286	3,308		
21	Kentucky	53 653	95 692	866,316	494	3 235	2 121	5 316		
22	Louisiana	61 112	89 284	896,379	445	2 741	1 763	4 768		
23	Maine	14 779	30,608	305,955	153	1 029	681	1 618		
24	Maryland	29,581	73,126	451,132	552	3,143	1.955	6.073		
25	Massachusetts	33,901	74,353	547,767	578	3,194	1,969	6,417		
26	Michigan	104 326	171 375	2 049 577	1 014	5 852	3 676	10,959		
27	Minnesota	56 188	103 429	927 184	535	3 334	2 156	5 747		
28	Mississinni	46 140	68 761	644 765	357	2 368	1 559	3 800		
29	Missouri	57,371	117,844	992,687	724	3,978	2,442	7,797		
30	Montana	12,436	24.821	230,038	117	801	534	1,235		
31	Nebraska	21.938	37,730	400.851	192	1.251	820	2.048		
32	Nevada	20,414	36,277	305,382	202	1,207	770	2,178		
33	New Hampshire	13,105	25,744	228.352	130	881	583	1.405		
34	New Jersev	41.543	93,102	578.048	717	3.960	2,433	7,938		
35	New Mexico	34.521	54,524	552.017	278	1.813	1,188	2,965		
36	New York	87.991	181.546	1.617.694	1.296	7,191	4,440	14.218		
37	North Carolina	87.854	150.027	1.482.472	988	5,496	3.384	10.631		
38	North Dakota	9,126	16.449	164.300	77	528	351	818		
39	Ohio	111,178	201.346	1,925,363	1,174	7.094	4.542	12.673		
40	Oklahoma	56,863	86,790	931.020	468	2,918	1,886	5.034		
41	Oregon	29,270	67,386	486,003	381	2,402	1,559	4.088		
42	Pennsylvania	104,305	200,618	1,799,671	1,104	6,541	4,146	11,937		
44	Rhode Island	6,979	12,265	91,584	81	480	304	902		
45	South Carolina	64,158	94,175	921,836	491	3,202	2.098	5.230		
46	South Dakota	10.037	20,183	184,474	96	659	439	1.013		
47	Tennessee	85 533	132 898	1 422 081	715	4 4 1 6	2 848	7 683		
48	Texas	220 557	399 631	3 025 769	2 288	12 974	8 085	24,981		
49	Utah	30,313	48 995	542 229	263	1 584	1 013	2 839		
50	Vermont	7 457	15,000	139 292	78	523	345	830		
51	Virginia	74 439	147 032	1 162 361	859	5 221	3 337	9 326		
53	Washington	65 982	114 579	1,249,051	638	3 770	2 396	6 907		
54	West Virginia	22 222	40.379	359 078	200	1 357	<u>2,000</u> 900	2 125		
55	Wisconsin	47 310	109 650	911 995	619	3 826	2 456	6 666		
56	Wyoming	۹ ۵,۶۰۶ ۹ ۵7۹	18 620	170 136	87	596	2, 1 00 306	0,000 023		
		0,010	10,020	110,100	07	000	000	525		
1	Total	2.824.708	4.931.947	44.323.659	29.790	178.660	113.788	323.171		

	Table 13. IAQR 2010 Base Non-road Annual Emissions (Tons)									
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3		
01	Alabama	38.010	55.830	427.088	1.567	5.672	4.647	771		
04	Arizona	35,574	43,609	587,042	716	9,058	4,605	608		
05	Arkansas	24.641	35,395	263,509	475	3,100	2.774	483		
06	California	162,983	276,098	3,104,650	12,967	21,719	19,082	5,369		
08	Colorado	32,342	56,971	476.272	759	4,907	3.832	831		
09	Connecticut	19 862	17 273	333 208	368	1 854	1 688	580		
10	Delaware	6 850	16 801	89.348	310	1,001	1,000	115		
11	DC	2 276	5 424	22 243	116	225	195	84		
12	Elorida	143 736	147 942	2 038 938	15 133	18 699	15 927	2 075		
13	Georgia	50 978	66 365	814 963	2 636	6 582	5 727	1 465		
16	Idaho	17 783	17,306	168 419	250	2 736	1 666	210		
17	Illinois	76,333	150 172	1 159 501	1 724	10 260	9 281	2 318		
18	Indiana	37 404	90 417	623 186	1,721	5 945	5 359	1 288		
10	lowa	25 895	57 564	353 100	624	5 245	4 773	605		
20	Kansas	18 930	79 483	310 188	805	5 512	4 853	617		
21	Kentucky	28 834	73.055	328 529	1 849	5 231	4,539	670		
27	Louisiana	48 151	205 029	453 763	21 143	10 973	9,003	1 625		
22	Maine	22 186	200,023	158 010	21,145	1 260	3,307	1,020		
20	Mandand	35 701	38 023	540 345	8 132	1,203	3 576	576		
24	Massachusetts	37 464	60 073	504 543	1 218	4,004 5,408	3,570	1 1/7		
20	Michigan	107,404	62 106	1 093 705	1,210	7 200	4,097	1,147		
20	Minnosota	79 597	64 900	611 775	1,310	7,399	6 350	1,001		
20	Minnesota	76,507	44 700	255 001	2 007	0,903	3,542	1,000		
20	Mississippi	20,020	64 161	255,001	2,007	4,100	1 910	1 026		
20	Montana	11 336	33 085	111 063	274	2 276	4,019	1/0		
31	Nebraska	14,530	57 306	213 024	578	2,270	3 549	333		
32	Nevada	14,559	25 367	213,024	357	3 155	2,039	208		
22	Nevaua New Hampshire	14,473	20,307	203,541	154	1.062	2,039	200		
24	New Jaraay	14,302	0,212	929.276	E2 E42	1,003	009	1 426		
34	New Jersey	40,940	10 714	140 663	210	9,100	0,321	1,420		
36	New Wexico	07,406	00 022	149,003	210	2,101	9 272	220		
27	Nerth Carolina	52 221	90,922	914 294	2,220	9,414 7 734	6,572	2,000		
20	North Dakota	11 115	41 709	115 291	1,237	2 7 2 7	3 3 2 0	1,029		
30	Obio	79.264	116 902	1 209 962	5 716	15 265	12 252	2 251		
39 40	Ohio	70,204	40.022	240 542	5,710	15,205	12,333	2,201		
40	Orianoma	24,505	40,022 50 550	209 749	000	3,974	2,411	507		
41	Diegon	32,204 73 514	90 601	1 002 556	2 220	5,159	2,070	1 006		
42	Phodo Island	4 714	5 622	1,092,000	2,000	617	0,103	1,990		
44	South Carolina	4,714	20.970	90,230 417 952	2,003	2 107	2 921	664		
40	South Dakota	28,810	29,019	417,052	1,195	3,197	2,021	124		
40	Topposoo	9,170	120 022	E10 150	240	2,370	2,204	1.075		
47 10	Termessee	42,074	130,923	2 046 002	2,771	7,201	0,000	1,075 E 490		
40	I EXAS	114,701	432,110	2,040,992	33,434	20,104	21,004	0,409		
49 50	Verment	20,821	31,000	223,250	395 02	2,899	2,309	<u>ა</u> შ2		
50	Vermoni	7,520	3,000	692 777	4 502	499	7 011	90		
51	Virginia	44,498	70,091	600.005	4,592	8,000 6,001	7,211	000		
53 54		45,488	10,151	009,995	9,459	0,901	5,814	996		
04 55		14,005	57,047	148,138	33,597	4,491	4,100	205		
50 50	Wisconsin	01,885	50,959	594,423	//0	5,163	4,603	1,083		
00		8,200	22,918	09,081	105	1,173	945	104		
	Iotal	2,006,777	3,404,962	28,010,246	236,446	295,253	251,423	49,964		

	Table 14. IAQR 2010 Base Area Annual Emissions (Tons)									
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3		
01	Alabama	144.297	69,410	521.658	51,945	191.882	78.833	85,120		
04	Arizona	139.902	78.053	213.271	4.333	122,253	70,998	31.614		
05	Arkansas	118,428	44,794	198,105	21,156	135,966	42,502	149.698		
06	California	472,160	129,306	638,780	10.684	347,785	117.527	165,486		
08	Colorado	120.713	59,928	70,880	4.653	151,900	36.511	95.332		
09	Connecticut	65.405	9.341	86.813	470	34,955	7.016	5,741		
10	Delaware	22.724	6.872	19,292	10.223	13.424	6.238	12.672		
11	DC	8.458	1.935	861	5.751	1.815	680	1.085		
12	Florida	342,177	53,238	473,626	44,726	248,625	91,811	70,327		
13	Georgia	257,398	74,729	1,117,469	6,661	350,201	155,686	89,400		
16	Idaho	70.040	29,393	441.270	8.782	162.309	61.564	60.653		
17	Illinois	263.817	115.848	69,185	36.367	244,904	56.227	144.138		
18	Indiana	214,228	37.879	73,152	2.240	163.801	33,756	98,380		
19	lowa	128.567	31.091	44,865	14,630	150.839	33,704	306,177		
20	Kansas	117.523	74.256	75.870	3.451	209,431	45.971	209.259		
21	Kentucky	126.045	76.895	128,309	58.005	103.229	35.523	87.718		
22	Louisiana	109,098	103,534	139,790	94,015	142,402	58,926	70,145		
23	Maine	39,134	4,928	39,259	10,827	25,446	10,840	6,303		
24	Maryland	63,097	15,936	91,552	898	64,349	13,901	26,160		
25	Massachusetts	122,857	24,894	37,787	61,255	72,583	19,804	8,727		
26	Michigan	254,186	115,555	127,662	32,688	150,240	44,957	62,070		
27	Minnesota	180,126	24,850	77,015	5,692	229,854	51,182	190,979		
28	Mississippi	133,143	56,688	366,353	82,727	144,645	57,758	69,378		
29	Missouri	139,362	14,808	114,101	31,930	322,307	67,290	181,815		
30	Montana	52,893	18,383	226,282	1,401	152,449	44,634	86,259		
31	Nebraska	76,757	15,374	19,892	10,122	157,152	29,914	224,619		
32	Nevada	38,369	8,455	12,709	3,913	38,023	9,386	14,545		
33	New Hampshire	31,981	13,910	28,450	90,762	19,414	7,804	2,201		
34	New Jersey	140,373	79,814	47,276	42,601	83,105	25,993	9,183		
35	New Mexico	56,240	32,427	91,749	9,447	254,567	48,963	43,927		
36	New York	319,026	88,071	106,257	122,071	188,701	57,721	54,593		
37	North Carolina	353,839	36,969	727,973	33,810	175,321	77,486	170,679		
38	North Dakota	57,618	21,197	13,578	64,078	98,021	19,417	87,088		
39	Ohio	277,948	82,187	104,105	63,253	182,980	53,484	81,898		
40	Oklahoma	92,653	33,165	52,658	5,528	243,098	47,946	186,307		
41	Oregon	139,000	39,925	850,783	20,897	257,281	125,782	58,126		
42	Pennsylvania	240,416	114,330	193,078	80,948	155,235	52,980	81,910		
44	Rhode Island	18,047	2,766	4,454	4,108	7,957	2,578	1,205		
45	South Carolina	151,220	26,093	279,698	15,619	118,616	45,755	29,031		
46	South Dakota	40,456	7,880	24,025	23,819	110,488	23,431	125,939		
47	Tennessee	235,564	52,303	214,772	47,789	125,280	49,494	78,243		
48	Texas	558,052	43,065	304,178	9,570	857,424	178,493	444,795		
49	Utah	64,449	23,536	34,962	13,107	67,559	16,411	29,630		
50	Vermont	22,148	11,533	21,636	12,963	21,374	6,990	8,618		
51	Virginia	202,313	45,680	302,317	9,471	147,719	33,371	67,726		
53	Washington	152,211	22,999	203,537	3,732	117,415	46,448	46,814		
54	West Virginia	53,461	21,321	59,801	11,332	45,549	15,976	15,950		
55	Wisconsin	175,512	58,670	122,456	45,889	117,111	37,010	118,345		
56	Wyoming	18,444	71,685	41,227	17,309	166,817	29,141	45,892		
	Total	7,221,877	2,225,898	9,254,775	1,367,643	7,693,802	2,285,814	4,341,905		

	Table 15. IAQR 2010 Base All Sectors Annual Emissions (Tons)									
FIPS	State	VOC	NOx	со	SO2	PM-10	PM-2.5	NH3		
01	Alabama	323,451	452,969	2,387,712	648,426	247,738	112,362	96,434		
04	Arizona	239,883	415,709	1,452,407	174,212	175,132	99,452	38,221		
05	Arkansas	195,877	221,094	1,166,108	162,096	174,602	66,006	170,944		
06	California	953,934	962,328	6,417,787	88,393	425,656	169,224	225,601		
08	Colorado	233,758	325,088	1,249,482	94,875	185,315	57,461	101,533		
09	Connecticut	110,510	91,552	689,163	15,014	40,796	11,146	9,978		
10	Delaware	43,855	59,859	263,586	95,361	17,110	8,903	14,488		
11	DC	13,359	13,033	63,635	8,031	2,357	1,080	1,635		
12	Florida	734,026	715,956	6,224,972	385,263	302,607	128,602	98,023		
13	Georgia	446,628	552,298	3,723,221	712,339	403,619	191,565	120,591		
16	Idaho	106,763	87,199	936,723	35,953	176,792	71,161	62,605		
17	Illinois	565,161	750,119	2,854,174	917,292	362,575	121,960	172,440		
18	Indiana	377,892	556,258	2,487,732	826,664	203,237	61,680	116,962		
19	lowa	196.700	262.874	1.051.926	269.439	169.557	46.401	319.214		
20	Kansas	187,682	422,586	1,066,073	84,111	233,444	63,213	227,226		
21	Kentucky	271,831	476,351	1,413,185	466,405	138,942	58,140	95,184		
22	Louisiana	306,041	744,724	2,324,464	421,691	194,790	98,118	149,653		
23	Maine	81.087	61.986	519.413	36.624	32,969	15.951	8.220		
24	Marvland	136.060	207.743	1.140.541	264.325	78,706	23.107	33.098		
25	Massachusetts	201.524	197.833	1.199.042	94.038	85.913	29.878	16.403		
26	Michigan	539,454	636,488	3.407.757	557,619	193.262	72,148	75,494		
27	Minnesota	345,012	381,462	1,724,130	140,049	334,956	101.437	199.067		
28	Mississippi	258 589	287 842	1 397 691	236.088	165 879	72 756	103 538		
29	Missouri	294,485	363,568	1,786,549	455,182	390.058	97,425	217,502		
30	Montana	82.111	136,413	625.481	54,434	172.654	56.011	88.208		
31	Nebraska	124.374	182.786	649.310	115.823	173.379	38,863	227.016		
32	Nevada	75.276	113,490	541.387	24,340	60.645	19.041	16,951		
33	New Hampshire	64.426	53.744	412.110	106.284	23.063	10.324	3.838		
34	New Jersev	307.274	339,640	1.481.267	208,899	109,126	45,133	19.021		
35	New Mexico	111,272	242,782	818.201	173,724	268.036	58,018	47,160		
36	New York	555 359	465 644	3 224 084	508 223	253 736	104 242	71 857		
37	North Carolina	570.641	372.450	3.122.470	350.841	220,669	107.372	183.067		
38	North Dakota	78,709	164,596	304.552	281,595	106.951	25,967	88.060		
39	Ohio	525,256	744.686	3.978.263	1.666.387	258.255	102.317	99,799		
40	Oklahoma	210.814	363.060	1.578.707	180.781	264.007	61.894	212.024		
41	Oregon	209.243	189.993	1.827.370	43.838	272.440	137,146	62.828		
42	Pennsvlvania	467.928	778.307	3.451.925	1.079.823	223.050	95.471	102.699		
44	Rhode Island	33.011	22.980	190.452	9.495	10.373	4.428	2.262		
45	South Carolina	275,595	260,862	1.701.102	280,913	143.216	61.244	34,990		
46	South Dakota	61.614	68.955	309.395	61.834	114.908	26.677	127.088		
47	Tennessee	461.600	504.953	2.274.345	491.691	159.834	72.311	87.091		
48	Texas	1.100.224	1.599.537	5.916.917	851.669	957.527	248.866	477.130		
49	Utah	131.133	205.081	931.274	75.609	98.082	40,183	34.253		
50	Vermont	38,545	32,147	230,893	15,148	23.371	8.344	9,544		
51	Virginia	374,371	391,312	2,228,845	315,369	184,192	56,638	78,793		
53	Washington	277 939	291 775	2,269,807	71.365	140 061	62 797	60 547		
54	West Virginia	112 245	324 035	690 128	657 970	73 830	33 102	18 762		
55	Wisconsin	330 688	385 113	1 703 056	349 847	145 427	57 610	127 086		
56	Wyoming	49 875	253 187	368 088	124 577	207 543	53 524	47 518		
	Total	13,793,082	17,734,447	87,776,902	15,289,969	9,400,388	3,366,700	5,001,647		

	Table 16. IAQR 2015 Base EGU Annual Emissions (Tons)										
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3			
01	Alabama	1.157	128.592	29.397	415.985	8.524	4.491	9			
04	Arizona	673	85.975	29,226	47,779	3.764	2.073	4			
05	Arkansas	408	52,786	10.022	122,667	1,751	1.240	3			
06	California	1.440	19.597	71,879	17.317	2,760	1,466	503			
08	Colorado	464	83.632	9,893	73.089	1.620	914	4			
09	Connecticut	100	5.260	6,126	6.284	831	285	0			
10	Delaware	84	10,843	1,658	48,275	717	335	1			
11	DC	1	86	106	0	2	2	0			
12	Florida	1,784	170,803	52,590	230,295	9,473	4,283	383			
13	Georgia	1,228	153,295	25,136	600,315	10,236	4,996	10			
16	Idaho	22	1,229	2,428	0	41	41	0			
17	Illinois	1,509	179,581	12,281	539,206	6,854	3,910	11			
18	Indiana	1,757	245,844	16,389	531,563	12,481	6,585	37			
19	Iowa	491	90,805	4,729	178,041	3,376	2,084	4			
20	Kansas	546	102,025	4,492	65,316	2,855	1,769	5			
21	Kentucky	1,380	200,732	14,511	363,166	9,097	4,198	12			
22	Louisiana	478	50,164	13,762	112,534	3,413	1,419	3			
23	Maine	49	2,138	4,640	3,210	350	148	0			
24	Maryland	436	62,037	5,165	229,578	3,444	1,476	4			
25	Massachusetts	277	11,923	14,228	16,259	1,337	720	25			
26	Michigan	1,028	131,114	15,432	390,753	6,324	3,656	19			
27	Minnesota	546	108,222	7,567	92,830	3,368	1,767	5			
28	Mississippi	358	44,939	17,374	73,467	2,223	1,007	2			
29	Missouri	1,254	145,066	11,285	317,556	4,292	2,928	9			
30	Montana	224	38,547	2,474	17,718	2,882	1,386	2			
31	Nebraska	300	57,820	2,595	97,391	1,285	881	3			
32	Nevada	298	41,284	8,606	17,314	2,616	1,403	11			
33	New Hampshire	114	3,813	4,449	7,289	376	258	0			
34	New Jersey	215	30,713	7,780	39,237	2,121	842	1			
35	New Mexico	362	76,538	3,308	48,577	1,940	920	4			
36	New York	801	70,461	24,469	214,077	3,932	1,904	176			
37	North Carolina	1,025	63,472	12,048	144,369	9,673	4,087	9			
38	North Dakota	689	80,541	7,857	171,995	3,330	1,622	6			
39	Ohio	1,761	261,431	18,861	1,047,580	15,822	7,205	16			
40	Oklahoma	692	86,711	17,434	133,009	2,782	1,737	84			
41	Oregon	140	13,504	10,515	15,187	395	325	0			
42	Pennsylvania	1,561	215,027	21,059	812,610	15,849	6,703	14			
44	Rhode Island	29	1,989	3,211	0	54	54	0			
45	South Carolina	529	66,243	7,797	195,541	10,122	4,601	5			
46	South Dakota	74	13,552	639	42,118	379	85	1			
47	Tennessee	756	102,714	6,114	309,626	3,994	2,102	7			
48	Texas	3,737	201,284	110,660	487,068	20,355	12,911	416			
49	Utah	369	69,402	3,110	31,541	2,330	1,042	3			
50	Vermont	0	4	5	0	0	0	0			
51	Virginia	496	57,948	8,307	186,498	5,851	2,191	4			
53	Washington	255	26,336	15,235	5,959	791	615	9			
54	West Virginia	1,211	148,246	9,974	485,118	11,097	4,852	11			
55	Wisconsin	715	103,469	9,349	189,552	3,011	1,975	6			
56	Wyoming	506	90,502	4,245	47,240	3,145	2,090	5			
	Total	34,332	4,008,241	700,418	9,222,097	223,265	113,584	1,850			

	Table 17. IAQR 2015 Base non-EGU Annual Emissions (Tons)									
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3		
01	Alabama	62.259	86.324	227.779	123.496	39,909	23.175	4.233		
04	Arizona	16.315	126.302	27,969	126,366	40.157	21,484	6		
05	Arkansas	12,726	24,269	124,409	18.050	33,583	19.098	18.064		
06	California	64,866	140.646	91,712	45.231	34,639	18.943	16,596		
08	Colorado	39.457	44.303	28.096	16.572	25.629	15.303	373		
09	Connecticut	6,057	11,769	3,319	7,765	1,187	896	61		
10	Delaware	5,691	8,568	16,691	38,341	1,207	879	716		
11	DC	243	840	282	2,164	100	73	8		
12	Florida	22,873	61,083	59,391	93,694	16,716	10,876	6,829		
13	Georgia	37,244	75,076	218,771	97,537	31,537	22,045	18,727		
16	Idaho	334	6,833	5,068	27,825	10,996	7,463	2		
17	Illinois	138.171	138.214	128,953	286.281	98.941	50.807	14.496		
18	Indiana	40.812	46,176	258,837	157.305	17.034	13,404	9,468		
19	Iowa	6.281	27.203	8.041	85.366	8.579	4.809	9.584		
20	Kansas	17,474	111.768	88.084	16.668	14.372	9.758	14.659		
21	Kentucky	65,902	35.997	81.025	44.661	19,486	12.595	1.558		
22	Louisiana	91,246	305.063	869.350	204,181	36.848	27.270	76.805		
23	Maine	5.154	16.078	11.084	22.731	5.068	3.292	136		
24	Maryland	7,463	19,476	44,646	22,680	3,818	2,255	278		
25	Massachusetts	7.304	18.925	8.296	15.561	3.562	2.611	91		
26	Michigan	77.038	166.567	139.295	138.305	24.630	13.803	615		
27	Minnesota	31,688	79.225	109,210	42,319	97,130	42,572	1.447		
28	Mississippi	55.822	77.917	130,604	81,892	13,203	9,446	31.584		
29	Missouri	59.087	30,766	115,122	133,606	57,424	21.287	28.608		
30	Montana	5,472	21,792	58,055	36,510	15,623	8,254	598		
31	Nebraska	11,424	15,062	13,626	7,637	10,342	3,899	14		
32	Nevada	1,926	6,459	13,172	3,723	17,089	5,980	9		
33	New Hampshire	5,087	4,362	6,442	8,092	1,390	842	23		
34	New Jersey	79,765	52,739	22,676	71,653	11,025	7,694	465		
35	New Mexico	9,095	68,196	21,555	119,341	7,821	5,668	38		
36	New York	51,448	37,130	32,035	165,704	45,138	32,292	204		
37	North Carolina	80,836	65,662	93,521	99,577	24,547	17,275	125		
38	North Dakota	176	7,158	3,584	54,300	1,476	1,335	13		
39	Ohio	59,521	79,281	745,465	334,133	38,902	25,813	3,090		
40	Oklahoma	37,750	121,811	250,339	42,928	11,863	7,295	20,893		
41	Oregon	8,946	17,175	85,362	6,714	9,389	6,714	16		
42	Pennsylvania	50,102	173,185	340,856	141,871	39,699	26,160	7,183		
44	Rhode Island	3,421	894	1,815	2,453	1,299	958	7		
45	South Carolina	33,416	47,562	81,190	67,001	8,632	6,397	62		
46	South Dakota	2,090	4,891	0	1,416	909	471	1		
47	Tennessee	102,907	79,932	119,656	136,735	19,957	11,938	85		
48	Texas	214,252	535,436	455,799	327,249	42,772	29,147	1,454		
49	Utah	15,860	32,801	132,818	31,263	24,763	20,150	1,477		
50	Vermont	1,486	803	1,595	2,064	1,007	590	3		
51	Virginia	55,622	68,327	79,345	115,850	17,700	11,117	880		
53	Washington	14,961	50,092	197,803	53,700	11,740	7,888	6,254		
54	West Virginia	21,456	51,005	116,334	62,824	11,576	7,413	416		
55	Wisconsin	48,251	56,094	69,181	91,386	16,971	12,034	1,041		
56	Wyoming	14,202	50,184	84,785	61,094	38,814	22,666	569		
	Total	1,800,977	3,307,415	5,823,044	3,893,813	1,066,198	634,132	299,862		

	Table 18. IAQR 2015 Base On-road Annual Emissions (Tons)									
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3		
01	Alabama	73.623	78.804	1.274.667	657	3.313	1.932	7.005		
04	Arizona	42,794	64,120	617.336	618	2,983	1,712	6.619		
05	Arkansas	36,663	46.228	614,446	365	1,920	1,137	3.862		
06	California	210.076	275.210	2.385.266	3.786	19.093	11.182	41.530		
08	Colorado	35.646	56.073	691.043	515	2,535	1,467	5,506		
09	Connecticut	16.070	33.251	249.639	355	1.816	1.069	3.887		
10	Delaware	7.062	11.830	147.363	101	538	322	1.095		
11	DC	1,942	3.299	42.572	45	210	118	500		
12	Florida	201,790	211.115	3.956.434	1.932	9.096	5.168	20.798		
13	Georgia	90,406	133,254	1,606,409	1,256	6,162	3,558	13,438		
16	Idaho	15,875	23,108	342,514	180	940	555	1,897		
17	Illinois	76,888	123,878	1,491,270	1,216	5,925	3,400	13,234		
18	Indiana	74,868	101,430	1,603,040	834	4,252	2,491	8,894		
19	Iowa	31,147	43,585	674,725	332	1,743	1,033	3,517		
20	Kansas	29,737	42,095	625,521	335	1,715	1,007	3,568		
21	Kentucky	45,693	67,101	915,803	536	2,817	1,670	5,725		
22	Louisiana	54,241	62,772	944,778	481	2,413	1,402	5,125		
23	Maine	12,523	21,805	324,327	166	887	527	1,752		
24	Maryland	25,508	50,672	465,492	603	2,950	1,693	6,584		
25	Massachusetts	27,298	50,409	575,702	629	3,018	1,724	6,928		
26	Michigan	90,077	122,230	2,161,156	1,091	5,227	2,980	11,703		
27	Minnesota	46,835	72,259	983,535	581	2,919	1,703	6,206		
28	Mississippi	41,812	48,738	680,140	387	2,037	1,207	4,089		
29	Missouri	50,197	82,868	1,030,139	787	3,685	2,067	8,417		
30	Montana	10,562	17,594	243,933	127	687	411	1,339		
31	Nebraska	19,082	26,809	423,544	208	1,080	637	2,204		
32	Nevada	17,171	25,719	335,181	228	1,102	633	2,441		
33	New Hampshire	10,924	18,395	241,797	142	772	464	1,521		
34	New Jersey	35,699	64,681	566,351	777	3,737	2,130	8,539		
35	New Mexico	29,560	38,716	594,947	308	1,593	938	3,259		
36	New York	72,821	127,098	1,638,456	1,382	6,579	3,736	15,054		
37	North Carolina	77,471	106,425	1,597,593	1,090	5,132	2,880	11,629		
38	North Dakota	7,687	11,569	172,264	83	448	268	875		
39	Ohio	94,185	140,294	1,943,742	1,265	6,215	3,596	13,566		
40	Oklahoma	50,700	62,063	987,603	509	2,557	1,490	5,437		
41	Oregon	25,133	47,165	500,520	420	2,119	1,238	4,469		
42	Pennsylvania	86,641	137,144	1,907,047	1,195	5,874	3,386	12,822		
44	Rhode Island	5,401	8,360	83,640	88	439	255	974		
45	South Carolina	58,895	67,410	984,012	538	2,793	1,646	5,697		
46	South Dakota	8,711	14,353	196,221	105	566	338	1,100		
47	Tennessee	74,531	93,790	1,517,880	781	3,891	2,262	8,336		
48	Texas	197,443	277,366	3,157,126	2,506	12,029	6,862	27,155		
49	Utah	25,041	34,523	589,164	294	1,429	824	3,142		
50	Vermont	6,015	10,908	148,439	86	452	268	902		
51	Virginia	64,957	103,491	1,230,113	941	4,743	2,762	10,143		
53	Washington	55,723	80,559	1,349,970	707	3,398	1,950	7,592		
54	West Virginia	19,629	28,484	376,185	216	1,158	691	2,277		
55	Wisconsin	39,874	76,085	960,707	673	3,418	1,992	7,194		
56	Wyoming	7,648	13,145	179,073	94	509	304	994		
	Total	2,440,276	3,458,279	46,328,823	32,551	160,910	93,083	350,542		

	Table 19. IAQR 2015 Base Non-road Annual Emissions (Tons)									
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3		
01	Alabama	32,798	47.802	438,141	1,494	5.271	4.249	850		
04	Arizona	32,630	36,972	612,706	619	9,124	4,275	673		
05	Arkansas	20,093	28,970	267.038	365	2,576	2,289	532		
06	California	149,152	235,899	3,232,631	13,249	19,931	17,437	5.888		
08	Colorado	29,365	48 537	492 746	635	4 393	3 288	902		
09	Connecticut	18 216	13 758	344 742	315	1,000	1 459	643		
10	Delaware	6 039	14 822	91 633	295	1,000	1,103	127		
11	DC	2 321	4 903	23 286	113	1,100	158	92		
12	Florida	131 965	128 917	2 135 831	15 560	17 513	14 812	2 303		
13	Georgia	46 179	55 313	847 928	2 514	5 798	5,000	1 622		
16	Idaho	14 621	14 425	170 800	197	2 593	1 423	232		
17	Illinois	69 021	127 051	1 190 122	1 380	2,535	7 728	2 563		
18	Indiana	32 9/15	75 / 51	632 355	877	4 907	/ 30/	1 / 23		
10	lowa	21 012	/6 265	354 808	367	4,907	3 680	671		
20	Kansas	16 758	67.088	314 750	589	4,002	3,000	888		
20	Kentucky	25 540	6/ 356	344 264	1 813	4,430	3,300 / 133	738		
21		42 261	185 360	167 303	21 260	10 555	4,133	1 601		
22	Maine	42,201	7 200	158 723	21,200	1 105	9,510	1,091		
23	Maryland	33 024	33 //1	574 701	200 8 033	3 760	3 274	633		
24	Massachusotte	24 177	56 509	610 407	1 009	4 505	4.062	1 270		
20	Michigan	34,177	50,508	1 000 620	1,008	4,505	4,002	2.050		
20	Minnosoto	62 207	51,442	1,099,029	1,140	0,303	5,003	2,059		
21	Minnesola	03,307	28 257	002,340	1 042	3,031	5,151	1,114		
20	Mississippi	22,382	50,257	238,017	1,943	3,700	3,108	1 1 4 9		
29	Montono	35,010	20,044	110,935	102	4,007	4,031	1,140		
30	Nebreeke	9,302	29,204	215 001	193	1,000	1,542	101		
31	Nebraska	12,000	48,509	215,901	416	3,148	2,814	300		
3 <u>2</u>	Nevaua	13,201	21,225	211,024	290	2,999	1,794	230		
33	New Hampshire	11,858	4,967	145,837	134	952	7.000	233		
34	New Jersey	44,962	/5,085	864,066	52,970	8,697	7,898	1,5/3		
35		9,969	8,730	155,365	1 005	2,070	1,306	240		
36	New York	85,796	/3,4/2	1,505,260	1,895	7,983	7,045	2,879		
37	North Carolina	46,044	47,811	834,169	1,049	6,883	5,707	1,804		
38	North Dakota	9,195	34,383	111,990	226	2,908	2,549	149		
39	Onio	70,182	98,358	1,241,363	5,524	13,983	11,154	2,481		
40	Oklanoma	21,373	33,257	350,407	487	3,406	2,881	919		
41	Oregon	28,613	44,646	412,499	/ 14	2,678	2,435	658		
42	Pennsylvania	65,649	67,095	1,129,376	3,168	6,048	5,230	2,209		
44	Rhode Island	4,383	4,713	93,192	2,901	5/0	520	704		
45	South Carolina	25,445	24,160	428,653	1,130	2,807	2,460	/34		
40	South Dakota	7,495	19,450	98,197	116	1,973	1,729	149		
47	Tennessee	38,116	123,363	536,210	2,720	6,674	6,066	1,180		
48	Texas	104,746	380,897	2,124,134	33,591	24,085	19,607	5,818		
49	Utan	17,269	24,644	225,855	268	2,413	1,888	418		
50	Vermont	6,084	3,147	68,785	/1	426	365	103		
51	Virginia	40,859	65,601	/10,236	4,552	8,029	6,630	980		
53	vvashington	40,593	67,516	631,226	9,535	6,282	5,202	1,100		
54	vvest Virginia	12,171	51,505	154,504	34,261	4,417	4,031	286		
55	vvisconsin	50,629	41,306	597,605	605	4,281	3,778	1,197		
56	vvyoming	6,676	20,230	/0,111	139	1,034	802	170		
	Total	1,771,559	2,903,048	28,871,613	232,644	263,857	221,249	54,742		

	Table 20. IAQR 2015 Base Area Annual Emissions (Tons)									
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3		
01	Alabama	147,717	71,360	516,799	54,764	192,257	78,819	88,825		
04	Arizona	147,153	80,293	212,314	4,443	124.052	71,502	32,022		
05	Arkansas	121,987	46,195	190,819	21,833	135,645	41,884	154,846		
06	California	491,456	132,987	620,067	10,897	350,983	117,982	167,727		
08	Colorado	126 190	62 177	69,352	4 803	156 189	37 404	95 837		
09	Connecticut	63,114	9,139	77,436	459	34,881	7,159	5,986		
10	Delaware	23 804	6 946	19,656	10 428	13,956	6 461	13 608		
11	DC	8 586	1 980	869	5 921	1 953	721	1 141		
12	Florida	359 609	54 736	467 578	46 656	256 975	93 670	71 704		
13	Georgia	268 166	76,381	1 114 791	6 898	352 511	156 723	93 851		
16	Idaho	71 986	30 150	438 105	9 087	157 148	60 605	60,889		
17	Illinois	273 244	116 003	66 517	37 232	246 317	56 584	145 952		
18	Indiana	273,211	38 714	71 471	2 319	166 247	34 442	100 158		
10	lowa	132 804	31 811	43 276	14 996	150,247	33 646	310 204		
20	Kansas	121 553	76 256	7/ 030	3 5/12	208 336	<u> </u>	210 51/		
20	Kentucky	121,333	70,230	121 362	58 831	10/ 03/	45,825	88 617		
21		111 066	105 550	137 606	05 033	1// 202	50,421	72 //7		
22	Maine	30 71/	105,559	35 070	90,900 10 762	25 501	10 562	6 /00		
23	Manuand	59,714	4,004	02 697	10,702	20,091	12 099	0,499		
24	Maccachusotta	126 625	15,960	35,007	933	72 /10	10,900	27,404		
20	Michigan	120,033	116 725	117 257	01,044	151 077	19,994	9,067		
20	Michigan	200,030	110,735	117,007	52,675	101,077	44,719	102,904		
27	Minnesola	100,991	25,540	72,193	5,695	229,700	50,999	71 965		
28	Mississippi	137,505	58,172	301,720	85,352	143,913	57,404	104 100		
29	Mastana	141,001	10,210	104,212	32,278	319,757	00,248	184,169		
30	Montana	53,937	18,603	223,304	1,411	152,991	44,580	206,019		
31	Neuraska	79,635	15,770	19,373	10,298	100,100	29,804	220,312		
32	Nevada	41,269	8,967	12,548	4,107	39,150	9,732	14,720		
33	New Hampshire	32,873	14,137	26,249	91,996	19,701	7,713	2,247		
34	New Jersey	144,404	80,210	46,277	42,517	86,477	26,893	9,465		
35		58,749	34,044	90,335	9,927	252,411	48,715	44,037		
36	New York	325,497	82,286	95,010	118,216	189,190	57,251	55,389		
37	North Carolina	367,073	37,921	/1/,184	34,478	180,595	/8,1/5	1/5,663		
38	North Dakota	59,430	21,882	13,516	65,873	97,732	19,396	87,433		
39	Ohio	287,903	83,817	97,786	64,303	186,617	54,044	83,569		
40	Oklanoma	94,792	34,141	49,281	5,690	242,364	47,764	188,583		
41	Oregon	141,650	40,205	839,787	21,452	252,063	124,175	58,493		
42	Pennsylvania	246,274	110,183	185,871	80,565	157,655	53,177	83,820		
44	Rhode Island	18,741	2,701	4,072	3,996	8,222	2,620	1,260		
45	South Carolina	157,237	26,841	2/5,218	16,186	118,876	45,672	30,006		
40		42,288	8,246	23,544	25,135	112,100	23,760	126,624		
47	Tennessee	243,272	53,973	204,066	49,292	127,498	49,253	/9,402		
48	Texas	5/9,/51	44,600	300,113	9,885	863,796	180,445	448,202		
49	Utah	68,759	24,951	34,634	13,897	69,389	16,898	29,783		
50	Vermont	22,630	11,110	19,428	13,165	21,146	6,827	8,688		
51	virginia	210,021	46,708	290,029	9,742	150,838	35,101	69,379		
53	vvashington	157,056	23,927	193,592	3,845	118,429	46,061	47,621		
54	vvest Virginia	53,973	21,489	55,088	11,484	45,472	15,624	16,348		
55	VVISCONSIN	181,851	59,470	117,604	47,355	119,630	37,172	119,348		
56	Wyoming	18,855	73,828	40,585	17,756	165,055	28,893	45,852		
	Total	7,468,115	2,260,738	9,037,352	1,390,552	7,741,355	2,291,781	4,408,472		

	Table 21. IAQR 2015 Base All Sectors Annual Emissions (Tons)									
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3		
01	Alabama	317,555	412,881	2,486,784	596,395	249,274	112,667	100,922		
04	Arizona	239,566	393.661	1.499.552	179.824	180.080	101.046	39.324		
05	Arkansas	191.878	198,448	1.206.734	163.280	175.475	65.648	177.308		
06	California	916,990	804.339	6.401.555	90,479	427,406	167.010	232.245		
08	Colorado	231,122	294,722	1,291,130	95,613	190,366	58,377	102,622		
09	Connecticut	103.557	73.176	681.262	15.178	40.319	10.867	10.578		
10	Delaware	42,680	53.010	277.002	97.441	17.554	9.013	15.546		
11	DC	13.093	11.107	67,115	8.243	2,450	1.072	1.741		
12	Florida	718.021	626.654	6.671.824	388.137	309.773	128,808	102.018		
13	Georgia	443,224	493.319	3.813.036	708.520	406.244	192.322	127.649		
16	Idaho	102.839	75,745	958,915	37.289	171.718	70.088	63.021		
17	Illinois	558,833	684,727	2,889,143	865,314	366,621	122,429	176,256		
18	Indiana	374 359	507 615	2 582 093	692 897	204 921	61,316	119,981		
19	lowa	192 636	239,669	1 085 579	279 102	168,389	45 252	323 979		
20	Kansas	186.068	399 231	1 107 777	86 450	231 775	62 258	229 413		
21	Kentucky	267 303	446 772	1 476 965	469 007	141 152	58 017	96 650		
22	Louisiana	300 192	708 927	2 432 889	434 391	197 521	98 884	156 071		
23	Maine	75 514	52 084	533 854	37 076	33,000	15 482	8 571		
24	Maryland	132 921	181 585	1 183 782	261 826	80 142	22 687	34 983		
25	Massachusetts	195 691	162 726	1 244 325	94 500	85 840	29 111	17 401		
26	Michigan	517 677	588 089	3 532 868	564 164	194 361	70 821	77 299		
27	Minnesota	329 367	338 309	1 775 051	142 274	338 834	102 192	202 145		
28	Mississinni	257 879	268 023	1 447 855	243 040	165 132	72 232	108 044		
20	Missouri	287,576	327 759	1 837 693	484 920	389 745	96 560	222 351		
30	Montana	79 557	125 799	640 558	55 959	174 069	56,000	88 620		
31	Nebraska	123 107	164 036	675 039	115 949	172 019	38 036	228 898		
32	Nevada	73 915	103 653	581 130	25 663	62,962	19 542	17 412		
33	New Hampshire	60,856	45 674	424 775	107 652	23 191	10 034	4 024		
34	New Jersev	305.045	303 427	1 507 150	207 154	112 056	45 457	20 044		
35	New Mexico	107 734	226 223	865 510	178 332	265,836	57 546	47 584		
36	New York	536 363	390 447	3 295 230	501 274	252 821	102 228	73 703		
37	North Carolina	572 450	321 291	3 254 516	280 562	226 829	108 123	189 231		
38	North Dakota	77,177	155,534	309,211	292,476	105,895	25,170	88,475		
39	Ohio	513 552	663 181	4 047 217	1 452 804	261 539	101 813	102 721		
40	Oklahoma	205 308	337 983	1 655 064	182 624	262 972	61 166	215,916		
41	Oregon	204 482	162,695	1,848,682	44,487	266,643	134,886	63,637		
42	Pennsylvania	450,228	702,633	3,584,209	1.039.410	225,125	94,656	106.048		
44	Rhode Island	31,975	18,657	185,929	9,438	10,584	4,407	2,404		
45	South Carolina	275.522	232.216	1.776.870	280.395	143,230	60.776	36.504		
46	South Dakota	60,657	60 492	318 600	68 890	115 927	26,383	127 874		
47	Tennessee	459,582	453,773	2 383 926	499,152	162,013	71,621	89.015		
48	Texas	1.099.929	1,439,583	6,147,833	860,301	963.037	248,972	483,046		
49	Utah	127,299	186.322	985,581	77,262	100.324	40,801	34,824		
50	Vermont	36.215	25.972	238.251	15.386	23.032	8.051	9.695		
51	Virginia	371,956	342.075	2.318.030	317.584	187,162	57.800	81,386		
53	Washington	268.588	248.430	2,387.825	73.746	140.640	61.716	62.576		
54	West Virginia	108.440	300.729	712.084	593.903	73.720	32,609	19.339		
55	Wisconsin	321,319	336.423	1.754.446	329,571	147.311	56,951	128,787		
56	Wyomina	47.887	247,890	378 800	126.323	208 557	54,755	47,589		
	Total	13,515,259	15,937,721	90,761,250	14,771,657	9,455,584	3,353,829	5,115,469		

	Table 22. IAQR 2010 Control EGU Annual Emissions (Tons)										
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3			
01	Alabama	1,081	73,687	22,180	354,454	8,526	4,426	9			
04	Arizona	641	84,483	25,711	47,779	3,705	2,014	4			
05	Arkansas	378	38,169	6,782	77,934	2,039	1,421	3			
06	California	1,605	17,855	56,973	17,317	2,438	1,144	706			
08	Colorado	449	82,804	8,207	73,089	1,597	892	4			
09	Connecticut	99	5,172	5,994	5,318	829	283	0			
10	Delaware	83	8,545	1,842	34,020	685	322	1			
11	DC	0	30	30	0	1	1	0			
12	Florida	1,197	63,135	45,338	192,948	9,427	4,237	42			
13	Georgia	1,153	65,104	19,234	407,671	10,752	5,272	10			
16	Idaho	21	1,194	2,255	0	38	38	0			
17	Illinois	1.478	113.864	11.313	246.121	6.593	3.805	11			
18	Indiana	1.699	137.248	14.276	381.404	12.233	6.450	37			
19	Iowa	424	38,307	3,917	156,234	2,979	1,835	4			
20	Kansas	537	100,659	4,228	62,842	2,817	1,741	4			
21	Kentucky	1,331	76,290	13,833	311,149	8,551	3,943	11			
22	Louisiana	395	37.057	12.394	79.840	3.525	1.489	3			
23	Maine	48	2.077	4.557	3.210	348	147	0			
24	Maryland	412	22,904	4,140	67,079	3,384	1,441	4			
25	Massachusetts	229	9,998	11.172	14.661	1.164	614	20			
26	Michigan	995	94,310	13,069	376,726	6.086	3.504	32			
27	Minnesota	482	42.698	4.191	77.332	3.001	1.555	4			
28	Mississippi	301	19.633	11,215	73,467	2,119	903	2			
29	Missouri	1.050	67,141	8,769	244,403	3.475	2.363	8			
30	Montana	220	38,461	2,002	17,718	2,874	1,378	2			
31	Nebraska	299	57,730	2,447	97,391	1,282	879	3			
32	Nevada	273	37,789	7,089	16,535	2,486	1,331	11			
33	New Hampshire	109	3,129	4,402	5,626	324	235	0			
34	New Jersey	172	10,997	5,305	25,497	1,930	754	1			
35	New Mexico	359	76,378	3,204	48,577	1,939	918	3			
36	New York	814	60.728	19.082	113,726	3.838	1.810	216			
37	North Carolina	995	62.004	10.042	219.369	9.585	4.021	9			
38	North Dakota	717	84.889	8.259	68.024	3.464	1.656	6			
39	Ohio	1.667	118,712	15.204	368,186	15.366	6.976	16			
40	Oklahoma	624	83,133	15.930	133.009	2.770	1.725	47			
41	Oregon	131	13.328	9.552	15,187	379	309	0			
42	Pennsylvania	1.449	81,494	18.037	179,711	15.111	6.367	13			
44	Rhode Island	23	1,504	2,489	0	42	42	0			
45	South Carolina	496	33,570	5.586	162.980	9.778	4.435	5			
46	South Dakota	97	17.608	835	2.865	500	111	1			
47	Tennessee	747	50,199	5.919	258,130	3.957	2.082	7			
48	Texas	3.782	198,229	102.008	401.700	20.228	12,760	455			
49	Utah	369	69.368	3.080	31,541	2,329	1.041	3			
50	Vermont	0	1	2	0	_,	0	0			
51	Virginia	456	33.536	5.615	160.665	5.618	2.070	4			
53	Washington	263	28,321	16,109	5,959	806	630	9			
54	West Virginia	1.179	41,356	9.654	221,065	10.836	4,740	11			
55	Wisconsin	656	74 189	7 840	200.978	2,977	1,954	6			
56	Wyoming	506	90.500	4 241	47 276	3 145	2 090	5			
	Total	32,488	2.569.519	595.553	6.106.708	217.876	110.155	1.753			

	Table 23. IAQR 2010 Control All Sectors Annual Emissions (Tons)								
FIPS	State	VOC	NOx	СО	SO2	PM-10	PM-2.5	NH3	
01	Alabama	323,460	392.522	2.388.878	529.837	247.942	112.466	96.434	
04	Arizona	239.882	415.625	1.452.287	174.212	175.130	99.450	38.221	
05	Arkansas	195.862	206.752	1,164,461	117.363	174.917	66.214	170,944	
06	California	953,933	962.512	6.417.962	88.393	425.662	169.230	225.600	
08	Colorado	233,760	325,177	1.249.765	94,875	185.319	57,465	101.533	
09	Connecticut	110,510	91,556	689,172	14.048	40,796	11,146	9,978	
10	Delaware	43 858	58 133	264 052	83 025	17 107	8,906	14 488	
11	DC	13,359	13.022	63,624	8.031	2,356	1,080	1,635	
12	Florida	734 000	617 245	6 225 334	344 970	302 619	128 614	98,003	
13	Georgia	446 618	466 821	3 724 276	510 856	404 257	191 960	120 591	
16	Idaho	106 763	87 196	936 705	35 953	176 791	71 161	62 605	
17	Illinois	565 253	692 540	2 855 086	562 577	362 665	122 056	172 441	
18	Indiana	377 887	453 794	2 487 715	537 702	203 319	61 722	116.962	
10	lowa	196 661	215 001	1 051 530	255 811	169 309	46 253	310 21/	
20	Kansas	187 681	422 303	1,001,000	83 420	233.460	63 221	227 226	
20	Kentucky	271 800	356 750	1,000,000	414 400	138 620	57 001	05 18/	
21		305.077	732 014	2 325 175	388 007	104 037	08 223	140 652	
22	Maina	91 097	61.060	510 277	36,634	22,060	15 050	0.002	
23	Mandand	126 040	170.019	1 140 417	00 175	79 716	22 102	22 009	
24	Maccachusotte	201 514	107 429	1,140,417	99,175	70,710	20,102	33,090	
20	Massachuseus	201,514	197,430	1,199,294	93,049	102 229	29,047	75 509	
20	Michigan	539,470	005,404	3,400,000	340,710	193,220	101 217	100.067	
27	Minnesola	344,969	319,020	1,721,422	125,819	334,751	101,317	199,007	
28	Mississippi	258,614	264,311	1,400,522	236,088	165,927	72,804	103,538	
29	Mantana	294,385	293,700	1,780,185	406,492	389,383	97,102	217,501	
30	Nohracka	02,110	130,409	640,200	34,229	172,000	30,010	00,200	
31	Nepraska	124,373	182,690	649,306	115,585	173,376	38,801	227,010	
3Z	Nevada	75,279	113,876	541,439	24,407	60,664	19,050	10,951	
33	New Hampsnire	64,422	53,226	412,076	104,621	23,024	10,306	3,838	
34	New Jersey	307,250	321,315	1,480,781	193,141	109,018	45,092	19,020	
35	New Mexico	111,272	242,760	818,172	173,724	268,036	58,018	47,160	
36	New York	555,310	457,958	3,225,081	407,872	253,756	104,262	71,821	
37	North Carolina	570,692	372,385	3,123,041	350,841	221,179	107,587	183,068	
38	North Dakota	/8,/56	171,558	305,085	188,680	107,196	26,049	88,061	
39	Ohio	525,259	596,601	3,978,318	//5,888	258,376	102,386	99,799	
40	Oklanoma	210,834	364,079	1,579,581	180,781	264,019	61,906	212,032	
41	Oregon	209,242	189,974	1,827,268	43,838	272,438	137,145	62,828	
42	Pennsylvania	467,893	650,041	3,453,723	406,103	222,872	95,385	102,698	
44	Rhode Island	33,012	23,044	190,558	9,495	10,375	4,430	2,262	
45	South Carolina	275,583	229,695	1,700,997	244,148	142,936	61,126	34,989	
46	South Dakota	61,647	74,815	309,685	28,394	115,082	26,714	127,088	
47	Tennessee	461,601	452,332	2,274,425	443,739	159,838	72,314	87,091	
48	Texas	1,100,295	1,596,858	5,916,172	765,629	957,540	248,855	477,141	
49	Utah	131,133	205,081	931,274	75,609	98,082	40,183	34,253	
50	Vermont	38,545	32,147	230,893	15,148	23,371	8,344	9,544	
51	Virginia	374,356	369,319	2,228,598	288,262	184,049	56,576	78,793	
53	Washington	277,936	291,665	2,269,514	71,365	140,056	62,792	60,547	
54	West Virginia	112,220	210,234	690,017	328,406	73,659	33,025	18,762	
55	Wisconsin	330,647	347,762	1,702,885	336,762	145,280	57,518	127,085	
56	Wyoming	49,875	253,187	368,088	124,577	207,543	53,524	47,518	
	Total	13,792,910	16,360,528	87,783,770	11,539,750	9,400,641	3,366,871	5,001,617	

FIPS	State	NOx Tons Delta	SO2 Tons Delta	NOx % Delta	SO2 % Delta
01	Alabama	-60,446	-118,589	-13.3	-18.3
04	Arizona	-84	0	-0.0	0.0
05	Arkansas	-14,342	-44,733	-6.5	-27.6
06	California	184	0	0.0	0.0
08	Colorado	89	0	0.0	0.0
09	Connecticut	4	-966	0.0	-6.4
10	Delaware	-1,726	-12,336	-2.9	-12.9
11	DC	-12	0	-0.1	0.0
12	Florida	-98,711	-40,293	-13.8	-10.5
13	Georgia	-85,478	-201,483	-15.5	-28.3
16	Idaho	-3	0	-0.0	0.0
17	Illinois	-57,579	-354,715	-7.7	-38.7
18	Indiana	-102,464	-288,961	-18.4	-35.0
19	Iowa	-47,783	-13,628	-18.2	-5.1
20	Kansas	-283	-691	-0.1	-0.8
21	Kentucky	-119,593	-51,996	-25.1	-11.1
22	Louisiana	-12,710	-32,694	-1.7	-7.8
23	Maine	-26	0	-0.0	0.0
24	Maryland	-37,725	-165,150	-18.2	-62.5
25	Massachusetts	-395	-989	-0.2	-1.1
26	Michigan	-31,084	-10,901	-4.9	-2.0
27	Minnesota	-61,836	-14,229	-16.2	-10.2
28	Mississippi	-23,531	0	-8.2	0.0
29	Missouri	-69,868	-48,690	-19.2	-10.7
30	Montana	-4	-205	-0.0	-0.4
31	Nebraska	-95	-239	-0.1	-0.2
32	Nevada	386	127	0.3	0.5
33	New Hampshire	-519	-1,663	-1.0	-1.6
34	New Jersey	-18,325	-15,758	-5.4	-7.5
35	New Mexico	-21	0	-0.0	0.0
36	New York	-7,686	-100,351	-1.7	-19.7
37	North Carolina	-65	0	-0.0	0.0
38	North Dakota	6,962	-92,914	4.2	-33.0
39	Ohio	-148,085	-890,498	-19.9	-53.4
40	Oklahoma	1,018	0	0.3	0.0
41	Oregon	-19	0	-0.0	0.0
42	Pennsylvania	-128,267	-673,720	-16.5	-62.4
44	Rhode Island	64	0	0.3	0.0
45	South Carolina	-31,167	-36,765	-11.9	-13.1
46	South Dakota	5,860	-33,440	8.5	-54.1
47	Tennessee	-52,621	-47,952	-10.4	-9.8
48	Texas	-2,679	-86,040	-0.2	-10.1
49	Utah	0	0	0.0	0.0
50	Vermont	0	0	0.0	0.0
51	Virginia	-21,994	-27,107	-5.6	-8.6
53	Washington	-110	0	-0.0	0.0
54	West Virginia	-113,801	-329,564	-35.1	-50.1
55	Wisconsin	-37,351	-13,084	-9.7	-3.7
56	Wyoming	0	-0	0.0	-0.0

	Та	able 25. IAC	QR 2015 Co	ntrol EGU	Annual Emi	ssions (To	ns)	
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3
01	Alabama	1,165	59,250	31,101	334,173	8,699	4,587	9
04	Arizona	677	85.861	29,738	47.779	3.773	2.082	4
05	Arkansas	405	8.587	9.736	77.935	2.089	1.471	3
06	California	1.389	19,586	72.692	17.317	2,789	1,495	465
08	Colorado	464	83,648	9,944	73,089	1,621	915	4
09	Connecticut	100	5.269	6,119	5.318	831	285	0
10	Delaware	92	9.088	2,707	34,574	710	342	1
11	DC	1	78	127	0	2	2	0
12	Florida	1.703	54,558	54,143	173,799	9,500	4.311	325
13	Georgia	1.203	51.838	25,151	196.833	10.647	5.274	10
16	Idaho	22	1,229	2,428	0	41	41	0
17	Illinois	1.569	96.049	13,039	262,563	6.918	3,987	11
18	Indiana	1 750	77,976	16 421	335 700	13 001	7 060	37
19	lowa	454	39,694	4.268	164,217	3,132	1,937	4
20	Kansas	543	101,556	4,459	59,532	2.841	1,759	5
21	Kentucky	1 371	54 871	14 578	288.002	8,960	4 135	11
22	Louisiana	407	14 549	13 669	79 841	3 546	1,100	3
23	Maine	49	2 138	4 640	3 210	350	148	0
24	Maryland	432	24 707	5 402	39 592	3 490	1 492	4
25	Massachusetts	261	11 289	14 033	10 117	1 244	676	22
26	Michigan	1 045	99,367	16,329	385 221	6 267	3 624	33
27	Minnesota	500	44 813	4 530	79 335	3 118	1 622	4
28	Mississinni	380	14 583	19 887	43 279	2 265	1,022	2
20	Missouri	1 188	73 163	11 130	289 353	4 042	2 759	9
30	Montana	224	38 547	2 474	17 031	2 882	1 386	2
31	Nebraska	303	58 001	2,777	97 391	1 289	886	2
32	Nevada	300	41 649	8 520	17 506	2 641	1 4 1 4	11
33	New Hampshire	109	3 124	4 403	5 602	324	235	0
34	New Jersey	223	14 368	8 18/	21 186	2 247	881	2
35	New Mexico	366	76 710	3 322	48 577	1 941	920	7
36	New York	663	57 818	26 997	117 490	3 986	1 959	75
37	North Carolina	1 052	54 849	12 909	144 369	9,000	4 192	10
38	North Dakota	717	84 890	8 259	68 024	3 464	1,102	6
39	Ohio	1 752	102 175	18 924	312 501	15 784	7 204	16
40	Oklahoma	703	87 241	18 259	131 902	2 795	1,201	86
41	Oregon	140	13 504	10,200	15 187	395	325	0
42	Pennsylvania	1 496	79.078	22 162	176 683	15 218	6 460	13
44	Rhode Island	29	1 985	3 204	0	54	54	0
45	South Carolina	521	30 780	7 809	145 254	9 852	4 489	5
46	South Dakota	97	17 613	841	2 865	501	111	1
47	Tennessee	757	31 580	6 267	192 4 19	3 996	2 104	7
48	Texas	3 716	160 282	111 554	365 440	19 983	12 630	415
49	Litah	369	69 400	3 108	31 541	2 330	1 042	3
50	Vermont	000	00,400 4	5,100	01,041	2,000	1,042	0
51	Virginia	487	33 70/	8 38/	117 255	5 756	2 1/9	1
53	Washington		26 23/	15 112	5 050	780	613	4
54	West Virginia	1 100	20,204	0.0/2	138 781	10 064	1 706	9
55	Wisconsin	680	60 126	0 036	182 17/	2 0.304	1 022	۱۱ ۵
56	Wyoming	509	00,420 00 502	9,030	102,174	2,923	2 000	5
50	v v yonning	500	90,002	4,240	40,192	5,140	2,090	5
	Total	33,846	2,304,175	713,590	5,401,704	223,046	113,828	1,663

	Tabl	e 26. IAQR	2015 Contr	ol All Secto	ors Annual E	Emissions (Tons)	
FIPS	State	VOC	NOx	CO	SO2	PM-10	PM-2.5	NH3
01	Alabama	317,563	343 540	2,488,487	514,583	249,448	112,762	100,922
04	Arizona	239.570	393.546	1.500.063	179.824	180.088	101.054	39.324
05	Arkansas	191.875	154.249	1.206.448	118.547	175.813	65.878	177.308
06	California	916,939	804,329	6,402,367	90,479	427,435	167,039	232,206
08	Colorado	231,122	294,738	1,291,182	95,613	190,367	58,377	102,622
09	Connecticut	103,557	73,185	681,255	14,211	40,319	10,867	10,578
10	Delaware	42,687	51,255	278,051	83,740	17,547	9,020	15,546
11	DC	13,093	11,099	67,137	8,243	2,451	1,073	1,741
12	Florida	717,941	510,410	6,673,377	331,641	309,801	128,836	101,959
13	Georgia	443,198	391,862	3,813,050	305,038	406,655	192,600	127,649
16	Idaho	102,839	75,745	958,915	37,289	171,718	70,088	63,021
17	Illinois	558,893	601,195	2,889,901	588,671	366,686	122,506	176,256
18	Indiana	374,353	339,747	2,582,125	497,034	205,441	61,791	119,981
19	Iowa	192,598	188,558	1,085,118	265,277	168,146	45,105	323,979
20	Kansas	186,065	398,762	1,107,743	80,667	231,760	62,247	229,413
21	Kentucky	267,294	300,911	1,477,033	393,843	141,016	57,954	96,650
22	Louisiana	300,121	673,312	2,432,795	401,697	197,654	98,975	156,071
23	Maine	75,514	52,084	533,854	37,076	33,000	15,482	8,571
24	Maryland	132,917	144,255	1,184,018	71,839	80,188	22,702	34,983
25	Massachusetts	195,675	162,092	1,244,130	88,359	85,747	29,067	17,397
26	Michigan	517,694	556,341	3,533,766	558,632	194,303	70,790	77,313
27	Minnesota	329,322	274,900	1,772,014	128,779	338,584	102,046	202,144
28	Mississippi	257,901	237,667	1,450,368	212,853	165,173	72,274	108,044
29	Missouri	287,089	255,856	1,837,538	456,717	389,494	96,391	222,350
30	Montana	79,557	125,799	640,558	55,273	174,069	56,174	88,620
31	Nebraska	123,110	164,217	675,326	115,949	172,024	38,041	228,898
32	Nevada	73,917	104,018	581,044	25,854	62,987	19,553	17,412
33	New Hampshire	60,850	44,986	424,728	105,965	23,139	10,010	4,024
34	New Jersey	305,053	287,082	1,507,554	189,103	112,182	45,495	20,045
35	New Mexico	107,739	226,396	865,525	178,332	265,836	57,546	47,587
36	New York	536,225	377,804	3,297,758	404,687	252,876	102,282	73,602
37	North Carolina	572,476	312,668	3,255,376	280,562	227,066	108,228	189,231
38	North Dakota	77,205	159,882	309,614	188,505	106,028	25,205	88,475
39	Ohio	513,543	503,925	4,047,280	717,725	261,500	101,811	102,721
40	Oklahoma	205,318	338,513	1,655,890	181,516	262,985	61,179	215,918
41	Oregon	204,482	162,695	1,848,682	44,487	266,643	134,886	63,637
42	Pennsylvania	450,163	566,685	3,585,311	403,482	224,494	94,413	106,047
44	Rhode Island	31,975	18,653	185,923	9,438	10,583	4,407	2,404
45	South Carolina	275,514	196,753	1,776,882	230,108	142,960	60,665	36,504
46	South Dakota	60,681	64,553	318,803	29,637	116,048	26,408	127,875
47	Tennessee	459,583	382,638	2,384,080	381,946	162,015	71,624	89,015
48	Texas	1,099,908	1,398,581	6,148,727	738,673	962,665	248,691	483,045
49	Utah	127,299	186,320	985,579	77,262	100,324	40,801	34,824
50	Vermont	36,215	25,972	238,251	15,386	23,032	8,051	9,695
51	Virginia	371,947	317,920	2,318,107	248,341	187,067	57,758	81,386
53	Washington	268,587	248,329	2,387,703	73,746	140,638	61,714	62,576
54	West Virginia	108,428	188,356	712,052	247,566	73,587	32,554	19,339
55	Wisconsin	321,293	293,381	1,754,133	322,193	147,223	56,898	128,786
56	Wyoming	47,887	247,890	378,800	124,875	208,557	54,755	47,589
	Total	13,514,774	14,233,656	90,774,422	10,951,264	9,455,366	3,354,073	5,115,282

FIPS	State	NOx Tons Delta	SO2 Tons Delta	NOx % Delta	SO2 % Delta
01	Alabama	-69,341	-81,812	-16.8	-13.7
04	Arizona	-115	0	-0.0	0.0
05	Arkansas	-44,199	-44,732	-22.3	-27.4
06	California	-10	0	-0.0	0.0
08	Colorado	16	0	0.0	0.0
09	Connecticut	9	-966	0.0	-6.4
10	Delaware	-1.756	-13,701	-3.3	-14.1
11	DC	-8	0	-0.1	0.0
12	Florida	-116.245	-56.496	-18.6	-14.6
13	Georgia	-101.457	-403,482	-20.6	-56.9
16	Idaho	0	0	0.0	0.0
17	Illinois	-83.532	-276.643	-12.2	-32.0
18	Indiana	-167,868	-195,863	-33.1	-28.3
19	lowa	-51,111	-13,824	-21.3	-5.0
20	Kansas	-469	-5 784	-0.1	-6.7
21	Kentucky	-145 860	-75 164	-32.6	-16.0
22	Louisiana	-35 615	-32 694	-5.0	-7.5
23	Maine	00,010	02,001	0.0	0.0
24	Maryland	-37 331	-189 987	-20.6	-72.6
25	Massachusetts	-634	-6 142	-0.4	-6.5
26	Michigan	-31 747	-5 531	-5.4	-1.0
27	Minnesota	-63 409	-13 495	-18 7	-9.5
28	Mississinni	-30,356	-30 187	-11.3	-12.4
20	Missouri	-71 903	_28 203	-21.0	-5.8
30	Montana	0	-686	0.0	-1.2
31	Nebraska	181	000	0.0	0.0
32	Nevada	365	191	0.1	0.0
33	New Hampshire	-689	-1 687	-15	-1.6
34	New Jersey	-16 345	-18.051	-5.4	-8.7
35	New Mexico	173	0	0.1	0.0
36	New York	-12 643	-96 587	-3.2	-19 3
37	North Carolina	-8 623	0	-2.7	0.0
38	North Dakota	4 348	-103 971	2.1	-35 5
30	Ohio	-159 256	-735.079	-24.0	-50.6
40	Oklahoma	530	-1 107	0.2	-0.6
40	Oregon	000	0	0.0	0.0
42	Pennsylvania	-135 949	-635 927	-19.3	
44	Rhode Island	-4	000,027	-0.0	01.2
45	South Carolina	-35 463	-50 287	-15.3	-17 9
46	South Dakota	4 060	-39 254	6.7	-57.0
47	Tennessee	-71 134	-117 207	-15 7	-23.5
48	Техая	-41 003	-121 628	-2.8	
40	Litah	-2	0	-0.0	0.0
50	Vermont	-2	0	0.0	0.0
51	Virginia	-24 155	-69 243	_7 1	
53	Washington	_102	0	_0.0	0.0
54	West Virginia	-112 373	-346,336	-37 4	58.3
55	Wisconsin	-43 043	-7.378	-12 8	
56	Wyoming	10,040	_1 448	0.0	
~~	T . (. I			5.0	1.1
	Total	-1,704,065	-3,820,393	-10.7	-25.9

	Table 28. NOx Comparison of 2010 Base-1 Versus 2010 Base-2											
		2010 Base-2	2010 Base-1	Base-2 Minus	2010 Base-1 All	Base-2 Minus						
FIPS	State	EGUs (tpy)	EGUs (tpy)	Base-1 (tpy)	Sectors (tpy)	Base-1 (% of All)						
01	Alabama	134,134	129,543	4,590	448,379	1.0						
04	Arizona	84,567	88,190	-3,623	419,331	-0.9						
05	Arkansas	52,511	52,570	-58	221,152	-0.0						
06	California	17,671	18,221	-550	962,878	-0.1						
08	Colorado	82,714	87,047	-4,333	329,420	-1.3						
09	Connecticut	5,168	6,682	-1,514	93,065	-1.6						
10	Delaware	10,271	11,503	-1,232	61,091	-2.0						
11	DC	42	70	-28	13,062	-0.2						
12	Florida	161,846	162,927	-1,082	717,038	-0.2						
13	Georgia	150,582	152,535	-1,953	554,251	-0.4						
16	Idaho	1,197	1,398	-201	87,400	-0.2						
17	Illinois	171,443	194,241	-22,798	772,917	-2.9						
18	Indiana	239,713	223,339	16,373	539,885	3.0						
19	Iowa	86,090	95,351	-9,261	272,135	-3.4						
20	Kansas	100.942	101.358	-416	423.001	-0.1						
21	Kentucky	195.883	186.325	9,558	466.794	2.0						
22	Louisiana	49,767	64,710	-14.943	759 667	-2.0						
23	Maine	2,103	6.047	-3.944	65,930	-6.0						
24	Maryland	60,629	60,515	114	207.629	0.1						
25	Massachusetts	10,392	27 805	-17 412	215 245	-8.1						
26	Michigan	125 394	126 212	-818	637 307	-0.1						
27	Minnesota	104 535	109 707	-5 173	386 635	-1.3						
28	Mississinni	43 163	49 726	-6 563	294 404	_2.2						
29	Missouri	137 009	144 698	-7 689	371 257	-2.1						
30	Montana	38 465	38 528	-64	136 477	-0.0						
31	Nebraska	57 826	58 111	-285	183 071	-0.2						
32	Nevada	37 403	44 778	-7 375	120 865	-6.1						
33	New Hampshire	3 647	3 031	616	53 128	12						
34	New Jersev	29 322	39,956	-10 634	350 274	-3.0						
35	New Mexico	76 400	77 261	-861	243 643	-0.4						
36	New York	68 / 13	58 665	9 749	455 895	2.1						
37	North Carolina	62 069	64 705	-2 636	375 086	_0.7						
38	North Dakota	77 927	81 003	-2,000	167 762							
30	Ohio	266 798	249 054	17 743	726 942	-1.5						
40	Oklahoma	82 115	97 721	-15 607	378 667							
40 //1	Oregon	13 3/6	18 0/18	-13,007	194 694							
42	Pennsylvania	209 760	212 124	-4,701	780 671	-2.4						
7 <u>7</u> 11	Phode Island	1 440	1 3/3	-2,304	22 884	-0.3						
44	South Carolina	64 727	67 477	2 740	22,004	1.0						
45	South Dakota	11 749	13 8/6	-2,740	203,002	-1.0						
40	Toppossoo	102 910	106 702	-2,099	7 1,034 509 926	-3.0						
47	Termessee	102,019	246.216	-3,003	1 644 945	-0.0						
40	litab	200,909	240,210	-45,306	1,044,045	-2.0						
49 50	Varmant	09,308	08,411	957	204,124	0.5						
50	Vermont	55 520	18	-17	32,103	-0.1						
51		55,530	55,794	-264	391,576	-0.1						
53	vvasnington	28,432	26,567	1,865	289,910	0.6						
54	vvest virginia	155,157	142,549	12,608	311,427	4.0						
55	vvisconsin	111,540	116,180	-4,640	389,753	-1.2						
56	vvyoming	90,500	90,261	239	252,948	0.1						
	Total	3,943,438	4,079,159	-135,721	17,870,168	-0.8						

	Table 29. SO2 Comparison of 2010 Base-1 Versus 2010 Base-2												
		2010 Base-2	2010 Base-1	Base-2 Minus	2010 Base-1 All	Base-2 Minus							
FIPS	State	EGUs (tpy)	EGUs (tpy)	Base-1 (tpy)	Sectors (tpy)	Base-1 (% of All)							
01	Alabama	473,043	494,704	-21,661	670,087	-3.2							
04	Arizona	47,779	47,779	0	174,212	0.0							
05	Arkansas	122,667	119,310	3,357	158,739	2.1							
06	California	17,317	17,317	0	88,393	0.0							
08	Colorado	73,089	90,389	-17,300	112,175	-15.4							
09	Connecticut	6,284	6,579	-295	15,310	-1.9							
10	Delaware	46,355	36,760	9,595	85,766	11.2							
11	DC	0	0	0	8,031	0.0							
12	Florida	233,241	230,295	2,946	382,317	0.8							
13	Georgia	609,154	609,978	-825	713,164	-0.1							
16	Idaho	0	0	0	35,953	0.0							
17	Illinois	600,836	591,479	9,357	907,935	1.0							
18	Indiana	670,365	599,035	71,330	755,333	9.4							
19	Iowa	169,861	186,213	-16,351	285,790	-5.7							
20	Kansas	63,532	71,466	-7,934	92,045	-8.6							
21	Kentucky	363,145	393,296	-30,151	496,556	-6.1							
22	Louisiana	112,534	96,341	16,194	405,498	4.0							
23	Maine	3,210	4,707	-1,496	38,120	-3.9							
24	Maryland	232,229	261,406	-29,177	293,502	-9.9							
25	Massachusetts	15,650	17,723	-2,073	96,111	-2.2							
26	Michigan	387,627	375,812	11,815	545,803	2.2							
27	Minnesota	91,561	94,176	-2,615	142,663	-1.8							
28	Mississippi	73,467	84,629	-11,163	247,251	-4.5							
29	Missouri	293,093	261,017	32,076	423,106	7.6							
30	Montana	17,923	17,718	205	54,229	0.4							
31	Nebraska	97,630	97,151	478	115,345	0.4							
32	Nevada	16,408	56,670	-40,262	64,602	-62.3							
33	New Hampshire	7,289	7,289	-0	106,284	-0.0							
34	New Jersey	41,255	85,348	-44,092	252,992	-17.4							
35	New Mexico	48,577	48,274	302	173,421	0.2							
36	New York	214,077	211,427	2,651	505,572	0.5							
37	North Carolina	219,369	221,529	-2,161	353,001	-0.6							
38	North Dakota	160,938	172,194	-11,256	292,851	-3.8							
39	Ohio	1,258,684	979,332	279,352	1,387,034	20.1							
40	Oklahoma	133,009	133,009	-0	180,781	-0.0							
41	Oregon	15,187	15,187	0	43,838	0.0							
42	Pennsylvania	853,431	670,161	183,270	896,553	20.4							
44	Rhode Island	0	0	0	9,495	0.0							
45	South Carolina	199,745	191,473	8,273	272,641	3.0							
46	South Dakota	36,304	42,118	-5,814	67,647	-8.6							
47	Tennessee	306,082	317,250	-11,168	502,859	-2.2							
48	Texas	487,740	539,915	-52,175	903,844	-5.8							
49	Utah	31,541	31,240	301	75,308	0.4							
50	Vermont	0	0	0	15,148	0.0							
51	Virginia	187,772	180,633	7,139	308,230	2.3							
53	Washington	5,959	5,960	-0	71,365	-0.0							
54	West Virginia	550,629	456,778	93,852	564,118	16.6							
55	Wisconsin	214,063	217,221	-3,159	353,005	-0.9							
56	Wyoming	47,276	47,120	156	124,422	0.1							
	Total	9,856,926	9,435,405	421,521	14,868,447	2.8							

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix B

CAMx Model Performance Evaluation

Introduction

An operational model performance evaluation for surface ozone for the five episodes was performed in order to estimate the ability of the modeling system to replicate base year ozone concentrations. This evaluation is comprised principally of statistical assessments of model versus observed pairs. The robustness of an operational evaluation is directly proportional to the amount and quality of the ambient data available for comparison.

a. Statistical Definitions

Below are the definitions of those statistics used for the evaluation. The format of all the statistics is such that negative values indicate model ozone predictions that were less than their observed counterparts. Positively-valued statistics indicate model overestimation of surface ozone. Statistics were not generated for the first three days of an episode to avoid the initialization period. The statistics were calculated for (a) the entire HDE domain, (b) four quadrants (Midwest, Northeast, Southeast, Southwest), and (c) 51 local areas. The statistics that were calculated for each of these sets of areas are described below.

