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T h e  'Monte Carlo technique for estimating model 
parameters is presented. The bidirectional re- 
flectance factor is calculated by the Monte Carlo 
method of solving the integral equation of radiation 
transfer in plant canopies. A general inversion 
technique for the estimation of canopy parameters 
is considered. The method of calculating deriva- 
tives of the bidirectional reflectance factor with 
respect to unknown parameters using the same 
photon trajectories as in the solution of the direct 
problem is developed. The leaf dimensions are 
taken into account using a new extinction coeffi- 
cient. Finally, numerical results for estimating three 
optical canopy parameters (coefficients of leaf re- 
flectance, transmittance, and soil albedo) and four 
geometrical canopy parameters (leaf area index, 
two parameters of leaf angle distribution function, 
and leaf size parameter) are briefly discussed. 
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INTRODUCTION 

In recent years the development of remote sensing 
technology has made it increasingly important to 
investigate different algorithms for the solution of 
inverse problems. To solve the inverse problem 
means to be able to estimate the optical and 
geometrical parameters of leaf canopies from data 
of canopy reflectance. 

Canopy reflectance models play a key role in 
the solution of this problem. Comprehensive re- 
views of the existing models have been presented 
by Goel (1988) and Myneni et al. (1989). There 
are two different types of models for describing 
the radiative regime of plant canopies: 1) geomet- 
rical models, where the canopy is simulated as 
geometrical objects of prescribed shapes, dimen- 
sions, and optical properties; 2) turbid medium 
models, where elements of the vegetation are 
treated as small absorbing and scattering particles 
with given optical properties, distributed ran- 
domly in horizontal layers, and oriented in given 
directions (Goel, 1988). The first type of models 
correspond more to sparse and heterogeneous 
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canopies, and the second type is more applicable 
to denser and horizontally uniform canopies in 
which the vegetation elements are smaller in com- 
parison to the height of the canopy (Ross, 1981). 
There exist as well hybrid models that take into 
account the dimensions of leaves in the framework 
of the turbid medium models (Nilson and Kuusk, 
1989; Marshak, 1989; Myneni et al., 1990). One of 
these models was used by Antyufeev and Marshak 
(1990) for the calculation of canopy reflectance by 
the Monte Carlo method. 

The first works devoted to the inverse prob- 
lems for plant canopies are due to Goel and his 
colleagues (Goel, 1988 and references therein). 
They succeeded in solving the inverse problems 
for different models for both homogeneous and 
heterogeneous canopies. Their technique consid- 
ered the minimization of the functional 

2, 
i 

where Yi is the intensity calculated using a canopy 
reflectance model and y" is the intensity measured 
with some accuracy. Marshak (1987), using the 
technique developed for estimating parameters of 
the atmosphere from satellite data (Marchuk et al., 
1980), could determine the optical parameters of 
the leaf canopy, using the Monte Carlo model of 
Ross and Marshak (1988; 1989). Nilson and Kuusk 
(1989) were able to invert their model by includ- 
ing "punishment functions" (that do not allow the 
estimated parameters to get "nonphysical" values) 
for the minimization of functional F. The inverse 
procedure was applied simultaneously to two sets 
of the optical parameters (in visible and near- 
infrared spectral regions) and to one set of geo- 
metrical parameters. 

The purpose of the present paper is to show 
the invertibility of the Monte Carlo canopy re- 
flectance model proposed by Antyufeev and 
Marshak (1990). The canopy reflectance model is 
based on the integral equation describing the ra- 
diative transfer process in a turbid plate medium. 
To consider the finite dimensions of the scattering 
centers, a new extinction coefficient was intro- 
duced. This coefficient depends additionally on the 
previous direction of photon travel (Marshak, 
1989). In spite of the more complicated nature of 
the extinction and scattering coefficients (Myneni 
et al., 1990), this model can be considered as a 
first approximation for radiative transfer theory 

that includes the finite dimensions of leaves. The 
integral equation was solved by the Monte Carlo 
method, which allows us to follow the dependence 
of a photon on its previous history. In the present 
paper we attempt to develop a general Monte 
Carlo technique for estimating canopy parameters. 
It is necessary to emphasize that the derivatives 
with respect to the unknown parameters are calcu- 
lated by the Monte Carlo method as well, using 
the same photon trajectories as for calculating the 
bidirectional reflectance factor (BDRF). 

