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Abstract. The problem of deriving a complete set of aerosol optical properties from Sun 
and sky radiance measurements is discussed. Algorithm development is focused on 
improving aerosol retrievals by means of including a detailed statistical optimization of the 
influence of noise in the inversion procedure. The methodological aspects of such an 
optimization are discussed in detail and revised according to both modern findings in 
inversion theory and practical experience in remote sensing. Accordingly, the proposed 
inversion algorithm is built on the principles of statistical estimation: the spectral 
radiances and various a priori constraints on aerosol characteristics are considered as 
multisource data that are known with predetermined accuracy. The inversion is designed 
as a search for the best fit of all input data by a theoretical model that takes into account 
the different llevels of accuracy of the fitted data. The algorithm allows a choice of normal 
or lognormal noise assumptions. The multivariable fitting is implemented by a stable 
numerical procedure combining matrix inversion and univariant relaxation. The theoretical 
inversion scheme has been realized in the advanced algorithm retrieving aerosol size 
distribution together with complex refractive index from the spectral measurements of 
direct and diffuse radiation. The aerosol particles are modeled as homogeneous spheres. 
The atmospheric radiative transfer modeling is implemented with well-established publicly 
available radiative transfer codes. The retrieved refractive indices can be wavelength 
dependent; however, the extended smoothness constraints are applied to its spectral 
dependence (and indirectly through smoothness constraints on retrieved size distributions). 
The positive effects of statistical optimization on the retrieval results as well as the 
importance of applying a priori constraints are discussed in detail for the retrieval of both 
aerosol size distribution and complex refractive index. The developed algorithm is adapted 
for the retrieval of aerosol properties from measurements made by ground-based Sun-sky 
scanning radiometers used in the Aerosol Robotic Network (AERONET). The results of 
numerical tests together with examples of experimental data inversions are presented. 

1. Introduction 

Recently, there have been numerous studies focused on 
measuring and interpreting aerosol optical properties, for ex- 
ample, SCAR-B [Kuufian et al., 19981, TARFOX [Russell et 
al., 19991, ACE; 1 [Bates et al., 19981, ACE 2 [Russell and 
Heintzenberg, 20001, and INDOEX [Ramanathan et al., 1996; 

Satheesh et al., 19991. Especially high expectations are associ- 
ated with satellite and ground-based remote sensing [e.g., King 
et al., 1999; Kau”fman et al., 19971; however, not every required 
radiative property can be measured remotely. For example, the 

angular and spectral ranges of remote measurements of atmo- 
spheric radiation are always limited. Correspondingly, a core 
aspect of remote sensing is the inversion procedure, whereby 
aerosol optical and radiative properties are derived from the 
remote sensing measurements. In the past three decades a 
number of inversion methods have been proposed for inter- 
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preting the measured radiative characteristics of the cloud-free 

atmosphere. For example, the algorithms of King et al. [1978], 
Nakajima et al. [1983, 19961, and Wang and Gordon [1993], 

developed for deriving aerosol optical properties from atmo- 

spheric radiances, are well established. These methods differ in 

the set of retrieved aerosol parameters and/or set of required 

input radiative characteristics. This paper describes an inver- 

sion strategy focused on retrieving an extended set of aerosol 
parameters from multiangular and multispectral measure- 

ments of atmospheric radiances. The purpose is to maximize 
the retrieved aerosol information by inverting simultaneously 

all available measurements of atmospheric radiances. Namely, 

in this paper we pursue the simultaneous retrieval of aerosol 
particle size distribution and complex refractive index from 

spectral optical thickness measurements combined with the 
angular distribution of sky radiance measured at different 

wavelengths. 

Our retrieval developments are consistent with the develop- 

ments by King et al. [1978] and Nukujima et al. [1983, 19961 for 
retrieving the particle size distribution of aerosol in the total 

atmospheric column. The method of King et al. is used to 

invert spectral measurements of optical thickness only, 
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whereas the method of Nakajima et al. is used to invert the 

angular distribution of sky radiance (with or without spectral 
optical thickness). It should be noted that the method of Na- 
kajima et al. adequately accounts for multiple-scattering ef- 
fects in the whole range of the scattering angles. This was an 
important improvement over earlier sky radiance and optical 
thickness inversion algorithms [cf. Twitty, 1975; Shaw, 1979; 
O’Neill and Miller, 19841 which were limited to the aureole 
region where single-scattering or quasi-single-scattering mod- 
els can be applied. All of these methods model aerosol parti- 
cles as homogeneous spheres with refractive indices assumed a 
priori. Concepts for the determination of the aerosol particle 
refractive index from multiangular radiance measurements 

were developed by Wendisch and von Hoyningen-Huene [ 19941 
and Yamasoe et al. [1998]. These methods are based on the 
principle of partial separation of the effects of refractive index 
and size distribution on the angular variability of sky radiance. 
Our approach is significantly different from earlier studies in 
that we implement simultaneous retrieval of the particle size 
distribution and complex refractive index via simultaneous fit- 
ting of radiances measured in the entire available angular and 
spectral range. Such an approach should provide a higher 
retrieval accuracy through adoption of sophisticated mathe- 
matical procedures. 

The inversion methodology considered in this paper ad- 
dresses the simultaneous retrieval of a large number of signif- 
icantly different parameters from multisource data. For exam- 
ple, direct Sun and diffuse sky radiance are measured by 
sensors with different sensitivities, and the accuracy require- 
ments on measurements of direct Sun radiation and diffuse sky 
radiance are rather different. Such accuracy differences should 
be taken into account when making multisource data compat- 
ible. Similarly, the aerosol particle size distribution and com- 
plex refractive index are fundamentally different parameters. 
Correspondingly, the design of an algorithm for retrieving 
these characteristics should congruously rationalize the differ- 
ences in units, ranges of variability, etc. Developing any inver- 
sion algorithm demands two kinds of effort from the devel- 
oper. First of all, accurate forward modeling of measured 
atmospheric characteristics is required. The second necessary 

component of an inversion algorithm is a formal numerical 
procedure that utilizes a mathematical inverse transformation, 
which is not limited in its application to inversion of atmo- 
spheric radiances and can be used in any retrieval algorithm. In 

the following sections we will discuss both of these aspects. 
For modeling atmospheric radiances we adopted standard- 

ized, publicly available software. This approach allows for the 
possibility of easily replacing one code with another as radia- 
tive transfer theory advances. In keeping with the strategy in 

forward modeling strategy, we pursued a similar goal of mak- 
ing the entire algorithm flexible and adjustable. In designing 
the algorithm, we tried to anticipate the possibilities of upgrad- 
ing forward modeling codes with new advanced versions and 
expanding the code applicability for new applications (e.g., 
accounting for light polarization, detailed characteristics of 
surface reflectance, incorporating particle non sphericity, etc.). 