<u>Domainwide unpaired peak prediction accuracy</u>: This metric simply compares the peak concentration modeled anywhere in the selected area against the peak ambient concentration anywhere in the same area. The difference of the peaks (model - observed) is then normalized by the peak observed concentration.

<u>Peak prediction accuracy</u>: This metric averages the paired peak prediction accuracy calculated for each monitor in the subregion. It characterizes the capacity of the model to replicate peak (afternoon) ozone over a subregion. The daily peak model versus daily peak observed residuals are paired in space but not in time.

<u>Mean normalized bias</u>: This performance statistic averages the normalized (by observation) difference (model - observed) over all pairs in which the observed values were greater than 60 ppb. A value of zero would indicate that the model over predictions and model under predictions exactly cancel each other out.

<u>Mean normalized gross error</u>: The last metric used to assess the performance of the HDE base cases is similar to the above statistic, except in this case it is the absolute value of the residual which is normalized by the observation, and then averaged over all sites. A zero gross error value would indicate that all model concentrations (in which their observed counterpart was greater than 60 ppb) exactly matched the ambient values.

b. Domainwide Model Performance

As with previous regional photochemical modeling studies, the degree that model predictions replicate observed concentrations varies by day and location over the large eastern U.S. modeling domain. From a qualitative standpoint, there appears to be considerable

similarity on most days between the observed and simulated ozone patterns. Additionally, where possible to discern, the model appears to follow the day-to-day variations in synoptic-scale ozone fairly closely. More quantitative comparisons of the model predictions and ambient data are provided below.

When all hourly observed ozone values (greater than 60 ppb) are compared to their model counterparts for the 30 episode modeling days in the eastern U.S. simulations, the mean normalized bias is -1.1 percent and the mean normalized gross error is 20.5 percent As shown in Table III-3, the model generally underestimates observed ozone values for the June and July episodes, but predicts higher than observed amounts for the August episode.

	Average Accuracy of the Peak	Mean Normalized Bias	Mean Normalized Gross Error
June 1995	-7.3	-8.8	19.6
July 1995	-3.3	-5.0	19.1
August 1995	9.6	8.6	23.3

Table III-3. Performance statistics for hourly ozone in the Eastern U.S. CAMx simulations.

Depending on the episode and region, the normalized biases can range from an underestimation of 18 percent to an overestimation of 16 percent. Gross errors tend to average between 17 and 25 percent. As shown in Table III-4, when the model domain is subdivided into four quadrants, it is found that most of the underestimations in the June and July episodes are driven by the Northeast and Midwest quadrants (i.e., the two northern ones). Conversely, most of the overestimated ozone in the August episode is due to the Midwest, Southeast and Southwest quadrants. Hourly ozone is consistently underestimated in the Northeast quadrant. The model does slightly better in replicating the peak values for each monitoring site than it does at replicating the mean values, especially in the Northeast where the underpredictions are not as large for the highest ozone observations.

	Averag	Average Accuracy of the Peak			Mean Normalized Bias			Mean Normalized Gross Error		
	June	July	August	June	July	August	June	July	August	
Whole Grid	-7.3	-3.3	9.6	-8.8	-5.0	8.6	19.6	19.1	23.3	
Northeast	-14.7	-5.0	-4.3	-18.4	-7.2	-6.0	24.7	19.1	22.6	
Midwest	-7.3	-6.2	15.5	-8.7	-7.2	15.5	18.0	19.4	23.7	
Southeast	-2.9	1.9	15.1	-3.0	1.3	14.7	17.4	19.1	24.1	
Southwest	-0.9	1.3	7.0	0.7	3.1	10.3	19.0	20.0	22.6	

Table III-4. Regional/Episodic performance statistics for IAQR hourly ozone predictions.

At present, there are no accepted criteria by which one can determine if a regional ozone

modeling exercise is exhibiting adequate model performance. As a result, EPA compares the evaluation results of regional models against applicable previous analyses. For instance, the Heavy Duty Engine (HDE) base case simulations were determined to be appropriate for use based on comparisons to previously accepted modeling analyses (e.g., OTAG and Tier-2). Model performance in the base year IAQR simulations is generally similar or better than its predecessor regional ozone modeling efforts. In particular, the gross error metric is almost universally improved in the more recent IAQR modeling. In general, the IAQR CAMx modeling results are approximately 3-6 ppb higher on average than what was generated in the HDE/UAM-V modeling. In some previous regional modeling applications, there had been a tendency for the model to underestimate ozone in the early parts of an episode and then overestimate ozone at the end of an episode. The trend toward positive bias would increase throughout the episode, which may be a sign of an imbalance in the model chemistry which in turn could affect control strategy signal. In general, there does not appear to be an issue with bias creep in the base case IAQR modeling. Finally, as noted above, the IAQR base case CAMx modeling has been used before to support proposed emission control regulations (i.e., Clear Skies and the Non-Road rulemaking).

Table III-5 presents the results from the eight-hourly ozone evaluation. In general, the gross error is noticeably less for the eight-hour ambient versus observed ozone comparisons. However, the eight-hour ozone model predictions are large overestimates of the actual observed values for the August episode, especially outside of the Northeast quadrant.

	Averag	Average Accuracy of the Peak			Mean Normalized Bias			Mean Normalized Gross Error		
	June	July	August	June	July	August	June	July	August	
Whole Grid	-3.9	0.9	13.9	-5.7	-2.1	11.0	17.5	16.4	22.6	
Northeast	-13.5	-2.4	-1.6	-15.4	-4.9	-3.8	21.3	14.6	20.8	
Midwest	-4.0	-0.9	20.6	-5.8	-4.4	17.6	16.0	16.7	23.7	
Southeast	1.3	5.3	20.5	0.9	4.0	18.4	16.4	17.5	24.1	
Southwest	5.0	8.2	16.2	3.9	3.6	12.4	17.8	18.1	21.1	

 Table III-5.
 Regional/Episodic performance statistics for IAQR 8-hourly ozone predictions.

c. Local-scale Model Performance

The CAMx modeling results were also evaluated at a "local" level. For this analysis, the modeling domain was broken up into 51 local subregions as shown in Figure III-2. The primary statistics for each of the 51 subregions is shown in Table III-6.

As noted above, there is no set of established statistical benchmarks to determine the adequacy of a regional modeling operation evaluation. If one were to evaluate the performance

of the 1995 eastern base cases against existing EPA requirements for acceptable levels of accuracy, bias, and error in local attainment demonstration modeling, 69% of the regions would pass for the June episode, 80% of the regions would pass for the July episodes, and 61% of the regions would pass for the August episode. This is an improvement from the HDE base case analyses where the numbers were: 57%, 45%, and 55%, respectively. The local eight-hour metrics (not shown) generally do not greatly differ from their hourly counterparts. There is a slight tendency toward greater overprediction of the eight-hourly values.

	Average	Average Accuracy of the Peak		Mean I	Normalize	ed Bias	Mean Normalized Gross Error		
	June	July	August	June	July	August	June	July	August
Dallas	-9.6	-12.3	2.2	-10.6	-11.5	3.2	16.6	18.7	15.7
Houston/Galveston	-3.0	-5.1	0.3	-3.5	-3.9	2.2	20.8	19.0	25.7
Beaumont/Port	14.0	16.7	8.8	16.0	19.3	12.9	20.4	24.5	24.6
Baton Rouge	15.6	24.7	31.4	22.6	26.6	37.4	26.1	31.0	40.5
New Orleans	15.6	29.1	42.1	15.9	28.9	48.9	21.9	32.0	50.2
St. Louis	-0.5	-4.0	8.4	-0.6	0.6	10.5	17.0	18.4	18.2
Memphis	-7.7	-4.9	13.7	-5.9	-0.3	13.6	15.5	19.3	22.0
Alabama	5.2	-1.7	16.0	6.5	6.7	23.1	14.4	16.6	25.2
Atlanta	-3.1	5.4	19.0	-3.4	6.8	26.1	16.7	20.1	31.0
Nashville	-2.9	7.8	31.5	-2.4	9.1	36.1	18.1	24.7	37.4
Eastern TN	-14.2	-16.0	-2.7	-21.0	-17.1	-5.9	22.7	20.7	18.3
Charlotte	8.3	-2.1	6.0	5.8	4.1	14.5	13.0	16.3	18.2
Greensboro	-1.7	-1.1	17.2	-4.2	1.2	18.2	14.1	15.3	21.7
Raleigh-Durham	-11.8	1.3	-2.3	-10.7	4.2	-1.9	14.6	13.9	16.9
Evansville/Owensbor	1.2	-0.9	28.3	4.5	5.4	32.8	15.1	21.2	33.9
Indianapolis	-8.3	-13.5	15.9	-3.6	-14.4	18.0	13.1	19.3	19.7
Louisville	2.8	4.2	36.6	4.8	6.1	42.1	14.7	17.9	42.5
Cincinnati/Dayton	-4.7	-8.5	29.0	0.1	-5.6	32.7	12.8	19.1	33.5
Columbus	-8.5	-14.5	9.2	-6.2	-11.0	14.2	14.6	17.3	18.7
West Virginia	-8.8	-5.7	12.7	-7.5	-3.2	13.7	15.7	16.6	24.5
Chicago	-9.9	-4.3	10.4	-17.1	-11.1	3.5	24.5	23.5	22.3
Milwaukee	-14.8	-12.9	21.5	-16.5	-16.9	12.3	19.1	23.3	18.2
Muskegon/Grand Rapids	-10.8	-12.3	3.1	-11.6	-12.9	1.7	17.7	20.4	16.4

 Table III-6.
 Local performance statistics for IAQR hourly ozone predictions.

Gary/South Bend	-13.0	-10.0	11.8	-15.0	-14.5	9.3	19.2	24.4	20.7
Detroit	-17.2	-5.8	3.9	-20.1	-13.2	-3.2	25.1	22.5	23.4
Pittsburgh	-10.0	-3.2	9.2	-9.2	-2.1	7.9	23.1	16.1	20.4
Central PA	-6.0	-7.6	1.0	-8.5	-6.0	1.1	21.9	15.5	18.6
Norfolk	-9.0	0.0	8.3	-13.4	-5.6	5.7	19.1	18.6	24.7
Richmond	-1.2	4.8	2.6	-1.3	10.7	4.5	8.4	18.3	20.3
Baltimore/Washingto	-4.7	-3.1	1.7	-6.8	-5.2	0.7	18.6	15.6	23.4
Delaware	-6.1	-5.2	2.3	-6.3	-0.2	7.5	12.9	11.6	16.2
Philadelphia	-14.1	-1.8	-8.7	-22.0	-10.5	-13.9	26.4	19.5	28.9
New York City	-16.2	-3.9	-12.2	-24.6	-14.1	-17.9	31.3	22.5	29.8
Hartford	-16.9	-5.0	-9.9	-18.5	-4.0	-7.7	23.6	18.2	20.1
Boston	-13.7	-4.7	-15.6	-19.6	-9.2	-19.6	25.9	20.9	26.5
Maine	-20.4	-4.7	-6.9	-25.0	-9.4	-6.9	25.3	19.0	15.5
Longview/Shreveport	-2.1	11.3	7.7	0.8	11.1	11.4	16.2	16.5	17.9
Kansas City	-8.5	-7.8	-4.3	-7.9	-1.5	-8.3	15.7	13.0	12.4
Western NY	-23.1	-20.6	-9.0	-25.6	-20.5	-12.1	28.1	23.8	19.0
Northeast OH	-4.0	-6.5	6.9	-6.6	-6.8	7.7	20.4	15.5	16.5
South Carolina	-2.5	1.3	11.4	-3.4	1.5	15.7	12.5	17.7	19.4
Gulf Coast	0.5	23.1	29.3	4.5	30.0	33.7	15.4	31.6	34.9
FL West Coast	-6.4	22.8	41.2	-7.3	11.9	42.8	11.3	22.7	43.7
FL East Coast	-15.9	16.2	23.3	-16.8	16.6	26.3	18.0	18.4	29.4
Jackson	0.6	10.9	21.0	1.8	10.0	24.0	16.0	16.0	24.9
Central MI	-6.9	-10.4	12.0	-9.6	-14.8	6.6	18.1	18.7	17.5
Macon/Columbus	-9.5	-11.1	21.6	-8.8	-5.7	26.4	10.9	13.0	26.9
Austin/San Antonio	-14.1	-19.6	-1.9	-11.0	-15.5	4.1	14.1	17.2	12.4
Oklahoma	-12.3	-5.6	-5.2	-12.9	-3.2	-2.8	17.2	14.6	12.6
Ft. Wayne/Lima	-9.1	-13.1	3.9	-8.3	-14.1	5.1	16.0	18.2	10.6
Bangor/Hancock Co.	-17.8	-6.9	-17.7	-24.4	-8.5	-19.9	25.2	15.3	21.0

Figure III-2. Map of the 51 local-scale evaluation zones.
Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix C

REMSAD Model Performance Evaluation

Introduction

This evaluation of REMSAD is comprised principally of statistical assessments of model versus observed pairs. The robustness of any evaluation is directly proportional to the amount and quality of the ambient data available for comparison. Unfortunately, there are few PM2.5 monitoring networks with available data for this evaluation. Critical limitations of the 1996 databases are a lack of urban monitoring sites with speciated measurements and poor geographic representation of ambient concentration in the East. PM2.5 monitoring networks were expanded in 1999 to include more than 1000 Federal Reference Method (FRM) monitoring sites. The purpose of this network is to monitor PM2.5 mass levels in urban areas. These monitors only measure total PM2.5 mass and do not measure PM species. In 2001 a new network of ~300 urban oriented speciation monitor sites began operation across the country. These monitors collect a full range of PM2.5 species that are necessary to evaluate models and to develop PM2.5 control strategies. Future modeling efforts will be able to take advantage of these newer speciated PM2.5 measurements.

The evaluation used data from the IMPROVE, CASTNet dry deposition, and NADP monitoring networks (IMPROVE, 2000), (EPA, 2002), (NADP, 2003). The IMPROVE and NADP networks were in full operation during 1996. The CASTNet dry deposition network was partially shutdown during the first half of the year. There were 65 CASTNet sites with at least one season of complete data. There were 16 sites which had complete annual data. The CASTNet visibility network was also partially operating in 1996. Data from the 7 visibility sites is only complete from September-December. This only provides a single season (fall) of complete data. Therefore, the limited data from these sites was not used in the evaluation. The mercury deposition network (MDN) was in its first year of operation in 1996. There was not adequate data to fully evaluate the wet deposition of total mercury.

The largest available ambient database for 1996 comes from the Interagency Monitoring of **PRO** tected Visual Environments (IMPROVE) network. IMPROVE is a cooperative visibility monitoring effort between EPA, federal land management agencies, and state air agencies. Data is collected at Class I areas across the United States mostly at National Parks, National Wilderness Areas, and other protected pristine areas. There were approximately 60 IMPROVE sites that had complete annual PM2.5 mass and/or PM2.5 species data for 1996. Forty two sites were in the West¹ and 18 sites were in the East. Figure C-1 shows the locations of the IMPROVE monitoring sites used in this evaluation. IMPROVE data is collected twice weekly (Wednesday and Saturday). Thus, there is a total of 104 possible samples per year or 26 samples per season. For this analysis, a 50% completeness criteria was used². That is, in order to be counted in the statistics a site had to have > 50% complete data in all 4 seasons. If any season was missing, an annual average was not calculated for the site. See Appendix D for a list of the

¹The dividing line between the West and East was defined as the 100th meridian.

²The same completeness criteria was used for all of the monitoring networks.

IMPROVE sites used in the evaluation. The observed IMPROVE data used for the performance evaluation was PM2.5 mass, sulfate ion, nitrate ion, elemental carbon, organic aerosols, and crustal material (soils). The REMSAD model output species were postprocessed in order to achieve compatibility with the observation species. The following is the translation of REMSAD output species into PM2.5 and related species:

Sulfate Ion:	TSO4 = ASO4 + GSO4
Nitrate Ion:	PNO3
Organic aerosols:	TOA = 1.167*POA + SOA1 + SOA2 + SOA3 + SOA4
Elemental Carbon:	PEC
Crustal Material (soils):	PMFINE
PM2.5:	PM2.5= PMFINE + ASO4 + GSO4 + NH4S +
	PNO3 + NH4N + 1.167*POA + PEC +
	SOA1 + SOA2 + SOA3 + SOA4

where, TSO4 is total sulfate ion, ASO4 is aqueous path sulfate, GSO4 is gaseous path sulfate, NH4S is ammonium associated with sulfate, PNO3 is nitrate ion, NH4N is ammonium associated with nitrate, TOA is total organic aerosols, POA is primary organic aerosol³, SOA1 and SOA2 are anthropogenic secondary organic aerosol, SOA3 and SOA4 are biogenic secondary organic aerosol, PEC is primary elemental carbon, and PMFINE is primary fine particles (other unspeciated primary PM2.5). PM2.5 is defined as the sum of the individual species.

³For the performance evaluation and the calculation of PM2.5 mass, POA is multiplied by 1.167. The IMPROVE organic carbon mass is multiplied by a 1.4 factor to account for additional mass attached to the carbon (this follows standard IMPROVE procedures). In REMSAD, the "additional" mass is already accounted for in the SOA predictions (by using a molecular weight of 160 g/mole). The POA emissions have been multiplied by1.2 prior to processing by the emissions model (the 1.2 factor is applied to the organic carbon in the PM2.5 speciation profiles). The post-processed POA concentrations are then multiplied by 1.167 to simulate an equivalent 1.4 factor ($1.2 \times 1.167 = 1.4$).

1996 IMPROVE Manitaring Sites

Figure C-1. Map of 1996 IMPROVE monitoring sites used in the REMSAD model performance evaluation.

Model performance was also calculated using data from the CASTNet dry deposition monitoring network. The sulfate and total nitrate data was used in the evaluation. CASTNet data is collected and reported as weekly average data. The data is collected in filter packs that sample the ambient air continuously during the week. The sulfate data is of high quality since sulfate is a very stable compound. But the particulate nitrate concentration data collected by CASTNet is subject to volatility due to the length of the sampling period. Therefore, we chose not to use the CASTNet particulate nitrate data in this evaluation. CASTNet also reports a total nitrate measurement. This is the combined total of particulate nitrate and nitric acid. Since the total nitrate measurement is not affected by the partitioning back and forth between particulate nitrate and nitric acid, it should be a fairly accurate measurement.

Wet deposition data from the National Acid Deposition Program (NADP) was also used in the model evaluation. There were a total of 160 NADP sites with complete annual data in 1996. Model results were compared to observed values of ammonium, sulfate, and nitrate wet deposition.

1. Statistical Definitions

Below are the definitions of statistics used for the evaluation. The format of all the statistics is such that negative values indicate model predictions that were less than their observed counterparts. Positive statistics indicate model overestimation of observed PM.. The statistics were calculated for the entire REMSAD domain and separated for the east and the west. The dividing line between East and West is the 100th meridian.

Mean Observation: The mean observed value (in $\mu g/m^3$) averaged over all monitored days in the year and then averaged over all sites in the region.

$$OBS = \frac{1}{N} \sum_{i=1}^{N} Obs_{x,t}^{i}$$

Mean REMSAD Prediction: The mean predicted value (in $\mu g/m^3$) paired in time and space with the observations and then averaged over all sites in the region.

$$PRED = \frac{1}{N} \sum_{i=1}^{N} Pred_{x,t}^{i}$$

Ratio of the Means: Ratio of the predicted over the observed values. A ratio of greater than 1 indicates on overprediction and a ratio of less than 1 indicates an underprediction.

$$RATIO = \frac{1}{N} \sum_{i=1}^{N} \frac{Pred_{x,t}^{i}}{Obs_{x,t}^{i}}$$

.

Mean Bias (\mu g/m^3): This performance statistic averages the difference (model - observed) over all pairs in which the observed values were greater than zero. A mean bias of zero indicates that the model over predictions and model under predictions exactly cancel each other out. Note that the model bias is defined such that it is a positive quantity when model prediction exceeds the observation, and vice versa. This model performance estimate is used to make statements about the absolute or unnormalized bias in the model simulation

$$BIAS = \frac{1}{N} \sum_{i=1}^{N} (Pred_{x,t}^{i} - Obs_{x,t}^{i})$$

Mean Fractional Bias (percent): Normalized bias can become very large when a minimum threshold is not used. Therefore fractional bias is used as a substitute. The fractional bias for cases with factors of 2 under- and over-prediction are -67 and + 67 percent, respectively (as

opposed to -50 and +100 percent, when using normalized bias, which is not presented here). Fractional bias is a useful model performance indicator because it has the advantage of equally weighting positive and negative bias estimates. The single largest disadvantage in this estimate of model performance is that the estimated concentration (i.e., prediction, Pred) is found in both the numerator and denominator.

$$FBLAS = \frac{2}{N} \sum_{i=1}^{N} \frac{(Pred_{x,t}^{i} - Obs_{x,t}^{i})}{(Pred_{x,t}^{i} + Obs_{x,t}^{i})} * 100$$

Mean Error (\mu g/m^3): This performance statistic averages the absolute value of the difference (model - observed) over all pairs in which the observed values were greater than zero. It is similar to mean bias except that the absolute value of the difference is used so that the error is always positive.

$$ERR = \frac{1}{N} \sum_{i=1}^{N} |Pred_{x,t}^{i} - Obs_{x,t}^{i}|$$

Mean Fractional Error (percent): Normalized error can become very large when a minimum threshold is not used. Therefore fractional error is used as a substitute. It is similar to the fractional bias except the absolute value of the difference is used so that the error is always positive.

$$FERROR = \frac{2}{N} \sum_{i=1}^{N} \frac{|Pred_{x,t}^{i} - Obs_{x,t}^{i}|}{Pred_{x,t}^{i} + Obs_{x,t}^{i}} * 100$$

Correlation Coefficient: This performance statistic measures the degree to which two variables are linearly related. A correlation coefficient of 1 indicates a perfect linear relationship, whereas a correlation coefficient of 0 means that there is no linear relationship between the variables.

$$CORRCOEFF = \frac{\sum_{i=1}^{N} (Pred_i - \overline{Pred}) (Obs_i - \overline{Obs})}{\sqrt{\sum_{i=1}^{N} (Pred_i - \overline{Pred})^2 \sum_{i=1}^{N} (Obs_i - \overline{Obs})^2}}$$

2. Results of REMSAD Performance Evaluation

The statistics described above are presented for the entire domain, the Eastern sites, and the Western sites. The statistics were calculated in two different ways. The bias, error, and R^2 statistics in the tables below were calculated for all days and all sites. Observations and model predictions were paired in time and space on a daily basis. These statistics represent the ability of the model to replicate each day of year with measurements.

Following the statistical tables are scatterplots of seasonal and annual average predictions at each ambient data site. These scatterplots represent the ability of the model to represent a seasonal average or annual average measurement. The correlation coefficients for the scatterplots represent the correlation of the site average (seasonal and/or annual) predictions to the site average measurements.

a. IMPROVE Performance

a.1. PM2.5 Performance

Table C-1 lists the performance statistics for PM2.5 at the IMPROVE sites. For the full domain, PM2.5 is underpredicted by 18%. Overall, the performance of REMSAD (v7.06) has improved from underpredicting PM2.5 by 34% in version 7.01. The ratio of the means is 0.82 with a bias of $-1.10 \ \mu g/m^3$. It can be seen that most of this underprediction is due to the Western sites. The West is underpredicted by 33% while the East is underpredicted by 2%. The fractional bias is ~9% in the East, while the fractional error is 46%. The fractional bias and error in the West is ~30% and 63% respectively. The observed PM2.5 concentrations in the East are relatively high compared to the West. REMSAD displays an ability to differentiate between generally high and low PM2.5 areas.

	No. of Sites	Mean REMSAD Predictions (µg/m ³)	Mean Observations (µg/m ³)	Ratio of Means (pred/o bs)	Bias (µg/m³)	Fractional Bias (%)	Error (µg/m ³)	Fractional Error (%)	Correla tion Coeffic ient
National	54	5.11	6.21	0.82	-1.10	-24.1	3.01	58.2	0.46
East	15	10.93	11.15	0.98	-0.22	-8.9	4.99	46.1	0.39
West	39	2.87	4.31	0.67	-1.44	-29.9	2.44	62.8	0.09

Figures C-2 and C-3 show the annual and seasonal average PM2.5 1996 IMPROVE observations versus REMSAD predictions respectively. The annual and seasonal scatterplots showed some scatter, but good agreement, with strong correlations (annual: $R^2 = 0.79$; summer: $R^2 = 0.69$; fall: $R^2 = 0.62$; spring: $R^2 = 0.60$; and winter: $R^2 = 0.78$).

Figure C-2. Annual average PM2.5 1996 IMPROVE observations versus REMSAD predictions.

Figure C-3. Seasonal average PM2.5 1996 IMPROVE observations versus REMSAD predictions.

a.2. Sulfate Performance

Table C-2 lists the performance statistics for particulate sulfate at the IMPROVE sites. Domainwide, sulfate is underpredicted by 21%. The annual average sulfate underprediction in the east is 12% and 41% in the West. The sulfate performance (especially in the East) is better than most of the other PM2.5 species. The fractional error in the East is ~60% and the R^2 is 0.51.

	No. of Sites	Mean REMSAD Predictions (µg/m ³)	Mean Observations (µg/m ³)	Ratio of Means (pred/obs)	Bias (µg/m ³)	Fractional Bias (%)	Error (µg/m ³)	Fractional Error (%)	Correlation Coefficient
National	58	1.25	1.59	0.79	-0.34	-40.7	0.80	69.3	0.66
East	16	3.47	3.93	0.88	-0.46	-29.8	1.80	60.2	0.51
West	42	0.41	0.69	0.59	-0.29	-44.8	0.41	72.8	0.13

Table C-2. Annual mean sulfate ion performance at IMPROVE sites.

Figures C-4 and C-5 show the annual and seasonal average sulfate 1996 IMPROVE observations versus REMSAD predictions respectively. The scatterplots and linear regressions displayed strong correlations (annual: $R^2 = 0.96$; summer: $R^2 = 0.92$; fall: $R^2 = 0.91$; spring: $R^2 = 0.90$; and winter: $R^2 = 0.86$).

Figure C-4. Annual average sulfate 1996 IMPROVE observations versus REMSAD predictions.

Figure C-5. Seasonal average sulfate 1996 IMPROVE observations versus REMSAD predictions.

Overall, the model shows an ability to replicate the annual and seasonal sulfate concentrations. This is particularly important for this application of REMSAD. The IAQR emissions controls mainly reduce SO_2 and lead to large predicted sulfate reductions. It is important to have good model performance for the species that is being reduced the most.

a.3. Elemental Carbon Performance

Table C-3 lists the performance statistics for primary elemental carbon at the IMPROVE sites. Elemental carbon concentrations at IMPROVE sites are relatively low, but performance is generally good. There is a domainwide underprediction of 14% and a western underprediction of 29%.

	No. of Sites	Mean REMSAD Predictions (µg/m ³)	Mean Observations (µg/m ³)	Ratio of Means (pred/obs)	Bias (µg/m ³)	Fractional Bias (%)	Error (µg/m ³)	Fractional Error (%)	Correlation Coefficient
National	47	0.27	0.32	0.86	-0.05	-13.6	0.17	58.7	0.33
East	15	0.49	0.48	1.01	0.01	1.78	0.20	41.7	0.47
West	32	0.17	0.24	0.71	-0.07	-20.9	0.16	66.7	0.07

Table C-3. Annual mean elemental carbon performance at IMPROVE sites.

Figures C-6 and C-7 show scatterplots of annual and seasonal average elemental carbon 1996 IMPROVE observations versus REMSAD predictions respectively. The annual scatterplot

and linear regression displayed some scatter, however good agreement with a R² of 0.53. Overall, summer and fall linear regressions had relatively good agreement (summer: R² = 0.63; fall: R² = 0.62), whereas spring and winter had the weakest correlations (spring: R² = 0.49; and winter: R² = 0.39).

Figure C-6. Annual average elemental carbon 1996 IMPROVE observations versus REMSAD predictions.

Figure C-7. Seasonal average elemental carbon 1996 IMPROVE observations versus REMSAD predictions.

a.4. Organic Aerosol Performance

Table C-4 lists the performance statistics for organic aerosols at the IMPROVE sites. Organic aerosols performance is generally good. The nationwide bias and errors are low. But the correlation coefficient is also low. There is much uncertainty in the predictions of organic carbon. There are several different forms of organic carbon predicted in the model. There is primary organic carbon, secondary biogenic organic carbon, and secondary anthropogenic organic carbon. Both the model and the ambient data contains a mix of these different types of organics which all originate from different sources. Unfortunately, given limitations in measurement techniques, it is currently not possible to quantify the different types of organic carbon in the ambient air.

This latest version of REMSAD (7.06) contains science updates and code fixes that result in predicted concentrations of secondary organic carbon that are much higher than in previous versions of REMSAD. The model predictions for organics are tempered by the fact that wildfires (a significant source of organic carbon) are not included in the current modeling inventory. The performance for organics should be viewed relative to the uncertainties in the measurements and the emissions inventories.

1 1010 0			Banne actione						
	No. of Sites	Mean REMSAD Predictions (µg/m ³)	Mean Observations (µg/m ³)	Ratio of Means (pred/obs)	Bias (µg/m ³)	Fractional Bias (%)	Error (µg/m ³)	Fractional Error (%)	Correlation Coefficient
National	47	1.76	1.76	1.00	0.004	-5.58	1.13	62.0	0.18
East	15	2.58	2.49	1.04	0.09	-11.83	1.42	54.7	0.21
West	32	1.38	1.42	0.97	-0.04	-2.64	1.00	65.4	0.10

Table C-4. Annual mean organic aerosol performance at IMPROVE sites.

Annual and seasonal scatterplots (Figures C-8 and C-9) of average organic aerosol for 1996 IMPROVE observations versus REMSAD predictions displayed some scatter, with an annual $R^2 = 0.40$ and seasonal correlations of: summer: $R^2 = 0.43$; fall: $R^2 = 0.23$; spring: $R^2 = 0.45$; and winter: $R^2 = 0.45$.

Figure C-8. Annual average organic aerosol 1996 IMPROVE observations versus REMSAD predictions.

Figure C-9. Seasonal average organic aerosol 1996 IMPROVE observations versus REMSAD predictions.

a.5. Nitrate Performance

Table C-5 lists the performance statistics for nitrate ion at the IMPROVE sites. Nitrate is generally overpredicted in the East and underpredicted in the West. Nitrate is overpredicted by 166% in the east and underpredicted by 31% in the west. Domainwide there is an overprediction of 55%.

	No. of Sites	Mean REMSAD Predictions (µg/m ³)	Mean Observations (µg/m ³)	Ratio of Means (pred/obs)	Bias (µg/m ³)	Fractional Bias (%)	Error (µg/m ³)	Fractional Error (%)	Correlation Coefficient
National	48	0.61	0.39	1.55	0.21	-59.4	0.57	129.8	0.19
East	15	1.47	0.55	2.66	0.91	13.0	1.11	109.3	0.29
West	33	0.22	0.32	0.69	-0.10	-91.9	0.32	139.0	0.15

Table C-5. Annual mean nitrate ion performance at IMPROVE sites.

Likewise, this overprediction is depicted in Figures C-10 and C-11, which show the scatterplots of the annual ($R^2=0.37$) and seasonal (summer: $R^2=0.24$; fall: $R^2=0.17$; spring: $R^2=0.36$; winter: $R^2=0.52$) average nitrate ion for 1996 IMPROVE observations verus REMSAD predictions.

Figure C-10. Annual average nitrate ion 1996 IMPROVE observations versus REMSAD predictions.

Figure C-11. Seasonal average nitrate ion 1996 IMPROVE observations versus REMSAD predictions.

It is important to consider these results in the context that the observed nitrate concentrations at the IMPROVE sites are very low. The mean nationwide observations are only $0.40 \ \mu g/m^3$. It is often difficult for models to replicate very low concentrations of secondarily formed pollutants. Nitrate is generally a small percentage of the measured PM2.5 at almost all of the IMPROVE sites. Nonetheless, it has been recognized that the current generation of PM air quality models generally overpredict particulate nitrate. There are numerous ongoing efforts to improve particulate nitrate model performance through emissions inventory improvements (ammonia emissions and dry deposition of gaseous precursors) and improvements in the scientific formulations of the models.

More recent ambient data has shown that nitrate can be an important contributor to PM2.5 in some urban areas (particularly in California and the upper Midwest) but performance for those areas could not be assessed due to the lack of urban area speciated nitrate data for 1996.

a.6. PMFINE-Other (crustal) Performance

Table C-6 lists the performance statistics for PMFINE-other or primary crustal emissions. The observations show crustal PM2.5 to be generally higher in the West than in the East. However, REMSAD is predicting higher crustal concentrations in the East. Performance statistics show an underprediction of 19% in the west, with an overprediction nationally of \sim 33%. The largest categories of PMFINE-other are fugitive dust sources such as paved roads, unpaved roads, construction, and animal feed lots.

There is a large uncertainty as to how emissions for such sources should be treated in grid-based air quality models since a large fraction of the emissions either deposit or are removed by vegetation within a few meters of the source. Work is underway to develop improved methods for estimating emissions from these sources for the purpose of air quality modeling.

	No. of Sites	Mean REMSAD Predictions (µg/m ³)	Mean Observations (µg/m ³)	Ratio of Means (pred/obs)	Bias (µg/m ³)	Fractional Bias (%)	Error (µg/m ³)	Fractional Error (%)	Correlation Coefficient
National	57	0.86	0.64	1.33	0.22	38.8	0.80	93.9	0.003
East	16	1.64	0.53	3.08	1.10	103.8	1.36	116.1	0.002
West	41	0.56	0.69	0.81	-0.13	13.5	0.58	85.3	0.00

 Table C-6.
 Annual mean PMFINE (crustal) performance at IMPROVE sites.

Figures C-12 and C-13 show the annual and seasonal average concentration scatterplots for PMFINE-other.

Figure C-12. Annual average PMFINE (crustal) 1996 IMPROVE observations versus REMSAD predictions

Figure C-13. Seasonal average PMFINE (crustal) 1996 IMPROVE observations versus REMSAD predictions

b. NADP Wet Deposition Performance

Figures C-14, C-15, and C-16 show the annual 1996 NADP observations versus REMSAD predictions for ammonium, nitrate, and sulfate wet deposition respectively. The scatterplots and linear regressions show some scatter (e.g. underprediction bias for nitrate and especially sulfate wet deposition), but good agreement, with strong correlations (NH₄: $R^2 = 0.65$; NO₃: $R^2 = 0.78$; SO₄: $R^2 = 0.78$).

Figure C-14. Annual total ammonium (NH₄) wet deposition 1996 NADP observations versus REMSAD predictions.

Figure C-15. Annual total nitrate (NO₃) wet deposition 1996 NADP observations versus REMSAD predictions

Figure C-16. Annual total sulfate (SO₄) wet deposition 1996 NADP observations versus REMSAD predictions.

c. CASTNet Performance

Figures C-17 and C-18 show the seasonal 1996 CASTNet observations versus REMSAD predictions for total sulfate and total nitrate, respectively. The scatterplot and linear regression of sulfate showed good agreement, with strong correlations among all seasons (summer: $R^2 = 0.80$; fall: $R^2 = 0.92$; spring: $R^2 = 0.81$; winter: $R^2 = 0.78$). The performance of sulfate at the CASTNet sites looks better than at the IMPROVE sites. The CASTNet sites measure data on a weekly average basis as opposed to the IMPROVE twice weekly sampling schedule. There are also more CASTNet sites in the high sulfate region of the East (e.g. the Ohio Valley). The CASTNet long term averaging of data seems particularly well suited for comparisons to seasonal average modeled concentrations.

The scatterplot and linear regression of total nitrate showed modest agreement, with weaker correlations within each season (summer: $R^2 = 0.48$; fall: $R^2 = 0.67$; spring: $R^2 = 0.74$; winter: $R^2 = 0.51$). There is an indication of an overprediction bias. This is not surprising given the overprediction bias of modeled particulate nitrate. The overprediction of total nitrate indicates that nitric acid concentrations may be overpredicted. This may be one of the reasons for the general overprediction of particulate nitrate. Model developers are continuing to examine the nitric acid production and destruction pathways. There are continuing improvements being made to the daytime and nighttime nitric acid formation reactions. Dry deposition of nitric acid is also being studied as a possible cause of overprediction.

Figure C-17. Seasonal average sulfate (SO₄) 1996 CASTNet observations versus REMSAD predictions.

Figure C-18. Seasonal average total nitrate (NO₃ + HNO₃) 1996 CASTNet observations versus REMSAD predictions.

e. Visibility performance

For the purpose of model performance evaluation, visibility was calculated in a manner similar to recommendations for the Regional Haze rule. For the Regional Haze rule, states must look at the change in visibility on the 20% best days and the 20% worst days (in units of deciviews) at each Class I area. A certain improvement in visibility on the 20% worst days is needed in the future at each Class I area. Visibility on the 20% best days cannot degrade in the future.

EPA has released a draft version of guidance that details the calculation of base period visibility (EPA, 2001a). The 20% best and worst days for the "base period" are to be calculated from the 2000-2004 IMPROVE data at each Class I area. The daily average extinction coefficient (b_{ext}) values are calculated using the following formula:

 $b_{ext} = 10.0 + [3.0 * f(RH) * (1.375 * sulfate) + 3.0 * f(RH) * (1.29 * nitrate) + 4.0 * (organic aerosols) + 10.0 * (elemental carbon) + 1.0 * (crustal) + 0.6 * (coarse PM)]$

 B_{ext} is in units of inverse megameters (Mm⁻¹). The 10.0 initial value accounts for atmospheric background (i.e., Rayleigh) scattering. F(RH) refers to the relative humidity correction function as defined by IMPROVE (2000). The relative humidity correction factor was derived from historical climatological meteorological data. There is a published f(rh) value for each month of the year for each Class I area (SAIC, 2001). The climatological f(rh) values will be used to calculate bext for the Regional Haze rule.

The formula to calculate b_{ext} from REMSAD output species is as follows:

$$b_{ext} = 10.0 + [3.0 * f(RH) * (1.375 * (GSO4 + ASO4)) + 3.0 * f(RH) * (1.29 * PNO3) + 4.0 * (TOA) + 10.0 * PEC + 1.0 * (PMFINE) + 0.6 * (PMCOARS)]$$

The daily average bext values are converted to deciview values using the following formula:

$$dv = 10.0 * \ln \left[\frac{(b_{ext})}{10.0 \ Mm^{-1}} \right]$$

The 20% best and worst days are identified based on the daily average **observed** deciview values at each Class I areas. For the purpose of this model performance evaluation, we have calculated the 20% best and worst days from 1996 (the meteorological year we are using) at each IMPROVE site with complete data. The following scatter plots show the observed vs. predicted b_{ext} values at the IMPROVE sites on the 20% best and worst days.

Figure C-19. IMPROVE observed versus REMSAD predicted light extinction coefficient values on the 20% best and worst days in the East.

Figure C-20. IMPROVE observed versus REMSAD predicted light extinction coefficient values on the 20% best and worst days in the West.

REMSAD was generally able to predict the highest b_{ext} values on the observed worst days in the East. The 20% worst days in the East show little bias, but a large amount of scatter. The 20% best days in the East are generally overpredicted. The 20% worst days in the West are underpredicted. REMSAD rarely predicted high b_{ext} values in the West. The model predictions on the 20% best and worst days are similar.

3. Summary of Model Performance

The purpose of this model performance evaluation was to evaluate the capabilities of the REMSAD modeling system in reproducing annual average concentrations and deposition at all IMPROVE, CASTNet, and NADP sites in the contiguous U.S. for fine particulate mass, its associated speciated components, visibility, and wet deposition. When considering annual average statistics (e.g., predicted versus observed), which are computed and aggregated over all sites and all days, REMSAD underpredicted fine particulate mass (PM2.5), by 18%. PM2.5 in the Eastern U.S. was underpredicted by 2%, while PM2.5 in the West was underpredicted by 33%. All PM2.5 component species were underpredicted in the west. In the East, nitrate and crustal material are overestimated. Elemental carbon shows neither over or underprediction in the east with a bias near 0%. Eastern sulfate is slightly underpredicted with a bias of 12%. Organic aerosols show little or no bias in the East and West.

The comparisons to the CASTNet data show generally good model performance for

particulate sulfate. Comparison of total nitrate indicate an overestimate, possible due to overpredictions of nitric acid in the model.

Performance at the NADP sites for wet deposition of ammonium, sulfate, and nitrate were reasonably good. There is a an underprediction bias of nitrate, and especially sulfate wet deposition. The model predictions of total mercury wet deposition at the MDN sites were also underpredicted.

Given the state of the science relative to PM modeling, it is inappropriate to judge PM model performance using criteria derived for other pollutants, like ozone. The overall model performance results may be limited by our current knowledge of PM science and chemistry, by the emissions inventories for direct PM and secondary PM precursor pollutants, by the relatively sparse ambient data available for comparisons to model output, and by uncertainties in monitoring techniques. The model performance for sulfate in the East is quite reasonable, which is key since sulfate compounds comprise a large portion of PM2.5 in the East.

Negative effects of relatively poor model performance for some of the smaller (i.e., lower concentration) components of PM2.5, such as crustal mass, are mitigated to some extent by the way we use the modeling results in projecting future year nonattainment and downwind contributions. As described in more detail below, each measured component of PM2.5 is adjusted upward or downward based on the percent change in that component, as determined by the ratio of future year to base year model predictions. Thus, we are using the model predictions in a relative way, rather than relying on the absolute model predictions for the future year scenarios. By using the modeling in this way, we are reducing the risk that large overprediction or underprediction will unduly affect our projection of future year concentrations. For example, REMSAD may overpredict the crustal component at a particular location by a factor of 2, but since measured crustal concentrations are generally a small fraction of ambient PM2.5, the future crustal concentration will remain as a small fraction of PM2.5.

A number of factors need to be considered when interpreting the results of this performance analysis. First, simulating the formation and fate of particles, especially secondary organic aerosols and nitrates is part of an evolving science. In this regard, the science in air quality models is continually being reviewed and updated as new research results become available. Also, there are a number of issues associated with the emissions and meteorological inputs, as well as ambient air quality measurements and how these should be paired to model predictions that are currently under investigation by EPA and others. The process of building consensus within the scientific community on ways for doing PM model performance evaluations has not yet progressed to the point of having a defined set of common approaches or criteria for judging model performance. Unlike ozone, there is a limited data base of past performance statistics against which to measure the performance of regional/national PM modeling. Thus, the approach used for this analysis may be modified or expanded in future evaluation analyses.

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix D

8-Hour Ozone Concentrations at Nonattainment Counties for the 2010 Base Case and 2015 Base Case The tables below provide 8-hour ozone concentration design values projected for the 2010 Base Case and 2015 Base Case. Concentrations for the two projection years are provided for each county in the East with ambient 2000-2002 8-hour design values \geq 85 ppb (i.e., nonattainment). For counties with multiple monitoring sites, the data in the table below represent the highest concentration from among the monitors in the county. Note that in all but four counties the same site has the highest concentration in both the 2010 and 2015 Base Cases. The counties in which the highest concentration for the 2015 Base Case is at a different site than the 2010 Base Case are as follows:

<u>County</u>	2015 Base High Site
DeKalb Co, GA:	130893001
Mecklenburg Co, NC:	371190041
Alleghany Co, PA:	420030010
Knox Co, TN:	470930021

					2000-2002 Ambient		
State	Cnty FIRe	Stato	County		8-Hr Ozone	2010 Baso	2015 Baso
115	73	Alahama		010732006	88	73	68
1	103		Morgan	011030011	85	73	00 69
1	103		Shelby	011170004	03	76	70
5	35	Arkansas	Crittenden	050350005	92	86	85
5	119	Arkansas	Pulaski	051191002	86	76	72
9	1	Connecticut	Fairfield	090011123	98	94	94
9	3	Connecticut	Hartford	090031003	90	82	78
9	7	Connecticut	Middlesex	090070007	97	91	89
9	. 9	Connecticut	New Haven	090093002	98	92	90
9	11	Connecticut	New London	090110008	89	82	79
9	13	Connecticut	Tolland	090131001	94	84	80
10	1	Delaware	Kent	100010002	92	79	75
10	3	Delaware	New Castle	100031010	96	87	84
10	5	Delaware	Sussex	100051002	94	81	77
11	1	D.C.	Washington	110010043	95	88	86
13	21	Georgia	Bibb	130210012	92	65	61
13	67	Georgia	Cobb	130670003	98	81	75
13	77	Georgia	Coweta	130770002	93	76	72
13	89	Georgia	De Kalb	130890002	95	82	79
13	97	Georgia	Douglas	130970004	95	79	74
13	113	Georgia	Fayette	131130001	90	75	70
13	121	Georgia	Fulton	131210055	99	86	81
13	135	Georgia	Gwinnett	131350002	89	74	68

13	151	Georgia	Henry	131510002	98	77	72
13	213	Georgia	Murray	132130003	87	68	63
13	223	Georgia	Paulding	132230003	90	70	65
13	245	Georgia	Richmond	132450091	87	74	70
13	247	Georgia	Rockdale	132470001	96	80	74
17	31	Illinois	Cook	170310032	88	84	85
17	83	Illinois	Jersey	170831001	89	78	74
17	163	Illinois	St Clair	171630010	85	77	75
18	3	Indiana	Allen	180030002	88	78	74
18	11	Indiana	Boone	180110001	88	79	76
18	19	Indiana	Clark	180190003	90	79	76
18	55	Indiana	Greene	180550001	89	77	74
18	57	Indiana	Hamilton	180571001	93	83	80
18	59	Indiana	Hancock	180590003	92	82	79
18	63	Indiana	Hendricks	180630004	88	79	76
18	69	Indiana	Huntington	180690002	86	76	72
18	71	Indiana	Jackson	180710001	85	72	69
18	81	Indiana	Johnson	180810002	87	75	72
18	89	Indiana	Lake	180892008	92	87	87
18	91	Indiana	La Porte	180910005	92	84	82
18	95	Indiana	Madison	180950010	91	80	76
18	97	Indiana	Marion	180970050	90	81	78
18	109	Indiana	Morgan	181090005	88	78	75
18	127	Indiana	Porter	181270024	90	84	83
18	129	Indiana	Posey	181290003	87	75	73
18	141	Indiana	St Joseph	181411007	90	78	75
18	145	Indiana	Shelby	181450001	93	83	79
21	13	Kentucky	Bell	210130002	86	69	65
21	15	Kentucky	Boone	210150003	86	71	68
21	19	Kentucky	Boyd	210190017	88	76	73
21	29	Kentucky	Bullitt	210290006	85	75	73
21	37	Kentucky	Campbell	210370003	94	83	80
21	47	Kentucky	Christian	210470006	85	65	62
21	111	Kentucky	Jefferson	211110027	85	76	74
21	117	Kentucky	Kenton	211170007	88	77	75
21	185	Kentucky	Oldham	211850004	87	73	71
21	227	Kentucky	Warren	212270008	86	70	67
22	33	Louisiana	East Baton Rou	220330003	86	79	77
22	47	Louisiana	Iberville	220470012	86	80	78
22	51	Louisiana	Jefferson	220511001	85	79	77
22	121	Louisiana	West Baton Rou	221210001	85	78	76

23	5	Maine	Cumberland	230052003	86	78	75
23	9	Maine	Hancock	230090102	93	81	76
23	31	Maine	York	230312002	90	82	80
24	3	Maryland	Anne Arundel	240030019	102	91	87
24	5	Maryland	Baltimore	240053001	93	85	83
24	13	Maryland	Carroll	240130001	92	82	78
24	15	Maryland	Cecil	240150003	104	90	86
24	17	Maryland	Charles	240170010	94	79	75
24	21	Maryland	Frederick	240210037	91	81	77
24	25	Maryland	Harford	240251001	104	93	89
24	29	Maryland	Kent	240290002	102	89	84
24	31	Maryland	Montgomery	240313001	89	82	79
24	33	Maryland	Prince Georges	240330002	95	86	82
24	43	Maryland	Washington	240430009	87	75	71
25	1	Massachusetts	Barnstable	250010002	93	81	77
25	5	Massachusetts	Bristol	250051002	90	80	76
25	9	Massachusetts	Essex	250092006	90	82	80
25	13	Massachusetts	Hampden	250130008	92	83	80
25	15	Massachusetts	Hampshire	250154002	88	80	78
25	17	Massachusetts	Middlesex	250171102	89	79	76
25	25	Massachusetts	Suffolk	250250041	89	79	75
25	27	Massachusetts	Worcester	250270015	85	76	73
26	5	Michigan	Allegan	260050003	92	82	79
26	19	Michigan	Benzie	260190003	86	78	75
26	21	Michigan	Berrien	260210014	87	77	74
26	27	Michigan	Cass	260270003	90	78	74
26	91	Michigan	Lenawee	260910007	85	76	74
26	99	Michigan	Macomb	260991003	88	84	86
26	105	Michigan	Mason	261050007	87	78	74
26	121	Michigan	Muskegon	261210039	89	80	77
26	125	Michigan	Oakland	261250001	86	81	82
26	139	Michigan	Ottawa	261390005	85	76	74
26	147	Michigan	St Clair	261470005	88	82	80
26	161	Michigan	Washtenaw	261610008	87	79	77
26	163	Michigan	Wayne	261630016	85	80	83
28	33	Mississippi	De Soto	280330002	86	75	72
29	47	Missouri	Clay	290470005	85	78	75
29	99	Missouri	Jefferson	290990012	86	75	72
29	183	Missouri	St Charles	291831002	90	81	78
29	189	Missouri	St Louis	291890004	89	81	78
29	510	Missouri	St Louis City	295100086	88	80	77

33	11	New Hampshire	Hillsborough	330111010	85	76	73
34	1	New Jersey	Atlantic	340010005	91	80	76
34	3	New Jersey	Bergen	340030005	91	88	87
34	7	New Jersey	Camden	340070003	103	93	91
34	11	New Jersey	Cumberland	340110007	98	86	81
34	15	New Jersey	Gloucester	340150002	104	95	93
34	17	New Jersey	Hudson	340170006	87	85	84
34	19	New Jersey	Hunterdon	340190001	96	89	87
34	21	New Jersey	Mercer	340210005	104	98	96
34	23	New Jersey	Middlesex	340230011	101	95	92
34	25	New Jersey	Monmouth	340250005	97	89	87
34	27	New Jersey	Morris	340273001	98	88	85
34	29	New Jersey	Ocean	340290006	115	105	102
34	31	New Jersey	Passaic	340315001	88	82	80
36	13	New York	Chautauqua	360130006	92	83	81
36	27	New York	Dutchess	360270007	93	83	80
36	29	New York	Erie	360290002	97	90	88
36	31	New York	Essex	360310002	86	80	78
36	45	New York	Jefferson	360450002	91	82	80
36	55	New York	Monroe	360551004	85	77	75
36	63	New York	Niagara	360631006	91	83	81
36	79	New York	Putnam	360790005	92	85	83
36	85	New York	Richmond	360850067	96	90	87
36	103	New York	Suffolk	361030009	97	90	89
36	119	New York	Westchester	361192004	90	86	86
37	3	North Carolina	Alexander	370030003	91	73	68
37	21	North Carolina	Buncombe	370210030	85	68	63
37	27	North Carolina	Caldwell	370270003	86	69	65
37	33	North Carolina	Caswell	370330001	91	75	71
37	51	North Carolina	Cumberland	370510008	87	73	68
37	59	North Carolina	Davie	370590002	95	78	73
37	63	North Carolina	Durham	370630013	91	77	72
37	65	North Carolina	Edgecombe	370650099	88	75	71
37	67	North Carolina	Forsyth	370670022	94	76	71
37	69	North Carolina	Franklin	370690001	91	77	72
37	77	North Carolina	Granville	370770001	94	79	75
37	81	North Carolina	Guilford	370810011	93	76	71
37	87	North Carolina	Haywood	370870036	87	69	65
37	99	North Carolina	Jackson	370990005	86	69	64
37	101	North Carolina	Johnston	371010002	85	72	67
37	109	North Carolina	Lincoln	371090004	94	77	72

37	119	North Carolina	Mecklenburg	371191009	102	85	79
37	145	North Carolina	Person	371450003	90	74	71
37	157	North Carolina	Rockingham	371570099	90	72	67
37	159	North Carolina	Rowan	371590022	101	82	77
37	179	North Carolina	Union	371790003	88	73	67
37	183	North Carolina	Wake	371830015	94	81	75
37	199	North Carolina	Yancey	371990003	87	70	66
39	3	Ohio	Allen	390030002	88	78	75
39	7	Ohio	Ashtabula	390071001	94	84	82
39	17	Ohio	Butler	390170004	89	77	74
39	23	Ohio	Clark	390230001	90	78	74
39	25	Ohio	Clermont	390250022	90	78	75
39	27	Ohio	Clinton	390271002	96	82	77
39	35	Ohio	Cuyahoga	390355002	86	78	75
39	41	Ohio	Delaware	390410002	89	79	75
39	55	Ohio	Geauga	390550004	99	88	85
39	57	Ohio	Greene	390570006	86	74	70
39	61	Ohio	Hamilton	390610006	89	79	76
39	81	Ohio	Jefferson	390810016	86	77	75
39	83	Ohio	Knox	390830002	90	80	77
39	85	Ohio	Lake	390850003	92	83	80
39	87	Ohio	Lawrence	390870006	86	74	71
39	89	Ohio	Licking	390890005	90	80	76
39	93	Ohio	Lorain	390930017	85	78	76
39	95	Ohio	Lucas	390950081	89	81	79
39	97	Ohio	Madison	390970007	89	78	75
39	99	Ohio	Mahoning	390990013	87	76	72
39	103	Ohio	Medina	391030003	87	77	73
39	109	Ohio	Miami	391090005	87	76	72
39	113	Ohio	Montgomery	391130019	86	75	71
39	133	Ohio	Portage	391331001	91	80	77
39	151	Ohio	Stark	391510021	89	79	75
39	153	Ohio	Summit	391530020	95	85	81
39	155	Ohio	Trumbull	391550011	90	79	75
39	165	Ohio	Warren	391650006	89	77	74
39	167	Ohio	Washington	391670004	87	74	67
39	173	Ohio	Wood	391730003	86	77	74
40	143	Oklahoma	Tulsa	401430137	85	76	74
42	3	Pennsylvania	Allegheny	420031005	95	85	82
42	5	Pennsylvania	Armstrong	420050001	91	79	76
42	7	Pennsylvania	Beaver	420070005	90	82	79

42	11	Pennsylvania	Berks	420110009	92	81	77
42	17	Pennsylvania	Bucks	420170012	104	97	95
42	21	Pennsylvania	Cambria	420210011	88	76	73
42	27	Pennsylvania	Centre	420270100	85	74	70
42	29	Pennsylvania	Chester	420290100	95	84	80
42	33	Pennsylvania	Clearfield	420334000	87	75	72
42	43	Pennsylvania	Dauphin	420431100	91	80	76
42	45	Pennsylvania	Delaware	420450002	95	87	84
42	49	Pennsylvania	Erie	420490003	88	79	77
42	55	Pennsylvania	Franklin	420550001	94	80	76
42	59	Pennsylvania	Greene	420590002	90	78	73
42	69	Pennsylvania	Lackawanna	420690101	85	74	69
42	71	Pennsylvania	Lancaster	420710007	94	83	80
42	77	Pennsylvania	Lehigh	420770004	93	83	80
42	85	Pennsylvania	Mercer	420850100	92	80	76
42	91	Pennsylvania	Montgomery	420910013	97	90	89
42	95	Pennsylvania	Northampton	420950025	92	82	79
42	101	Pennsylvania	Philadelphia	421010024	98	92	91
42	125	Pennsylvania	Washington	421255001	88	80	78
42	129	Pennsylvania	Westmoreland	421290008	86	76	73
42	133	Pennsylvania	York	421330008	92	81	78
44	3	Rhode Island	Kent	440030002	97	89	85
44	7	Rhode Island	Providence	440071010	91	82	78
44	9	Rhode Island	Washington	440090007	93	84	80
45	1	South Carolina	Abbeville	450010001	85	69	64
45	3	South Carolina	Aiken	450030003	88	75	71
45	7	South Carolina	Anderson	450070003	88	74	69
45	21	South Carolina	Cherokee	450210002	87	71	67
45	31	South Carolina	Darlington	450310003	86	73	69
45	77	South Carolina	Pickens	450770002	85	69	64
45	79	South Carolina	Richland	450791001	93	77	72
45	83	South Carolina	Spartanburg	450830009	90	74	69
47	1	Tennessee	Anderson	470010101	92	72	67
47	9	Tennessee	Blount	470090101	94	77	72
47	65	Tennessee	Hamilton	470650028	93	75	70
47	75	Tennessee	Haywood	470750003	86	74	71
47	89	Tennessee	Jefferson	470890002	95	78	73
47	93	Tennessee	Knox	470931020	96	77	72
47	121	Tennessee	Meigs	471210104	93	73	68
47	141	Tennessee	Putnam	471410004	86	72	68
47	155	Tennessee	Sevier	471550101	98	79	74

47	157	Tennessee	Shelby	471570021	90	80	78
47	163	Tennessee	Sullivan	471632003	92	74	70
47	165	Tennessee	Sumner	471650007	88	76	73
47	187	Tennessee	Williamson	471870106	87	72	69
47	189	Tennessee	Wilson	471890103	85	74	70
48	29	Texas	Bexar	480290059	86	72	69
48	39	Texas	Brazoria	480391003	86	80	78
48	85	Texas	Collin	480850005	93	83	79
48	113	Texas	Dallas	481130069	91	82	79
48	121	Texas	Denton	481210034	99	87	83
48	139	Texas	Ellis	481390015	86	75	71
48	167	Texas	Galveston	481670014	89	83	82
48	183	Texas	Gregg	481830001	88	74	71
48	201	Texas	Harris	482010024	107	100	99
48	251	Texas	Johnson	482510003	89	78	74
48	339	Texas	Montgomery	483390078	91	82	79
48	367	Texas	Parker	483670081	86	75	71
48	439	Texas	Tarrant	484392003	98	88	84
48	453	Texas	Travis	484530014	85	75	72
51	13	Virginia	Arlington	510130020	96	88	87
51	36	Virginia	Charles City	510360002	90	77	74
51	41	Virginia	Chesterfield	510410004	86	74	71
51	59	Virginia	Fairfax	510590018	97	87	85
51	69	Virginia	Frederick	510690010	85	73	70
51	87	Virginia	Henrico	510870014	90	77	74
51	107	Virginia	Loudoun	511071005	90	81	78
51	113	Virginia	Madison	511130003	85	71	67
51	153	Virginia	Prince William	511530009	85	75	72
51	161	Virginia	Roanoke	511611004	87	73	69
51	179	Virginia	Stafford	511790001	86	74	70
51	510	Virginia	Alexandria City	515100009	90	83	81
51	650	Virginia	Hampton City	516500004	89	80	77
51	800	Virginia	Suffolk City	518000004	88	79	77
54	11	West Virginia	Cabell	540110006	88	75	72
54	29	West Virginia	Hancock	540291004	85	76	74
54	39	West Virginia	Kanawha	540390010	85	69	66
54	69	West Virginia	Ohio	540690007	85	74	70
54	107	West Virginia	Wood	541071002	88	72	66
55	29	Wisconsin	Door	550290004	91	83	79
55	59	Wisconsin	Kenosha	550590019	100	94	93
55	61	Wisconsin	Kewaunee	550610002	88	80	77

55	71	Wisconsin	Manitowoc	550710007	88	80	77
55	79	Wisconsin	Milwaukee	550790085	91	83	81
55	89	Wisconsin	Ozaukee	550890009	93	84	81
55	101	Wisconsin	Racine	551010017	93	86	84
55	117	Wisconsin	Sheboygan	551170006	99	90	86

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix E

Procedures for Estimating Future PM2.5 Values by Application of the Speciated Modeled Attainment Test (SMAT)

Introduction

EPA has issued draft guidance (EPA, 2001a) that describes a procedure for combining monitoring data with outputs from simulation models to estimate future concentrations of PM2.5 mass. The guidance recommends that model predictions be used in a relative sense to estimate changes expected to occur in each major PM2.5 species. PM2.5 species are sulfates, nitrates, organic carbon, elemental carbon, crustal and un-attributed mass which is defined as the difference between measured PM2.5and the sum of the five component species. EPA is using the "SMAT" procedure to estimate the ambient impact of national rules and legislation, including the Clear Skies Act and the Interstate Air Quality Rule (IAQR).

The draft guidance includes a sequence of key steps that are recommended for processing the data. The following is a brief summary of those steps:

- (1) Derive current quarterly mean concentrations (averaged over three years) for each of the six major components of PM2.5. This is done by multiplying the monitored quarterly mean concentration of Federal Reference Method (FRM) derived PM2.5 by the monitored fractional composition of PM2.5 species (at speciation monitor sites) for each quarter in three consecutive years. (e.g., 20% sulfate x 15 μ g/m³ PM2.5 = 3 μ g/m³ sulfate).
- (2) For each quarter, apply an air quality model to estimate current and future concentrations for each of the six components of PM2.5. Take the ratio of future to current predictions for each component. The result is a component-specific *relative reduction factor* (RRF). (e.g., given model predicted sulfate for base is 10 µg/m³ and future is 8 µg/m³ then RRF for sulfate is 0.8).
- (3) For each quarter, multiply the current quarterly mean component concentration (step 1) times the component-specific RRF obtained in step 2. This leads to an estimated future quarterly mean concentration for each component. (e.g., $3 \mu g/m^3$ sulfate x 0.8 = future sulfate of 2.4 $\mu g/m^3$).
- (4) Average the four quarterly mean future concentrations to get an estimated future annual mean concentration for each component. Sum the annual mean concentrations of the six components to obtain an estimated future annual concentration for PM2.5.

EPA will use the Federal Reference Monitor (FRM) data for nonattainment designations. Therefore it is important that FRM data is used in the speciated modeled attainment test described above. As can be seen from the list of steps, the modeled attainment test is dependent on the availability of species component mass at FRM sites. Since roughly 80% of the FRM sites will not have collocated speciation monitors, a spatial interpolation methodology was developed to estimate component species mass at the FRM locations. This method was further utilized to estimate PM2.5 and component species mass at every grid cell in the study domain. Additional ambient data handling procedures were also developed. Below we describe an

example application of the procedures, for a study domain that extends over a large portion of eastern US. The study domain is defined for grids of dimension 1/2 degree longitude by 1/3 degree latitude (~36 km X 36 km) covering the area enclosed within -100 to -67 longitude and 25 to 49 latitude. Base year and future year model predictions are available for each grid cell (72 rows by 66 columns) that make up the study domain.

Ambient Data preparation

PM2.5 quarterly averages at FRM sites for 1999-2001 were calculated using data from the Air Quality System (AQS). The resulting data set contained 325 sites that meet the completeness criteria needed to determine the PM2.5 NAAQS attainment status. Each of the PM2.5 sites was uniquely associated with one of the grid cells in the study domain.

Speciated PM2.5 data from both the Interagency Monitoring of Protected Visual Environments (IMPROVE) and EPA's speciation trends network¹ (STN) were used to derive mean concentrations of each of the six PM2.5 components. No attempt was made to resolve differences in measurement and analysis methodology between the two networks². Since three years of urban speciation data were not available, the latest full year of data was used. Quarterly average concentrations between July 2001 through June 2002³ were retained for sites that had at least 15 monitored values (50% completeness for 1 in 3 day sampling). The quarters were defined as follows: Q3 = July 2001 - September 2001; Q4 = October - December 2001; Q1 = January - March 2002; and Q2 = April - June 2001. Figure 1 shows the spatial distribution of IMPROVE and STN stations that met this completeness criteria for first quarter of 2002.

¹The network is referred to as the "STN", but all urban speciation sites were used, not just the trends sites.

²There are certain differences in sampling and analysis techniques which may affect the results of this application. The data from both networks were treated similarly whenever possible. Further comparison studies and analyses are needed to develop data sampling and handling procedures that may make the data from the two networks more similar.

³ The 2nd quarter of 2002 was the most recent quarter of data available from both the IMPROVE and STN networks at the time of the analysis. The ambient speciation data will be updated as newer data and more sites become available.

Figure 1. Speciated stations with at least 15 quarterly samples

Note: The number of stations meeting completeness criteria for the four quarters:

Quarter 3, 2001 – 103 sites Quarter 4, 2001 – 106 sites Quarter 1, 2002 – 105 sites Quarter 2, 2002 – 117 sites

As noted in the modeling guidance, the mass associated with each component must be estimated based on assumptions about chemical composition. Table 3.4 in the modeling guidance provides recommended default assumptions which were applied for each of the species except sulfate and carbon compounds⁴. Because ammonium is reported in the STN, it was possible to analyze the degree to which sulfate measured on the filter was actually neutralized. The analysis concluded that, on average, sulfate was not completely neutralized resulting in use of the factor 1.25 rather than the value of 1.375 recommended in the guidance. The 1.25 factor was derived through a mass balance of measured ammonium, sulfate, and nitrate at the STN sites. It was assumed that all particulate nitrate was in the form of ammonium nitrate. The measurements of nitrate ion and particulate ammonium are known to be uncertain. The

⁴As recommended in the modeling guidance, organic carbon was multiplied by 1.4 and particulate nitrate was multiplied by 1.29.
calculation of the ammoniation of sulfate is subject to these uncertainties. Therfore, a single domainwide annual average value of 1.25 was used for all sites due to the uncertainties in the measurements of ammonium and nitrate. This value assumes that sulfate is, on average, partway between ammonium bisulfate and ammonium sulfate.

The elemental and organic carbon mass from the STN was adjusted downward based on measurements from field blanks which indicate a positive bias. The blank corrections were based on a draft report which examined the blank carbon data in the STN network (RTI, 2002). The carbon corrections are shown below in Table 1. The values were taken from Table 4.1 from the RTI report. The monitor dependent blank corrections were made to the quarterly average concentrations at each STN site. The IMPROVE carbon measurements are blank corrected by the IMPROVE program.

Sampler Type	Elemental Carbon (µgC/m ³)	Organic Carbon (μgC/m³)
URG MASS	0.03	0.29
R and P 2300	0.22	0.90
Anderson RAAS	0.09	1.19
R&P 2025	0.07	0.77
MetOne SASS	0.11	1.42

Table 1. Carbon blank corrections

Finally, un-attributed mass was calculated for each of the STN monitors with a colocated FRM monitor. Un-attributed mass was not calculated for the IMPROVE sites since there were no collocated FRM PM2.5 data available. The results produced generally small positive estimates of un-attributed mass although for some sites, the estimate was negative. The unattributed mass did not follow any clear spatial or temporal patterns. Due to the relatively random pattern of the un-attributed mass, a single quarterly value of un-attributed mass was used at each site. Table 2 summarizes the quarterly average un-attributed mass data. A quarterly average un-attributed mass value was calculated at each STN site by applying the un-attributed percentage to the quarterly average site specific FRM mass.

	Quarter 1 (Jan-Mar 02)	Quarter 2 (Apr-June 01)	Quarter 3 (July-Sept 01)	Quarter 4 (Oct - Dec 01)
Num of Monitoring sites	47	31	43	46
Avg FRM PM2.5 mass (µg/m³)	12.17	13.51	14.43	11.97
Avg species mass sum (µg/m ³)	12.12	13.41	13.70	11.74
Un-attributed (µg/m ³)	0.05	0.10	0.73	0.23
Percent Un-attributed	0.4 %	0.7 %	5.0 %	1.9 %

Table 2. Average Un-attributed Mass of PM2.5

Species Component Estimation

Only a small fraction of PM2.5 sites have measured species information. For this reason, an objective procedure was developed for using the speciated component averages from the IMPROVE and STN networks to estimate concentrations of species mass at all FRM PM2.5 monitoring sites. Kriging was adopted as the method for estimating PM2.5 component mass at PM2.5 sites since software is readily available and can produce estimates of prediction error. Kriging was performed using an S-PLUS software package known as FIELDS (NCAR, 2002) developed by scientists at NCAR to perform generalized kriging and efficient spatial analysis of large data sets.