A brief outline of the paper is as follows: at 
first, we set up the problem (next section) and 
describe the algorithm for the solution of the 
inverse problem (third section). Then, for better 
understanding, we briefly summarize the re- 
flectance model (fourth section). In the fifth sec- 
tion we develop the theory of calculating the 
derivatives. The "weight" factors for its calculation 
are presented as well. Some numerical results are 
provided in the sixth section. 

STATEMENT OF THE PROBLEM 

We shall use the notation in the recent papers of 
Marshak (1989) and Antyufeev and Marshak 
(1990). Let the point x ~ (t, i i )  be the point of 
phase space X=[O,H]®4zr, where H = t ( T )  is 
the leaf area index (LAI) of the canopy with a 
physical depth of T. Here, t = t(z) is the cumula- 
tive leaf area index at depth z, and Il  ~ (/x,~b) is 
the direction of photon travel before interaction. 
The vector Ilo ~(/Xo,~bo), /Xo < 0 and 11" ~ 
(/x*,~b*), ~ * > 0  denote the directions of direct 
solar radiation and view, respectively. The random 
vector l l  L ~ (tz L, ~bL), /z L > 0 is the leaf surface 
normal (directed away from its upper face). The 
optical depth from point z to the upper canopy 
boundary in the direction Il is defined as r ( x ) =  
t(z)G(ii), where (Ross, 1981) 

1 f{2~+ gL(ilL)[O " c ( n )  = aLI,/O , (1) 

is the mean projection of leaf normals on direction 
Il. In case of vertically homogeneous canopies and 
nondimensional leaves, the function G(i l )  plays 
the role of the extinction coefficient for the appro- 
priate transport equation (Shultis and Myneni, 
1988). Function (2"n')-lg(~lL) is the leaf-normal 
probability density. We assume for simplification 
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that the leaf normals are uniformly distributed 
with respect to azimuth (~L' i.e., 

lzr gL(ilZ) = 1 0 ~-~ go(~), 
where 1//2"0" is the azimuthal density and go is 
the probability density with respect to the polar 
angle 0 c (lXL=COSOL). We propose a simple 
trigonometrical model (Bunnik, 1978) 

go(Oc) d l l  L : 2//'n'[1 + b cos20 c 

-4- C COS40L] dt9 L ddPL 

The parameters b and c define the polar leaf 
angle distribution. The first parameter a = 1 is 
fixed, which follows from the normalization 

i f{2~r+ig L 2rr ( i l L )  d i l  L = 1. 

The signs {4¢r}, {27r+}, and {27r-} denote that the 
integrals are over the whole unit sphere, upper 
and lower hemispheres, respectively. 

The next parameter, K, characterizing the di- 
mension of scattering centers (leaves), follows from 
the papers by Nilson and Kuusk (1989), Marshak 
(1989), and Antyufeev and Marshak (1990). 
Namely, the new extinction coefficient that ac- 
counts for the hot-spot effect in a simple way is 

/ c ( i l ) ,  , ~ , ' >  0, 
~r ( t , i l ' , i l )  : [ a ( i l ) h K ( t , i l  , i l ) ,  /x/.d < O. 

where 

[ G (il)l # I G (  il')l~l ~]'/2 hK(t ,  i l ' , i l  ) = 1 -  / 

exp[ a(il,il')t ] × ~-g / '  

a(il,il') = (~ -~ + t,,-2 +2(il,.il)/t~,l) '/2. 
The expression (2) allows us to take into account 
the leaf sizes only for those photons that are 
redirected into the retrohemisphere interaction 
(/z/x' < 0). For those photons that travel "forward" 
(/~/x'> 0), the extinction coefficient (1) is un- 
changed. In case of retroscattering (reflectance) 

i l  = - i l  ' , a ( - i l  ' , i l  ' ) =- O , ~ = 0 

and the photon goes back unweakened. In order to 
exclude the extreme cases, where o'~ < 0 (for ex- 
ample, the photon travels parallel to the vertical 
leaves, i.e., G( i l )  = (2//¢r)(1 - /x2) 1/2 and I~1 = 1), 

it is assumed that 

[G(il!l#l 1'/2 >~ exp[ ~ J  A ( i l , i l ' ) t  x H  ]' 

and h K = 0 in the opposite case. The detailed 
theory of the radiative transfer in leaf canopies 
with finite dimensional scattering centers can be 
found in the paper of Myneni et al. (1990). 

