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Plant  canopy reflectance is calculated usinlg the 
got~ernin~ equation f)r photon transport. The inte- 
gral equation of tran.sfer is solved by the Monte 
Carlo method. The main emphasis is on statistical 
estimation and simulation of the Marcov chain. The 
leaf dimensions are taken into account in obtaining 
the hot-spot effect of the canopy. Finally, nmnerieal 
results fi~r transport equation obtained by the Monte 
Carlo method are compared with those obtained by 
u,s'in~ tke method of discrete ordinates and the 
geometrical Monte Carlo model. 

INTRODUCTION 

For remote sensing o(" vegetation a number of 
canopy reflectance models have been developed 
during recent decades. Goel (1988) has classified 
the different ways of modeling the radiation regime 
in vegetation canopies into four categories: geo- 
metrical models, turbid medium models, hybrid 

Address correspondence to l)r. A. Marshak, hast. f~ir Bioklima- 
tologie, Univ. Ciittingen, Bfisgenweg 1, 3400 G6ttingen, FIqC. 

Receil:ed 4 October 1989; terised 13 March 1990. 

00,34-4257/90 / $3.,50 
~3Elsevier Science Publishing Co. lnc., 1990 
655 Avenue ,~f the Americas, New )'ork, NY 10010 

models, and computer simulation models. In the 
present paper, we study the models of the second 
category based on the radiative transfbr theory and 
the statistical Monte Carlo models of tile fourth 
category. Here the models of Shultis and Myneni 
(1988) and Ross and Marshak (1988) may be con- 
sidered as typieal representatives of these ap- 
proaches. 

Turbid medium models are most effective in 
dense and horizontally uniform canopies. How- 
ever, the introduction of vertical and horizontal 
heterogeneities, row grown plants, leaf dimen- 
sions, effective distance between leaves, etc. in the 
model leads to significant computational difficul- 
ties. ttowever, it is not difficult to eonsider these 
geometrical parameters using the Monte Carlo 
model. On the other hand, the inverse procedure 
or estimation of the canopy parmneters from re- 
flectance data |br the statistical models of the 
Ross-Marshak type is rather complicated. In the 
framework of such an approach we cannot calcu- 
late the derivatives with respect to unknown geo- 
metrical parameters along the simulated photon 
trajectories (Marshak, 1987). 

In the present paper we propose to unite these 
two approaches. We suggest that the radiation 
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regime in the vegetation canopy should be de- 
scribed 1)y the transport equation, namely, by the 
integral transport equation with inclusion of all the 
important geometrical parameters. Besides, we 
propose to solve this equation by the Monte Carl() 
method. Thus, we can complement the technique 
of solving the direct and inverse problems in 
atmospheric physics (Mikhailov, 1974) by the 
Monte Carl() method by applying these methods to 
the plant canopies. 

For simplicity, we consider only homogeneous 
plant canopies and describe the main points of the 
Monte Carl() procedure. The first two sections are 
dew)ted to the integro-differential and integral 
equations in plate turbid medium. In this ap- 
proach, the elements of vegetation are treated as 
small absorbing and scattering particles with given 
optical properties, distributed randomly in hori- 
zontal layers and oriented in given directions 
(Goel, 1988). The next two sections represent the 
method of solving the integral equation by the 
Monte Carl() method. Then, the hot-spot effect bv 
considering finite dimensional scattering centers is 
included in our model. Numerical comparisons 
with other models are provided in the section, 
Numerical Results. 

TRANSPORT EQUATION IN SLAB- 
GEOMETRY FOR PLANT CANOPIES 

We assume that the angular distribution of leaves 
is independent of depth and that it is defined bv 
the leaf-normal probability density (2rr) Ig(DL), 
where OL ~(0r,qSL), is a leaf normal directed 
away from its upper surthee into a unit solid angle 
about D L. Then (Ross, 1981) the fimction G (di- 
mensionless), 

1 

is the mean projection of leaf-normals on direction 
D. The unit vector D ~(/x,~b) has an azinmthal 
angle ~b and a polar angle 0 =cos l(/,t) with 
respect to the outward normal (opposite the z-axis 
which is directed down into the canopy). 