The Krig function in FIELDS estimates the parameters of the spatial field using the Generalized Cross Validation (GCV) error as the criterion for parameter estimation. A simple exponential covariance function was used to describe the variogram. Outputs from Krig include the parameter estimates (range, nugget and sill) along with predicted values at each of the PM2.5 monitor locations. Once the kriging equations were established for each species, quarterly average species concentrations were estimated for each of the FRM sites and for each grid cell in the modeling domain. The latter predictions were made so that estimated PM2.5 concentrations could be obtained for the entire modeling domain, allowing for a more complete spatial assessment of future PM2.5 levels. Figures 2 and 3 illustrate the spatially interpolated concentration fields for nitrates (quarter 1) and sulfates (quarter 3).

Figure 3 Spatially Interpolated Sulfate Quarterly Average Concentrations (quarter 3)

Figure 2Spatially Interpolated Nitrate Quarterly Average
Concentrations (quarter 1)

Kriging was not used for spatial interpolation of un-attributed mass since it only available for

some of the STN sites and because there was no discernable spatial trend. Instead the quarterly average of the un-attributed mass from the STN sites was first expressed as a fraction of the average PM2.5 mass. The estimated fractions for each quarter were previously shown in Table 2.

For each quarter, predicted concentrations for each of the six species are combined with quarterly PM2.5 FRM averages to derive composition concentrations in the following manner. First, the un-attributed mass at each PM2.5 site was estimated by multiplying the average fraction of un-attributed mass by the quarterly average PM2.5 concentration for that site. For example, if a site in quarter 3 had an average PM2.5 mass of 20 μ g/m³, then the un-attributed mass would be $20 \ \mu g/m^3 \ x \ 0.05 = 1 \ \mu g/m^3$. The total PM2.5 mass that is identifiable was calculated by subtracting the estimated un-attributed mass from each quarterly average PM2.5 value. Next, the component mass of each of the five identifiable species was estimated by multiplying the fraction of each species by the identifiable portion of the quarterly PM2.5 mass. This procedure is repeated for each PM2.5 site and quarter to complete the calculation of current or baseline ambient concentrations used as the basis for future estimates of PM2.5 mass and its components. Table 3a shows an example of the un-attributed mass calculation and the species fractions for an FRM site in quarter 2. The species fractions in table 3a are derived from the quarterly interpolated (Kriged) spatial fields for each of the five species. Multiplying the unattributed mass fraction of 0.7% (from table 2) times 17.0 (FRM mass from table 3a) yields the identifiable mass of 16.88. The identifiable mass can then be split into individual species component mass estimates by using the fractions in table 3a.

FRM Mass (µg/m³)	% Un-atributed mass	Identifiable Mass (µg/m³)	% Sulfate	% Nitrate	% Organic aerosol	% Elemental Carbon	% Crustal
17.0	0.7	16.88	32.1	11.4	38.9	9.9	7.7

Table 3a.	Un-attributed	mass and species	fractions for an	FRM site in quarter 2
-----------	----------------------	------------------	------------------	-----------------------

Table 3b shows the resultant mass for each of the component species at the same FRM site. The species mass is calculated by multiplying the fraction of each component by the identifiable mass. The sum of the components is the observed FRM PM2.5 mass concentration (17.0 μ g/m³)

FRM Mass (µg/m³)	Un-atributed Mass (µg/m³)	Sulfate Mass (µg/m³)	Nitrate Mass (µg/m³)	Organic aerosol Mass (µg/m³)	Elemental Carbon Mass (µg/m³)	Crustal Mass (µg/m³)
17.0	0.12	5.42	1.92	6.57	1.67	1.30

Table 3b. Resultant species mass at an FRM site in quarter 2

Estimating Future Year PM2.5

Future concentrations of PM2.5 component species are estimated by assuming that the quarterly average component concentration will change in exactly the same proportion as the model predicted change. Model predicted changes in species concentrations (from a current year to a future year) are used to calculate "relative reduction factors". Relative reduction factors are calculated for each grid cell and species as the ratio of the quarterly average future predictions to the current base predictions. The relative reduction factor for each species is then multiplied by the estimated current year ambient species mass for the site to estimate future species concentration. These future species concentrations at each FRM site are then summed over the five species to estimate the identifiable portion of future quarterly average PM2.5 concentration. The current year quarterly average estimate of un-attributed PM2.5 mass is added to the future quarterly average identifiable PM2.5 mass estimate. The four quarterly values are then averaged to obtain the estimated future annual average PM2.5 for each FRM site.

FRM sites close to or co-located with an STN monitor will have the least "error" in the estimation of species fractions⁵. There is more uncertainty associated with FRM monitoring sites that are not located near a speciation site. It should be noted that the sole use of the interpolated speciation data is to calculate the mass fractions of each of the PM2.5 components. All of the future year design value calculations at FRM sites are "anchored" by the FRM data itself.

The results of the analysis at each of the FRM monitoring sites (with complete data) were used in analyses such as Clear Skies and the IAQR. Application of SMAT with Kriged spatial fields allows us to take advantage of the design value information at each FRM site. In this way, a more complete attainment/nonattainment picture can be derived by not limiting the predictions of future year design values to only speciation monitoring sites.

Additional Spatial Information

PM2.5 concentrations can also be estimated over the entire field of grid locations that define the study domain (i.e., 72 x 66 grid cells). This requires that the quarterly average PM2.5 also be kriged to estimate PM2.5 average concentrations for each grid cell. Because the majority of PM2.5 measurement sites are urban oriented, the PM2.5 mass reported for the IMPROVE sites are also included in the spatial interpolation process to help minimize potential urban bias in more rural locations. Figure 4 shows the spatially interpolated base year (1999-2001) PM2.5 annual concentration field and figure 5 shows the projected future base case (2010) PM2.5 concentration field.

⁵The species fractions at co-located FRM and speciation sites can be calculated without the use of spatial fields. However, for this application, the species fractions for **all** FRM sites were derived from the spatial fields. This allowed for consistent calculations at all sites.

Figure 4Example spatial fields of future year (2010) annual
average PM2.5 design values (calculated from relative
reduction factors from the REMSAD model)

Figure 5 Example spatial fields of base year (1999-2001) annual average PM2.5 design values

Summary of Outputs

Future year design values can be calculated at monitoring sites which have co-located FRM and speciation monitors. Kriging of speciation data allows the calculation of future year design values at all FRM monitoring sites. Additional Kriging of all PM2.5 data (FRM and IMPROVE) allows the calculation of future year design values at all model grid cells. Table 4 shows the available outputs of the modeled attainment test with spatial fields.

	Ambient PM2.5 Data From:	Ambient Speciation Data From:
Case1- FRM monitoring sites	FRM monitor	Interpolated (Kriged) speciation data
Case 2-All grid cells	Interpolated (Kriged) PM2.5 data	Interpolated (Kriged) speciation data

Table 4. Sources of data for speciated modeled attainment test with spatial fields

There are uncertainties associated with many aspects of the analysis. There is uncertainty associated with collection and analysis of the ambient data (e.g. positive organic carbon artifacts and negative particulate nitrate artifacts associated with the ambient data collection and analysis), post-processing of the ambient data (e.g., assumptions regarding the 1.25 factor for sulfate or the 1.4 factor applied to organic carbon), interpolation of the data to the FRM sites and grids (e.g. Kriging error and replication of species gradients), use of the model predicted changes in species (e.g. errors and uncertainty in the model science and inventories), etc.

We have the most confidence in future estimates of PM2.5 at FRM monitoring locations (case 1). Therefore, the results of this analysis at each of the FRM monitoring sites (with complete data) will be used for regulatory purposes.

Caveats on use of SMAT with Spatial Fields

The details of this application of SMAT are specific to the short term use of the FRM and STN data in estimating future year PM2.5 concentrations. The use of a single year of speciation data interpolated to a modeling grid is necessary at this time, due to the relatively sparse ambient data sets. The amount of available ambient data will increase significantly in the future. As a resul, for many areas, the coverage of speciation data may be adequate so that interpolation of the data through spatial fields is not necessary. This application should serve as an example that can be replicated in the short term, but the techniques and assumptions will likely evolve over the long term.

Example Future Year Design Value Calculations

The following example shows the SMAT steps for the 2010 Base Case for several FRM PM2.5 sites in Alabama. The example follows the calculations for the future design values for each model run. There are four tables. One each for the 2010 Base Case design value calculations, the 2010 control case, the 2015 Base Case, and the 2015 control case. Each table contains three sections. The "Quarterly All Sites" section shows the quarterly average calculations for all FRM sites (only sites with complete date). The "Annual All Sites" section averages the quarterly data for each monitoring site and reports the annual average design values. The "Annual High Sites" section filters the data to show only the highest monitoring site in each county.

We start with the 1999-2001 and 2000-2002 design values at each FRM site (with complete data). For those sites that are measuring nonattainment in 2000-2002, the higher of the two design values is used in the analysis. The 2000-2002 design value are used for those sites that are attainment during this period. The design value is then broken down into quarterly averages. The following excerpt from the 2010 Base Case table (Quarterly All Sites section) shows the ambient design values for each quarter (column I) for several sites in Alabama.

A	В	С	D	E	F	G	Н	I
State Fip	County Fip	State Name	County Name	AIRS Site Code	Row	Column	Quarter	1999-2001/ 2000-2002 Ambient FRM DV
1	49	Alabama	DeKalb County	010491003	31	81	1	13.7857115
1	49	Alabama	DeKalb County	010491003	31	81	2	14.10473748
1	49	Alabama	DeKalb County	010491003	31	81	3	21.92974988
1	49	Alabama	DeKalb County	010491003	31	81	4	17.22333333
1	53	Alabama	Escambia County	010530002	22	78	1	12.98124247
1	53	Alabama	Escambia County	010530002	22	78	2	12.94027641
1	53	Alabama	Escambia County	010530002	22	78	3	15.45416667
1	53	Alabama	Escambia County	010530002	22	78	4	13.47417442
1	73	Alabama	Jefferson County	010730023	29	79	1	17.88685887
1	73	Alabama	Jefferson County	010730023	29	79	2	19.89304794
1	73	Alabama	Jefferson County	010730023	29	79	3	26.24857762
1	73	Alabama	Jefferson County	010730023	29	79	4	22.28314749

The next step is to remove the unattributed mass from the design value. The unatributed mass is treated as a fixed fraction of FRM mass that varies by quarter. Column J shows the unatributed fraction and column K shows the quarterly averages with the unatributed mass removed.

J	к
Unatributed Fraction	FRM Mass without Unatributed
0.004108463	13.72907341
0.007401925	14.00033528
0.050589051	20.82034465
0.019214703	16.89239209
0.004108463	12.92790951
0.007401925	12.84449346
0.050589051	14.67235505
0.019214703	13.21527216
0.004108463	17.81337136
0.007401925	19.7458011
0.050589051	24.920687
0.019214703	21.85498341

Next the FRM PM2.5 mass is divided into the species components. This is done by calculating the species fractions from the Kriged surfaces. In the following example, The sulfate fraction for quarter 1 at the site in DeKalb county Alabama is 43.4% (column O). This is the fraction of total PM2.5 from column K.

L	М	Ν	0	Р
Crustal Fraction	EC Fraction	OC Fraction	Sulfate Fraction	Nitrate Fraction
0.040554422	0.053856416	0.32917698	0.434901805	0.141510376
0.062691722	0.038491135	0.364702132	0.473525669	0.060589341
0.050784161	0.046509019	0.295064061	0.573991559	0.0336512
0.046598479	0.058149979	0.412990795	0.365473292	0.116787456
0.04323078	0.057282481	0.32142633	0.410296926	0.167763484
0.067217832	0.045197205	0.359264032	0.465347001	0.06297393
0.072306094	0.046501861	0.296886604	0.540717388	0.043588054
0.054660758	0.058832206	0.376710307	0.399193305	0.110603425
0.049615803	0.072993526	0.420536616	0.331436705	0.125417349
0.10227892	0.077315923	0.376565645	0.375782385	0.068057127
0.063257188	0.061957184	0.365119889	0.463406204	0.046259536
0.078780385	0.087789986	0.50144869	0.236116133	0.095864806

We can then get the quarterly species mass values at each site by multiplying the species fractions by the total PM2.5 (e.g. column O multiplied by Column K =column U)

Q	R	S	Т	U	V
1999- 2001/2000-2002 Ambient FRM Unatributed PM2.5 Mass	1999- 2001/2000-2002 Ambient Crustal Mass	1999- 2001/2000-2002 Ambient Elemental Carbon Mass	1999- 2001/2000-2002 Ambient Organic Aerosol Mass	1999- 2001/2000-2002 Ambient Ammonium Sulfate Mass	1999- 2001/2000-2002 Ambient Ammonium Nitrate Mass
0.056638092	0.556774643	0.739398691	4.519294924	5.970798805	1.942806345
0.104402202	0.87770513	0.538888802	5.105952133	6.629518135	0.848271083
1.109405226	1.05734374	0.968333805	6.143335444	11.95070209	0.700629572
0.330941242	0.787159772	0.98229225	6.976402432	6.173718139	1.972819499
0.05333296	0.558883608	0.740542727	4.155370505	5.304281528	2.168831145

0.095782949	0.863379009	0.580535205	4.61456451	5.97714651	0.808868227
0.781811619	1.060900676	0.68229182	4.356025659	7.933597492	0.6395394
0.258902265	0.722356789	0.777483614	4.97832923	5.275448164	1.461654358
0.073487506	0.883824732	1.300260794	7.491174911	5.90400511	2.234105814
0.147246839	2.019579202	1.526664845	7.435590321	7.420124237	1.3438425
1.327890621	1.576412586	1.544015587	9.099038465	11.54840096	1.152819409
0.42816407	1.721744015	1.918648684	10.9591528	5.16031417	2.095123751

The relative reduction factors (RRF) are calculated from the REMSAD model results. The RRFs represent the percentage change for each specie for each site for each quarter. For example, the RRF for elemental carbon for quarter 1 at the DeKalb county site is 0.73 (column X), which represents a 26.6% reduction in elemental carbon mass between 2001 and 2010.

W	Х	Y	Z	AA
RRF - IAQR 2010b Crustal Mass	RRF - IAQR 2010b Elemental Carbon Mass	RRF - IAQR 2010b Organic Aerosol Mass	RRF - IAQR 2010b Ammonium Sulfate Mass	RRF - IAQR 2010b Ammonium Nitrate Mass
0.984387805	0.734007875	0.894215346	1.004490725	0.936200299
1.010292927	0.75741159	0.901596815	0.899538483	0.722048795
1.023778779	0.699817783	0.876176087	0.881970652	0.522850118
1.003476273	0.717172235	0.913843769	0.977859617	0.979772342
0.976329385	0.878162793	0.950120354	0.966785809	0.933484255
1.000018254	0.902456596	0.951021008	0.90147797	0.896162069
1.000782489	0.836301085	0.925816993	0.916565498	0.829103207
0.983348583	0.84418583	0.950149933	0.938169407	0.961194783
1.031068875	0.724041957	0.94061741	0.991943586	0.939327718
1.048690141	0.741519805	0.933041132	0.916765785	0.790046338
1.054997488	0.693010181	0.910243813	0.927926735	0.756365551
1.039458529	0.707563728	0.951575967	0.974710839	0.986069043

The RRFs are applied to each of the species to get the future year 2010 base species mass values (columns AB-AF). The species mass values are then added together (along with the previuosly calculated unatributed mass from column Q) to get the total 2010 basecase mass by quarter (column AG).

AB	AC	AD	AE	AF	AG
2010b IAQR Crustal Mass	2010b IAQR Elemental Carbon Mass	2010b IAQR Organic Aerosol Mass	2010b IAQR Ammonium Sulfate Mass	2010b IAQR Ammonium Nitrate Mass	2010 base IAQR DV
0.548082169	0.542724462	4.041222874	5.997612021	1.818855881	13.0051355
0.886739285	0.408160624	4.603510181	5.963506689	0.612493114	12.57881209
1.082486083	0.677657217	5.38264361	10.54016852	0.366324255	19.15868491
0.789896154	0.704472728	6.375341896	6.037029653	1.93291398	16.17059565
0.545654489	0.65031707	3.948102093	5.12810411	2.024569726	12.35008045
0.863394769	0.523907825	4.38854779	5.388265905	0.724877024	11.98477626
1.06173082	0.570601389	4.032882577	7.271661737	0.530244168	14.24893231
0.710328525	0.65634065	4.730159187	4.949264077	1.404934544	12.70992925
0.911284172	0.94144337	7.046329543	5.856440004	2.098557516	16.92754211
2.117912797	1.132052218	6.937711612	6.802516022	1.061697846	18.19913733
1.663111318	1.070018521	8.282343471	10.71606999	0.871952887	23.93138681
1.789681501	1.357566216	10.42846642	5.029814154	2.065936673	21.09962904

The quarterly average mass from column AG is then averaged for all four quarters to get the annual average future year design value for each monitoring site. The result of this calculation is in the "Annual All Sites" worksheet (column H). The Annual All Sites worksheet also contains annual average summary information of species mass and RRFs for each monitoring site. The species mass and RRFs in this worksheet are for informational purposes only and are not used as part of the future year design value calculations. All calculations are done on a quarterly average basis and then summed at the end.

The "Annual High Sites" worksheet contains the final county level design values. Only the highest design value site in each county is retained for counties with multiple FRM sites. The values in this worksheet were used to determine future year attainment status for each county. Note that each projected PM2.5 design value is truncated at two places to the right of the decimal in order to determine whether the concentration is $\geq 15.05 \ \mu g/m^3$ (i.e, nonattainment).

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix F

PM2.5 Concentrations Projected for the 2010 Base Cases and 2015 Base Case

The table below contains PM2.5 annual average design values ($\mu g/m^3$) by county for those counties with PM2.5 concentrations above the National Ambient Air Quality Standard (i.e., design value >=15.05 $\mu g/m^3$) for the period 2000-2002. The ambient data listed for each site are the higher of the design values over the two periods: 1999-2001 and 2000-2002, as measured at Federal Reference Method (FRM) sites in the East. Thus, the ambient data are the highest values in each county during the periods 1999-2001 and 2000-2002 at those sites that measured concentrations >=15.05 in 2000-2002. Counties with measured concentrations below the NAAQS are not shown. In addition to the ambient data, the table provides the highest projected design value in each of these counties for the 2010 Base-1, 2010 Base-2, and 2015 Base Case scenarios. In all three future base cases, the highest concentration in each county occurs at the same site that has the highest concentration in 1999-2001/2000-2002. Note that these data have been truncated at two places to the right of the decimal. Row and Col denote the row and column coordinates of the REMSAD grid cell in which the monitoring site is located.

							1999-2001/			
State	Cntv						Ambient	2010	2010	2015
FIPs	FIPs	State	County	AIRS Site ID	Row	Col	FRM	Base-1	Base-2	Base
1	49	Alabama	DeKalb County	010491003	31	81	16.76	15.24	15.22	14.75
1	73	Alabama	Jefferson County	010730023	29	79	21.57	20.12	20.03	19.57
1	101	Alabama	Montgomery County	011010007	26	80	16.79	15.72	15.69	15.35
1	113	Alabama	Russell County	011130001	26	83	18.39	17.31	17.07	16.68
1	121	Alabama	Talladega County	011210002	28	80	17.75	16.46	16.44	15.97
9	9	Connecticut	New Haven County	090090018	52	107	16.80	15.45	15.43	15.13
10	3	Delaware	New Castle County	100032004	48	101	16.61	15.49	15.43	15.01
11	1	DC	District of Columbia	110010041	45	99	16.55	15.35	15.48	14.98
13	59	Georgia	Clarke County	130590001	30	86	18.61	17.05	17.04	16.46
13	63	Georgia	Clayton County	130630091	29	84	19.16	17.82	17.73	17.26
13	67	Georgia	Cobb County	130670003	31	83	18.56	17.24	16.80	16.28
13	89	Georgia	DeKalb County	130892001	30	84	19.56	18.26	18.26	17.93
13	115	Georgia	Floyd County	131150005	31	82	18.45	17.14	16.99	16.51
13	121	Georgia	Fulton County	131210039	30	84	21.20	19.79	19.79	19.44
13	139	Georgia	Hall County	131390003	31	85	17.24	15.61	15.62	15.05
13	215	Georgia	Muscogee County	132150011	26	83	17.97	16.92	16.68	16.31
13	223	Georgia	Paulding County	132230003	30	82	16.76	15.52	15.40	14.93
13	245	Georgia	Richmond County	132450091	29	88	17.36	16.03	15.99	15.51
13	319	Georgia	Wilkinson County	133190001	27	86	17.75	16.89	16.68	16.40
17	31	Illinois	Cook County	170310052	54	77	18.79	18.07	17.90	17.52
17	43	Illinois	DuPage County	170434002	54	76	15.44	14.91	14.74	14.34
17	119	Illinois	Madison County	171191007	45	72	17.45	16.48	16.41	16.03
17	163	Illinois	St. Clair County	171630010	44	72	17.42	16.32	16.31	15.91
17	197	Illinois	Will County	171971002	53	76	15.87	15.54	15.21	14.86
18	19	Indiana	Clark County	180190005	43	81	17.34	15.79	15.86	15.40
18	35	Indiana	Delaware County	180350006	49	82	15.07	13.88	13.93	13.41
18	39	Indiana	Elkhart County	180390003	54	81	15.45	14.32	14.34	13.83
18	43	Indiana	Floyd County	180431004	43	81	15.60	14.20	14.26	13.84
18	67	Indiana	Howard County	180670003	50	80	15.10	13.98	14.05	13.48
18	89	Indiana	Lake County	180890006	53	78	15.62	14.89	14.83	14.44
18	97	Indiana	Marion County	180970083	48	80	17.00	15.76	15.89	15.31
18	163	Indiana	Vanderburgh County	181630016	42	77	15.70	14.24	14.25	13.78

State	Cnty	State	County		Bow		1999-2001/ 2000-2002 Ambient	2010 Base 1	2010 Base 2	2015 Base
רור ג 18	167	Indiana	Vigo County	181670018	47	78	15.15	13.82	14.00	13.38
21	19	Kentucky	Bovd County	210190017	44	87	15.67	14.27	14.56	13.99
21	29	Kentuckv	Bullitt County	210290006	42	81	16.03	14.18	14.31	13.79
21	37	Kentucky	Campbell County	210370003	46	84	15.45	14.05	14.21	13.65
21	67	Kentucky	Favette County	210670014	43	83	16.81	15.05	15.21	14.66
21	93	Kentucky	Hardin County	210930006	42	81	15.10	13.35	13.48	12.99
21	111	Kentucky	Jefferson County	211110044	43	81	17.28	15.71	15.79	15.32
21	117	Kentucky	Kenton County	211170007	46	83	15.86	14.37	14.52	14.01
	1		Anne Arundel	(l l		
24	3	Maryland	County	240031003	46	99	15.81	14.66	14.72	14.30
24	5	Maryland	Baltimore County	240053001	46	100	15.10	13.77	13.81	13.38
24	510	Maryland	Baltimore city	245100040	46	99	17.82	16.53	16.58	16.11
26	115	Michigan	Monroe County	261150005	54	86	15.57	14.63	14.68	14.26
26	163	Michigan	Wayne County	261630033	55	86	19.85	18.76	18.78	18.28
29	510	Missouri	St. Louis city	295100085	44	72	16.28	15.26	15.25	14.89
34	17	New Jersey	Hudson County	340171003	51	104	15.88	13.46	13.49	13.20
34	39	New Jersey	Union County	340390004	50	104	16.26	14.13	14.11	13.93
36	5	New York	Bronx County	360050080	51	105	16.13	14.55	14.56	14.12
36	61	New York	New York County	360610056	51	105	18.04	16.29	16.30	15.82
37	25	North Carolina	Cabarrus County	370250004	35	91	15.67	13.53	13.68	13.13
37	35	North Carolina	Catawba County	370350004	36	90	17.10	15.04	15.26	14.62
37	57	North Carolina	Davidson County	370570002	36	92	17.27	15.32	15.52	14.92
37	67	North Carolina	Forsyth County	370670022	37	92	16.23	14.27	14.44	13.82
37	111	North Carolina	McDowell County	371110004	36	89	16.16	14.34	14.54	14.00
37	119	North Carolina	Mecklenburg Countv	371190010	34	91	16.77	15.07	15.18	14.61
39	17	Ohio	Butler County	390170003	47	84	17.40	15.87	16.01	15.39
39	35	Ohio	Cuvahoga County	390350038	53	89	20.25	18.99	19.13	18.58
39	49	Ohio	Franklin County	390490024	48	87	18.13	16.45	16.69	16.18
39	61	Ohio	Hamilton County	390610014	46	84	19.29	17.57	17.75	17.07
39	81	Ohio	Jefferson County	390810016	50	91	18.90	17.69	18.04	17.49
39	87	Ohio	I awrence County	390870010	44	87	16.65	15.19	15.48	14.88
39	99	Ohio	Mahoning County	390990005	52	91	16.42	15.13	15.39	14.82
39	113	Ohio	Montaomery County	391130031	48	84	15.89	14.62	14.71	14.15
39	133	Ohio	Portage County	391330002	52	90	15.29	14.25	14.41	13.90
39	145	Ohio	Scioto County	391450013	45	87	20.03	18.02	18.40	17.62
39	151	Ohio	Stark County	391510017	51	90	18.28	16.80	17.09	16.42
39	153	Ohio	Summit County	391530017	52	90	17.34	16.17	16.35	15.78
39	155	Ohio	Trumbull County	391550007	52	91	16.15	14.89	15.13	14.58
42	3	Pennsvlvania	Alleghenv County	420030064	49	93	21.42	18.86	19.52	18.64
42	7	Pennsvlvania	Beaver County	420070014	51	92	15.99	14.53	14.89	14.37
42	11	Pennsvlvania	Berks County	420110009	49	101	16.67	15.28	15.39	14.95
42	21	Pennsvlvania	Cambria County	420210011	49	95	15.76	14.10	14.52	13.89
42	43	Pennsylvania	Dauphin County	420430401	49	99	15.64	14.05	14.36	13.90
42	45	Pennsvlvania	Delaware County	420450002	48	102	15.74	14.88	14.85	14.57
42	71	Pennsvlvania	Lancaster County	420710007	49	100	17.08	15.27	15.46	14.87
42	101	Pennsylvania	Philadelphia County	421010136	48	102	15 29	14 46	14 43	14 15
42	125	Pennsylvania	Washington County	421250005	49	93	15 69	13 80	14 32	13 65
		l childyrtaine	Westmoreland	421200000			10.00	10.00	17.02	10.00
42	129	Pennsylvania	County	421290008	49	93	15.61	13.70	14.19	13.53
42	133	Pennsylvania	York County	421330008	48	99	17.05	15.50	15.68	15.13

State FIPs	Cnty FIPs	State	County	AIRS Site ID	Row	Col	1999-2001/ 2000-2002 Ambient FRM	2010 Base-1	2010 Base-2	2015 Base
		South								
45	45	Carolina	Greenville County	450450009	33	88	16.50	14.93	15.06	14.53
47	37	Tennessee	Davidson County	470370023	37	79	17.04	15.31	15.36	14.90
47	65	Tennessee	Hamilton County	470654002	34	82	17.62	16.11	16.14	15.63
47	93	Tennessee	Knox County	470931017	36	85	20.41	18.16	18.36	17.73
47	107	Tennessee	McMinn County	471071002	35	83	16.07	14.36	14.45	13.95
47	145	Tennessee	Roane County	471450004	36	83	17.02	15.13	15.18	14.63
47	163	Tennessee	Sullivan County	471631007	38	87	16.97	15.06	15.24	14.69
51	520	Virginia	Bristol city	515200006	38	88	16.01	13.99	14.20	13.64
51	770	Virginia	Roanoke city	517700014	40	93	15.23	13.69	13.93	13.41
51	775	Virginia	Salem city	517750010	40	92	15.31	13.72	13.96	13.38
54	3	West Virginia	Berkeley County	540030003	47	97	16.24	14.59	14.96	14.38
54	9	West Virginia	Brooke County	540090005	50	91	17.40	16.28	16.60	16.10
54	11	West Virginia	Cabell County	540110006	44	88	17.84	15.98	16.39	15.70
54	29	West Virginia	Hancock County	540291004	50	91	17.49	16.37	16.69	16.18
54	39	West Virginia	Kanawha County	540391005	44	89	18.39	16.67	17.11	16.45
54	49	West Virginia	Marion County	540490006	47	92	15.74	13.99	14.50	13.82
54	51	West Virginia	Marshall County	540511002	48	91	16.52	14.90	15.53	14.78
54	69	West Virginia	Ohio County	540690008	49	91	15.65	14.15	14.64	13.96
54	107	West Virginia	Wood County	541071002	46	89	17.61	15.85	16.30	15.58

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix G

Metrics for 8-Hour Ozone Contributions to Downwind Nonattainment Counties in 2010

Downwind Nonattainme Receptor	ent		CAMx Sou	rce Apport	tionment N	lodeling			CAMx State	Zero-Out N	lodeling	
		Ba	ase Case: Total N	umber of Exc	ceedances (g	grid-hours) =	133	Base Ca	ase: Total Numbe	r of Exceedan	ces (grids-d	ays) = 37
Crittenden AR	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	TN	58%	45	52%	133	100%	51	100%	100%	37	100%	46.5
screening criteria	GA	5%	10	11%	51	38%	11	23%	28%	12	32%	11.9
	AL	6%	12	13%	51	38%	14	34%	48%	15	41%	9.0
	MS	4%	8	9%	73	55%	8	29%	53%	19	51%	6.6
	IL	6%	10	11%	79	59%	11	11%	10%	6	16%	5.5
	KY	4%	5	6%	80	60%	6	24%	29%	15	41%	5.3
	мо	3%	6	6%	80	60%	7	11%	9%	6	16%	3.8
	IN	1%	4	5%	21	16%	4	7%	14%	3	8%	3.7
Contributions do not	ОН	1%	2	3%	19	14%	3	2%	2%	0	0%	1.8
exceed screening criteria	FL	0%	2	2%	0	0%	2	4%	12%	0	0%	1.7
	LA	1%	2	2%	0	0%	2	2%	2%	0	0%	1.0
	NC	1%	1	1%	0	0%	1	2%	3%	0	0%	1.0
	SC	0%	1	1%	0	0%	1	3%	7%	0	0%	1.0
	VA	1%	1	2%	0	0%	1	3%	2%	0	0%	0.8
	wv	0%	0	1%	0	0%	1	1%	2%	0	0%	0.5
	IA	0%	1	1%	0	0%	2	1%	2%	0	0%	0.4
	WI	0%	1	2%	0	0%	2	1%	2%	0	0%	0.4
	МІ	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	PA	0%	1	1%	0	0%	1	1%	0%	0	0%	0.3
	MD	0%	0	1%	0	0%	0	0%	0%	0	0%	0.1
	MN	0%	0	0%	0	0%	0	0%	2%	0	0%	0.1
	NY	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	DE	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NJ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainme	nt		CAMX Sou	rce Apport	ionment N	lodeling			CAMX State	Zero-Out M	lodeling	
Receptor		Ba	se Case: Total N	umber of Exc	eedances (r	rid-hours) =	110	Base C	ase: Total Number	r of Exceedan	ces (arids_d	avs) = 27
		De				gnu-nours) –		Dase Ca			Gilds-d	ays) – 21
Fairfield CT	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	NY	21%	36	41%	110	100%	37	-10%	-14%	11	41%	22.5
screening criteria	PA	23%	25	29%	108	98%	30	59%	57%	20	74%	21.2
	NJ	27%	21	24%	110	100%	28	47%	41%	27	100%	17.9
	VA	3%	7	8%	68	62%	7	10%	9%	8	30%	7.2
	ОН	6%	7	7%	77	70%	10	15%	13%	9	33%	6.4
	MD	3%	7	8%	68	62%	7	9%	8%	5	19%	4.8
	wv	2%	3	3%	68	62%	3	7%	6%	2	7%	2.2
Contributions do not	МІ	1%	4	5%	13	12%	4	3%	3%	0	0%	1.8
exceed screening chiena	NC	2%	2	2%	43	39%	3	3%	3%	0	0%	1.6
	DE	2%	2	2%	33	30%	3	3%	3%	0	0%	1.1
	IN	2%	2	2%	28	25%	3	3%	3%	0	0%	1.1
	IL	2%	2	2%	17	15%	2	3%	2%	0	0%	0.9
	KY	1%	2	2%	20	18%	3	2%	2%	0	0%	0.8
	WI	1%	2	2%	0	0%	2	1%	1%	0	0%	0.5
	MA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.4
	мо	1%	1	1%	0	0%	1	1%	1%	0	0%	0.3
		1%	2	2%	0	0%	2	1%	1%	0	0%	0.2
		0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.2
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	AR	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	LA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
					1							

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source A	Apportionm	ent Model	t Modeling CAMX State Zero					-Out Modeling		
	Base Case	: Total Number	of Exceedances	(grid-hours) =	227			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	31	
Middlesex CT	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	
Contributions exceed	NY	20%	18	3 21%	227	100%	25	35%	37%	31	100%	15.2	
screening criteria	PA	22%	23	25%	224	99%	28	46%	49%	29	94%	15.1	
	NJ	23%	19	20%	227	100%	28	44%	46%	31	100%	13.7	
	MA	1%	7	7%	23	10%	9	2%	2%	2	6%	7.0	
	он	5%	7	6%	110	48%	10	10%	14%	12	39%	6.7	
	MD	4%	ę	11%	182	80%	9	7%	7%	7	23%	5.3	
	VA	3%	5	6%	101	44%	7	5%	6%	6	19%	4.0	
Contributions do not	wv	2%	2	3%	92	41%	3	4%	5%	0	0%	1.9	
exceed screening criteria	МІ	1%	2	2%	32	14%	3	3%	2%	0	0%	1.7	
	NC	1%	3	3%	76	33%	4	2%	2%	0	0%	1.4	
	DE	2%	4	4%	82	36%	5	3%	3%	0	0%	1.3	
	IN	2%	2	2%	41	18%	3	3%	3%	0	0%	1.2	
	NH	0%	1	1%	0	0%	2	0%	0%	0	0%	1.1	
	IL	1%	2	2%	23	10%	2	2%	3%	0	0%	1.0	
	KY	1%	2	2%	17	7%	2	1%	2%	0	0%	0.8	
	RI	0%	1	1%	0	0%	2	0%	0%	0	0%	0.5	
	wi	0%	1	2%	0	0%	1	1%	1%	0	0%	0.5	
	VT	0%	(0%	0	0%	1	0%	0%	0	0%	0.4	
	мо	0%	1	1%	0	0%	1	0%	1%	0	0%	0.3	
	IA	0%	1	1%	0	0%	1	0%	1%	0	0%	0.2	
	TN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.2	
	AR	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1	
	FL	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	GA	0%	C	1%	0	0%	0	0%	0%	0	0%	0.1	
	ME	0%	C	0%	0	0%	1	0%	0%	0	0%	0.1	
	MN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1	
	SC	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1	
	AL	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0	
	LA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0	
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0	

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source	Apportionm	ent Model	t Modeling CAMX State Zero					Dut Modeling		
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 178			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	35	
New Haven CT	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	
Contributions exceed	PA	24%	24	1 27%	176	99%	28	51%	50%	35	100%	17.6	
screening criteria	NJ	24%	18	3 21%	178	100%	28	46%	46%	35	100%	15.2	
	NY	20%	3	5 40%	178	100%	36	23%	24%	28	80%	13.8	
	ОН	6%	8	3 7%	117	66%	10	12%	14%	10	29%	6.8	
	VA	4%	(8 7%	103	58%	7	12%	11%	14	40%	6.1	
	MD	4%	8	3 9%	139	78%	9	13%	12%	14	40%	5.4	
	wv	2%	2	2 3%	85	48%	3	6%	6%	1	3%	2.1	
Contributions do not	МІ	1%	2	2 3%	24	13%	3	4%	4%	0	0%	1.8	
exceed screening chiena	NC	2%	2	2 3%	57	32%	3	3%	3%	0	0%	1.6	
	IN	2%	2	2 2%	38	21%	3	3%	4%	0	0%	1.2	
	DE	2%	:	3 4%	46	26%	4	4%	3%	0	0%	1.0	
	IL	2%		2 2%	24	13%	3	3%	3%	0	0%	1.0	
	KY	1%	2	2 2%	22	12%	3	2%	2%	0	0%	0.8	
	WI	1%		I 1%	0	0%	1	1%	1%	0	0%	0.5	
	MA	0%	-	8%	6	3%	7	0%	0%	0	0%	0.4	
	IA	0%		I 1%	0	0%	1	1%	1%	0	0%	0.3	
	мо	0%		I 1%	0	0%	1	1%	1%	0	0%	0.3	
	MN	0%	(0%	0	0%	0	0%	1%	0	0%	0.2	
	TN	0%	(0%	0	0%	0	0%	0%	0	0%	0.2	
	AL	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	FL	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	LA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	NH	0%		1%	0	0%	1	0%	0%	0	0%	0.1	
	RI	0%		1%	0	0%	1	0%	0%	0	0%	0.1	
	SC	0%	(0%	0	0%	0	0%	0%	0	0%	0.1	
	AR	0%	(0%	0	0%	0	0%	0%	0	0%	0.0	
	MS	0%	(0%	0	0%	0	0%	0%	0	0%	0.0	
	VT	0%		1%	0	0%	1	0%	0%	0	0%	0.0	

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor	CAMX Source Apportionme Base Case: Total Number of Exceedances (grid-hours) = 1					Modeling CAMX S					tate Zero-Out Modeling			
	Base Case	: Total Number	of Exceedances	(grid-hours) =	149			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	24		
Newcastle DE	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution		
Contributions exceed	MD	48%	3	9 45%	149	100%	48	100%	100%	24	100%	33.6		
screening criteria	VA	7%		3 8%	105	70%	11	47%	33%	19	79%	17.0		
	PA	8%	!	9 10%	107	72%	18	39%	51%	17	71%	15.3		
	ОН	8%	9	9 10%	128	86%	9	25%	20%	17	71%	5.4		
	wv	4%		4 5%	81	54%	6	23%	17%	10	42%	4.3		
	NC	3%		5 6%	63	42%	9	10%	5%	4	17%	3.5		
	мі	2%	:	3 3%	54	36%	5	9%	10%	3	13%	3.3		
Contributions do not	NJ	0%		1 2%	0	0%	2	2%	2%	0	0%	1.6		
exceed screening criteria	IN	2%		3 3%	39	26%	3	6%	5%	0	0%	1.2		
	IL	3%		4 4%	65	44%	4	6%	5%	0	0%	1.1		
	IA	1%	:	2 2%	7	5%	2	4%	3%	0	0%	0.9		
	KY	2%		2 3%	40	27%	4	4%	3%	0	0%	0.9		
	NY	0%		1 1%	0	0%	1	1%	1%	0	0%	0.5		
	мо	2%		2 2%	51	34%	2	2%	1%	0	0%	0.4		
	WI	1%		1 1%	0	0%	1	2%	2%	0	0%	0.4		
	ст	0%		0 1%	0	0%	0	0%	0%	0	0%	0.2		
	MA	0%		1 1%	0	0%	1	0%	0%	0	0%	0.2		
	AR	0%		1 1%	0	0%	1	0%	0%	0	0%	0.1		
	LA	0%		0%	0	0%	0	0%	0%	0	0%	0.1		
	ME	0%		0%	0	0%	0	0%	0%	0	0%	0.1		
	MN	0%		0%	0	0%	0	0%	0%	0	0%	0.1		
	NH	0%		0%	0	0%	0	0%	0%	0	0%	0.1		
	SC	0%		1%	0	0%	1	0%	0%	0	0%	0.1		
	IN	1%		1 1%	0	0%	1	0%	0%	0	0%	0.1		
	AL	0%		0%	0	0%	0	0%	0%	0	0%	0.0		
	FL	0%		J 0%	0	0%	1	0%	0%	0	0%	0.0		
	GA	0%		0%	0	0%	1	0%	0%	0	0%	0.0		
	NIS DI	0%			0	0%	0	0%	0%	0	0%	0.0		
	KI V/T	0%		U%	0	0%	0	0%	0%	0	0%	0.0		
	VI	0%	''	0%	0	0%	0	0%	0%	0	0%	0.0		