We introduce the area scattering transfer func- 
tion P ( i l ' ~  i l )  as (Shultis and Myneni, 1988), 

zTr j(2~.+} 

×f(OL, il'-~il)dilL/C(n'), (3) 
where the leaf phase function f ( i l L ; i l ' - ~  i l )  in 
the simplest case of a bi-Lambertian leaf surface 
with diffuse reflectance coefficient r L and diffuse 
transmittance coefficient t L can be written as 

( r L [ i l ' i l L [ / ~ ,  , 

~ ( i l . n ~ ) ( n  .ilL) < o, 
f (  i lL  ; i l  ' "-~ i l  ) = l tL[ i l  . i l L i /  Tr ' (4) 

[ ( i l "  i lL)(i l ' ,  ilL) > o. 

Let the soil surface be Lambertian as well and be 
characterized by its albedo r,. 

So, our model describes the plant canopy and 
reflectance from the soil surface by seven parame- 
ters ( b , c , K , H , r  L, tL ,rs) .  Now we can set the 
problem as follows. Both the monodirectional solar 
and diffuse sky radiation illuminate the plane par- 
allel layer of vertically homogeneous leaf canopy. 
There are detectors above the canopy that mea- 
sure the BDRF R(il*)  in the direction il*. Know- 
ing the function R, the problem is to obtain infor- 
mation on the three optical parameters (rL, tL, 
and r s) and four geometrical parameters (b,  c, K, 
and H), or, in other words, we need to solve the 
inverse problem of estimating the medium param- 
eters from the reflection data. The more important 
parameters are the geometrical parameters since it 
is more difficult to measure them in field experi- 
ments. 

MATHEMATICAL APPROACH 

The transport equation includes the desired pa- 
rameters in a quite complicated way, since it is 
difficult, or for some parameters impossible, to 
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derive a closed system of analytical equations. 
Moreover, such experiments lead us to different 
equations for different parameters. It is far more 
convenient to use a sufficiently universal algo- 
rithm. 

Here we shall use a modification of the New- 
ton method (Kantorovich and Akilov, 1978). Let 

* be the desired values of n parameters O ~ ? , . . . ,  O/n 
ax,...,o~ n that we need to estimate. Denote the 
BDRF for the canopy with parameters a 1 . . . . .  a n 
in the view direction [l* by 

R k = R k ( a  1 .. . .  , an) ,  k = l , . . . , N > / n .  

Let 

- Rk . . . . .  

be the measured BDRF. So, for the estimation of 
the parameters a*  . . . . .  a,*, we consider the sys- 
tem of nonlinear equations 

Rk(a  1 . . . . .  a n ) = R ~ ,  k = l  ..... N, (5) 

where R k is a function of sufficiently complicated 
nature. We shall solve the system (5) by the 
Newton-Kantorovich method (this is also known 
as Newton-Raphson method), 

a l + l = a l + ~ [ ,  i = 1  . . . . .  n, l = 0 , 1  . . . . .  (6) 

where ~[ satisfy the system of linear equations, 

, , - I , ) .  k 1, N -b- a = ti - . . .  = . . . ,  

i=  1 
( 7 )  

with iteration index 1. The initial approximation in 
the iterative process (6) is taken to be the set of 

o the elements of which are a parameters a °, . . . ,  a n, 
guess for values of desired parameters. The itera- 
tive process is stopped if 

I R t  - o k ( . ' ,  . . . . .  - I , ) 1  < 

where e > 0 is a given small number. 
The system (7) is overdefined. The simplest 

way to solve it is to multiply both sides of (7) by 
the matrix adjoint to the matrix {OR k/dai}, i.e., to 
use a least square method. However, the system so 
obtained may be highly unstable and it is neces- 
sary to use regularization theory (Baltes, 1980). 
We use the Monte Carlo method for calculation of 
both the BDRF R k (next section) and its deriva- 
tives {OR k/Oot i} (section after next). 

