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Adjoint formulation of three-dimensional radiative transfer and the Green's function concept
have been developed in neutron transport several decades ago. This is not merely yet another
method of simulating the radiative transfer process, but a method of reformulating the problem
to better incorporate existing radiation models into a particular research. In the case of photon
transport in vegetation canopies, the Green's function is a canopy radiative response to a point
monodirectional source located outside the canopy. The Green's function, therefore, has
intrinsic canopy information. It can be evaluated by using existing canopy radiation models.
The problem-dependent adjoint formulation of radiative transfer allows us to express a
particular canopy radiation e�ect in terms of the Green's function and, as a consequence, to
better adjust the existing models to the solution of a speci®c radiation problem. Application of
this technique to the retrieval of biophysical parameters from remotely sensed data (the table
look-up method) was discussed in (Kimes et al., this issue). In this paper, we will illustrate how
this concept can be applied to the estimation of cloud optical properties from ground-based
measurements of spectral zenith radiance above the vegetation canopy under broken cloud
conditions. In spite of di�erent physical formulations of these problems, both of them use the
Green's function to describe radiation ®elds due to the interaction between the canopy ground
and the canopy and the canopy ± clouds interaction. This technique allows us not only to extend
an applicability range of existing canopy ± radiation models, but also to incorporate of various
approaches developed in other ®elds of physics into BRDF modeling and its applications.
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1. INTRODUCTION

Land surface processes are important components of the terrestrial climate

system. Accurate descriptions of the interaction between the surface and the

atmosphere require reliable quantitative information on the ¯uxes, mass,

and momentum, especially over terrestrial areas, where they are closely

associated with the rates of evapotranspiration and photosynthesis. Many of

these processes can be related to the spectral re¯ectance of the surface. The

vegetation canopy is classi®ed as a special type of surface not only due to its

role in the energy balance but also due to its impact on the global carbon

cycle. Its re¯ection results from bio-physiological, chemical and physical

processes, and is characterized by spatial, seasonal and diurnal variations.

The three-dimensional incoming radiation ®eld and three-dimensional

structure of vegetation canopies determine these spatial and temporal

variations which in¯uence various physiological and physical processes

required for the functioning of plants. Therefore these models that describe

the three-dimensional radiation ®eld in vegetation canopies and the three-

dimensional radiation ®eld of incoming radiation as well as the interaction

between these ®elds are required by many interdisciplinary researches.

Because of the complexity and ambiguity in the interpretation of both

satellite images and ground based measurements of the solar radiation in the

presence of broken clouds, scientists prefer to deal with either clear or

overcast skies. For example, land scientists use clear sky data for estimating

land cover and vegetation indices while atmospheric scientists would rather

analyze overcast sky data for retrieving optical and geometrical properties

of clouds. As a result, a large amount of data that show a complex three-

dimensional structure of both clouds and vegetation is at best substantially

underexploited.

The main objectives of this paper is to demonstrate a technique developed

in neutron transport which allows us to accurately account for features of

three-dimensional radiation ®elds in designing algorithms for estimation of

cloud optical properties from ground-based measurements above the

vegetation canopy under broken cloud conditions. Application of the same

technique to the retrieval of biophysical parameters from remotely sensed

data was discussed by (Kimes et al., this issue). In spite of di�erent physical

formulations of these problems, both of them use the same technique to

describe radiation ®eld due to (1) the interaction between the canopy ground

and the canopy and (2) the canopy ± clouds interaction. This technique

allows us not only to extend an applicability range of existing canopy ±
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radiation models, but also to incorporate of various approaches developed

in other ®elds of physics into BRDF modeling and its applications.

2. EXPANSION OF THE THREE-DIMENSIONAL

RADIATIVE FIELD

Let us consider a three-dimensional scattering and absorbing medium. This

medium can be either a vegetation canopy or a cloudy layer. The

monochromatic intensity I�(r,
) of a three-dimensional radiation ®eld at

wavelength �, at a spatial point r and in direction 
 can be represented as a

sum of two components; that is,

I��r;
� � Ibs;��r;
� � Irest;��r;
�: �2:1�

The ®rst component, Ibs,�, describes the radiative regime within the medium

for the case of a black surface underneath the medium (``standard

problem''), and Irest,� describes additional radiative ®eld due to the

interaction between the underlying surface and the medium.