We eonsider a flat, horizontal leaf canopy of 
depth T, which is illuminated from above by a 
direct monodirectional solar component in direc- 

tion D o ~ (/.to,~b o) (/.% < O) with intensity I o. At 
the ground interface, it is assumed that a fraction 
r,. of the energy reaching the ground through the 
canopy is reradiated isotropically back into the 
canopy. The radiative regime in such a canopy is 
described by the transfer boundary-value problem 
(Shultis and Myneni, 1988) 

= o ) , f  
4"rr 

0 < z < H ,  

I(0, D)  = I , , a ( n -  D0),  /x < 0, 

(2)  
I(H,D)= ""~ I~,'lI(n, f f)dn '  ~>0. 

77" - , ~  

Here, 4~-, 27r +, add 2~" (introduced later) de- 
note that the respective integrals are over the 
whole unit sphere, upper, and h)wer hemisphere. 
The cumulative leaf area index r(z) is defined as 

~ 

= £ . , t z ) , l = .  

where uL(z) is the total one-sided leaf area per 
unit volume of the canopy. The optical depth in 
the plant canopy depends on the direction of 
photon travel and is defined as ~-(z)G(D). Here 
0 ~< z ~< T is the geometrical depth of the canopy 
and 

H = f ruL(z) dz 

is a leaf area index. The area scattering transfer 
fimetion is defined as 

1 

• " (3)  

× f ( n ,  ; n '--,  n )  ( l o , , / ( ; (n ' ) .  

The leaf phase fimction f(DL: D'--, D) is normal- 
ized to the single-scatter leaf albedo o)t, i.e., 

f~/(OL; O'--~ O)dO = COl+. 

It leads to the same equality tbr the 
function P(D'---) D), i.e., 

transfer 



Monte Carlo Calculation of Canopy Beflectance 18,5 

Next we obtain the l)oundary-value problem 

IX 8 
G(I~) Or J ( r ' l l ) +  j(,,n) 

= f, P ( I Y ~ l ~ ) J ( r , l ) ' ) d l l ' ,  (4) 
77" 

j ( ( ) ,n )  = e ( n ) i ( o , n ) ,  Ix<o ,  

J(H,I))=G(I))I(H, II), Ix>0 

by denoting the product I(r, f l )G(l l )  in (2) by 
J( r, 1~ ). 

THE INTEGRAL EQUATION 

We derive the integral equation {br the plant 
canopy neglecting reflectance from the ground. 
Denoting the integral term in (4) by ,q(r,l~) and 
solving the houndarv-value problem, we obtain 

J ( r , l l )  

G(I)) f ' l~r ,  ll)exp[ G ( l l ) ( r - r ' ) J d r '  
- ~ - J , ,  J~ ' IIxl 

+,(o,n)exp[ c ( n ) ]  IIxl ~ '  Ix<()' 

G(II) l H ~ ,  ll)exp[ G(l))(r'-r)]dr', 
- - 7 - -  J, !t~ r , tx 

IX<0, 

¢/(r, n ) ,  Ix > o. 

Substituting the right-hand side of the al)ove 
equation in the boundary-value problem (4) for !/, 
the integral equation can be written as 

£" j ( ~ , n )  = k[(~', n')  --, (~, n ) l  
~T 

x j ( <  n') d~'dn'+ Q(~, n), 

(~) 

\ v h e r e  

k (x' - , x ) ,  ~ , < o ,  

k(.,-'--, :,-)= k+(x'-,x), Ix>0, 
(6) 

Here, 

k (x'--+ x) 

( [ 1 e(n'-~ n ) ~ e x p  (~ - ~') 
= IIxl ' 

() <~ r' <~ r, 
O, r<r '<~H,  

k+(x'-,x) 

o, o .< r' <(/, I 
= P(I) ' -+I~) G )exp 

r< r '< ~ H,  

(7) 

(;(n) ( , _  ~)1 IX 

(s) 
and 

0 ( r , l l ) = J ( 0 ,  n )exp  IIxl r ,  Ix<0 .  