We pursued a similar objective in implementing the numer- 
ical inversion transformations in our retrieval algorithm. How- 
ever, in addition to this objective, designing a numerical inver- 
sion algorithm requires clarification of inversion principles. 
Indeed, forward models differ mainly in the accuracy of de- 
scribing a physical phenomenon and the speed of calculation. 
Accordingly, for practical applications, one always chooses the 

most accurate model provided it satisfies the time constraints. 

Choosing the best inversion method, on the other hand, is a 

more complicated task, in that the evaluation of inversion 

accuracy is an ambiguous question, especially for a case of the 
simultaneous retrieval of several variables. For example, re- 
placing a scalar model of light scattering by a model accounting 

for polarization doubtlessly results in accuracy improvements 
in scattered light estimation. In contrast, retrieval errors are 

not so directly responsive for different retrieved parameters. 
Retrieval accuracy may improve for one parameter but de- 

grade for another parameter as the result of a change of in- 
version methods. Correspondingly, the preference between in- 

version methods is always rather uncertain. 

Detailed reviews of currently used methods can be found in 

various books, for example, Twomey [1977], Tikhonov and Ar- 

senin [1977], Houghton et al. [1984], Tarantola [1987]. How- 

ever, the existence of a variety of different well-established 
inversion procedures creates an uncertainty for researchers in 
understanding how to choose the optimal technique for inver- 

sion implementation. For example, the widely used book by 

Press et al. [1992] proposes a diversity of inversion methods; 
however, it does not direct the reader with explanations as to 

which method and why it should be chosen for a particular 

application. Such a situation is partly a result of the fact that 

most innovations were proposed under pressure of different 
specific practical needs and derived in rather different ways. In 

the present paper we follow the inversion strategy proposed 

and refined in the previous studies by Dubovik et al. [1995, 
1998a]. This strategy is focused on clarifying the connection 

between different inversion methods established in atmo- 
spheric optics and unifying the key ideas of these methods in a 

single inversion procedure. Correspondingly, this strategy is 
rather helpful for building optimized and flexible inversion 

techniques. For example, in sections 3 and 4.2 we outline the 
important connections of designed retrieval algorithms with 

the inversion methods widely adopted in the application of 

atmospheric optics and remote sensing, such as the methods 

given by Phillips [1962], Twomey [ 1963, 19771, Tikhonov [1963, 
19771, Chahine [1968], Turchin et al. [ 19701, and Rodgers [ 19761. 

The effort of algorithm development was initiated under the 

AERONET (Aerosol Robotic Network) project [Holben et al., 
19981 with the purpose of meeting the high requirements of 

aerosol parameter retrieval accuracy needed for satellite data 

validation and improved understanding of the radiative effects 

of aerosols. Therefore the discussion of the algorithm design 
and retrieval accuracy will be focused on the interpretation of 

radiances measured by AERONET ground-based Sun-sky 

scanning radiometers. 

2. Forward Modeling 

The AERONET network provides globally distributed near- 

real-time observations of aerosol spectral optical thickness and 
sky radiance as well as derived parameters such as particle size 

distributions in a manner suitable for integration with satellite 
data. This network has been developed to provide aerosol 

information from two kinds of ground-based measurements: 
spectral data of direct Sun radiation extinction (i.e., aerosol 
optical thickness) and angular distribution of sky radiance. An 
inversion algorithm is required for the retrieval of aerosol size 
distribution, complex refractive index, single-scattering albedo, 

and phase function. In section 2.1 we discuss the concept of 
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atmospheric raldiance modeling, which we employ in our re- 

trieval algorithm. 

2.1. Radiative Transfer Modeling 

The atmospheric sky radiance can be modeled by solving the 
radiative transfer equation for a plane-parallel atmosphere. 
The angular distribution of diffuse downward radiation can be 

described by 

I(@; A) = F(Jmo 
[exp km04 - exp (-mIdI 

m0-ml 

. (w,~P(O; A) + G( . . . )), if 8 # 13~ (14 

I(@; A) = Fflo exp (-mOT) 

- (o,,rP(O; A) + G( . . . >>, if 8 = ol), (lb) 

where I( 0; A) is the spectral sky radiance measured at differ- 
ent wavelengths and at different scattering angles 0; F,, is 
exoatmospheric flux; 0, is solar zenith angle; 8 is observation 
zenith angle; m is air mass (m, = l/cos 8,, m , = 1 /cos 0); 
T = T.&A) is spectral extinction optical thickness; o. = ma(A) 
is single-scattering albedo; and P(0; A) is phase function at 

different wavelengths. The term G( . . . ) = G (o(,( A); 
T&A); P( 0; A); A (A); 8,; 8; 4) describes the multiple- 
scattering effects, where 4 is zenith angle of observations and 
A( A) is spectral surface reflectance. The above equation is 
written for a homogeneous atmosphere, without accounting 
for polarization effects and for angular independent ground 

reflectance (Lambertian approximation). At present, there are 
a number of well-established and publicly available codes to 
account for multiple scattering in diffuse radiance. For exam- 
ple, in our studies we have used two independent discrete 
ordinates codes developed by Nakajima and Tanaka [ 19881 and 
Stamnes et al. [ 19881. These codes allow for the inclusion of the 
vertical variability of atmospheric properties by dividing the 
atmosphere into a number of homogeneous layers. In these 
models, different optical thickness, phase function, and single- 
scattering albedo characterize each layer. 