It is well known (e.g., Chandrasekhar, 1960, p. 273; van de Hulst, 1980,

p. 64; Stamnes, 1982; Box et al., 1988) that in the case of simple slab

geometry and a Lambertian surface with albedo �sur,�, the additional term

can be expressed as

Irest;� �
�sur;�

1ÿ �sur;�R�
Fbs;�IS;�: �2:2�

Here � denotes wavelength; Fbs,� is the downwelling ¯ux at the medium

bottom for the standard problem; IS,� is the solution to the transport

equation with a normalized isotropic source QS� 1/� (in sr ÿ1) located at

the medium bottom, and R� is the downwelling ¯ux at the medium bottom

generated by QS. Thus one needs three independent variables to describe the

radiative regime in the plane-parallel medium. They are (1) re¯ectance

properties of the underlying surface, which do not depend on the medium;

(2) Ibs,� and (3) IS,�, which are surface independent parameters since no

multiple interaction of radiation between the medium and underlying

surface is possible, i.e., these variables have intrinsic canopy information.

Somewhat more complicated techniques, adjoint formulation and Green's

function concept, have been developed in reactor physics to extend the

representations (2.1) and (2.2) for the case of three-dimensional radiation

®elds (Bell and Glasstone, 1970). Although in the three-dimensional case
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Irest,� cannot be expressed in such a simple form, the physical meaning of

(2.1) and (2.2) remains unchanged; that is, a three-dimensional radiation

®eld can be expressed in terms of ground re¯ectance properties which are

independent on the medium; the radiation ®eld in the medium bounded at

the bottom by a black surface; and the radiation ®eld in the medium

generated by anisotropic heterogeneous wavelength-independent sources

located at the surface underneath the medium. Though this technique has

been developed in the neutron transport several decades ago (Bell and

Glasstone, 1970), it has only recently been incorporated into an operational

algorithm for retrieval of bio-physical parameters from canopy re¯ectance

data provided by the MODIS (Moderate Resolution Imaging Spectro-

Radiometer) and MISR (Multi-angle Imaging SpectroRadiometer) instru-

ments aboard the Earth Observing System Terra. (Knyazikhin et al.,

1998a,b; Kimes et al., this issue).

3. PHOTON INTERACTION BETWEEN CLOUDS

AND VEGETATIONS

It is well recognized that clouds vary both vertically and horizontally. Solar

radiation re¯ected from or transmitted through clouds is a�ected by these

variabilities. As a result, measured radiation includes convoluted informa-

tion on both intrinsic cloud properties and radiative e�ects of three-

dimensional cloud structure. However, almost all radiative transfer

calculations that interpret satellite or ground-based measurements assume

that clouds vary only vertically, ignoring not only horizontal in-cloud

structure but also broken cloudiness. This can lead to misinterpretation of

cloud properties. In this section we illustrate the e�ects of cloud

inhomogeneity on ground-based measurements of zenith radiances in the

visible (VIS) and near-IR (NIR) spectral regions. Then, we show that a

simple algebraic combination of these independent measurements can partly

remove the ambiguity in the interpretation of measured downwelling zenith

radiances caused by a horizontally inhomogeneous cloud structure. A

simple example will explain the role of spectral contrast in green vegetation

in removing this ambiguity.

3.1. Three-dimensional Radiation Effects of Broken Clouds

In Figure 1a we plotted a 1000 sec data stream of simulated zenith radiances

transmitted through a broken cloud ®eld and ``measured'' by upward-
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looking radiometer with 5 sec averaging. Assuming a 5m/sec wind speed,

this can be also interpreted as a 5 km fragment of zenith radiance measured

with 25m resolution (thus the horizontal axis notations is in km). In

addition to the ®eld of zenith radiances, in Figure 1b we plotted a 5 km

fragment of a stochastic model of cloud optical depth that corresponds to

the radiances from panel (a). Canopy BRDF was simulated using the RPV

model (Rahman et al., 1993).