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Mode	ling			CAMX State	Zero-Out M	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	8			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	2
Washington DC	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	VA	11%	ç	9%	8	100%	10	79%	79%	2	100%	18.7
screening criteria	он	5%	6	6%	7	88%	6	30%	30%	2	100%	6.6
	PA	7%	6	6%	8	100%	6	11%	11%	1	50%	2.7
	wv	2%	3	3 3%	4	50%	3	13%	13%	2	100%	2.3
Contributions do not	IL	3%	3	3 3%	4	50%	3	8%	8%	0	0%	1.7
exceed screening criteria	IN	2%	2	2 2%	1	13%	2	7%	7%	0	0%	1.3
	МІ	2%	2	2 2%	C	0%	2	4%	4%	0	0%	0.9
	KY	0%	C	0%	C	0%	0	2%	2%	0	0%	0.8
	MO	2%	2	2 2%	C	0%	2	4%	4%	0	0%	0.7
	IA	0%	C	0%	C	0%	0	2%	2%	0	0%	0.6
	LA	2%	2	2 2%	C	0%	2	1%	1%	0	0%	0.4
	AR	1%	1	1%	C	0%	1	1%	1%	0	0%	0.2
	TN	0%	C	0%	C	0%	0	1%	1%	0	0%	0.2
	wi	0%	C	0%	C	0%	0	1%	1%	0	0%	0.2
	MS	1%	() 1%	C	0%	1	0%	0%	0	0%	0.1
	AL	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	СТ	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	DE	1%	1	2%	C	0%	2	0%	0%	0	0%	0.0
	FL	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	GA	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	MA	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	MN	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	NC	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	NH	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	NJ	1%	2	2 2%	1	13%	2	0%	0%	0	0%	0.0
	NY	1%	1	1%	C	0%	1	0%	0%	0	0%	0.0
	RI	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	SC	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source /	Apportionm	ent Model	ing			CAMX State Zero-Out Modeling			
	Base Case	: Total Number	of Exceedances	(grid-hours) =	1366			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	199
Fulton GA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	AL	4%	18	3 20%	550	40%	25	9%	6%	55	28%	22.2
screening criteria	SC	2%		7 7%	390	29%	9	5%	4%	29	15%	8.2
	TN	5%	8	8 8%	1062	78%	10	11%	9%	80	40%	7.4
	NC	2%	Ę	5 5%	334	24%	6	4%	4%	36	18%	4.6
	KY	3%	6	6%	733	54%	7	5%	4%	24	12%	3.6
	VA	1%	2	2 2%	80	6%	3	2%	2%	4	2%	2.9
	wv	1%	3	3 3%	135	10%	3	2%	2%	9	5%	2.8
Contributions do not	FL	0%	Ę	5 5%	95	7%	6	1%	1%	15	8%	3.3
exceed screening criteria	MS	0%	2	2 2%	39	3%	3	1%	0%	2	1%	2.7
	AR	1%	2	2 2%	46	3%	3	1%	1%	0	0%	1.5
	он	1%	:	3 3%	142	10%	4	1%	1%	0	0%	1.4
	PA	0%	2	2 3%	83	6%	3	0%	0%	0	0%	1.1
	IL	1%	2	2 2%	117	9%	2	1%	1%	0	0%	1.0
	IN	1%	2	2 2%	0	0%	2	1%	1%	0	0%	1.0
	мо	1%	2	2 2%	0	0%	2	1%	1%	0	0%	0.7
	LA	0%	(0 1%	0	0%	1	0%	0%	0	0%	0.2
	MD	0%		I 1%	0	0%	1	0%	0%	0	0%	0.2
	NY	0%		I 1%	0	0%	1	0%	0%	0	0%	0.2
	ст	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	IA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	MA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	NJ	0%		I 1%	0	0%	1	0%	0%	0	0%	0.1
	WI	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	DE	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	МІ	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MN	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Model	ing			CAMX State	Zero-Out N	Nodeling	
Nonattainment Neceptor	Base Case	: Total Number	of Exceedances	(grid-hours) =	75			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	33
Lake IN	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	IL	42%	40	45%	75	100%	47	92%	98%	31	94%	38.4
screening criteria	мо	4%	4	4%	58	77%	4	30%	38%	24	73%	7.7
	он	5%	15	5 18%	26	35%	15	2%	2%	3	9%	6.8
	wi	3%	3	3 4%	29	39%	6	8%	8%	5	15%	6.0
	IA	5%	8	3 9%	40	53%	8	15%	12%	12	36%	5.6
	PA	2%	11	12%	14	19%	11	1%	1%	2	6%	3.3
	мі	3%	6	ð 7%	29	39%	7	2%	3%	1	3%	3.0
	TN	2%	2	2 2%	10	13%	2	7%	7%	2	6%	2.7
	VA	1%	3	3 3%	13	17%	3	1%	1%	2	6%	2.3
Contributions do not	AR	1%	2	2 2%	0	0%	2	9%	14%	4	12%	2.7
exceed screening chiena	AL	1%	2	2 2%	0	0%	2	6%	8%	0	0%	1.7
	GA	1%	2	2 2%	0	0%	2	6%	7%	0	0%	1.4
	wv	1%	2	2 2%	7	9%	2	1%	1%	0	0%	1.3
	LA	1%	2	2 2%	6	8%	2	2%	2%	0	0%	1.2
	MD	1%	3	3%	13	17%	3	1%	1%	0	0%	1.1
	KY	0%	0) 1%	0	0%	1	2%	2%	0	0%	0.9
	MS	1%	1	1%	0	0%	1	3%	4%	0	0%	0.9
	NC	1%	2	2 2%	6	8%	2	1%	1%	0	0%	0.9
	MN	0%	1	1%	0	0%	1	0%	0%	0	0%	0.6
	FL	0%	1	1%	0	0%	1	0%	0%	0	0%	0.4
	NY	0%	3	3 4%	1	1%	3	0%	0%	0	0%	0.3
	SC	0%	1	1%	0	0%	1	1%	1%	0	0%	0.3
	СТ	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	DE	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	NJ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Model	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	237			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	55
Anne Arundel MD	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	VA	9%	16	6 18%	227	96%	18	61%	59%	49	89%	34.7
screening criteria	он	8%	10	10%	206	87%	12	26%	23%	35	64%	7.1
	PA	5%	11	13%	163	69%	13	18%	21%	28	51%	6.0
	wv	3%	4	5%	126	53%	5	13%	12%	13	24%	5.1
	NC	1%	5	6%	38	16%	10	3%	2%	5	9%	3.9
	МІ	2%	3	8 4%	77	32%	3	5%	5%	4	7%	2.8
Contributions do not	WI	1%	3	8 4%	37	16%	4	3%	4%	0	0%	2.0
execcu sereening enterna	IL	3%	4	4%	106	45%	5	6%	5%	0	0%	1.6
	IN	2%	3	3%	95	40%	3	5%	4%	0	0%	1.5
	KY	2%	3	3%	95	40%	4	3%	2%	0	0%	1.5
	NJ	0%	1	2%	0	0%	1	1%	1%	0	0%	0.8
	IA	1%	1	2%	0	0%	2	2%	2%	0	0%	0.6
	мо	2%	2	2%	69	29%	3	2%	1%	0	0%	0.6
	DE	0%	1	1%	0	0%	1	0%	1%	0	0%	0.5
	MN	0%	1	1%	0	0%	1	1%	1%	0	0%	0.5
	NY	0%	1	1%	0	0%	1	1%	1%	0	0%	0.5
	LA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	MA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	CI	0%	(1%	0	0%	0	0%	0%	0	0%	0.2
		0%	(0 0%	0	0%	1	0%	0%	0	0%	0.2
		1%		1%	0	0%	1	0%	0%	0	0%	0.2
		0%		1%	0	0%	1	0%	0%	0	0%	0.1
	GA	0%		0%	0	0%	1	0%	0%	0	0%	0.1
		0%		0%	0	0%	0	0%	0%	0	0%	0.1
		0%		0%	0	0%	0	0%	0%	0	0%	0.1
	NIT 80	0%		10/0	0	0%	1	0%	0%	0	0%	0.1
	ΔI	0%	r	0%	0	0%	۱ ۵	0%	0%	0	0%	0.1
	RI	0%	((0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	((0%	0	0%	0	0%	0%	0	0%	0.0
		070		0/0	0	570	U	070	070	U	570	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source /	Apportionm	ent Model	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	296			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	68
Baltimore MD	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	VA	10%	15	5 17%	269	91%	17	50%	44%	55	81%	24.8
screening criteria	PA	7%	-	8%	234	79%	10	30%	24%	52	76%	18.4
	NC	3%	1:	3 14%	61	21%	15	8%	5%	10	15%	10.4
	он	4%	ę	9 10%	157	53%	11	17%	16%	23	34%	6.2
	wv	2%	Ę	6%	73	25%	6	12%	9%	6	9%	5.6
	MI	1%	(3 3%	60	20%	3	6%	6%	1	1%	3.0
Contributions do not exceed screening criteria	WI	1%	3	3 4%	10	3%	4	3%	3%	0	0%	2.0
	DE	1%		2 2%	20	7%	3	2%	1%	0	0%	1.6
	IL KV	2 %		4 70	20	20%	4	1%	5% 1%	0	0%	1.0
	N.I	1%		2%	20	7%	- 3	2%	1 %	0	0%	1.7
	IN	1%		3 3%	37	13%	3	4%	3%	0	0%	1.0
	SC	0%	2	2 2%	20	7%	4	1%	0%	0	0%	0.9
	IA	0%		2%	0	0%	2	1%	1%	0	0%	0.7
	мо	1%	2	2 3%	26	9%	3	2%	2%	0	0%	0.7
	MN	0%		1%	0	0%	1	1%	1%	0	0%	0.6
	NY	1%		2%	0	0%	2	1%	1%	0	0%	0.6
	LA	1%		1%	0	0%	2	1%	1%	0	0%	0.5
	MA	0%		1%	0	0%	1	0%	0%	0	0%	0.3
	AR	0%		1%	0	0%	1	0%	0%	0	0%	0.2
	СТ	0%	() 1%	0	0%	0	0%	0%	0	0%	0.2
	FL	0%		1%	0	0%	1	0%	0%	0	0%	0.2
	MS	0%	(0%	0	0%	1	0%	0%	0	0%	0.2
		0%		1%	0	0%	0	0%	0%	0	0%	0.1
	ME	0%	(1 //	0	0%	1	0%	0%	0	0%	0.1
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	TN	0%		1%	0	0%	1	0%	0%	0	0%	0.1
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing		CAMX State Zero-Out Modeling				
····	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 210			Base Case: T	otal Number of Ex	ceedances (g	rids-days) =	: 31
Cecil MD	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	9%	18	21%	167	80%	21	43%	46%	26	84%	17.2
screening criteria	VA	6%	14	16%	129	61%	15	40%	37%	23	74%	14.2
	ОН	7%	9	10%	159	76%	10	20%	20%	16	52%	5.4
	wv	3%	5	5%	77	37%	6	16%	17%	8	26%	4.8
	МІ	2%	3	3%	73	35%	4	7%	7%	3	10%	3.0
	NC	2%	4	5%	55	26%	8	4%	4%	2	6%	2.3
Contributions do not exceed screening criteria	IL	3%	4	4%	75	36%	4	5%	5%	0	0%	1.2
g	IN	2%	3	3%	96	46%	3	5%	4%	0	0%	1.2
	KY	2%	3	3%	48	23%	4	3%	3%	0	0%	1.2
		1%	2	2%	0	0%	2	3%	2%	0	0%	0.9
		0%	1	1%	3	1%	3	1%	1%	0	0%	0.7
	NY	0%	1	2 /0	0	0%	1	1%	1 /0	0	0%	0.7
	MO	1%	2	2%	64	30%	3	2%	1%	0	0%	0.0
	LA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	MA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	wi	1%	3	4%	3	1%	3	1%	1%	0	0%	0.3
	ст	0%	0	1%	0	0%	0	0%	0%	0	0%	0.2
	FL	0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
	AR	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	GA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	MN	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	0	1%	0	0%	1	0%	0%	0	0%	0.1
	TN	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Mode	ling			CAMX State	Zero-Out I	Nodeling	
Ronattainient Receptor	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 187			Base Case: T	otal Number of Ex	ceedances (c	rids-days) =	36
Harford MD	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	9%	12	14%	156	83%	16	38%	36%	27	75%	17.5
screening criteria	VA	7%	14	15%	104	56%	17	41%	36%	21	58%	15.7
	wv	2%	6	6%	29	16%	6	11%	10%	4	11%	5.9
	ОН	6%	9	11%	139	74%	11	17%	18%	13	36%	4.7
	NC	1%	4	5%	33	18%	5	4%	5%	3	8%	3.0
	мі	2%	5	5%	83	44%	5	6%	7%	2	6%	2.4
Contributions do not	KY	1%	3	4%	24	13%	4	2%	2%	C	0%	1.6
exceed screening criteria	WI	1%	3	4%	17	9%	4	2%	3%	C	0%	1.6
	IL	2%	4	4%	68	36%	4	4%	5%	0	0%	1.3
	IN	1%	2	3%	41	22%	3	4%	4%	0	0%	1.0
	IA	1%	2	2%	C	0%	2	2%	2%	C	0%	0.8
	NJ	0%	1	2%	C	0%	2	1%	1%	C	0%	0.8
	MN	0%	1	1%	C	0%	1	1%	1%	0	0%	0.5
	мо	1%	2	3%	31	17%	3	1%	1%	C	0%	0.5
	NY	0%	1	1%	C	0%	1	1%	1%	C	0%	0.5
	LA	0%	1	1%	C	0%	2	1%	0%	C	0%	0.4
	FL	0%	1	1%	C	0%	1	0%	0%	C	0%	0.3
	MA	0%	1	1%	C	0%	1	0%	0%	C	0%	0.3
	СТ	0%	0	1%	C	0%	0	0%	0%	C	0%	0.2
	DE	0%	1	1%	C	0%	1	0%	0%	C	0%	0.2
	GA	0%	1	1%	C	0%	1	0%	0%	C	0%	0.2
	SC	0%	0	1%	C	0%	1	0%	0%	0	0%	0.2
	AL	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	AR	0%	1	1%	C	0%	1	0%	0%	C	0%	0.1
	ME	0%	0	0%	C	0%	0	0%	0%	C	0%	0.1
	MS	0%	0	0%	C	0%	0	0%	0%	C	0%	0.1
	NH	0%	0	0%	C	0%	0	0%	0%	C	0%	0.1
	TN	0%	1	1%	C	0%	1	0%	0%	C	0%	0.1
	RI	0%	0	0%	C	0%	0	0%	0%	C	0%	0.0
	VT	0%	0	0%	C	0%	0	0%	0%	C	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source /	Apportionm	ent Model	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	210			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	30
Kent MD	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	VA	8%	14	4 16%	159	76%	16	48%	50%	21	70%	26.4
screening criteria	PA	5%	9	9 10%	140	67%	13	15%	15%	14	47%	9.5
	он	10%	ę	9 10%	188	90%	12	24%	25%	24	80%	6.0
	NC	3%	-	7 7%	58	28%	10	6%	6%	7	23%	4.2
	wv	4%	2	4 5%	124	59%	5	15%	16%	14	47%	4.0
	МІ	2%	4	4 5%	49	23%	5	4%	4%	3	10%	2.6
Contributions do not	IN	3%	3	3 3%	123	59%	3	6%	6%	0	0%	1.5
	IL	3%	3	3 4%	91	43%	5	5%	6%	0	0%	1.4
	кү	2%	3	3 3%	100	48%	4	3%	2%	0	0%	0.9
	IA 	1%		1 2%	0	0%	2	2%	2%	0	0%	0.8
	NJ	0%	2	2 2%	0	0%	2	1%	1%	0	0%	0.8
		1%		2 2%	62	30%	3	1%	2%	0	0%	0.5
		0%		1 1%	0	0%	1	1%	0%	0	0%	0.5
	MA	0%		1 170 1 1%	0	0%	1	0%	0%	0	0%	0.3
	wi	1%		2 2%	1	0%	3	1%	1%	0	0%	0.0
	ст	0%		2 / 2 / 2) 1%	0	0%	0	0%	0%	0	0%	0.0
	MN	0%	() 1%	0	0%	1	0%	0%	0	0%	0.2
	AR	0%		1 1%	0	0%	1	0%	0%	0	0%	0.1
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%		1 1%	0	0%	1	0%	0%	0	0%	0.1
	TN	1%		1 1%	0	0%	1	0%	0%	0	0%	0.1
	AL	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	(0 1%	0	0%	1	0%	0%	0	0%	0.0
	GA	0%	(0%	0	0%	1	0%	0%	0	0%	0.0
	LA	0%	-	1 1%	0	0%	1	0%	0%	0	0%	0.0
	MS	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing	CAMX State Zero-Out Modeling				Nodeling	
•	Base Case	: Total Number	of Exceedances ((grid-hours) =		176		Base Case: To =	otal Number of Ex	ceedances (g	rids-days)	
Prince Georges MD	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	VA	9%	16	19%	150	85%	16	77%	71%	48	91%	43.7
screening criteria	PA	7%	7	7%	144	82%	10	20%	19%	33	62%	8.2
	ОН	6%	10	11%	112	64%	11	23%	21%	29	55%	8.0
	wv	2%	4	5%	51	29%	4	11%	11%	8	15%	4.6
	мі	3%	3	3%	99	56%	4	6%	5%	2	4%	2.3
Contributions do not	WI	1%	3	4%	5	3%	3	4%	3%	1	2%	2.0
exceed servering enterna	NC	0%	6	6%	3	2%	7	2%	3%	5	9%	3.4
	IL	3%	4	4%	130	74%	4	7%	7%	0	0%	1.8
	KY	1%	3	3%	32	18%	4	2%	2%	0	0%	1.5
	DE	0%	1	2%	0	0%	2	1%	1%	0	0%	1.4
	NJ	0%	2	2%	2	1%	2	1%	1%	0	0%	1.4
		2%	3	3%	32	18%	3	4%	4%	0	0%	1.3
		1%	1	2%	0	0%	2	2%	2%	0	0%	0.7
	MO	2%	2	3%	29	16%	3	2%	2%	0	0%	0.7
		0%	2	170	0	0%	2	1 70	170	0	0%	0.0
		10/0	1	2 /0	0	0%	2	1 /0	1 76	0	0%	0.0
		0%	1	1%	0	0%	1	0%	1%	0	0%	0.3
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.2
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.2
	MS	0%	0	0%	0	0%	1	0%	0%	0	0%	0.2
	TN	0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Model	ling	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	82			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	10
Bergen NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	31%	33	34%	82	100%	37	92%	97%	10	100%	26.5
screening criteria	VA	4%	ę	9%	48	59%	9	21%	21%	5	50%	8.0
	он	5%	7	7%	52	63%	9	23%	25%	6	60%	5.2
	MD	4%	7	7%	50	61%	9	12%	15%	3	30%	2.8
	МІ	2%	6	6%	17	21%	6	5%	10%	1	10%	2.4
Contributions do not	DE	3%	2	5%	37	45%	5	6%	8%	0	0%	2.0
exceed screening criteria	wv	2%	3	3 3%	35	43%	3	13%	16%	0	0%	1.9
	NC	2%	2	2 2%	22	27%	3	8%	12%	0	0%	1.5
	IN	1%	2	2 2%	16	20%	3	5%	6%	0	0%	0.9
	KY	1%	2	2 2%	18	22%	3	3%	3%	0	0%	0.8
	WI	1%	1	1%	0	0%	2	2%	4%	0	0%	0.8
	IA	1%	2	2 2%	7	9%	2	2%	3%	0	0%	0.6
	IL	2%	2	2 2%	12	15%	2	4%	5%	0	0%	0.6
	MN	0%	(0%	0	0%	0	1%	1%	0	0%	0.3
	мо 	1%	1	1%	0	0%	1	1%	1%	0	0%	0.2
		0%	(1%	0	0%	0	0%	0%	0	0%	0.1
		3%		10%	20	24%	11	-5%	-11%	0	0%	0.1
		0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	AR	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	СТ	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	LA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	TN	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	106			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	37
Camden NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	26%	30	35%	104	98%	39	71%	67%	33	89%	27.2
screening criteria	MD	21%	27	29%	99	93%	32	45%	50%	28	76%	18.3
	VA	4%	6	7%	48	45%	8	16%	14%	16	43%	8.4
	DE	15%	13	15%	106	100%	16	42%	42%	34	92%	8.2
	ОН	6%	8	9%	81	76%	8	16%	13%	15	41%	4.6
	МІ	3%	4	5%	45	42%	6	11%	11%	9	24%	4.3
	wv	2%	4	4%	36	34%	5	9%	7%	6	16%	3.7
	NC	2%	5	5%	30	28%	6	4%	3%	3	8%	2.6
Contributions do not	WI	1%	2	3%	3	3%	2	3%	3%	0	0%	1.3
execcu servening entena	IL	3%	3	4%	47	44%	4	4%	4%	0	0%	1.2
	IA	1%	2	2%	27	25%	2	3%	2%	0	0%	1.1
	NY	0%	2	2%	1	1%	2	2%	2%	0	0%	1.1
	IN	2%	2	3%	8	8%	2	4%	3%	0	0%	1.0
	KY	1%	2	2%	14	13%	3	1%	1%	0	0%	0.5
	MN	0%	0	1%	0	0%	0	1%	1%	0	0%	0.4
	ст	0%	0	0%	0	0%	0	0%	0%	0	0%	0.3
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.3
	MO	1%	2	2%	0	0%	2	1%	1%	0	0%	0.3
	SC	0%	0	1%	0	0%	0	0%	0%	0	0%	0.3
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.2
	LA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	IN	0%	0	0%	0	0%	1	0%	0%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		0%	1	1%	0	0%	1	0%	0%	0	0%	0.0
	FL MC	0%	0	0%	0	0%	1	0%	0%	0	0%	0.0
	NIS DI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	KI V/T	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	55			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	18
Cumberland NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	9%	34	40%	35	64%	37	85%	92%	13	72%	23.4
screening criteria	MD	34%	30	35%	51	93%	35	83%	80%	15	83%	18.1
	VA	6%	8	10%	25	45%	10	37%	20%	5	28%	15.5
	DE	8%	8	9%	48	87%	11	86%	90%	11	61%	8.8
	NC	4%	6	7%	20	36%	8	17%	12%	4	22%	5.2
	wv	3%	4	4%	21	38%	4	27%	18%	5	28%	4.0
	он	9%	8	9%	51	93%	9	74%	62%	14	78%	3.8
	МІ	2%	2	2%	12	22%	3	30%	38%	3	17%	2.2
Contributions do not exceed screening criteria	NY	0%	2	3%	2	4%	3	4%	6%	0	0%	1.3
	IL	4%	4	4%	31	56%	4	30%	28%	0	0%	1.2
	IA	2%	2	2%	0	0%	2	18%	20%	0	0%	0.9
	KY	2%	2	2%	10	18%	3	9%	6%	0	0%	0.8
	IN	2%	2	2%	1	2%	2	18%	16%	0	0%	0.7
	wi	1%	1	1%	0	0%	1	13%	14%	0	0%	0.5
	мо	2%	2	2%	0	0%	2	8%	8%	0	0%	0.4
	FL	0%	0	1%	0	0%	1	0%	0%	0	0%	0.1
	MN	0%	0	0%	0	0%	0	3%	2%	0	0%	0.1
	SC	0%	0	1%	0	0%	1	1%	0%	0	0%	0.1
	IN	1%	1	1%	0	0%	1	1%	0%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		1%	1	1%	0	0%	1	1%	0%	0	0%	0.0
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	LA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	νт	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Mode	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	85			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	26
Gloucester NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	14%	40	47%	65	76%	42	66%	62%	19	73%	25.3
screening criteria	MD	32%	33	36%	81	95%	39	69%	72%	23	88%	24.7
	DE	13%	14	16%	80	94%	19	65%	62%	23	88%	15.8
	VA	5%	6	5 7%	44	52%	8	23%	22%	12	46%	9.0
	он	7%	6	5 7%	75	88%	7	17%	14%	18	69%	4.4
	wv	3%	4	5%	38	45%	5	12%	11%	7	27%	3.9
	МІ	3%	4	4%	37	44%	5	12%	10%	8	31%	3.6
	NC	3%	5	5 5%	38	45%	6	5%	4%	2	8%	2.1
Contributions do not	IL	3%	3	4%	37	44%	4	6%	5%	0	0%	1.2
exceed screening chiena	IA	2%	2	2%	10	12%	2	4%	3%	0	0%	1.0
	IN	2%	2	2 2%	g	11%	2	5%	4%	0	0%	0.9
	NY	0%	2	2%	1	1%	2	1%	1%	0	0%	0.8
	KY	2%	2	2%	23	27%	3	2%	2%	0	0%	0.7
	WI	1%	1	1%	C	0%	1	3%	2%	0	0%	0.5
	МО	1%	2	2%	C	0%	2	1%	1%	0	0%	0.3
	SC	0%	C	0%	C	0%	0	0%	0%	0	0%	0.2
	GA	0%	C	0%	C	0%	0	0%	0%	0	0%	0.1
	LA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	MN	0%	C	0%	C	0%	0	1%	1%	0	0%	0.1
	TN	0%	1	1%	C	0%	1	0%	0%	0	0%	0.1
	AL	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	AR	0%	1	1%	C	0%	1	0%	0%	0	0%	0.0
	СТ	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	FL	0%	C	0%	C	0%	1	0%	0%	0	0%	0.0
	MA	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Model	ing	CAMX State Zero-Out Modeling					
	Base Case	: Total Number	of Exceedances	(grid-hours) =	47			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	5
Hudson NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	29%	32	2 32%	47	100%	37	100%	100%	5	100%	22.1
screening criteria	MD	4%	7	7%	20	43%	8	16%	18%	2	40%	4.0
	NY	3%	6	6%	15	32%	8	-21%	-39%	1	20%	3.1
	VA	2%	7	8%	18	38%	8	12%	13%	2	40%	2.9
	МІ	3%	6	6%	24	51%	7	14%	14%	2	40%	2.7
	он	3%	5	5%	18	38%	6	12%	13%	2	40%	2.3
Contributions do not	wv	1%	3	3%	14	30%	3	8%	9%	0	0%	1.9
	DE	2%	5	5 5%	18	38%	6	7%	7%	0	0%	1.7
	NC	1%	3	3%	13	28%	3	7%	8%	0	0%	1.7
	WI	1%	1	1%	0	0%	1	4%	4%	0	0%	0.7
	IA II	1%	2	2%	9	19%	2	3%	3%	0	0%	0.6
		2%	3	3%	13	28%	3	4%	5%	0	0%	0.6
		1%	2	2%	2	4%	2	4%	4%	0	0%	0.5
	MN	1%	2	2%	3	0%	2	1 %	1 70	0	0%	0.3
	MO	1%	1	1%	0	0%	1	1%	1%	0	0%	0.2
	AL	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	AR	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	ст	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	C	1%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	C	1%	0	0%	0	0%	0%	0	0%	0.0
	LA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	TN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.
Downwind Nonattainment Receptor		С	AMX Source	Apportionm	ent Mode	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 149			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	35
Hunterdon NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	55%	42	2 48%	149	100%	52	97%	95%	35	100%	36.9
screening criteria	VA	2%	10	0 12%	22	15%	11	12%	15%	6	17%	9.8
	MD	4%	10) 12%	68	46%	13	14%	15%	8	23%	7.6
	он	3%	7	8%	49	33%	8	13%	13%	6	17%	5.2
	DE	5%		8%	115	77%	8	14%	14%	8	23%	4.5
	МІ	3%	4	4%	72	48%	4	10%	9%	3	9%	4.5
	wv	1%	2	4%	13	9%	4	6%	7%	4	11%	2.4
Contributions do not	NY	2%	2	2 2%	35	23%	5	8%	9%	0	0%	2.0
	IN	1%	2	2 3%	11	7%	3	3%	4%	0	0%	1.1
	KY	1%	3	3 3%	11	7%	3	2%	3%	0	0%	1.1
	NC	0%	2	2 3%	g	6%	3	3%	4%	0	0%	1.0
	WI	1%	2	2 2%	11	7%	2	4%	4%	0	0%	1.0
	IA	1%		I 1%	C	0%	1	1%	1%	0	0%	0.9
	IL	1%	2	2 2%	1	1%	2	4%	4%	0	0%	0.8
	MN	0%	(0 1%	C	0%	0	1%	1%	0	0%	0.3
	мо =:	0%		1 1%	C	0%	1	1%	1%	0	0%	0.3
	FL	0%		1 1%	0	0%	1	0%	0%	0	0%	0.1
	GA	0%		0%		0%	0	0%	0%	0	0%	0.1
	50	0%		0%	0	0%	1	0%	0%	0	0%	0.1
	TN	0%		0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	AR	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	СТ	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	MA	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	MS	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	NH	0%	(0%	C	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	89			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	17
Mercer NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	46%	44	45%	89	100%	51	87%	90%	17	100%	39.1
screening criteria	MD	10%	13	15%	60	67%	20	16%	18%	6	35%	11.7
	DE	7%	8	9%	81	91%	10	10%	11%	5	29%	4.7
	МІ	3%	6	6%	39	44%	7	8%	9%	4	24%	4.1
	VA	2%	5	5%	32	36%	7	6%	6%	4	24%	3.9
	он	4%	5	6%	66	74%	7	6%	7%	3	18%	2.9
	wv	2%	4	4%	24	27%	4	4%	4%	4	24%	2.6
	NY	1%	3	3%	14	16%	3	4%	4%	1	6%	2.4
Contributions do not	NC	1%	4	4%	24	27%	5	2%	3%	0	0%	1.8
exceed screening criteria	IA	1%	2	2%	16	18%	2	2%	2%	0	0%	0.9
	IL	2%	3	3%	19	21%	3	3%	3%	0	0%	0.9
	IN	1%	2	2%	3	3%	2	2%	2%	0	0%	0.6
	KY	1%	2	2%	10	11%	3	1%	1%	0	0%	0.6
	wi	1%	2	2%	0	0%	2	2%	2%	0	0%	0.6
	мо	1%	2	2%	0	0%	2	1%	1%	0	0%	0.2
	ст	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	MN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	TN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	AR	0%	C	1%	0	0%	1	0%	0%	0	0%	0.0
	FL	0%	C	0%	0	0%	1	0%	0%	0	0%	0.0
	GA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	LA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source	Apportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	175			Base Case: T	otal Number of Ex	ceedances (g	rids-days) =	37
Middlesex NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	39%	34	40%	175	100%	46	72%	72%	34	92%	31.2
screening criteria	VA	2%	4	4%	44	25%	6	6%	6%	11	30%	7.6
	MD	5%	11	I 12%	92	53%	14	9%	8%	12	32%	6.8
	МІ	3%	(6%	85	49%	7	6%	6%	7	19%	3.9
	DE	4%	ł	5 6%	94	54%	8	5%	5%	5	14%	2.9
	NY	2%	4	4%	45	26%	6	5%	5%	7	19%	2.9
	он	3%		5 5%	99	57%	7	5%	5%	5	14%	2.7
	wv	1%		3 3%	41	23%	4	3%	3%	2	5%	2.0
Contributions do not	NC	1%		3 3%	39	22%	4	2%	2%	0	0%	1.7
	IA	1%		2 2%	31	18%	2	1%	1%	0	0%	0.7
	IL	2%		3 3%	39	22%	3	2%	2%	0	0%	0.7
	IN	1%		2 2%	5	3%	2	2%	1%	0	0%	0.7
	wi	1%		I 1%	0	0%	1	1%	1%	0	0%	0.6
	кү	1%		2 2%	16	9%	3	1%	1%	0	0%	0.4
	MN	0%	(0%	0	0%	0	0%	0%	0	0%	0.2
	мо	1%		I 1%	0	0%	1	0%	0%	0	0%	0.2
	ст	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	FL	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	IN	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
		0%		0%	0	0%	0	0%	0%	0	0%	0.0
		0%		0%	0	0%	0	0%	0%	0	0%	0.0
		0%		0%	0	0%	0	0%	0%	0	0%	0.0
		0%		0%	0	0%	0	0%	0%	0	0%	0.0
		0%		0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%		0%	0	0%	0	0%	0%	0	0%	0.0
	PI	0%		0%	0	0.70	0	0%	0%	0	0.70	0.0
	VT	0%			0	0%	0	0%	0%	0	0%	0.0
		0%	· · · · ·	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
•	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 341			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	65
Monmouth NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	37%	33	38%	339	99%	50	66%	65%	63	97%	35.4
screening criteria	MD	9%	14	14%	244	72%	23	13%	13%	33	51%	10.1
	DE	6%	7	7%	278	82%	10	10%	10%	20	31%	5.1
	VA	3%	6	6%	131	38%	8	7%	7%	11	17%	5.1
	NY	1%	7	8%	37	11%	8	4%	4%	9	14%	4.6
	он	4%	6	7%	210	62%	7	5%	5%	11	17%	3.9
	МІ	2%	5	5%	103	30%	6	5%	4%	9	14%	3.2
	wv	1%	3	3%	80	23%	4	4%	4%	3	5%	2.4
Contributions do not	NC	1%	4	4%	84	25%	5	2%	2%	0	0%	1.8
exceed screening chiena	IN	1%	2	2%	7	2%	2	2%	2%	0	0%	0.9
	IA	1%	2	2%	44	13%	2	1%	1%	0	0%	0.8
	IL	2%	3	3%	91	27%	3	2%	2%	0	0%	0.8
	WI	1%	1	2%	0	0%	1	1%	1%	0	0%	0.5
	MA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.4
	СТ	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	KY	1%	1	1%	23	7%	3	1%	1%	0	0%	0.3
	SC	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	MN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.2
	мо	1%	1	1%	0	0%	2	0%	0%	0	0%	0.2
	FL	0%	C	0%	0	0%	1	0%	0%	0	0%	0.1
	GA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	TN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	AR	0%	C	0%	0	0%	1	0%	0%	0	0%	0.0
	LA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 223			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	45
Morris NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	42%	34	39%	223	100%	52	80%	79%	45	100%	33.3
screening criteria	VA	4%	ę	10%	83	37%	10	21%	22%	15	33%	9.2
	MD	4%	8	3 9%	75	34%	11	11%	10%	15	33%	6.5
	он	4%	8	9%	96	43%	10	11%	11%	11	24%	5.8
	DE	3%	Ę	5 6%	124	56%	7	9%	8%	10	22%	3.4
	МІ	2%	6	6 7%	45	20%	7	5%	5%	4	9%	3.3
	NY	2%		5%	105	47%	7	5%	6%	3	7%	3.3
	wv	1%	3	3 4%	42	19%	3	6%	6%	2	4%	2.0
Contributions do not	NC	1%	2	2 2%	13	6%	3	3%	3%	0	0%	1.3
exceed screening criteria	IN	1%	2	2 3%	35	16%	3	2%	2%	0	0%	1.1
	KY	1%	3	3%	36	16%	4	2%	2%	0	0%	1.1
	wi	1%	2	2 2%	0	0%	2	2%	2%	0	0%	1.0
	IL	1%	2	2 3%	24	11%	3	2%	2%	0	0%	0.8
	IA	1%	2	2 3%	4	2%	2	1%	1%	0	0%	0.7
	MN	0%	(0%	0	0%	0	1%	1%	0	0%	0.3
	мо	0%	1	1%	0	0%	1	1%	1%	0	0%	0.3
	FL	0%	(1%	0	0%	0	0%	0%	0	0%	0.1
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	LA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	AR	0%	0	1%	0	0%	0	0%	0%	0	0%	0.0
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	TN	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	406			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	77
Ocean NJ	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	35%	32	38%	406	100%	49	81%	82%	72	94%	31.6
screening criteria	MD	14%	19	20%	353	87%	26	25%	29%	48	62%	12.4
	VA	3%	7	7%	198	49%	9	12%	14%	30	39%	11.6
	NC	1%	5	5%	78	19%	6	3%	3%	7	9%	7.1
	DE	10%	ę	10%	396	98%	12	23%	23%	61	79%	6.5
	он	5%	7	7%	304	75%	8	10%	9%	26	34%	4.0
	wv	2%	4	4%	101	25%	4	6%	6%	8	10%	3.6
	МІ	3%	4	4%	167	41%	6	6%	6%	12	16%	3.5
Contributions do not	NY	0%	3	4%	2	0%	3	2%	2%	1	1%	3.1
execcu servering enterna	IL	3%	3	3%	194	48%	4	3%	3%	0	0%	1.0
	IA	1%	2	2%	77	19%	2	2%	2%	0	0%	0.9
	IN	2%	2	2%	19	5%	2	3%	2%	0	0%	0.9
	WI	1%	2	2%	0	0%	2	2%	1%	0	0%	0.6
	MA	0%	1	1%	0	0%	1	0%	1%	0	0%	0.5
	СТ	0%	1	1%	0	0%	1	0%	0%	0	0%	0.4
	KY	1%	2	2%	17	4%	3	1%	1%	0	0%	0.4
	SC	0%	1	1%	0	0%	1	0%	0%	0	0%	0.4
	FL	0%	C	1%	0	0%	1	0%	0%	0	0%	0.2
	GA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
	MN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.2
	мо	1%	1	2%	0	0%	2	1%	1%	0	0%	0.2
	TN	0%	C	0%	0	0%	1	0%	0%	0	0%	0.2
	AL	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	AR	0%	C	1%	0	0%	1	0%	0%	0	0%	0.0
	LA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	73			Base Case: T	otal Number of Ex	ceedances (g	rids-days) =	13
Erie NY	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	5%	13	15%	16	22%	15	1%	0%	1	8%	7.1
screening criteria	WI	7%	6	7%	57	78%	7	54%	67%	12	92%	5.5
	NJ	2%	6	7%	16	22%	6	1%	0%	1	8%	4.1
	MD	3%	8	9%	16	22%	10	1%	0%	1	8%	3.8
	VA	2%	6	7%	16	22%	7	1%	0%	1	8%	3.0
	IL	4%	4	4%	57	78%	7	19%	20%	2	15%	2.9
	мі	4%	3	4%	56	77%	6	31%	39%	5	38%	2.5
Contributions do not	DE	1%	2	3%	16	22%	3	1%	0%	0	0%	1.5
exceed screening citteria	NC	1%	3	4%	16	22%	5	1%	0%	0	0%	1.2
	мо	3%	2	3%	40	55%	3	14%	17%	0	0%	1.1
	IA	3%	2	3%	53	73%	3	12%	14%	0	0%	1.0
	AR	1%	1	1%	0	0%	1	5%	6%	0	0%	0.5
	СТ	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	MA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	MN	0%	0	0%	0	0%	1	2%	2%	0	0%	0.1
	он	0%	0	0%	0	0%	0	1%	1%	0	0%	0.1
	SC	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	TN	0%	0	0%	0	0%	0	1%	1%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	IN	0%	0	0%	0	0%	0	1%	1%	0	0%	0.0
	KY	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	LA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	wv	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	81			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	14
Putnam NY	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	NJ	40%	38	40%	81	100%	53	99%	99%	14	100%	28.8
screening criteria	PA	20%	20	21%	81	100%	27	54%	64%	13	93%	15.2
	VA	6%	7	8%	47	58%	8	29%	29%	7	50%	7.3
	MD	5%	7	7%	47	58%	9	13%	13%	7	50%	3.4
Contributions do not	DE	2%	3	3%	41	51%	4	6%	7%	0	0%	1.6
exceed screening criteria	он	2%	3	3%	47	58%	3	5%	5%	0	0%	1.3
	wv	1%	1	1%	0	0%	1	4%	4%	0	0%	0.9
	МІ	1%	1	2%	0	0%	2	5%	5%	0	0%	0.8
	NC	1%	1	1%	0	0%	1	2%	1%	0	0%	0.4
	wi	1%	1	1%	0	0%	1	3%	3%	0	0%	0.4
	СТ	0%	0	0%	0	0%	1	0%	0%	0	0%	0.2
	IA	0%	0	0%	0	0%	0	1%	1%	0	0%	0.2
	IL	1%	1	1%	0	0%	1	2%	2%	0	0%	0.2
	IN	0%	0	1%	0	0%	1	1%	1%	0	0%	0.2
	KY	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	LA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	MN	0%	0	0%	0	0%	0	1%	1%	0	0%	0.1
	MU SC	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	30	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	МА	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	TN	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Mode	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	66			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	8
Richmond NY	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	NJ	42%	56	59%	66	100%	61	72%	74%	7	88%	40.3
screening criteria	PA	28%	32	37%	66	100%	37	62%	56%	6	75%	21.7
	VA	2%	7	8%	22	33%	7	7%	7%	4	50%	5.6
	MD	5%	10	12%	38	58%	11	8%	8%	3	38%	4.8
	МІ	2%	5	5%	27	41%	6	5%	5%	2	25%	2.7
	DE	3%	6	5%	28	42%	7	4%	4%	1	13%	2.3
	он	3%	5	5%	35	53%	6	5%	4%	1	13%	2.0
Contributions do not	wv	1%	3	3%	15	23%	3	3%	3%	0	0%	1.9
exceed screening criteria	NC	1%	3	3%	15	23%	4	3%	2%	0	0%	1.8
	IL	2%	3	2%	14	21%	3	2%	1%	0	0%	0.7
	IA	1%	2	2%	9	14%	2	1%	1%	0	0%	0.6
	WI	1%	1	1%	C	0%	1	1%	1%	0	0%	0.5
	IN	1%	2	1%	C	0%	2	1%	1%	0	0%	0.4
	KY	1%	2	2%	4	6%	2	0%	0%	0	0%	0.3
	MN	0%	C	0%	C	0%	0	0%	0%	0	0%	0.2
	FL	0%	C	1%	C	0%	1	0%	0%	0	0%	0.1
	GA	0%	C	1%	C	0%	0	0%	0%	0	0%	0.1
	мо	1%	1	1%	C	0%	1	0%	0%	0	0%	0.1
	SC	0%	C	0%	C	0%	0	0%	0%	0	0%	0.1
	TN	0%	C	0%	C	0%	0	0%	0%	0	0%	0.1
	AL	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	AR	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	СТ	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	LA	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	MA	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	C	0%	C	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 1337			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	177
Suffolk NY	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	NJ	29%	23	26%	1337	100%	64	69%	65%	177	100%	46.5
screening criteria	PA	21%	28	29%	1324	99%	38	41%	40%	164	93%	22.7
	ст	2%	5	5%	339	25%	23	9%	6%	41	23%	14.6
	VA	3%	ç	8%	492	37%	12	8%	6%	36	20%	8.5
	MD	7%	12	14%	1004	75%	15	12%	10%	99	56%	6.6
	DE	4%	5	6%	873	65%	8	8%	6%	44	25%	5.1
	NC	1%	5	5%	310	23%	7	3%	2%	14	8%	3.7
	он	2%	4	5%	405	30%	6	4%	5%	25	14%	3.6
	MA	1%	2	2%	82	6% 10%	6	1%	0%	1	1%	2.6
		1%	2	2%	237	10%	5	3%	3%	9	5% 2%	2.4
		2 %	4	4 70	302	23%	5	3%	4%	0	3%	2.2
exceed screening criteria		1%	1	1%	0	0%	2	1%	2%	0	0%	1.1
		1 /0	2	2%	11	3%	2	1 /0	2 /0	0	0%	0.9
		1%	2	2%	215	16%	3	1%	2%	0	0%	0.7
	MN	0%		0%	0	0%	1	1%	1%	0	0%	0.6
	кү	1%	1	1%	0	0%	2	0%	1%	0	0%	0.4
	RI	0%	1	1%	0	0%	2	0%	0%	0	0%	0.3
	мо	0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
	NH	0%	C	0%	0	0%	1	0%	0%	0	0%	0.2
	AL	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	AR	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	GA	0%	C	0%	0	0%	1	0%	0%	0	0%	0.1
	ME	0%	C	0%	0	0%	1	0%	0%	0	0%	0.1
	sc	0%	C	0%	0	0%	1	0%	0%	0	0%	0.1
	TN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	VT 	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	FL	0%	1	1%	0	0%	1	0%	0%	0	0%	0.0
		0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	WIS	0%	C C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	62			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	16
Westchester NY	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	NJ	33%	47	50%	62	100%	54	58%	8%	14	88%	28.0
screening criteria	PA	28%	26	27%	62	100%	31	70%	79%	15	94%	21.6
	VA	5%	8	8%	45	73%	9	14%	22%	7	44%	7.9
	он	7%	7	8%	50	81%	10	15%	19%	8	50%	5.9
	MD	4%	7	7%	45	73%	8	8%	13%	4	25%	3.1
	МІ	1%	4	5%	4	6%	5	3%	2%	1	6%	2.2
	wv	2%	3	3%	39	63%	3	7%	12%	1	6%	2.1
Contributions do not	NC	2%	2	2%	22	35%	3	4%	10%	0	0%	1.8
	DE	2%	3	4%	22	35%	4	4%	6%	0	0%	1.7
	WI	1%	1	1%	0	0%	1	2%	2%	0	0%	1.1
	IN	2%	2	2%	21	34%	3	3%	4%	0	0%	1.0
	IL	2%	2	2%	11	18%	2	2%	3%	0	0%	0.8
	KY	2%	2	2%	17	27%	3	2%	2%	0	0%	0.8
	IA	1%	2	2%	0	0%	2	1%	1%	0	0%	0.6
	MN	0%	0	1%	0	0%	0	1%	1%	0	0%	0.4
	мо	1%	1	1%	0	0%	1	1%	1%	0	0%	0.2
	AR	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	LA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	TN	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 108			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	23
Mecklenburg NC	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	SC	14%	22	25%	89	82%	22	76%	69%	19	83%	20.6
screening criteria	GA	5%	12	15%	71	66%	14	33%	27%	10	43%	11.9
	VA	3%	8	9%	31	29%	9	8%	7%	4	17%	9.3
	MD	1%	7	8%	8	7%	7	1%	1%	1	4%	4.7
	TN	2%	3	4%	23	21%	4	15%	15%	4	17%	3.0
	PA	1%	4	5%	10	9%	5	1%	1%	1	4%	2.4
Contributions do not exceed screening criteria	он	1%	3	4%	29	27%	3	4%	3%	0	0%	1.7
	wv	1%	2	2%	2	2%	2	4%	3%	0	0%	1.4
	FL	1%	2	3%	4	4%	3	5%	4%	0	0%	1.2
		1%	2	2%	0	0%	2	5%	4%	0	0%	0.8
	KY INI	2%	2	3%	4	4%	2	/%	6%	0	0%	0.7
		1%	3	3%	4	4%	3	3%	3%	0	0%	0.0
	11	2%	2	2%	0	0%	2	3%	3%	0	0%	0.0
	MO	1%	3	3%	4	4%	3	3%	3%	0	0%	0.4
	NJ	0%	1	1%	0	0%	1	0%	0%	0	0%	0.4
	AR	0%	1	1%	0	0%	1	1%	1%	0	0%	0.3
	LA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
	МІ	0%	C	1%	0	0%	1	0%	0%	0	0%	0.2
	NY	0%	3	3%	2	2%	3	0%	0%	0	0%	0.2
	ст	0%	C	1%	0	0%	0	0%	0%	0	0%	0.1
	IA	0%	C	0%	0	0%	0	1%	0%	0	0%	0.1
	MS	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	MA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	MN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	WI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ling			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	89			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	19
Geauga OH	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	IL	12%	16	18%	85	96%	17	46%	42%	15	79%	11.7
screening criteria	МІ	11%	15	17%	78	88%	18	42%	46%	11	58%	5.4
	IN	3%	8	9%	65	73%	8	24%	16%	7	37%	5.2
	KY	1%	8	10%	2	2%	9	6%	2%	3	16%	4.6
	мо	4%	6	7%	72	81%	6	19%	13%	6	32%	2.8
	ΡΑ	1%	19	23%	4	4%	19	2%	2%	1	5%	2.3
Contributions do not	wv	0%	5	6%	4	4%	5	2%	2%	1	5%	3.1
exceed screening criteria	VA	0%	6	7%	4	4%	6	1%	2%	0	0%	1.6
	MD	0%	4	4%	3	3%	4	1%	1%	0	0%	0.7
	AR	1%	2	2%	0	0%	2	4%	3%	0	0%	0.6
	IA	2%	2	2%	0	0%	2	7%	5%	0	0%	0.6
	LA	2%	2	2%	35	39%	3	5%	5%	0	0%	0.6
	wi	1%	4	4%	9	10%	4	4%	3%	0	0%	0.6
	NY	0%	2	2%	0	0%	2	0%	0%	0	0%	0.4
	NJ	0%	1	1%	0	0%	1	0%	0%	0	0%	0.3
	TN	1%	1	2%	0	0%	2	1%	0%	0	0%	0.2
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	DE	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	MA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	MN	0%	0	0%	0	0%	0	1%	0%	0	0%	0.1
	MS	1%	1	1%	0	0%	1	1%	1%	0	0%	0.1
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	AL	0%	1	1%	0	0%	1	0%	0%	0	0%	0.0
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NC	0%	4	4%	1	1%	4	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	1	1%	0	0%	1	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	195			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	42
Summit OH	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	PA	14%	22	25%	101	52%	27	32%	30%	18	43%	24.5
screening criteria	МІ	9%	14	15%	100	51%	20	48%	49%	21	50%	14.3
	IL	4%	7	8%	100	51%	8	17%	16%	14	33%	12.4
	wv	3%	4	4%	87	45%	7	12%	12%	10	24%	5.2
	VA	2%	5	6%	48	25%	6	7%	8%	9	21%	3.2
	IN	1%	2	3%	19	10%	3	5%	5%	2	5%	2.4
	MD	1%	2	3%	38	19%	5	5%	5%	1	2%	2.0
Contributions do not	WI	2%	3	4%	79	41%	4	8%	7%	0	0%	2.0
exceed screening criteria	МО	1%	1	2%	0	0%	2	7%	6%	5	12%	2.5
	NC	1%	4	4%	38	19%	4	4%	4%	0	0%	1.9
	NY	1%	2	2%	19	10%	5	2%	2%	0	0%	1.0
	SC	0%	1	2%	1	1%	2	2%	2%	0	0%	0.9
	LA	1%	2	2%	0	0%	2	2%	1%	0	0%	0.7
	AR	1%	2	2%	4	2%	2	3%	2%	0	0%	0.6
	IA	1%	1	1%	0	0%	2	3%	3%	0	0%	0.6
	NJ	0%	C	0%	0	0%	1	0%	0%	0	0%	0.3
	AL	0%	1	1%	0	0%	1	1%	1%	0	0%	0.2
	FL	0%	C	0%	0	0%	1	0%	0%	0	0%	0.2
	GA	0%	C	0%	0	0%	1	1%	1%	0	0%	0.2
	TN	1%	1	1%	0	0%	1	1%	1%	0	0%	0.2
	СТ	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	DE	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	KY	0%	C	0%	0	0%	1	0%	1%	0	0%	0.1
	MA	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	MN	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	MS	0%	1	1%	0	0%	1	1%	1%	0	0%	0.1
	NH	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	VI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.1
	ME	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source A	Apportionm	ent Model	ing			CAMX State	Zero-Out M	lodeling	
·····	Base Case	: Total Number	of Exceedances	(grid-hours) =	392			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	113
Allegheny PA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	ОН	28%	30	35%	387	99%	40	78%	78%	110	97%	21.5
screening criteria	wv	5%	7	8%	248	63%	12	31%	31%	61	54%	9.0
	МІ	5%	8	9%	267	68%	10	31%	34%	50	44%	8.0
	IN	5%	6	ð 7%	250	64%	7	31%	32%	65	58%	6.0
	IL	5%	ę	10%	356	91%	10	25%	27%	38	34%	5.6
	KY	2%	7	8%	43	11%	7	7%	8%	4	4%	2.8
Contributions do not exceed screening criteria	VA	0%	Ę	6%	13	3%	6	2%	1%	3	3%	5.3
	MD	0%	Ę	5 5%	13	3%	6	2%	1%	3	3%	2.8
	MO	2%	2	5%	100	26%	5	11%	11%	0	0%	1.9
	AR	2%	3	3 4%	108	28%	4	5%	5%	0	0%	1.3
	IN	1%	Ż	2 2%	23	6%	2	3%	3%	0	0%	0.7
		1%		1%	0	0%	1	3%	3%	0	0%	0.6
		1%		2%	0	0%	2	2%	2%	0	0%	0.0
	WI	1%		1%	0	0%	1	1 %	3%	0	0%	0.0
	MN	0%	(0%	0	0%	0	%	0%	0	0%	0.0
	MS	0%		1%	0	0%	1	1%	1%	0	0%	0.2
	NC	0%	(0%	0	0%	1	0%	0%	0	0%	0.2
	AL	0%	(1%	0	0%	1	1%	0%	0	0%	0.1
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	NJ	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
	ст	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	DE	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	(0 0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	129			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	39
Bucks PA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	NJ	5%	10	11%	52	40%	18	35%	24%	19	49%	15.2
screening criteria	MD	9%	12	13%	109	84%	19	23%	29%	11	28%	11.1
	VA	2%	4	4%	32	25%	6	6%	7%	4	10%	10.0
	МІ	3%	7	8%	45	35%	7	14%	13%	8	21%	5.3
	DE	10%	9	10%	125	97%	14	21%	21%	15	38%	4.9
	он	4%	6	7%	79	61%	9	13%	13%	6	15%	4.6
	wv	2%	4	4%	30	23%	4	6%	7%	6	15%	2.7
Contributions do not	NC	1%	3	3%	23	18%	5	2%	3%	0	0%	1.6
exceed screening criteria	wi	1%	2	3%	10	8%	3	5%	4%	0	0%	1.5
	NY	1%	1	1%	0	0%	2	5%	5%	0	0%	1.4
	IA	1%	2	3%	8	6%	2	2%	3%	0	0%	1.0
	KY	1%	2	3%	22	17%	4	2%	2%	0	0%	1.0
	IL	2%	3	4%	11	9%	3	5%	5%	0	0%	0.9
	IN	1%	2	2%	15	12%	3	3%	4%	0	0%	0.9
	MN	0%	0	1%	0	0%	1	1%	1%	0	0%	0.5
	LA	0%	1	1%	0	0%	1	1%	1%	0	0%	0.3
	мо	1%	2	2%	0	0%	2	1%	1%	0	0%	0.3
	AR	0%	1	1%	0	0%	1	0%	0%	0	0%	0.1
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	SC	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	TN	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	KI VIT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
·····	Base Case	: Total Number	of Exceedances	(grid-hours) =	50			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	11
Delaware PA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	MD	30%	26	30%	50	100%	33	73%	71%	11	100%	19.9
screening criteria	DE	16%	25	29%	50	100%	27	56%	57%	9	82%	17.5
	NJ	1%	3	4%	8	16%	4	12%	11%	2	18%	4.9
	мі	2%	5	6%	11	22%	5	9%	10%	2	18%	4.3
	VA	4%	4	5%	31	62%	7	13%	12%	5	45%	3.7
	wv	3%	5	5%	18	36%	5	11%	9%	3	27%	3.6
	он	6%	6	7%	31	62%	7	14%	12%	3	27%	3.4
Contributions do not	WI	1%	1	1%	0	0%	1	3%	3%	0	0%	1.6
exceed screening criteria	NC	2%	3	4%	17	34%	5	3%	3%	0	0%	1.2
	IA	1%	2	2%	7	14%	2	2%	2%	0	0%	1.0
	IL	2%	3	4%	11	22%	4	4%	4%	0	0%	0.9
	KY	2%	3	3%	14	28%	4	2%	2%	0	0%	0.8
	IN	2%	2	2%	10	20%	3	3%	3%	0	0%	0.7
	MN	0%	0	0%	0	0%	0	1%	1%	0	0%	0.5
	NY	0%	1	1%	0	0%	1	2%	2%	0	0%	0.4
	LA	0%	1	1%	0	0%	1	0%	0%	0	0%	0.2
	мо	1%	2	2%	5	10%	2	1%	1%	0	0%	0.2
	TN	0%	0	1%	0	0%	1	0%	0%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	AR	0%	1	1%	0	0%	1	0%	0%	0	0%	0.0
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	78			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	22
Montgomery PA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	DE	11%	16	17%	69	88%	18	46%	41%	11	50%	10.4
screening criteria	MD	15%	27	31%	78	100%	28	59%	50%	16	73%	8.0
	NJ	6%	17	20%	32	41%	19	25%	22%	5	23%	7.9
	он	5%	7	8%	44	56%	9	24%	21%	5	23%	5.0
	wv	2%	4	5%	23	29%	4	12%	11%	5	23%	3.0
	МІ	2%	4	4%	7	9%	4	17%	13%	2	9%	2.3
	VA	4%	10	12%	35	45%	11	12%	11%	1	5%	2.2
Contributions do not	NY	1%	3	3%	20	26%	4	8%	5%	0	0%	1.9
exceed screening criteria	WI	1%	3	3%	2	3%	3	6%	5%	0	0%	1.5
	KY	1%	3	3%	19	24%	4	5%	4%	0	0%	1.2
	NC	1%	3	4%	20	26%	4	4%	4%	0	0%	1.1
	IN	2%	2	3%	17	22%	3	9%	6%	0	0%	1.0
	СТ	0%	1	1%	0	0%	1	2%	1%	0	0%	0.9
	IL	2%	2	2%	3	4%	2	9%	6%	0	0%	0.7
	MN	0%	1	1%	0	0%	1	2%	1%	0	0%	0.5
	LA	0%	1	1%	0	0%	1	2%	1%	0	0%	0.4
	MO	1%	1	1%	0	0%	1	3%	2%	0	0%	0.4
	MA	0%	1	1%	0	0%	1	1%	0%	0	0%	0.3
		1%	1	1%	0	0%	1	2%	2%	0	0%	0.2
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	AR	0%		0%	0	0%	0	1%	1%	0	0%	0.1
		0%		0%	0	0%	0	1%	0%	0	0%	0.1
		0%		0%	0	0%	0	10%	0%	0	0%	0.1
		0 %		10/0	0	0%	0	1 /0	0%	0	0%	0.1
		0 %		0%	0	0%	1	0 %	0 %	0	0%	0.0
	ME	0%		0%	0	0.70	0	0%	0%	0	0.70	0.0
	NH	0%		0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%		0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	C	0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source /	Apportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	59			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	13
Philadelphia PA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	MD	22%	25	5 26%	58	98%	32	62%	65%	9	69%	19.2
screening criteria	NJ	3%	-	7 8%	12	20%	9	15%	14%	4	31%	14.1
	DE	17%	18	3 20%	59	100%	21	49%	52%	12	92%	8.6
	МІ	3%	6	6%	14	24%	6	14%	15%	4	31%	5.0
	VA	4%	Ę	5 6%	33	56%	8	15%	16%	4	31%	4.7
	wv	2%	4	4%	19	32%	5	9%	10%	3	23%	3.2
	он	5%	6	6%	36	61%	7	14%	14%	3	23%	2.7
	NC	2%	4	4%	19	32%	6	5%	5%	1	8%	2.2
Contributions do not exceed screening criteria	wi	1%		1%	0	0%	1	4%	3%	0	0%	1.3
	IA	1%	2	2 2%	12	20%	2	3%	4%	0	0%	1.0
	IL	2%	:	3 4%	14	24%	4	5%	5%	0	0%	1.0
	NY	0%		I 1%	0	0%	1	3%	3%	0	0%	0.8
	IN	2%	2	2 2%	7	12%	2	4%	4%	0	0%	0.6
	KY	1%		2 2%	11	19%	3	1%	1%	0	0%	0.5
	MN	0%	(0%	0	0%	0	1%	1%	0	0%	0.4
	МО	1%	2	2 2%	0	0%	2	1%	1%	0	0%	0.2
	LA	0%	(0 1%	0	0%	1	0%	0%	0	0%	0.1
	SC	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
		0%		0%	0	0%	0	0%	0%	0	0%	0.1
		0%		0%	0	0%	0	0%	0%	0	0%	0.0
	СТ	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	(0%	0	0%	1	0%	0%	0	0%	0.0
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	ME	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	NH	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	RI	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source /	Apportionm	ent Model	ing			CAMX State	Zero-Out N	lodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	183			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	22
Kent RI	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	MA	2%	19	22%	12	7%	28	4%	3%	3	14%	28.4
screening criteria	NY	20%	17	/ 19%	183	100%	24	58%	57%	19	86%	15.5
	NJ	21%	17	19%	180	98%	24	57%	52%	19	86%	14.3
	PA	20%	25	5 27%	171	93%	26	39%	37%	19	86%	13.1
	ст	8%	10) 11%	161	88%	17	24%	31%	19	86%	8.8
	он	4%	6	6%	83	45%	8	8%	10%	7	32%	3.6
	VA	3%	ŧ	5 5%	83	45%	7	5%	4%	3	14%	2.8
Contributions do not	NH	0%	3	3%	11	6%	5	2%	2%	2	9%	2.9
	MD	4%	Ę	6%	150	82%	6	6%	5%	0	0%	1.6
	МІ	1%	2	2 2%	33	18%	3	3%	4%	0	0%	1.3
	wv	1%	2	2 3%	67	37%	3	3%	3%	0	0%	1.3
	DE	2%	4	4%	75	41%	4	3%	3%	0	0%	1.0
	NC	2%	3	3 3%	72	39%	4	1%	1%	0	0%	0.9
	IN	1%	2	2 2%	11	6%	2	3%	3%	0	0%	0.7
	ME	0%		1%	0	0%	1	1%	1%	0	0%	0.7
	IL	1%	2	2 2%	2	1%	2	2%	3%	0	0%	0.5
	KY	1%	2	2 2%	0	0%	2	1%	1%	0	0%	0.3
	VT	0%	(0%	0	0%	0	0%	0%	0	0%	0.3
	TN	0%	(0%	0	0%	0	0%	0%	0	0%	0.2
	WI	0%		1%	0	0%	1	1%	1%	0	0%	0.2
	AR	0%	(0%	0	0%	0	0%	0%	0	0%	0.1
		0%	(1%	0	0%	1	0%	0%	0	0%	0.1
	MO	0%		1%	0	0%	1	0%	1%	0	0%	0.1
		0 %		0%	0	0%	0	0 %	0%	0	0%	0.0
	GA	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
		0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MN	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	(0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	(0%	0	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor	,	C	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out	Nodeling	
rtenatta ment receptor	Base Case	: Total Number	of Exceedances	(grid-hours) =	13			Base Case: To	otal Number of Ex	ceedances (c	rids-days) =	7
Denton TX	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions do not	LA	5%	3	4%	13	100%	4	84%	87%	0	0%	1.5
exceed screening criteria	AR	2%	1	2%	0	0%	2	57%	55%	0	0%	0.8
	ОН	2%	1	1%	0	0%	1	33%	30%	0	0%	0.5
	KY	1%	1	1%	0	0%	1	26%	25%	0	0%	0.4
	TN	2%	1	1%	0	0%	1	28%	26%	0	0%	0.4
	IL	1%	1	1%	0	0%	1	23%	21%	0	0%	0.3
	IN	1%	1	1%	0	0%	1	25%	23%	0	0%	0.3
	MO	1%	1	1%	0	0%	1	22%	19%	0	0%	0.3
		1%	1	1%	0	0%	1	8%	8%	0	0%	0.2
	GA	1%	0	0%	0	0%	0	6%	6%	0	0%	0.1
	MI	1%	0	0%	0	0%	0	8%	8%	0	0%	0.1
	NC	1%	1	1%	0	0%	1	8%	8%	0	0%	0.1
	РА	0%	0	0%	0	0%	0	8%	8%	0	0%	0.1
	VA	1%	0	0%	0	0%	0	7%	6%	0	0%	0.1
	wv	1%	0	0%	0	0%	0	9%	8%	0	0%	0.1
	ст	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	DE	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	IA	0%	0	0%	0	0%	0	1%	2%	0	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MD	0%	0	0%	0	0%	0	1%	2%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		0%	0	0%	0	0%	0	1%	2%	0	0%	0.0
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NY	0%	0	0%	0	0%	0	0%	2%	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	SC	0%	0	0%	0	0%	0	3%	4%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	wi	0%	0	0%	0	0%	0	3%	4%	0	0%	0.0
	VVI	0%	0	0%	0	0%	0	3%	4%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Recento	r	С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out N	Nodeling	
Nonattaininent Recepto	Base Case	: Total Number	of Exceedances	(grid-hours) =	1547			Base Case: T	otal Number of Ex	ceedances (g	rids-days) =	334
Harris TX	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	LA	13%	13	15%	1547	100%	17	52%	49%	332	99%	10.2
screening criteria	AL	3%	4	5%	650	42%	5	8%	8%	47	14%	2.9
	MS	3%	4	5%	744	48%	5	11%	10%	50	15%	2.8
	AR	2%	3	3%	423	27%	4	8%	7%	27	8%	2.3
Contributions do not	GA	1%	2	3%	376	24%	3	4%	4%	0	0%	1.2
exceed screening criteria	TN	2%	3	3%	572	37%	3	6%	5%	0	0%	1.2
	NC	1%	2	2%	5	0%	2	2%	2%	0	0%	1.0
	IL	1%	2	2%	0	0%	2	2%	2%	0	0%	0.9
	МО	1%	1	1%	0	0%	1	2%	2%	0	0%	0.8
	IN	0%	1	1%	0	0%	1	2%	1%	0	0%	0.7
	KY	1%	2	2%	0	0%	2	3%	2%	0	0%	0.7
	ОН	1%	1	2%	0	0%	2	2%	2%	0	0%	0.7
	VA	1%	1	1%	0	0%	1	2%	2%	0	0%	0.6
	SC	0%	1	1%	0	0%	1	1%	1%	0	0%	0.5
	wv	0%	1	1%	0	0%	1	1%	1%	0	0%	0.4
	FL	0%	1	1%	0	0%	1	1%	1%	0	0%	0.3
	МІ	0%	1	1%	0	0%	1	1%	1%	0	0%	0.2
	PA	0%	1	1%	0	0%	1	1%	1%	0	0%	0.2
	IA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	MD	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
	WI OT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.1
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	DE	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
		0%	0	0%	0	0%	0	0%	0.70	0	0%	0.0
	N.I	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NY	0 %	0	0%	0	0%	0	0.0	0.4	0	0%	0.0
	RI	0%	0	0%	0	0%	0	0.%	0.0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	• 1	0%	0	0%	0	070	0	0%	0%	0	070	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor	r	С	AMX Source A	pportionm	ent Model	ing			CAMX State	Zero-Out I	Nodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	12			Base Case: To	otal Number of Ex	ceedances (g	rids-days) =	8
Tarrant TX	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	LA	10%	8	10%	12	100%	9	100%	100%	6	75%	7.1
screening criteria	AR	4%	7	8%	7	58%	7	90%	88%	1	13%	5.0
	TN	3%	4	5%	2	17%	4	59%	52%	1	13%	2.1
Contributions do not	MS	3%	2	3%	9	75%	3	73%	78%	C	0%	1.4
exceed screening criteria	KY	1%	1	2%	0	0%	2	27%	20%	C	0%	0.6
	AL	2%	1	1%	0	0%	1	41%	37%	C	0%	0.5
	ОН	1%	1	1%	0	0%	1	20%	15%	C	0%	0.5
	GA	1%	1	1%	0	0%	1	33%	29%	C	0%	0.3
	IL	1%	1	1%	0	0%	1	16%	12%	C	0%	0.3
	IN	0%	1	1%	0	0%	1	18%	14%	C	0%	0.3
	мо	1%	1	1%	0	0%	1	16%	12%	C	0%	0.3
	FL	0%	0	0%	0	0%	0	8%	8%	C	0%	0.1
	МІ	0%	0	0%	0	0%	0	4%	3%	C	0%	0.1
	NC	1%	1	1%	0	0%	1	16%	14%	0	0%	0.1
	PA	0%	0	0%	0	0%	0	4%	3%	C	0%	0.1
	SC	0%	0	0%	0	0%	0	12%	11%	C	0%	0.1
	VA	0%	0	0%	0	0%	0	8%	6%	C	0%	0.1
	wv	0%	0	0%	0	0%	0	8%	5%	C	0%	0.1
	СТ	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	DE	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	IA	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	MA	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	MD	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	MN	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	NH	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	NJ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NY	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	RI	0%	0	0%	0	0%	0	0%	0%	C	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	WI	0%	0	0%	0	0%	0	2%	2%	C	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	Apportionm	ent Mode	ling			CAMX State	Zero-Out	Modeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 11			Base Case: T	otal Number of Ex	ceedances (grids-days) =	3
Arlington VA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	MD	51%	37	41%	11	100%	42	20%	20%	:	2 67%	18.4
screening criteria	он	5%	5	5%	7	64%	5	23%	23%	:	2 67%	6.8
	PA	7%	6	5 7%	11	100%	6	9%	9%	:	2 67%	5.1
Contributions do not	мі	2%	2	2%	1	9%	2	4%	4%	(0%	1.9
exceed screening criteria	wv	2%	2	2%	Ę	5 45%	2	8%	8%	(0%0	1.8
	IL	3%	2	2 3%	7	64%	3	7%	7%	(0%	1.7
	IN	2%	2	2%	(0%	2	5%	5%	(0%	1.3
	IA	1%	C	1%	(0%	0	2%	2%	(0%	0.7
	KY	0%	C	0%	(0%	0	2%	2%	(0%	0.7
	мо	2%	2	2%	0	0%	2	3%	3%		0%	0.7
	wi	1%	C	1%	0	0%	0	1%	1%	(0%	0.7
 	LA	2%	1	1%	0	0%	2	1%	1%		0%	0.3
	NY	1%	1	2%	0	0%	2	0%	1%		0%	0.3
	MN	0%	C	0%	0	0%	0	0%	1%	(0%	0.2
	TN	0%	C	0%	(0%	0	0%	0%		0 0%	0.2
	AR	1%	1	1%	0	0%	1	0%	1%	(0 0%	0.1
	MS	0%	C	0%	(0%	0	0%	0%		0 0%	0.1
	AL	0%	C	0%	0	0%	0	0%	0%	(0 0%	0.0
	СТ	0%	C	0%	(0%	1	0%	0%		0%	0.0
	DE	1%	2	2%	1	9%	2	0%	0%		0 0%	0.0
	FL	0%	C	0%	(0%	0	0%	0%		0 0%	0.0
	GA	0%	C	0%	(0%	0	0%	0%		0%	0.0
	MA	0%	C	0%	(0%	0	0%	0%		0 0%	0.0
	ME	0%	C	0%	(0%	0	0%	0%		0%	0.0
	NC	0%	C	0%	(0%	0	0%	0%		0%0	0.0
	NH	0%	C	0%	(0%	0	0%	0%	(0%	0.0
	NJ	1%	2	2%	3	8 27%	2	0%	0%	(0 0%	0.0
R	RI	0%	C	0%	(0%	0	0%	0%		0 0%	0.0
	SC	0%	C	0%	(0%	0	0%	0%	(0%	0.0
	VT	0%	C	0%	(0 0 %	0	0%	0%	(0 0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		C	AMX Source A	pportionm	ent Mode	ling			CAMX State	Zero-Out N	Nodeling	
	Base Case	: Total Number	of Exceedances	(grid-hours) =	85			Base Case: T	otal Number of Ex	ceedances (c	rids-days) =	25
Fairfax VA	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	MD	47%	37	43%	85	100%	54	55%	58%	25	100%	19.8
screening criteria	PA	12%	19	22%	85	100%	23	26%	29%	25	100%	16.6
	NJ	4%	8	9%	23	27%	9	7%	7%	4	16%	5.9
	ОН	3%	3	3%	59	69%	5	8%	10%	4	16%	3.8
	wv	2%	2	2%	16	i 19%	3	8%	8%	3	12%	3.6
Contributions do not	мі	1%	1	1%	C	0%	1	3%	3%	1	4%	2.3
exceed screening criteria	NY	2%	2	3%	16	19%	3	5%	5%	0	0%	1.8
	DE	2%	3	4%	23	27%	4	5%	6%	0	0%	1.3
	IN	2%	2	2%	19	22%	3	4%	4%	0	0%	1.3
	IL	2%	2	2%	C	0%	2	4%	4%	0	0%	1.2
	мо	1%	1	1%	C	0%	2	2%	3%	0	0%	0.8
	IA	0%	0	0%	C	0%	0	1%	1%	0	0%	0.7
	LA	1%	1	1%	C	0%	1	1%	2%	0	0%	0.6
	WI	0%	0	0%	C	0%	0	1%	1%	0	0%	0.5
	AR	1%	1	1%	C	0%	1	1%	1%	0	0%	0.3
	ст	0%	0	0%	C	0%	1	1%	1%	0	0%	0.3
	MA	0%	0	0%	C	0%	0	0%	0%	0	0%	0.2
	MN	0%	0	0%	C	0%	0	0%	0%	0	0%	0.2
	MS	0%	0	0%	C	0%	0	0%	1%	0	0%	0.2
	AL	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	NH	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	FL	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	KY	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	NC	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	SC	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	TN	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor		С	AMX Source A	pportionm	ent Mode			CAMX State	Zero-Out N	Nodeling		
	Base Case	: Total Number	of Exceedances	(grid-hours) =	76			Base Case: T	otal Number of E>	ceedances (c	rids-days) =	17
Kenosha WI	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	IL	54%	54	56%	76	5 100%	61	100%	100%	17	100%	48.2
screening criteria	IN	8%	11	11%	63	8 83%	16	22%	28%	8	47%	10.0
	мі	3%	13	14%	16	6 21%	14	3%	2%	2	12%	9.4
	мо	7%	10	11%	63	8 83%	12	26%	30%	13	76%	6.8
	PA	2%	9	10%	11	14%	9	2%	0%	1	6%	4.5
	ОН	2%	9	10%	15	5 20%	9	2%	1%	1	6%	4.1
	IA	1%	4	5%	8	3 11%	5	4%	5%	1	6%	2.3
Contributions do not	AR	2%	3	3%	24	32%	3	4%	6%	0	0%	1.6
exceed screening criteria	AL	1%	3	3%	5	5 7%	3	1%	2%	0	0%	1.4
	VA	1%	3	3%	11	14%	3	1%	0%	0	0%	1.2
	GA	0%	2	2%	C	0%	2	1%	2%	0	0%	1.0
	LA	2%	4	4%	23	30%	4	2%	3%	0	0%	1.0
	MS	1%	2	2%	5	5 7%	2	1%	2%	0	0%	0.9
	wv	0%	1	2%	C	0%	1	0%	0%	0	0%	0.7
	MD	0%	2	3%	11	14%	2	0%	0%	0	0%	0.6
	NC	0%	2	2%	C	0%	2	0%	0%	0	0%	0.6
	TN	1%	2	2%	C	0%	2	1%	1%	0	0%	0.5
	NY	0%	1	2%	C	0%	1	0%	0%	0	0%	0.4
	SC	0%	1	1%	C	0%	1	0%	0%	0	0%	0.2
	FL	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	KY	0%	1	1%	C	0%	1	0%	0%	0	0%	0.1
	MN	0%	1	1%	C	0%	1	0%	0%	0	0%	0.1
	NJ	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	ст	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	DE	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor	r	С	AMX Source A	pportionm	ent Mode			CAMX State	e Zero-Out N	Nodeling		
	Base Case	: Total Number	of Exceedances	(grid-hours) =	: 126			Base Case: T	otal Number of E>	ceedances (c	rids-days) =	33
Racine WI	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	IL	52%	54	54%	126	100%	61	100%	100%	33	100%	47.1
screening criteria	IN	9%	11	11%	108	86%	15	23%	23%	16	48%	11.8
	МІ	3%	14	17%	27	21%	16	2%	2%	1	3%	11.3
	МО	7%	10	10%	112	89%	12	28%	29%	26	79%	6.5
	PA	1%	9	10%	14	11%	9	0%	0%	1	3%	4.5
	он	1%	8	9%	16	13%	9	0%	0%	1	3%	3.6
	IA	1%	5	5%	7	6%	5	6%	7%	4	12%	2.6
Contributions do not	AR	2%	3	3%	48	38%	3	4%	5%	0	0%	1.5
exceed screening criteria	AL	1%	3	3%	11	9%	3	2%	2%	0	0%	1.3
	LA	2%	4	4%	46	37%	4	3%	3%	0	0%	1.2
	VA	0%	3	3%	14	11%	3	0%	0%	0	0%	1.2
	GA	0%	2	2%	C	0%	2	1%	1%	0	0%	0.9
	MS	1%	2	2%	10	8%	2	1%	2%	0	0%	0.9
	MD	0%	2	3%	14	11%	2	0%	0%	0	0%	0.6
	NC	0%	2	2%	C	0%	2	0%	0%	0	0%	0.6
	wv	0%	1	1%	C	0%	1	0%	0%	0	0%	0.6
	TN	1%	2	2%	C	0%	2	1%	1%	0	0%	0.5
	NY	0%	1	2%	C	0%	2	0%	0%	0	0%	0.4
	SC	0%	1	1%	C	0%	1	0%	0%	0	0%	0.2
	FL	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	KY	0%	1	1%	C	0%	1	0%	0%	0	0%	0.1
	MN	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	NJ	0%	0	0%	C	0%	0	0%	0%	0	0%	0.1
	СТ	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	DE	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	NH	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	RI	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Downwind Nonattainment Receptor	r	C	AMX Source A	pportionm	ent Mode			CAMX State	Zero-Out N	Aodeling		
p	Base Cas	e: Total Number	of Exceedances	arid-hours) =	41			Base Case: To	otal Number of Exe	ceedances (c	rids-davs) =	- 12
Sheboygan WI	Upwind State	Average 4- episode % contribution	Highest daily average (ppb)	Highest daily average (%)	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution	% total ppb reduced	% pop-wgt total ppb reduced	# reduced >= 2 ppb	% reduced >= 2 ppb	max 8-hr ppb contribution
Contributions exceed	IL	52%	36	39%	41	100%	41	100%	100%	12	100%	25.1
screening criteria	IN	10%	7	8%	41	100%	10	34%	27%	8	67%	6.9
	МО	13%	9	10%	41	100%	10	43%	36%	8	67%	5.0
Contributions do not	IA	2%	1	1%	0	0%	1	12%	19%	3	25%	2.4
exceed screening criteria	МІ	1%	1	1%	(0%	1	1%	1%	0	0%	0.2
	AR	0%	0	0%	C	0%	0	-1%	-1%	0	0%	0.1
	MN	0%	0	0%	0	0%	0	1%	1%	0	0%	0.1
	AL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	СТ	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	DE	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	FL	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	GA	0%	0	0%	C	0%	0	0%	0%	0	0%) 0.0
	KY	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	LA	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	MA	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	MD	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	ME	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	MS	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NC	0%	0	0%	(0%	0	0%	0%	0	0%	, 0.0
	NH	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	NJ	0%	0	0%	0	0%	0	0%	0%	0	0%	.00
	NY	0%	0	0%	C	0%	0	0%	0%	0	0%	» 0.0
	ОН	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	PA	0%	0	0%	C	0%	0	0%	0%	0	0%	» 0.0
	RI	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	SC	0%	0	0%	C	0%	0	0%	0%	0	0%	, 0.0
	TN	0%	0	0%	C	0%	0	0%	0%	0	0%	0.0
	VA	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	VT	0%	0	0%	0	0%	0	0%	0%	0	0%	0.0
	wv	0%	0	0%	C	0%	0	0%	0%	0	0%	, 0.0

Note that due to rounding, some of the maximum contribution values that appear in the table as "2 ppb" for source apportionment or "2.0 ppb" for zero-out are actually less than the 2 ppb screening criteria. These occurances are denoted by a value "0" in the column labeled "# reduced >= 2 ppb". The linkages for these cases are listed in the tables as having contributions that do not exceed the screening criteria.

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix H

PM2.5 Contributions to Downwind Nonattainment Counties in 2010 The tables below show the contribution from the State-by-State zero-out modeling to annual average PM2.5 concentrations at nonattainment receptors in other States. In these tables "NA" indicates that the given nonattainment county is not downwind of that particular upwind source State. That is, the county is either located within the source State or within that portion of an adjacent State that shares a model grid cell with the source State. States denoted as "combined" indicate those States that were paired in zero-out runs. The combined State runs were performed for North Dakota with Vermont; Nebraska with Maine; and South Dakota with New Hampshire. The maximum downwind contribution from each of the three Plains States included in combined runs(i.e., Nebraska, North Dakota, and South Dakota) was determined by indentifying the highest contribution to nonattainment counties in the Midwest. The maximum contribution from each of the three New England States included in combined runs (i.e., Maine, New Hampshire, and Vermont) was determined by identifying the highest contribution to nonattainment counties in the Midwest. The maximum contribution from each of the three New England States included in combined runs (i.e., Maine, New Hampshire, and Vermont) was determined by identifying the highest contribution to nonattainment counties in the Northeast.

Downwind 20 C	010 Nonattainment Counties		Downwind PM2.5 Contributions (ug/m3) from Upwind Source States based on Zero-Out Modeling of 2010 SO2+NOx Emissions.														
State Name	County Name	2010 Base-1 Case PM2.5 (µg/m³)	AL	AR	СО	СТ	DE	FL	GA	IA	IL	IN	KS	KY	LA	MA	MD/DC
Alabama	DeKalb County	15.24	NA	0.11	0.03	0.00	0.01	0.22	1.32	0.09	0.34	0.29	0.04	0.27	0.18	0.00	0.06
Alabama	Jefferson County	20.12	NA	0.12	0.03	0.0	0.01	0.26	0.82	0.10	0.33	0.25	0.05	0.25	0.25	0.00	0.05
Alabama	Montgomery County	15.72	NA	0.10	0.03	0.00	0.01	0.44	0.74	0.08	0.25	0.20	0.05	0.17	0.25	0.00	0.06
Alabama	Russell County	17.31	NA	0.10	0.03	0.00	0.01	0.52	1.52	0.09	0.28	0.23	0.05	0.19	0.22	0.00	0.07
Alabama	Talladega County	16.46	NA	0.10	0.03	0.00	0.01	0.33	0.88	0.09	0.30	0.24	0.05	0.21	0.22	0.00	0.05
Connecticut	New Haven County	15.45	0.05	0.01	0.01	NA	0.06	0.03	0.08	0.04	0.15	0.13	0.01	0.08	0.03	0.21	0.15
Delaware	New Castle County	15.49	0.08	0.02	0.01	0.02	NA	0.03	0.11	0.05	0.19	0.18	0.02	0.11	0.04	0.04	0.57
District of Columbia	District of Columbia	15.35	0.12	0.03	0.01	0.01	0.10	0.04	0.15	0.06	0.24	0.23	0.02	0.16	0.05	0.02	NA
Georgia	Clarke County	17.05	0.75	0.10	0.03	0.00	0.02	0.27	NA	0.07	0.27	0.26	0.04	0.23	0.15	0.00	0.09
Georgia	Clayton County	17.82	0.90	0.10	0.03	0.00	0.01	0.30	NA	0.07	0.26	0.23	0.04	0.20	0.16	0.00	0.07
Georgia	Cobb County	17.24	0.97	0.10	0.03	0.00	0.01	0.23	NA	0.08	0.28	0.26	0.04	0.24	0.16	0.00	0.06
Georgia	DeKalb County	18.26	0.93	0.11	0.03	0.00	0.01	0.27	NA	0.08	0.27	0.25	0.04	0.22	0.17	0.00	0.08
Georgia	Floyd County	17.14	1.17	0.11	0.03	0.00	0.01	0.24	NA	0.09	0.33	0.30	0.05	0.25	0.18	0.00	0.07
Georgia	Fulton County	19.79	0.99	0.11	0.03	0.00	0.01	0.28	NA	0.08	0.29	0.27	0.05	0.23	0.18	0.00	0.08
Georgia	Hall County	15.61	0.76	0.10	0.03	0.00	0.01	0.22	NA	0.07	0.26	0.25	0.04	0.23	0.15	0.00	0.08
Georgia	Muscogee County	16.92	NA	0.10	0.03	0.00	0.01	0.51	NA	0.08	0.27	0.22	0.05	0.19	0.21	0.00	0.07
Georgia	Paulding County	15.52	1.14	0.10	0.03	0.00	0.01	0.26	NA	0.08	0.29	0.26	0.04	0.22	0.17	0.00	0.06
Georgia	Richmond County	16.03	0.55	0.06	0.02	0.00	0.02	0.28	NA	0.06	0.22	0.21	0.03	0.18	0.12	0.00	0.09
Georgia	Wilkinson County	16.89	0.65	0.07	0.02	0.00	0.02	0.37	NA	0.07	0.22	0.20	0.03	0.18	0.15	0.00	0.07
Illinois	Cook County	18.07	0.08	0.11	0.03	0.00	0.00	0.01	0.04	0.33	NA	0.79	0.11	0.22	0.08	0.00	0.00
Illinois	Madison County	16.48	0.11	0.27	0.04	0.00	0.00	0.02	0.07	0.43	NA	0.45	0.15	0.20	0.21	0.00	0.01
Illinois	St. Clair County	16.32	0.12	0.29	0.04	0.00	0.00	0.02	0.07	0.40	NA	0.50	0.15	0.22	0.22	0.00	0.01
Illinois	Will County	15.54	0.08	0.11	0.03	0.00	0.00	0.01	0.04	0.35	NA	0.76	0.09	0.18	0.09	0.00	0.00
Indiana	Clark County	15.79	0.43	0.12	0.03	0.00	0.00	0.06	0.34	0.19	0.84	NA	0.06	1.10	0.16	0.00	0.04
Indiana	Marion County	15.76	0.19	0.10	0.03	0.00	0.00	0.03	0.12	0.25	1.11	NA	0.07	0.43	0.13	0.00	0.02
Kentucky	Fayette County	15.05	0.42	0.10	0.03	0.0	0.00	0.07	0.38	0.17	0.71	0.80	0.05	NA	0.15	0.00	0.04
Kentucky	Jefferson County	15.71	0.42	0.12	0.03	0.00	0.00	0.06	0.35	0.19	0.85	NA	0.06	NA	0.16	0.00	0.04
Maryland	Baltimore city	16.53	0.10	0.03	0.02	0.01	0.10	0.04	0.14	0.06	0.24	0.23	0.02	0.16	0.05	0.02	NA
Michigan	Wayne County	18.76	0.10	0.06	0.02	0.00	0.00	0.03	0.08	0.16	0.70	0.57	0.05	0.24	0.06	0.00	0.01
Missouri	St. Louis city	15.26	0.12	0.27	0.04	0.00	0.00	0.02	0.07	0.38	1.50	0.45	0.14	0.21	0.21	0.00	0.01
New York	New York County	16.29	0.05	0.02	0.01	0.07	0.09	0.02	0.08	0.04	0.16	0.15	0.01	0.09	0.03	0.12	0.22
North Carolina	Davidson County	15.32	0.27	0.06	0.02	0.00	0.02	0.11	0.54	0.06	0.28	0.29	0.02	0.28	0.08	0.00	0.13
North Carolina	Mecklenburg County	15.07	0.33	0.06	0.02	0.00	0.02	0.14	0.74	0.06	0.25	0.26	0.02	0.24	0.09	0.00	0.12
Ohio	Butler County	15.87	0.24	0.08	0.02	0.00	0.00	0.04	0.19	0.16	0.75	0.91	0.05	0.60	0.11	0.00	0.03

Downwind 2 C	010 Nonattainment Counties		Dow	nwind Pl Zer	M2.5 Co o-Out M	ntributior odeling d	ns (ug/m of 2010 \$	3) from (502+N0	Jpwind S x Emissi	Source S ons.	tates ba	ased on					
State Name	County Name	2010 Base-1 Case PM2.5 (µg/m ³)	AL	AR	CO	СТ	DE	FL	GA	IA	IL	IN	KS	KY	LA	MA	MD/DC
Ohio	Franklin County	16.45	0.20	0.06	0.02	0.00	0.00	0.04	0.17	0.14	0.59	0.67	0.04	0.50	0.09	0.00	0.04
Ohio	Hamilton County	17.57	0.32	0.09	0.03	0.00	0.00	0.05	0.26	0.18	0.83	1.06	0.06	0.77	0.13	0.00	0.04
Ohio	Jefferson County	17.69	0.15	0.04	0.01	0.00	0.01	0.04	0.15	0.10	0.39	0.39	0.03	0.29	0.07	0.00	0.07
Ohio	Lawrence County	15.19	0.26	0.06	0.02	0.00	0.00	0.05	0.28	0.12	0.49	0.54	0.03	NA	0.10	0.00	0.05
Ohio	Mahoning County	15.13	0.13	0.04	0.02	0.00	0.00	0.03	0.11	0.10	0.38	0.36	0.03	0.24	0.06	0.00	0.05
Ohio	Scioto County	18.02	0.30	0.08	0.02	0.00	0.01	0.06	0.31	0.14	0.59	0.63	0.04	1.05	0.12	0.00	0.06
Ohio	Stark County	16.80	0.17	0.05	0.02	0.00	0.00	0.04	0.15	0.13	0.49	0.49	0.04	0.33	0.08	0.00	0.05
Ohio	Summit County	16.17	0.14	0.04	0.02	0.00	0.00	0.04	0.12	0.12	0.46	0.44	0.04	0.28	0.07	0.00	0.04
Pennsylvania	Allegheny County	18.86	0.17	0.05	0.02	0.00	0.02	0.04	0.19	0.11	0.43	0.43	0.03	0.35	0.08	0.00	0.20
Pennsylvania	Berks County	15.28	0.08	0.02	0.01	0.02	0.17	0.03	0.11	0.05	0.20	0.19	0.02	0.13	0.04	0.04	0.54
Pennsylvania	Lancaster County	15.27	0.09	0.03	0.02	0.02	0.09	0.03	0.13	0.06	0.23	0.22	0.02	0.15	0.05	0.04	0.68
Pennsylvania	York County	15.50	0.09	0.03	0.01	0.01	0.11	0.03	0.13	0.06	0.23	0.22	0.02	0.15	0.04	0.02	0.85
Tennessee	Davidson County	15.31	0.85	0.16	0.03	0.00	0.00	0.11	0.49	0.17	0.68	0.54	0.06	0.59	0.24	0.00	0.03
Tennessee	Hamilton County	16.11	0.94	0.12	0.03	0.00	0.01	0.17	1.08	0.11	0.41	0.39	0.04	0.37	0.18	0.00	0.05
Tennessee	Knox County	18.16	0.77	0.13	0.03	0.00	0.01	0.18	0.98	0.13	0.51	0.51	0.05	0.54	0.18	0.00	0.07
Tennessee	Roane County	15.13	0.80	0.13	0.03	0.00	0.01	0.15	0.77	0.12	0.48	0.46	0.05	0.47	0.17	0.00	0.05
Tennessee	Sullivan County	15.06	0.43	0.09	0.02	0.00	0.01	0.11	0.57	0.10	0.41	0.43	0.04	0.48	0.11	0.00	0.06
West Virginia	Brooke County	16.28	0.13	0.04	0.01	0.00	0.01	0.03	0.14	0.09	0.36	0.36	0.03	0.27	0.06	0.00	0.07
West Virginia	Cabell County	15.98	0.28	0.07	0.02	0.00	0.01	0.06	0.31	0.13	0.51	0.54	0.03	0.67	0.10	0.00	0.07
West Virginia	Hancock County	16.37	0.13	0.04	0.01	0.00	0.01	0.03	0.13	0.09	0.36	0.36	0.03	0.27	0.06	0.00	0.07
West Virginia	Kanawha County	16.67	0.27	0.06	0.02	0.00	0.01	0.06	0.31	0.12	0.47	0.49	0.03	0.60	0.09	0.00	0.08
West Virginia	Wood County	15.85	0.23	0.06	0.02	0.00	0.01	0.05	0.25	0.13	0.49	0.53	0.03	0.52	0.09	0.00	0.08

Downwind 2010	Nonattainment	Downwind PM2.5 Contributions (ug/m3) from Upwind Source States based on Zero-Out Modeling of 2010 SO2+NOx Emissions.													
Counties State Name		2010 Been 1		ero-Out	Modeling	g of 2010	J 502+N				NI I	NINA	NIX		OK
State Name		2010 Dase-1 Case PM2 5	IVII	IVIIN	MO	MS		NC	(Combined)	(Combined)	INJ	INIVI	IN T	Оп	UN
		$(\mu g/m^3)$							(Combined)	(Combined)					
Alabama	DeKalb County	15.24	0.12	0.05	0.18	0.19	0.01	0.20	0.04	0.03	0.02	0.02	0.04	0.30	0.06
Alabama	Jefferson County	20.12	0.10	0.06	0.19	0.30	0.01	0.15	0.04	0.03	0.02	0.02	0.04	0.24	0.07
Alabama	Montgomery County	15.72	0.08	0.05	0.15	0.26	0.01	0.15	0.04	0.03	0.02	0.02	0.05	0.21	0.06
Alabama	Russell County	17.31	0.10	0.05	0.15	0.22	0.01	0.21	0.04	0.03	0.03	0.02	0.06	0.27	0.06
Alabama	Talladega County	16.46	0.10	0.06	0.17	0.25	0.01	0.15	0.04	0.03	0.02	0.02	0.04	0.23	0.06
Connecticut	New Haven County	15.45	0.20	0.05	0.04	0.02	0.01	0.12	0.06	0.03	0.32	0.00	0.85	0.36	0.01
Delaware	New Castle County	15.49	0.24	0.05	0.06	0.02	0.01	0.15	0.04	0.02	0.21	0.01	0.33	0.52	0.02
District of	District of Columbia	15.35	0.24	0.06	0.08	0.04	0.01	0.26	0.04	0.02	0.14	0.01	0.24	0.67	0.02
Columbia															
Georgia	Clarke County	17.05	0.14	0.04	0.14	0.15	0.01	0.34	0.04	0.03	0.03	0.02	0.06	0.39	0.05
Georgia	Clayton County	17.82	0.11	0.04	0.14	0.17	0.01	0.23	0.04	0.03	0.02	0.02	0.05	0.30	0.05
Georgia	Cobb County	17.24	0.12	0.05	0.15	0.16	0.01	0.24	0.04	0.03	0.01	0.02	0.04	0.31	0.06
Georgia	DeKalb County	18.26	0.12	0.04	0.15	0.17	0.01	0.27	0.04	0.03	0.02	0.02	0.05	0.33	0.06
Georgia	Floyd County	17.14	0.13	0.05	0.17	0.19	0.01	0.23	0.05	0.03	0.02	0.02	0.05	0.33	0.06
Georgia	Fulton County	19.79	0.13	0.05	0.16	0.18	0.01	0.29	0.04	0.03	0.02	0.02	0.05	0.36	0.06
Georgia	Hall County	15.61	0.13	0.04	0.14	0.14	0.01	0.33	0.04	0.03	0.02	0.02	0.05	0.36	0.06
Georgia	Muscogee County	16.92	0.10	0.05	0.15	0.22	0.01	0.21	0.04	0.03	0.03	0.02	0.06	0.26	0.06
Georgia	Paulding County	15.52	0.12	0.05	0.16	0.18	0.01	0.21	0.04	0.03	0.02	0.02	0.05	0.29	0.06
Georgia	Richmond County	16.03	0.12	0.03	0.10	0.12	0.01	0.38	0.04	0.02	0.03	0.02	0.07	0.35	0.04
Georgia	Wilkinson County	16.89	0.11	0.04	0.11	0.15	0.01	0.26	0.04	0.02	0.03	0.02	0.07	0.30	0.05
Illinois	Cook County	18.07	0.73	0.39	0.30	0.05	0.03	0.01	0.12	0.06	0.00	0.02	0.05	0.39	0.07
Illinois	Madison County	16.48	0.24	0.27	0.89	0.10	0.03	0.02	0.10	0.08	0.00	0.02	0.03	0.33	0.14
Illinois	St. Clair County	16.32	0.24	0.25	NA	0.11	0.03	0.02	0.10	0.08	0.00	0.02	0.03	0.34	0.14
Illinois	Will County	15.54	0.58	0.33	0.30	0.05	0.03	0.01	0.11	0.05	0.00	0.02	0.05	0.36	0.06
Indiana	Clark County	15.79	0.29	0.13	0.27	0.13	0.02	0.06	0.07	0.04	0.01	0.02	0.05	0.73	0.06
Indiana	Marion County	15.76	0.51	0.19	0.25	0.08	0.02	0.02	0.08	0.04	0.00	0.02	0.05	0.72	0.06
Kentucky	Fayette County	15.05	0.30	0.12	0.24	0.12	0.02	0.08	0.06	0.04	0.01	0.02	0.06	0.87	0.06
Kentucky	Jefferson County	15.71	0.30	0.13	0.28	0.13	0.02	0.07	0.07	0.04	0.01	0.02	0.06	0.76	0.07
Maryland	Baltimore city	16.53	0.25	0.06	0.07	0.03	0.01	0.23	0.04	0.02	0.16	0.01	0.25	0.66	0.02
Michigan	Wayne County	18.76	NA	0.19	0.14	0.04	0.02	0.03	0.07	0.04	0.00	0.01	0.15	1.21	0.03
Missouri	St. Louis city	15.26	0.22	0.23	NA	0.11	0.02	0.02	0.09	0.08	0.00	0.02	0.03	0.31	0.13
New York	New York County	16.29	0.21	0.05	0.05	0.02	0.01	0.13	0.05	0.02	0.45	0.00	NA	0.41	0.01
North Carolina	Davidson County	15.32	0.16	0.04	0.11	0.06	0.01	NA	0.03	0.02	0.05	0.01	0.08	0.51	0.04
North Carolina	Mecklenburg County	15.07	0.14	0.03	0.11	0.08	0.01	NA	0.03	0.02	0.04	0.01	0.07	0.42	0.04
Ohio	Butler County	15.87	0.52	0.14	0.20	0.08	0.02	0.05	0.07	0.04	0.00	0.01	0.07	NA	0.05

Downwind 2010 Counties	ownwind 2010 Nonattainment Counties State Name County Name 2010 Base				Downwind PM2.5 Contributions (ug/m3) from Upwind Source States based on Zero-Out Modeling of 2010 SO2+NOx Emissions.													
State Name	County Name	2010 Base-1 Case PM2.5 (µg/m ³)	MI	MN	MO	MS	MT	NC	ND & VT (Combined)	NE & ME (Combined)	NJ	NM	NY	ОН	OK			
Ohio	Franklin County	16.45	0.61	0.13	0.16	0.06	0.02	0.06	0.06	0.03	0.01	0.01	0.08	NA	0.04			
Ohio	Hamilton County	17.57	0.53	0.15	0.24	0.10	0.02	0.06	0.08	0.04	0.01	0.02	0.07	NA	0.06			
Ohio	Jefferson County	17.69	0.48	0.09	0.11	0.04	0.01	0.09	0.05	0.02	0.01	0.01	0.11	NA	0.03			
Ohio	Lawrence County	15.19	0.33	0.08	0.16	0.07	0.01	0.13	0.05	0.03	0.01	0.01	0.06	NA	0.04			
Ohio	Mahoning County	15.13	0.55	0.09	0.10	0.04	0.01	0.06	0.05	0.03	0.01	0.01	0.16	NA	0.03			
Ohio	Scioto County	18.02	0.43	0.11	0.19	0.09	0.02	0.13	0.07	0.03	0.01	0.02	0.08	NA	0.05			
Ohio	Stark County	16.80	0.70	0.11	0.14	0.05	0.02	0.07	0.06	0.03	0.01	0.01	0.15	NA	0.03			
Ohio	Summit County	16.17	0.71	0.11	0.12	0.05	0.01	0.06	0.06	0.03	0.01	0.01	0.16	NA	0.03			
Pennsylvania	Allegheny County	18.86	0.50	0.09	0.13	0.06	0.02	0.15	0.06	0.03	0.04	0.02	0.14	1.82	0.04			
Pennsylvania	Berks County	15.28	0.25	0.06	0.06	0.02	0.01	0.14	0.04	0.02	0.21	0.01	0.38	0.60	0.02			
Pennsylvania	Lancaster County	15.27	0.28	0.06	0.07	0.03	0.01	0.16	0.04	0.02	0.23	0.01	0.39	0.72	0.02			
Pennsylvania	York County	15.50	0.26	0.06	0.07	0.03	0.01	0.17	0.04	0.02	0.17	0.01	0.30	0.67	0.02			
Tennessee	Davidson County	15.31	0.19	0.10	0.32	0.22	0.02	0.12	0.06	0.05	0.01	0.02	0.04	0.41	0.08			
Tennessee	Hamilton County	16.11	0.16	0.06	0.20	0.17	0.01	0.21	0.05	0.03	0.01	0.02	0.04	0.40	0.07			
Tennessee	Knox County	18.16	0.22	0.08	0.23	0.16	0.02	0.35	0.06	0.04	0.02	0.03	0.05	0.59	0.08			
Tennessee	Roane County	15.13	0.18	0.07	0.23	0.16	0.01	0.19	0.05	0.04	0.01	0.02	0.04	0.47	0.07			
Tennessee	Sullivan County	15.06	0.20	0.06	0.17	0.10	0.01	0.41	0.04	0.03	0.02	0.02	0.04	0.56	0.05			
West Virginia	Brooke County	16.28	0.44	0.08	0.10	0.04	0.01	0.08	0.04	0.02	0.01	0.01	0.10	1.88	0.03			
West Virginia	Cabell County	15.98	0.35	0.09	0.16	0.08	0.01	0.16	0.06	0.03	0.01	0.02	0.07	1.26	0.04			
West Virginia	Hancock County	16.37	0.45	0.08	0.10	0.04	0.01	0.08	0.04	0.02	0.01	0.01	0.10	1.90	0.03			
West Virginia	Kanawha County	16.67	0.33	0.09	0.15	0.07	0.01	0.19	0.05	0.03	0.01	0.02	0.07	1.20	0.04			
West Virginia	Wood County	15.85	0.41	0.09	0.15	0.07	0.01	0.14	0.06	0.03	0.01	0.01	0.08	1.66	0.04			

Downwind 20 C	010 Nonattainment counties		Downwind PM2.5 Contributions (ug/m3) from Upwind Source States based on Zero-Out Modeling of 2010 SO2+NOx Emissions.											
State Name	County Name	2010 Base-1 Case PM2.5 (µg/m³)	PA	RI	SC	SD & NH (Combined)	TN	тх	VA	WI	WV	WY		
Alabama	DeKalb County	15.24	0.15	0.00	0.16	0.02	0.55	0.21	0.10	0.11	0.13	0.03		
Alabama	Jefferson County	20.12	0.14	0.00	0.13	0.02	0.45	0.22	0.09	0.11	0.11	0.03		
Alabama	Montgomery County	15.72	0.15	0.00	0.15	0.01	0.30	0.20	0.09	0.09	0.10	0.03		
Alabama	Russell County	17.31	0.17	0.00	0.26	0.02	0.36	0.21	0.11	0.10	0.11	0.03		
Alabama	Talladega County	16.46	0.14	0.00	0.14	0.01	0.38	0.20	0.09	0.10	0.10	0.03		
Connecticut	New Haven County	15.45	0.57	0.01	0.04	0.06	0.07	0.05	0.16	0.09	0.14	0.01		
Delaware	New Castle County	15.49	1.17	0.00	0.05	0.02	0.10	0.06	0.35	0.10	0.26	0.01		
District of Columbia	District of Columbia	15.35	0.86	0.00	0.09	0.02	0.15	0.08	0.67	0.13	0.37	0.02		
Georgia	Clarke County	17.05	0.22	0.00	0.47	0.01	0.46	0.20	0.15	0.09	0.16	0.03		
Georgia	Clayton County	17.82	0.17	0.00	0.28	0.01	0.40	0.19	0.12	0.09	0.13	0.03		
Georgia	Cobb County	17.24	0.15	0.00	0.24	0.01	0.52	0.21	0.11	0.10	0.13	0.03		
Georgia	DeKalb County	18.26	0.18	0.00	0.30	0.01	0.46	0.21	0.13	0.10	0.14	0.03		
Georgia	Floyd County	17.14	0.16	0.00	0.21	0.02	0.57	0.22	0.11	0.12	0.14	0.03		
Georgia	Fulton County	19.79	0.19	0.00	0.32	0.02	0.49	0.23	0.14	0.11	0.15	0.03		
Georgia	Hall County	15.61	0.18	0.00	0.37	0.01	0.47	0.20	0.14	0.09	0.15	0.03		
Georgia	Muscogee County	16.92	0.17	0.00	0.26	0.02	0.35	0.21	0.11	0.09	0.11	0.03		
Georgia	Paulding County	15.52	0.16	0.00	0.19	0.01	0.47	0.20	0.11	0.11	0.13	0.03		
Georgia	Richmond County	16.03	0.22	0.00	0.72	0.01	0.35	0.17	0.16	0.08	0.16	0.02		
Georgia	Wilkinson County	16.89	0.19	0.00	0.39	0.01	0.35	0.17	0.12	0.08	0.13	0.03		
Illinois	Cook County	18.07	0.11	0.00	0.00	0.04	0.14	0.21	0.01	1.00	0.04	0.04		
Illinois	Madison County	16.48	0.11	0.00	0.01	0.04	0.22	0.37	0.02	0.35	0.07	0.05		
Illinois	St. Clair County	16.32	0.10	0.00	0.01	0.04	0.24	0.37	0.02	0.32	0.08	0.05		
Illinois	Will County	15.54	0.10	0.00	0.00	0.04	0.12	0.21	0.01	0.84	0.05	0.04		
Indiana	Clark County	15.79	0.16	0.00	0.04	0.02	0.53	0.20	0.08	0.26	0.19	0.03		
Indiana	Marion County	15.76	0.18	0.00	0.01	0.03	0.24	0.18	0.03	0.37	0.12	0.03		
Kentucky	Fayette County	15.05	0.17	0.00	0.05	0.02	0.53	0.20	0.09	0.24	0.24	0.03		
Kentucky	Jefferson County	15.71	0.18	0.00	0.04	0.02	0.52	0.20	0.08	0.26	0.20	0.03		
Maryland	Baltimore city	16.53	1.01	0.00	0.08	0.02	0.15	0.08	0.58	0.13	0.38	0.02		
Michigan	Wayne County	18.76	0.20	0.00	0.01	0.02	0.14	0.12	0.03	0.41	0.15	0.03		
Missouri	St. Louis city	15.26	0.09	0.00	0.01	0.04	0.22	0.35	0.02	0.30	0.07	0.04		
New York	New York County	16.29	0.95	0.00	0.05	0.04	0.08	0.05	0.21	0.10	0.17	0.01		
North Carolina	Davidson County	15.32	0.29	0.00	0.38	0.01	0.38	0.13	0.32	0.10	0.25	0.02		
North Carolina	Mecklenburg County	15.07	0.26	0.00	0.66	0.01	0.38	0.14	0.24	0.08	0.21	0.02		
Ohio	Butler County	15.87	0.20	0.00	0.02	0.02	0.30	0.16	0.05	0.28	0.22	0.03		

Downwind 20 C)10 Nonattainment ounties	Downwind PM2.5 Contributions (ug/m3) from Upwind Source States based on Zero-Out Modeling of 2010 SO2+NOx Emissions.											
State Name	County Name	2010 Base-1 Case PM2.5 (µg/m³)	PA	RI	SC	SD & NH (Combined)	TN	ТХ	VA	WI	WV	WY	
Ohio	Franklin County	16.45	0.30	0.00	0.03	0.02	0.27	0.14	0.08	0.27	0.39	0.03	
Ohio	Hamilton County	17.57	0.22	0.00	0.03	0.03	0.39	0.19	0.07	0.31	0.29	0.03	
Ohio	Jefferson County	17.69	0.73	0.00	0.04	0.02	0.19	0.10	0.12	0.21	NA	0.02	
Ohio	Lawrence County	15.19	0.21	0.00	0.07	0.02	0.35	0.14	0.13	0.18	0.60	0.02	
Ohio	Mahoning County	15.13	0.70	0.00	0.03	0.02	0.16	0.10	0.09	0.20	0.53	0.02	
Ohio	Scioto County	18.02	0.23	0.00	0.07	0.02	0.42	0.18	0.13	0.22	0.61	0.03	
Ohio	Stark County	16.80	0.71	0.00	0.03	0.02	0.21	0.13	0.09	0.27	0.42	0.03	
Ohio	Summit County	16.17	0.59	0.00	0.03	0.02	0.17	0.11	0.07	0.24	0.32	0.03	
Pennsylvania	Allegheny County	18.86	NA	0.00	0.05	0.02	0.25	0.14	0.26	0.23	0.89	0.03	
Pennsylvania	Berks County	15.28	NA	0.00	0.05	0.02	0.11	0.07	0.32	0.11	0.28	0.01	
Pennsylvania	Lancaster County	15.27	NA	0.00	0.06	0.02	0.13	0.08	0.40	0.12	0.35	0.02	
Pennsylvania	York County	15.50	NA	0.00	0.06	0.02	0.13	0.08	0.44	0.12	0.39	0.02	
Tennessee	Davidson County	15.31	0.15	0.00	0.08	0.02	NA	0.27	0.07	0.19	0.16	0.03	
Tennessee	Hamilton County	16.11	0.16	0.00	0.15	0.02	NA	0.23	0.09	0.14	0.16	0.03	
Tennessee	Knox County	18.16	0.21	0.00	0.23	0.02	NA	0.28	0.15	0.17	0.24	0.04	
Tennessee	Roane County	15.13	0.18	0.00	0.14	0.02	NA	0.24	0.10	0.15	0.19	0.03	
Tennessee	Sullivan County	15.06	0.19	0.00	0.18	0.01	NA	0.20	0.16	0.13	0.26	0.03	
West Virginia	Brooke County	16.28	0.67	0.00	0.03	0.01	0.17	0.10	0.11	0.20	NA	0.02	
West Virginia	Cabell County	15.98	0.25	0.00	0.09	0.02	0.36	0.16	0.16	0.18	NA	0.02	
West Virginia	Hancock County	16.37	0.68	0.00	0.03	0.01	0.17	0.09	0.11	0.20	NA	0.02	
West Virginia	Kanawha County	16.67	0.28	0.00	0.10	0.02	0.36	0.16	0.19	0.17	NA	0.02	
West Virginia	Wood County	15.85	0.31	0.00	0.07	0.02	0.30	0.15	0.14	0.20	NA	0.02	
Appendix I

Background Information on the Development of Local Control Measures for PM2.5 Appendix I. Memo from ECR summarizing references for cost estimates

To:Scott MathiasFrom:Becky Battye, EC/RSubject:Revised Costs of Local Control MeasuresDate:June 20, 2003

This memorandum is an update from the June 2, 2003 memorandum - documenting the selection and costs for the recently modeled control measures. Note: this memo describes the costs for the measures we wanted to model, not the levels that were actually modeled, and many of the measures have been modified based on comments received and information obtained during the development of the costs. Major changes to this memo include the addition of the source category codes for the measures, separately referencing the source of the cost and control efficiency information, and providing more information on the NOx and VOC controls. This memo also incorporates the information you have forwarded from OTAQ (email from you (5/6/03) and from Katayama (5/20/03)).