Note that integral equati(m (5) can be derived 
from physical motivations as well (Pomraning, 
197:3). 

Bemark: In case of nonzero soil albedo (r~ # 
0), the kernel k÷ for r <~ r'~< I1 and the source 
fimction Q fbr Ix > 0 can be expressed as 

k~(x'-+x) 

[ G(O) ] = P(n'-, n) (;(n--A) exp (~'-~) 
IX IX 

+ c ( n ) e x p  (H - r 
7r IX 

× f P(n'--, n") 
a o  ~2T 

×exp IIX"I ( I t -  r') dlI", 

0(~. n) = I .c(n)  ,.I.,,I exp 
rr Itxo{ 

×exp[ G(l ) )  

SOLUTION OF THE INTEGRAL EQUATION 
BY THE MONTE CARLO METHOD 

\Ve rewrite 
notation as 

the integral equation (5) in operator 

and x ~ ( r ,  l l )  is a point in the phase space X J = K J + ( , ) ,  (9) 
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where the kernel k ( x ' ~  x) of the integral opera- 
tor K is defined by (6)-(8). The kernel k(x'---* x) 
is a probability density of interaction at the point x 
of a phase space provided the previous interaction 
occurred at the point x'. Here x ~ (r, 11), where r 
is a cunmlative leaf area index at the point of 
interaction and 11 is the direction of the photon 
just before interaction; J(r, l l )  is the phase inter- 
action density; Q(r, ~ ) / I t* l  is the density of the 
first collision photons of intensity I(0,11) in the 
direction 11. 

It is known that if the condition IIKII < 1 holds, 
Eq. (9) has a unique solution that can he repre- 
sented in Neuman's series (Riesz and Sz.-Nagy, 
1972) 

J = Q + KQ + K"-Q + " "  . (10) 

For remote sensing purposes, it is suflqcient to 
know the value of J(0,1~*), ~*  ~ (/.t*, &":"),/x* > 0, 
i.e., the reflection from the upper  surfitce in the 
direction fl*. Then, 

.I(0,11") = (J, 6:~) = f \ j ( x ) a ,  ,:(x) dx, 

where 8,:. is the Dirac delta fimction and x * ~  
(0, ~*).  Taking into account (10), we have 

j(0,  n*)  = (0. s,= ) + ( / (0 ,  a,~:) + (K-'Q, a,..) + . . .  

= ( 0 .  K'a , . )  + (KO, K-':'a, ) 

+ ( K  O,K a , . ) +  . . . .  

\Ve have used the equality (Q, 8 , , ) =  0 since the 
incident solar and the reflected heams are in op- 
posing hemispheres. The operator K* is the opera- 
tor adjoint to K and 

(K*n)(x) = f,k (x -~ .,-')n (x') (t,-'. 

The,,, 

(K*a,.~,,t(~, n )  = k [ ( , , n t - ~  ( < n ' t ]  
77" 

× 6 ,.,( r ' , lT  ) dr '  d ~ '  

= k[ ( , ,  n )  -+ (0, n*) l  

= , v ( ~ , n ) c ( n * / ,  

where the contrilmtion fimction ~ ( r ,  f~) is 

q~(r, n )  = e ( n  -~ n * )  ~ -  exp ~ ,  r ,  

/x* > 0. 

Hence,  it follows that 

I (0 , f l*)  = j ( 0 , n * ) / G ( f l * )  

= ( Q , . )  + ( K Q , * )  + ( K ~ Q , * )  + - • 
U l )  

Here, 11" is the view direction at r = 0 (the upper  
surihce). In ease of reflection from the soil, the 
contrilmtion fimction • is 

_ r.~ I~1 [ 
'K(~, f l )  7r G ( ~ )  exp t 

c ( m ) ]  
~ ,  r a ( r - H ) ,  

/~"~ > 0. 