The modeling of T(A), o,(A), and P(0; A) requires consid- 
eration of three main components under cloud-free conditions: 
gaseous absorption, molecular scattering, and aerosol scatter- 

ing and absorption. These three atmospheric components com- 
prise the total optical characteristics of an atmospheric layer as 
follows: 

::$J A) T:::(A) 
ptota’(@; A) = ;.;$(A) pa?@; A) + T2z~(A) pm”‘@; A), (4) 

where c::(A) is the aerosol optical thickness of the layer; 
or’(A) is the aerosol single scattering albedo; and Paer(@; A) is 
the aerosol phase function. In the case of ground-based mea- 
surements of solar radiation, strong gaseous absorption can be 
avoided by instrumental design. Molecular scattering can easily 
be calculated from the surface pressure at the time of mea- 
surements. For instance, the specified wavelengths of the four 
AERONET sky radiometer spectral channels (440, 670, 870, 
and 1020 nm) were carefully selected to avoid strong gaseous 
absorption [Holben et al., 19981. Slight ozone absorption is 
accounted for from climatological data. The values of surface 

reflectance A (A) are also accounted for a priori, in spite of the 
fact that A (A) can vary significantly depending on climatolog- 
ical and meteorological conditions. Indeed, uncertainty in a 
priori knowledge of surface reflectance A (A) is usually not 
critical for modeling of downward solar radiation for two pri- 
mary reasons. First, in most situations, unreflected solar light 
dominates over reflected light in the downward radiation field, 
and accuracy requirements on a priori estimates of A (A) are 

modest. Second, it is expected that values ofA (A) can, in some 
cases, be available from accompanying measurements of up- 
ward radiation. Thus local variability of atmospheric radiance 
I(@; A) depends primarily on the optical properties of the 
aerosol particles, and for convenience of further discussion, we 
can write 

I(@; A) = Z(T~J,C:(A); u:“‘(A); Paer(@; A)). (5) 

All of these properties (c?,‘(A), wrr(A), P”“‘(0; A)) are highly 

variable and will be considered below as unknown character- 
istics that can be retrieved from multiangular and multispectral 
radiance data. In reality, aerosol properties vary in the vertical 
direction and a multilayer model of the atmosphere is re- 
quired, in order to account for the vertical variations in T(A), 
O<)(A), and P( 0; A). However, radiances measured at the 
ground are influenced by the whole atmospheric column and 
are not expected to be strongly dependent on the vertical 
distribution of aerosol. Consequently, most ground-based re- 
trievals characterize the optical properties of the aerosol in the 
total atmospheric column (columnar aerosol). In our present 
study we focus accordingly on designing an algorithm for the 
vertically homogeneous atmosphere. The strategy of account- 
ing for a vertical variability in the atmosphere is outlined in 
section 4. 

This inversion of atmospheric radiance can naturally be de- 
signed for the retrieval of the optical characteristics of colum- 
nar aerosol (T(A), w,(A), and P(0; A)). For instance, Wang 
and Gordon [ 19931 and Box and Sendra [ 19991 employ such an 
inversion strategy in their retrievals. Alternatively, the inver- 
sion can be focused on retrieving parameters of aerosol micro- 
structure, such as particle size, number, etc. We will utilize this 
approach by extending the ideas previously developed in the 

papers of King et al. [1978] and Nakajima et al. [1983, 19961. 

2.2. Microphysics Modeling of Aerosol Optical Properties 

The modeling of optical parameters via parameters of mi- 
crostructure is a rather common way of light-scattering char- 
acterization in both laboratory and remote sensing methods 
[cf. MC Curtney, 19771. For example, the aerosol optical param- 
eters (phase function (P(O)), optical thickness of aerosol 

extinction, scattering and absorption (T,,,(A); T,,,,(A); T,~\(A))) 

can be modeled from microstructure parameters using the 
following approximations: 

rm.ir 

T,,,t(A)P(@; A) = 
I 

K,,,,(6); A; %2; r)n(r) dr, (6) 
rtIll” 

I 

~nl.!X 

7.. .(A) = K, (A; ?1; r)n(r) dr, (7) 
rml” 

where r is particle radius, n(r) = dN(r)ldr denotes particle 
number size distribution in atmospheric column. K,,,,( . . . ) is 
a scattering cross section, and K,...( . . . ) is an extinction cross 
section ( 7rr2Qext( . . . ), where Qcxt( . . . ) is the Mie extinction 



20,676 DUBOVIK AND KING: FLEXIBLE ALGORITHM FOR AEROSOL RETRIEVAL 

efficiency factor). In our studies we will assume that aerosol 
particles are spherical. Correspondingly, the functions 
K,,,,( . . . ) and K,...( . . . ) will be approximated by Mie func- 
tions derived for spherical and homogeneous particles charac- 
terized by a complex refractive index: 

&?(A) = n(A) - ik(h). 

Equations (6) and (7) allow one to consider size distribution 
and refractive index of aerosol particles instead of directly 
considering I, o,(h), and P(0; A) of the aerosol. 

Finally, atmospheric radiance I( 0; A) given by (5) can be 
defined via (6) and (7) as a function of the parameters of 
aerosol microstructure: 

I(@; A) = I(dN(r)/dr; i?i (A)). (8) 

Thus (5) and (8) represent two different strategies of atmo- 
spheric radiance modeling. We focus the inversion on retriev- 
ing parameters of the aerosol microstructure. In this case some 
relationship among optical thickness, single-scattering albedo, 
and phase function is implied by assuming that the aerosol 
particles are homogeneous spheres, as in (8). Additional dis- 
cussion on details of atmospheric radiance modeling is given in 
section 4. 

3. Inversion Strategy 

To formulate the criteria of inversion optimization, we em- 
ploy principles of statistical estimation theory [cf. Edie et al., 
19711. Accordingly, in designing the retrieval algorithm we 

account for the character and level of uncertainties in the 
initial data. This is especially important when we invert the 
data measured under different experimental conditions (i.e., 
data from different sources). Therefore inversion of multi- 
source data is a subject of particular consideration here. 

Using a priori constraints is another key aspect, which re- 
quires a detailed deliberation. Phillips [1962], Twomey [1963], 
and Tikhonov [1963] have shown that applying a priori con- 
straints (e.g., the smoothness of retrieved functions) is a critical 
component of designing a successful inversion with many pa- 
rameters. Choosing the strength of a priori constraints is, how- 
ever, an especially challenging problem [e.g., Rodgers, 1976; 
Twomey, 1977; King, 19821, which becomes even more chal- 
lenging when such different parameters as particle size distri- 
bution and complex refractive index are retrieved simulta- 
neously. Our strategy is to consider measurements and a priori 
knowledge together as a single set of multisource data. Thus 
the current section discusses the principles of inversion opti- 
mization, which are the same for both measured and a priori 
data. The specific questions of applying a priori constraints are 
discussed in detail in section 4.2. 