First of all, we see a clear signature of tiny cloudy pixels (e.g., around 9.5

and 11 km); next, we see a strong increase in brightness around cloud edges

(11.2 km) and shadows behind them (11.4 km). For large optical thicknesses

( from 8 to 8.8 km and 12.2 to 13 km), we observe much smoother behavior

of zenith radiances than the corresponding cloud ®eld. This is so called

``radiative smoothing'' (Marshak et al., 1995) ± a process that is determined

by multiple scattering and photon horizontal transport. To conclude, there

are two competing radiative processes: shadowing (or ``roughening'') and

smoothing; while the shadowing makes ¯uctuations larger, the smoothing

suppresses them.

FIGURE 1 Three-dimensional radiative e�ects. (a) A 5km fragment of zenith radiance at a
wavelength in the visible spectral region calculated by Monte Carlo method. Pixel size is 25m,
solar zenith angle �0� 60�, solar azimuth angle '0� 0� (illumination from the left), conservative
scattering ($0� 1.0), Henyey ±Greenstein scattering phase function. The RPV model (Rahman
et al., 1993) was used to simulate canopy BRDF for irrigated wheat. (b) A 5 km fragment of
horizontal distribution of optical thickness, �(x), that corresponds to the zenith radiance plotted
in panel (a). 10-cascade bounded model (Section 4.1) with parameters h�i� 13, �� 1.4 and
p� 0.35 has been used. Geometrical cloud thickness is 300m. (c) A scatter-plot of zenith
radiance I# (�) vs. � . 10240 points correspond to 10 realizations of a bounded cascade model.
Cloud fraction is 84%. (d) Wavenumber spectra of 10 realizations of cloud optical depths
(above) and zenith radiances (below). A slope �� 1.4 that corresponds to the spectral exponent
of a cloud optical depth model is added for convenience.
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All these three-dimensional radiative e�ects violate a one-to-one relation-

ship between optical depth and zenith radiances and make it absolutely

impossible to retrieve cloud optical thicknesses at a pixel-by-pixel basis.

FIGURE 1 (Continued).
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Figure 1c illustrates this with a scatter plot of 10240 points of zenith

radiances calculated by the Monte Carlo method for 10 realizations of a

stochastic cloud model plotted vs. cloud optical depth. (The 5 km fragment

in Fig. 1a with 200 points is extracted from one of these realizations).

Wavenumber spectrum, as a Fourier transform of an autocorrelation

function (e.g., Papoulis, 1965), is a very informative characterization of

¯uctuations in both cloud liquid water and zenith radiance ®elds. Figure 1d

illustrates two wavenumber spectra: on the upper curve, there is cloud

optical depth (to be retrieved), while on the lower curve, measured zenith

radiances. The lower spectrum clearly illustrates the dependence of the

above mentioned three-dimensional radiative e�ects on scale. If the

wavenumber spectrum E(k) of optical depth � is a power low,

E�k� � k
ÿ�; �3:1�

with a spectral exponent �� 1.4, the spectrum of zenith radiances has much

more complex structure. For the large and intermediate scales (from

� 0.5 km to 20 km), its wavenumber spectrum ¯attens indicating more

energy (larger ¯uctuations); for small scales, the spectrum steepens

indicating smaller ¯uctuations. Note that the former is a signature of

radiative shadowing while the latter characterizes radiative smoothing.

In order to use zenith radiances for estimating cloud optical properties,

one has to remove the three-dimensional radiative e�ects of horizontal

variability (shadowing and smoothing). As long as ¯uctuations of cloud

optical thicknesses and measured radiation are di�erent at a certain scale, it

is impossible to reliably retrieve optical thickness at this scale. Thus, as a

necessary (but not su�cient) condition for the retrieval of cloud optical

properties from the radiances transmitted through broken clouds, one

should ®nd a nonlinear transformation that makes wavenumber spectra

similar to those of the optical depth ®eld down to a certain scale. In the next

subsection, we demonstrate a simple transformation that partially removes

three-dimensional radiative e�ects and generates the desired wavenumber

spectra.