The ith term in the right-hand part of (1) is 
the contrilmtion of ith order scattered photons to 
the estimation of the canopy reflectance. Expan- 
sion (11) corresponds to the algorithm of the Monte 
Carlo method; namely, according to the two proha- 
hility densities (prol)ability density of the length of 
photon fi'ee path in direction l l  and the prol)ahil- 
itv density of the scattering in a solid angle about 
~ )  in the kernel k(x'--+ x), the photon trajectory 
x[; + x',' ~ .r~ ~ "'" ~ x;;, is simulated. Here, x;' 
are the points of ith interactions fi)r the nth 
photon in the phase-space X and m is the random 
number  of the last interaction. After each interac- 
tion at the point x;' the contribution [W,"xP'(x;')] is 
included in the statistical estimation l and 

l(0,n,, ,)  = Y'. w " , v '  "' (12) 
n - 1 i [ )  

where N is the total number  of photons, ~,~" is the 
"weight" of the n th photon after i th interaction. 

For obtaining the bidirectional reflectance fac- 
tor B(fl , ,O'*) ,  it is suflqcient to multiply I(0, ~*) 
by ~/Io]tto[, i.e., 

/{ (ft , , ,  fl-*) = rrl(0,11")// , , l~t, ,I .  

S I M U L A T I O N  OF T H E  MARKOV C H A I N  

What we now need for tile final solution of the 
transport equation is only the simulation of the 
Markov chain. 

1. Simulation ~" photon mean fi'ee path. Ac- 
cording to the standard method of simulation of a 
continuous random value, the mean optical length 
of the photon free path ~ can be found from the 
equation (Mikhailov, 1974) 

U(~) = ~ ,  (13) 
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where oz is a random munber  uniformly dis- 
tributed in (0, 1) and 

F ( t ) = l - e x p ( - t )  [t=rG(l~)/IFxl] (14) 

is a fimetion of the distrihution of F. From (13) 
and (14) it fi)llows that 

÷ =  - I lln 

2. Simulation 
1)' 1)e a direction 
tion. We sinmlate 
as f i ) l l o w s .  

( f  the scattering direction. Let 
of photon travel before interae- 
the direction lI after interaction 

Note that the probability density of a sinnlla- 
tion shoukl satis6: the following two conditions: it 
should be convenient ~br simulation and universal. 
The condition of "universality" means that the 
density used in the algorithm should not change 
with real distrihntion. In the opposite case, one 
should look fi)r a new simulation density for eaeh 
set of initial data. The proposed Monte Carlo 
method uses some general and convenient density. 
The bias of statistical estimation in this case is 
compensated by the product of the photon 
"weight" with an appropriate taaetor at each act of 
interaction. The "weight" should be nmltiplied by 
the contribution fimction in the estimation (12). 

Thus, we represent fimetion P(l)'---~ 1)) by 
the superposition of two densities, viz., 

f ,  I n ' - n , ;  n )  = 
_ c ( n ' )  

× f ( l I i  ; l I '  --+ 11) d i l l .  

Then, tim simulation of the direction f} is carried 
out in the following way: The outward normal 1) L 
is simulated according to the density 

& ( n , ~ )  Ifl'° ll,~l 
p ( n , . )  - C ( n ' )  

Then, knowing 111, the direction I I  is simulated 
according to the density f ( ~L ;  l)'--~ l~). However, 
the density p ( l l / )  does not satisg' the two above 
conditions. As a matter of fact there are no simple 
simulation fbrmulae awulable and the probal)ility 
density of leaf normals gL(l~L)/'2"n" is generally a 
polyparameterieal fimction. 

Assumiiag that leaf normals are uniformly dis- 
trilmted with respect to azinmth &, their distritm- 
tion with respect to /,t is represented by the 
three-parameter family (Bunnik, 1978), the density 

gL(l I1) /27r  can he written as 

,, (11 ~ 2 1 I m L \  L ]  _ 

where 

= ,, + - + 8 / +  1),  

a,  12, c = eonst.  