3.1. Statistically Optimized Inversion of Multisource Data 

The inversion is designed as a search for the best fit of all 
data considered by a theoretical model taking into account the 

different magnitudes of the accuracy of the fitted data. The 
errors in all inverted data are determined statistically. Both 
measured and a priori data are separated into groups assuming 
that data obtained from the same source (i.e., in the same way) 
have a similar error structure, independent of errors in the 
data obtained from other sources. For example, direct Sun and 
diffuse sky radiances have different magnitudes and are mea- 
sured by sensors with different sensitivity; that is, errors should 

be independent (due to different sensors) and have different 
magnitudes. 

Formally, both measured and a priori data can be written as 
follows: 

f:(a) = fk(a) + Ak (k = 1, 2, . . . , K), (9) 

where the vectors f, and f2 relate to sky and Sun radiance 
measurements at four standard AERONET wavelengths. The 
vector a denotes the aerosol parameters which should be re- 
trieved. The vectors fk,2 include the values of a priori con- 
straints on aerosol parameters or possible accessory data. The 
asterisk denotes the data known with some uncertainties Ak. 

Numerous studies have shown that the normal (or Gaussian) 
distribution is the most expected and appropriate function for 
describing random noise (detailed discussions can be found in 

the books by Edie et al. [1971] and Tarantola [1987]). The 
normal probability density function (PDF) for each vector c 
of initial data can be written in the form 

P(f,(a)lf*,) = ((27~)” det(C,))-li2 

* exp (-$k(a) - f*k)Wk)Hfk(a) - fX (lo) 

where T denotes matrix transposition, C, is the covariance 
matrix of the vector fk; det (C,) denotes determinate of C,, 
and m is the dimension of vectors fk and f”. The vectors f*k are 
obtained from different sources and accordingly statistically 
independent. This is why the joint PDF of all inverted data can 

be obtained by simple multiplication of the PDF of all vectors 
Fk as follows: 

K 

P(flb)y . . . , fK(a)lf:, . . . , f*,> = n P(fk(a)\f”) 

k=l 

- exp - i i @k(a) - fi)T(Ck)-l(fkb) - f*k> - (11) 

\ k=l / 

According to the method of maximum likelihood (MML) the 
best estimates P of the unknowns a correspond to the maxi- 
mum of likelihood function (PDF); that is, 

P(f,(fi), . . . , fK(6)lfT, . . . , f*,) = max. (12) 

The MML is one of the strategic principles of statistical 
estimation, and the solution Q is statistically the best in many 
senses [see Edie et al., 19711. The solution is asymptotically 
normal (since PDF is defined asymptotically) and optimum 
(most accurate; the retrieval errors have the smallest standard 
deviations). In addition, the MML solution keeps many opti- 
mum characteristics even in the case of a limited number of 
observations. The optimum properties of MML are closely 

connected with the Fisher information determination [see Edie 
et al., 19711. 

The maximum of the PDF exponential term given by (11) 
corresponds to the minimum of the quadratic form in the 
exponent. Therefore the best solution 4, which can be derived 
from all given data f*k, is a vector P corresponding to the 
minimum of the following form: 
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*ta> = f i Ykqk(a) 
LA 

k=l 

= i i Yki:tfE - fk(a))‘(Wk)-‘(fi! - fkb))]. 

k=l 

(13) 

For the general case of nonlinear functions f,(a) the mini- 
mization is usually implemented by iteration: 

iP+l = QP - AaP 
, (174 

This equation is written via Lagrange multipliers yk and weight where the correction AaP 
matrices wk defined as estimator A%’ as follows: 

Wk = ’ ck, 
d (14) 

where E: denotes the variance of errors Ak in the data vector 
f*k. Accordingly. Lagrange multipliers have a clear statistical 
interpretation as the ratios of variances: 

4 
Yk=Tr 

Ek 
(15) 

where E: denotes the variance of the first (k = 1) and prob- 

ably most important data set. It should be noted that there is 
no need to know the absolute value of the variance ET, because 
the retrieval process is aimed at finding the global minimum of 
9’(a) and does not depend on the value of this minimum. At 
the same time, it is known that the value of !/F(a) has a 2 
distribution and that the minimum of T(a) statistically relates 
to ET as follows: 

2%,,(a) = (Nf - NJd, (16) 

where Nf is the number of values in all fitted vectors f*k, and N, 
is the number of retrieved parameters. The above relation is 
often used for estimation of measurement error E:. 

It is important to emphasize that the MML only formulates 
the condition of optimality and it does not suggest the ap- 

proach for achieving the minimum of 9(a). Finding the min- 
imum of quadratic form %4!(a) is a technical question, and 
choosing one or another procedure does not improve the so- 
lution, provided the problem is not ill-posed and the solution is 
unique. According to our strategy of designing the inversion 
algorithm the colrrect posing of the problem should be done at 
the stage of forming the initial data set given by (9). For 
example, in our case of inverting sky (fT> and Sun (f*) radi- 
ances these two basic data sets will be supplemented by some 
a priori data of corresponding f*k with k > 2. Therefore the 
formulation of initial data sets denoted by (9) is a critical 
question in inversion algorithm development. In contrast, min- 

imization of 9(a) is a technical question, which practically 
does not affect the accuracy of the solution. Nevertheless, a 
good design of a minimizing technique is important for liber- 
ating computer power requirements and, consequently, reduc- 
ing the time consumption of the retrieval. 

3.2. Minimization Procedure 

Modern scientific literature [e.g., Press et al., 19921 contains 
a variety of standardized mathematical methods and software 
for minimizing cluadratic forms. As noted in the previous sec- 
tion, the choice of method for finding the minimum of T(a) 
(equation (13)) is not a critical issue and mainly depends on 
the complexity of the dependencies fk( a) and the preference of 
the inversion algorithm developer. Nevertheless, below, we 
propose a generalized flexible scheme of minimization that can 
be easily reduced to different standard methods. The scheme 

shows the clear relationship between different standard meth- 
ods. Therefore our expectations are that this scheme should be 
helpful for designing inversion algorithms for different appli- 
cations. 

can be approximated by the linear 

hap = t,AQP. 