3.2. A Nonlinear Transformation

It is well known that because of chlorophyll in the live green leaves,

vegetation strongly absorbs solar radiation in the visible spectral region. In

contrast, around 0.8 mm green leaves absorb relatively little and the

hemispherical re¯ectance of vegetation often exceeds 50%. Vegetation (or

spectral) indices that exploit this spectral contrast in surface re¯ectance are
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typically used in analyzing and compressing satellite data. Amongst more

than a dozen such indices (Verstraete and Pinty, 1996), the Normalized

Di�erence Vegetation Index (NDVI) between the NIR and red spectral

regions is, perhaps, the most widely used by scienti®c community, since it

detects the presents of green (live) vegetation (Tucker, 1979).

By analogy with NDVI, we de®ne a Normalized Di�erence Cloud Index

(NDCI) as the ratio between the di�erence and the sum of two zenith

radiances, INIR and IVIS, measured for two narrow spectral bands in the VIS

and NIR spectral regions and normalized by the TOA (Top of Atmosphere)

solar irradiance F0,� at the corresponding wavelengths

NDCI �
INIR ÿ IVIS

INIR � IVIS
: �3:2�

3.3. An Example

Figure 2a shows a 5 km fragment of measured zenith radiances at two

wavelengths in the VIS (the same as in Fig. 1a) and NIR spectral regions.

FIGURE 2 Removal of three-dimensional radiative e�ects. (a) A 5 km fragment of zenith
radiances at two wavelengths in the visible (the same as in Fig. 1a) and near-IR spectral regions.
Spectral index NDCI is also shown. Illumination conditions, optical and geometrical
parameters of the statistical model of cloud optical depth are the same as in Figure 1a. (b) A
5km fragment of horizontal distribution of optical thickness identical to Figure 1b. (c) A scatter
plot of zenith radiances at NIR wavelength (green dots) and the NDCI (black dots) plotted
against � . (d) The same as in Figure 1d but the wavenumber spectrum of the NDCI is also
added. (e) The histogram of the di�erence between the NDCI and the linear ®t; both are plotted
in panel (c).
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FIGURE 2 (Continued).
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Figure 2b is identical to Figure 1b which is added here for better

visualization. The model of (Rahman et al., 1993) was used to simulate

the canopy spectral BRDF. The bold black curve is the NDCI de®ned in

(3.2). We see that NDCI is much more sensitive to cloud structure than

either zenith radiances and shows the monotony with respect to cloud

optical thickness. A scatter plot (Fig. 2c) yields the best illustration of the

monotonic dependence of NDCI on � . While zenith radiance INIR(�) is

strongly e�ected by three-dimensional radiative e�ects, NDCI(�) can be well

approximated by a linear function, at least for � < 40. Figure 2e shows the

histogram of [NDCI(�)-Linear_®t(�)] which exhibits Gaussian type beha-

vior with more than 70% points between ÿ0.025 and 0.025.

Finally, the improvement is con®rmed by the wavenumber spectra

(Fig. 2d). The wavenumber spectra of NDCI has the same slope as its cloud

optical depth counterpart down to about r � 0.4 km; below this scale,

NDCI(x) is smoother than �(x) which is clearly seen if one compares Figures

2a and 2b. This means that averaged over a 0.4 km scale both NDCI and �

have similar ¯uctuations (autocorrelation function); thus cloud optical

depth can be successfully retrieved at this scale.

4. THEORETICAL BASIS FOR DESIGNING OF NDCI

4.1. Scale Invariant Models of Horizontal Cloud Structure

Fractal (scale invariant) models can be used to simulate horizontal

distribution of cloud optical thickness (Schertzer and Lovejoy, 1987;