Costs for the PM local control measures

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)
Replace fireplaces with natural gas inserts 2104008001	80	7508	Cost-effectiveness is calculated for PM10 precursors and assumes a \$300/retrofit incentive	Not known - shouldn't this be 100%?	Air Quality Mitigation Plan for the East Altamont Energy Center, California Energy Commission, Sacramento, CA, July 19, 2002 (Draft)
Replace with non- catalytic certified woodstoves	71	3872	66	Residential Wood Combustion - $PM_{2.5}$. Prepared for Westar by OMNI. July 1998.	Air Quality Mitigation Plan for the East Altamont Energy Center, California Energy Commission, Sacramento,
2104008001	84-91			Final Report to the Govenor's Air Quality Strategies Task Force from the PM-10 Subcommittee (1/98)	CA, July 19, 2002 (Draft)
Combination of measures to reduce gasoline highway vehicle emissions 2201001*** 2201020***	3 - 5	Costs applied to VOC	Costs were developed based on VOC reduction. Efficiency for LDGV & LDGT1 - 5% in Birmingham and 3% in Chicago and Philadelphia. Assume no reduction in VMT for LDGT2 (2201040*** - commercial applications).	From OTAQ email	National Research Council, 2002 (The Congestion Mitigation Air Quality Program)
Diesel Particulate Filter 2230070***	90	4000	Cost is probably high - (based on lack of LSD availability - which shouldn't be an issue in 2010). Filters cost about \$7,500/vehicle	http://www.adeq.state.az.us/e nviron/air/browncloud/downl oad/onroad/1002haze2.pdf	http://www.adeq.state.az.us/e nviron/air/browncloud/downl oad/onroad/1002haze2.pdf

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)
Work day restrictions (commercial lawn and garden) 226004016; 021; 026; 031; 071	11	Cost applied to NOx	Cost-effectiveness for lawn service restrictions is calculated and reported for NOx. Effectiveness based on 1 ton reduction from 9.6 tons of NOx in Houston.	Emission reduction is calculated from SIP inventory - these numbers have not been verified	TNRCC Ozone August 2000 draft SIP in Clearing Houston's Air,from Texas Public Policy Foundation website: http://www.tppf.org
Buy back program (residential lawn and garden) 226004015; 020; 025; 030			Need relative emissions from 2- stroke and 4-stroke (we have a cost for marine buy back program for VOC emissions)		
Diesel Oxidation catalyst for Non-road diesel 2270002***	25	1,000	Cost based on the Big Dig in Boston (which isn't clear if this is for PM or NOx). Cost is applied to both PM and NOx.	Retrofitting Emission Controls on Diesel-Powered Vehicles, MECA 3/2002, pg.8	Clean Air and Transportation Diesel Engine Retrofit, DOT/FHA 1/2002
Marine -diesel			Have something for NOx - since we don't know the measures we don't know if there is a PM co-benefit		
Marine 2-stroke buy back program 2282005010; 015			Have a cost for VOC reduction - need a ratio of PM and NOx emissions to VOC emissions for 2- vs. 4- stroke engines		Outboard Engine Buy- Back Program, EPA Wisconsin conducted a survey but the costs were too high - not implemented
Vacuum sweeping of paved roads 2294000000	75	1,070		Best Management Practices document and FHWA (Sutherland & Jelen, 1996)	Proposed BACM/T & RACM/T Demonstration for sources of PM10 and precursors in the SJVAB 4/2003

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)
Gravel covering of unpaved roads 2296000000	90	2160 - 5920		Not sure where efficiency came from - believe its an old FACA number	Proposed BACM/T & RACM/T Demonstration for sources of PM10 and precursors in the SJVAB 4/2003
Watering construction road 2311000100	50	1960	Cost is actually for disturbed soils after demolition completion or at end of each day of cleanup (construction activities). Much lower cost for limiting speeds on unpaved parking lots and water suppression (\$1960/ton)	Air Quality Modeling of Elevated Particulates Concentrations in Tucson in 1999 Arizona DEQ. 6/2001	Proposed BACM/T & RACM/T Demonstration for sources of PM10 and precursors in the SJVAB 4/2003
Ban Open Burning 2610010000 2610020000 2610030000	100	0			SJVUAPD Draft Staff Report Amendments to 4103 (Open Burning) and New Rule 4106 (Prescribed Burning and Hazard Reduction Burning) 11/00
Soil conservation measures for tilling operations 2801000003	20	19		Additional Control Measure Evaluation for the Integrated Implementation of the Ozone and Particulate Matter National Ambient Air Quality Standards, and Regional Haze Program. July 17, 1997.	BACM/T & RACM/T Demonstration for Souces of PM10 and PM Precursos in the SJVAB 4/2003

Reductions for the LDGV, LDGT 1&2, and LDGT 3&4, are currently listed as reduce VMT and turn over fleet. The 5/6/03 email suggested we change the name to "combination of measures to reduce highway vehicle emissions." We have costs for "regional ridesharing, vanpool programs, employer trip reduction programs, and bike/pedestrian improvements" - but need a rationale for distributing the costs between pollutants. We show the reductions for all 3 pollutants & put the cost on VOC. Also, OTAQ said they would work toward improving the basis for three subcategories "accelerated fleet turnover, technology-based programs, and activity-based programs" (item 4 of email). Is there any additional information from them? Meanwhile they want us to lower our expectations on overall control efficiency (which we have done). The costs we have are only applied to LDGV and LDGT1, we assume that LDGT2 are more commercial in nature and not amenable to the three programs for which we have costs. *There is additional information (non-CMAQ measures) in the CMAQ document that we will extract to get the remaining reductions and also to address LDGT2.*

For the diesel particulate filter, the first email from OTAQ said an overall HDDV reduction of 37% is appropriate. We referred to the Katayama information when applying the diesel particulate filter. We had assumed a 30% penetration. He further restricted the use of the particulate filter to model years 1996 to 2006 and only for class 5-8 vehicles. Using references from OTAQ we estimate that 57% of the HDDV fleet is the applicable class and 54% of the fleet is the correct model year. Therefore only about 31% could retrofit with the filter. When he said 30% market penetration I assume he means only 30% could use the filter. So we'll stick with the 90% efficiency and 30% applicability. We use a cost of \$4,000 ton (middle of the range but probably high).

The costs for the lawn service restriction are reported for NOx. The cost is presented for NOx but the measure reduces both pollutants. We are currently just reporting the restrictions for commercial lawn and garden use with the Texas proposal as the basis. No efficiency is provided in the Texas document. We calculated an 11% reduction for the NOx and applied the 11% to PM. OTAQ said they would look into buy-back programs for lawn and garden.

First email (item 6) refers to the diesel oxidation catalyst as achieving 25% control (of PM10?). Neither OTAQ or EC/R have a good feel for pre-2007 non-road engines. To achieve the desired 18.3% overall control efficiency - the overall applicability would have to increase to 73% (because the efficiency decreased from 61 to 25%).

Banning open burning is listed as a free measure in the SJV analysis. We have some costs for collecting residential trash in CA but would need to work the numbers to get an efficiency and a cost effectiveness.

Costs for the NOx local control measures

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)				
	Point Sources								
Low NOx burners for lime calcining kiln and asphalt concrete rotary dryer 30501604 30500201	27	440 - 940	Technology transfer from cement kiln operations. Cost is dependent upon whether the burner is direct fired or indirect fired	NOx Control Technologies for the Cement Industry, EPA report, 9/2000	same				
Cement kiln - mid-kiln firing 30500606	33	55	for dry process kiln	NOx Control Technologies for the Cement Industry, EPA report, 9/2000	same				
Cement kiln - tire derived fuel 30500623	35	(1900)	for preheater/precalciner kiln	NOx Control Technologies for the Cement Industry, EPA report, 9/2000	same				
	_	_	Point and Area Source Combus	tion Categories					
SNCR for coal-fired pulverized boilers 10200202 2102002000	50	1055	Middle of the range for both efficiency and cost effectiveness. Efficiency is much higher at a slightly higher cost for SCR	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 4	same				
SNCR for coal-fired stoker boilers 10200104 10200204	50	1160	Middle of the range for both efficiency and cost effectiveness. Efficiency is much higher at a slightly higher cost for SCR	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 4	same				
SNCR for medium industrial external combustion natural gas fired boilers 10200602	45	5315	Middle of the range for both efficiency and cost effectiveness. Range is for 50 mmBTU/hr natural gas fired boilers	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 2	same				

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)
SNCR for large industrial external combustion natural gas fired boilers 10200601	45	4950	Middle of the range for both efficiency and cost effectiveness. Range is for 150 mmBTU/hr natural gas fired boilers	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 2	same
Low NOx burner for small industrial natural gas fired boilers 10200603	50	10,200	Middle of the range for cost effectiveness. Range is for 10 mmBTU/hr natural gas fired boilers	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 2	same
SCR for continuous gas-fired turbine 20200201 20200203	90	1530	costs are dependent on size (3 sizes listed, 5MW, 25MW, and 100 MW) Average used.	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 12	same
NSCR for industrial reciprocating gas fired engine 20200202	94	230	Assume spark ignition, gas rich engine. Middle of the range for both efficiency and cost effectiveness.	EPA, TTN NAAQS OTAG Technical Supporting Document Chapter 5 Appendix C Charts page 9	same
ULNB & SNCR for Petroleum Refining Process Heaters 30600104 30600106	93	806	Assume medium size process heater (75 MMBtu/hr) and very good reduction	Petroleum Refinery Tier 2 BACT Analysis Report. ERG. 3/2000	Petroleum Refinery Tier 2 BACT Analysis Report. ERG. 3/2000
			Area Sources		
Combination of measures to reduce gasoline highway vehicle emissions 22010001*** 2201020***	3-5	Costs applied to VOC	An average cost effectiveness for regional ridesharing, vanpool programs, and employer trip reduction programs (did not include bike/pedestrian improvements - too expensive)	Efficiency recommendation from OTAQ - first email	NRC, 2002 (The CMAQ Program)

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)
Work day restrictions for commercial lawn and garden 2260004016; 021; 031; 036; 071	11	16,600	Cost-effectiveness for lawn service restrictions is calculated and reported for NOx. Effectiveness based on 1 ton reduction from 9.6 tons of NOx in Houston.	TNRCC Ozone August 2000 draft SIP in Clearing Houston's Air,from Texas Public Policy Foundation website: http://www.tppf.org	TNRCC Ozone August 2000 draft SIP in Clearing Houston's Air,from Texas Public Policy Foundation website: http://www.tppf.org
Diesel oxidation catalyst are applied to HDDV & nonroad engines to control PM and NOx 2230070*** 2270002***	40	1,000	the 40% reduction for diesel oxidation catalyst was not reflected in the initial spreadsheets (Costs are in both PM and NOX since report says per ton of pollutant without specifying pollutant)	Retrofitting Emission Controls on Diesel-Powered Vehicles, MECA 3/2002	Clean Air and Transportation Diesel Engine Retrofit, DOT/FHA 1/2000 (Based on the Big Dig in Boston)
SCR for diesel locomotives	72	1700		Controlling Locomotive Emissions in California, Engine,	same
2285002000		1160		Fuel, and Emissions Engineering, Inc. 3/95	The Carl Moyer Program Annual Status Report CARB, 3/2002
DOC for locomotives 2285002000		1200			Clean Air and Transportation Diesel Engine Retrofit, DOT/FHA 1/2000 (Based on the Carl Moyer Program)
Diesel boat retrofits, repowers, diesel tug retrofits		900, 1200, 1300	From the presentation for the <i>Conference on Marine Vessels</i> <i>and Air Quality</i> , San Francisco, CA, 2/2001		<i>Economic Incentives for Marine Vessels</i> , Arthur D. Little
2280002000		3044			The Carl Moyer Program Annual Status Report CARB, 3/2002

Control Measures	Efficiency	Cost/ton	Notes	Reference (efficiency)	Reference (cost)
Buy back program (residential lawn and garden)			Need relative emissions from 2- stroke and 4-stroke (we have a cost for marine buy back program)		
Marine 2-stroke buy back program			Have a cost for VOC reduction - need a ratio of PM and NOx emissions to VOC emissions for 2- vs. 4- stroke engines	<i>Outboard Engine Buy-Back</i> <i>Program</i> , EPA Wisconsin conducted a survey but the costs were too high - not implemented	
Ban Open Burning 2610010000 2610020000 2610030000	100	0		SJVUAPD Draft Staff Report Amendments to 4103 (Open Burning) and New Rule 4106 (Prescribed Burning and Hazard Reduction Burning) 11/00	SJVUAPD Draft Staff Report Amendments to 4103 (Open Burning) and New Rule 4106 (Prescribed Burning and Hazard Reduction Burning) 11/00

The use of low NOx burners for the lime calcining, asphalt rotary dryers, and industrial natural gas boilers and IC engines seems reasonable. The costs are transferred from the cement document which is probably appropriate for the lime calcining and rotary dryer but may be too low a cost for an industrial boiler (lower fuel consumption).

The use of SNCR technology on area sources of coal boilers and natural gas boilers and IC engines may not be appropriate (the boilers may be too small) but the point source efficiencies and costs are applied.

Costs for the VOC local control measures

Control Measures	Efficiency	Cost/ton	Notes	Reference			
	Point						
Solvent Substitution		2226	This is only based on solvent cleaning operations.	Technical Assessment Memo Regulation 8, Rule 16 Solvent Cleaning Operations Bay Area AQMD 5/1998			
			Area				
Combination of measures to reduce gasoline highway vehicle emissions	3-5	13,500 (average cost for the 3 measures)	Costs were developed based on VOC reduction. Efficiency for LDGV & LDGT1 - 5% in Birmingham and 3% in Chicago and Philadelphia. Assume no reduction in VMT for LDGT2 (commercial applications).	NRC, 2002 (The CMAQ Program)			
Work day restrictions (commercial lawn and garden)	11		Cost-effectiveness for lawn service restrictions is calculated and reported for NOx. Effectiveness based on 1 ton reduction from 9.6 tons of NOx in Houston.	TNRCC Ozone August 2000 draft SIP in Clearing Houston's Air,from Texas Public Policy Foundation website: http://www.tppf.org			
Buy back program (residential lawn and garden)			Need relative emissions from 2-stroke and 4-stroke (we have a cost for marine buy back program)				
Marine 2-stroke buy back program		4,000 - 10,000	Have a cost for VOC reduction (100 hp engine vs. 10 hp engine) - need a ratio of PM and NOx emissions to VOC emissions for 2- vs. 4- stroke engines	Outboard Engine Buy-Back Program, EPA Wisconsin conducted a survey but the costs were too high - not implemented			
Ban Open Burning	100	0		SJVUAPD Draft Staff Report Amendments to 4103 (Open Burning) and New Rule 4106 (Prescribed Burning and Hazard Reduction Burning) 11/00			

Appendix J

290 Counties Included in the Local Control Study

STATE FIPS	COUNTY FIPS	STATE NAME	COUNTY NAME	MSA/CMSA/NECMA NAME
17	031	Illinois	Cook	ChicagoGaryKenosha, ILINWI CMSA
17	037	Illinois	DeKalb	ChicagoGaryKenosha, ILINWI CMSA
17	043	Illinois	DuPage	ChicagoGaryKenosha, ILINWI CMSA
17	063	Illinois	Grundy	ChicagoGaryKenosha, ILINWI CMSA
17	089	Illinois	Kane	ChicagoGaryKenosha, ILINWI CMSA
17	091	Illinois	Kankakee	ChicagoGaryKenosha, ILINWI CMSA
17	093	Illinois	Kendall	ChicagoGaryKenosha, ILINWI CMSA
17	097	Illinois	Lake	ChicagoGaryKenosha, ILINWI CMSA
17	111	Illinois	McHenry	ChicagoGaryKenosha, ILINWI CMSA
17	197	Illinois	Will	ChicagoGarvKenosha. ILINWI CMSA
18	089	Indiana	Lake	ChicagoGarvKenosha, ILINWI CMSA
18	127	Indiana	Porter	ChicagoGarvKenosha, ILINWI CMSA
55	059	Wisconsin	Kenosha	ChicagoGarvKenosha, ILINWI CMSA
18	029	Indiana	Dearborn	CincinnatiHamilton, OHKYIN CMSA
18	115	Indiana	Ohio	CincinnatiHamilton, OHKYIN CMSA
21	015	Kentucky	Boone	CincinnatiHamilton, OHKYIN CMSA
21	037	Kentucky	Campbell	CincinnatiHamilton, OHKYIN CMSA
21	077	Kentucky	Gallatin	CincinnatiHamilton, OHKYIN CMSA
21	081	Kentucky	Grant	CincinnatiHamilton, OHKYIN CMSA
21	117	Kentucky	Kenton	CincinnatiHamilton, OHKYIN CMSA
21	191	Kentucky	Pendleton	CincinnatiHamilton, OHKYIN CMSA
39	015	Ohio	Brown	CincinnatiHamilton, OHKYIN CMSA
39	017	Ohio	Butler	CincinnatiHamilton, OHKYIN CMSA
39	025	Ohio	Clermont	CincinnatiHamilton, OHKYIN CMSA
39	061	Ohio	Hamilton	CincinnatiHamilton, OHKYIN CMSA
39	165	Ohio	Warren	CincinnatiHamilton, OHKYIN CMSA
39	007	Ohio	Ashtabula	ClevelandAkron, OH CMSA
39	035	Ohio	Cuyahoga	ClevelandAkron, OH CMSA
39	055	Ohio	Geauga	ClevelandAkron, OH CMSA
39	085	Ohio	Lake	ClevelandAkron, OH CMSA
39	093	Ohio	Lorain	ClevelandAkron, OH CMSA
39	103	Ohio	Medina	ClevelandAkron, OH CMSA
39	133	Ohio	Portage	ClevelandAkron, OH CMSA
39	153	Ohio	Summit	ClevelandAkron, OH CMSA
26	049	Michigan	Genesee	DetroitAnn ArborFlint, MI CMSA
26	087	Michigan	Lapeer	DetroitAnn ArborFlint MI CMSA
 26	091	Michigan	Lenawee	Detroit-Ann Arbor-Flint MI CMSA
20	003	Michigan	Livingston	Detroit Ann Arbor - Flint MI CMSA
20	095	Michigan	Magazzi	Detroit Ann Arbor Elint MI CMSA
20	099	iviichigan	iviacomb	DetroitAnn ArborFint, MI CMSA

26	115	Michigan	Monroe	DetroitAnn ArborFlint, MI CMSA
26	125	Michigan	Oakland	DetroitAnn ArborFlint, MI CMSA
26	147	Michigan	St. Clair	DetroitAnn ArborFlint, MI CMSA
26	161	Michigan	Washtenaw	DetroitAnn ArborFlint, MI CMSA
26	163	Michigan	Wayne	DetroitAnn ArborFlint, MI CMSA
09	005	Connecticut	Litchfield	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
09	007	Connecticut	Middlesex	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	003	New Jersey	Bergen	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	013	New Jersey	Essex	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	017	New Jersey	Hudson	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	019	New Jersey	Hunterdon	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	021	New Jersey	Mercer	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	023	New Jersey	Middlesex	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	025	New Jersey	Monmouth	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	027	New Jersey	Morris	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	029	New Jersey	Ocean	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	031	New Jersey	Passaic	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	035	New Jersey	Somerset	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	037	New Jersey	Sussex	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	039	New Jersey	Union	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
34	041	New Jersey	Warren	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	005	New York	Bronx	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	027	New York	Dutchess	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	047	New York	Kings	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	059	New York	Nassau	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	061	New York	New York	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA

	-	T	I	
36	071	New York	Orange	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	079	New York	Putnam	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	081	New York	Oueens	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
			(New YorkNorthern New JerseyLong Island, NYNJCTPA
36	085	New York	Richmond	CMSA
36	087	New York	Rockland	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	103	New York	Suffolk	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
36	119	New York	Westchester	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
42	103	Pennsylvania	Pike	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
09	001	Connecticut	Fairfield	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
09	009	Connecticut	New Haven	New YorkNorthern New JerseyLong Island, NYNJCTPA CMSA
10	002	Dalaman	No. Costla	DETENDED With the Adverte Offender NU DE MD OMOA
10	003	Delaware	New Castle	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
24	015	Maryland		PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
34	001	New Jersey	Atlantic	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
34	005	New Jersey	Burlington	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
34	007	New Jersey	Camaen Cana Mari	Philadelphia Wilmington Atlantic City, PANJDEMD CMSA
34 24	009	New Jersey	Cape May	Philadelphia WilmingtonAtlantic City, PANJDEMD CMSA
34 24	011	New Jersey	Cumberland	Philadelphia WilmingtonAtlantic City, PANJDEMD CMSA
34 24	015	New Jersey	Gloucester	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
34	033	New Jersey	Salem	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
42	017	Pennsylvania	Bucks	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
42	029	Pennsylvania	Chester	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
42	045	Pennsylvania	Delaware	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
42	091	Pennsylvania	Montgomery	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
42	101	Pennsylvania	Philadelphia	PhiladelphiaWilmingtonAtlantic City, PANJDEMD CMSA
11	001	District of	District of	Washington Baltimore DC MD VA WV CMSA
24	001	Maryland	Anne Arundel	Washington Baltimore DC MD VA WV CMSA
24 24	005	Maryland	Baltimore	Washington Baltimore DC-MD-VA-WV CMSA
24 24	003	Maryland	Calvert	Washington Baltimore DC-MD-VA-WV CMSA
24 24	013	Maryland	Carroll	Washington Baltimore DC MD VA WV CMSA
24 24	015	Maryland	Charles	Washington Baltimore DC MD VA WV CMSA
24 24	017	Monuton 4	Eradorial	Washington Daltimore DC MD VA WV CMSA
24 24	021	Iviai yiand		Washington - Dalumore, DC - MD - VA - WV CMSA
24	025	iviaryland	Harford	wasningtonBaltimore, DCMDVAWV CMSA
24	027	Maryland	Howard	wasningtonBaltimore, DCMDVAWV CMSA

24	031	Maryland	Montgomery	WashingtonBaltimore, DCMDVAWV CMSA
24	033	Maryland	Prince George's	WashingtonBaltimore, DCMDVAWV CMSA
24	035	Maryland	Queen Anne's	WashingtonBaltimore, DCMDVAWV CMSA
24	043	Maryland	Washington	WashingtonBaltimore, DCMDVAWV CMSA
24	510	Maryland	Baltimore City	WashingtonBaltimore, DCMDVAWV CMSA
51	013	Virginia	Arlington	WashingtonBaltimore, DCMDVAWV CMSA
51	043	Virginia	Clarke	WashingtonBaltimore, DCMDVAWV CMSA
51	047	Virginia	Culpeper	WashingtonBaltimore, DCMDVAWV CMSA
51	059	Virginia	Fairfax	WashingtonBaltimore, DCMDVAWV CMSA
51	061	Virginia	Fauquier	WashingtonBaltimore, DCMDVAWV CMSA
51	099	Virginia	King George	WashingtonBaltimore, DCMDVAWV CMSA
51	107	Virginia	Loudoun	WashingtonBaltimore, DCMDVAWV CMSA
51	153	Virginia	Prince William	WashingtonBaltimore, DCMDVAWV CMSA
51	177	Virginia	Spotsylvania	WashingtonBaltimore, DCMDVAWV CMSA
51	179	Virginia	Stafford	WashingtonBaltimore, DCMDVAWV CMSA
51	187	Virginia	Warren	WashingtonBaltimore, DCMDVAWV CMSA
51	510	Virginia	Alexandria	WashingtonBaltimore, DCMDVAWV CMSA
51	600	Virginia	Fairfax City	WashingtonBaltimore, DCMDVAWV CMSA
51	610	Virginia	Falls Church	WashingtonBaltimore, DCMDVAWV CMSA
51	630	Virginia	Fredericksburg	WashingtonBaltimore, DCMDVAWV CMSA
51	683	Virginia	Manassas	WashingtonBaltimore, DCMDVAWV CMSA
51	685	Virginia	Manassas Park	WashingtonBaltimore, DCMDVAWV CMSA
54	003	West Virginia	Berkeley	WashingtonBaltimore, DCMDVAWV CMSA
54	037	West Virginia	Jefferson	WashingtonBaltimore, DCMDVAWV CMSA
13	059	Georgia	Clarke	Athens, GA MSA
13	195	Georgia	Madison	Athens, GA MSA
13	219	Georgia	Oconee	Athens, GA MSA
13	013	Georgia	Barrow	Atlanta, GA MSA
13	015	Georgia	Bartow	Atlanta, GA MSA
13	045	Georgia	Carroll	Atlanta, GA MSA
13	057	Georgia	Cherokee	Atlanta, GA MSA
13	063	Georgia	Clayton	Atlanta, GA MSA
13	067	Georgia	Cobb	Atlanta, GA MSA
13	077	Georgia	Coweta	Atlanta, GA MSA
13	089	Georgia	DeKalb	Atlanta, GA MSA
13	097	Georgia	Douglas	Atlanta, GA MSA
13	113	Georgia	Fayette	Atlanta, GA MSA
13	117	Georgia	Forsyth	Atlanta, GA MSA
13	121	Georgia	Fulton	Atlanta, GA MSA
13	135	Georgia	Gwinnett	Atlanta, GA MSA
13	151	Georgia	Henry	Atlanta, GA MSA

13	217	Georgia	Newton	Atlanta, GA MSA
13	223	Georgia	Paulding	Atlanta, GA MSA
13	227	Georgia	Pickens	Atlanta, GA MSA
13	247	Georgia	Rockdale	Atlanta, GA MSA
13	255	Georgia	Spalding	Atlanta, GA MSA
13	297	Georgia	Walton	Atlanta, GA MSA
13	073	Georgia	Columbia	AugustaAiken, GASC MSA
13	189	Georgia	McDuffie	AugustaAiken, GASC MSA
13	245	Georgia	Richmond	AugustaAiken, GASC MSA
45	003	South Carolina	Aiken	AugustaAiken, GASC MSA
45	037	South Carolina	Edgefield	AugustaAiken, GASC MSA
01	009	Alabama	Blount	Birmingham, AL MSA
01	073	Alabama	Jefferson	Birmingham, AL MSA
01	115	Alabama	St. Clair	Birmingham, AL MSA
01	117	Alabama	Shelby	Birmingham, AL MSA
39	019	Ohio	Carroll	CantonMassillon, OH MSA
39	151	Ohio	Stark	CantonMassillon, OH MSA
54	039	West Virginia	Kanawha	Charleston, WV MSA
54	079	West Virginia	Putnam	Charleston, WV MSA
		North		
37	025	Carolina	Cabarrus	CharlotteGastoniaRock Hill, NCSC MSA
37	071	North Carolina	Gaston	CharlotteGastoniaRock Hill, NCSC MSA
37	109	North Carolina	Lincoln	CharlotteGastoniaRock Hill, NCSC MSA
37	119	North Carolina	Mecklenburg	CharlotteGastoniaRock Hill, NCSC MSA
37	159	North Carolina	Rowan	CharlotteGastoniaRock Hill, NCSC MSA
37	179	North Carolina	Union	CharlotteGastoniaRock Hill, NCSC MSA
45	091	South Carolina	York	CharlotteGastoniaRock Hill, NCSC MSA
13	047	Georgia	Catoosa	Chattanooga, TNGA MSA
13	083	Georgia	Dade	Chattanooga, TNGA MSA
13	295	Georgia	Walker	Chattanooga, TNGA MSA
47	065	Tennessee	Hamilton	Chattanooga, TNGA MSA

47	115	Tennessee	Marion	Chattanooga, TNGA MSA
01	113	Alabama	Russell	Columbus, GAAL MSA
13	053	Georgia	Chattahoochee	Columbus, GAAL MSA
13	145	Georgia	Harris	Columbus, GAAL MSA
13	215	Georgia	Muscogee	Columbus, GAAL MSA
39	041	Ohio	Delaware	Columbus, OH MSA
39	045	Ohio	Fairfield	Columbus, OH MSA
39	049	Ohio	Franklin	Columbus, OH MSA
39	089	Ohio	Licking	Columbus, OH MSA
39	097	Ohio	Madison	Columbus, OH MSA
39	129	Ohio	Pickaway	Columbus, OH MSA
		North		
37	001	Carolina	Alamance	GreensboroWinston-SalemHigh Point, NC MSA
		North		
37	057	Carolina	Davidson	GreensboroWinston-SalemHigh Point, NC MSA
		North		
37	059	Carolina	Davie	GreensboroWinston-SalemHigh Point, NC MSA
27	0(7	North	E a mar dh	Constant Winster Colore High Drive NCMCA
31	067	Carolina	Forsyth	Greensborowinston-SalemHign Point, NC MSA
37	081	North Carolina	Guilford	GreenshoroWinston-SalemHigh Point NC MSA
51	001	North	Guinord	
37	151	Carolina	Randolph	GreensboroWinston-SalemHigh Point, NC MSA
		North	1	
37	169	Carolina	Stokes	GreensboroWinston-SalemHigh Point, NC MSA
		North		
37	197	Carolina	Yadkin	GreensboroWinston-SalemHigh Point, NC MSA
		South		
45	007	Carolina	Anderson	GreenvilleSpartanburgAnderson, SC MSA
15	0.2.1	South		
45	021	Carolina	Cherokee	GreenvilleSpartanburgAnderson, SC MSA
15	045	South	Greenville	Greenville Sportophurg Anderson SC MSA
43	043	Carolina	Greenvine	GreenvinespartanourgAnderson, SC WSA
45	077	Carolina	Pickens	GreenvilleSpartanburgAnderson SC MSA
	0,,,	South	Tiencillo	
45	083	Carolina	Spartanburg	GreenvilleSpartanburgAnderson, SC MSA
		North		1
37	003	Carolina	Alexander	HickoryMorgantonLenoir, NC MSA
		North		
37	023	Carolina	Burke	HickoryMorgantonLenoir, NC MSA

37	027	North Carolina	Caldwell	HickoryMorgantonLenoir, NC MSA
37	035	North Carolina	Catawba	HickoryMorgantonLenoir, NC MSA
21	019	Kentucky	Boyd	HuntingtonAshland, WVKYOH MSA
21	043	Kentucky	Carter	HuntingtonAshland, WVKYOH MSA
21	089	Kentucky	Greenup	HuntingtonAshland, WVKYOH MSA
39	087	Ohio	Lawrence	HuntingtonAshland, WVKYOH MSA
54	011	West Virginia	Cabell	HuntingtonAshland, WVKYOH MSA
54	099	West Virginia	Wayne	HuntingtonAshland, WVKYOH MSA
18	011	Indiana	Boone	Indianapolis, IN MSA
18	057	Indiana	Hamilton	Indianapolis, IN MSA
18	059	Indiana	Hancock	Indianapolis, IN MSA
18	063	Indiana	Hendricks	Indianapolis, IN MSA
18	081	Indiana	Johnson	Indianapolis, IN MSA
18	095	Indiana	Madison	Indianapolis, IN MSA
18	097	Indiana	Marion	Indianapolis, IN MSA
18	109	Indiana	Morgan	Indianapolis, IN MSA
18	145	Indiana	Shelby	Indianapolis, IN MSA
47	019	Tennessee	Carter	Johnson CityKingsportBristol, TNVA MSA
47	073	Tennessee	Hawkins	Johnson CityKingsportBristol, TNVA MSA
47	163	Tennessee	Sullivan	Johnson CityKingsportBristol, TNVA MSA
47	171	Tennessee	Unicoi	Johnson CityKingsportBristol, TNVA MSA
47	179	Tennessee	Washington	Johnson CityKingsportBristol, TNVA MSA
51	169	Virginia	Scott	Johnson CityKingsportBristol, TNVA MSA
51	191	Virginia	Washington	Johnson CityKingsportBristol, TNVA MSA
51	520	Virginia	Bristol	Johnson CityKingsportBristol, TNVA MSA
47	001	Tennessee	Anderson	Knoxville, TN MSA
47	009	Tennessee	Blount	Knoxville, TN MSA
47	093	Tennessee	Knox	Knoxville, TN MSA
47	105	Tennessee	Loudon	Knoxville, TN MSA
47	155	Tennessee	Sevier	Knoxville, TN MSA
47	173	Tennessee	Union	Knoxville, TN MSA
42	071	Pennsylvania	Lancaster	Lancaster, PA MSA
21	017	Kentucky	Bourbon	Lexington, KY MSA
			1	
21	049	Kentucky	Clark	Lexington, KY MSA

		1		
21	067	Kentucky	Fayette	Lexington, KY MSA
21	113	Kentucky	Jessamine	Lexington, KY MSA
21	151	Kentucky	Madison	Lexington, KY MSA
21	209	Kentucky	Scott	Lexington, KY MSA
21	239	Kentucky	Woodford	Lexington, KY MSA
18	019	Indiana	Clark	Louisville, KYIN MSA
18	043	Indiana	Floyd	Louisville, KYIN MSA
18	061	Indiana	Harrison	Louisville, KYIN MSA
18	143	Indiana	Scott	Louisville, KYIN MSA
21	029	Kentucky	Bullitt	Louisville, KYIN MSA
21	111	Kentucky	Jefferson	Louisville, KYIN MSA
21	185	Kentucky	Oldham	Louisville, KYIN MSA
01	001	Alabama	Autauga	Montgomery, AL MSA
01	051	Alabama	Elmore	Montgomery, AL MSA
01	101	Alabama	Montgomery	Montgomery, AL MSA
47	021	Tennessee	Cheatham	Nashville, TN MSA
47	037	Tennessee	Davidson	Nashville, TN MSA
47	043	Tennessee	Dickson	Nashville, TN MSA
47	147	Tennessee	Robertson	Nashville, TN MSA
47	149	Tennessee	Rutherford	Nashville, TN MSA
47	165	Tennessee	Sumner	Nashville, TN MSA
47	187	Tennessee	Williamson	Nashville, TN MSA
47	189	Tennessee	Wilson	Nashville, TN MSA
39	167	Ohio	Washington	ParkersburgMarietta, WVOH MSA
		West		
54	107	Virginia	Wood	ParkersburgMarietta, WVOH MSA
42	003	Pennsylvania	Allegheny	Pittsburgh, PA MSA
42	007	Pennsylvania	Beaver	Pittsburgh, PA MSA
42	019	Pennsylvania	Butler	Pittsburgh, PA MSA
42	051	Pennsylvania	Fayette	Pittsburgh, PA MSA
42	125	Pennsylvania	Washington	Pittsburgh, PA MSA
42	129	Pennsylvania	Westmoreland	Pittsburgh, PA MSA
42	011	Pennsylvania	Berks	Reading, PA MSA
17	027	Illinois	Clinton	St. Louis, MOIL MSA
17	083	Illinois	Jersey	St. Louis, MOIL MSA
17	119	Illinois	Madison	St. Louis, MOIL MSA
17	133	Illinois	Monroe	St. Louis, MOIL MSA

17	163	Illinois	St. Clair	St. Louis, MOIL MSA
29	071	Missouri	Franklin	St. Louis, MOIL MSA
29	099	Missouri	Jefferson	St. Louis, MOIL MSA
29	113	Missouri	Lincoln	St. Louis, MOIL MSA
29	183	Missouri	St. Charles	St. Louis, MOIL MSA
29	189	Missouri	St. Louis	St. Louis, MOIL MSA
29	219	Missouri	Warren	St. Louis, MOIL MSA
29	510	Missouri	St. Louis	St. Louis, MOIL MSA
39	081	Ohio	Jefferson	SteubenvilleWeirton, OHWV MSA
54	009	West Virginia	Brooke	SteubenvilleWeirton, OHWV MSA
54	029	West Virginia	Hancock	SteubenvilleWeirton, OHWV MSA
39	013	Ohio	Belmont	Wheeling, WVOH MSA
54	051	West Virginia	Marshall	Wheeling, WVOH MSA
54	069	West Virginia	Ohio	Wheeling, WVOH MSA
10	100		T T 1	
42	133	Pennsylvania	York	Y ork, PA MSA
20	020		Calandiana	V
39 20	029	Ohio	Columbiana	Youngstownwarren, OH MSA
39 20	155	Ohio	Manoning	Youngstownwarren, OH MSA
39	155	Onio	Tumbun	roungstownwarren, OH MSA
01	49	Alabama	DeKalb County	Rural County
01	121	Alabama	Talladega County	Rural County
13	115	Georgia	Floyd County	Rural County
13	139	Georgia	Hall County	Rural County
			Wilkinson	
13	319	Georgia	County	Rural County
39	145	Ohio	Scioto County	Rural County
47	145	Tennessee	Roane County	Rural County

Appendix K

Summary Emission Reductions from Local Control Measures for the 290 County Study

VOC Summary												
VOC Emissions		Sceneri	o Totals			Difference			Percent Difference VOC (2015B) 2010B VOC (2015B) 2010B (2 28.6 -4.3 20.0 -3.3 1 15.3 -8.4 - 1 <t< th=""></t<>			
CMSA/MSA/FIP	VOC 2010 Base	VOC 2010 Control	VOC 2015 Base	VOC 2015 Control	VOC (2010C - 2010B)	VOC (2015B - 2010B)	VOC (2015C -2015B)	VOC (2010C - 2010B) / 2010B	VOC (2015B - 2010B) / 2010B	VOC (2015C - 2015B) / 2015B		
Hall County, Georgia	2583.5	1844.0	2473.7	1699.0	-739.5	-109.8	-774.7	-28.6	-4.3	-31.3		
Floyd County, Georgia	3237.2	2589.1	3129.7	2453.6	-648.1	-107.5	-676.1	-20.0	-3.3	-21.6		
Atlanta, GA	52209.2	44246.3	47814.6	39546.1	-7962.9	-4394.6	-8268.4	-15.3	-8.4	-17.3		
Nashville, TN	25406.9	21670.3	23027.8	19196.3	-3736.6	-2379.1	-3831.5	-14.7	-9.4	-16.6		
Wilkinson County, Georgia	262.5	224.6	242.2	203.0	-37.9	-20.4	-39.2	-14.5	-7.8	-16.2		
Washington-Baltimore, DC-MD-VA-WV	47772.6	41324.4	42926.7	36160.2	-6448.2	-4845.9	-6766.5	-13.5	-10.1	-15.8		
Roane County, Tennessee	1041.7	905.2	955.8	814.7	-136.5	-85.9	-141.1	-13.1	-8.2	-14.8		
DeKalb County, Alabama	1165.0	1028.3	1064.7	925.7	-136.7	-100.3	-139.0	-11.7	-8.6	-13.1		
Charlotte-Gastonia-Rock Hill, NC-SC	25769.2	23151.3	23763.8	21088.5	-2617.9	-2005.4	-2675.3	-10.2	-7.8	-11.3		
Cincinnati-Hamilton, OH-KY-IN	23192.1	20837.6	20480.8	18139.6	-2354.5	-2711.3	-2341.3	-10.2	-11.7	-11.4		
GreensboroWinston-SalemHig												
h Point, NC	32699.6	29469.2	31302.3	27965.2	-3230.4	-1397.3	-3337.1	-9.9	-4.3	-10.7		
Athens, GA	2998.0	2710.7	2727.6	2436.2	-287.3	-270.4	-291.4	-9.6	-9.0	-10.7		
Scioto County, Ohio	1022.7	928.2	892.1	797.5	-94.5	-130.6	-94.5	-9.2	-12.8	-10.6		
Louisville, KY-IN	25825.8	23728.0	23988.9	21894.5	-2097.8	-1836.9	-2094.4	-8.1	-7.1	-8.7		
Indianapolis, IN	24328.0	22387.2	21835.4	19913.3	-1940.9	-2492.6	-1922.1	-8.0	-10.2	-8.8		
Chattanooga, TN-GA	11589.0	10686.4	10793.8	9883.7	-902.7	-795.3	-910.1	-7.8	-6.9	-8.4		
Augusta-Aiken, GA-SC	92/9./	8507.8 6295.0	8058.5	7936.4	-/11.8	-621.2	-722.0	-7.7	-0.7	-8.3		
Tolladaga County, Alabama	2592.0	0365.U	2504.0	3621.3	-503.3	-503.5	-503.5	-7.3	-6.2	-6.0		
Greenville-Spartanburg-Anderson,	17159.3	15927.3	15757.4	14514.7	-1232.0	-1402.0	-1242.7	-7.2	-8.2	-7.9		
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	68335.2	63475.5	63376.0	58449.7	-4859.7	-4959.2	-4926.4	-7.1	-7.3	-7.8		
Hickory-Morganton-Lenoir, NC	17559.9	16331.5	17684.9	16406.1	-1228.3	125.0	-1278.7	-7.0	0.7	-7.2		
Knoxville, TN	13673.0	12738.0	12517.4	11577.1	-934.9	-1155.6	-940.3	-6.8	-8.5	-7.5		
Birmingham, AL	22982.4	21522.9	21650.3	20187.6	-1459.5	-1332.1	-1462.7	-6.4	-5.8	-6.8		
Columbus, GA-AL	7276.4	6841.1	7008.9	6570.4	-435.3	-267.5	-438.5	-6.0	-3.7	-6.3		
Wheeling, WV-OH	4332.8	4085.8	4097.5	3854.1	-247.0	-235.3	-243.4	-5.7	-5.4	-5.9		
Steubenville-Weirton, OH-WV	4264.7	4028.7	4081.9	3845.6	-236.0	-182.8	-236.3	-5.5	-4.3	-5.8		
Montgomery, AL	8435.4	7988.8	8175.7	7732.7	-446.5	-259.6	-443.0	-5.3	-3.1	-5.4		
Lexington, KY	12386.6	11821.9	12336.6	11774.5	-564.6	-50.0	-562.1	-4.6	-0.4	-4.6		
Youngstown-Warren, OH Johnson City-Kingsport-Bristol	6379.2	6102.7	5472.6	5215.7	-276.4	-906.5	-256.9	-4.3	-14.2	-4.7		
TN-VA	38385.1	37090.2	38951.9	37574.1	-1295.0	566.8	-1377.8	-3.4	1.5	-3.5		
Cleveland-Akron, OH	21191.4	20608.0	17589.1	17100.0	-583.4	-3602.3	-489.0	-2.8	-17.0	-2.8		
Columbus, OH	24089.8	23508.4	21836.3	21303.2	-581.4	-2253.5	-533.1	-2.4	-9.4	-2.4		
St. Louis, MO-IL	38584.5	37726.4	35300.4	34510.9	-858.2	-3284.1	-789.5	-2.2	-8.5	-2.2		
York, PA	3773.5	3694.3	3131.7	3068.3	-79.2	-641.8	-63.4	-2.1	-17.0	-2.0		
Pittsburgh, PA	21398.8	20954.1	18329.9	17965.6	-444.7	-3068.9	-364.3	-2.1	-14.3	-2.0		
Canton-Massillon, OH	6662.6	6526.5	6242.4	6117.8	-136.2	-420.3	-124.6	-2.0	-6.3	-2.0		
Reading, PA	3//1.3	3696.6	3244.3	3184.8	-74.6	-526.9	-59.5	-2.0	-14.0	-1.8		
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	78789.2	77290.4	70804.3	69529.7	-1498.8	-7984.8	-1274.6	-1.9	-10.1	-1.8		
Detroit-Ann Arbor-Flint, MI	71046.8	69888.2	66511.9	65516.8	-1158.7	-4534.9	-995.1	-1.6	-6.4	-1.5		
Chicago-Gary-Kenosha, IL-IN-WI	107228.9	105530.1	101143.4	99659.2	-1698.8	-6085.5	-1484.2	-1.6	-5.7	-1.5		
Parkersburg-Marietta, WV-OH	6604.6	6501.0	6584.0	6485.6	-103.6	-20.6	-98.4	-1.6	-0.3	-1.5		
New Haven-Bridgeport-Stamford-Water												
bury-Danbury, CT	12783.4	12587.7	10753.5	10590.7	-195.7	-2029.8	-162.8	-1.5	-15.9	-1.5		
Lancaster, PA	6153.8	6064.1	5655.5	5582.1	-89.7	-498.3	-73.4	-1.5	-8.1	-1.3		
Hartford, CT	1292.4	1275.1	1078.3	1063.9	-17.4	-214.1	-14.4	-1.3	-16.6	-1.3		
Charleston, WV	8071.8	/9/2.9	//18.5	/633.3	-98.9	-353.2	-85.2	-1.2	-4.4	-1.1		
Litchfield County, Connecticut	1407.9	1392.7	1154.7	1142.2	-15.1	-253.2	-12.5	-1.1	-18.0	-1.1		

SO2 Summary	O2 Summary										
SO2 Emissions		Sceneri	o Totals			Difference		Pe	ercent Differe	nce	
CMSA/MSA/FIP	SO2 2010 Base	SO2 2010 Control	SO2 2015 Base	SO2 2015 Control	SO2 (2010C - 2010B)	SO2 (2015B - 2010B)	SO2 (2015C - 2015B)	SO2 (2010C - 2010B) / 2010B	SO2 (2015B - 2010B) / 2010B	SO2 (2015C - 2015B) / 2015B	
Roane County, Tennessee	78936.7	39671.4	78943.9	39651.4	-39265.2	7.2	-39292.5	-49.7	0.0	-49.8	
Wheeling, WV-OH	221842.5	112435.7	166254.4	84615.6	-109406.8	-55588.0	-81638.8	-49.3	-25.1	-49.1	
Charleston, WV	128870.4	65594.6	128780.0	65559.5	-63275.8	-90.4	-63220.5	-49.1	-0.1	-49.1	
Atlanta, GA	251829.0	130483.4	251269.0	130326.0	-121345.6	-560.0	-120943.0	-48.2	-0.2	-48.1	
Birmingham, AL	206784.4	110920.5	191125.5	103141.5	-95863.9	-15659.0	-87984.0	-46.4	-7.6	-46.0	
Indianapolis, IN	70720.1	38822.2	42807.8	24937.6	-31897.9	-27912.3	-17870.2	-45.1	-39.5	-41.7	
Charlotte-Gastonia-Rock Hill, NC-SC	60938.8	33942.5	62617.2	35577.2	-26996.3	1678.5	-27040.1	-44.3	2.8	-43.2	
Talladega County, Alabama	12651.8	7099.3	13019.0	7339.2	-5552.5	367.1	-5679.8	-43.9	2.9	-43.6	
Washington-Baltimore, DC-MD-VA-WV	282046.5	159048.2	279273.8	161885.7	-122998.3	-2772.7	-117388.0	-43.6	-1.0	-42.0	
Floyd County, Georgia	52769.7	29824.6	45337.4	26325.4	-22945.1	-7432.3	-19012.0	-43.5	-14.1	-41.9	
Nashville, TN	60041.6	34045.4	60082.9	34072.0	-25996.2	41.3	-26010.9	-43.3	0.1	-43.3	
Steubenville-Weirton, OH-WV	252834.7	145786.1	242428.0	139581.1	-107048.6	-10406.6	-102846.9	-42.3	-4.1	-42.4	
Detroit-Ann Arbor-Flint, MI	308294.8	185486.5	316431.8	189984.2	-122808.3	8137.0	-126447.6	-39.8	2.6	-40.0	
Cincinnati-Hamilton, OH-KY-IN	280390.3	177154.5	247621.8	159967.1	-103235.9	-32768.5	-87654.8	-36.8	-11.7	-35.4	
Greenville-Spartanburg-Anderson, SC	21137.5	13444.4	21749.4	13803.8	-7693.1	611.9	-7945.6	-36.4	2.9	-36.5	
Cleveland-Akron, OH	338088.2	215882.8	283841.6	187605.2	-122205.4	-54246.6	-96236.4	-36.1	-16.0	-33.9	
St. Louis, MO-IL	316680.5	207279.8	349077.2	226184.8	-109400.7	32396.7	-122892.4	-34.5	10.2	-35.2	
Chicago-Gary-Kenosha, IL-IN-WI	300742.0	197154.8	299980.5	197992.4	-103587.2	-761.5	-101988.1	-34.4	-0.3	-34.0	
Youngstown-Warren, OH	8722.2	5863.7	7969.5	7398.4	-2858.5	-752.7	-571.1	-32.8	-8.6	-7.2	
Knoxville, TN	69578.6	46957.8	69984.4	47343.1	-22620.8	405.8	-22641.4	-32.5	0.6	-32.4	
Johnson City-Kingsport-Bristol, TN-VA	93930.3	66225.3	94221.3	66470.3	-27705.0	291.0	-27751.0	-29.5	0.3	-29.5	
Augusta-Aiken, GA-SC	28253.8	20300.6	27040.6	19880.6	-7953.2	-1213.2	-7160.0	-28.1	-4.3	-26.5	
Parkersburg-Marietta, WV-OH	25891.6	19036.9	23397.7	13882.5	-6854.7	-2493.9	-9515.2	-26.5	-9.6	-40.7	
Lancaster, PA	1062.6	787.0	1073.6	790.1	-275.6	11.0	-283.4	-25.9	1.0	-26.4	
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	107863.1	81521.6	109500.6	82394.9	-26341.6	1637.5	-27105.7	-24.4	1.5	-24.8	
Lexington, KY	11317.1	8555.9	13819.7	10380.7	-2761.2	2502.6	-3439.0	-24.4	22.1	-24.9	
Huntington-Ashland, WV-KY-OH	20915.7	16085.1	21575.7	16449.9	-4830.7	660.0	-5125.8	-23.1	3.2	-23.8	
Pittsburgh, PA	108480.2	86765.8	87787.6	67779.8	-21714.4	-20692.5	-20007.9	-20.0	-19.1	-22.8	
Columbus, OH	18569.7	15254.9	18706.0	18705.8	-3314.8	136.3	-0.2	-17.9	0.7	-0.0	
Louisville, KY-IN	71330.7	59393.6	71567.0	59650.8	-11937.1	236.3	-11916.3	-16.7	0.3	-16.7	
Canton-Massillon, OH	2739.2	2374.0	2817.0	2429.3	-365.2	77.7	-387.7	-13.3	2.8	-13.8	
GreensboroWinston-SalemHigh Point, NC	19820.7	17511.6	19581.6	17427.0	-2309.2	-239.1	-2154.6	-11.7	-1.2	-11.0	
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	166583.9	150517.6	163870.5	147794.1	-16066.3	-2713.4	-16076.4	-9.6	-1.6	-9.8	
Chattanooga, TN-GA	10115.5	9810.2	10346.3	10047.5	-305.3	230.8	-298.7	-3.0	2.3	-2.9	
York, PA	107820.5	105123.8	111486.0	108786.5	-2696.7	3665.5	-2699.5	-2.5	3.4	-2.4	
Athens, GA	144.3	144.1	142.2	142.2	-0.2	-2.1	-0.0	-0.1	-1.4	-0.0	
Columbus, GA-AL	2216.1	2213.7	2301.5	2301.5	-2.3	85.5	-0.0	-0.1	3.9	-0.0	
Hall County, Georgia	71.6	71.6	70.9	70.9	-0.0	-0.7	-0.0	-0.0	-1.0	-0.1	
Reading, PA	17790.0	17782.9	19587.9	19587.8	-7.1	1797.9	-0.1	-0.0	10.1	-0.0	
Hickory-Morganton-Lenoir, NC	1249.2	1248.7	1299.9	1299.8	-0.5	50.7	-0.1	-0.0	4.1	-0.0	
DeKalb County, Alabama	143.7	143.7	145.7	145.7	-0.0	2.0	-0.0	-0.0	1.4	-0.0	
Hartford, CI	773.2	773.1	790.0	789.9	-0.1	16.8	-0.0	-0.0	2.2	-0.0	
Scioto County, Ohio	3040.9	3040.7	3069.0	3069.0	-0.2	28.1	-0.0	-0.0	0.9	-0.0	
LitchTield County, Connecticut	146.5	146.5	146.8	146.8	0.0	0.3	-0.0	0.0	0.2	-0.0	
wilkinson County, Georgia	107.2	107.3	109.5	109.4	0.0	2.2	-0.0	0.0	2.1	-0.0	
New Haven-Bridgeport-Stamford-Waterbury-											
Danbury, CT	7279.7	7282.1	7326.1	7325.9	2.4	46.5	-0.2	0.0	0.6	-0.0	
Montgomery, AL	5156.0	5161.8	5404.7	5379.3	5.8	248.7	-25.4	0.1	4.8	-0.5	
	4156713.5	2654278.4	3975780.7	2566529.3							

NOX Summary										
								r		
	NOX	NOX	NOX	NOX	NOX (2010C -	NOX (2015B -	NOX (2015C -	NOX (2010C - 2010B)	NOX (2015B - 2010B)	NOX (2015C - 2015B) (2015B
CMSAVMSAVFIP	2010 Base	2010 Control	2015 Base	2015 Control	2010B)	20106)	20156)	/ 20108	7 20108	/ 20156
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	174144.8	157996.8	148766.9	134273.5	-16147.9	-25377.9	-14493.4	-9.3	-14.6	-9.7
Hall County, Georgia	3667.8	3332.7	2725.9	2437.2	-335.1	-941.9	-288.7	-9.1	-25.7	-10.6
Hickory-Morganton-Lenoir, NC	7926.2	7277.2	6069.7	5528.9	-648.9	-1856.5	-540.8	-8.2	-23.4	-8.9
Huntington-Ashland, WV-KY-OH	35264.7	32597.1	32726.1	30100.9	-2667.6	-2538.6	-2625.1	-7.6	-7.2	-8.0
Scioto County, Ohio	3069.0	2844.1	2589.5	2391.8	-225.0	-479.5	-197.8	-7.3	-15.6	-7.6
Athens, GA	5048.3	4692.9	3881.2	3595.6	-355.4	-1167.2	-285.6	-7.0	-23.1	-7.4
DeKalb County, Alabama	2280.9	2124.7	1821.8	1687.6	-156.2	-459.1	-134.2	-6.8	-20.1	-7.4
GreensboroWinston-SalemHigh										
Point, NC	39157.0	36616.5	31440.0	29389.6	-2540.6	-7717.0	-2050.4	-6.5	-19.7	-6.5
St. Louis, MO-IL	150203.4	140689.1	143718.4	134668.5	-9514.2	-6485.0	-9049.8	-6.3	-4.3	-6.3
New Haven-Bridgeport-Stamford-Waterbury- Daphury, CT	30932.6	28997 7	23620.2	22301 3	-1934 9	-7312 /	-1319.0	-63	-23.6	-5.6
	37995.8	35630.3	29646 1	27918.2	-2365.5	-8349 7	-1727.9	-6.2	-22.0	-5.8
Nashville TN	53314.0	50040 3	44263.8	41567.2	-3273.8	-9050.2	-2696.7	-6.2	-22.0	-5.0
New York-Northern New Jersey-Long	301357.1	283/89 7	2/13302 0	230519.1	-17867 /	-57964.2	-12873.8	-5.9	-19.2	-5.3
Greenville-Spartanburg-Anderson SC	35709.1	33610.0	29907 5	28154.0	-2099 1	-5801.6	-1753.6	-5.9	-16.2	-5.9
Lancaster PA	10405.4	9795.2	7722 7	7254.9	-2000.1	-2682.7	-1/55.0	-5.9	-10.2	-6.1
Canton-Massillon OH	10945 3	10307.4	8769.8	8268.0	-637.9	-2175 5	-501.8	-5.8	-23.0	-5.7
	12120.5	11/3/ 5	10716.3	10150.9	-685.9	-1/10/ 2	-565.5	-5.7	-13.5	-5.7
Youngstown-Warren OH	16580.5	15646 7	13258.3	12567.6	-000.0	-3322.2	-690.7	-5.6	-20.0	-5.2
Charlotte-Gastonia-Bock Hill NC-SC	54441.8	51392.6	47425.6	45003.0	-3049.2	-7016.2	-2422.6	-5.6	-12.9	-5.1
Reading, PA	11778.8	11119.8	10045.5	9479.1	-659.0	-1733.3	-566.4	-5.6	-14.7	-5.6
Knoxville, TN	34947.3	33010.3	30078.2	28412.6	-1937.0	-4869.1	-1665.6	-5.5	-13.9	-5.5
Indianapolis. IN	62322.1	58934.8	52765.1	50129.6	-3387.4	-9557.1	-2635.5	-5.4	-15.3	-5.0
Litchfield County, Connecticut	2482.1	2347.7	1729.1	1637.8	-134.4	-752.9	-91.4	-5.4	-30.3	-5.3
Chicago-Gary-Kenosha, IL-IN-WI	285964.2	270636.6	245603.1	232857.8	-15327.6	-40361.1	-12745.3	-5.4	-14.1	-5.2
Louisville, KY-IN	91194.1	86377.1	83293.7	78925.8	-4816.9	-7900.4	-4367.9	-5.3	-8.7	-5.2
Lexington, KY	23219.4	22010.0	21871.4	20817.7	-1209.4	-1348.0	-1053.7	-5.2	-5.8	-4.8
Chattanooga, TN-GA	17205.2	16336.5	13772.8	13082.1	-868.7	-3432.4	-690.7	-5.0	-19.9	-5.0
Atlanta, GA	171312.1	162850.1	143810.9	136976.6	-8462.0	-27501.2	-6834.3	-4.9	-16.1	-4.8
Montgomery, AL	15877.5	15101.6	14264.6	13511.0	-775.9	-1612.8	-753.6	-4.9	-10.2	-5.3
Cleveland-Akron, OH	86488.2	82304.4	72649.0	69573.3	-4183.8	-13839.2	-3075.7	-4.8	-16.0	-4.2
Washington-Baltimore, DC-MD-VA-WV	213187.6	202890.3	180789.9	172799.8	-10297.3	-32397.7	-7990.1	-4.8	-15.2	-4.4
Johnson City-Kingsport-Bristol, TN-VA	42335.2	40316.5	38769.2	36933.7	-2018.7	-3566.0	-1835.5	-4.8	-8.4	-4.7
Hartford, CT	3609.5	3440.4	2848.4	2724.3	-169.1	-761.1	-124.1	-4.7	-21.1	-4.4
Augusta-Aiken, GA-SC	25435.1	24339.5	22922.6	22008.4	-1095.6	-2512.4	-914.2	-4.3	-9.9	-4.0
York, PA	35769.1	34258.0	34226.1	32859.9	-1511.0	-1543.0	-1366.1	-4.2	-4.3	-4.0
Wilkinson County, Georgia	926.7	888.8	809.9	780.0	-37.9	-116.9	-29.9	-4.1	-12.6	-3.7
Parkersburg-Marietta, WV-OH	10897.6	10466.2	9754.2	9373.6	-431.4	-1143.4	-380.6	-4.0	-10.5	-3.9
Birmingham, AL	84872.2	81680.3	75596.9	72699.1	-3191.9	-9275.3	-2897.9	-3.8	-10.9	-3.8
Pittsburgh, PA	122868.2	118493.1	108262.2	104788.7	-4375.1	-14606.0	-3473.5	-3.6	-11.9	-3.2
Detroit-Ann Arbor-Flint, MI	211671.1	204318.2	191429.0	185626.6	-7352.9	-20242.2	-5802.4	-3.5	-9.6	-3.0
Cincinnati-Hamilton, OH-KY-IN	123066.7	118924.7	112209.5	108768.1	-4142.0	-10857.2	-3441.4	-3.4	-8.8	-3.1
Talladega County, Alabama	5992.1	5795.0	5589.8	5409.6	-197.2	-402.4	-180.1	-3.3	-6.7	-3.2
Wheeling, WV-OH	43899.2	42885.8	42724.3	41808.6	-1013.4	-1174.9	-915.7	-2.3	-2.7	-2.1
Charleston, WV	59044.9	57686.0	56644.7	55438.2	-1358.8	-2400.1	-1206.6	-2.3	-4.1	-2.1
Floyd County, Georgia	17372.4	17049.2	17040.7	16752.5	-323.2	-331.6	-288.3	-1.9	-1.9	-1.7
Roane County, Tennessee	12775.6	12654.8	12444.4	12363.6	-120.7	-331.1	-80.8	-0.9	-2.6	-0.6
Steubenville-Weirton, OH-WV	64511.5	63994.9	62928.7	62440.3	-516.6	-1582.8	-488.4	-0.8	-2.5	-0.8