The multiplier tp I 1 (arbitrarily chosen) is typically used for 
providing monotonic convergence of nonlinear numerical al- 
gorithms [cf. Ortega and Reinboldt, 19701. Assuming that A%’ is 
in the close neighborhood of the solution Q, a Taylor expansion 
can be used: 

f,(a) = fk(aP) + uk,@(& - a”) + o(& - a”)’ + ’ ’ ’ , (18) 

where uk ap is the Jacobi matrix of the first derivatives in the 
near vicinity of the vector #; that is, {uk,,}ji = a ({ fk( a) jj)/ 

aaila 9 o(a - a”)” denotes the function that approaches zero 
as (6’- a”)’ when (3 - #) + 0. Now, neglecting all terms 
of second or higher order in (18), we can consider f,(a) as 
linear functions in (13). Accordingly, the correction A#’ cor- 
responds to the minimum of q(a) with f,(a) linearly approx- 
imated. Correspondingly, AP can be found (accounting for 
noise optimization) as a solution of the so-called normal equa- 
tion system, which for our case is the following (details are 
given in Appendices A and B): 

i yk(Uk,dT(Wk)pl(Uk,d + -&(WP,)-’ 

k=l 

= 2 Yk(Uk,dT(Wk)-‘(fk(fiP) - f;) + ydWA,)-‘(A&)*. 
k=l 

(194 
This normal equation system is the solution of the linear least 
squares method (LSM) [e.g., Turuntola, 19871, which gives the 
minimum Of the quadratic fOrIn (13) for hear fUrdOnS fk( a). 
The terms with multiplier yaa are added on to both the left and 
the right parts of (19a) for improving the convergence of the 
whole minimization procedure given by (17)-(19a) (details are 

given in Appendix B). These terms are incorporated statisti- 
cally in a similar manner for all data associated with (9); that is, 
the a priori expected correction (AA)* is assumed statistically 
to be estimated by (Ail)* = (Ai) + A(A&) with covariance 
matrix C,,. It should be noted that both the a priori estimate 
(Ail)* in (19) and the multiplier t, i 1 in (17b) are mainly 
invoked to decrease the length of AS’, because linear approx- 
imation may strongly overestimate the A%’ correction. Under- 
estimation of AiF’ does not affect the convergence, since un- 
derestimation may only slow down the arrival to the minimum 
and not to mislead the minimization. 

The key question of implementing minimization by (17)- 
(19) is the solving of the linear system (19a), which in the 
compact form can be rewritten as follows: 

QpAPP = V’P(IP), VW 
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where matrix aP denotes the matrix on the left side of (19a). 
This matrix (at yA, = 0) relates to the Fisher information 
matrix, considered in statistical estimation theory [Edie et al., 
19711. The vector V*(aP) ( i.e., vector on the right side of 
(19a)) represents the gradient of the quadratic form !!!(a) 
(equation (13)). This vector is essential for building optimum 
minimization [Ortega, 19881. 

Thus (17)-(19) give a general and flexible form to the min- 
imization of the quadratic form q(a) (equation (13)). This 
procedure can be easily transformed, by choosing a method for 
solving (19a), to many other well-established numerical proce- 

dures based on matrix inversion, relaxation, combined itera- 
tions methods, etc. In our opinion such freedom in incorpo- 
rating different linear inversion techniques to the generalized 
nonlinear scheme (equations (17)-(19)) is very useful for both 
understanding the relationships between existing inversion al- 
gorithms and in developing our new algorithm. 

In our algorithm for inverting atmospheric radiance we im- 

plement two alternative techniques: matrix inversion (using 
singular value decomposition) and relaxation quasi-gradient 
techniques. A brief introduction to these methods is given below. 

3.2.1. Matrix inversion. The linear system given by (19) 

can be solved using matrix inversion operations. First of all, the 
fundamental formula for the linear LSM solution implies ma- 
trix inversion [e.g., Press et al., 19921. Correspondingly, a great 
number of the LSM-related inversion methods use matrix in- 
version. For example, Phillips [ 19621, Twomey [ 19631, Tikhonov 
[1963], Turchin et al. [1970], and Rodgers [1976] employ matrix 
inversion in their methods. All of these methods are well 

known in optical applications and differ with the basic LSM 
formula by using differing a priori constraints (additional dis- 
cussion can be found in section 4 and in the papers of Dubovik 
et al. [1995, 1998a]). 

The basic scheme of solving a nonlinear system is the tradi- 
tional Newton-Gauss procedure [e.g., Ortega and Reinboldt, 
19751, which implements the LSM principle in the nonlinear 
case. Equations (17)-( 19) can easily be reduced to the Newton- 
Gauss procedure. Namely, if we define t, = 1, yaa = 0 and 
yk = 0 (for k 1 2) in these formulas, we obtain the Newton- 
Gauss method with statistical optimization at each p step: 

ap+’ = ap - (U,TW-‘Up)-‘(U,TW-‘(fp - f*)), (20) 

where for simplicity we denote the vectors and matrices as 
follows: Up denotes Jacobi matrix U,,,P; W denotes weight 
matrix W,; vector fP denotes vector f(S). In this section we 
always assume yk = 0 (for k 2 2) only because the standard 

numerical formulas are written for inverting a single data set. 
Obviously, (20) incorporates the basic linear LSM formula. 

Indeed, (20) is reduced to the linear LSM by assuming linear 

dependence f(a) = U,: 

aP+* = aP - (UTW-‘U)-‘(UTW-‘(UaP - f*)) 

= (uqj-‘u)-‘u~W-‘f*. 
(204 

In practice, Newton-Gauss iterations may not converge and 
need to be modified. The most established modification of (20) 
is widely known as the Levenberg-Marquardt method [e.g., 
Ortega and Reinboldt, 1970; Press et al., 19921. This method is 
also included in the scheme of (17)-( 19). Namely, if we assume 
tp 5 1, yaa > 0 and (A&)* = 0, then (17)-(19) can be reduced 
to the Levenberg-Marquardt method: 

aP+’ = ap - tp(UiW-‘Up + yhaD)-‘(U~Wp’(fP - f*)), (21) 

where D = (WJ’ and yaa = E$.&. It should be noted that 
using the generalized inversion procedure of (17) and (19) 
helps to provide an additional simple interpretation of the 
Levenberg-Marquardt method. Indeed, an a priori assumption 
of (Aa)* = 0 means that we constrain the solutions A%’ to the 
smallest value (the closest to (AA)* = 0). In addition, by as- 
suming (A&)* # 0 and varying W, in (19a), the convergence 
character can be adjusted in the scheme of (17)-(19) more 
flexibly than is possible with the standard Levenberg- 
Marquardt formula (21). 