Sometimes it is very useful to modify the 
above scheme. Let us introduce the BDRF by two 

addents R --- R 1 + ( R  - R1), where R 1 is the con- 
tribution to the BDRF of the first-order scattering 
photons. One notices that this contribution is quiet 
large for many practically important cases (for 
instance, in the spectral region of photosyntheti- 
cally active radiation). It is not difficult to check 
that the same conclusion is valid for the corre- 
sponding derivatives as well. Then it is natural to 
try to change the derivatives OR/Oo~ to the 
derivatives OR 1/Oa in system (7). The advantage 
of such a change is connected with the calculation 
of derivatives (section after next). The calculation 
of OR/Oa with satisfactory accuracy demands sig- 
nificant computer time. On the other hand, the 
calculation of derivatives OR 1/Oa is carried out in 
parallel with the calculation of the corresponding 
BDRF (the same photon trajectories are used) and 
does not require significant extra computer time. 
Of course, the theoretical rate of convergence of 
the iterative process (6)-(7) becomes slower; how- 
ever, it can be compensated by the more accurate 
calculation of the derivatives ~gR 1/O~. Moreover, 
the relative difference between OR~/Oa and 
OR/Oa is not large for small values of leaf area 
index. It allows us to use the derivatives OR 1/Oa 
in the iterative process (6)-(7) not only for the 
spectral region of photosynthetically active radia- 
tion but for the near-infrared region as well. 

CALCULATION OF THE BID IR ECTION A L 
R E F L E C T A N C E  FACTOR 

This section is a brief summary of the paper of 
Antyufeev and Marshak (1990). We consider a fiat, 
horizontal leaf canopy of the leaf area index H, 
which is illuminated from above by diffuse and 
direct radiation, i.e., 

I ( 0 , n )  = i o ~ ( n  - n 0 ) +  1,/(1/). 

At the ground surface, it is assumed that a fraction 
r s of the energy reaching the ground through the 
canopy is reradiated isotropically back into the 
canopy, 

r~ f ( 2 .  i~z,li(n ' f l ' )  d[ l ' .  n )  = 

Here, I is the radiance distribution function, I 0 is 
the intensity of the monodirectional solar radiation 
in the direction f~o, I,t is the diffuse solar radi- 
ance, and function ~ is the Dirac delta function. 
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We denote the product I(t, t l )G(f l )  by J(t, l)). 
One can write then the integral transport equation 
as follows: 

= f{ f0nk[( t ' , a  ') ---)(t,a)] J( t, fl  ) 4~) 

×J( t ' , f l ' )d t 'd f~ '+O( t , f t ) ,  (8) 

w h e r e  

O(t,a) = i (0 ,n)c(a)  
×exp[ -G(O) t / l t z [ ] ,  lz <O. (9) 

The kernel k(x' ~ x), where x ~ (t, r )  is a point 
in the phase space X, is expressed by (Antyufeev 
and Marshak, 1990) 

k [ ( t ' , l ) ' ) ~ ( t , l ) ) ]  

t °K('r, fl ' ,  r )  d r  ], P([~' ~ l))GI~D exp[-ft' I.I 

= ( t -  t')/z < 0, 
0, 

(t - t')/z > 0. 

(10) 

Solving the transport equation (8), the BDRF in 
the direction 11" can be found as 

R ( n * ) = ~ J ( O , n * ) / [ G ( n * ) A ] ,  (11) 

where 

A=I01~01+f I~'lld(a')da'. 
~ . - }  

Equation (8) is solved by the Monte Carlo 
method (Mikhailov, 1974; Antyufeev and Marshak, 
1990). We rewrite it in operator notation as 

J = KJ + Q, (12) 

where K is the integral operator with the kernel 
k(x'--) x) defined by (10). It is known that if 
IIKI[ < 1, the unique solution of (12) can be written 
as (Kantorovich and Akilov, 1978) 

J = Q +  KQ+ K2Q+ . . . .  

Let the scalar product in the phase space X be 

(~,~)= fx~(x)~(xlax 

-= (t, [l)q~(t, 1~) d a  dt. 

Then, 

](o,n*)=J(x*)=(J, Sx.) 

= (9,  8x.)+ (KO, ~x.)+ (/¢~9, 8~.)+ . . .  

= (Q, K*6x.) + (KQ, K*Sx. ) 

+(r29,r,~x.)+ . . . .  