FIGURE 2 (Continued).
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Cahalan, 1994; Marshak et al., 1994). These models reproduce the statistics

and scale invariance (3.1) observed for cloud liquid water in marine

Stratocumulus (Cahalan and Snider, 1989; Davis et al., 1996; Marshak et al.,

1997). These properties can be simulated using a simple three-parameter

fractal model called a ``bounded cascade''. Besides average optical depth

(parameter h�i), this model controls scaling behavior of cloud liquid water

(spectral exponent �), and its variance-to-mean ratio (parameter p). As any

cascades (Mandelbrot, 1977), this model starts with a homogeneous slab of

optical depth h�i, then transfers a fraction that depends on both parameters

� and p from one half to the other in a randomly chosen direction. The same

procedure is repeated recursively at even smaller scales (Cahalan, 1994). As

a result, after a few cascade steps we have a rich structure of horizontal

distribution of cloud liquid water; its ¯uctuations obey Eq. (3.1) with �

typically from 1.3 to 1.6 (Davis et al., 1996).

Figures 1b and 2b show a small fragment of a bounded cascade model

with parameters h�i� 13, �� 1.4 and p� 0.35 which are typical for marine

stratocumulus. Inner cloud structure is supplemented with gaps using a

simple procedure described by Marshak et al. (1998). The upper curves in

Figures 1d and 2d illustrate the wavenumber spectrum of the resulting

optical depth ®eld averaged over 10 realizations of a cascade model.

4.2. Difference in Spectral Properties

of Green Leaves and Clouds

The hemispherical leaf albedo is the portion of radiation ¯ux density

incident on the leaf surface that the leaf transmits or re¯ects. The typical

spectral variation of leaf albedo (Fig. 3) is de®ned by three distinct spectral

regions (Walter-Shea and Norman, 1991), i.e., VIS (0.4 ± 0.7 mm), NIR

(0.7 ± 1.35 mm), and mid-IR (1.35 ± 2.5 mm). If in the visible region 90 ± 95%

of solar radiation is absorbed by a single leaf, in the NIR region it absorbs

only 5 ± 10% (the rest radiation is either re¯ected or transmitted, �45 ± 50%

each). The hemispherical leaf albedo in the mid-IR region is usually smaller

than in the NIR. These properties are inferred from the spectral behavior of

a green, healthy leaf, and are quite stable although the magnitude of

re¯ectance and transmittance may vary with leaf age and among species. In

addition to single leaf spectral properties, the spectral re¯ectance is

determined by canopy structure which is also a stable characteristic of a

given site (Ross, 1981; Myneni et al., 1989). Simple functions which relate

optical properties of individual leaves and the canopy structure to canopy
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spectral re¯ectance are presented in (Knyazikhin et al., 1998a; Panferov

et al., 1999).

In contrast to vegetation, cloud optical properties do not change much

between 0.5 and 0.9 mm. For the sake of simplicity, the single scattering

albedo, $0, phase function asymmetry parameter, g, and extinction

coe�cient, �, are assumed to be constant in this spectral region. We also

assume that di�erent amount of the Rayleigh scattering in this region can be

removed using a simple atmospheric correction. In addition, we assume a

weak wavelength dependence in the optical properties of aerosol in this

region. As a result, the red (0.65 mm) and NIR (0.86 mm) wavelengths would

be assumed to have the same cloud optical properties but totally di�erent

surface re¯ectances. In general, the above assumptions are not valid.

However, the violation of these assumptions have a much smaller e�ect on

zenith radiances than the e�ect of a contrast between canopy re¯ectances at

red and NIR.

To get larger contrast in surface albedo, it is of interest to use an ozone

free UV wavelength, for instance, �1� 0.38 mm, where the surface is even

more absorbing (95 ± 98%) but Rayleigh scattering is also very strong.

Assuming again that cloud optical properties at 0.38 mm and 0.86 mm are

similar, and the e�ect of Rayleigh scattering can be accurately removed, we

can count on this UV wavelength as a prototype of a ``black'' surface.