(15) 
We shall eonsider the fimction 

( 2 / ~ ) ( 1  - ~ ' ) - "  ~(1/ '2~)  

as a new probability density for the direction 
l IL~( /xL,  Or), where 1/27r  is the density with 
respect to q5 L and (2 / r r ) (1  - / x  z) o.~ is the density 
with respect to /.t L. The sinmlation formulae are 
very simple: 

qS,, = 2~-ot, /x L = s in(rr /3/2) ,  

where oe and /3 are uniformly distributed in (0, 1). 
So, the probability density with respect to 1)/, is 
both universal ( independent  of parameters a, b, c) 
and convenient. 

To sinmIate a more general distrihution time- 
tion of leaf normals with respect to &, it is sniff 
eient to change the density 1 /2 r r  to the appropri- 
ate one. Assuming independence in distribution 
ahout polar and azinmthal angles of leaf normals, 
one should to change the simulation fbrmulae for 
&c only. Thus, separate the above density from 
p( l I l ) .  We have 

 V57,4 c(n')1 

The first f~mtor will be the n e w  density fin" f ig and 
the second factor is produced by the "weight" of 
the photon at the following interaction. Note that 
the factorization can be carried out in a different 
way as well. However, our approach has the ad- 
vantage that the unbounded factor, (I - #~) 0..~ is 
included in the density and excluded from the 
"weight." It allows us to obtain a hounded esti- 
mate. The unboundedness  of the estimate leads to 
great errors. 

Knowing lI r, the simulation of the direction 
lI is perfbrmed accordingly to the leaf" scattering 
probability density f(lIr;lI'---+ lI). For a "bi- 
Lambertian case" (Shultis and Myneni, 1988) it 
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can be written as 

f ( i i ,  ; f l ' -+  ~ )  

f r L l i l ' I l r l / 7 r ,  ( I I ' I l L ) ( I I ' ' n C )  < O, 

t L l i l ° i l L I / ~  , ( i i ' i i , ) ( i i ' ' n L ) > O ,  

where r L and t L are the leaf hemispherical re- 
flectance and transmittance, respectively, and a 
simulation can be obtained successively by means 
of the fi)rmuale 

& = 2 7 r a ,  /x=aV/~ -, 

where /~ and & are the polar coordinates of the 
vector Il  with axis IlL and 

( [ . ] }  
+ ,  ((° +,L 

~ r L 
or ( I I " l l L ) < 0  ] & y < - -  

r L + t L ' 

- i ,  otherwise. 

Here a, fl, and 7 are independent  random values 
unflbrmly distributed in (O, 1). 

,3. Calculation of the contribution function. As 
a eontritmtion function we should not treat the 
accurate meaning of ~ ( r ,  If) (that is very difficult 
to calculate after each interaction), but we require 
its estimation randomized with respect to IlL, 
namely, [ f ( i lL ;  I l ' ~  l l*)exp(--  r* ) />*] .  Here, 
II L is a leaf normal simulated after interaction; r* 
is the optical depth from the point of interaction to 
the receiver in the direction Il*. 

4. The general algorithm of the Markov chain 
simulation. There are the following steps: 

Get the initial position of the photon. 
Simulate the length of photon free path (see 1) 

and calculate the r. 
Sinmlate the leaf normal Ilc.  
Evaluate the "weight" of a photon with 

the appropriate factor (see 2) and leaf 
albedo w r. 

Calculate of the contribution in the statistieal 
estimate (12). 

Simulate the new photon direction Il. 

This procedure is continued until the photon es- 
capes the canopy (r  < 0) or is absorbed. Then a 
new trajectory begins. 