Here, x*~(O, fl*), and ~ ,  is the 
function; 

(13) 

Dirac delta 

fx¢(X)~x.(x)ax = ¢(x*), 

the operator K* is the operator adjoint to K, and 

[r*~x.](x)=+(x)G(n,), 
where the contribution function ~(x)  is 

' t ' (x) = ~ ( t , n )  

, 1 
= e ( n  - ,  o ) ~ -  

_ [terK(t',_~,t~*) ] 
×exp -Io Ix* d t ' ,  /z* > 0. (14) 

It follows from (9), (11), (13), and (14) that 

R(a*)  = (~, ,I , )  + (K~,,I,)  + ( t ¢ ~ , , )  + . . . ,  
(15) 

where 

O(t, a) = Q(t,a)~/A 06) 

So, the ith term on the right-hand-side of (15) is 
the contribution of ith-order scattered photons to 
the estimation of the BDRF. Expansion (15) corre- 
sponds to the following algorithm of the Monte 
Carlo method; namely, according to the transfer 
kernel k(x' --+ x), the random Markov chain x~ ---) 

n n n is simulated, where m is the X 1 "--) X 2 -.---) . . . .....) X m  

random number of the last interaction. After each 
interaction at the point x~' the contribution 
W " ~  " [ i (x i )] is included in the statistical estimation 

R and 

R(a,) ~ ~ E E w?.(x~), (17) 
n = l  i = 0  

where N is the total number of trajectories, W/n is 
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the "weight" of the nth photon after the ith 
interaction. In case of reflection from the soil, the 
contribution function * = **., where 

• , ( t ,  f l )  = r~ It*l 
c ( n )  

_ it tr~(t', II, II*) 1 Xexp Jo -~ dt' a(t-  H), 

~** > o (IS) 

Here, r~ is the soil albedo and [/xi/rr is the angle 
density of reflection from the "Lambertian'" soil 
surface. 

C A L C U L A T I O N  O F  T H E  D E R I V A T I V E S  

Let us rewrite the Neuman's series (15) in the 
following form 

R = f Oo*o + f Qokol*l + f Qoko]kJe~ + "" .  

(19) 

We have written f Qokol*l instead of 

(K~p,*)  = fx(KO)(Xl)*(x,)dx~ 

-- fxfxQ(Xo)k(xo--+Xl)*(Xl)dXodXl, 

and so on. For the calculation of OR/cga we 
differentiate the series (19). Let 

f'=Sf/Oa, 
then 

R,: f [Qa*o + Qo* l 

+ f[Oakol*, + Ook~laYitl  + OokolXI- t ; ]  + . . .  

= Qo'I'o Woo + W-So + Qokol'Ifl 

k,;, "1'1 
X[Qo +~7o, + . l l  + ' ' "  

~- f Q o * o W o  "q- f P o k o l * o W o l  + • • • . ( 2 0 )  

The last expression corresponds to the following 
scheme of calculation: as before, we simulate the 

n._.+ n ....~ n .....~ Markov chain of interactions, x o x 1 x 2 
• "" ~ x,',',, but unlike the BDRF estimation (17), 

. n the contribution [ (xi)Wo--. i] is included instead 
[*(x; ' ) ]  in the statistical estimation O R / a a  at the 
point of interaction x;'. So, the derivatives 8R/~ga 
are calculated along the same trajectories as the 
BDRF. Such a modification allows us to econo- 
mize on the computer  time. Strict grounds of the 
statistical estimation (20) can be found in 
Mikhailov (1974). The labor-intensiveness of the 
calculation of derivatives, in comparison to the 
BDRF calculation, is defined by the labor- 
intensiveness of the calculation of the "weight" 
W o  "'" i '  

As we have already noted, the calculation of 
W0 .--i with sufficient accuracy demands significant 
computer  time. This is why we simplify the prob- 
lem by calculating the derivatives of the first term 
in expansion (15). Let R 1 = fQo*o, then for the 
estimation OR 1 / 3 a ,  it is sufficient to calculate the 
"weight" 

Wo = Q;, / Qo + %; / *o 

only. 
Let us write the expression for R 1. There are 

two types of interactions: at a leaf surface and at 
the soil surface. Then, 

R 1 = RIL + Rls,  (21) 

where RIL is the contribution to the BDRF of 
photons scattered from the leaves and R ls is the 
contribution of photons reflected from the soil. 
From (14)-(16) we have 

I0C(Oo)e(Oo -+ n*) 
Ru" = A Ix* 

× f ? e x p [  G(ll°)tll*ol jo[t°K(t"l]°'fl*)lz , dt'] 