FIGURE 3 Mean leaf hemispherical albedo of broadleaf forests and its standard deviation as
a function of wavelength.
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4.3. Surface ±Clouds Interaction

In this sub-section we will use a schematic plot (Fig. 4) to illustrate the

photon interaction between clouds and vegetation. For the sake of

simplicity, we assume that a vegetation canopy underneath a three-

dimensional cloudy layer can be idealized as a horizontally homogeneous

Lamebrain surface. It should be noted that this assumption is not essential

for the following analysis (Knyazikhin et al., 1998a). Using adjoint radiative

transfer (e.g., Bell and Glasstone, 1970), it can be shown that the surface ±

cloud interaction term in Eq. (2.1) can be expressed as a product of �sur,�
and an integral over the whole underlying surface of the downward ¯ux F�

and a radiative transfer Green's function G, i.e.,

Irest;��r;
� � �sur;�

Z
F��r

0�G�r;
; r0�dr0 �4:1�

Here

G�r;
; r0� �

Z
2�ÿ

G0�r;
; r
0;
0�j�0jd
0

FIGURE 4 A schematic illustration of surface ± clouds interaction. I#(r0)� I�(r0, 
)/F0,� is the
normalized zenith radiance at a point r0 of the surface underneath a cloudy layer;
I
#
bs(r0)� Ibs(r0)/F0,� is the normalized zenith radiance at the point r0 for ideally black surface;
F0,� is the solar irradiance spectrum at the top of the atmosphere; �sur,� is hemispherical surface
re¯ectance; T(r0)�F�(r

0)/F0,� is the transmittance of the cloudy layer at a point r0 of the surface;
G#(s)�G(r0,
;r

0), s� jr0 ÿ r0j, is the cloud radiative response on the illumination by an
isotropic source QS� 1/� located at the point r0.
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where G0 is the Green's function which describes the cloud radiative

response to the point monodirectional source Q0� �(
 ÿ 
0)�(r ÿ r0) at a

spatial point r0 of the underlying surface. The function G(r,
;r0) can be

treated as a cloud radiative response at a spatial point r and in direction 


on the illumination from below by the isotropic source QS� � ÿ1�(r ÿ r0)

located at the point r0. Integrating (2.1) over downward directions and

accounting for (4.1) result in

F��r0� � Fbs;��r0� � �sur;�

Z
R�r0; r

0�F��r
0�dr0 �4:2�

Here r0 denote a spatial point of the surface underneath the three-

dimensional cloudy layer; R(r0, r
0) is the downwelling ¯ux at the point r0

generated by the isotropic source QS. Under conditions formulated in

section 4.2, the variables G, R and Fbs,� /F0,� do not depend on �. Here F0,�

is the TOA solar irradiance. In the case of simple slab geometry (i.e., R, Fbs,�

and F� do not depend on r0 and r0), the representation (2.2) can be obtained

by averaging (4.1) and (4.2) over the underlying surface and resolving the

obtained equations with respect to mean values of Irest,� and F�.

This is similar to a Davis et al.'s (1997) idea of illuminating clouds by a

laser beam, as a Dirac �-function, and measuring the resulting ``spot size,''

as a radiative transfer Green function. Based on di�usion approximation, in

the case of a slab geometry, Davis et al. (1997) were able to analytically

derive the relationship between cloud optical and geometrical thicknesses,

from one side, and the spot size, from the other.

4.4. NDCI

Since canopy re¯ectance varies considerably between VIS and NIR while

cloud optical properties can be assumed constant, the di�erence between

two normalized zenith radiances INIR, and IVIS, measured at the same

location is equal to the di�erence between surface ± clouds interaction at the

same wavelengths, i.e.,

INIR ÿ IVIS � Irest;NIR=F0;NIR ÿ Irest;VIS=F0;VIS �4:3�

Normalizing Eq. (4.3) by the sum of the same normalized radiances, we get

the NDCI de®ned in Eq. (3.2). If the downward ¯ux F is available, it is

preferable to use it for normalization [see Eqs. (4.1) and (4.2)]. As a result,

we get another NDCI, which better describes the surface ± clouds interaction

where the surface serves as a di�usive wavelength independent source of
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photons that illuminate horizontally variable clouds (Fig. 4). Equations

(4.1) and (4.2) can be taken as a basis for designing other spectral indices.

The evaluation of the NDCI is similar to the satellite nadir measurements

in the sense that both the NDCI and the satellite register photons emitted by

a known source and re¯ected by clouds. This suggests that the NDCI

contains a lot of information on intrinsic cloud properties. In other words,

with the help of NDCI, we can study cloud optical and geometrical

properties using the surface as a powerful wavelength-independent re¯ector.