Total Direct PM2_5 Summary										
PM2.5 Emissions		Scener	io Totals			Difference			Percent Differen	се
CMSA/MSA/FIP	PM2_5 2010 Base	PM2_5 2010 Control	PM2_5 2015 Base	PM2_5 2015 Control	PM2_5 (2010C - 2010B)	PM2_5 (2015B - 2010B)	PM2_5 (2015C - 2015B)	PM2_5 (2010C - 2010B) / 2010B	PM2_5 (2015B - 2010B) / 2010B	PM2_5 (2015C - 2015B) / 2015B
Hall County. Georgia	1485.4	841.8	1456.6	803.6	-643.7	-28.8	-653.0	-43.3	-1.9	-44.8
Nashville, TN	8202.4	5019.1	8076.9	4868.7	-3183.3	-125.5	-3208.2	-38.8	-1.5	-39.7
Hickory-Morganton-Lenoir, NC	3720.3	2337.7	3674.0	2275.3	-1382.6	-46.3	-1398.7	-37.2	-1.2	-38.1
Floyd County, Georgia	1896.4	1250.1	1948.0	1277.3	-646.3	51.6	-670.7	-34.1	2.7	-34.4
GreensboroWinston-SalemHigh Point, NC	9839.1	6502.2	9718.2	6349.2	-3336.9	-120.9	-3369.0	-33.9	-1.2	-34.7
Johnson City-Kingsport-Bristol, TN-VA	4706.0	3123.5	4682.6	3094.6	-1582.5	-23.4	-1588.0	-33.6	-0.5	-33.9
Atlanta, GA	22425.9	14900.1	22219.4	14589.0	-7525.9	-206.5	-7630.4	-33.6	-0.9	-34.3
Youngstown-Warren, OH	2678.5	1814.5	2598.0	1747.3	-864.1	-80.5	-850.7	-32.3	-3.0	-32.7
Detroit-Ann Arbor-Flint, MI	20544.8	13987.6	20266.4	13744.5	-6557.2	-278.4	-6521.9	-31.9	-1.4	-32.2
Charlotte-Gastonia-Rock Hill, NC-SC	9222.8	6288.4	9235.2	6278.4	-2934.4	12.5	-2956.8	-31.8	0.1	-32.0
Athens, GA	912.9	626.8	868.0	588.2	-286.1	-44.8	-279.9	-31.3	-4.9	-32.2
Canton-Massillon, OH	1814.6	1254.2	1777.9	1224.0	-560.4	-36.7	-553.9	-30.9	-2.0	-31.2
Cleveland-Akron, OH	14901.8	10391.7	14803.9	10312.0	-4510.1	-97.8	-4492.0	-30.3	-0.7	-30.3
Lancaster, PA	2299.5	1603.9	2248.0	1562.4	-695.7	-51.5	-685.5	-30.3	-2.2	-30.5
Huntington-Ashland, WV-KY-OH	4628.0	3253.4	4588.2	3217.7	-1374.6	-39.8	-1370.6	-29.7	-0.9	-29.9
DeKalb County, Alabama	588.3	414./	553.5	387.5	-1/3./	-34.9	-166.0	-29.5	-5.9	-30.0
Chattanooga, TN-GA	3970.1	2799.5	3917.8	2753.4	-1170.5	-52.3	-1164.4	-29.5	-1.3	-29.7
Parkersburg-Marietta, WV-OH	2064.4	1457.9	2029.0	1429.3	-606.5	-35.5	-599.6	-29.4	-1./	-29.6
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	29574.9	20889.8	29661.1	20919.9	-8685.1	86.2	-8741.2	-29.4	0.3	-29.5
Louisville, KY-IN	6785.7	4794.8	6828.8	4821.8	-1990.9	43.1	-2007.0	-29.3	0.6	-29.4
Columbus, GA-AL	2051.3	1453.5	2083.2	1473.0	-597.8	31.9	-610.2	-29.1	1.6	-29.3
Reading, PA New York-Northern New Jersey-Long	2605.9	1852.2	2610.6	1856.8	-/53./	4.6	-/53.8	-28.9	0.2	-28.9
Island, NY-NJ-CT-PA	45165.2	32213.1	44214.3	31460.3	-12952.1	-951.0	-12754.0	-28.7	-2.1	-28.8
Talladega County, Alabama	18/6.2	1352.6	1931.5	1393.2	-523.6	55.3	-538.2	-27.9	2.9	-27.9
Roane County, Tennessee	831.1	601.6	838.1	604.6	-229.6	7.0	-233.5	-27.6	0.8	-27.9
Scioto County, Ohio	889.7	645.2	863.6	625.6	-244.5	-26.0	-238.1	-27.5	-2.9	-27.6
Lexington, KY	2261.0	1642.4	2265.9	1655.1	-618.6	4.9	-610.8	-27.4	0.2	-27.0
Columbus, OH	6031.0	4401.8	6134.9	4536.2	-1629.2	103.9	-1598.6	-27.0	1./	-26.1
Montgomery, AL	2697.9	1970.1	2736.4	1999.9	-727.8	38.5	-/30.5	-27.0	1.4	-26.9
Greenville-Spartanburg-Anderson, SC	5913.3	4347.1	5057.7	4144.6	-1566.2	-255.0	-1513.1	-26.5	-4.3	-26.7
Rhoxville, TN	4007.9	3060.4	4704.1	3500.2	-1207.4	-103.6	-1203.9	-20.4	-2.1	-20.5
Pillsburgh, PA	13052.8	9045.1	12906.2	9540.4 1757 6	-3407.7	-140.7	-3339.0 620 F	-20.1	-1.1	-20.0
Indianapolio IN	2420.1	F061.0	2370.1	F124 1	-030.4 1751 5	-30.1	-020.3	-20.0	-2.1	-20.1
Cincinnati Hamilton, OH KY IN	12200 1	9066.9	121/8 0	0030.8	-1751.5	52.1	-1755.9	-23.7	0.8	-25.3
Wilkingon County Coorgin	2100.0	1674.7	2177.6	1624.6	-3133.3	-52.1	-5117.2	-25.7	-0.4	-25.7
	51/3 /	3967.1	5107.1	3808.6	1276.2	53.7	1208.5	-23.4	1.0	-25.4
Steubonville Weirten OH WW	0136 4	7008.0	02/18/2	7103 7	2037.5	111.8	2054.5	-24.0	1.0	-20.0
Chicago-Gary-Kenosha II -IN-WI	41544.2	32697.0	42001.8	33095.6	-2037.3	457.6	-2004.0	-22.3	1.2	-22.2
Birmingham Al	10290 /	812/ 1	10374.0	8197.9	-2166.2	83.7	-0300.2	-21.5	0.8	-21.2
Hartford, CT	404.0	320.6	379.6	302.6	-83.4	-24 4	-77 0	-20.7	-6.0	-20.3
St Louis MO-II	24942 5	19989.0	25303.6	20336.9	-4953.4	361.2	-4966 7	-19.9	1.4	-19.6
Litchfield County, Connecticut	526.0	422.4	494.9	399.6	-103.6	-31.1	-95.3	-19.7	-5.9	-19.3
Charleston, WV	3116.0	2508.0	3038.6	2450 7	-607.9	-77.3	-587.9	-19.5	-2.5	-19.3
Washington-Baltimore, DC-MD-VA-WV	18514.4	15044.5	17917.6	14646.7	-3469.9	-596.8	-3270.9	-18.7	-3.2	-18.3
Wheeling, WV-OH	1661.3	1350.9	1625.6	1325.0	-310.3	-35.7	-300.5	-18.7	-2.1	-18.5
New										
Haven-Bridgeport-Stamford-Waterbury- Danbury, CT	2630.1	2169.7	2438.4	2029.6	-460.4	-191.7	-408.7	-17.5	-7.3	-16.8

Primary Organic Aerosol (POA) Summary

Primary Organic Aerosol Emissions	Scenerio Tot	als	-			Difference		Percent Difference		
CMSA/MSA/FIP	POA 2010 Base	POA 2010 Control	POA 2015 Base	POA 2015 Control	POA (2010C - 2010B)	POA (2015B - 2010B)	POA (2015C - 2015B)	POA (2010C - 2010B) / 2010B	POA (2015B - 2010B) / 2010B	POA (2015C - 2015B) / 2015B
Wilkinson County, Georgia	499.8	375.3	507.4	381.4	-124.4	7.7	-126.0	-24.9	1.5	-24.8
Steubenville-Weirton, OH-WV	1764.7	1329.7	1771.1	1335.6	-435.0	6.3	-435.5	-24.6	0.4	-24.6
Roane County, Tennessee	284.5	215.7	283.9	216.0	-68.8	-0.6	-67.9	-24.2	-0.2	-23.9
Parkersburg-Marietta, WV-OH	376.4	285.8	359.0	272.9	-90.6	-17.4	-86.1	-24.1	-4.6	-24.0
Huntington-Ashland, WV-KY-OH	959.7	729.8	911.4	693.7	-229.9	-48.3	-217.7	-24.0	-5.0	-23.9
Talladega County, Alabama	253.4	193.4	250.5	191.6	-60.0	-2.9	-58.9	-23.7	-1.1	-23.5
Charleston, WV	476.4	365.4	447.4	343.9	-111.0	-29.0	-103.5	-23.3	-6.1	-23.1
Augusta-Aiken, GA-SC	1020.3	783.6	1010.8	777.2	-236.6	-9.4	-233.6	-23.2	-0.9	-23.1
Hickory-Morganton-Lenoir, NC	1018.7	783.7	952.2	732.0	-235.0	-66.5	-220.2	-23.1	-6.5	-23.1
Scioto County, Ohio	174.9	134.9	158.5	122.5	-40.0	-16.5	-36.0	-22.9	-9.4	-22.7
Johnson City-Kingsport-Bristol, TN-VA	963.4	744.1	901.3	698.7	-219.2	-62.1	-202.5	-22.8	-6.4	-22.5
GreensboroWinston-SalemHigh Point, NC	2156.0	1672.4	2007.6	1561.8	-483.6	-148.4	-445.8	-22.4	-6.9	-22.2
Chattanooga, TN-GA	778.1	605.3	726.2	568.6	-172.7	-51.9	-157.5	-22.2	-6.7	-21.7
Hall County, Georgia	170.3	132.5	154.4	120.2	-37.8	-15.9	-34.2	-22.2	-9.3	-22.1
Knoxville, TN	1060.9	826.0	976.1	765.9	-234.9	-84.8	-210.2	-22.1	-8.0	-21.5
Columbus, GA-AL	305.8	238.1	298.6	233.5	-67.7	-7.2	-65.1	-22.1	-2.4	-21.8
Floyd County, Georgia	162.7	126.8	158.8	124.8	-35.9	-3.9	-33.9	-22.1	-2.4	-21.4
DeKalb County, Alabama	134.4	104.8	120.8	94.8	-29.6	-13.6	-26.0	-22.0	-10.1	-21.6
Chicago-Gary-Kenosha, IL-IN-WI	7107.1	5544.5	7152.1	5598.2	-1562.6	45.0	-1553.9	-22.0	0.6	-21.7
Greenville-Spartanburg-Anderson, SC	1446.1	1130.1	1336.0	1048.8	-316.1	-110.1	-287.2	-21.9	-7.6	-21.5
Reading, PA	273.0	213.4	259.1	204.4	-59.6	-13.9	-54.7	-21.8	-5.1	-21.1
Cleveland-Akron, OH	1949.6	1524.7	1848.0	1453.2	-424.9	-101.6	-394.8	-21.8	-5.2	-21.4
Canton-Massillon, OH	308.9	241.6	288.4	226.8	-67.3	-20.6	-61.6	-21.8	-6.7	-21.4
Wheeling, WV-OH	233.5	182.7	214.5	169.2	-50.9	-19.1	-45.3	-21.8	-8.2	-21.1
Youngstown-Warren, OH	427.2	334.6	391.6	308.1	-92.6	-35.6	-83.5	-21.7	-8.3	-21.3
York, PA	373.4	292.7	339.9	268.4	-80.8	-33.6	-71.5	-21.6	-9.0	-21.0
Nashville, IN Philadelphia-Wilmington-Atlantic City,	1312.8	1029.0	1187.4	937.0	-283.8	-125.4	-250.4	-21.6	-9.6	-21.1
PA-NJ-DE-MD	3/44.4	2936.3	3580.4	2825.8	-808.1	-164.0	-754.6	-21.6	-4.4	-21.1
Litchfield County, Connecticut	152.5	119.6	139.1	109.6	-32.9	-13.5	-29.5	-21.6	-8.8	-21.2
Charlette Cesterie Deek Lill NC SC	443.5	347.9	417.9	329.5	-95.0	-20.0	-00.0	-21.0	-0.0	-21.2
Hartford CT	1041.4	02.1	100.1	1202.2	-303.4	-110.4	-322.0	-21.5	-7.1	-21.2
Montgomeny Al	350.0	282.8	354.2	281.5	-23.3	-9.5	-22.0	-21.4	-7.9	-20.9
Athens GA	170.4	134.3	155.2	123.1	-70.2	-15.2	-72.0	-21.2	-1.5	-20.3
Cincinnati-Hamilton OH-KY-IN	1495 7	1182.8	1421.6	1132.7	-312.9	-74.2	-288.9	-21.2	-5.0	-20.7
Pittsburgh PA	1281.9	1017.0	1197.9	962.3	-264.9	-84.0	-235.6	-20.3	-6.6	-19.7
St Louis MO-II	2542.5	2019.3	2458.6	1963.3	-523.2	-84.0	-495.2	-20.6	-3.3	-20.1
Lexington KY	415.3	329.9	387.9	311.5	-85.4	-27.3	-76.4	-20.6	-6.6	-19.7
Birmingham, AL	968.5	769.5	951.9	762.4	-199.1	-16.6	-189.5	-20.6	-1.7	-19.9
Detroit-Ann Arbor-Flint, MI	2558.7	2034.3	2400.7	1922.8	-524.4	-158.0	-478.0	-20.5	-6.2	-19.9
Atlanta, GA	2498.2	2009.9	2324.1	1891.8	-488.3	-174.2	-432.3	-19.5	-7.0	-18.6
Columbus, OH	900.2	724.5	891.6	734.1	-175.7	-8.6	-157.4	-19.5	-1.0	-17.7
New York-Northern New Jersey-Long	5965.2	4802.6	5637.5	4569.7	-1162.6	-327.6	-1067.9	-19.5	-5.5	-18.9
Louisville, KY-IN	704.1	570.1	680.5	557.6	-134.0	-23.6	-122.9	-19.0	-3.3	-18.1
Washington-Baltimore. DC-MD-VA-WV	3278.1	2672.9	3058.8	2525.6	-605.3	-219.3	-533.2	-18.5	-6.7	-17.4
New Haven-Bridgeport-Stamford-Waterbury-	575.2	475 6	519.5	435.6	-00 6	-55 7	-83.0	-17 3	_0 7	-16 1
Indianapolis. IN	631.9	527 4	625.3	534.4	-104.5	-6.6	-90.9	-16.5	-1 1	-14.5
		021.7	020.0	001.1	104.0	0.0	00.0	10.0	1.1	14.0

PEC (primary elemental carbon) Summary										
Primary Elemental Carbon Emissions	Scenerio Tota	ls				Difference		P	ercent Differen	сө
CMSA/MSA/FIP	PEC 2010 Base	PEC 2010 Control	PEC 2015 Base	PEC 2015 Control	PEC (2010C - 2010B)	PEC (2015B - 2010B)	PEC (2015C - 2015B)	PEC (2010C - 2010B) / 2010B	PEC (2015B - 2010B) / 2010B	PEC (2015C - 2015B) / 2015B
Hall County, Georgia	103.0	66.9	85.2	53.8	-36.1	-17.7	-31.4	-35.1	-17.2	-36.9
Floyd County, Georgia	90.9	60.6	82.2	54.4	-30.4	-8.8	-27.8	-33.4	-9.7	-33.8
Hickory-Morganton-Lenoir, NC	333.7	236.9	292.4	205.1	-96.9	-41.4	-87.2	-29.0	-12.4	-29.8
Nashville, TN	831.9	590.7	685.5	485.4	-241.1	-146.4	-200.0	-29.0	-17.6	-29.2
Johnson City-Kingsport-Bristol, TN-VA	390.1	279.6	345.3	252.3	-110.5	-44.7	-93.0	-28.3	-11.5	-26.9
Atlanta, GA	2108.5	1514.0	1669.3	1200.2	-594.5	-439.2	-469.1	-28.2	-20.8	-28.1
GreensboroWinston-SalemHigh Point. NC	886.3	637.5	751.3	535.5	-248.8	-135.0	-215.8	-28.1	-15.2	-28.7
Lancaster, PA	201.9	146.1	173.9	128.9	-55.8	-28.0	-45.0	-27.6	-13.9	-25.9
Detroit-Ann Arbor-Flint, MI	1839.9	1332.9	1441.1	1044.4	-506.9	-398.7	-396.7	-27.6	-21.7	-27.5
Reading, PA	154.6	112.1	140.7	105.3	-42.5	-14.0	-35.4	-27.5	-9.0	-25.1
DeKalb County, Alabama	53.4	38.8	45.7	34.0	-14.6	-7.7	-11.7	-27.3	-14.4	-25.7
Parkersburg-Marietta, WV-OH	417.4	303.6	397.3	289.8	-113.8	-20.1	-107.5	-27.3	-4.8	-27.1
Canton-Massillon, OH	159.4	116.1	122.6	89.8	-43.3	-36.8	-32.7	-27.2	-23.1	-26.7
Huntington-Ashland, WV-KY-OH	1080.3	787.3	1034.8	756.7	-293.0	-45.5	-278.1	-27.1	-4.2	-26.9
Athens, GA	98.5	72.2	78.1	57.8	-26.4	-20.4	-20.3	-26.8	-20.7	-26.0
Youngstown-Warren, OH	267.7	196.3	199.4	145.6	-71.4	-68.4	-53.7	-26.7	-25.5	-26.9
Chattanooga, TN-GA	328.1	240.7	283.3	212.2	-87.5	-44.8	-71.1	-26.7	-13.6	-25.1
Louisville, KY-IN	604.1	443.4	527.7	398.3	-160.6	-76.4	-129.5	-26.6	-12.6	-24.5
Cleveland-Akron, OH	2038.1	1496.2	1774.4	1307.8	-541.9	-263.7	-466.6	-26.6	-12.9	-26.3
Charlotte-Gastonia-Rock Hill, NC-SC	854.5	627.4	699.9	512.1	-227.1	-154.5	-187.9	-26.6	-18.1	-26.8
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	2986.9	2193.2	2621.3	1933.9	-793.7	-365.6	-687.4	-26.6	-12.2	-26.2
Talladega County, Alabama	151.8	111.9	151.2	112.5	-39.9	-0.6	-38.7	-26.3	-0.4	-25.6
Charleston, WV	852.7	629.2	811.9	600.4	-223.4	-40.8	-211.5	-26.2	-4.8	-26.0
York, PA	190.8	140.9	157.6	117.6	-49.9	-33.2	-40.1	-26.2	-17.4	-25.4
Roane County, Tennessee	80.3	59.4	77.4	57.8	-20.9	-2.9	-19.6	-26.1	-3.6	-25.3
Scioto County, Ohio	64.6	47.9	53.7	40.2	-16.7	-10.9	-13.5	-25.8	-16.9	-25.1
Greenville-Spartanburg-Anderson, SC	596.4	443.3	478.8	360.3	-153.1	-117.6	-118.5	-25.7	-19.7	-24.7
Montgomery, AL	276.4	205.6	261.4	198.4	-70.9	-15.0	-63.0	-25.6	-5.4	-24.1
Columbus, GA-AL	161.6	120.2	138.2	104.9	-41.3	-23.3	-33.4	-25.6	-14.4	-24.1
Wilkinson County, Georgia	61.6	45.8	61.0	45.5	-15.7	-0.6	-15.5	-25.5	-0.9	-25.4
Lexington, KY	218.2	163.1	189.8	147.7	-55.1	-28.4	-42.0	-25.2	-13.0	-22.1
Cincinnati-Hamilton, OH-KY-IN	987.3	738.3	826.4	631.7	-249.0	-160.8	-194.7	-25.2	-16.3	-23.6
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	7287.2	5449.8	6205.8	4640.0	-1837.3	-1081.4	-1565.8	-25.2	-14.8	-25.2
Augusta-Aiken, GA-SC	338.1	252.9	292.7	222.0	-85.2	-45.3	-70.7	-25.2	-13.4	-24.2
Knoxville, TN	470.4	352.2	399.0	306.3	-118.1	-71.4	-92.7	-25.1	-15.2	-23.2
Pittsburgh, PA	984.4	738.7	858.9	666.9	-245.7	-125.5	-192.0	-25.0	-12.8	-22.4
Wheeling, WV-OH	213.4	160.3	192.8	145.9	-53.2	-20.6	-46.9	-24.9	-9.7	-24.3
Hartford, CT	101.5	76.6	87.5	66.4	-24.9	-14.1	-21.0	-24.5	-13.8	-24.1
Indianapolis, IN	735.9	556.9	662.3	532.5	-179.0	-73.6	-129.8	-24.3	-10.0	-19.6
Steubenville-Weirton, OH-WV	206.6	156.5	193.3	148.0	-50.1	-13.3	-45.3	-24.3	-6.5	-23.4
Litchfield County, Connecticut	67.6	51.4	50.7	39.0	-16.2	-16.9	-11.7	-24.0	-24.9	-23.0
Birmingham, AL	502.7	382.6	445.0	353.0	-120.1	-57.7	-92.0	-23.9	-11.5	-20.7
Columbus, OH	703.6	541.2	737.6	617.2	-162.4	34.0	-120.4	-23.1	4.8	-16.3
St. Louis, MO-IL	1248.6	964.4	1104.5	874.9	-284.2	-144.1	-229.5	-22.8	-11.5	-20.8
Washington-Baltimore, DC-MD-VA-WV	2708.2	2096.7	2201.3	1747.0	-611.5	-506.9	-454.3	-22.6	-18.7	-20.6
New Haven-Bridgeport-Stamford-Waterbury- Danbury, CT	568.4	444.1	402.4	318.6	-124.3	-166.0	-83.8	-21.9	-29.2	-20.8
Chicago-Gary-Kenosha, IL-IN-WI	2632.2	2061.6	2185.5	1759.2	-570.6	-446.7	-426.3	-21.7	-17.0	-19.5

Primary nitrate (PNO3) Summary										
Primary nitrate Emissions	Scenerio Tota	als				Difference		Р	ercent Differen	Ce
CMSA/MSA/FIP	PNO3 2010 Base	PNO3 2010 Control	PNO3 2015 Base	PNO3 2015 Control	PNO3 (2010C - 2010B)	PNO3 (2015B - 2010B)	PNO3 (2015C - 2015B)	PNO3 (2010C - 2010B) / 2010B	PNO3 (2015B - 2010B) / 2010B	PNO3 (2015C - 2015B) / 2015B
Athens, GA	1.2	0.9	1.1	0.9	-0.2	-0.1	-0.2	-20.7	-7.6	-20.3
Atlanta, GA	20.8	16.8	19.8	16.1	-4.0	-1.0	-3.7	-19.4	-4.9	-18.7
Augusta-Aiken, GA-SC	210.6	158.1	225.4	169.2	-52.5	14.8	-56.2	-24.9	7.0	-24.9
Birmingham, AL	19.0	14.6	19.2	14.8	-4.3	0.2	-4.4	-22.9	1.3	-22.8
Canton-Massillon, OH	3.1	2.4	3.0	2.3	-0.7	-0.1	-0.7	-22.2	-3.1	-22.0
Charleston, WV	3.0	2.3	2.8	2.2	-0.7	-0.2	-0.7	-23.9	-5.2	-23.8
Charlotte-Gastonia-Rock Hill,	11.6	0.1	11.2	8.0	2 5	0.2	2.4	21.2	27	21.0
Chattanana TN CA	7.0	9.1	7.1	6.9 E E	-2.5	-0.3	-2.4	-21.2	-2.7	-21.0
Chattanooga, TN-GA	1.2	5.0	186.0	5.5	-1.0	-0.1	-1.0	-22.8	-1.4	-22.0
Cincinnati Hamilton, OH KX IN	101.0	137.4	10.9	141.9	-43.0	0.1	-44.9	-24.1	0.5	-24.0
	28.4	21.8	28.0	21.5	-4.5	-0.4	-4.5	-23.2	-13	-22.4
Columbus GA-AI	4.4	3.4	4.6	35	-0.0	-0.4	-0.5	-23.2	2.9	-23.1
Columbus, CH	8.3	6.7	8.3	6.8	-1.6	0.1	-1.5	-19.5	0.9	-18.1
DeKalb County, Alabama	0.8	0.6	0.7	0.6	-0.2	-0.1	-0.1	-20.4	-8.9	-19.9
Detroit-Ann Arbor-Flint, MI	25.7	20.2	24.8	19.6	-5.5	-0.9	-5.2	-21.4	-3.4	-21.1
Floyd County, Georgia	2.6	2.0	2.7	2.1	-0.6	0.1	-0.6	-23.4	5.4	-23.1
GreensboroWinston-SalemHigh Point, NC	10.7	8.4	10.1	7.9	-2.3	-0.6	-2.1	-21.5	-5.9	-21.3
Greenville-Spartanburg-Anderson, SC	8.9	7.0	8.4	6.6	-1.9	-0.5	-1.7	-21.2	-5.8	-20.8
Hall County, Georgia	1.2	1.0	1.1	0.9	-0.2	-0.1	-0.2	-20.0	-8.6	-19.5
Hartford, CT	0.7	0.6	0.7	0.5	-0.2	-0.0	-0.1	-22.0	-6.0	-21.6
Hickory-Morganton-Lenoir, NC	6.2	4.8	6.1	4.7	-1.4	-0.1	-1.4	-23.2	-1.9	-23.3
Huntington-Ashland, WV-KY-OH	8.4	6.3	8.3	6.3	-2.0	-0.1	-2.0	-24.3	-1.2	-24.2
Indianapolis, IN	8.8	7.1	8.8	7.2	-1.6	0.0	-1.6	-18.6	0.1	-17.8
Johnson City-Kingsport-Bristol, TN-VA	7.2	5.5	7.1	5.5	-1.7	-0.1	-1.6	-23.3	-1.3	-23.1
Knoxville, IN	7.8	6.1	7.6	5.9	-1.8	-0.3	-1./	-22.5	-3.5	-22.3
Lancaster, PA	2.4	2.0	2.2	1.8	-0.4	-0.2	-0.4	-18.6	-6.3	-17.8
Lexington, KY	2.8	2.2	2.7	2.2	-0.6	-0.1	-0.5	-20.0	-3.3	-19.2
Litchfield County, Connecticut	0.9	0.7	0.8	0.7	-0.2	-0.1	-0.2	-21.3	-6.8	-20.8
Montgomeny Al	17.3	5.0 13.1	17.8	5.0 13.4	-1.2	-0.1	-1.2	-19.9	-0.9	-19.3
Nashville TN	72	5.8	6.6	53	-4.2	-0.6	-4.3	-19.8	-8.2	-24.2
New	7.2	0.0	0.0	0.0	1.4	0.0	1.0	10.0	0.2	10.1
Haven-Bridgeport-Stamford-Water bury-Danbury, CT	3.9	3.2	3.6	3.0	-0.7	-0.4	-0.6	-18.1	-9.1	-17.2
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	47.6	38.4	45.4	36.8	-9.2	-2.2	-8.6	-19.4	-4.6	-18.9
Parkersburg-Marietta, WV-OH	22.8	17.1	23.1	17.4	-5.7	0.3	-5.8	-24.9	1.5	-24.9
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	41.9	32.5	41.1	31.9	-9.5	-0.8	-9.2	-22.6	-1.9	-22.4
Pittsburgh, PA	97.2	73.3	102.0	76.9	-23.9	4.8	-25.1	-24.6	4.9	-24.6
Reading, PA	4.9	3.7	4.9	3.7	-1.1	-0.0	-1.1	-23.3	-0.3	-23.2
Roane County, Tennessee	0.8	0.6	0.8	0.6	-0.2	-0.0	-0.2	-23.4	-5.4	-23.2
Scioto County, Ohio	1.2	0.9	1.1	0.9	-0.3	-0.1	-0.3	-23.3	-5.3	-23.2
St. Louis, MO-IL	188.0	142.1	198.1	149.7	-45.9	10.1	-48.4	-24.4	5.4	-24.4
Steubenville-Weirton, OH-WV	32.2	24.2	32.5	24.4	-8.0	0.3	-8.1	-25.0	1.1	-24.9
Talladega County, Alabama Washington-Baltimore,	3.8	2.9	4.0	3.0	-0.9	0.2	-1.0	-24.2	4.0	-24.2
DC-MD-VA-WV	26.6	21.3	25.2	20.4	-5.3	-1.3	-4.8	-19.8	-5.0	-19.1
Wheeling, WV-OH	1.6	1.2	1.5	1.2	-0.4	-0.1	-0.3	-22.8	-4.7	-22.3
Wilkinson County, Georgia	9.3	7.0	9.7	7.2	-2.3	0.3	-2.4	-24.9	3.5	-24.9
York, PA	3.0	2.4	2.9	2.3	-0.7	-0.1	-0.6	-21.7	-4.2	-21.4
Youngstown-Warren, OH	5.2	4.0	5.1	3.9	-1.2	-0.1	-1.2	-22.9	-2.8	-22.7

GSO4 Summary											
GSO4 Emissions		Scener	o Totals			Difference	1	Percent Difference			
CMSA/MSA/FIP	GSO4 2010 Base	GSO4 2010 Control	GSO4 2015 Base	GSO4 2015 Control	GSO4 (2010C - 2010B)	GSO4 (2015B - 2010B)	GSO4 (2015C - 2015B)	GSO4 (2010C - 2010B) / 2010B	GSO4 (2015B - 2010B) / 2010B	GSO4 (2015C - 2015B) / 2015B	
Athens, GA	18.5	7.6	19.1	7.6	-11.0	0.5	-11.4	-59.2	2.8	-59.9	
Atlanta, GA	972.6	563.7	1008.9	578.6	-408.9	36.3	-430.3	-42.0	3.7	-42.7	
Augusta-Aiken, GA-SC	446.0	336.7	467.1	352.0	-109.3	21.1	-115.1	-24.5	4.7	-24.6	
Birmingham, AL	999.8	779.7	1024.6	797.8	-220.1	24.8	-226.8	-22.0	2.5	-22.1	
Canton-Massillon, OH	112.6	72.9	116.1	75.1	-39.7	3.4	-40.9	-35.3	3.1	-35.3	
Charleston, WV	189.0	165.6	188.7	164.8	-23.4	-0.3	-23.9	-12.4	-0.2	-12.7	
Charlotte-Gastonia-Rock Hill, NC-SC	545.7	349.9	584.3	377.5	-195.8	38.6	-206.8	-35.9	7.1	-35.4	
Chattanooga, TN-GA	339.8	235.2	351.9	243.5	-104.6	12.1	-108.4	-30.8	3.5	-30.8	
Chicago-Gary-Kenosha, IL-IN-WI	3745.9	2847.5	3831.9	2912.2	-898.4	86.0	-919.7	-24.0	2.3	-24.0	
Cincinnati-Hamilton, OH-KY-IN	1056.0	786.9	1077.0	801.7	-269.1	21.0	-275.3	-25.5	2.0	-25.6	
Cleveland-Akron, OH	1230.4	857.7	1251.9	873.2	-372.7	21.6	-378.7	-30.3	1.8	-30.3	
Columbus, GA-AL	393.4	286.2	422.5	307.5	-107.3	29.1	-115.0	-27.3	7.4	-27.2	
Columbus, OH	221.3	134.7	234.4	145.7	-86.6	13.2	-88.8	-39.1	6.0	-37.9	
DeKalb County, Alabama	9.7	3.9	10.0	4.0	-5.8	0.3	-6.0	-60.0	2.9	-60.0	
Detroit-Ann Arbor-Flint, MI	1729.8	1183.5	1761.1	1203.4	-546.3	31.2	-557.6	-31.6	1.8	-31.7	
Floyd County, Georgia	374.1	271.4	403.5	292.9	-102.6	29.5	-110.6	-27.4	7.9	-27.4	
GreensboroWinston-SalemHigh											
Point, NC	456.1	276.1	470.7	282.4	-179.9	14.7	-188.4	-39.4	3.2	-40.0	
Greenville-Spartanburg-Anderson, SC	135.5	82.9	138.8	84.7	-52.5	3.4	-54.1	-38.8	2.5	-39.0	
Hall County, Georgia	46.1	13.0	48.2	13.4	-33.2	2.1	-34.8	-71.9	4.5	-72.2	
Hartford, CT	21.7	16.4	22.0	16.7	-5.2	0.3	-5.3	-24.2	1.6	-24.1	
Hickory-Morganton-Lenoir, NC	214.9	126.4	228.7	134.9	-88.5	13.9	-93.8	-41.2	6.4	-41.0	
Huntington-Ashland, WV-KY-OH	421.2	298.5	436.5	309.7	-122.8	15.3	-126.9	-29.1	3.6	-29.1	
Indianapolis, IN	300.5	196.5	316.0	209.1	-104.0	15.5	-106.9	-34.6	5.2	-33.8	
Johnson City-Kingsport-Bristol, TN-VA	391.6	262.1	412.8	276.6	-129.5	21.2	-136.1	-33.1	5.4	-33.0	
	162.8	112.4	167.1	115.0	-50.3	4.3	-52.1	-30.9	2.6	-31.2	
Lancaster, PA	54.6	24.5	55.6	24.9	-30.1	1.0	-30.7	-55.1	1.9	-55.2	
	120.6	82.3	130.1	90.0	-38.3	9.6	-40.1	-31.7	7.9	-30.8	
	11.9	9.1	11.9	9.1	-2.8	0.0	-2.8	-23.4	0.4	-23.4	
	390.3	2/4.8	402.2	282.4	-115.4	11.9	-119.8	-29.6	3.0	-29.8	
Montgomery, AL	300.4	217.7	323.5	235.0	-82.7	23.0	-88.5	-27.5	7.7	-27.3	
	293.0	131.0	301.3	132.4	-102.5	1.1	-106.9	-55.4	2.0	-30.1	
New Haven-Bridgeport-Stamford-Waterbury -Danbury, CT	68.3	55.9	65.8	53.9	-12.5	-2.6	-11.9	-18.2	-3.7	-18.1	
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	4341.2	3024.9	4379.2	3050.5	-1316.3	38.0	-1328.6	-30.3	0.9	-30.3	
Parkersburg-Marietta, WV-OH	107.2	73.4	107.8	73.7	-33.8	0.5	-34.1	-31.5	0.5	-31.6	
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	2668.5	1873.3	2709.5	1899.8	-795.1	41.1	-809.7	-29.8	1.5	-29.9	
Pittsburgh, PA	1383.0	1037.3	1387.5	1041.4	-345.7	4.5	-346.1	-25.0	0.3	-24.9	
Reading, PA	318.1	228.4	325.0	233.6	-89.7	6.8	-91.4	-28.2	2.2	-28.1	
Roane County, Tennessee	33.5	24.4	34.5	25.1	-9.1	1.0	-9.5	-27.1	3.0	-27.4	
Scioto County, Ohio	67.7	48.5	68.9	49.4	-19.2	1.2	-19.6	-28.3	1.8	-28.4	
St. Louis, MO-IL	1961.3	1527.5	2058.1	1607.0	-433.8	96.8	-451.1	-22.1	4.9	-21.9	
Steubenville-Weirton, OH-WV	2741.1	2088.6	2780.4	2119.1	-652.5	39.3	-661.3	-23.8	1.4	-23.8	
Talladega County, Alabama	340.8	250.6	366.4	269.7	-90.2	25.6	-96.7	-26.5	7.5	-26.4	
Washington-Baltimore, DC-MD-VA-WV	760.6	606.9	760.3	607.3	-153.6	-0.3	-153.0	-20.2	-0.0	-20.1	
Wheeling, WV-OH	125.3	108.8	127.3	110.5	-16.5	1.9	-16.8	-13.2	1.5	-13.2	
Wilkinson County, Georgia	339.3	253.6	350.5	261.8	-85.7	11.1	-88.6	-25.3	3.3	-25.3	
York, PA	236.5	175.9	244.8	182.0	-60.7	8.3	-62.8	-25.6	3.5	-25.7	
Youngstown-Warren OH	235.2	158.0	230.0	160.2	-77.2	3.8	-78.8	-32.8	16	-33.0	

Summary for other unspecified PMFINE emissions

PMFINE Emissions		Sceneri	o Totals			Difference		Percent Difference			
CMSA/MSA/FIP	PMFINE 2010 Base	PMFINE 2010 Control	PMFINE 2015 Base	PMFINE 2015 Control	PMFINE (2010C - 2010B)	PMFINE (2015B - 2010B)	PMFINE (2015C - 2015B)	PMFINE (2010C - 2010B) / 2010B	PMFINE (2015B - 2010B) / 2010B	PMFINE (2015C - 2015B) / 2015B	
Athens, GA	624.3	411.7	614.5	398.7	-212.6	-9.8	-215.8	-34.1	-1.6	-35.1	
Atlanta, GA	16819.7	10783.8	17197.4	10902.4	-6035.9	377.7	-6295.0	-35.9	2.2	-36.6	
Augusta-Aiken, GA-SC	3128.7	2336.0	3201.1	2378.3	-792.8	72.3	-822.8	-25.3	2.3	-25.7	
Birmingham, AL	7804.0	6174.1	7933.3	6269.8	-1629.9	129.3	-1663.4	-20.9	1.7	-21.0	
Canton-Massillon, OH	1229.8	821.1	1247.9	829.9	-408.7	18.1	-418.0	-33.2	1.5	-33.5	
Charleston, WV	1593.9	1346.7	1587.8	1339.4	-247.2	-6.2	-248.4	-15.5	-0.4	-15.6	
Charlotte-Gastonia-Rock Hill, NC-SC	6162.8	4016.6	6414.6	4177.7	-2146.2	251.9	-2237.0	-34.8	4.1	-34.9	
Chattanooga, TN-GA	2518.4	1712.0	2549.3	1723.5	-806.4	30.8	-825.8	-32.0	1.2	-32.4	
Chicago-Gary-Kenosha, IL-IN-WI	27874.2	22090.6	28645.4	22684.0	-5783.7	771.2	-5961.4	-20.7	2.8	-20.8	
Cincinnati-Hamilton, OH-KY-IN	8640.8	6346.7	8804.0	6449.9	-2294.1	163.2	-2354.0	-26.5	1.9	-26.7	
Cleveland-Akron, OH	9654.4	6491.4	9901.6	6656.2	-3163.0	247.2	-3245.4	-32.8	2.6	-32.8	
Columbus, GA-AL	1186.4	804.8	1219.3	823.7	-381.6	32.9	-395.7	-32.2	2.8	-32.5	
Columbus, OH	4197.1	2995.7	4262.9	3032.4	-1201.4	65.8	-1230.5	-28.6	1.6	-28.9	
DeKalb County, Alabama	389.8	266.7	376.3	254.1	-123.1	-13.5	-122.1	-31.6	-3.5	-32.5	
Detroit-Ann Arbor-Flint, MI	14383.7	9411.5	14638.7	9554.3	-4972.2	254.9	-5084.4	-34.6	1.8	-34.7	
Floyd County, Georgia	1265.5	790.3	1300.8	803.1	-475.2	35.4	-497.7	-37.5	2.8	-38.3	
GreensboroWinston-SalemHigh Point, NC	6331.0	3907.8	6478.5	3961.6	-2423.2	147.5	-2516.9	-38.3	2.3	-38.8	
Greenville-Spartanburg-Anderson, SC	3724.4	2682.0	3695.7	2644.1	-1042.4	-28.8	-1051.5	-28.0	-0.8	-28.5	
Hall County, Georgia	1164.3	628.5	1167.7	615.3	-535.8	3.4	-552.4	-46.0	0.3	-47.3	
Hartford, CT	162.1	133.9	160.4	132.7	-28.3	-1.7	-27.7	-17.4	-1.1	-17.3	
Hickory-Morganton-Lenoir, NC	2146.5	1186.5	2194.6	1198.6	-960.1	48.1	-996.1	-44.7	2.2	-45.4	
Huntington-Ashland, WV-KY-OH	2159.9	1431.6	2197.2	1451.2	-728.3	37.3	-745.9	-33.7	1.7	-33.9	
Indianapolis, IN	5143.2	3774.7	5257.7	3850.9	-1368.5	114.5	-1406.8	-26.6	2.2	-26.8	
Johnson City-Kingsport-Bristol, TN-VA	2953.3	1833.9	3016.1	1861.4	-1119.4	62.8	-1154.7	-37.9	2.1	-38.3	
Knoxville, TN	3167.2	2281.8	3214.4	2307.1	-885.4	47.2	-907.3	-28.0	1.5	-28.2	
Lancaster, PA	1597.4	1084.0	1598.3	1077.3	-513.5	0.8	-520.9	-32.1	0.1	-32.6	
Lexington, KY	1503.7	1065.8	1555.4	1103.6	-437.8	51.7	-451.8	-29.1	3.4	-29.0	
Litchfield County, Connecticut	292.6	241.3	292.3	241.2	-51.3	-0.3	-51.1	-17.5	-0.1	-17.5	
Louisville, KY-IN	5081.1	3501.3	5212.2	3578.5	-1579.8	131.1	-1633.7	-31.1	2.6	-31.3	
Montgomery, AL	1744.2	1250.1	1779.5	1271.5	-494.1	35.3	-507.9	-28.3	2.0	-28.5	
Nashville, TN	5761.4	3267.1	5896.2	3308.6	-2494.3	134.8	-2587.6	-43.3	2.3	-43.9	
New Haven-Bridgeport-Stamford-Waterbury -Danbury, CT	1414.9	1190.1	1447.1	1218.5	-224.9	32.2	-228.6	-15.9	2.3	-15.8	
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA	27504.2	18880.4	27946.4	19163.3	-8623.8	442.2	-8783.1	-31.4	1.6	-31.4	
Parkersburg-Marietta, WV-OH	1140.3	777.9	1141.8	775.5	-362.4	1.4	-366.2	-31.8	0.1	-32.1	
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD	20130.6	13856.8	20708.7	14228.4	-6273.8	578.1	-6480.3	-31.2	2.9	-31.3	
Pittsburgh, PA	9306.0	6776.4	9360.0	6798.9	-2529.6	53.9	-2561.0	-27.2	0.6	-27.4	
Reading, PA	1855.5	1294.6	1880.9	1309.7	-560.9	25.4	-571.2	-30.2	1.4	-30.4	
Roane County, Tennessee	432.8	300.8	441.5	305.1	-132.0	8.8	-136.4	-30.5	2.0	-30.9	
Scioto County, Ohio	581.0	413.3	581.4	412.6	-167.7	0.4	-168.8	-28.9	0.1	-29.0	
St. Louis, MO-IL	18996.3	15335.7	19484.3	15742.0	-3660.6	488.0	-3742.4	-19.3	2.6	-19.2	
Steubenville-Weirton, OH-WV	4391.8	3495.4	4470.9	3566.7	-896.4	79.1	-904.2	-20.4	1.8	-20.2	
Talladega County, Alabama	1125.9	795.3	1159.4	816.4	-330.6	33.5	-343.0	-29.4	3.0	-29.6	
Washington-Baltimore, DC-MD-VA-WV	11745.4	9644.6	11872.0	9746.5	-2100.7	126.6	-2125.5	-17.9	1.1	-17.9	
Wheeling, WV-OH	1087.3	898.5	1089.5	898.3	-188.8	2.2	-191.2	-17.4	0.2	-17.6	
Wilkinson County, Georgia	1200.0	892.7	1249.0	928.6	-307.3	49.0	-320.4	-25.6	4.1	-25.7	
York, PA	1624.9	1185.9	1632.8	1187.3	-439.1	7.9	-445.4	-27.0	0.5	-27.3	
Youngstown-Warren, OH	1744.0	1121.4	1762.9	1129.4	-622.6	18.9	-633.6	-35.7	1.1	-35.9	

Appendix L

Summaries of Impacts on PM2.5 and PM2.5 Species from Local Control Measures for the 290 County Study

Table L-1 Results for 2010 Base Case vs. Local Control Case

MAACKSA Free Journal Same Law			PM	2.5	Cru	istal	Element	al Carbon	Organic	Aerosol	Ammoniu	ium Sulfate Ammonium		ım Nitrate
Aheng GA MSA Mminum 1.11 d.55 .0.11 1.12.44 .0.06 .8.55 .0.12 .2.05 .0.33 .10.25% .0.02 .1.7% Aheng GA MSA Average 1.11 -5.55 .0.11 1.24.45 .0.06 .6.56% .0.12 .2.05% .0.33 .10.8% .0.02 .1.7% Aheng GA MSA Minimum .0.44 .0.15 .0.06 .6.56% .0.12 .2.05% .0.33 .10.8% .0.02 .1.7% Allarius GA MSA Minimum .0.41 .0.15% .0.06 .1.65% .0.06 .1.65% .0.01 .1.65% .0.02 .1.8% .0.06 .0.7% .0.21 .2.5% .0.08 .0.09 .0.09 .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05% .0.01 .0.05%	MSA/CMSA	Reduction	(Local - Base)	% Change Local vs Base	(Local - Base)	% Change Local vs Base	(Local - Base)	% Change Local vs Base	(Local - Base)	% Change Local vs Base	(Local - Base)	% Change Local vs Base	(Local - Base)	% Change Local vs Base
Alters, G.A. MSA Maximum 1.11 6-50 0.11 1-12-4% 0.06 -6.55 0.12 2.00% 0.83 1.02% 0.02 1.75% Alteria, G.A. MSA Minimum -0.94 -6.55 -0.0	Athens, GA MSA	Minimum	-1.11	-6.5%	-0.11	-12.4%	-0.06	-8.6%	-0.12	-2.0%	-0.83	-10.8%	0.02	1.7%
Ahener, GA MSA Average 1.11 -0.5% -0.71 -1.2% -0.06 -0.75% -0.27% -0.2	Athens, GA MSA	Maximum	-1.11	-6.5%	-0.11	-12.4%	-0.06	-8.6%	-0.12	-2.0%	-0.83	-10.8%	0.02	1.7%
Matrixe, CA MSA Minimum -0.94 -6.1% -0.08 -7.0% -0.09 -1.0% -0.08 -0.08 2.2% Attartis, CA MSA Maxemum -1.53 -8.8% -0.18 -2.0% -0.18 -0.26 -3.8% -10.9% -0.07 1.14% 0.02 1.16% -0.26 -3.8% -10.9% 0.01 -1.14% 0.00 2.0% -0.19 -2.5% -0.09 -1.14% 0.00 2.0% -0.19 -2.5% -0.09 -1.14% 0.00 2.0% -0.01 -1.14% 0.06 -0.7% -0.21 -3.5% -0.09 -1.00% 0.01 0.8% 0.02 -0.26 -0.25% -0.09 -1.00% 0.08 0.7% -0.21 -3.5% -0.09 -1.02% 0.08 0.7% -0.21 -0.3% -0.10 -1.02% 0.08 0.7% -0.27 -1.02% 0.03 2.0% 0.08 0.7% -0.27 -1.02% 0.01 2.0% -0.26 -3.1% -0.76 -0.07%	Athens, GA MSA	Average	-1.11	-6.5%	-0.11	-12.4%	-0.06	-8.6%	-0.12	-2.0%	-0.83	-10.8%	0.02	1.7%
Alauria, GA MSA Minimum -0.94 -6.1% -0.08 -1.07% -0.08 -0.28 -3.28 -0.01 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 1.45% -0.02 -0.25% -0.02 1.45% -0.02 -0.25% -0.02 -0.07% -0.01 0.07% -0.01 0.07% -0.01 0.07% -0.01 0.07% -0.01 0.07% -0.01 0.07% -0.02 -0.05% -0.05% -0.05% -0.05% -0.05% -0.02 -0.05% -0.05% -0.07% -0.02 -0.05% -0.05% -0.02 -0.05% -0.05% -0.02 -0.05% -0.05% -0.02 -0.05% -0.05%														
Alama, GA MBA Maximum 1:53 6.8% -0.18 -0.20 -0.10 -12.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -2.4% -0.00 -1.0% -0.00 -2.4% -0.00 -1.0% -0.00 -0.2% -0.26 -0.5% -0.00 -0.01 0.1% 0.00 -0.2% -0.2% -0.09 -10.0% 0.01 0.8% -0.01 -1.18% -0.06 -0.27 -1.5% -0.01 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.01 -0.7% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -1.05% -0.02 -2.5% -1.07% 0.02 -	Atlanta, GA MSA	Minimum	-0.94	-6.1%	-0.08	-10.1%	-0.05	-7.9%	-0.09	-1.6%	-0.75	-10.8%	0.03	2.6%
Alama, CA MSA Average 1.34 7.2% 0.16 1.12.% 0.10 1.2.4% 0.02 1.2.4% 0.03 2.0% Augusta-Alken, GA-SC MSA Minimum 1.05 6.6% 0.10 1.1.8% 0.06 -9.7% 0.21 3.5% 0.68 110.0% 0.01 0.8% Augusta-Alken, GA-SC MSA Minimum 1.05 6.6% 0.10 1.1.8% 0.06 -9.7% 0.21 3.5% 0.68 110.0% 0.01 0.8% Augusta-Alken, GA-SC MSA Minimum 1.33 6.6% 0.10 1.1.8% 0.06 -9.7% 0.22 3.1% 0.76 110.7% 0.02 2.0% Birmingham, Al, MSA Marrage 1.33 4.0% -0.27 1.13% -0.26 3.1% 0.76 117% 0.20 1.18% 0.07 2.3% 0.02 1.13% 0.20 1.18% 0.07 2.3% 0.01 2.3% 0.05 1.18% 0.07 2.3% 0.11 3.4% 0.03	Atlanta, GA MSA	Maximum	-1.53	-8.8%	-0.18	-22.0%	-0.13	-14.6%	-0.26	-3.3%	-1.03	-14.1%	0.02	1.5%
Augusta-Aken, GA-SC MSA Morisum 1.06 6.6% 0.10 1.18% 0.06 9.7% 0.21 3.5% 0.69 1.00% 0.01 0.8% Augusta-Aken, GA-SC MSA Average 1.05 -6.0% -0.10 -1.18% 0.00 -9.7% -0.21 -3.5% -0.69 -100% 0.01 0.8% Augusta-Aken, GA-SC MSA Memum 1.33 -6.0% -0.21 -10.7% -0.25 -3.1% -0.76 10.7% 0.03 2.0% Birmingham, AL MSA Maximum 1.33 -6.0% -0.25 -15.4% -0.12 -10.7% -0.25 -3.1% -0.76 10.7% 0.03 2.0% Birmingham, AL MSA Massimon 1.33 -6.0% -0.25 -11.4% -0.07 -11.3% -0.26 -3.1% -0.76 10.7% 0.03 2.0% Canton-Missilion, OH MSA Maximum -1.28 -0.72 -11.3% -0.07 -1.21% 0.07 1.3% -0.20 -1.28% 0.07	Atlanta, GA MSA	Average	-1.34	-7.6%	-0.14	-16.7%	-0.10	-12.4%	-0.19	-2.8%	-0.92	-12.4%	0.03	2.0%
Augusta-Aleen, Ca-SC MSA Maxmum 1.03 6.6% 0.10 1.18% 0.06 9.7% 0.21 3.5% 0.08 1.00% 0.01 0.8% Augusta-Aleen, Ca-SC MSA Minimum 1.33 6.6% 0.22 1.5.4% 0.21 1.35% 0.08 1.00% 0.01 0.8% Birmingham, AL MSA Minimum 1.33 6.6% 0.22 1.5.4% 0.12 10.7% 0.26 3.1% 0.76 10.7% 0.03 2.9% Birmingham, AL MSA Minimum 1.23 6.6% 0.25 1.5.4% 0.01 1.13% 0.20 4.9% 0.05 1.18% 0.07 2.3% Canton-Massilien, OH MSA Minimum 1.29 7.5% 0.12 1.13% 0.20 4.9% 0.05 1.18% 0.07 2.3% Charleston, WM MSA Minimum 1.66 9.7% 0.09 1.22% 0.14 20.6% 0.33 7.2% 1.16 1.27% 0.06 3.8% Charleston,	Augusta-Aiken, GA-SC MSA	Minimum	-1.05	-6.6%	-0.10	-11.8%	-0.06	-9.7%	-0.21	-3.5%	-0.69	-10.0%	0.01	0.8%
Augusta Aken, G.A-SC MSA Average 1-05 6-07k 0-10 1-37k 0-20 1-37k 0-21 3-57k 0-21 3-57k 0-20 1-07k 0-20 1-07k 0-20 1-07k 0-20 1-07k 0-20 1-07k 0-20 1-07k 0-25 3-15k 0-07k 0-07k 0.07k 0.03 2.0%k Birmingham, AL, MSA Moximum 1-33 6.6%k 0-25 1-5.4%k 0-12 1-0.7%k 0-25 3-17k 0-07k 0-07k 0.02 1.0%k 0.07k 0.03 2.0%k Canton-Mussellion, OH MSA Minimum 1-29 7.5%k 0-12 1-13.8%k 0.07 1-13.7%k 0-09 1-18 <k< td=""> 0.07k 1-18<k< td=""> 0.07 2.3%k 0-07 1-11.8%k 0.07 1-11.8%k 0.07k 0-09 1-12.8%k 0.07 1-11.1%k 0.02 1-12.2%k 0.01 0.03 2.2%k 1-11 1-1.9%k 0.07 1-12.1%k 0.02 1-12.2%k 0.01 0.8%k</k<></k<>	Augusta-Aiken, GA-SC MSA	Maximum	-1.05	-6.6%	-0.10	-11.8%	-0.06	-9.7%	-0.21	-3.5%	-0.69	-10.0%	0.01	0.8%
Birmingham, AL, MSA Minimum 1.33 6.6%, 0.25 -0.25 -10.7%, 1.07%, 0.27 0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.27%, 0.27 -0.11 -0.26% -0.33 -7.2% -1.16 -1.27% 0.06 3.8% -0.27 -0.11 -1.26% -0.21 -1.26% -0.21 -1.26% -0.21 -1.26% -0.21 -1.26%	Augusta-Aiken, GA-SC MSA	Average	-1.05	-6.6%	-0.10	-11.8%	-0.06	-9.7%	-0.21	-3.5%	-0.69	-10.0%	0.01	0.8%
Berningham, AL, MSA Maximum 1.133 -0.6% -0.22 -10.7% -0.25 -3.1% -0.76 -10.7% 0.03 2.0% Berningham, AL, MSA Average 1.133 -6.6% -0.22 -15.4% -0.25 -3.1% -0.76 -10.7% 0.03 2.0% Canton-Massillon, OH MSA Maximum 1.129 -7.5% -0.12 -13.8% -0.07 -11.3% -0.20 -4.9% -0.95 -11.8% 0.07 2.3% Canton-Massillon, OH MSA Average -1.29 -7.5% -0.12 -13.8% -0.07 -11.3% -0.20 -4.9% -0.95 -11.8% 0.07 2.3% Charleston, WV MSA Maximum -1.66 -9.7% -0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleston, WV MSA Minimum -1.16 -9.7% -0.09 -12.2% -0.14 -20.6% -0.23 -7.2% -1.16 -12.7% 0.06 3.	Birmingham, AL MSA	Minimum	-1.33	-6.6%	-0.25	-15.4%	-0.12	-10.7%	-0.25	-3.1%	-0.76	-10.7%	0.03	2.0%
Bitmingham, AL MSA Average 1-13 -6.5% -0.22 -10.7% -0.25 -3.1% -0.76 -10.7% 0.03 2.0% Canton-Massillon, OH MSA Minimum -1.129 -7.5% -0.12 -11.3% -0.20 -4.9% -0.95 -11.8% 0.07 2.13% -0.02 -4.9% -0.95 -11.8% 0.07 2.3% Canton-Massillon, OH MSA Average -1.29 -7.5% -0.12 -13.8% -0.02 -14.9% -0.95 -11.8% 0.07 2.3% Charleston, WV MSA Minimum -1.166 -9.7% -0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleton, WV MSA Mismum -1.16 -9.7% -0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleton-Gastonia-Rock Hill, NC-SC Minimum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24	Birmingham, AL MSA	Maximum	-1.33	-6.6%	-0.25	-15.4%	-0.12	-10.7%	-0.25	-3.1%	-0.76	-10.7%	0.03	2.0%
Canton-Massilon, OH MSA Minimum 1.129 7.5% 0.12 13.8% 0.07 11.3% 0.20 4.9% 0.95 11.8% 0.07 2.3% Canton-Massilon, OH MSA Average 1.29 7.5% 0.12 13.8% 0.007 11.3% 0.201 4.9% 0.95 11.8% 0.07 2.3% Canton-Massilon, OH MSA Average 1.16 9.7% 0.09 1.22% 0.14 -20.6% -0.33 -7.2% 1.16 1.27% 0.06 3.8% Charleston, WV MSA Minimum 1.166 -9.7% 0.09 -12.2% -0.14 -20.6% -0.33 -7.2% 1.16 -12.7% 0.06 3.8% Charlotte-Gastonia-Rock Hill, NC-SC Minimum 1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.27 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Minimum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.22	Birmingham, AL MSA	Average	-1.33	-6.6%	-0.25	-15.4%	-0.12	-10.7%	-0.25	-3.1%	-0.76	-10.7%	0.03	2.0%
Canton-Massillon, OH MSA Maximum -1.29 -7.5% -0.12 -13.3% -0.02 -4.9% -0.95 -11.8% 0.07 2.3% Canton-Massillon, OH MSA Average -1.29 -7.5% -0.12 -13.8% -0.07 -11.3% -0.20 -4.9% -0.95 -11.8% 0.07 2.3% Canton-Massillon, OH MSA Minimum -1.66 -9.7% -0.09 -12.2% -0.14 -20.6% -0.03 -7.2% -1.16 -12.7% 0.06 3.8% Charleston, WV MSA Maximum -1.66 -9.7% -0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charlotte-Gastonia-Rock Hill, NC-SC Minimum -1.13 -7.4% -0.01 -14.9% -0.02 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.01 -14.9% -0.02 -12.1% -0.24 -4.1% <td>Canton-Massillon OH MSA</td> <td>Minimum</td> <td>-1 29</td> <td>-7.5%</td> <td>-0.12</td> <td>-13.8%</td> <td>-0.07</td> <td>-11 3%</td> <td>-0.20</td> <td>-4.9%</td> <td>-0.95</td> <td>-11.8%</td> <td>0.07</td> <td>2.3%</td>	Canton-Massillon OH MSA	Minimum	-1 29	-7.5%	-0.12	-13.8%	-0.07	-11 3%	-0.20	-4.9%	-0.95	-11.8%	0.07	2.3%
Canton-Massillon, OH MSA Average -1.2 -7.5% -0.12 -13.8% -0.20 -4.9% -0.95 -11.8% 0.07 2.3% Charleston, WV MSA Minimum -1.66 -9.7% -0.09 -12.2% -0.14 -20.0% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleston, WV MSA Average -1.66 -9.7% -0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleston, WV MSA Average -1.66 -9.7% -0.09 -12.1% -0.12 +1.03 -7.2% -1.16 -12.7% 0.06 3.8% Charlotte-Gastonia-Rock Hill, NC-SC Minimum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.27 +11.2% 0.01 0.8% Chattanooga, TN-GA MSA Minimum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.24 -4.1% -0.22 +11.6%	Canton-Massillon, OH MSA	Maximum	-1.29	-7.5%	-0.12	-13.8%	-0.07	-11.3%	-0.20	-4.9%	-0.95	-11.8%	0.07	2.3%
Charletson, WV MSA Minimum 1-166 -9.7% -0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleston, WV MSA Axverage -1.66 -9.7% 0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charleston, WV MSA Average -1.66 -9.7% 0.09 -12.2% -0.14 -20.6% -0.33 -7.2% -1.16 -12.7% 0.06 3.8% Charlotte-Gastonia-Rock HII, NC-SC Minimum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock HII, NC-SC Maximum -1.34 -8.3% -0.11 -14.9% -0.07 -12.1% -0.22 -1.12% 0.01 0.8% Charlotte-Gastonia-Rock HII, NC-SC Maximum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 4.6%	Canton-Massillon, OH MSA	Average	-1.29	-7.5%	-0.12	-13.8%	-0.07	-11.3%	-0.20	-4.9%	-0.95	-11.8%	0.07	2.3%
Charleston, WV MSA Iminimum 1-0.05 1-2.7% -0.05 1-2.7% -0.06 1-2.7% -0.06 3.8% Charleston, WV MSA Average 1-66 -9.7% -0.09 1-12.7% -0.06 3.8% Charleston, WV MSA Average 1-66 -9.7% -0.09 1-12.7% -0.06 3.8% Charleston, WV MSA Average 1-166 -9.7% -0.09 1-12.7% -0.06 3.8% Charleston, WV MSA Maximum 1-1.1 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlencoga, TN-GA MSA Minimum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Charlenc		Minima	1.66	0.7%	0.00	10.00/	0.14	20.6%	0.22	7.00/	1.10	10 70/	0.06	2.90/
Charleston, WV MSA Average -1.02 -0.7% -0.09 -1.2.% -0.14 -20.6% -0.23 -7.2% -1.16 -1.2.% 0.06 3.2% Charleston, WV MSA Average -1.66 -9.7% -0.09 -1.22.% -0.14 -20.6% -0.23 -7.2% -1.16 -1.2.% 0.06 3.2% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -3.4 -8.3% -0.13 -13.5% -0.07 -12.1% -0.24 -4.1% -0.27 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Minimum -3.4 -8.3% -0.013 -13.5% -0.07 -12.1%	Charleston, WV MSA	Maximum	-1.00	-9.7%	-0.09	-12.2%	-0.14	-20.6%	-0.33	-7.2%	-1.10	-12.7%	0.06	3.8%
Charlanooga, TV-Rabi, C-SC Minimum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.27 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Minimum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Minimum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Maximum -1.28 -7.2% -0.13 -15.7% -0.08	Charleston, WV MSA	Average	-1.66	-9.7%	-0.05	-12.2%	-0.14	-20.0%	-0.33	-7.2%	-1.16	-12.7%	0.06	3.8%
Charlotte-Gastonia-Rock Hill, NC-SC Minimum -1.13 -7.4% -0.11 -1.49% -0.07 -1.21% -0.24 -4.1% -0.72 -1.12% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.11 -1.49% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Average -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Average -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 -4.1% -0.72 -11.2% 0.02 1.6% Chattanooga, TN-GA MSA Maximum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.13 15.5% -		/ Woldge		0.770	0.00	12.270	0.11	20.070	0.00	7.270		12.770	0.00	0.070
Charlotte-Gastonia-Rock Hill, NC-SC Maximum -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Average -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.24 4.1% -0.72 -11.2% 0.01 0.8% Charlotte-Gastonia-Rock Hill, NC-SC Average -1.13 -7.4% -0.11 -14.9% -0.07 -12.1% -0.23 4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TM-GA MSA Minimum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TM-GA MSA Average -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 4.6% -0.92 11.6% 0.02 1.6% Chicago-Gary-Kenosha, IL-IN-WI Minimum -1.28 -7.2% -0.01 -11.5% -0.06	Charlotte-Gastonia-Rock Hill, NC-SC MSA	Minimum	-1.13	-7.4%	-0.11	-14.9%	-0.07	-12.1%	-0.24	-4.1%	-0.72	-11.2%	0.01	0.8%
Indext Maximum 1.13 7.7.% 0.11 11.9.% 0.07 12.1% 0.12 1.1.% 0.12 1.1.% 0.17 0.17% 0.07 12.1% 0.12 1.1.% 0.17 1.1.% 0.07 12.1% 0.12 1.1.% 0.01 0.8% Chattanooga, TN-GA MSA Minimum 1.34 8.3% 0.13 13.5% 0.07 1.21% 0.22 4.6% 0.92 11.6% 0.02 1.6% Chattanooga, TN-GA MSA Average 1.34 8.3% 0.13 13.5% 0.07 1.21% 0.23 4.6% 0.92 11.6% 0.02 1.6% Chattanooga, TN-GA MSA Average 1.34 8.3% 0.13 13.5% 0.07 12.1% -0.23 4.6% 0.92 11.6% 0.02 1.6% Chicago-Gary-Kenosha, IL-IN-WI Maximum 1.28 -7.2% -0.13 15.7% -0.06 +9.2% -0.66 +9.2% -0.66 +9.2% -0.66 +1.0% -0.57	Charlotte-Gastonia-Rock Hill, NC-SC	Maximum	-1 13	-7.4%	-0 11	-14 9%	-0.07	-12.1%	-0.24	-4.1%	-0.72	-11.2%	0.01	0.8%
Chattanooga, TN-GA MSA Minimum -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Average -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Average -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chicago-Gary-Kenosha, IL-IN-WI Minimum -0.99 -6.5% -0.08 -11.4% -0.04 -7.4% -0.35 -8.5% -0.57 -10.2% 0.06 1.2% Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.11 -13.5% -0.06 -9.2% -0.46 -9.5% -0.57 -10.2% 0.06 1.2% Chicagn-Gary-Kenosha, IL-IN-WI Average -1.14 -6.8% -0.10 -12.7% -0.05 -9.4%	Charlotte-Gastonia-Rock Hill, NC-SC MSA	Average	-1.13	-7.4%	-0.11	-14.9%	-0.07	-12.1%	-0.24	-4.1%	-0.72	-11.2%	0.01	0.8%
Circlatinodga, IN-GA MSA Minimum -1.34 -8.3% -0.13 -1.12/h -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Average -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chattanooga, TN-GA MSA Average -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.92 -11.6% 0.02 1.6% Chicago-Gary-Kenosha, IL-IN-WI Minimum -0.99 -6.5% -0.08 -11.4% -0.04 -7.4% -0.35 -8.5% -0.56 -10.2% 0.06 1.5% Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.10 -13.5% -0.06 -9.2% -0.46 -9.5% -0.57 -10.2% 0.06 1.2% Cincinnati-Hamilton, OH-KY-IN CMSA Minimum -1.09 -6.8% -0.10 -12.7% -0.05 -9.4% -0.20 -4.6% <td>Chattanagan TN CA MCA</td> <td>Minimaruma</td> <td>1.24</td> <td>0.00/</td> <td>0.12</td> <td>12 59/</td> <td>0.07</td> <td>10.10/</td> <td>0.22</td> <td>4.69/</td> <td>0.02</td> <td>11.00/</td> <td>0.02</td> <td>1.69/</td>	Chattanagan TN CA MCA	Minimaruma	1.24	0.00/	0.12	12 59/	0.07	10.10/	0.22	4.69/	0.02	11.00/	0.02	1.69/
Chattanooga, IN-GA MSA Maximun -1.34 -3.3% -0.13 -1.35% -0.07 -12.1% -0.23 -4.4% -0.92 -11.6% 0.02 1.0% Chattanooga, IN-GA MSA Average 1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.22 -11.6% 0.02 1.16% Chattanooga, IN-GA MSA Average -1.34 -8.3% -0.13 -13.5% -0.07 -12.1% -0.23 -4.6% -0.22 -11.6% 0.02 1.16% Chicago-Gary-Kenosha, IL-IN-WI Minimum -1.28 -7.2% -0.13 -15.7% -0.08 -11.0% -0.57 -10.2% 0.06 1.2% Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.10 -12.7% -0.06 -9.2% -0.46 -9.5% -0.57 -10.2% 0.06 1.2% Chicago-Gary-Kenosha, IL-IN-WI Average -1.14 -6.8% -0.10 -12.7% -0.06 -9.4% -0.57 -0.57	Chattanooga, TN-GA MSA	Movimum	-1.34	-8.3%	-0.13	-13.5%	-0.07	-12.1%	-0.23	-4.6%	-0.92	-11.6%	0.02	1.6%
Chicago-Gary-Kenosha, IL-IN-WI Maximum -0.99 -6.5% -0.08 -11.4% -0.04 -7.4% -0.35 -8.5% -0.56 -10.2% 0.06 1.5% Chicago-Gary-Kenosha, IL-IN-WI Minimum -0.99 -6.5% -0.08 -11.4% -0.04 -7.4% -0.35 -8.5% -0.56 -10.2% 0.06 1.5% Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.13 -15.7% -0.08 -11.0% -0.57 -10.2% 0.06 1.2% Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.13 -15.7% -0.08 -11.0% -0.57 -10.2% 0.06 1.2% Cincinnati-Hamilton, OH-KY-IN CMSA Minimum -1.09 -6.8% -0.10 -12.7% -0.06 -11.4% -0.20 -4.6% -0.79 -11.6% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.09 -6.8% -0.10 -12.7% -0.02 -5.6% -0.88 -11.6% 0.00<	Chattanooga, TN-GA MSA	Average	-1.34	-8.3%	-0.13	-13.5%	-0.07	-12.1%	-0.23	-4.0%	-0.92	-11.6%	0.02	1.0%
Chicago-Gary-Kenosha, IL-IN-WI CMSA Minimum -0.99 -6.5% -0.08 -11.4% -0.04 -7.4% -0.35 -8.5% -0.56 -10.2% 0.06 1.5% Chicago-Gary-Kenosha, IL-IN-WI CMSA Maximum -1.28 -7.2% -0.13 -15.7% -0.08 -11.0% -0.57 -10.2% 0.06 1.2% Chicago-Gary-Kenosha, IL-IN-WI CMSA Average -1.14 -6.8% -0.10 -13.5% -0.06 -9.2% -0.46 -9.5% -0.57 -10.2% 0.06 1.2% Cincinnati-Hamilton, OH-KY-IN CMSA Minimum -1.09 -6.8% -0.10 -12.7% -0.05 -9.4% -0.20 -4.6% -0.79 -11.0% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.32 -7.4% -0.13 -16.5% -0.08 -13.3% -0.22 -5.4% -0.97 -11.6% 0.06 1.7% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.12 -7.1% -0.12 -14.4% -0.08 -11.1%	Chananooga, Tre artimort	7 Wordgo		0.070	0.10	10.070	0.07	12.170	0.20		0.02	111070	0.02	11070
Chicago-Gary-Kenosha, IL-IN-WI Maximum -1.28 -7.2% -0.13 -15.7% -0.08 -11.0% -0.57 -10.5% -0.57 -10.2% 0.06 1.2% CMSA Average -1.14 -6.8% -0.10 -13.5% -0.06 -9.2% -0.46 -9.5% -0.57 -10.2% 0.06 1.4% Cincinnati-Hamilton, OH-KY-IN CMSA Minimum -1.09 -6.8% -0.10 -12.7% -0.05 -9.4% -0.20 4.6% -0.79 -11.0% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.32 -7.4% -0.13 -16.5% -0.08 -11.4% -0.21 -5.4% -0.21 -5.6% -0.22 -5.4% -0.97 -11.6% 0.05 1.6% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.20 -7.1% -0.12 14.8% -0.08 -11.4% -0.21 -5.6% -0.23 4.6% -0.87 -12.0% 0.13 3.1% Cleveland-Akron, OH CMSA Maximum	Chicago-Gary-Kenosha, IL-IN-WI CMSA	Minimum	-0.99	-6.5%	-0.08	-11.4%	-0.04	-7.4%	-0.35	-8.5%	-0.56	-10.2%	0.06	1.5%
Chicago-Gary-Kenosha, IL-IN-WI Average -1.14 -6.8% -0.10 -13.5% -0.06 -9.2% -0.46 -9.5% -0.57 -10.2% 0.06 1.4% Cincinnati-Hamilton, OH-KY-IN CMSA Minimum -1.09 -6.8% -0.10 -12.7% -0.05 -9.4% -0.20 -4.6% -0.79 -11.0% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.32 -7.4% -0.13 -16.5% -0.08 -13.3% -0.22 -5.4% -0.97 -11.6% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.32 -7.4% -0.13 -16.5% -0.08 -13.3% -0.22 -5.4% -0.97 -11.6% 0.06 1.7% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.16 -7.1% -0.12 -14.3% -0.08 -11.5% -0.21 -4.6% -0.87 -12.0% 0.13 3.1% Cleveland-Akron, OH CMSA Maximum -1.44 -7.5% -0.29 -22.3% -0.1	Chicago-Gary-Kenosha, IL-IN-WI CMSA	Maximum	-1.28	-7.2%	-0.13	-15.7%	-0.08	-11.0%	-0.57	-10.5%	-0.57	-10.2%	0.06	1.2%
Cincinati-Hamilton, OH-KY-IN CMSA Minimum -1.09 -6.8% -0.10 -12.7% -0.05 -9.4% -0.20 -4.6% -0.79 -11.0% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.32 -7.4% -0.13 -16.5% -0.08 -13.3% -0.22 -5.4% -0.97 -11.6% 0.06 1.9% Cincinnati-Hamilton, OH-KY-IN CMSA Average -1.20 -7.1% -0.12 -14.6% -0.06 -11.4% -0.21 -5.4% -0.97 -11.6% 0.06 1.7% Cincinnati-Hamilton, OH-KY-IN CMSA Average -1.20 -7.1% -0.12 -14.6% -0.08 -11.5% -0.19 -4.6% -0.88 -11.3% 0.06 1.7% Cleveland-Akron, OH CMSA Maximum -1.44 -7.5% -0.29 -22.3% -0.11 -12.5% -0.23 -4.8% -0.90 -12.4% 0.09 2.8% Cleveland-Akron, OH CMSA Maximum -0.77 -4.6% -0.08 -9.0% -0.03	Chicago-Gary-Kenosha, IL-IN-WI CMSA	Average	-1.14	-6.8%	-0.10	-13.5%	-0.06	-9.2%	-0.46	-9.5%	-0.57	-10.2%	0.06	1.4%
Online Hamilton, OH-KY-IN CMOR Minimum 1.32 -7.4% -0.13 -16.5% -0.03 -13.3% -0.22 -5.4% -0.97 -11.6% 0.05 1.6% Cincinnati-Hamilton, OH-KY-IN CMSA Maximum -1.32 -7.1% -0.12 -14.6% -0.08 -13.3% -0.22 -5.4% -0.97 -11.6% 0.05 1.6% Cincinnati-Hamilton, OH-KY-IN CMSA Average -1.20 -7.1% -0.12 -14.6% -0.08 -13.3% -0.22 -5.4% -0.97 -11.6% 0.06 1.7% Cieveland-Akron, OH CMSA Minimum -1.16 -7.1% -0.12 -14.3% -0.08 -11.5% -0.23 -4.8% -0.93 -12.4% 0.09 2.8% Cleveland-Akron, OH CMSA Maximum -1.44 -7.5% -0.29 -22.3% -0.11 -12.5% -0.23 -4.8% -0.93 -12.4% 0.09 2.8% Cleveland-Akron, OH CMSA Average -1.30 -0.20 -18.3% -0.01 -12.6% -0.64 -8.7% 0.06 4.0% Columbus, GA-AL MSA Maximum </td <td>Cincinnati-Hamilton OH-KY-IN CMSA</td> <td>Minimum</td> <td>-1.09</td> <td>-6.8%</td> <td>-0.10</td> <td>-12 7%</td> <td>-0.05</td> <td>-9.4%</td> <td>-0.20</td> <td>-4.6%</td> <td>-0.79</td> <td>-11.0%</td> <td>0.06</td> <td>1.9%</td>	Cincinnati-Hamilton OH-KY-IN CMSA	Minimum	-1.09	-6.8%	-0.10	-12 7%	-0.05	-9.4%	-0.20	-4.6%	-0.79	-11.0%	0.06	1.9%
Internationality of the Research of the	Cincinnati-Hamilton, OH-KY-IN CMSA	Maximum	-1.32	-7.4%	-0.13	-16.5%	-0.03	-13.3%	-0.20	-5.4%	-0.97	-11.6%	0.00	1.5%
Image: Constraint of the second sec	Cincinnati-Hamilton, OH-KY-IN CMSA	Average	-1.20	-7.1%	-0.12	-14.6%	-0.06	-11.4%	-0.21	-5.0%	-0.88	-11.3%	0.06	1.7%
Cleveland-Akron, OH CMSA Minimum 11.10 -7.1% -0.12 -11.3% -0.00 -11.3% -0.10 -12.3% -0.07 -12.3% 0.10 0.13 0.12 0.11 0.12 0.13 0.14 0.12 0.13 0.14 0.12 0.13 0.14 0.12 0.13 0.14 0.12 0.13 0.14 0.12 0.13 0.14 0.12 0.13 0.14 0.12 <t< td=""><td>Cleveland-Akron OH CMSA</td><td>Minimum</td><td>-1.16</td><td>-7 1%</td><td>-0.12</td><td>-14 3%</td><td>-0.08</td><td>-11 5%</td><td>-0.19</td><td>-4.6%</td><td>-0.87</td><td>-12.0%</td><td>0.13</td><td>3.1%</td></t<>	Cleveland-Akron OH CMSA	Minimum	-1.16	-7 1%	-0.12	-14 3%	-0.08	-11 5%	-0.19	-4.6%	-0.87	-12.0%	0.13	3.1%
Cleveland-Akron, OH CMSA Average -1.30 -7.3% -0.20 -18.3% -0.10 -12.0% -0.21 -4.7% -0.90 -12.2% 0.11 3.0% Columbus, GA-AL MSA Minimum -0.77 -4.6% -0.08 -9.0% -0.03 -4.0% -0.07 -1.2% -0.64 -8.7% 0.06 4.0% Columbus, GA-AL MSA Maximum -0.80 -4.7% -0.09 -9.8% -0.04 -5.4% -0.08 -1.4% -0.65 -8.8% 0.06 4.0% Columbus, GA-AL MSA Maximum -0.80 -4.7% -0.08 -9.4% -0.04 -5.4% -0.08 -1.4% -0.65 -8.8% 0.06 3.7% Columbus, GA-AL MSA Average -0.78 -4.7% -0.08 -9.4% -0.04 -4.7% -0.07 -1.3% -0.64 -8.8% 0.06 3.7% Columbus, OH MSA Minimum -1.12 -6.7% -0.11 -12.4% -0.07 -4.2% -0.84 -11.2%	Cleveland-Akron, OH CMSA	Maximum	-1.44	-7.5%	-0.29	-22.3%	-0.11	-12.5%	-0.23	-4.8%	-0.93	-12.4%	0.09	2.8%
Image: Columbus, GA-AL MSA Minimum -0.77 -4.6% -0.08 -9.0% -0.03 -4.0% -0.07 -1.2% -0.64 -8.7% 0.06 4.0% Columbus, GA-AL MSA Maximum -0.80 -4.7% -0.09 -9.8% -0.04 -5.4% -0.08 -1.4% -0.65 -8.8% 0.06 4.0% Columbus, GA-AL MSA Maximum -0.08 -4.7% -0.09 -9.8% -0.04 -5.4% -0.08 -1.4% -0.65 -8.8% 0.06 3.7% Columbus, GA-AL MSA Average -0.78 -4.7% -0.08 -9.4% -0.04 -4.7% -0.07 -1.3% -0.64 -8.8% 0.06 3.7% Columbus, OH MSA Minimum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Maximum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% <t< td=""><td>Cleveland-Akron, OH CMSA</td><td>Average</td><td>-1.30</td><td>-7.3%</td><td>-0.20</td><td>-18.3%</td><td>-0.10</td><td>-12.0%</td><td>-0.21</td><td>-4.7%</td><td>-0.90</td><td>-12.2%</td><td>0.11</td><td>3.0%</td></t<>	Cleveland-Akron, OH CMSA	Average	-1.30	-7.3%	-0.20	-18.3%	-0.10	-12.0%	-0.21	-4.7%	-0.90	-12.2%	0.11	3.0%
Columbus, GA-AL MSA Minimum -0.77 -4.8% -0.08 -3.0% -0.03 -4.0% -0.07 -1.2% -0.64 -8.7% 0.06 4.0% Columbus, GA-AL MSA Maximum -0.80 -4.7% -0.09 -9.8% -0.04 -5.4% -0.08 -1.4% -0.65 -8.8% 0.05 3.4% Columbus, GA-AL MSA Average -0.78 -4.7% -0.08 -9.4% -0.04 -4.7% -0.06 -8.8% 0.05 3.4% Columbus, GA-AL MSA Average -0.78 -4.7% -0.08 -9.4% -0.04 -4.7% -0.07 -1.1% -0.66 -8.8% 0.05 3.4% Columbus, OH MSA Minimum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Maximum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07		Minimary	0.77	4.69/	0.08	0.0%	0.02	4.09/	0.07	1.00/	0.64	9.70/	0.06	4.09/
Columbus, GA-AL MSA Average -0.78 -4.7% -0.08 -9.4% -0.04 -4.7% -0.07 -1.3% -0.64 -8.8% 0.06 3.7% Columbus, GA-AL MSA Average -0.78 -4.7% -0.08 -9.4% -0.04 -4.7% -0.07 -1.3% -0.64 -8.8% 0.06 3.7% Columbus, OH MSA Minimum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Maximum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Maximum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 </td <td>Columbus GA-AL MSA</td> <td>Maximum</td> <td>-0.77</td> <td>-4.0%</td> <td>-0.08</td> <td>-9.0%</td> <td>-0.03</td> <td>-4.0%</td> <td>-0.07</td> <td>-1.2%</td> <td>-0.65</td> <td>-8.8%</td> <td>0.00</td> <td>4.0%</td>	Columbus GA-AL MSA	Maximum	-0.77	-4.0%	-0.08	-9.0%	-0.03	-4.0%	-0.07	-1.2%	-0.65	-8.8%	0.00	4.0%
International and the second	Columbus, GA-AL MSA	Average	-0.78	-4.7%	-0,08	-9.4%	-0.04	-4.7%	-0.07	-1.3%	-0,64	-8.8%	0.06	3.7%
Columbus, OH MSA Minimum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Maximum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Detroit-Ann Arbor-Flint, MI CMSA Minimum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4%														
Columbus, OH MSA Maximum -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Detroit-Ann Arbor-Flint, MI CMSA Minimum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.2	Columbus, OH MSA	Minimum	-1.12	-6.7%	-0.11	-12.4%	-0.05	-9.3%	-0.17	-4.2%	-0.84	-11.2%	0.07	2.1%
Columbus, OH MSA Average -1.12 -6.7% -0.11 -12.4% -0.05 -9.3% -0.17 -4.2% -0.84 -11.2% 0.07 2.1% Detroit-Ann Arbor-Flint, MI CMSA Minimum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9%	Columbus, OH MSA	Maximum	-1.12	-6.7%	-0.11	-12.4%	-0.05	-9.3%	-0.17	-4.2%	-0.84	-11.2%	0.07	2.1%
Detroit-Ann Arbor-Flint, MI CMSA Minimum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9%	Columbus, OH MSA	Average	-1.12	-6.7%	-0.11	-12.4%	-0.05	-9.3%	-0.17	-4.2%	-0.84	-11.2%	0.07	2.1%
Detroit-Ann Arbor-Flint, MI CMSA Minimum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9% Detroit-Ann Arbor-Flint, MI CMSA Maximum -1.25 -6.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9%			4	0 -01	0.10	00.001	0.00	10.000	0.07		0.01	10	0.10	4.001
Deprovement and a maximum -1.23 -0.7% -0.19 -20.2% -0.09 -10.8% -0.27 -5.4% -0.81 -12.5% 0.10 1.9%	Detroit Ann Arbor-Flint, MI CMSA	Minimum	-1.25	-6.7%	-0.19	-20.2%	-0.09	-10.8%	-0.27	-5.4%	-0.81	-12.5%	0.10	1.9%
$\blacksquare = 125 = -6.7\% = -0.10 = -0.0\% = -0$	Detroit-Ann Arbor-Flint, MI CMSA		-1.20	-0.7%	-0.19	-20.2%	-0.09	-10.0%	-0.27	-5.4%	-0.01	-12.5%	0.10	1.9%