,~ r I ~ ( n ' ) c ( o t  e ( n '  -~ n*) + -A J(2~-} Ix* 

dt 

fo [ G ( f l ' ) t _  i t  Or (t ' ,  O', l]*) ] 
× Uexp Idl 4~ Ix* dt' 

×dtdll', (22) 
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and from (15), (16), and (18) it follows that 

r 8 

R l s  --- ~-Ioltzol 

X exp[-G(IIo)HI,ol -Io fn¢r~(t"f~---°'O*) . ,  dt'] 

+ 2~-} I/ 't 'lld(fl ')exp I#1 

H ' ' ] _ f o ' K ( t , n , O * )  
Jo I z---~ dt'] d~' .  (23) 

Now, we consider the statistical estimations 
OR 1/0o~ with respect of concrete parameters a. 

1. The albedo of soil surface r s. It is clear that 
only Rxs depends on r s. Then W o = 1/r~ and 

OR 1 
~9---d- = A - 'Iolt~ol 

[ G(flo)H fo" ~-(t', no, n*) ] 
X exp It~ol tz* dt' 

c(o' ) t~  
+ A-lf{2~-}llz'lld(ll')exp I#1 

H ' ' * ] _ f ~ ( t  , n , n  ) 
Jo --~ dt'] dO'. 

2. Coe~cients of reflectance r L and transmit- 
tance t L. Only the leaf phase function f depends 
on these parameters. Let ot = r L or a = t L, then 

~d P'([I ~ n*)  i f ( I lL;  O ~ O*) 
W ° = - - ~  - =  V ( f l ~ l l * )  = f ( O L ; n ~ O *  ) ' 

where functions P and f are defined by (3) and 
(4), respectively. Substituting in the last equality 
a = r L, we get 

{ lfl*" OLI/~', 

Wo = WorL = (n*" n , 3 ( o ,  o , )  < o, 
0, 
( n * ' O L ) ( O ' O L )  > O, 

and correspondently if a = tL, then 

(n*.  n ~ ) ( o ,  o~)  < o, 
Wo = Wo,~ = ~lO*-n,~l/~-, 

~ ( o * . n D ( n . o , )  > o. 

3. Parameters b and c characterizing the den- 
sity of leaf angle distribution. There are two func- 
tions • and Q [definitions (14) and (16), respec- 

tively] that depend  on these parameters, namely, 

Q~ G" t 
G',  ~) a /z 

,i,- e - (n-- ,  n , )  
,I, - e ( n  --, fl*) 

Thus, 

_ f [(r~(t , ~ , 11" )  
Jo[ ~-~ dt'. 

(24) 

i _P'+~" 
Wo~ 

Considering separately the cases a = b and a = c, 
we find the values of the derivatives. We note that 
the integral in the second term on the right-hand 
part of (24) can be evaluated analytically. 

4. Parameter H (LAI). It follows from (21)-(23) 
that the parameter  H is included in the expres- 
sions (22)-(23) and in the definition (2). We as- 
sume here for simplification that I d = O. Then 
differentiating R1L with respect to H, we get 

aR,~ _ ~ C ( n o ) e ( O o  - ,  n * )  

OH I~o1~* 

X exp [ G(~°)Hl~o' Jo'ntr~(t"l~°'O*)]lx* dt' 

~G(no)V(no --, n , )  
It~ol~* 

× f;exp[ G(O°)tl,ol joftCr'(t"O°'l~*)lz* dt'] 

0[ OoO, ] 
X ~ - Ix* dt' dt. 

So, the derivative of R1L with respect to H is 
equal to the sum of two components: The first one 
is the analytical expression and the second one is 
the mathematical expectation of the statistical esti- 
mation of RIL with the weight 

Oo,n*)] W=fo t . ,  dt'. 

By analogy, we have 

OR~s ( C ( a o )  ~(H, ao,a*) 
O T  - R's I I/Zo-------~ + /z* 

and 
+ Jo OH Ix* dt' 

aR 1 OR, L aR1s 
OH aH aH " 
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It is not difficult to repeat the above calculations 
taking also into account the diffuse component. 

5. Parameter K, characterizing leaves dimen- 
sions. The contribution functions (14) and (18) 
depend on ~r K. Then, 

~" "02".~ ft 0 [or( t ' , " , l~*)  ] 
- ~ - ~ , ' -  J 0 [ ] ~ x x  /x* dt'. 