The main difficulty in using the matrix method occurs when 

the matrix al, is of quasi-degenerate nature and the inverse 
operator (aP)-’ is very unstable. The practical way of applying 
matrix inversion is to use matrix singular value decomposition. 

Singular value decomposition (SVD) is an operation of lin- 
ear algebra, which allows one to decompose matrix Q, as Q, = 
VI,,A, where matrices V and A are orthogonal in the sense that 
VTV = I and ATA = I. Matrix 1,1 is diagonal with the elements 
on the diagonal equal to wi. Inversion of matrix Q, trivially 

follows from this decomposition as a-’ = ATI,,,LVT. In the 
case of a near-singular matrix a’, the inverse matrix of Q, is 
uncertain, because some values W, are equal or close to zero. 
By replacing W, = 0 with a moderately small nonzero wi, the 
singular matrix Q, can be replaced by a reasonably close non- 
singular matrix W which can be easily inverted. The details of 

this method can be found in the paper of Press et al. [1992]. In 
many practical situations, singular value decomposition is very 
helpful. Therefore we employ this procedure in our algorithm 
to implement matrix inversion. The main concern of applying 

this method comes from the fact that replacement of matrix Q, 
with matrix W is formal and has no relation to the physics of 
an application. 

3.2.2. Alternatives to matrix inversion methods. Many 

methods are known in the mathematical literature that can be 
used to solve linear systems of equations without using matrix 
inversion. Some examples are the Jacobi and Gauss-Seidel 
univariant iterations, the steepest descent method, the method 
of conjugated gradients, etc. Some of these methods can yield 
superior results over matrix inversion operations. For example, 
in our algorithm we employ linear iterations, which always give 
a result even if the linear system is singular and a solution is not 
unique. In contrast with inversions performed by means of 
singular value decomposition, iterations do not require any 
change of matrix @. 

In the papers by Dubovik et al. [1995, 1998a] the solution of 
the p-step system (equation (19)) is implemented by means of 
linear q-iterations and the whole minimization process is rep- 
resented via combined iterations (two kinds of iteration). 
Namely, A%’ is obtained from (19b) by means of q-linear 
iterations: 

(AaJ’)q+’ = (AaP)q - (Hp)Y[@p(AaP)Y - V!P(ap)]. (224 

Equations (17) and (19) and (22) formulate a search for the 
minimum aP of the quadratic form q(a) (equation (13)) via 
combined p and 9 iterations. For each p iteration, a larger 
number of 9 iterations can be made. The matrix HP and vector 
(A#)4=0 can be chosen in various ways to assure that the 
iterations converge. 

Such a combined iteration technique is helpful for realizing 
statistical optimization (which usually is associated with matrix 
methods) by means of relaxation iterations (HP is diagonal 
matrix) in situations where matrix inversion is not efficient. In 
addition, the consideration of combined iterations helps one to 
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understand relationships between two categories of inversion 

methods: matrix inversion methods [Phillips, 1962; Twomey, 

1963; Tikhonov, 1963; Turchin et al., 1970; Rodgers, 19761 and 
relaxation techniques [Chahine, 1968; Twomey, 19751. These 

two kinds of methods are popular in atmospheric optics and 

remote sensing, and they usually are considered as alternative 

methodologies. 

The steepest descent method deserves particular attention 

among all other relaxation techniques. This method has been 

well described in the mathematical literature [e.g., Forsythe and 

Wasow, 1960; &tegu, 19881. The basic idea of the steepest 

descent method (or gradient search method) is to minimize the 

quadratic form w(a) using its gradient as a direction of the 

strongest local change of q(a). The minimization procedure 

given by (17) and (19) and (22) can be easily reduced to the 

steepest descent method by assuming HP = t,l, (A&‘)q=” = 

0 in (22): 

ap+’ = ap - tpV*(aP) = ap - tp(U,TW-‘(fp - f*)). Pb) 

Also, only one 9 iteration is to be implemented for each p 

iteration in (22b); that is, t,,, = t, and the combined iterations 

are reduced to only one kind of p iteration. 

As pointed out by Press et al. [1992], the steepest descent 

method is generalized by the Levenberg-Marquardt for- 

mula. Namely. (19a) can be reduced to (21) by defining 

matrix D in (19a) as the unit matrix 1 and prescribing a large 

value to the parameter yaa. In Appendix D we show that the 

popular Twomey-Chahine relaxation technique proposed by 

Twomey [1975] can be considered to be the steepest descent 

method. 
Equation (22b) can be used to solve both linear and nonlin- 

ear equations. Correspondingly, the nonlinear steepest descent 

iterations can be used directly for minimization of quadratic 

form in (13). However, such minimization can be very time 

consuming because, for the nonlinear case, each iteration re- 

quires a recalculation of the Jacobi matrix UP, and the steepest 

descent method converges to the solution only after a very 

large number of iterations. Therefore to reduce computation 

time, we use the steepest descent method only to solve linear 

p-step systems (equation (19b)), we assume HP = tP,q, 
(Aaf’)q=o = 0 in (22a). Th en we implement a large number 

(N,) of the 9 iterations. 

We choose the value of tp,q, providing the fastest conver- 

gence of the process at each q iteration. Forsythe and Wasow 
[ 19601 and Ortega [1988] describe the principles of defining 

such a value. 

4. Sun-Sky Radiance Inversion Algorithm 

In sections 2. and 3 we described two complementary and 

necessary tools for realizing an inversion algorithm: a model of 

radiative transfer and a method of optimum inversion. Our 

intention was to structure and, in a certain sense, to standard- 
ize the process of designing an inversion algorithm. In section 

3 we outlined the optimization strategy common to any nu- 
merical inversion and proposed the scheme (equations (17)- 

(19)) uniting a diversity of minimization methods. Our expec- 

tation is that the proposed inversion strategy enables one to 
create a flexible inversion algorithm that can be easily up- 

graded with new developments in forward modeling and/or 

numerical recipes. 