GreensboroWinston-SalemHigh Point, NC MSA	Minimum	-1.37	-8.8%	-0.16	-20.8%	-0.09	-16.1%	-0.33	-6.0%	-0.83	-12.0%	0.04	2.9%
GreensboroWinston-SalemHigh Point, NC MSA	Maximum	-1.37	-8.8%	-0.16	-20.8%	-0.09	-16.1%	-0.33	-6.0%	-0.83	-12.0%	0.04	2.9%
GreensboroWinston-SalemHigh		1 07	0.00	0.10	00.00/	0.00	10.10	0.00	0.00/	0.00	10.00/		0.007
Point, NC MSA	Average	-1.37	-8.8%	-0.16	-20.8%	-0.09	-16.1%	-0.33	-6.0%	-0.83	-12.0%	0.04	2.9%
Greenville-Spartanburg-Anderson, SC MSA	Minimum	-1.15	-7.6%	-0.08	-11.8%	-0.06	-11.1%	-0.19	-3.5%	-0.84	-11.9%	0.03	3.0%
Greenville-Spartanburg-Anderson, SC	Maximum	-1 15	-7.6%	-0.08	-11.8%	-0.06	-11 1%	-0 19	-3.5%	-0.84	-11 9%	0.03	3.0%
Greenville-Spartanburg-Anderson, SC	Maximum	1.10	7.070	0.00	11.070	0.00	11.170	0.10	0.070	0.04	11.070	0.00	0.070
MSA	Average	-1.15	-7.6%	-0.08	-11.8%	-0.06	-11.1%	-0.19	-3.5%	-0.84	-11.9%	0.03	3.0%
Hickory-Morganton-Lenoir, NC MSA	Minimum	-1.35	-8.8%	-0.14	-20.0%	-0.08	-13.3%	-0.33	-6.3%	-0.82	-11.5%	0.02	1.7%
Hickory-Morganton-Lenoir, NC MSA	Maximum	-1.35	-8.8%	-0.14	-20.0%	-0.08	-13.3%	-0.33	-6.3%	-0.82	-11.5%	0.02	1.7%
Hickory-Morganton-Lenoir, NC MSA	Average	-1.35	-8.8%	-0.14	-20.0%	-0.08	-13.3%	-0.33	-6.3%	-0.82	-11.5%	0.02	1.7%
Livetington Appland MALIX OLIMEA	Minimaruma	1.05	8.00/	0.08	11.00/	0.12	17.60/	0.09	6.0%	0.02	11.00/	0.06	2.0%
Huntington-Ashland, WV-KY-OH MSA	Movimum	-1.35	-8.2%	-0.08	-11.8%	-0.12	-17.6%	-0.28	-6.0%	-0.92	-11.0%	0.06	3.9%
Huntington-Ashland, WV-KT-OH MSA	Average	-1.41	-9.1%	-0.10	12 50/	-0.12	17.0%	-0.31	-7.1%	-0.93	-11.0%	0.05	3.1%
	Average	-1.30	-0.7%	-0.09	-13.3%	-0.12	-17.9%	-0.30	-0.0%	-0.92	-11.4%	0.05	3.5%
Indianapolis, IN MSA	Minimum	-0.95	-6.0%	-0.11	-16.9%	-0.06	-11.5%	-0.15	-3.4%	-0.69	-10.7%	0.04	1.1%
Indianapolis, IN MSA	Maximum	-0.95	-6.0%	-0.11	-16.9%	-0.06	-11.5%	-0.15	-3.4%	-0.69	-10.7%	0.04	1.1%
Indianapolis, IN MSA	Average	-0.95	-6.0%	-0.11	-16.9%	-0.06	-11.5%	-0.15	-3.4%	-0.69	-10.7%	0.04	1.1%
Johnson City-Kingsport-Bristol, TN-VA		1.00	0.70/	0.11	10 40/	0.07	11 50/	0.04	F 00/	0.00	10.0%	0.04	2.20/
MSA	Minimum	-1.32	-8.7%	-0.11	-16.4%	-0.07	-11.5%	-0.24	-5.2%	-0.93	-12.0%	0.04	3.3%
MSA	Maximum	-1.32	-8.7%	-0.11	-16.4%	-0.07	-11.5%	-0.24	-5.2%	-0.93	-12.0%	0.04	3.3%
MSA	Average	-1.32	-8.7%	-0.11	-16.4%	-0.07	-11.5%	-0.24	-5.2%	-0.93	-12.0%	0.04	3.3%
Knoxville, TN MSA	Minimum	-1.55	-8.4%	-0.14	-15.4%	-0.08	-12.1%	-0.31	-5.7%	-1.06	-11.2%	0.04	2.8%
Knoxville, TN MSA	Maximum	-1.55	-8.4%	-0.14	-15.4%	-0.08	-12.1%	-0.31	-5.7%	-1.06	-11.2%	0.04	2.8%
Knoxville, TN MSA	Average	-1.55	-8.4%	-0.14	-15.4%	-0.08	-12.1%	-0.31	-5.7%	-1.06	-11.2%	0.04	2.8%
Lancaster, PA MSA	Minimum	-1.11	-7.2%	-0.10	-16.4%	-0.06	-11.3%	-0.25	-6.2%	-0.70	-10.5%	0.01	0.3%
Lancaster, PA MSA	Maximum	-1.11	-7.2%	-0.10	-16.4%	-0.06	-11.3%	-0.25	-6.2%	-0.70	-10.5%	0.01	0.3%
Lancaster, PA MSA	Average	-1.11	-7.2%	-0.10	-16.4%	-0.06	-11.3%	-0.25	-6.2%	-0.70	-10.5%	0.01	0.3%
Lexington, KY MSA	Minimum	-1.01	-6.6%	-0.07	-10.1%	-0.04	-7.8%	-0.11	-3.0%	-0.81	-10.3%	0.02	0.9%
Lexington, KY MSA	Maximum	-1.01	-6.6%	-0.07	-10.1%	-0.04	-7.8%	-0.11	-3.0%	-0.81	-10.3%	0.02	0.9%
Lexington, KY MSA	Average	-1.01	-6.6%	-0.07	-10.1%	-0.04	-7.8%	-0.11	-3.0%	-0.81	-10.3%	0.02	0.9%
Louisville, KY-IN MSA	Minimum	-1.24	-7.8%	-0.15	-19.5%	-0.07	-13.2%	-0.18	-4.7%	-0.85	-11.0%	0.04	1.6%
Louisville, KY-IN MSA	Maximum	-1.26	-8.0%	-0.16	-20.3%	-0.07	-13.2%	-0.19	-4.8%	-0.87	-11.1%	0.03	1.3%
Louisville, KY-IN MSA	Average	-1.25	-7.9%	-0.16	-19.9%	-0.07	-13.2%	-0.18	-4.7%	-0.86	-11.0%	0.03	1.5%
Montgomery AL MSA	Minimum	-0.82	-5.2%	-0.11	-11 5%	-0.05	-7.5%	-0.08	-1 5%	-0.62	-9.1%	0.03	2.2%
Montgomery AL MSA	Maximum	-0.82	-5.2%	-0.11	-11.5%	-0.05	-7.5%	-0.08	-1.5%	-0.62	-9.1%	0.03	2.2%
Montgomery, AL MSA	Average	-0.82	-5.2%	-0.11	-11.5%	-0.05	-7.5%	-0.08	-1.5%	-0.62	-9.1%	0.03	2.2%
Nashville, TN MSA	Minimum	-1.09	-7.1%	-0.15	-14.6%	-0.06	-12.2%	-0.17	-4.3%	-0.72	-9.4%	0.01	0.5%
Nashville, IN MSA	Maximum	-1.09	-7.1%	-0.15	-14.6%	-0.06	-12.2%	-0.17	-4.3%	-0.72	-9.4%	0.01	0.5%
Nashville, TN MSA	Average	-1.09	-7.1%	-0.15	-14.0%	-0.06	-12.2%	-0.17	-4.3%	-0.72	-9.4%	0.01	0.5%
New Haven-Bridgeport-Stamford-Waterbury -Danbury, CT NECMA	Minimum	-0.71	-4.6%	-0.08	-10.5%	-0.07	-10.1%	-0.14	-3.2%	-0.55	-8.6%	0.12	4.1%
New Haven-Bridgeport-Stamford-Waterbury -Danbury, CT NECMA	Maximum	-0.71	-4.6%	-0.08	-10.5%	-0.07	-10.1%	-0.14	-3.2%	-0.55	-8.6%	0.12	4.1%
New Haven-Bridgeport-Stamford-Waterbury -Danbury, CT NECMA	Average	-0.71	-4.6%	-0.08	-10.5%	-0.07	-10.1%	-0.14	-3.2%	-0.55	-8.6%	0.12	4.1%
New York-Northern New Jersev-Long													
Island, NY-NJ-CT-PA CMSA	Minimum	-1.27	-7.8%	-0.18	-21.7%	-0.16	-15.4%	-0.23	-5.1%	-0.73	-11.7%	0.05	1.5%
New York-Northern New Jersey-Long	Maximum	-1 27	-7.8%	-0.18	-21 7%	-0.16	-15.4%	-0.23	-5 1%	-0.73	-11 7%	0.05	1.5%

New York-Northern New Jersey-Long Island, NY-NJ-CT-PA CMSA	Average	-1.27	-7.8%	-0.18	-21.7%	-0.16	-15.4%	-0.23	-5.1%	-0.73	-11.7%	0.05	1.5%
Parkersburg-Marietta, WV-OH MSA	Minimum	-1.38	-8.5%	-0.09	-12.3%	-0.11	-16.2%	-0.23	-5.9%	-1.03	-11.5%	0.06	3.6%
Parkersburg-Marietta, WV-OH MSA	Maximum	-1.38	-8.5%	-0.09	-12.3%	-0.11	-16.2%	-0.23	-5.9%	-1.03	-11.5%	0.06	3.6%
Parkersburg-Marietta, WV-OH MSA	Average	-1.38	-8.5%	-0.09	-12.3%	-0.11	-16.2%	-0.23	-5.9%	-1.03	-11.5%	0.06	3.6%
Philadelphia-Wilmington-Atlantic City,	Minimum	1 20	7.8%	0.17	27.4%	0.11	17.5%	0.23	5.3%	0.78	12.6%	0.09	2.7%
Philadelphia-Wilmington-Atlantic City,	Maximum	1 20	7.8%	0.17	27.4%	0.11	17.5%	0.23	5.3%	0.78	12.6%	0.00	2.7%
Philadelphia-Wilmington-Atlantic City	Maximum	-1.20	-7.0%	-0.17	-27.4%	-0.11	-17.5%	-0.23	-0.3%	-0.76	-12.0%	0.09	2.170
PA-NJ-DE-MD CMSA	Average	-1.20	-7.8%	-0.17	-27.4%	-0.11	-17.5%	-0.23	-5.3%	-0.78	-12.6%	0.09	2.7%
Pittsburgh, PA MSA	Minimum	-1.70	-8.7%	-0.20	-19.6%	-0.10	-13.5%	-0.24	-4.7%	-1.21	-12.7%	0.03	1.2%
Pittsburgh, PA MSA	Maximum	-1.70	-8.7%	-0.20	-19.6%	-0.10	-13.5%	-0.24	-4.7%	-1.21	-12.7%	0.03	1.2%
Pittsburgh, PA MSA	Average	-1.70	-8.7%	-0.20	-19.6%	-0.10	-13.5%	-0.24	-4.7%	-1.21	-12.7%	0.03	1.2%
Reading, PA MSA	Minimum	-1.04	-6.8%	-0.12	-19.7%	-0.07	-13.2%	-0.21	-5.4%	-0.71	-10.8%	0.07	2.0%
Reading, PA MSA	Maximum	-1.04	-6.8%	-0.12	-19.7%	-0.07	-13.2%	-0.21	-5.4%	-0.71	-10.8%	0.07	2.0%
Reading, PA MSA	Average	-1.04	-6.8%	-0.12	-19.7%	-0.07	-13.2%	-0.21	-5.4%	-0.71	-10.8%	0.07	2.0%
St. Louis, MO-IL MSA	Minimum	-0.96	-6.3%	-0.15	-12.8%	-0.07	-10.3%	-0.22	-4.9%	-0.55	-9.5%	0.03	1.0%
St. Louis, MO-IL MSA	Maximum	-1.14	-6.9%	-0.15	-14.0%	-0.07	-10.8%	-0.31	-6.5%	-0.64	-10.2%	0.02	0.6%
St. Louis, MO-IL MSA	Average	-1.04	-6.5%	-0.15	-13.3%	-0.07	-10.6%	-0.26	-5.4%	-0.59	-9.8%	0.02	0.8%
													
Steubenville-Weirton, OH-WV MSA	Minimum	-1.77	-10.6%	-0.13	-16.2%	-0.08	-13.3%	-0.39	-10.0%	-1.33	-15.2%	0.18	7.4%
Steubenville-Weirton, OH-WV MSA	Maximum	-1.92	-10.7%	-0.15	-17.3%	-0.08	-14.5%	-0.43	-10.2%	-1.44	-15.3%	0.16	7.1%
Steubenville-Weirton, OH-WV MSA	Average	-1.82	-10.6%	-0.14	-16.9%	-0.08	-14.1%	-0.41	-10.1%	-1.37	-15.2%	0.17	7.3%
Washington-Baltimore, DC-MD-VA-WV CMSA	Minimum	-1.05	-6.8%	-0.07	-9.5%	-0.08	-12 5%	-0 18	-4 1%	-0.80	-11.3%	0.08	3.6%
Washington-Baltimore, DC-MD-VA-WV CMSA	Maximum	-1.26	-7.6%	-0.08	-9.6%	-0.10	-13.5%	-0.30	-5.8%	-0.84	-12.2%	0.06	2.3%
Washington-Baltimore, DC-MD-VA-WV													1
CMSA	Average	-1.16	-7.2%	-0.08	-9.5%	-0.09	-13.0%	-0.24	-4.9%	-0.82	-11.8%	0.07	3.0%
Wheeling, WV-OH MSA	Minimum	-1.39	-9.0%	-0.08	-10.8%	-0.07	-13.0%	-0.17	-4.9%	-1.17	-13.6%	0.08	4.4%
Wheeling, WV-OH MSA	Maximum	-1.39	-9.0%	-0.08	-10.8%	-0.07	-13.0%	-0.17	-4.9%	-1.17	-13.6%	0.08	4.4%
Wheeling, WV-OH MSA	Average	-1.39	-9.0%	-0.08	-10.8%	-0.07	-13.0%	-0.17	-4.9%	-1.17	-13.6%	0.08	4.4%
		4.40	7.40/	0.00	44.40/	0.00	10.00/	0.00	E 70/	0.00	11.00/	0.07	0.00/
YORK, PA MSA	Maximum	-1.10	-7.4%	-0.09	-14.1%	-0.08	-13.3%	-0.23	-5.7%	-0.83	-11.9%	0.07	2.3%
York DA MSA	Naximum	-1.10	-7.4%	-0.09	-14.1%	-0.08	-13.3%	-0.23	-5.7%	-0.83	-11.9%	0.07	2.3%
TOIK, PA MSA	Average	-1.10	-7.4%	-0.09	-14.1%	-0.08	-13.3%	-0.23	-5.7%	-0.83	-11.9%	0.07	2.3%
Youngstown-Warren OH MSA	Minimum	-1.22	-8.1%	-0.14	-16 5%	-0.07	-11 7%	-0.22	-5.8%	-0.89	-12.9%	0.10	3.8%
Youngstown-Warren, OH MSA	Maximum	-1.22	-8.2%	-0.14	-17.2%	-0.07	-13.3%	-0.22	-5.9%	-0.03	-12.9%	0.10	3.7%
Youngstown-Warren, OH MSA	Average	-1.24	-8.1%	-0.14	-16.9%	-0.08	-12.5%	-0.22	-5.8%	-0.90	-12.9%	0.10	3.8%
roangeterm manon, errmert	/ Woldge		0.170	0.11	10.070	0.00	12.070	0.22	0.070	0.00	12.070	0.10	0.070
DeKalb County, Alabama	Minimum	-0.93	-6.1%	-0.07	-8.5%	-0.04	-6.9%	-0.08	-1.6%	-0.76	-10.7%	0.01	0.8%
DeKalb County, Alabama	Maximum	-0.93	-6.1%	-0.07	-8.5%	-0.04	-6.9%	-0.08	-1.6%	-0.76	-10.7%	0.01	0.8%
DeKalb County, Alabama	Average	-0.93	-6.1%	-0.07	-8.5%	-0.04	-6.9%	-0.08	-1.6%	-0.76	-10.7%	0.01	0.8%
Talladega County, Alabama	Minimum	-0.99	-6.0%	-0.10	-10.5%	-0.05	-7.2%	-0.09	-1.5%	-0.80	-11.3%	0.05	3.6%
Talladega County, Alabama	Maximum	-0.99	-6.0%	-0.10	-10.5%	-0.05	-7.2%	-0.09	-1.5%	-0.80	-11.3%	0.05	3.6%
Talladega County, Alabama	Average	-0.99	-6.0%	-0.10	-10.5%	-0.05	-7.2%	-0.09	-1.5%	-0.80	-11.3%	0.05	3.6%
Floyd County, Georgia	Minimum	-1.34	-7.9%	-0.18	-18.6%	-0.07	-10.9%	-0.15	-2.6%	-0.96	-12.2%	0.03	2.4%
Floyd County, Georgia	Maximum	-1.34	-7.9%	-0.18	-18.6%	-0.07	-10.9%	-0.15	-2.6%	-0.96	-12.2%	0.03	2.4%
Floyd County, Georgia	Average	-1.34	-7.9%	-0.18	-18.6%	-0.07	-10.9%	-0.15	-2.6%	-0.96	-12.2%	0.03	2.4%
Hall County, Georgia	Minimum	-1.31	-8.4%	-0.15	-19.5%	-0.08	-12.5%	-0.17	-3.1%	-0.93	-12.8%	0.01	1.0%
Hall County, Georgia	Maximum	-1.31	-8.4%	-0.15	-19.5%	-0.08	-12.5%	-0.17	-3.1%	-0.93	-12.8%	0.01	1.0%
Hall County, Georgia	Average	-1.31	-8.4%	-0.15	-19.5%	-0.08	-12.5%	-0.17	-3.1%	-0.93	-12.8%	0.01	1.0%
	L		ļ		ļ		ļ					ļ	ļ
Wilkinson County, Georgia	Minimum	-1.05	-6.3%	-0.09	-10.8%	-0.05	-6.8%	-0.22	-3.6%	-0.76	-10.5%	0.07	5.3%
Wilkinson County, Georgia	Maximum	-1.05	-6.3%	-0.09	-10.8%	-0.05	-6.8%	-0.22	-3.6%	-0.76	-10.5%	0.07	5.3%
Wilkinson County, Georgia	Average	-1.05	-6.3%	-0.09	-10.8%	-0.05	-6.8%	-0.22	-3.6%	-0.76	-10.5%	0.07	5.3%

Scioto County, Ohio	Minimum	-1.37	-7.4%	-0.09	-11.2%	-0.09	-12.5%	-0.27	-5.4%	-0.99	-10.9%	0.06	2.5%
Scioto County, Ohio	Maximum	-1.37	-7.4%	-0.09	-11.2%	-0.09	-12.5%	-0.27	-5.4%	-0.99	-10.9%	0.06	2.5%
Scioto County, Ohio	Average	-1.37	-7.4%	-0.09	-11.2%	-0.09	-12.5%	-0.27	-5.4%	-0.99	-10.9%	0.06	2.5%
Roane County, Tennessee	Minimum	-1.08	-7.1%	-0.07	-9.2%	-0.04	-7.5%	-0.11	-2.5%	-0.89	-11.3%	0.04	3.2%
Roane County, Tennessee	Maximum	-1.08	-7.1%	-0.07	-9.2%	-0.04	-7.5%	-0.11	-2.5%	-0.89	-11.3%	0.04	3.2%
Roane County, Tennessee	Average	-1.08	-7.1%	-0.07	-9.2%	-0.04	-7.5%	-0.11	-2.5%	-0.89	-11.3%	0.04	3.2%
Overall	Minimum	-0.71	-4.6%	-0.07	-8.5%	-0.03	-4.0%	-0.07	-1.2%	-0.55	-8.6%	0.18	7.4%
Overall	Maximum	-1.92	-10.7%	-0.29	-27.4%	-0.16	-20.6%	-0.57	-10.5%	-1.44	-15.3%	0.01	0.3%
Overall	Average	-1.23	-7.5%	-0.13	-14.9%	-0.08	-11.8%	-0.22	-4.8%	-0.86	-11.5%	0.05	2.5%
		PM	2.5	Crus	stal	Elementa	al Carbon	Organic	Aerosol	Ammoniu	m Sulfate	Ammoniu	im Nitrate
--	-----------	-------------------	---------------------------------	-------------------	---------------------------------	-------------------	---------------------------------	-------------------	---------------------------------	-------------------	---------------------------------	-------------------	---------------------------------
MSA/CMSA	Reduction	(Local - Base)	% Change Local vs Base										
Athens, GA	Minimum	-1.05	-6.4%	-0.11	-12.1%	-0.05	-8.1%	-0.12	-2.0%	-0.78	-10.6%	0.00	0.0%
Athens, GA	Maximum	-1.05	-6.4%	-0.11	-12.1%	-0.05	-8.1%	-0.12	-2.0%	-0.78	-10.6%	0.00	0.0%
Athens, GA	Average	-1.05	-6.4%	-0.11	-12.1%	-0.05	-8.1%	-0.12	-2.0%	-0.78	-10.6%	0.00	0.0%
Atlanta, GA	Minimum	-1.28	-7.4%	-0.14	-15.6%	-0.08	-11.0%	-0.18	-2.6%	-0.83	-11.9%	0.02	1.7%
Atlanta, GA	Maximum	-1.44	-8.7%	-0.18	-21.4%	-0.11	-13.9%	-0.23	-3.0%	-0.98	-13.8%	0.01	0.7%
Atlanta, GA	Average	-1.37	-1.1%	-0.16	-18.5%	-0.09	-11.9%	-0.20	-2.8%	-0.93	-12.6%	0.01	1.0%
Augusta-Aiken GA-SC	Minimum	-1.00	-6.4%	-0 10	-11.5%	-0.04	-7.3%	-0.20	-3.4%	-0.65	-9.7%	0.01	0.9%
Augusta-Aiken, GA-SC	Maximum	-1.00	-6.4%	-0.10	-11.5%	-0.04	-7.3%	-0.20	-3.4%	-0.65	-9.7%	0.01	0.9%
Augusta-Aiken, GA-SC	Average	-1.00	-6.4%	-0.10	-11.5%	-0.04	-7.3%	-0.20	-3.4%	-0.65	-9.7%	0.01	0.9%
		l											[<u></u>
Birmingham, AL	Minimum	-1.29	-6.6%	-0.25	-15.0%	-0.09	-8.8%	-0.24	-3.0%	-0.72	-10.5%	0.01	0.7%
Birmingham, AL	Maximum	-1.29	-6.6%	-0.25	-15.0%	-0.09	-8.8%	-0.24	-3.0%	-0.72	-10.5%	0.01	0.7%
Birmingham, AL	Average	-1.29	-6.6%	-0.25	-15.0%	-0.09	-8.8%	-0.24	-3.0%	-0.72	-10.5%	0.01	0.7%
		 	ļ'										ļ
Canton-Massillon, OH	Minimum	-1.20	-7.3%	-0.13	-14.6%	-0.06	-11.3%	-0.19	-4.8%	-0.89	-11.6%	0.05	1.7%
Canton-Massillon, OH	Maximum	-1.20	-7.3%	-0.13	-14.6%	-0.06	-11.3%	-0.19	-4.8%	-0.89	-11.6%	0.05	1.7%
Canton-Massilion, OH	Average	-1.20	-7.3%	-0.13	-14.6%	-0.06	-11.3%	-0.19	-4.8%	-0.89	-11.6%	0.05	1.7%
Charloston MA/	Minimum	1 56	9.5%	0.10	12.2%	0.12	10.0%	0.30	6.8%	1 10	12.6%	0.06	3.0%
Charleston WV	Maximum	-1.50	-9.5%	-0.10	-13.2 %	-0.12	-19.0%	-0.30	-6.8%	-1.10	-12.0%	0.00	3.9%
Charleston, WV	Average	-1.56	-9.5%	-0.10	-13,2%	-0.12	-19,0%	-0.30	-6.8%	-1.10	-12.6%	0.06	3.9%
	7.00.1.gt		0.0.1	0	10.2.1	0	10.2.1	0.22	0.0.1			0.00	0.0.0
Chattanooga, TN-GA	Minimum	-1.27	-8.1%	-0. <u>14</u>	-14.1%	-0.05	-9.8%	-0.22	-4.5%	-0.88	-11.4%	0.02	1.7%
Chattanooga, TN-GA	Maximum	-1.27	-8.1%	-0.14	-14.1%	-0.05	-9.8%	-0.22	-4.5%	-0.88	-11.4%	0.02	1.7%
Chattanooga, TN-GA	Average	-1.27	-8.1%	-0.14	-14.1%	-0.05	-9.8%	-0.22	-4.5%	-0.88	-11.4%	0.02	1.7%
													<u> </u>
Chicago-Gary-Kenosha, IL-IN-WI	Minimum	-1.28	-7.3%	-0.13	-15.1%	-0.06	-9.7%	-0.58	-10.6%	-0.55	-10.2%	0.04	0.8%
Chicago-Gary-Kenosha, IL-IN-WI	Maximum	-1.28	-7.3%	-0.13	-15.1%	-0.06	-9.7%	-0.58	-10.6%	-0.55	-10.2%	0.04	0.8%
Chicago-Gary-Kenosha, IL-IN-WI	Average	-1.28	-7.3%	-0.13	-15.1%	-0.06	-9.7%	-0.58	-10.6%	-0.55	-10.2%	0.04	0.8%
Cincinnati-Hamilton, OH- <u>KY-IN</u>	Minimum	1.03	6.7%	0.10	<u>-12.3%</u>	-0.04	8.9%	0.18	-4.3%	-0.73	<u>-10.6%</u>	0.04	1.4%
Cincinnati-Hamilton,		1 00	7.00/	0.10	10.00/	0.05	0.00/	<u> </u>	5 10/	2.01	11.00/	0.04	1.00/
OH-KY-IN Cincinnati Hamilton	Maximum	-1.23	-1.2%	-0.13	-16.0%	-0.05	-9.8%	-0.20	-5.1%	-0.91	-11.3%	0.04	1.3%
OH-KY-IN	Average	-1.13	-6.9%	-0.12	-14.2%	-0.04	-9.3%	-0.19	-4.7%	-0.82	-11.0%	0.04	1.3%
Cleveland-Akron, OH	Minimum	-1.09	-6.9%	-0.12	-14.0%	-0.07	-10.8%	-0.17	-4.3%	-0.80	-11.6%	0.11	2.7%
Cleveland-Akron, OH	Maximum	-1.39	-7.5%	-0.29	-21.8%	-0.09	-12.7%	-0.22	-4.7%	-0.90	-12.4%	0.08	2.6%
Cleveland-Akron, OH	Average	-1.24	-7.2%	-0.20	-17.9%	-0.08	-11.8%	-0.20	-4.5%	-0.85	-12.0%	0.09	2.7%
Columbus, GA-AL	Minimum	-0.75	-4.6%	-0.08	-8.8%	-0.03	-4.3%	-0.07	-1.2%	-0.61	-8.5%	0.05	3.4%
Columbus, GA-AL	Maximum	-0.76	-4.6%	-0.09	-9.6%	-0.03	-4.3%	-0.08	-1.3%	-0.61	-8.6%	0.04	2.8%
Columbus, GA-AL	Average	-0.75	-4.6%	-0.08	-9.2%	-0.03	-4.3%	-0.08	-1.3%	-0.61	-8.5%	0.04	3.1%
Columbus OH	Minimum	-1 04	-6.4%	-0.12	-13.0%	-0.04	-7.7%	-0.15	-3.8%	-0 79	-11.0%	0.05	1.6%
Columbus, OH	Maximum	-1.04	-6.4%	-0.12	-13.0%	-0.04	-7.7%	-0.15	-3.8%	-0.79	-11.0%	0.05	1.6%
Columbus, OH	Average	-1.04	-6.4%	-0.12	-13.0%	-0.04	-7.7%	-0.15	-3.8%	-0.79	-11.0%	0.05	1.6%
· · · · · ·													
Detroit-Ann Arbor-Flint, MI	Minimum	-1.22	-6.7%	-0.21	-21.6%	-0.07	-9.6%	-0.25	-5.1%	-0.78	-12.3%	0.08	1.6%
Detroit-Ann Arbor-Flint, MI	Maximum	-1.22	-6.7%	-0.21	-21.6%	-0.07	-9.6%	-0.25	-5.1%	-0.78	-12.3%	0.08	1.6%
Detroit-Ann Arbor-Flint, MI	Average	-1.22	-6.7%	-0.21	-21.6%	-0.07	-9.6%	-0.25	-5.1%	-0.78	-12.3%	0.08	1.6%
Liuntington Ashiryd		<u> </u>	├ ───┤										<u> </u>
Huntington-Asnland, WV-KY-OH	Minimum	-1.26	-8.0%	-0.08	-11.6%	-0.11	-18.0%	-0.26	-5.8%	-0.86	-10.8%	0.05	3.2%

Huntington-Ashland, WV-KY-OH	Maximum	-1.26	-8.0%	-0.08	-11.6%	-0.11	-18.0%	-0.26	-5.8%	-0.86	-10.8%	0.05	3.2%
Huntington-Ashland,													
WV-KY-OH	Average	-1.26	-8.0%	-0.08	-11.6%	-0.11	-18.0%	-0.26	-5.8%	-0.86	-10.8%	0.05	3.2%
Indianapolis IN	Minimum	-0.87	-5.7%	-0.11	-16.4%	-0.04	-8.5%	-0.13	-3.0%	-0.62	-10.1%	0.03	0.9%
	Maximum	-0.87	-5.7%	-0.11	-16.4%	-0.04	-8.5%	-0.13	-3.0%	-0.02	-10.1%	0.03	0.9%
Indianapolis, IN	Average	-0.87	-5.7%	-0.11	-16.4%	-0.04	-8.5%	-0.13	-3.0%	-0.62	-10.1%	0.03	0.9%
Knoxville, TN	Minimum	-1.47	-8.3%	-0.14	-14.9%	-0.07	-11.9%	-0.29	-5.6%	-1.01	-11.0%	0.03	2.2%
Knoxville, TN	Maximum	-1.47	-8.3%	-0.14	-14.9%	-0.07	-11.9%	-0.29	-5.6%	-1.01	-11.0%	0.03	2.2%
Knoxville, TN	Average	-1.47	-8.3%	-0.14	-14.9%	-0.07	-11.9%	-0.29	-5.6%	-1.01	-11.0%	0.03	2.2%
	Minimaruma	1 10	7 70/	0.16	20.0%	0.07	14.69/	0.17	4 59/	0.92	10.0%	0.02	1.20/
	Maximum	-1.19	-7.7%	-0.10	-20.0%	-0.07	-14.0%	-0.17	-4.3%	-0.84	-10.9%	0.03	0.9%
	Average	-1.21	-7.8%	-0.16	-20.1%	-0.07	-14.6%	-0.18	-4.6%	-0.83	-11.0%	0.02	1.1%
	, wordgo	1.20	1.070	0.10	20.170	0.07	111070	0.10		0.00	111070	0.02	
Montgomery, AL	Minimum	-0.79	-5.1%	-0.11	-11.2%	-0.04	-6.3%	-0.08	-1.5%	-0.60	-9.1%	0.03	2.3%
Montgomery, AL	Maximum	-0.79	-5.1%	-0.11	-11.2%	-0.04	-6.3%	-0.08	-1.5%	-0.60	-9.1%	0.03	2.3%
Montgomery, AL	Average	-0.79	-5.1%	-0.11	-11.2%	-0.04	-6.3%	-0.08	-1.5%	-0.60	-9.1%	0.03	2.3%
New Haven-Bridgeport-Stamford-													
Waterbury-Danbury, CT	Minimum	-0.68	-4.5%	-0.09	-11.5%	-0.05	-8.5%	-0.12	-2.8%	-0.53	-8.5%	0.11	3.7%
New Haven Bridgenort Stamford													
Waterbury-Danbury, CT	Maximum	-0.68	-4.5%	-0.09	-11.5%	-0.05	-8.5%	-0.12	-2.8%	-0.53	-8.5%	0.11	3.7%
New													
Haven-Bridgeport-Stamford- Waterbury-Danbury CT	Average	-0.68	-4 5%	-0.09	-11 5%	-0.05	-8.5%	-0.12	-2.8%	-0.53	-8.5%	0 11	3.7%
Waterbury-Danbury, Ch	Average	-0.00	-4.070	-0.05	-11.570	-0.00	-0.070	-0.12	-2.070	-0.55	-0.070	0.11	5.770
New York-Northern New													
Jersey-Long Island,	Minimum	1 21	7 60/	0.19	21 20/	0.12	15 10/	0.21	1 90/	0.71	11 60/	0.02	0.0%
NT-NJ-CT-PA	winimum	-1.21	-7.0%	-0.16	-21.2%	-0.13	-15.1%	-0.21	-4.0%	-0.71	-11.0%	0.03	0.9%
Jersey-Long Island,													
NY-NJ-CT-PA	Maximum	-1.21	-7.6%	-0.18	-21.2%	-0.13	-15.1%	-0.21	-4.8%	-0.71	-11.6%	0.03	0.9%
Jersey-Long Island,													
NY-NJ-CT-PA	Average	-1.21	-7.6%	-0.18	-21.2%	-0.13	-15.1%	-0.21	-4.8%	-0.71	-11.6%	0.03	0.9%
Deuleenskeure Mericette													
WV-OH	Minimum	-1.30	-8.3%	-0.09	-12.2%	-0.10	-15.9%	-0.21	-5.6%	-0.95	-11.3%	0.05	3.0%
Parkersburg-Marietta,													
WV-OH	Maximum	-1.30	-8.3%	-0.09	-12.2%	-0.10	-15.9%	-0.21	-5.6%	-0.95	-11.3%	0.05	3.0%
WV-OH	Average	-1.30	-8.3%	-0.09	-12.2%	-0.10	-15.9%	-0.21	-5.6%	-0.95	-11.3%	0.05	3.0%
Pittsburgh, PA	Minimum	-1.59	-8.5%	-0.19	-18.4%	-0.08	-11.9%	-0.22	-4.4%	-1.12	-12.5%	0.02	0.8%
Pittsburgh, PA	Maximum	-1.59	-8.5%	-0.19	-18.4%	-0.08	-11.9%	-0.22	-4.4%	-1.12	-12.5%	0.02	0.8%
Pittsburgh, PA	Average	-1.59	-8.5%	-0.19	-18.4%	-0.08	-11.9%	-0.22	-4.4%	-1.12	-12.5%	0.02	0.8%
St. Louis MO-II	Minimum	-1.01	-6.3%	-0.15	-12.5%	-0.06	-10.5%	-0.22	-1 5%	-0.59	_9.7%	0.02	0.7%
St. Louis, MO-IL	Maximum	-1.14	-7.1%	-0.15	-13.5%	-0.07	-11.3%	-0.22	-6.4%	-0.65	-10.5%	0.02	0.3%
St. Louis, MO-IL	Average	-1.08	-6.7%	-0.15	-13.0%	-0.06	-10.9%	-0.26	-5.5%	-0.62	-10.1%	0.02	0.5%
Steubenville-Weirton,			10		10.55		10		10.111				
OH-WV	Minimum	-1.71	-10.5%	-0.14	-16.9%	-0.06	-12.2%	-0.39	-10.1%	-1.26	-15.0%	0.16	6.6%
Steubenville-Weirton, OH-WV	Maximum	-1.84	-10.6%	-0.15	-17.1%	-0.08	-14.8%	-0.42	-10.2%	-1.36	-15.1%	0.14	6.3%
Steubenville-Weirton,													
OH-WV	Average	-1.75	-10.6%	-0.14	-17.0%	-0.07	-13.8%	-0.40	-10.2%	-1.29	-15.1%	0.15	6.5%
Weshington Baltimore													
DC-MD-VA-WV	Minimum	-1.18	-7.3%	-0.08	-9.4%	-0.08	-12.1%	-0.27	-5.4%	-0.80	-12.1%	0.05	2.0%
Washington-Baltimore,	[_	_		_		_	_	-		_	_
DC-MD-VA-WV	Maximum	-1.18	-7.3%	-0.08	-9.4%	-0.08	-12.1%	-0.27	-5.4%	-0.80	-12.1%	0.05	2.0%
vvasnington-Baltimore, DC-MD-VA-WV	Average	-1.18	-7.3%	-0.08	-9.4%	-0.08	-12.1%	-0.27	-5.4%	-0.80	-12.1%	0.05	2.0%
· · · · ·													
York, PA	Minimum	-1.10	-7.3%	-0.09	-13.8%	-0.06	-11.5%	-0.21	-5.3%	-0.78	-11.6%	0.05	1.7%
York, PA	Maximum	-1.10	-7.3%	-0.09	-13.8%	-0.06	-11.5%	-0.21	-5.3%	-0.78	-11.6%	0.05	1.7%
York, PA	Average	-1.10	-7.3%	-0.09	-13.8%	-0.06	-11.5%	-0.21	-5.3%	-0.78	-11.6%	0.05	1.7%

	I		r –	1	1		r –		r		1		T
Talladega County, Alabama	Minimum	-0.94	-5.9%	-0.10	-10.3%	-0.05	-7.7%	-0.09	-1.6%	-0.73	-10.7%	0.04	3.0%
Talladega County, Alabama	Maximum	-0.94	-5.9%	-0.10	-10.3%	-0.05	-7.7%	-0.09	-1.6%	-0.73	-10.7%	0.04	3.0%
Talladega County, Alabama	Average	-0.94	-5.9%	-0.10	-10.3%	-0.05	-7.7%	-0.09	-1.6%	-0.73	-10.7%	0.04	3.0%
Floyd County, Georgia	Minimum	-1.29	-7.8%	-0.19	-19.0%	-0.06	-10.5%	-0.14	-2.5%	-0.93	-12.1%	0.02	1.7%
Floyd County, Georgia	Maximum	-1.29	-7.8%	-0.19	-19.0%	-0.06	-10.5%	-0.14	-2.5%	-0.93	-12.1%	0.02	1.7%
Floyd County, Georgia	Average	-1.29	-7.8%	-0.19	-19.0%	-0.06	-10.5%	-0.14	-2.5%	-0.93	-12.1%	0.02	1.7%
Hall County, Georgia	Minimum	-1.25	-8.3%	-0.16	-20.3%	-0.07	-12.5%	-0.15	-2.8%	-0.88	-12.6%	0.00	0.0%
Hall County, Georgia	Maximum	-1.25	-8.3%	-0.16	-20.3%	-0.07	-12.5%	-0.15	-2.8%	-0.88	-12.6%	0.00	0.0%
Hall County, Georgia	Average	-1.25	-8.3%	-0.16	-20.3%	-0.07	-12.5%	-0.15	-2.8%	-0.88	-12.6%	0.00	0.0%
Wilkinson County, Georgia	Minimum	-1.04	-6.3%	-0.10	-11.6%	-0.04	-5.9%	-0.22	-3.6%	-0.74	-10.4%	0.06	4.6%
Wilkinson County, Georgia	Maximum	-1.04	-6.3%	-0.10	-11.6%	-0.04	-5.9%	-0.22	-3.6%	-0.74	-10.4%	0.06	4.6%
Wilkinson County, Georgia	Average	-1.04	-6.3%	-0.10	-11.6%	-0.04	-5.9%	-0.22	-3.6%	-0.74	-10.4%	0.06	4.6%
Scioto County, Ohio	Minimum	-1.28	-7.3%	-0.10	-12.2%	-0.07	-10.8%	-0.25	-5.2%	-0.92	-10.7%	0.05	2.2%
Scioto County, Ohio	Maximum	-1.28	-7.3%	-0.10	-12.2%	-0.07	-10.8%	-0.25	-5.2%	-0.92	-10.7%	0.05	2.2%
Scioto County, Ohio	Average	-1.28	-7.3%	-0.10	-12.2%	-0.07	-10.8%	-0.25	-5.2%	-0.92	-10.7%	0.05	2.2%
Overall	Minimum	-0.68	-4.5%	-0.08	-8.8%	-0.03	-4.3%	-0.07	-1.2%	-0.53	-8.5%	0.16	6.6%
Overall	Maximum	-1.84	-10.6%	-0.29	-21.8%	-0.13	-19.0%	-0.58	-10.6%	-1.36	-15.1%	0.00	0.0%
Overall	Average	-1.21	-7.3%	-0.14	-15.1%	-0.07	-11.0%	-0.22	-4.6%	-0.84	-11.4%	0.05	2.1%

Technical Support Document for the Interstate Air Quality Rule Air Quality Modeling Analyses

Appendix M

Projected Visibility Summaries for 20% Best and 20% Worst Days at IMPROVE Monitoring Sites

Example Calculation of the Predicted Change in Visibility on the 20% Worst Days at Acadia National Park The example shows the predicted improvement in visibility from 2001 to the 2015 IAQR control case

Day	1996 IMPROVE	IMPROVE bext	IMPROVE SO4 bext	IMPROVE NO3 bext	IMPROVE OMC bext	IMPROVE EC bext	IMPROVE soil bext	IMPROVE coarse	2015c RRF	2015c RRF	2015c RRF	2015c RRF	2015c RRF	2015c RRF
Day 1	21.66	87.27	16.45	1/ 53	9.10	3.87	0.46	2.86	1 04	1 01	0.85	0.77	0.96	1 04
Day 1 Day 2	21.00	85.83	53 58	4 50	7 79	3.07	0.40	5 38	0.95	1.01	0.00	0.07	0.00	1.04
Day 2 Day 3	23.54	105.31	67.83	11 24	8.32	4 26	0.00	3.35	0.58	0.73	0.00	0.00	1.04	1.00
Day 3 Day 4	20.11	74 72	53.60	1 93	4 84	3.04	0.00	1 18	0.50	1 71	0.00	0.70	1.04	1.07
Day 5	21.85	88.93	51 43	7 38	10 18	1 43	0.10	8 26	0.00	1.71	0.70	0.62	1.00	1.00
Day 6	23.83	108.41	74.33	4.42	10.62	4.13	0.28	4.63	0.63	1.39	0.85	0.63	1.07	1.07
Dav 7	24.69	118.16	80.05	5.64	12.08	7.95	0.47	1.98	0.63	1.01	0.77	0.58	1.09	1.08
Day 8	22.34	93.35	41.44	1.65	30.37	6.73	0.28	2.88	0.78	0.69	0.92	0.85	1.03	1.06
Day 9	22.47	94.56	59.46	4.35	12.62	3.66	0.29	4.19	0.92	0.64	0.83	0.64	1.06	1.08
Day 10	24.11	111.40	88.74	1.26	6.50	3.49	0.02	1.39	0.65	0.46	0.81	0.59	1.09	1.09
Day 11	32.94	269.47	235.95	1.29	15.09	6.52	0.09	0.54	0.59	0.74	0.80	0.64	1.07	1.08
Day 12	25.23	124.60	90.91	4.25	12.87	4.67	0.33	1.58	0.72	0.40	0.90	0.70	1.06	1.08
Day 13	30.50	211.16	179.59	3.26	11.20	5.42	0.07	1.62	0.57	1.26	0.77	0.62	1.08	1.07
Day 14	22.30	93.00	57.95	8.26	10.37	3.50	0.28	2.65	0.63	0.56	0.80	0.59	1.07	1.08
Day 15	24.07	111.05	77.79	3.03	13.68	3.47	0.23	2.85	0.78	1.05	0.90	0.67	1.04	1.06
Day 16	23.37	103.49	69.05	2.34	10.74	4.87	0.33	6.15	0.86	0.97	0.88	0.78	1.04	1.06
Day 17	20.27	75.91	54.19	1.77	4.66	2.45	0.16	2.69	1.00	0.91	0.94	0.96	0.97	1.04
Day 18	19.98	73.76	46.74	2.46	6.05	5.49	0.15	2.85	0.74	0.67	0.82	0.74	0.95	1.04
Day 19	22.15	91.58	65.68	2.83	6.14	4.43	0.11	2.38	0.77	1.15	0.84	0.71	0.97	1.03

Average 23.52 dv

1996 Observed values at the Acadia IMPROVE site

(10 Mm-1 is added to each total bext value to account for Rayleigh scattering)

Relative Reduction Factors are calculated from REMSAD for each species based on the model

predicted % reduction for each day.

RRFs represent the predicted reduction from the 2001 base case to the 2015 IAQR control case. An RRF of 0.85 indicates a 15% reduction.

2015c SO4 bext	2015c NO3 bext	2015c OMC bext	2015c EC bext	2015c soil bext	2015c coarse bext	2015c Total bext	2015c Deciviews
48.37	14.70	7.74	2.99	0.44	2.99	87.23	21.66
50.86	4.61	7.44	3.14	0.64	5.73	82.41	21.09
39.67	8.25	6.90	2.98	0.31	3.58	71.69	19.70
31.76	3.29	3.62	1.87	0.13	1.24	51.91	16.47
31.86	13.61	8.23	0.89	0.27	9.03	73.89	20.00
46.93	6.13	9.04	2.59	0.31	4.96	79.96	20.79
50.46	5.70	9.30	4.64	0.51	2.14	82.74	21.13
32.36	1.14	27.98	5.72	0.29	3.06	80.56	20.86
54.68	2.78	10.50	2.33	0.31	4.50	85.10	21.41
57.47	0.58	5.24	2.06	0.02	1.51	76.89	20.40
138.81	0.96	12.05	4.17	0.10	0.58	166.67	28.13
65.89	1.69	11.58	3.28	0.35	1.71	94.49	22.46
101.73	4.11	8.64	3.37	0.07	1.74	129.67	25.62
36.71	4.63	8.26	2.08	0.30	2.86	64.84	18.69
60.92	3.17	12.27	2.34	0.24	3.01	91.96	22.19
59.35	2.28	9.44	3.81	0.34	6.52	91.74	22.16
54.08	1.61	4.36	2.35	0.15	2.79	75.33	20.19
34.74	1.64	4.96	4.06	0.15	2.97	58.51	17.67
50.31	3.25	5.14	3.16	0.10	2.46	74.43	20.07
					Average dv 20	15c	21.09
			Reduction	in dv from	2001-2015 co	ntrol	-2.43

The RRFs are multiplied by the base year bext values to get the 2015 control bext predictions. The daily total bext values are converted to deciviews and then the deciview values are averaged across all days. The resultant average dv value for 2015c is subtracted from the observed value to get the predicted visibility improvement on the 20% worst days (-2.43 dv).

Projected Visibility Summaries for 20% Best Days at IMPROVE Monitoring Sites

IMPROVE Site ID	Site Name	State	Base 2010 Improvement from 2001 (dv)	IAQR Control 2010 Improvement from 2001 (dv)	2010 Improvement from IAQR Only (dv)	Base 2015 Improvement from 2001 (dv)	IAQR Control 2015 Improvement from 2001 (dv)	2015 Improvement from IAQR Only (dv)
ACAD	Acadia National Park	Maine	-0.25	-0.47	-0.22	-0.34	-0.56	-0.22
BADL	Badlands National Park	South Dakota	-0.29	-0.35	-0.06	-0.33	-0.40	-0.07
BAND	Bandelier National Monument	New Mexico	-0.28	-0.29	0.00	-0.39	-0.38	0.00
BIBE	Big Bend National Park	Texas	-0.35	-0.35	-0.01	-0.37	-0.37	-0.01
BLIS	Bliss State Park(TRPA)	California	-0.40	-0.41	-0.01	-0.54	-0.55	-0.01
BRCA	Bryce Canyon National Park	Colorado	-0.30	-0.30	0.00	-0.39	-0.39	0.00
BRID	Bridger Wilderness	Wyoming	-0.19	-0.19	0.00	-0.23	-0.23	0.00
BRIG	Brigantine National Wildlife Refuge	New Jersey	-0.28	-0.77	-0.50	-0.27	-0.83	-0.56
CANY	Canyonlands National Park	Utah	-0.17	-0.17	0.00	-0.18	-0.18	0.00
CHAS	Chassahowitzka National Wildlife	Florida	-0.96	-1.91	-0.96	-1.12	-2.41	-1.29
CHIR	Chiricahua National Monument	Arizona	-0.16	-0.16	0.00	-0.16	-0.17	0.00
CRLA	Crater Lake National Park	Oregon	-0.30	-0.30	0.00	-0.38	-0.38	0.00
DOSO	Dolly Sods /Otter Creek Wildernes	West Virginia	-0.43	-1.64	-1.22	-0.64	-1.98	-1.34
GICL	Gila Wilderness	New Mexico	-0.17	-0.17	0.00	-0.19	-0.19	0.00
GLAC	Glacier National Park	Montana	-0.48	-0.48	0.00	-0.58	-0.58	0.00
GRCA	Grand Canyon- Hopi Point	Arizona	-0.24	-0.25	-0.01	-0.26	-0.27	-0.01
GRSA	Great Sand Dunes National Monument	Colorado	-0.29	-0.29	0.00	-0.33	-0.33	0.00
GRSM	Great Smoky Mountains National Park	Tennessee	-0.44	-1.21	-0.76	-0.58	-1.60	-1.02
GUMO	Guadalupe Mountains National Park	Texas	-0.36	-0.40	-0.05	-0.40	-0.46	-0.05
JARB	Jarbidge Wilderness	Nevada	-0.18	-0.18	0.00	-0.22	-0.22	0.00
JEFF	Jefferson/James River Face Wilderness	Virginia	-0.26	-1.14	-0.88	-0.54	-1.49	-0.95
LAVO	Lassen Volcanic National Park	California	-0.32	-0.32	0.00	-0.41	-0.41	0.00
LYBR	Lye Brook Wilderness	Vermont	-0.34	-0.50	-0.16	-0.44	-0.59	-0.15
MACA	Mammoth Cave National Park	Kentucky	-0.76	-1.43	-0.67	-0.95	-1.64	-0.69
MEVE	Mesa Verde National Park	Colorado	-0.35	-0.35	0.00	-0.38	-0.38	0.00
MOOS	Moosehorn NWR	Maine	-0.20	-0.37	-0.17	-0.26	-0.42	-0.16
MORA	Mount Rainier National Park	Washington	-0.48	-0.48	0.00	-0.58	-0.58	0.00
MOZI	Mount Zirkel Wilderness	Colorado	-0.18	-0.18	0.00	-0.19	-0.19	0.00
OKEF	Okefenokee National Wildlife Refuge	Georgia	-0.54	-1.18	-0.64	-0.67	-1.46	-0.80
PEFO	Petrified Forest National Park	Arizona	-0.27	-0.27	0.00	-0.29	-0.29	0.00
PINN	Pinnacles National Monument	California	-0.65	-0.65	0.00	-0.82	-0.82	0.00
PORE	Point Reyes National Seashore	California	-0.76	-0.76	0.00	-0.92	-0.92	0.00
REDW ROMA	Redwood National Park Cape Romain National Wildlife	California South	-0.22 -0.36	-0.22 -0.95	0.00 -0.59	-0.24 -0.42	-0.24 -1.15	0.00 -0.73
SAGO	Refuge San Gorgonio Wilderness	Carolina California	-0.36	-0.36	0.00	-0.43	-0.43	0.00
SEQU	Sequoia National Park	California	-0.52	-0.52	0.00	-0.65	-0.65	0.00
SHEN	Shenandoah National Park	Virginia	-0.23	-1.34	-1.10	-0.43	-1.56	-1.13
SHRO	Shining Rock Wilderness	North Carolina	-0.24	-0.75	-0.51	-0.31	-0.98	-0.67
SIPS	Sipsy Wilderness	Alabama	-0.57	-1.08	-0.51	-0.71	-1.26	-0.54
SOLA	South Lake Tahoe	California	-0.78	-0.79	0.00	-1.07	-1.07	-0.01
THIS	Three Sisters Wilderness	Idaho	-0.23	-0.23	0.00	-0.29	-0.29	0.00
TONT	Tonto National Monument	Arizona	-0.23	-0.23	0.00	-0.24	-0.24	0.00
UPBU	Upper Buffalo Wilderness	Arkansas	-0.55	-0.83	-0.28	-0.70	-1.06	-0.36
WEMI	Weminuche Wilderness	Colorado	-0.28	-0.28	0.00	-0.35	-0.35	0.00
YOSE	Yosemite National Park	California	-0.45	-0.45	0.00	-0.31	-0.31	0.00

Projected Visibility Summaries for 20% Worst Days at IMPROVE Monitoring Sites

IMPROVE Site ID	Site Name	State	Base 2010 Improvement from 2001 (dv)	IAQR Control 2010 Improvement from 2001 (dv)	2010 Improvement from IAQR Only (dv)	Base 2015 Improvement from 2001 (dv)	IAQR Control 2015 Improvement from 2001 (dv)	2015 Improvement from IAQR Only (dv)
ACAD	Acadia National Park	Maine	-0.97	-2.03	-1.06	-1.24	-2.43	-1.20
BADL	Badlands National Park	South Dakota	-0.54	-0.95	-0.41	-0.73	-1.17	-0.44
BAND	Bandelier National Monument	New Mexico	-0.56	-0.64	-0.08	-0.75	-0.85	-0.10
BIBE	Big Bend National Park	Texas	-0.30	-0.34	-0.04	-0.33	-0.39	-0.06
BLIS	Bliss State Park(TRPA)	California	-1.15	-1.15	0.00	-1.58	-1.58	0.00
BRCA	Bryce Canyon National Park	Colorado	-0.73	-0.74	-0.01	-0.91	-0.92	-0.01
BRID	Bridger Wilderness	Wyoming	-0.84	-0.85	-0.01	-1.01	-1.02	-0.01
BRIG	Brigantine National Wildlife Refuge	New Jersey	-0.71	-2.24	-1.52	-1.03	-2.70	-1.67
CANY	Canyonlands National Park	Utah	-0.57	-0.57	-0.01	-0.66	-0.67	-0.01
CHAS	Chassahowitzka National Wildlife	Florida	-1.46	-3.05	-1.59	-1.70	-3.69	-1.98
CHIR	Chiricahua National Monument	Arizona	-0.23	-0.25	-0.02	-0.23	-0.25	-0.02
CRLA	Crater Lake National Park	Oregon	-1.34	-1.35	-0.01	-1.63	-1.65	-0.01
DOSO	Dolly Sods /Otter Creek Wildernes	West Virginia	-1.36	-3.92	-2.56	-2.02	-4.62	-2.61
GICL	Gila Wilderness	New Mexico	-0.58	-0.61	-0.03	-0.72	-0.76	-0.04
GLAC	Glacier National Park	Montana	-0.70	-0.70	0.00	-0.87	-0.88	-0.01
GRCA	Grand Canyon- Hopi Point	Arizona	-0.59	-0.62	-0.03	-0.67	-0.71	-0.04
GRSA	Great Sand Dunes National Monument	Colorado	-0.65	-0.67	-0.02	-0.73	-0.76	-0.02
GRSM	Great Smoky Mountains National Park	Tennessee	-1.38	-3.55	-2.17	-1.94	-4.52	-2.58
GUMO	Guadalupe Mountains National Park	Texas	-0.42	-0.53	-0.11	-0.47	-0.60	-0.13
JARB	Jarbidge Wilderness	Nevada	-0.90	-0.90	0.00	-1.14	-1.14	0.00
JEFF	Jefferson/James River Face Wilderness	Virginia	-1.11	-2.98	-1.88	-1.75	-3.83	-2.07
LAVO	Lassen Volcanic National Park	California	-1.03	-1.03	0.00	-1.26	-1.26	0.00
LYBR	Lye Brook Wilderness	Vermont	-0.70	-1.77	-1.06	-0.95	-2.02	-1.07
MACA	Mammoth Cave National Park	Kentucky	-1.88	-4.10	-2.22	-2.47	-5.08	-2.62
MEVE	Mesa Verde National Park	Colorado	-0.79	-0.80	0.00	-0.88	-0.88	0.00
MOOS	Moosehorn NWR	Maine	-0.77	-1.85	-1.09	-0.98	-2.12	-1.14
MORA	Mount Rainier National Park	Washington	-1.67	-1.67	0.00	-1.89	-1.89	0.00
MOZI	Mount Zirkel Wilderness	Colorado	-0.68	-0.69	-0.01	-0.76	-0.78	-0.02
OKEF	Okefenokee National Wildlife Refuge	Georgia	-0.99	-2.32	-1.33	-1.27	-2.91	-1.64
PEFO	Petrified Forest National Park	Arizona	-0.51	-0.54	-0.03	-0.58	-0.60	-0.02
PINN	Pinnacles National Monument	California	-1.25	-1.26	-0.01	-1.67	-1.68	-0.02
PORE	Point Reyes National Seashore	California	-1.43	-1.47	-0.04	-1.85	-1.90	-0.05
REDW ROMA	Redwood National Park Cape Romain National Wildlife	California South	-1.66 -0.51	-1.66 -1.80	0.00 -1.29	-1.96 -0.71	-1.96 -2.36	0.00 -1.66
8460	Refuge	Carolina	2.09	2.09	0.00	2.00	2.00	0.00
SAGU	San Gorgonio Wilderness	California	-2.08	-2.08	0.00	-2.88	-2.88	0.00
SEQU	Sequola National Park	California	-1.63	-1.63	0.00	-2.25	-2.25	0.00
	Shehanuoan National Park	viigiilla	-1.00	-3.43	-2.43	-1.62	-4.25	-2.63
SHKU		North Carolina	-1.67	-3.70	-2.04	-2.21	-4.62	-2.41
5125		Alabama	-1.28	-3.29	-2.01	-1.86	-4.35	-2.49
SULA	South Lake Tanoe	California	-1.39	-1.39	0.00	-1.89	-1.89	0.00
	Tanto National Manument	Arizona	-1.52	-1.52	0.00	-1.88	-1.88	0.00
		Arkansas	-0.68	-0.70	-0.02	-0.76	-0.79	-0.03
	Wominucho Wildorsoo	Colorado	-0.57	-2.43	-1.85	-1.02	-3.13	-2.10
	Vosemite National Park	California	-0.72	-0.73	-0.02	-0.00	-0.90	-0.02
1032	I USCITILE MALIUTAL FAIR	JaiiiUiilla	-1.32	-1.32	0.00	-1.59	-1.59	U.U

A-90-42 A

Technical Support Document

for

Ozone and Carbon Monoxide Designations and Classifications Under Section 107(d) of the Clean Air Act Amendments of 1990

Ozone/Carbon Monoxide Programs Branch Air Quality Management Division Office of Air Quality Planning and Standards October 1991

TABLE OF CONTENTS

page

1	1.	Laxton Memo
5	2.	EPA's data requirements
6	3.	Procedure for determining whether an area is transitional
7	4.	Areas for which a 45-day letter was submitted
8	5.	Areas requesting a 5% downshift per §181(a)(4) and EPA's response to those requests
20	6.	Technical documentation supporting EPA determinations for areas classified serious and higher where portions of the C/MSA were moved to other nonattainment areas or became a separate nonattainment area
43	7.	Areas classified as serious or higher where portions of the C/MSA remained attainmenttechnical documentation supporting EPA's determinations
49	8.	Further explanation of criteria for when the EPA will designate boundaries narrower than the entire county
51	9.	Documentation supporting the classification of Edmonson County, KY, as a rural transport area
53	10.	Transitional, Sub-marginal, Incomplete Data, Not Classified and Rural Transport areas
55	11.	Documentation supporting Essex County, NY as a rural transport area
59	12.	Documentation supporting Smyth County, VA as a rural transport area
60	13.	Documentation supporting designating the City of Oshkosh, WI as Unclassifiable.
62	14.	Documentation supporting Door County, WI as a rural transport area

1. Laxton memo

MEMORANDUM

SUBJECT: Ozone and Carbon Monoxide Design Value Calculations

FROM: William G. Laxton, Director Technical Support Division (MD-14)

TO: Addressees

In discussions related to the Clean Air Act legislation, design values for ozone and carbon monoxide are receiving particular attention. Previously, it sufficed to designate areas as either attainment or nonattainment but now areas will be further classified into different categories based upon the magnitude of the appropriate design value. This additional classification step places added emphasis on the need to accurately determine these design values. The classification will be done according to concentration cutpoints, and on a schedule, specified in the legislation.

Obviously, once this process is set in motion we will be working very closely with you to develop these design values. However, I thought it would be appropriate to reiterate our design value computation procedures in advance to help people anticipate the types of data review questions that may arise. The computation procedures stated here are consistent with our previous methods. There are differences between the procedures for ozone and carbon monoxide because the ozone National Ambient Air Quality Standard (NAAQS) is structured in terms of expected exceedances while the carbon monoxide NAAQS uses the older "once per year" format. The most apparent difference is that the CO (carbon monoxide) design values are based upon 2 years of data while design values for ozone use 3 years. Another difference is that the ozone NAAQS uses the daily maximum ozone value while the CO NAAQS considers running 8-hour averages so that, even though they must be non-overlapping, it is possible to have more than one CO exceedance per day. Because of these differences, it is convenient to discuss each pollutant separately. With respect to terminology, you may hear the CO design value approach referred to as "the highest of the second highs", while the ozone design value is frequently simplified as "the fourth high in 3 years."

One point to remember is that all locations within an area have to meet the standard (NAAQS). Therefore, when we do our evaluations, we look at each individual site to make sure that every site meets the standard. A separate design value is

developed for each site that does not meet the NAAQS, and the highest of these design values is the design value for the area.