CONSIDERATION OF THE 
HOT-SPOT EFFECT 

The above model satisfactorily approximates 
canopies in which the size of phytoelements is 
small compared with the height of the canopy. The 
consideration of mean leaf size iu the canopy leads 
to a shading effect called the hot-spot effect 
(Kuusk, 1985; Gerstl et al., 1986; Ross and 
Marshak, 1988). In this ease the extinction coef- 
ficient depends at least on both the initial direc- 
tion Il '  and scattered photon direction lI. Using 
the coefficient of mutual correlation of the indica- 
tor fimetions of gaps in directions If and Il '  
(Nilson and Kuusk, 1989), a new extinction coef- 
ficient o" depending on the mean leaf dimension 
was obtained (Marsha l  1989). We assume that 
the parameter K is defined as K = li, / T, where 1L 
is the length of mean chord of the leaf and T is 
the height of canopy (Kuusk, 1985; Nilson and 
Kuusk, 1989). In ease of a homogeneous leaf 
canopy we have 

= { G( I I ) ,  tx/x' > 0, (16) 

0, 
where 

h ~ ( t , i i ' , i i )  = 1 -  G(fl)l 'l 

[ a(n,n')t ] 
× exp K~/ ' 

A ( i i , i i ' )  = (/x -2 +ix '  2 + 2 ( i i , . i i ) / i ~ / x , i ) ' / " .  

It can be seen that in case of back-scattering 
( i l  = - Il ') extinction is absent and % = 0. Hence, 
we use new extinction coefficient (16) instead of 
(1) for simulating the photon free path. For more 
details regarding the consideration of finite dimen- 
sional seatteres in transport problem, see the 
forthcoming paper of Myneni et al. (1990). 

NUMERICAL RESULTS 

To illustrate the proposed Monte Carlo method, 
numerical results for the canopy bidirectional re- 
flectance factor B( i l  0, I l )  are now presented and 
compared to those calculated by other methods. 
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Figure i. The bidirectional reflectance factor of the plant 
canop} R(f~o, 1~) fi)r various ~ ertieal cross sections. 1) & = d)(~ 
and 4) = 05o + 180°: .2) & = &o +45° and ¢5 = &o +225*: 
3) & = &o +90° and 4) = bo + .270°. Here, rl, = tl~ = 0.46, 
r~ = 0,0, 1l = 3.0, K = 0.08. 0~ = 150 °. 

In Figure 1 we show three vertical cross see- 
tions of the bidirectional reflectance factor to rep- 
resent the planophile canopy [mainly horizontal 
leaves: a = 1, b = 1, c = 0 in Eq. (1,5)] with /% = 
-VC3/ '2.  Symmetry with respect to the nadir oc- 
curs only for the cross sections 4)= qSo +90°  and 
& = &,, + 270 °. 

We now compare two Monte Carlo models: 
the above proposed model based on the transport 
equation (Model 1) and the geometrical Ross-  
Marshak model (Model `2) (Ross and Marshak, 
1988; 1989). Fignre :29 illustrates the reflectance 
i~aetors B(l~o,f~) in the near-infrared spectral re- 
gion for the erectophile canopy [mainly vertical 
leaves: a = 1, b = - 1, c = 0 in Eq. (15)]. We show 
four curves. Curves 1 and 2 refer to / - t o  = - V/-3/2 
and curves 3 and 4 illustrate /-to = - 0 . 5 .  There is 
good agreement  between the two models, How- 
ever, the bidirectional reflectance for Model 1 
(curves 1 and 3) is greater than the bidirectional 
reflectance for Model 2 (curves '2 and 4). In Model 
'2, the phytoelements  are distr ibuted more regu- 
larly and the probability to view the dark soil is 
greater than for Model 1 with randomly dis- 
tr ibnted leaves. The same effect has been ob- 
served in calculations using the discrete ordinates 
method instead of Model 1 by Marshak (1989). 

Figure 3 demonstrates the influence of the 
dimensions on the bidirectional reflectance factor 
iq(fJ~),l]) in the near-infrared region. Curve 1 

refers to the solution of the transport boundary- 
value problem (2). Curves "2 and 3 represent  the 
solution of the transport equation with the new 
extinction coefficient o'~ taking into account the 
leaf dimensions [see (16)]. Curve '2 illustrates the 
influence of leaf sizes on first-order scattering and 
curve 3 considers leaf sizes [()r first-order scatter- 
ing as well as for multiply-scattered photons. The 
difference between curves '2 and 3 denotes the 
influence of leaf dimensions on multiply scattered 
photons. For  the planophile canopy in the princi- 
pal plane [Fig. 3a], there is a constant difference 
fi)r all view directions. However, for the erec- 
tophile leaves the difference increases significantly 
in large view directions [Fig. 3h]. It can be ex- 
)laiued hy a significant hot-spot brightness in an 
'rectophile canopy ahmg near-horizontal view di- 
eetions. Note that curves "2 for both the planophile 
nd the erectophile leaves coincide with those 

calculated by the discrete ordinates method with 
separation of first-order scattering (Marshak, 1989). 