At the same time, the ability to model radiance with avail- 

able codes and to implement numerical inversions does not 
reduce the design of Sun-sky radiance inversion codes to a 

purely technical procedure. There are many small and specific 

questions that need to be resolved to create an inversion pro- 
cedure that is efficient in practice. Definitively, the key ques- 

tion in inversion algorithm development is quantifying the a 

priori constraints (defining Lagrange multipliers, formulating 

smoothing matrices, etc.) In addition, the forward model may 

also require some adjustments. For instance, numerical inver- 

sion of (17)-(19) uses vectors of aerosol parameters, whereas 

the forward models (equations (1) and (6)-(g)) operate on 

continuous functions. Correspondingly, the vectors with a rea- 

sonable number of components should replace functions tra- 

ditionally used in modeling. In this section we proceed with the 

detailed design of a Sun-sky radiance inversion algorithm, us- 
ing the principles described in sections 2 and 3. 

4.1. Adaptation of Forward Model to the Inversion 

The scheme of numerical inversion given by (17)-(19) re- 

quires extensive forward calculations. Namely, each p step 

requires recalculation of fitted characteristics f(a) and Ja- 

cobi matrices U in the case of nonlinear dependence f = 
f(a). Accordingly, the adoption of a fast technique forward 

calculation is very important for making the inversion algo- 

rithm practical and efficient. Possible ways of accelerating 

and adjusting the forward model for inversion purposes are 

discussed below. 

4.1.1. Optical thickness and phase function simulations. 
Equation (8) summarizes the modeling concept that relates 

optical properties of the atmosphere with the size distribution 

(dN(r)ld ) d r an complex refractive index (fi (h)) of the aero- 

sol particles, which are assumed to be homogeneous spheres. 

Both size distribution (dN(r)/dr) and refractive index (k(h)) 

will be the focus of the retrieval in the designed algorithm. The 

retrieval of the particle size distribution from the measure- 

ments of light scattered by polydispersions of spheres is a 

well-developed optical application. The concept of size distri- 

bution retrieval from single-scattering measurements is partic- 

ularly clear for a case of known refractive index. The integral 

equation (equations (6) or (7)) can be reduced to a linear 

system, then solved by standard algebraic methods. In our case, 

the situation is more complicated, because the refractive index 
is unknown and the contribution of multiple scattering to sky 

radiance is significant in some instances. Nevertheless, in our 

algorithm, replacing integral equations (6) and (7) with linear 

systems is essential for making radiance simulations more 

rapid. Also, (6) and (7) are written for the size distribution of 
columnar aerosol particle number concentration; however, 

practical algorithms are often designed to retrieve the size 

distribution of surface area or volume of aerosol particles since 
light scattering of a small single particle is a function of particle 

surface area or volume [cf. Bohren and Huf,%mn, 19831 
rather than number concentration. Thus for flexibility of our 

algorithm, we transform (6) and (7) using different kinds of 
size distributions: number, radius, area and volume particle 

size distributions. Then, to meet calculation speed require- 

ments, we reduce the integral equations to a linear system as 

follows: 
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LdOM@; A) = 
rmax Kscat(O; A; ti; r) 

LLsr> 
x,(ln r) d In r 

= K&O; A; n; k)x,. 

rmax K, (A; fi; r) 
7. 0) = 1 

d-> 
x,(ln r) d In r 

Jr,,,, 

= K, (A; n; k)x,. (23) 

Here the index n (n = 0, 1, 2, 3) denotes the type of 
distribution as follows: 

for n = 0 (number) 

dRO(r) 
xO(ln r) = d = r 

o dN dN 
~ = ~ 
dlnr dlnr 

(i.e., go = 1); 

for n = 1 (radius) 

dR’(r) dN dR 
x,(ln r) = d = r ~ = ___ 

dlnr dlnr 
(i.e., g, = r); 

for n = 2 (area) (24) 

dR2(r) 2~r2 dN dS 
x,(ln r) = dlnr = ___ = ~ 

d In r d In r 
(i.e., g, = 2nr2); 

for n = 3 (volume) 

dR3(r) 4 3 dN dV 
x3(ln r) = dlnr = 3 7Tr ~ = ~ 

d In r d In r 
(i.e., g,=4/3Tr3). 

The kernel functions of optical thickness K,...( . . . ) and dif- 

ferential scattering coefficient K,,,,( . . . ) are approximated in 
(23) and (24) by matrices K,..( . . . ) and K,,,,( . . . ). The vector 

x, approximates size distribution dR” (r)/d In r by N, elements 
corresponding to the points {xk} i = dR” (r,)/d In r chosen 
with equal step A In r = In rl+ 1 - In r, = const. The 

calculations of the matrices K,..( . . . ) and K& . . . ) in our 
algorithm are implemented using two different ways of inter- 
polating size distribution values between grid points ri. First, 
the size distribution dRn(r)/d In r between points In (ri) - (A 
In r)/ 2 and In (ri) + (A In r)/ 2 can simply be assumed to be 
equal to dR”(rj)/d In r; that is, elements of the matrices are 
computed as 

DC, .( . . . )},I = 
I 

( . . . ; y) 

U-> 
d In r. (25a) 

In (rL)-A In r/2 

The trapezoidal approximation is another way of interpolating 
between points. In this case, the size distribution is approxi- 
mated between grid points In (ri + i) and In (ri) linearly by 
dRn(r)/d In r = a In r + b, where a and b must be chosen 
to coincide with values dR”(r,+,)/d In r and dR”(ri)/d In r. 
The matrix elements for this case are computed according to 
Twomey [1977] as 

I ln(r+l) 
W 6 . .>l,i = 

In (r,+,)-ln r K. .( . . . ; r) d In r 

In (r,+d-ln G-J g,, 69 
In b-J 

ln(rr) I, In r-ln (rlel) K. ( . . . ; r) 
+ 

I” (I~,) ln k)-In (r,-J g,, (4 
d In r. Gw 

The indexj in (25a) and (25b) relates to matrix elements with 

Sun radiance at different wavelengths and sky radiance at 
different wavelengths and angles. 

The dependence of matrices K,..( . . . ) and I&,,(. . . ) on 
the real n and imaginary k part of the refractive index are 
approximated from look-up tables over all possible n and k 
values. Namely, we compute matrices in N, and N, grid 
points, which cover the whole range of expected values. The 
matrices for the values of n and k between these grid points are 
computed using linear interpolation in a logarithmic scale. 