NUMERICAL RESULTS 

We shall now discuss here some results of model 
calculations for estimating canopy parameters from 
the BDRF or from the transmittance function (de- 
pending on the parameter desired). The general 
scheme in the simplest case is the following: one 
of the parameters (or a couple of homogeneous 
parameters as r L and t L or b and c) are consid- 
ered as unknown and are estimated by the algo- 
rithm proposed above. Other parameters are kept 
fixed. The iteration is stopped if the first two 
significant numbers of the estimate coincide with 
the exact solution. We consider two schemes. The 
first one (standard scheme) requires to calculate 
the full derivatives OR/Oa in the iterative process 
(6)-(7). The second one (modified scheme) uses 
only the derivatives of the first-order scattering 
photons: OR 1/0~. 

In Table 1, results of inversion are given for a 
"thick" canopy (H = 4) in the near-infrared spec- 
tral region (r L = t L = 0.46, r,. = 0.2) where the 
role of multiply-scattered photons is quite signifi- 
cant in comparison to the photosynthetically active 
region. The diffuse incident radiation is absent. 

T a b l e  1. Some Numerical Results for Est imating Three  
Optical Canopy Parameters (Coefficient of Leaf Reflectance 
r t ,  Coefficient of Leaf Transmit tance t L, and Soil Albedo r~) 
and Four  Geometrical  Canopy Parameters (Leaf  Area Index 
H, Leaf Size Parameter  x, and Two Parameters of Leaf Angle 
Distribution: b and c) 

C a n o p y  P a r a m e t e r s  

R o w  r L t L r~. H K b c 

1. Exact values of 0.46 0.46 0.2 4.0 0.08 1 1 
parameters 

2. The initial guess 0.20 0.20 0.1 2.0 0.04 0 0 
3. Number of iterations for 3 3 2 2 

the standard scheme 
4. Number of iterations for 3 3 5 5 2 5 5 

the modified scheme 
5. Errors (%) 1 2 2 2 1 20 30 

The first row of Table 1 corresponds to the "de- 
sired" parameters; the second row describes the 
first-order approximation to the solution or the 
initial guess. The number of iterations required to 
obtain given accuracy for the standard scheme are 
presented in the third row, and the fourth row 
illustrates the number of iterations needed for the 
modified scheme. The parameter K, characterizing 
the size of leaves, was estimated quickly by the 
modified scheme; thus, it was not estimated by the 
standard method. However, the parameters of leaf 
angle distribution (b and c) could not be success- 
fully estimated by the standard scheme (Table 1, 
blank entry on row 3, columns 7 and 8). It is quite 
clear that the number of iterations for the modified 
method cannot be less than for the standard one 
(rows 3 and 4) since the theoretical rate of conver- 
gence of the iterative process becomes slower. 
However, for some parameters (b and c) it was 
fully compensated by the more accurate calcula- 
tions of the derivatives OR1/Ob and OR]/Oc. 
Similar calculations for a "thin" canopy (H = 2) 
allowed us to estimate parameters b and c to 
within 10% after five iterations. It shows that, as is 
expected, the problem is more easily solved for 
canopies with less leaf area index. 

CONCLUSIONS 

In the present paper we have continued the devel- 
opment of the canopy reflectance model proposed 
by Antyufeev and Marshak (1990). We described 
the technique for estimating canopy parameters 
and showed that the Monte Carlo model for solv- 
ing the transport equation in leaf canopies is in- 
vertible. 

Two different schemes for calculation of the 
derivatives of the BDRF with respect to the un- 
known parameters were considered. Both of them 
calculate derivatives by Monte Carlo technique, 
using the same photon trajectories as for calculat- 
ing the BDRF. The modified scheme that used the 
derivatives of the first-order scattering photons 
was more effective and allowed us to estimate the 
parameters of leaf angle distribution (especially for 
not large LAI). Preliminary results presented here 
give us hope that the parameters of a more com- 
plicated model described by the integral equation 
of radiative transfer, [for instance, the model pro- 
posed in the recent paper of Myneni, Marshal<, 
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and Knyazikhin (1990)], can be  e s t ima ted  as well. 

Howeve r ,  a more  effective modificat ion of  pro-  
posed  scheme  should  be  deve loped .  
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