Finally, we give some qnantative measure of 
computer  time. It is always desirable to use staffs- 
tieal simnlation methods such as Monte Carlo. I f  
we compare the method presented above with the 
discrete ordinates method (Marshak, 1989) and 
the geometrical Monte Carlo method (Ross and 
Marshak, 1989), we can order them fbr the follow- 
ing way: the discrete ordinates method, the present  

Figun" 2. Gonlparison of the bidirectional reflectance thctors 
calculated by the model based o n  the transport equation 
[curves i) and 3)] with those obtained by the ~eometrieal 
Monte Carlo n3odel [curves .2) and 4)]. Here, r L = t L = 0.46, 
G = 0.2, H = 3.0, K = 0.08, d) = &o, O. = 150 ° [curves 1) and 
"2)], 0 o = 1.20 ° [curves 3) and 4)]. The principal plane. 

R(Qo,Q) 
1.0 

\\ o., ~- 
_-___2 7" 

;F--I 
1 

_ ~',~o * 1 ~=~0+180° 
90 60 30 0 30 60 9O 

8 = C . .OS ' tM  
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Figure 3. Consideration of the leaf dimensions for hoth the 
planophile canopy (a) and the ereetophile canopy (b). 
1) ~¢ = 0.0 (infinitesimally small leaves); 2) K = 0.08 for first- 
order scattering, only; 3) K = 0.08 for both first-order scat- 
tered photons and multiply-scattered photons. Here, r L = 
t L = 0.46, r, = 0.0, H = 3.0, 0 o = 120 °, ¢b = (ho. The principal 
plane. 

ordinate method and, naturally, fi)r the most real 
leaf canopy, both Monte Carl() methods will be 
superior to the multidimensional discrete ordi- 
nates model. The main reason is that the Monte 
Carlo method does not require much more com- 
puter time for three-dimensional calculations than 
for one-dimensional problems. 

CONCLUSIONS 

We have considered the Monte Carh) technique 
for the solution of the integral transport equation 
in a plate medium. It allows us to take into ac- 
count an important geometrical parameter, the leaf 
dimension, that leads to the fi)rmation of the 
canopy hot-spot effect. The proposed model gives 
a possibility to supplement it by including both 
the structural and the optical parameters like spec- 
ular reflection component in the scattering phase 
fimction. The proposed technique allows us also to 
estimate the contribution of the canopy hot-spot 
effect for the radiance of the multiply scattered 
photons (Fig. 3). Further development of the 
presented model inw)lves generalization to the 
3-D ease and inversion of geometrical and optical 
parameters using data on canopy reflectance. The 
transport theory for a leaf canopy of finite dimen- 
sional scattering centers is described in the paper 
by Myneni, Marshak, and Knyazikhin (1990). 
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Monte Carlo method for transport equation, and 
the geometrical Monte Carlo method. The com- 
puter time for each of these methods differs by a 
faetor 2, i.e., the computer time for the discrete 
ordinates method (with 144 discrete directions) is 
two times less than that for the Monte Carlo 
method, for the same one-dimensional transport 
equation (about 1000 photon histories are needed 
to obtain mean square-root errors less than 5%) 
and four times less than the computer time needed 
for the geometrical Monte Carlo procedure which 
requires a more complicated model of the plant 
canopy. We should like to emphazise that these 
comparisons are valid only for the simplest case of 
a one-dimensional problem. The more eomplieated 
a medium, the less the advantage of the discrete 
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