Carbon Monoxide

CO design values are discussed in terms of the 8-hour CO NAAQS, rather than the 1-hour NAAQS, because the 8-hour NAAQS is typically the standard of concern. However, a 1-hour design value would be computed in the same manner. For 8-hour CO, we simply look at the maximum and second maximum (non-overlapping) 8-hour values at a site for the most recent 2 years of data. These values may be readily found on an AIRS AMP450, "Quick Look", printout. Then we choose the highest of the second highs and use this as our design value for that site. We then look at all design values within an area and the highest of these serves as the design value for the area. Note that, for each site, individual years of CO data are considered separately to determine the second maximum for each year - CO data are not combined from different years. It is probably worth commenting on this. The CO NAAQS requires that not more than one 8-hour average per year can exceed 9 ppm (greater than or equal to 9.5 ppm to adjust for rounding). We evaluate attainment over a 2year period. If an area has a design value greater than 9 ppm, it means there was a monitoring site where the second highest (non-overlapping) 8-hour average was greater than 9 ppm in at least 1 year. Therefore, there were at least two values above the standard during 1 year at that site and thus the standard was not met.

Hypothetical Case (two CO sites in an area)

(8-Hour Averages) MAX 2nd High SITE 1 1987 14.6 8.9 1988 13.9 10.9 <u>10.9 is the Design</u> <u>Value for Site 1</u> (8-Hour Averages) MAX 2nd High SITE 2 1987 12.2 11.1 1988 10.8 10.4 <u>11.1 is the Design</u> Value for Site 2

11.1 ppm would be the design value for the area.

<u>Ozone</u>

The form of the ozone NAAQS requires the use of a 3-year period to determine the average number of exceedances per year. In its simplest form, the ozone standard requires that the average number of exceedances over a 3-year period cannot be greater than 1.0. An area with four exceedances during a 3-year period, therefore, does not meet the ozone standard because four exceedances in 3 years averages out to more than once per year. Now, if the fourth highest value was equal to the level of the ozone standard, i.e. 0.12 ppm, then the area would have no more than three exceedances during the 3-year period and the average number of exceedances per year would not be greater than one. This assumes no missing data and is how the fourth high value in 3-years came to be used as the design value. Actually, an adjustment is specified in the ozone NAAQS to account for missing data in determining the expected exceedances for ozone. Because of considerations associated with control strategy modeling, the following basic approach for ozone design values has been in use since 1981. If there are 3 complete years of ozone data, then the fourth highest daily maximum during the 3-year period is the design value for that site. If only 2 complete years of data are available, then the third highest is used and, if only one complete year is available, then the second highest is used. In this approach, a year of ozone data is considered complete if valid daily maximums are available for at least 75 percent of the ozone season. Note that because of the form of the ozone NAAQS, data are combined over multiple years but they are not combined from different sites.

Hypothetical	Case	(two O3 si least 75%	ites in an complete)	area, each	n year at
		FOUR HIGHE Max	EST DAILY N 2nd Hi	AXIMUM VAI 3rd Hi	LUES 4th Hi
SITE 1	1986	.127	.123	.122	.110
	1987	.129	.124	.121	.116
	1988	.142	.136	.134	.115

The design value for Site 1 is 0.129 ppm, the fourth highest daily maximum value during the three year period.

	•	FOUR HIGH Max	EST DAILY 2nd Hi	MAXIMUM 3rd Hi	VALUES 4th Hi
SITE 2	1986	.110	.100	.095	.090
	1987	.110	.100 `	.095	.090
	1988	.180	.175	.160	.110

The design value for Site 2 is 0.110, the fourth highest value during the three year period.

0.129 ppm would be the design value for the area.

There are a few additional comments warranted on the ozone example. First, note that data from each site was treated independently in computing the design value for that site. Assuming no missing data, the second site would meet the ozone NAAQS but the area would not because the other site shows that the NAAQS is not being met. Also, it should be noted that the high values for a year are considered even if the data for that year did not satisfy the 75 percent data completeness criterion. For example, if a site had 2 years of data that met the 75 percent data completeness requirement and 1 year that did not, then the third highest value during the 3-year period would be the design value because there were only 2 complete years of data but the data from all 3 years would be considered when determining the third highest value. This ensures that valid high ozone measurements in a particular year are not ignored simply because other data in that year were missing. When computing data completeness, the number of valid days can be increased to include days that may be assumed to be less than the standard level as stated in the ozone NAAQS. Also, for new sites that have just come on line, the 75 percent data completeness requirement for the start-up year may be applied beginning with the first day of actual monitoring as long as the data set is at least 75 percent complete for June through August.

A final practical complication that must be addressed in determining ozone design values is the case where a site reports data but has no year that meets the 75 percent data completeness requirement. Admittedly, this is an unusual situation but, for the sake of completeness, it needs to be addressed. At the same time, however, the reason for this consistent data completeness problem should be examined because ozone monitoring data completeness is typically greater than 90 percent. In general, if a site has no complete years of data and fewer than 90 days of

data during the 3-year period, the design value will be determined on a case by case basis. In such cases, the data base is so sparse that it would be extremely difficult to describe general rules that would apply and a careful evaluation would have to be made to determine why this situation occurred and what is the most appropriate way to use the data. For a site without a single complete year of data but at least 90 days of data during the 3-year period, the following steps are followed in determining the ozone design value:

- Divide the number of valid daily maximums during the 3year period by the required number of monitoring days per year. As noted earlier, the number of valid days can be increased by including the number of days that may be assumed to be less than the standard level as specified in the ozone NAAQS.
- 2. Add 1.0 to the above total and then use the integer portion of the result as the rank of the design value.

These steps are not as complicated as they may initially appear. For example, suppose a site with a required ozone monitoring season of 214 days each year reports 0, 121, and 130 valid days of ozone data during the 3-year period. Step 1 would give (0+121+130)/214=1.17. In Step 2, 1.0 is added to this total giving 2.17. The integer portion of 2.17 is 2 and so the design value is the second highest value during the three year period. Again, this type of situation should not occur that often and the reasons for the data completeness problems should be identified.

When discussing data completeness for ozone, it is important to recognize that monitoring sites are occasionally discontinued for valid practical reasons. In such cases, if data are available from another site that is representative of the same situation, then data from the discontinued site may be superseded by data from the other site. The intent is to ensure that a single year of data from a monitor that was discontinued 2 years ago, does not dictate the design value if data are available from another, equally representative, site. This is not intended to eliminate the missing data penalty when a site is discontinued and there is no data available from a similar monitor.

2. EPA's data requirements

Violations of the ozone NAAQS are determined by the number of exceedances of the NAAQS (greater than or equal to 0.125 parts

per million [ppm]) over the 3-year period 1987 through 1989. An area is violating the NAAQS if the average expected exceedance is greater than 1.0 for this 3-year period.

Classification is appropriate only after it has been determined that the area is violating the NAAQS. Generally, the fourth highest measured value (daily maximum 1-hour) becomes the design value for an area. However, when an area has less than 100% of monitored data, the design value could be the first, second, or third highest value. A year of ozone data is considered complete if valid daily maximums are available for at least 75% of the ozone season.

The Agency's policy is to not designate areas that have less than 3.2 estimated exceedances during the three-year period as nonattainment until there is sufficient data to establish that the area has violated the standard.

Rockwell and Parker Counties (Dallas, TX), and Lincoln County (Charlotte, NC) are three areas that fall into this category. Unless sufficient evidence becomes available to conclude otherwise, the Agency will not designate these areas nonattainment, since existing data suggests that they presently meet the NAAQS.

3. Procedure for determining whether an area is transitional: An area that was designated nonattainment both prior to enactment and (pursuant to §107[d][1][C]) at the time of enactment and,

which did not violate the primary NAAQS for ozone over the 3-year period 1987-1989 (i.e., measured equal to or less than 1.0 exceedances per year based on a full set of quality assured data from a properly sited monitor[s]) is described as a transitional area under §185A.

In order to be considered for redesignation for attainment under §185A, the State must submit complete monitoring data for the transitional area that supports redesignation to attainment (i.e., showing no measured violations during the 36-month period from January 1, 1989 to December 31, 1991) in sufficient time for the Administrator, by June 30, 1992, to determine by order that the area reached attainment.

Refer to CFR 40 Part 50, listing designations and classifications, or the EPA memorandum dated June 18, 1990 from William G. Laxton above for a detailed explanation of how to calculate the ozone and CO design value.

4. Areas for which a 45-day letter was submitted:

State	<u>Serious+ Area</u>
California	L.A., Sacramento
Connecticut	New York City CMSA (CT portion), Hartford
Georgia	Atlanta
Illinois	Chicago
Louisiana	Baton Rouge
Maine	Portsmouth (ME portion)

Maryland	Baltimore	
Massachusetts	Boston and Worcester	
Michigan	Muskegon	
Rhode Island	Providence	
Wisconsin	Milwaukee, Chicago (WI p	ortion)
Texas	Houston	
	El Paso	
	Beaumont	
	<u>CO</u>	
State	Area	
Ohio	Steubenville	
California	Los Angeles	
5. Areas requesting a 5% downshift per §181(a)(4) and EPA's response to those requests ¹ :		
EPA took the following action:		
5% Requests Approved by EPA		
<u>Area Ini</u>	tial Classification Requ	uested Classification
Muskegon, MI	Severe	Serious
Huntington MSA; KY,C	OH,WV Serious	Moderate
Manitowoc Co., WI	Serious	Moderate
Edmonson Co., KY	Moderate	Marginal

¹Because the CAAA prescribe a partnership between the State and the Federal government, and because the State-wide perspective is valuable to EPA, EPA takes the position that it will consider requests for downshifts only if submitted by, or endorsed by, the State.

Jefferson Co., NY Moderate Marginal Memphis MSA, TN Moderate Marginal 5% Requests Not Approved by EPA Milwaukee CMSA, WI Severe Serious Philadelphia CMSA, PA Severe Serious Atlanta MSA, GA Serious Moderate Beaumont MSA, TX Serious Moderate Sheboygan Co., WI Serious Moderate Dallas MSA, TX Moderate Marginal Dayton, OH Moderate Marginal Grand Rapids, MI Marginal Moderate Nashville MSA, TN Moderate Marginal

Reading MSA, PA Moderate Marginal Toledo, OH Moderate Marginal

EPA Approved Downclass from Severe to Serious

Muskegon, MI

The Muskegon area has a design value of 0.180 ppm and was initially classified as severe. Air quality trends data as well as total population and emissions data for the Muskegon area (severe) appear to be similar to the data for the Sheboygan area (serious). Given their similar circumstances, it appears likely that both areas should be able to attain the NAAQS in similar time frames. Another factor to consider is the disparity between the initial classifications given to the nearby area of Grand

Rapids (moderate) and Muskegon. Adjusting the classification of the Muskegon area to serious would minimize this disparity while maintaining a logical gradation of attainment deadlines proceeding outward from the major metropolitan areas (Chicago and Milwaukee, both of which are severe-17 areas) located to the southwest and west of Muskegon.

After considering all available information relevant to the Muskegon area, the Agency reclassified the area from severe to serious. This action was based on our judgement that this area is capable of meeting the ozone standard within the shorter time frame specified by this classification.

EPA Approved Downclass from Serious to Moderate. Huntington Metropolitan Statistical Area (MSA); KY,OH,WV

The Huntington-Ashland Area has a design value of .164 ppm and was initially classified as serious. Total population for the area is less than that for the Toledo and Dayton areas, which are both classified as moderate. Population data for the Huntington-Ashland area shows a slight downward trend, or, a decrease in MSA population of approximately 7% from 1980 to 1990. Air quality data trends from 1988 through 1990 indicate improvement in the levels of ozone. In fact, if 1990 air quality data is considered, the area has a design value in the moderate range.

EPA believes that the measures required for moderate areas

will provide significant volatile organic compounds (VOC) reductions, as Huntington-Ashland is an area with stationary and mobile source components contributing comparable amounts of emissions. The State of Kentucky has supplied evidence that the emission reductions required under the moderate category will be sufficient to reach attainment.

After considering all available information relevant to Huntington-Ashland, the Agency reclassified the area from serious to moderate. This action was based on our judgement that the emission reductions specified by this classification would be sufficient to allow the area to meet the ozone standard within the shorter time frame:

Manitowoc County, WI

Manitowoc County has a design value of 0.167 ppm, which is associated with a serious classification. This county is not part of an MSA and contains no major urban population and population is expected to decline a small amount further by 2000. The area is relatively removed from major metropolitan areas.

After considering all available information relevant to Manitowoc County, the Agency is reclassifying Manitowoc County from serious to moderate. Such a classification shift is consistent with a logical gradation of attainment deadlines proceeding outward from the major metropolitan areas located to the south of Manitowoc County.

EPA Approved Downclass from moderate to marginal

Edmonson County, KY (Bowling Green non-MSA)

EPA approves this request because the historical air quality data indicate no ozone problem before or after 1988, and this is an extremely rural area with little population and sources of emissions. It is expected that this area will attain the standard no later than 1993.

Jefferson County, NY

Jefferson County, with a population of just over 100,000, is a rural county demonstrably affected by long-range transport from Detroit, Cleveland and Toronto. An emissions inventory reveals few VOC major sources in the area. Air quality trends are supportive of the downclass (no violations from 1989-90). In addition, reductions from national gasoline vapor standards, RACT fix-ups, and vehicle turnover are expected to lead to attainment within three years. Furthermore, because the entire State of New York is part of the Northeast Transport Region, Jefferson County will be subject to essentially moderate requirements.

Given these factors, the Agency believes the area will be able to attain within three years.

Memphis MSA, TN

EPA approves this request because historical air quality trends indicate improvement in the levels of ozone. If 1990 air quality data is considered, the area has a design value in the

marginal range.

Milwaukee, WI

At the time the classification shift was being considered for Milwaukee, Kenosha County was not included as part of the Milwaukee-Racine area, therefore the Milwaukee area had a design value of 0.183 ppm and was initially classified as severe-15. Based on 1980-1990 air quality data, sufficient justification was not found for classifying the area as serious. Even with emission reductions that have resulted from RACT, I/M and federal motor vehicle control programs, air quality data have not shown a definite downward trend that would support a lower classification. In addition, Milwaukee is suspected of receiving significant transport from the Chicago-Gary-Lake County area. If Milwaukee's ozone problem is, in fact, largely a result of transport from the Chicago area, it is not realistic to expect this area to attain the NAAQS in 9 years (serious classification) while the Chicago area has 17 years (severe-17 classification) to attain. In addition, significant quantities of emissions emanate from Milwaukee. These emissions will have to be controlled to ensure that Milwaukee and all downwind areas will be able to attain and maintain the NAAQS. Thus, EPA believes that it is unlikely that the Milwaukee-Racine area will attain the standard in the shorter time frame associated with the lower classification.

After EPA made this decision of including Kenosha County in the Milwaukee-Racine nonattainment area as discussed above, Milwaukee took as its design value site Kenosha County, which has a design value of .190. This design value changes the Milwaukee-Racine area's classification from severe-15 to severe-17. EPA, as a legal matter, takes the position that the revised boundaries and classification for the Milwaukee-Racine area occurred as of the date of enactment of the CAAA of 1990, or November 15, 1990. Because a design value of .190 is outside the 5% range of the next lower classification, the inclusion of Kenosha County mooted the issue of whether to downclass the Milwaukee-Racine nonattainment area.

Philadelphia, PA

The Philadelphia area design value for the 1987-89 ozone season is .187, and area-wide design values since 1981 show no perceptible improvement. Given that New Brunswick, NJ downwind sites have recorded higher design values (e.g. .195 for 1988-90), and the New York area has a severe-17 classification, downclassing the Philadelphia area would create an incongruous serious area in an otherwise severe region. Furthermore, given the ozone/precursor interactions between those areas and Philadelphia, it would not be logical to classify Philadelphia lower. Also, based on air quality trends, it is EPA's position that it would be difficult for Philadelphia to attain in 9 years

given that all adjacent nonattainment areas have 15 to 17 years to attain.

..

Atlanta, GA

After careful consideration of air quality data and all additional information submitted by the State of Georgia, the Agency has concluded that the initial classification for Atlanta as serious should be maintained. Historical air quality data, a lack of long term trend toward air quality improvement, and expected future growth in emissions all support the conclusion that Atlanta clearly fits the serious classification. The EPA believes that these factors make it highly unlikely that the area will be able to achieve the total percent emissions reduction necessary to attain the standard in a shorter time period.

Beaumont, TX

The Beaumont-Port Arthur area was identified at the time of enactment of the Clean Air Act Amendments as a serious ozone nonattainment area based on air quality data for the three year period 1987-89. The request in the State's December 28th letter was for the classification for this area to be shifted from its moderate next lower or the classification to serious classification. Based on a review of information on the Beaumont area, the Agency cannot make the classification shift for the following reasons:

1. While the EPA is impressed with the local area's commitments in

striving to attain the ozone standard by 1996, and we are confident in the good faith of the area's industry and elected officials, the EPA believes that there is no clear indication from the ozone monitoring data that the 1996 deadline for attainment can be met. 2. Recent ozone monitoring data being collected in the area suggest ozone levels are higher than the State operated ozone monitoring data would suggest. The design value for the area based on the State operated data is a level of 0.160 ppm; however, additional 1990 monitoring data collected by a private network in the area and made available to EPA indicates an ozone design value for the area as high as 0.180 ppm.

3. This information suggests that it would be unlikely for the area to attain the standard in the shorter period of time. The serious classification provides for an additional three years or until 1999 for the reductions to bring about attainment of the standard.

Based on each of these factors, the EPA has determined that the Beaumont-Port Arthur MSA should remain classified as a serious ozone nonattainment area.

Sheboygan, WI

Sheboygan County has a design value of 0.176 ppm and was initially classified as serious. Because the design value is not within 5% of the next lower classification, the area is not eligible for a downward classification adjustment under this

provision. Therefore, this area will remain at the same classification given at the time of enactment of the CAAA and identified in the January 28, 1991 letter from Valdas V. Adamkus to Governor Tommy Thompson.

Broward County, FL

4

This bump down request was submitted by a local agency in Broward County. EPA only considered bump down requests from State agencies. Accordingly, EPA denied this request. The State of Florida, although aware of this request, did not endorse it.

Dallas MSA, TX

For Dallas-Fort Worth the request from the State was for a reclassification from the moderate level reflected by the three years of ozone data available prior to enactment of the Clean Air Act Amendments to a marginal level. Based on a review of the information we have received on the Dallas-Fort Worth area, the Agency cannot make the classification shift for the following reasons:

1. It is EPA's position that with the growth expected in population and the increase in vehicular traffic, or "vehicle miles traveled," there is not a convincing argument that attainment can be achieved in the three years allowed for a marginal area.

2. The air quality trend, while improving in the Dallas-Fort Worth area, is still showing a number of exceedances each year in the moderate range (0.138 - 0.160). In contrast, most of those areas

of the nation being considered for reclassification from moderate to marginal have 1990 data indicating attainment or their highest ozone values fall into the marginal range.

3. Also, the Agency has been unable to conclude that additional control measures required under the moderate classification are clearly not necessary to ensure that increased emissions from population growth and vehicle miles travelled do not overcome reductions from the control measures currently in place.

Based on each of these factors, the EPA has concluded that the Dallas-Fort Worth area should remain classified as a moderate ozone nonattainment area.

Dayton, OH

The Dayton-Springfield area has a design value of .143 ppm and was initially classified as moderate. This area should retain its current classification as moderate. The basis is essentially the same as for Toledo (described below). Although the concern for transport into Detroit does not apply to Dayton, there may be transport from Cincinnati due to southwesterly winds which might require greater controls in Dayton to achieve attainment. Furthermore, considering the population and emissions in the area, it is highly unlikely that Dayton would attain the NAAQS within the 3-year time frame associated with a marginal classification.

Grand Rapids, MI

The Grand Rapids area has a design value of 0.143 ppm and was

initially classified as moderate. Based on 1980-1990 air quality data, sufficient justification was not found for classifying the area as marginal. Even with emission reductions resulting from RACT, I/M and federal motor vehicle control programs, air quality data have not shown a definite downward trend that would support a lower classification. In addition, it is suspected that the Grand Rapids area is being impacted by transport from the Chicago and Milwaukee areas. If Grand Rapids' ozone problem is, in fact, largely a result of transport from the Chicago and Milwaukee areas, it is not realistic to expect this area to attain the NAAQS in 3 years (marginal) while the Chicago and Milwaukee areas have 17 years (severe-17) to attain.

Nashville, TN

EPA disapproves this request because air quality trends do not support the lower classification. Review of the air quality data indicates that following an upward trend during the mid-1980's, the air quality data for the Nashville area appears to have stabilized in the moderate range.

Reading, PA

The Reading area design value for the 1987-'89 ozone seasons is .141. Because area-wide design values since 1981 show no significant improvement, it is the EPA's position that the Reading area is unlikely to attain in three years. EPA acknowledges that while adjacent counties are marginal, higher levels in Reading

appear to indicate that it is a self-generating area.

Toledo, OH

The Toledo area has a design value of .143 ppm and was initially classified as moderate. The moderate classification for this area is consistent with the moderate classification for the Detroit area. Given the proximity of these two areas, if the amount of controls in Toledo were not significantly increased, then the amount of transport into Detroit would not be significantly reduced, thus making it less likely that Detroit could attain the standards in a timely fashion. The population data for the Toledo area show a slight downward trend. The air quality data for the monitored Toledo shows trend in ozone area an upward concentrations. Mobile sources are a large portion of the emissions for the area. Therefore, if the area were reclassified downward and I/M and Stage II were not required, then the area could have difficulty attaining the air quality standard. Considering the above information, there is not convincing evidence that the Toledo area can attain the standards in a shorter time frame using fewer controls.

6. Technical documentation supporting EPA determinations for areas classified Serious and higher where portions of the C/MSA were moved to other nonattainment areas or became a separate nonattainment area:

Baltimore, MD

In a March 15, 1991 letter the State of Maryland recommended for Queen Annes County --which is within the Baltimore MSA-- an

20

La Tanana -

ozone designation of "Cannot be classified or better than primary standards", thereby requesting that the boundary for the Baltimore nonattainment area be smaller than the MSA. The State's request was supported by documentation concerning factors such as population and ozone precursor emissions in that county.

Specifically, Queen Annes County has a 1990 population of only 33,953, which is 1.4% of the Baltimore MSA, and its VOC emissions in 1985 were only 4,743 tpy, which is 2.5% of the Baltimore MSA. There is no monitor in Queen Annes County to record air quality.

In the same letter, Maryland proposed an ozone designation of "Cannot be classified or better than primary standards" for Kent County, which adjoins Queen Annes but is outside the Baltimore MSA, and is not part of any C/MSA. However, Kent County includes a monitor showing nonattainment and a marginal classification.

EPA «concurs that emissions from Queen Annes County do not contribute significantly to nonattainment in the Baltimore MSA. Queen Annes is located to the east and southeast of the Baltimore MSA. Emissions from the county will not significantly contribute to peak ozone concentrations on days when the highest ozone concentrations occur in the Baltimore MSA. On such days, the county is essentially downwind of the remainder of the MSA.

Based on documentation on population and ozone precursor emissions provided by the State, the location of Queen Annes County relative to the rest of the MSA, and prevailing wind patterns, EPA

concurs with the State of Maryland in its finding that Queen Annes County does not contribute significantly to ambient air quality in the Baltimore MSA.

Given monitored nonattainment in Kent county, it is EPA's position that the county must be designated nonattainment and its classification must be based on the monitoring data; i.e., a "marginal" classification in this case. Under §107(d)(1)(A)(i) of the Clean Air Act, as amended, an area must be designated nonattainment if it does not meet the NAAQS.

EPA further recommended that Queen Annes and Kent Counties be treated as a single nonattainment area with a marginal classification. In a July 29, 1991 letter to the EPA the State of Maryland accepted this determination.

Los Angeles, CA

Los Angeles-South Coast Air Basin, Ventura County and

Southeast Desert Ozone Nonattainment Areas

EPA agrees with California's finding that Ventura and the Southeast Desert do not contribute significantly to the violations in the South Coast Air Basin, for the following reasons: The most recent Ventura County and South Coast Air Basin (SCAB) 1991 Air Quality Management Plan revisions provide 1987 baseline emissions

estimates for ROG² and NO_x. ROG and NO_x emissions are reported at 91.5 and 80.6 tons per average ozone season day in Ventura County. In Ventura County the non-mobile sources account for 54.2 and 33.8% of the SCAB's ROG and NO, emissions, respectively, for the same year. By comparison, the 1987 annual emissions in the SCAB for ROG and NO_x are reported at 1379 and 1098 tons per day (tpd), respectively, with non-mobile sources contributing 51.2 and 25.5%, respectively. These numbers indicate that Ventura County's total emissions are 6.6 and 7.3% of those in the SCAB for ROG and NO,, respectively. Although current emission estimates for the desert county portions are not yet available, the percentages are expected to be smaller than those for Ventura, as compared to the SCAB. Similarly, the 1990 percentages for Ventura County and the Southeast Desert nonattainment areas 1990 are estimated at about 5.6 and 5.8% of the SCAB's 12 million population, respectively, with a total five county CMSA 1990 total population of 14,531,500. These percentages are sufficiently small that, combined with the factors below, EPA concludes that Ventura and the Southeast Desert may be excluded from the CMSA.

Although the above population and emission percentages for Ventura County and the Southeast Desert are small compared to the

²ROG (Reactive Organic Gases) is the California term for Volatile Organic Compounds (VOC). The terms differ in only one respect: ROG includes ethane, which is excluded from VOC.

SCAB, they are large in magnitude compared to other parts of the country. Ozone concentrations in Ventura County and the Southeast Desert are also high, as evidenced by their constituent design concentrations: 0.170 ppm for the desert portions of Los Angeles and San Bernardino Counties, 0.174 ppm for the desert portion of Riverside County, compared to .330 ppm in the SCAB. The high concentrations upon which the Ventura County and Southeast Desert design concentrations and classifications (Ventura County was bumped up to severe-17) are based due in large part, to meteorological transport of pollutants into Ventura County due to diurnal, morning hour wind directions, and into the desert during predominant wind conditions. On limited occasions winds do blow emissions the opposite direction, more commonly for Ventura and rarely for the desert, but these winds are usually associated with unstable meteorological conditions - not conducive to high ozone concentrations. The situation would be worse for both areas were it not for the large mountain ranges.

The San Gabriel, the San Gorgonio, the San Jacinto, and the Santa Ana Mountains separate the SCAB from the Southeast Desert Air Basin. These mountains limit the sea level air exchange between the two areas with peaks ranging up to and including Old Baldy (Mt. San Antonio 10, 064 ft.), Mt San Jacinto (10,831 ft.), and San Gorgonio Mtn. (11,502) ft.) separated by mountain passes at Cahon Summit (4,259 ft.) and Soledad Pass (3,225 ft.).

. .

Since major roadways do wind through the mountain passes, large volumes of vehicles travel between these neighboring air basins. Although vehicular emission transport appears more prevalent than meteorological transport into the SCAB the vehicles do not contribute significant VMT percentages and, for the most part, tend not to contribute VMT deep into the SCAB. The motor vehicle fraction which enters SCAB from either Ventura or the desert is a small fraction of the SCAB emission totals. Ventura county's entire mobile source emissions are 3.0 and 4.8% of the SCAB's total ROG and NO_x emissions, respectively.

These mountains seriously influence the meteorological patterns to the extent that these topographical areas are classified as separate nonattainment areas. The separation is based on the insignificant emission contribution from these areas into the SCAB as evidenced by the small emission and population percentages.

Portsmouth-Dover-Rochester, NH-ME MSA (Maine portion)

The March 13, 1991 letter submitted by Maine requested that the Portland nonattainment area be designated nonattainment for ozone and classified as moderate. In addition, Maine requested that the eight Maine towns in the Portsmouth-Dover-Rochester, NH-ME MSA be moved to the Portland, Maine nonattainment area. The State of Maine is not precluded from requesting this change since, on December 28, 1990, the Governor of Maine sent a letter to EPA

requesting more time to study the boundaries of the Portsmouth-Dover-Rochester, NH-ME MSA, initially classified as a serious nonattainment area for ozone.

Maine submitted the following justifications for its request, among others:

The design value for the Portsmouth-Dover Rochester MSA is а. based on monitoring data from Rye Beach, NH, which is outside of the 8 Maine towns in the nonattainment area. Air quality data from ozone monitoring that was done during 1986 and 1987 in one of the 8 towns (i.e., York) showed peak ozone concentrations less than those reported from the Portland nonattainment area. Maine believes that this was probably due in part to sea breeze effects, and they believe that had monitoring continued in York, the ozone design value in these towns would have been lower than the design value for the Portland MSA, which equates to a moderate classification. By comparison, the Portsmouth area is a serious area. Thus, the eight towns show a design value that differs from the rest of the Portsmouth MSA.

b. The eight Maine towns are downwind of all other states with ozone nonattainment problems, and Maine believes that the emissions from these 8 towns will have little or no impact on the attainment of areas to the southwest or west of these towns, (including New Hampshire).

c. The Maine DEP Post-1987 Emissions Inventory reported only 4 major sources (greater than 50 tpy) of VOCs in the 8 towns. Recommendation: EPA agrees that these eight towns do not contribute significantly to the nonattainment problem in the Portsmouth-Dover-Rochester MSA, for the following reasons in addition to those cited by Maine:

The Maine portion of the Portsmouth-Dover-Rochester MSA represents approximately 33% of the land area in the MSA, but only 21% of the population. EPA Region I estimated that the Maine portion of the MSA has a population density of 250 people per square mile, while the New Hampshire portion has a population of greater than 450 people per square mile (based on the 1990 Census Bureau data for population submitted by Maine). Since roughly 80-90% of the VOC emissions inventories are area and mobile sources--both of which are heavily population-dependent--it is safe to conclude that the emissions density in the New Hampshire portion of the Portland MSA is significantly higher than in the Maine portion. As discussed in the section below concerning Hartford, emissions density is relevant to ozone formation.

Additionally, a detailed analysis of wind direction and time of day of the worst ozone violations for the Portland MSA prepared by EPA Region I clearly implicated upwind areas as the source. These eight towns are located downwind of the monitor used for this evaluation, therefore, based on this modeling exercise, they most
likely contribute to NAAQS violations in the Portland MSA rather than NAAQS violations in the Portsmouth-Dover-Rochester MSA.

Based on these factors, EPA is approving the request that the eight Maine towns in the Portsmouth-Dover-Rochester, NH-ME MSA be moved to the Portland, Maine nonattainment area and classified as moderate. Under the CAAA, the Portland, ME nonattainment area was designated nonattainment for ozone and classified as moderate on the date of enactment (November 15, 1990).

The boundary proposed by the State for the nonattainment area is larger than the MSA, and thus exceeds the requirements of the Clean Air Act Amendments. The EPA approves the proposed classification, designation and boundaries for the entire Portland nonattainment area.

Chicago, IL

Kenosha County

Because of the area's pre-enactment nonattainment designation, Kenosha County, Wisconsin, was designated nonattainment by operation of law upon enactment of the CAAA. As part of the Chicago-Gary-Lake County, IL-IN-WI CMSA, Kenosha County was included with the Chicago-Gary-Lake County nonattainment area. This area was classified as severe with 17 years to attain based on monitoring data recorded at the Chiwaukee Prairie site in Kenosha County, which is the peak impact site for Chicago area emissions. The 1987-1989 design value of this site was 0.190 ppm. The State

of Wisconsin was given formal notice of this designation in a January 28, 1991 letter from Valdas V. Adamkus, Regional Administrator, to Tommy G. Thompson, Governor of Wisconsin.

The State recommended in a December 27, 1990 letter from Governor Thompson to Administrator William K. Reilly that Kenosha County be included in the Milwaukee-Racine nonattainment area. The Milwaukee-Racine area was also designated nonattainment upon enactment and classified as severe with 15 years to attain, based on a 1987-1989 design value of 0.183. Wisconsin made similar recommendations in letters from Governor Thompson to the EPA on March 14, 1991 and on June 4, 1991.

The State's rationale for this proposal is that it is logical from a planning and regulatory perspective to include Kenosha County with neighboring Wisconsin counties. All previous planning efforts including land use, transportation, water and previous air quality planning have included Kenosha County with the Milwaukee-Racine area. The State believes that the inclusion of Kenosha County in the Chicago-Gary-Lake County nonattainment planning area would require extensive and unnecessary reformulation of planning inventory and data. Kenosha County was part of the greater Milwaukee nonattainment area in the 1983 State Implementation Plan for Wisconsin that was approved by EPA. Therefore, keeping Kenosha County with the Milwaukee-Racine nonattainment area serves to ease administrative burden for both parties.

After careful consideration of all available information pertaining to this issue, EPA has decided to concur with Wisconsin's proposal to remove Kenosha County from the Chicago-Gary-Lake County nonattainment area and include the county with the Milwaukee-Racine nonattainment area. The primary reason for this determination is the <u>de minimis</u> rationale that because both areas are classified as severe, the requirements for the areas will not significantly change, and that increased administrative expediency is expected to result from this boundary adjustment.

Because the boundary of the Milwaukee-Racine nonattainment area has been adjusted to include Kenosha County, monitoring data from Kenosha County must be considered when determining the design value for the Milwaukee-Racine area.³ Accordingly, the Milwaukee-Racine area is classified as severe with 17 years to attain based on the design value indicated by monitoring data recorded at the Chiwaukee Prairie site in Kenosha County.

The classification of the Chicago-Gary-Lake County nonattainment area is also based on the design value indicated by monitoring data from Kenosha County, WI. Although Kenosha County is not within the boundaries of the Chicago-Gary-Lake County

The work work Ander

³All locations within an area must meet the standard (NAAQS). Therefore, each individual site must be evaluated to ensure that every site meets the standard. A separate design value is developed for each site that does not meet the NAAQS, and the highest of these design values is considered the design value for the area.

nonattainment area, emissions originating from the Chicago-Gary-Lake County nonattainment area significantly impact air quality monitored in Kenosha County. For this reason, the Chiwaukee Prairie site in Kenosha County continues to be recognized by EPA as the design value site for the Chicago-Gary-Lake County nonattainment area.

Providence, RI

The State of Rhode Island submitted a letter on March 15, 1991 requesting that the entire State be considered the nonattainment area for ozone and classified as serious. This means that the border of the nonattainment area will not include all of the Providence-Pawtucket-Fall River, RI-MA CMSA, (the Massachusetts Blackstone, Millville, Plainville, towns of N. Attleboro. Attleboro, Seekonk, Rehoboth, Swansea, Somerset, Fall River, and Westport), and will include portions of the New London-Norwich, CT-RI MSA (Hopkington and Westerly). The State of Rhode Island is not precluded from requesting this boundary since, on December 28, 1990, the Governor of Rhode Island sent a letter to EPA saying that the State was interested in studying the boundary of the Providence-Pawtucket-Fall River, RI-MA-CMSA, which was initially classified as a serious nonattainment area for ozone.

Additionally, the State of Massachusetts submitted a letter on March 15, 1991 requesting that those cities and towns in Massachusetts portion of the Providence-Pawtucket-Fall River, RI-MA

CMSA, be included in the eastern Massachusetts nonattainment area and classified as serious. Similarly, the State of Massachusetts is not precluded from requesting this switch since, on December 26, 1990, the Governor of Massachusetts sent a letter to EPA saying that the State was interested in studying the boundaries of both the Boston-Lawrence-Salem, MA-NH CMSA and the Providence-Pawtucket-Fall River, RI-MA CMSA, which were both initially classified as a serious nonattainment area for ozone.

EPA is approving Rhode Island's request to exclude the Massachusetts cities and towns in the Providence-Pawtucket-Fall River, RI-MA CMSA from the Rhode Island nonattainment area, and EPA is approving Massachusetts' request to include the towns in its nonattainment area. EPA believes that the emissions from these Massachusetts cities and towns do not have a significant impact on the ozone nonattainment problem in the Rhode Island area. The cities and towns are all downwind of the Rhode Island area, and any emissions originating in these cities and towns from stationary and area sources would not significantly impact the nonattainment problem being measured at the design value monitoring site which is far upwind in Alton Jones.

Most importantly, because these towns are being moved from a serious area (Rhode Island) to another serious area (Massachusetts), no changes in the control requirements will occur. It is beneficial from the perspective of reducing the

administrative burden that would result if a multi-state nonattainment area existed between Massachusetts and Rhode Island. If a multi-state nonattainment area existed between the two states, the two states would have to undergo the additional expense coordinating their emissions inventory activities and their control strategy development activities with little corresponding benefit. Thus, the move is approvable as a <u>de minimis</u> change.

Hartford, CT

The State of Connecticut submitted a letter on March 14, 1991 requesting that the Hartford-New Britain-Middletown, CT CMSA, the Waterbury, CT MSA, and the New Haven-Meriden, CT MSA, including some of the previous planning areas in the State, be designated nonattainment for ozone and classified as serious. However. Connecticut requested that the New London-Norwich, CT MSA area be made a separate nonattainment area and classified as moderate. For the exact boundary of the nonattainment area, Connecticut requested that the town of Canterbury in the MSA be excluded, and the towns of Colchester and Voluntown outside the MSA be included. Further, Connecticut requested that the two towns in Rhode Island (Westerly and Hopkington) that are part of the MSA be excluded from the New London-Norwich nonattainment area. The boundary of the nonattainment area that was proposed follows the borders of the Regional Planning Agency that exists in that area.

In preliminary lists of nonattainment areas developed by EPA,

the Connecticut portion of the New London-Norwich, CT-RI MSA has always been joined with other CMSAs and MSAs in Connecticut and given a classification of serious. EPA did this because in discussions with: the Connecticut Department of Environmental Protection (DEP), before the Act was enacted, about how to treat all of the CMSAs and MSAs in the State, Connecticut decided that all areas in the State except the Connecticut portion of the New York-Northern New Jersey-Long Island (NY-NJ-CT) CMSA should be treated as one nonattainment area. Connecticut made this decision based on the fact that the design values for the Hartford-New Britain-Middletown CMSA, the New Haven-Meriden MSA, and the New London-Norwich MSA all equated to a serious classification under the Senate bill. Connecticut thought it made more sense to have one serious nonattainment area versus three separate ones.

When the Act was passed, however, the design value for the New London-Norwich MSA equated to a moderate classification. Therefore, what Connecticut has proposed is the legitimate classification for the MSA based on the monitoring data that exist from monitors which are within the MSA.

It should be noted, however, that the addition of the towns of Colchester, which is part of the Hartford-New Britain-Middletown, CT CMSA, and Voluntown to the nonattainment area results in a downward classification for these towns from serious to moderate. Conversely, the classification of the two towns in Connecticut that

have been excluded (Canterbury and Old Lyme), and the two towns in Rhode Island that have been excluded (Westerly and Hopkington) will be upgraded from moderate to serious.

Connecticut submitted the following justification for its request:

a. The 1989 design value for this area, based on monitored data from 1987 through 1989 from the city of Groton, is 0.155 ppm. This design value indicates that the New London-Norwich MSA could be classified as moderate. If the towns of Colchester and Voluntown are added to the nonattainment area and Canterbury and Old Lyme are excluded, the boundary of the nonattainment area would be consistent with the boundaries of the Regional Planning Agencies (RPA) located in southeastern Connecticut.

b. The towns of Westerly and Hopkington in Rhode Island are on the eastern edge of the New London-Norwich MSA and their emissions do not have a significant impact on the ozone nonattainment problem in the MSA; therefore, these two towns should be excluded from the ozone nonattainment area.

Recommendation: On May 14, 1991, EPA advised the State that the New London-Norwich area contributes to the ozone nonattainment problem in both Rhode Island and the remainder of Greater Connecticut, specifically the greater Hartford CMSA. The State was advised that absent a definitive request from Connecticut to

include the New London area as part of the larger nonattainment area which includes Hartford, EPA would take action to include the area as part of the State of Rhode Island and classify it as a serious ozone nonattainment area.

EPA reached this conclusion for several reasons. First, every area within a 75 mile radius of New London is classified as serious or higher. A monitor located in West Greenwich, Rhode Island, approximately five miles downwind of the New London RPA, has a 1987-1989 design value which equates to a serious classification. It is likely that the citizens of the New London RPA are being exposed to concentrations of ozone that would be considered serious. The New London RPA causes, or at least significantly contributes to, the high levels of ozone measured at this site.

Further, excluding less than three miles of borders between New London County and both Kent County, Rhode Island and Hartford County, Connecticut, the population density (people/square mile) in New London County is greater than or equal to the population densities in all its adjacent counties. When comparing just the New London RPA's population density, it is considerably higher than all adjacent counties.

Population density is often a good indicator of ozone problems but a more direct measure of the potential ozone problem is the emissions densities of VOC and NO_x , the primary precursors of ozone. Since these compounds react to form ozone, generally higher

emission densities mean higher ozone concentrations. Based on detailed evaluations of Post'87 emission inventories prepared by the CT DEP (and the Rhode Island Department of Environmental Management for Washington County) for these precursors in the New London area and its bordering counties, VOC emission densities in New London county are nearly double that of Middlesex county, and nearly three times the VOC emission densities of Tolland and Windham Counties in Connecticut, and Washington County in Rhode Beyond this, except for Middlesex County which is Island. comparable to New London County, NO_x emission densities are considerably lower in all surrounding counties. Further, 17.6% of all point source VOC emissions in the state come from sources in the six towns bordering the Thames River from Norwich to Groton -New London. Based on these facts, it is unlikely that the New London area can realistically attain the ozone standard more rapidly than the surrounding areas as would be necessary under a moderate classification.

Therefore, since the New London area contributes to ozone violations at the West Greenwich, Rhode Island site, EPA proposed including the New London area in that nonattainment area. This expansion of the Rhode Island nonattainment area is consistent with the definition of nonattainment area at §107(d)(1)(A)(i) of the Clean Air Act which states that a nonattainment area is "any area that does not meet (or that contributes to ambient air quality in

a nearby area that does not meet) the national primary or secondary ambient air quality standard for the pollutant."

For both Connecticut and Rhode Island, the addition of the New London area to Rhode Island would mean increased attainment plan coordination between the two areas and a serious classification, based on the West Greenwich site, throughout the area. If Connecticut wished to avoid this additional coordination burden which will be imposed on both states, EPA told Connecticut they could do so by keeping the New London area as part of the planning area for the rest of the state and subsequently classified as serious. It is appropriate to include New London with the rest of the state outside the New York CMSA because no substantive control or attainment plan requirement differences would exist between the two serious areas. Further, it is appropriate and acceptable because of the general interest of states to maintain the integrity of their borders in an attainment plan.

On June 26, 1991, Governor Weicker sent in a letter to Administrator Reilly explicitly requesting that the New London-Norwich area be included in the Greater Connecticut area which included Hartford. The State acknowledged that this request would mean a retention of the serious classification for ozone nonattainment. Therefore, pursuant to the May 14th letter from EPA, Connecticut revised the original request made in March. By Connecticut including this area part of the Greater as

38

Hudgelier, at 1

nonattainment area, EPA agrees with and is accommodating the most recent request from the Governor of Connecticut regarding the New London-Norwich ozone nonattainment area.

EPA also approves the exclusion of the two Rhode Island towns of Westerly and Hopkington from Connecticut and their inclusion in the Rhode Island; nonattainment area. EPA agrees that the emissions from these two Rhode Island towns do not have a significant impact on the ozone nonattainment problem in the Greater Connecticut nonattainment area. First, the two Rhode Island towns are downwind of the nonattainment area, and any emissions originating in these towns would not significantly impact the nonattainment problem being measured at the design value monitoring site which is far upwind in Middletown. Secondly, the 1990 population in these two towns (28, 478) represents less than 1.2% of the 1990 population in the Greater Connecticut nonattainment area (2,449,336). This strongly suggests that the emissions contribution from these two towns is insignificant.

In addition, there is no change in classification resulting from the change for the Rhode Island towns in the New London-Norwich CT-RI MSA. The moving of these towns results in no change in the control requirements applicable in these towns. It is beneficial from the perspective of reducing the administrative burden that would result if a multi-state nonattainment area existed between Connecticut and Rhode Island. If a multi-state

nonattainment area existed between the two states, the two states would have to undergo the additional expense of coordinating their emissions inventory activities and their control strategy and development activities with little corresponding benefit. Thus, the move is approvable under the <u>de minimis</u> rationale.

New York City (Connecticut portion)

Connecticut requested that Connecticut portion of the New York-Northern New Jersey-Long Island, NY-NJ CMSA be designated nonattainment for ozone and classified as severe. Connecticut requested, however, that seven cities and towns along the eastern edge of the Connecticut portion of the New York-N. New Jersey-Long Island CMSA (Ansonia, Beacon Falls, Derby, Milford, Oxford, Seymour, and Shelton) be moved to the Greater Connecticut nonattainment area (the Hartford-New Britain-Middletown CMSA, the Waterbury, CT MSA, the New London-Norwich, CT-RI MSA and the New Haven-Meriden, CT MSA, including some of the previous planning areas in the State). This move would result in the downward classification of these seven cities and towns from severe to serious. Connecticut submitted the following justification for its request:

a. These seven cities and towns do not have a significant impact on the total emissions generated in the New York-N. New Jersey-Long Island CMSA.

b. Since these seven cities and towns are located on the

· ourdeanthappertain

eastern part of the New York-N. New Jersey-Long Island CMSA and transport is primarily west-to-east, the emissions from these towns do not significantly impact on the severity of the ozone problem in CMSA.

On July 2, 1991, Carl Pavetto, Chief of the Connecticut Bureau of Air Management, sent a letter to Julie Belaga, EPA Region I Administrator, which included a significant amount of additional information supporting this request. The letter indicated that the area in question does not contribute significantly to the severe classification in the NY-NJ-CT CMSA, based on factors such as population density, traffic congestion, commercial development, industrial development, meteorological conditions, and pollution transport. The letter showed that these seven cities and towns do not contribute significantly to the overall emissions in the CMSA, and that travel to and from the seven cities and towns does not contribute significantly to emissions and the ozone concentrations in the New York City urbanized area.

Specifically, an attachment to the letter included a detailed analysis of wind direction and time of day of the worst ozone violations for the CMSA, clearly implicating the New York urbanized area as the source. These seven cities and towns are located downwind of this monitor. They also qualitatively discussed the fact that few people from these towns would drive the two hour commute to Manhattan (88 miles from the closest of these towns),

and that the New York State border was 40 miles away. Further, the Department of Transportation reported that only 22% of the trips of these seven cities and towns went into the "severe" area and 80% of these were considered local, meaning that they did not travel deeply into the CMSA.

For point sources, EPA found that there are 14 VOC point sources greater than 10 tpy in the seven cities and towns that Connecticut wants to switch from a severe classification to a serious classification. This information is based on Connecticut's Post-1987 emissions inventory.

Connecticut has also pointed out that two EPA publications support their position. They contend that the New York urbanized area is responsible for their severe classification, and if not for transport, the design value would be considerably lower in this area. <u>Consideration of Transported Ozone and Precursors and their</u> <u>use in EKMA (EPA-450/4-89-010) and Criteria for Assessing the Role of Transported Ozone/ Precursors in Ozone Nonattainment Areas (EPA-450/4-91-015) each explain how states and EPA will view transport and its affects on any given area.</u>

Furthermore, these seven cities and towns represent approximately 14.5% of the population of the Connecticut portion of the New York-N. New Jersey-Long Island, NY-NJ CMSA, and only approximately 0.8% population of the entire New York-N. New Jersey-Long Island, NY-NJ CMSA. It is well known that a large percentage

42

Just Queba

of the VOC and NO_x emissions in the New York metropolitan area are from area and mobile sources, both of which are heavily population dependent. Therefore, it is probable that the area and mobile source emissions from these seven cities and towns is reasonably low compared to the total emissions in the entire CMSA.

Based on these factors, EPA is approving the request that the seven cities and towns in the Connecticut portion of the New York-N. New Jersey-Long Island, NY-NJ CMSA be moved to the greater Hartford nonattainment area and classified as serious.

7. Areas classified as serious or higher where portions of the C/MSA remained attainment. Following is technical documentation supporting EPA's determinations:

Atlanta, GA

The Atlanta area was designated as a serious nonattainment area for ozone as of enactment of the CAAA of 1990. The Act specifies for areas classified serious and above that the boundaries include the entire MSA, unless the Governor submits a justification for boundary revision and the Administrator concurs.

On March 14, 1991, the State of Georgia submitted boundaries for the Atlanta area that are less than the MSA, and included as part of the letter its justification for the boundaries. Georgia recommended adding Cherokee and Forsyth Counties to the previously designated 11 county Atlanta nonattainment area, while excluding Barrow, Butts, Newton, Spalding and Walton Counties. Georgia

MSA counties from the boundary area such as population densities, commuting practices, growth, etc. For example, these five counties in the MSA (Barrow, Butts, Newton, Spalding and Walton) have less than 25% of their work population commuting to the core area and a combined population of less than 10% of the total MSA population. Therefore, the total commuting population is negligible. In addition, these counties are not geographically contiguous with the core urbanized area, and therefore, are relatively remote from the core area. The combined VOC stationary source emissions of these five counties (5,604 tons/year) represents only 10% of the total for the eighteen counties in the MSA. The vehicle miles travelled and the mobile source VOC contribution in these five counties are only 5% and 4% respectively, of the eighteen county total. The data for these five counties is summarized below:

County	Population 1990 Est.	<u>Traffic (VMT)</u>	<u>Mobile Source</u> Emissions t/day	<u>Stationary Source</u> <u>Emissions t/day</u>
Barrow	28,347	470,279	2.48	1.02
Butts	16,557	463,367	2.40	0.21
Newton	43,225	804,478	4.23	2.25
Spalding	54,986	993,827	5.39	0.82
Walton	40,750	576,333	3.04	0.00
MSA Total	2,772,573	73,175,790	391.76	74.04

In addition, the state-of-the-art attainment model, the Urban Airshed Model (UAM), was used to establish a basis for exclusion of the five counties. Georgia conducted UAM modeling under two scenarios for the day 7/31/87, which is Atlanta's highest recorded ozone

· · · ·

concentration day at .201 ppm for a one-hour average: Georgia included emissions impacting the entire MSA as one run; and the emissions minus the contribution from the five counties proposed for exclusion as the second run. The predicted ozone concentrations were identical in either case. This result shows that the anthropogenic emissions from counties outside the proposed thirteen county nonattainment area not significant to ozone formation in the Atlanta area. The predicted concentration was within the "acceptable results" range prescribed in EPA guidance.

Given the data supporting the exclusion of Barrow, Butts, Newton, Spalding and Walton Counties, EPA agrees with the designation of the remaining thirteen counties as the boundary for the Atlanta nonattainment area.

Los Angeles, CA

(Non-AQMA Southeast Desert portion)

The Southeast Desert Air Basin portion of the CMSA is composed of the portions of Los Angeles, Riverside and San Bernardino Counties to the east of the SCAB. The desert portions of Riverside and San Bernardino Counties are further split into a nonattainment and an attainment area. The attainment area has not measured any ozone violations. Furthermore, the emission and population percentages between the attainment areas and the nonattainment areas are small in comparison to the numbers for Ventura County and the desert nonattainment area, compared to the SCAB. Accordingly, EPA concurs in

California's finding that the attainment area should remain designated attainment.

Sacramento, CA

The Sacramento MSA includes Sacramento, Yolo, Placer and El Dorado Counties. The ozone nonattainment area includes all of Sacramento and Yolo Counties, the northeastern portion of Solano County, the southern portion of Sutter County and all of Placer and El Dorado Counties except that EPA concurs in the State finding to exclude the Lake Tahoe portion, which is separated from the Sacramento area by the Sierra Nevada Mountains (over 8,000 ft. in elevation). The Lake Tahoe portions of El Dorado and Placer Counties have a sparse resident population, no industrial emissions, and low monitored ozone concentrations. Trip numbers between the nonattainment area and Lake Tahoe are quite low. Prevailing winds are from the west and there is no transport of ozone or ozone precursors from the Lake Tahoe area to the Sacramento Metropolitan Ozone Nonattainment Area.

Chicago, IL

Kendall and Grundy Counties

The State's March 25, 1991 submittal gave detailed information on population density and growth, transportation patterns, commercial and industrial development, meteorological conditions, and pollutant generation and transport that supported the inclusion of Oswego Township in Kendall County, Illinois and

46

第 シンドノかん シックシャクタイシントラ

Aux Sable and Goose Lake Townships in Grundy County, Illinois, in the Chicago ozone nonattainment area, while excluding the remainder of these Counties. (Kendall and Grundy Counties are part of the MSAs of Aurora and Joliet, respectively.) EPA concurs with the State finding that these areas should be The total 1988 population of Kendall County was 37,268 excluded. (0.5% of the Chicago CMSA) and the 1988 population of Grundy County was 31,615 (0.4% of the Chicago CMSA). The population density in both Counties is less than 200 inhabitants per square mile (75 for Grundy and 116 for Kendall). Kendall County contributes only 0.9% of the area source emissions for the Chicago CMSA and Grundy only 1.3%. Population growth is projected to remain the same percentage or decrease, with only the townships around Aurora and Joliet to have increasing populations.

In terms of transportation patterns, commuting to Chicago is minimal and the Counties are not part of the Chicago Transportation Planning Area. These Counties together contribute less than 2% of the total average daily vehicle miles traveled in the Chicago CMSA. The vehicle miles traveled are overwhelmingly rural (89% for Grundy and 75% for Kendall). The traffic density is low and compares to the rural neighboring counties.

Grundy County contributes 4.7% of the VOM emissions, and Kendall County contributes 0.6% of the VOM emissions in the

Chicago CMSA. The few stationary sources are concentrated in the three nonattainment townships. Sources in these townships are minor contributors in the Chicago CMSA (Oswego Township has sources totaling 85 tpy of volatile organic material (VOM), Aux Sable totals 3,453 tpy of VOM, and Goose Lake totals 77 tpy of VOM). These Townships were retained in the nonattainment area due to projected population growth and because they are not primarily rural. By including these townships, all major (>100 tpy) point sources in Kendall and Grundy County will be included in the nonattainment area.

<u>C0</u>

Los Angeles, CA

The boundary of the CO nonattainment area in the Los Angeles-Anaheim-Riverside CMSA is currently the South Coast Air Basin, even though only a small portion of the SCAB experiences violations of the CO NAAQS. EPA concurs with the State finding to exclude the rest of the CMSA from the nonattainment area. The Riverside and San Bernardino portions of the SCAB have had no CO violations since the 1970s. Ventura County also records low CO concentrations. Projected SCAB CO emissions, with growth but without new CO controls, are projected to decline by 19% by 2000, and by 29% by 2010.

EPA concurs in the finding that the CO nonattainment area for the Los Angeles CMSA should include only the South Coast Air

48

is weather ?

Basin, and not Ventura County or the Southeast Desert and other desert areas. For 1987, Ventura County's CO emissions are reported at an annual average equivalent of 334.1 tons/day, which is only 6.7% of the 4,972 tons/day in CO emissions for the SCAB. No estimates are available for CO emissions in the remaining portions of the CMSA, but the total CO emissions in those portions are expected to be less than in Ventura.

Although no useful estimates exist for motor vehicle trips between Ventura or the remaining portions of the CMSA and the SCAB, it appears that those motor vehicle trips are a very small percentage of total vehicle miles travelled in the SCAB. In addition, the CO violations recorded in the SCAB are a substantial distance from the Ventura, Southeast Desert, and other desert boundaries with the SCAB. Thus, it is unlikely that motor vehicle trips between those other areas and the SCAB make a significant contribution to the CO violations. Nor are there substantial emissions from stationary sources in the portions of the CMSA outside the SCAB that could contribute to those violations.

8. Further explanation of criteria for when the EPA will designate boundaries narrower than the entire county:

Due to the wide variance in character of counties, EPA was unable to systematically apply a formula in determining boundaries for less than countywide designations. Varying population densities within a county, development patterns and

topography--to name a few--confound any attempt at applying a more concise test. However, in an effort to keep the process itself consistent, EPA followed these actions in analyzing areas considered for less than countywide designations.

When a largely rural county contains a monitor showing a violation, and the State submitted the boundaries of the entire county as the nonattainment area (or as part of a larger nonattainment area), EPA accepted those boundaries. When the State sought to designate the entire county as attainment/unclassifiable (generally, in the State list of areas required to be submitted by 120 days after enactment), EPA responded by recommending that the entire county be designated nonattainment (generally, in the EPA's response to the State list, sent by 180 days after enactment). If the State continued to assert that the entire county should be attainment/unclassifiable or if the State recommended boundaries smaller than the entire county as the nonattainment area, EPA scrutinized the possibility for smaller boundaries as follows: The EPA relied on the most recent U.S. Census maps which 1. contained indicators of population density, to find out where the monitor was located in relation to patterns of development and population densities relative to the entire metropolitan area. EPA approved boundaries narrower than the entire county as 2. long as, 1) the boundary included an area contiguous with the

50

•

adjoining nonattainment area, 2) the boundary included a reasonable area surrounding the monitor, and 3) the boundary included all adjoining areas with a population of sufficient density such that those areas were likely contributing to the NAAQS violation.

These criteria were used not as a definitive test against which all boundary decisions were made, but as a general rule in determining where to logically look for a boundary.

3. For some areas, in drawing specific boundary lines, EPA made a visual inspection of the U.S. Census maps to find a natural or political marker nearest to the boundaries under the criteria above. For example, a township border, a river or a road whose direction enclosed a reasonably broad area surrounding the monitor could serve as an acceptable boundary. In some cases, States provided additional information--such as local topographical, planning or transportation maps--which provided additional information concerning natural or political markers that EPA took into consideration when drawing these boundaries.
9. Documentation supporting the classification of Edmonson County, Kentucky, as a rural transport area:

A rural transport designation for Edmonson County is justified because this case meets two of the four criteria specified in the EPA guideline, "Criteria for Assessing the Role of Transported Ozone/Precursors in Ozone Nonattainment Areas."

<u>Criteria 1</u>: NO_x and VOC inventories are much less than those in locations where it is plausible to believe pollution may be originating.

Emissions inventory data for VOCs demonstrate that Edmonson County does not significantly contribute to ozone concentrations at the Mammoth Cave site or downwind of that area. The following chart contrasts emissions from Edmonson County with Jefferson County and Boyd County where it is plausible that the emissions generated in those counties contribute to violations in those areas.

County	Total VOC	Point Source VOC
-	([#] tpd)	(tpd)
Edmonson County	2.8	0.0
Jefferson County	105.0	62.0
Boyd County	51.0	41.2

Furthermore, Edmonson County is considered to be totally rural with the largest incorporated area having a population of 674. The population of the entire county is only 10,357. There is no available NO_x information for Edmonson County. Criteria 4. Present other pertinent guidance.

Not only does it not appear to be plausible that emissions generated in Edmonson County are contributing to the violation at the Mammoth Cave site, but it is also unlikely that it was caused by emissions from the adjacent upwind county of Warren. Warren County is also very rural with only one incorporated area. That area is Bowling Green with a population of 40,450. There are no

large stationary point sources located in Warren County and only 3.5 of the 20.2 tpd of VOC emissions generated in Warren County are from point sources. Additionally, the total VOC emissions per day in Warren County are significantly less than those listed above for Boyd and Jefferson Counties. Therefore, it is likely that the emissions which caused the violation in Mammoth Cave National Park in 1988 were due to long range transport.

10. Transitional areas: (ozone only)

1

Chico, CA Imperial Co., CA Yuba City, CA Denver, CO Jacksonville, FL Lafayette, LA New Orleans, LA Flint, MI Lansing, MI Clinton Co., OH Preble Co., OH Steubenville-Weirton, OH-WV Submarginal areas: (ozone only) Kansas City, KS-MO Incomplete data areas: (ozone only) Beauregard Parish, LA Grant Parish, LA Lafourche Parish, LA St. James Parish, LA St. Mary Parish, LA Franklin Co., ME (part) Oxford Co., ME (part) Somerset Co., ME (part) Allegan Co., MI Barry Co., MI Battle Creek, MI Benton Harbor, MI Branch Co., MI

. . . .

-October 1991-

2

Cass Co., MI Gratiot Co., MI Hillsdale Co., MI Huron Co., MI Ionia Co., MI Jackson, MI Kalamazoo, MI Lapeer Co., MI Lenawee Co., MI Montcalm Co., MI St. Joseph, MI Saginaw-Bay City-Midland, MI Sanilac Co., MI Shiawassee Co., MI Tuscola Co., MI Van Buren Co., MI Belknap Co., NH Cheshire Co., NH Sullivan Co., NH Columbiana Co., OH Salem, OR Crawford Co., PA Franklin Co., PA Greene Co., PA Juniata Co., PA Lawrence Co., PA Northumberland Co., PA Pike Co., PA Schuylkill Co., PA Snyder Co., PA Susquehanna Co., PA Warren Co., PA Wayne Co., PA Victoria, TX Not Classified areas: (CO) Bakersfield, CA Lake Tahoe North Shore, CA Greeley, CO New Haven-Meriden-Waterbury, CT Boise, ID Indianapolis, IN East Chicago, IN Lowell, MA Springfield, MA Waltham, MA Worcester, MA

..

Detroit, MI St. Louis, MO Billings, MT Great Falls, MT Charlotte, NC Lake Tahoe North Shore, NV Manchester, NH Nashua, NH Atlantic City, NJ Burlington, NJ Penns Grove, NJ Trenton, NJ Freehold, NJ Morristown, NJ Perth Amboy, NJ Somerville, NJ Toms River, NJ Eugene-Springfield, OR Salem, OR Pittsburgh, PA Providence, RI Salt Lake City, UT Yakima, WA

Rural Transport areas:

Essex County, NY (area above 4,500 ft. elevation) Smyth County, VA (area above 4,500 ft. elevation) Door County, WI Edmonson County, KY

11. Documentation supporting Essex County, NY as a rural transport area

A rural transport designation for the upper portion of Whiteface Mountain in Essex County is justified because this case meets two of the four criteria specified in the EPA guideline, "Criteria for Assessing the Role of Transported Ozone/Precursors in Ozone Nonattainment Areas."

 $\frac{\text{Criteria 1.}}{\text{NO}_x} \text{ and VOC inventories are much less than}$ those in locations where it is plausible to believe pollution may

be originating.

Emission inventory data for NO_x and VOCs demonstrate that Essex County does not significantly contribute to ozone concentrations at Whiteface Mountain or upwind of the area. The following chart contrasts emissions from Essex County with Warren and Monroe Counties, located upwind of Essex County.

COUNTY	VOCs (tpy)	NO _x (tpy)
Essex County	4,808	2,318
Warren County	6,115	4,248
Monroe County	48,659	38,890

Note that the VOC emissions from Essex County include approximately 2,293 tpy traced to residential wood combustion, which only occurs during the cold weather season. This will not affect ozone concentrations which are higher during the hot weather season.

Further evidence that Essex County does not contribute to NAAQS violations on Whiteface Mountain are detailed below. The evidence presented includes a geographical description of Essex County, discussion of 1988 ozone violations and a trajectory analysis.

Criteria 4. Present other pertinent guidance.

Whiteface Mountain is located in the Adirondack Region of New York State. Recorded ozone values on the top of the mountain during the summer of 1988 exceeded the standard on five days,

triggering a designation of nonattainment as required by the Clean Air Act Amendments of 1990 (the amendments). The State of New York maintains that the precursor emissions from point, area and mobile sources do not contribute significantly to ozone concentrations in the area or in other areas, and therefore upwind areas are at cause.

The State of New York is requesting that the areas of Whiteface Mountain to be designated nonattainment with the National Ambient Air Quality Standard (NAAQS) for ozone be designated as a "Rural Transport Area" in accordance with Section 182 (h).

Whiteface Mountain is located in the town of Wilmington, Essex County. Wilmington is in the northeast part of the County and borders Clinton County. The Mountain is approximately 4 miles from the Clinton County border, and approximately 45 miles from Canada.

The area is primarily rural and is located in the six million acre Adirondack Park of which the majority of lands are owned by the State of New York and may not be developed or utilized except in their natural state. A number of incorporated towns and villages are located in the Park, but there are no cities. The closest urban area is the City of Glens Falls, located approximately 80 miles south, southeast of Whiteface Mountain.

The Mountain or the Town of Wilmington does not border either a Metropolitan Statistical Area or Consolidated Metropolitan Statistical Area.

Population densities for Essex County and two other New York State Counties: Warren and Monroe are summarized below. Warren County borders Essex County and includes the City of Glens Falls. Monroe County is located in the western part of New York and includes the City of Rochester. While both Counties are upwind of Essex County and Whiteface Mountain, Monroe County is more directly upwind. Population densities per square mile are as follows:

Essex County	20.0
Warren County	62.2
Monroe County	1,059.2

Trajectory Analysis

For several days in 1988 (June 13-15, July 6, 7, 10, 11) backward trajectories were constructed using the Air Resources Laboratory Atmospheric Transport And Dispersion (ATAD) model (Hefter, 1980). The trajectories show that the air masses reaching the Whiteface Mountain location have traversed over the northwest corridor of Western New York and Canadian Provinces. While no detailed analysis has been performed, the trajectories appear to have traversed over the industrial areas of that corridor. This is further evident from the ozone concentrations

58

was where is a

exceeding the standard at Perch River and Middleport monitors on June 14, 1988. Similarly, on July 6 and 7, the Middleport and Amherst monitors in the Buffalo-Niagara area have recorded ozone levels exceeding the standard. No corresponding data from the Ontario Province was examined to seek such an association.

Thus from this qualitative study it is concluded that the observed ozone exceedances at Whiteface Mountain are due to transport of ozone and its precursors, and not due to local sources.

CONCLUSION

EPA concludes that the areas above 4,500 feet in elevation on Whiteface Mountain, in Essex County, should be designated as nonattainment of the ozone standard and be treated as a rural transport area.

12. Documentation supporting Smyth County, VA as a rural transport area

A rural transport designation for the upper portion of White Top Mountain in Smyth County is justified because this case meets two of the four criteria specified in EPA guideline, "Criteria for Assessing the Role of Transported Ozone/Precursors in Ozone Nonattainment Areas".

<u>Criterion 1</u>. Emission inventories of VOC and NO_x for the nonattainment area are too low to expect significant ozone concentrations to result either within that area or downwind. There area no major sources in the nonattainment portion of Smyth

County. In fact, the entire nonattainment area is part of the Mt. Rogers National Recreation Area and thus has no population centers or industry.

Criterion 4. The elevation of the area in question is such that any observed high ozone concentrations in that area can be attributed to sources outside Smyth County. When the highest concentrations (and ozone NAAQS violation) occurred on White Top Mountain, NAAQS attainment was concurrently observed at a Smyth County monitor located at a much lower (valley) elevation. There is evidence that a broad-scale (up to several thousand ft. elevation) ozone buildup had occurred in the atmosphere over the eastern United States during the time when the ozone NAAQS exceedances were observed on White Top Mountain. It is likely that the ozone buildup resulted from an accumulation of several days' of ozone precursor emissions from major urban areas in the eastern United States. The White Top Mountain exceedances occurred on the same days that exceedances occurred at other elevated locations as far north as New York State. 13. Data supporting the designation of Oshkosh, WI as Unclassifiable

Oshkosh, WI

EPA notified the Governor of Wisconsin on January 28, 1991, that the City of Oshkosh was expected to be designated nonattainment for carbon monoxide based on available air quality monitoring data. The State responded on March 14, 1991 with a

60

Contraction Contraction

recommendation that Oshkosh be designated as "unclassifiable." EPA informed the Governor on May 14, 1991, that for the City of Oshkosh to be designated as unclassifiable, the State would need to submit an acceptable SIP revision meeting all applicable Clean Air Act requirements. As a result of the measures taken by Wisconsin which are noted below, EPA is designating the City of Oshkosh as unclassifiable for CO.

The exceedances of the carbon monoxide standard which were monitored in 1988 and 1989 in Oshkosh were the direct result of operations at Mercury Marine's Engine Testing Facility. However, EPA believes that in this case, the 1988-89 data is not representative of air quality at the date of enactment for the following reasons: Under a state enforceable Consent Order, Mercury Marine installed and began operating a collection manifold system on April 1, 1989, to vent the CO emissions from all tested engines through a manifold system and stack. Modeling analyses showed that installation of the manifold system and stack coupled with operational restrictions would result in the area attaining the CO standard. Monitoring data for a short time subsequent to the installation and operation of the manifold collection system showed substantial reductions in the concentrations of CO and recorded no exceedances of the CO standard. An Administrative Order has been drafted to reflect the control measures outlined above. The order also requires

that Mercury Marine install and operate an ambient air monitor for CO for a period of at least two years. This Administrative Order is the basis of a SIP revision that will be submitted to EPA by the State of Wisconsin documenting the actions that have resolved the area's nonattainment and State laws to ensure that the controls remain fully enforceable.

14. Documentation supporting Door County, WI as a rural transport area [Not referenced in Notice]

According to section 182(h) of the Clean Air Act Amendments of 1990, an ozone nonattainment area may be treated as a rural transport area if the Administrator determines that sources of VOC emissions within the area do not contribute significantly to the ozone concentrations measured in that area or in other locations. In response to section 184(d) of the CAAA, the EPA developed criteria for determining the contribution of sources in one area to the concentrations of ozone in a downwind area. The guidance document <u>Criteria for Assessing the Role of Transported</u> <u>Ozone/Precursors in Ozone Nonattainment Areas</u> was published in May 1991 and includes methods to justify treatment of a candidate geographical location as a rural transport area.

The guidance states that the use of trajectory models is the preferred approach for determining which locations may be treated as rural transport areas. The purpose of the trajectory models is to determine that overwhelming transport of ozone is occurring from downwind areas and to identify the area(s) responsible.

However, the guidance recognizes that for some locations trajectory models may be inappropriate for use in overwhelming transport determinations. The Wisconsin Department of Natural Resources (WDNR) asserted in an April 26, 1991 letter from Don Theiler, Director, Bureau of Air Management, to Edwin L. Meyer of EPA's Office of Air quality Planning and Standards, that the U.S. EPA trajectory model is significantly insufficient to evaluate the ozone transport situation along the Lake Michigan shoreline and especially in Door County. Wisconsin cites the complex meteorological characteristics of this region which cannot be handled in a trajectory analysis as the reason against using this sort of determination for overwhelming transport. For this reason, alternative justifications provided by the guidance will be used to classify Door County as a rural transport area.

The guidance states that a location may be treated as a rural transport area if: 1) there is evidence that VOC and NO_x emissions are much less in the area under consideration than in those locations where it is plausible to believe that the ozone may be originating, and 2) other pertinent information supporting this treatment can be presented.

It is believed that the high ozone concentrations recorded in Door County are primarily the result of transport from the large upwind metropolitan areas of Chicago and Milwaukee. Exceedances of the ambient air quality standards for ozone in
Door County are only observed when the wind direction has a strong southerly component. According to information submitted by the WDNR, the Milwaukee-Racine CMSA emits 309.1 tpy of VOCs and 170.53 tpy of NO_x. In contrast, Door County sources emit only 6.60 tpy of VOCs and 2.74 tpy of NO_x.

1990 Census data indicates that the population of Door County is 25,690 as compared to 8,065,633 in the Chicago-Lake County IL-IN-WI CMSA and 1,607,183 in the Milwaukee-Racine CMSA. A 1987 agricultural census also indicated that 47% of the land area in Door County was being used for agriculture. The EPA believes these figures adequately display the rural nature of Door County and indicate the likelihood that transport from the larger industrial areas downwind cause the air quality violations recorded in Door County.