5. DISCUSSIONS AND RESEARCH PRIORITIES

The e�ciency of any modeling technique must be measured against its

ability to address important scienti®c objectives. Requirements of various

scienti®c communities to products of BRDF models/data are discussed in

this special issue. Among others, a very important task is to provide correct

relationships between BRDF and environmental variables (e.g., canopy

structure, cloud optical depth, etc.). Does an ideal BRDF model exist which

can fully represent the suite of variables causing the observed variation in

the directional re¯ectance distribution of plant canopies? We start our

analysis with a theorem recently published in a journal on inverse problems

(Choulli and Stefanov, 1996). This theorem states that under some general

conditions, the three-dimensional extinction coe�cient and the three-

dimensional scattering phase function can be uniquely retrieved from

boundary measurements. It should be noted, however, that its validity is lost

in the case of two or one-dimensional media. This theorem indicates that

there is a one-to-one correspondence between the complex three-dimen-

sional vegetation canopy structure and radiation emergent from the canopy

boundaries. A question then arises whether or not this correspondence can

be speci®ed. Let us consider a hypothetical ideal instrument which can

provide ideally exact BRDF at any spatial point and in any direction, i.e.,

one has the complete and accurate spatial and angular information on the

radiation ®eld leaving the canopy through the upper boundary. The

theorem, however, requires information on the upward radiation ®eld at the

canopy bottom boundary in order to recover canopy structure. How can

this information be obtained?

A speci®c feature of photon interaction with vegetation lies in the fact

that the probability that a photon will interact with phytoelement does not

depend on wavelength; that is, the extinction coe�cient, which is the sum of

wavelength dependent scattering and absorption coe�cients, does not
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depend on wavelength (Ross, 1981). This property allows us to evaluate

canopy transmittance at any wavelength once this variable is known at a

®xed wavelength (Knyazikhin et al., 1998a; Panferov et al., 1999). This

allow us to mathematically formulate the problem of the link between the

three-dimensional canopy structure and the BRDF, namely, given ``ideal''

multiangle canopy re¯ectances at a minimum of two spectral bands to ®nd

the canopy transmittance at a ®xed wavelength and canopy structure. This

formulation includes two sets of known data and two sets of unknowns,

which relate all variables needed for unique retrieval of the three-

dimensional structure of the medium. It is clear that the above arguments

need a rigorous mathematical analysis.

The above arguments indicate that the canopy radiation model, which is

the foundation of any BRDF, must also provide canopy transmittance in

order to obtain a closed system of equations describing a one-to-one

correspondence between biophysical parameters and radiation emergent

from the canopy boundaries. The use of the energy conservation law is a

most natural and physically well justi®ed approach to introduce this

variable into the model. A radiative transfer model is de®ned to be

conservative if the law of energy conservation holds true for any elementary

volume (Bass et al., 1986). Within a conservative model, radiation absorbed,

transmitted, and re¯ected by the canopy is always equal to radiation

incident on the canopy. However a rather wide family of canopy radiation

models designed to account for the hot spot e�ect con¯ict with the law of

energy conservation (Knyazikhin et al., 1998a). Therefore, the success of

development of BRDF models and their applications depends, to a high

degree, upon being able to derive a canopy transport equation which, from

the one hand, allows for the hot spot e�ect, and, from the other hand, is

conservative. Technique discussed here and in (Kimes et al., this issue) was

applied to two di�erent physical problems, namely, estimation of optical

properties of broken clouds and remote sensing of vegetation canopies. In

spite of di�erent physical formulations of these problems, both of them use

the Green's function to describe radiation ®eld due to the interaction

between the canopy ground and the canopy and the canopy ± clouds

interaction. However this technique presupposes the use of conservative

radiative transfer models. Therefore, the derivation of a conservative

transport equation in vegetation canopies will help us not only to develop

more sophisticated radiative transfer models, but also to promote

incorporation of various approaches developed in other ®elds of physics

into BRDF modeling and its applications. And this paper aims to

demonstrate it.
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