It should be noted that in (23)-(25) the size distributions are 

written in the logarithmic scale (dR”(r)/d In r) instead of the 
linear scale (dN(r)ldr) used in (6) and (7). This is because the 
kernel functions K.. .( . . . ) show much smoother variability for 
equal relative steps Arlr (i.e., for equal logarithmic steps, since 
drlr = d In r) than for equal absolute steps Ar. Correspond- 
ingly, the logarithmic scale is commonly preferred for viewing 
optically important details of the particle size distributions and 
for making faster integration over particle size. 

According to (25a) and (25b) the elements of the kernel 
matrices K.. .( . . . ) are integrals of kernel functions over par- 
ticle size. Such integration can be time consuming. Matrix 
approximations (equations (23) and (24)) are efficient in prac- 
tice, because they allow prompt calculation of optical thickness 
T.. . (extinction and absorption optical thickness) and differen- 
tial scattering coefficient T,,,~( A) P( 0; A), given a n vector of 
size distribution xk and refractive index fi (A). 

All of the above mentioned approximations produce some 
error, even in so-called “error-free” conditions. According to 
our estimations (for N, = 22 in the range 0.05 pm 5 r I 15 

pm; N, = N, = 15 in the ranges 1.33 I n I 1.6 and 

0.0005 I k I 0.5) these errors can be considered as relative 
random errors with variance less than 1% for the typical aero- 
sol models given by Tam-6 et al. [1999]. For significantly nar- 

rower size distributions (which are rather unlikely for atmo- 
spheric aerosols) this error may increase to 2-3%. 

4.1.2. Simulations of radiative transfer in the atmosphere. 
As it was mentioned in section 2.1, we have employed a scalar 
discrete ordinates radiative transfer code to simulate diffuse 
radiance I( 0; A) in the plane-parallel atmosphere approxima- 
tion. To make possible internal checks of the algorithm, we 
adopted two independent radiative transfer codes, one by Nu- 
kajima and Tanaka [1988] and the other by Stamnes et al. 
[1988]. However, for practical reasons we mainly used the 
program by Nakujima and Tanaka [1988], since it employs a 
truncation approximation that allows fast and accurate calcu- 
lation of downwelling radiance in the aureole angular range 
with a relatively small number of Gaussian quadrature points. 

At the same time, it should be noted that we use radiative 
transfer codes only for modeling fitted characteristics f(a). 
Jacobi matrices uk,, of Sun/sky radiance derivatives are calcu- 
lated in the single-scattering approximation, i.e., for k = 1, 2: 

U b = uk,, (single scattering). (26) 

The elements of these matrices can be easily calculated from 
(la) and (lb), assuming G( . . . ) is equal to zero. Our retrieval 
experience shows that neglecting multiple scattering in simu- 
lating first derivatives does not particularly affect the retrieval 

results. 
Thus using (23)-(25), the aerosol optical thickness r...(A), 

single-scattering albedo o,(A) = T,,,,(A)/T,,,(A), and phase 
function (P(0, A)) are generated from the refractive index 
iTi(A) = n(A) - ik(A) and the size distribution of aerosol 
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particles dR”(r)/d In r in the total atmospheric column. These 
aerosol characteristics weighted (as given by (2)-(4)) with mo- 
lecular scattering and gas absorption compose a set of atmo- 
spheric layer optical characteristics, which are necessary for 
radiative transfer computations. 

Regarding vertical variability of the atmosphere, we con- 

sider two approximations in our algorithm: (1) an atmosphere 
with vertically homogeneous optical properties and (2) an at- 

mosphere with a known vertical profile of aerosol extinction 
coefficient. For the case of a vertically homogeneous atmo- 
sphere the optical thickness of molecular scattering and gas 

absorption are calculated as described by Holben et al. [1998]. 
If the vertical profile of the aerosol extinction coefficient is 
available, the radiative transfer calculations can be performed 
for a multilayered atmosphere. Therewith the profiles of water 

vapor and ozon e absorption together with climatological pro- 

files of temperature and pressure (for molecular scattering 
calculations) are required. However, we can hardly count on 

vertical distribution information of aerosol complex refractive 
index, single-scattering albedo, and shape of the particle size 

distribution. Therefore these optical characteristics are as- 
sumed to be constant for the aerosol in the whole atmospheric 
column. 

We focus our attention on the simplest model of a homo- 

geneous atmosphere. This is because information on aerosol 
vertical profiles is not currently available for the majority of 
AERONET Sun/sky radiometer locations. In addition, the ef- 
fect of aerosol vertical variability on sky radiance ground mea- 
surements can often be neglected, because it is rather modest 
in comparison with effects caused by aerosol size distribution 
variability. In alddition, to minimize possible retrieval uncer- 

tainty due to the assumption of a homogeneous atmosphere, 
we concentrate our analysis on inverting sky radiances mea- 
sured in the solar almucantar (equation (lb)). In observations 
with such a scheme (zenith angle of observations is equal to the 
solar zenith angle) all atmospheric layers are always viewed 

with similar geometry. Accordingly, at least in single-scattering 
approximation, sky radiances in the solar almucantar are not 
sensitive to aerosol vertical variations. 

4.2. Inversion Implementation 

Implementing the inversion strategy (section 3) in a practical 
retrieval requires defining a number of values and parameters. 
First, the error statistics of Sun and sky radiance measure- 
ments should ble quantified for incorporating covariance ma- 

trices in the inversion algorithm. Second, using a priori con- 
straints should be clarified: what kind of a priori constraints 
should be used, and what values of the corresponding La- 
grange multiplier are appropriate. 

4.2.1. Measurement error statistics. The magnitudes of 
direct and diffuse radiance are very different and the sensors 
that measure them are different and use different calibration 
techniques. Therefore the values of errors in Sun and sky 
radiance measurements are also rather different. Correspond- 
ingly, in a retrieval algorithm we consider Sun and sky radiance 
measurements as two separate groups: 

1 

I*((?; A) = I(8; dR”(r)/d In r; n(h); k(h)) + A,(O; h) 
T*(A) = ~(dR”(r)/d In r; n(A); k(h)) + A,(h) * 

(27) 

In (27) and everywhere that follows, we consider spectral aero- 
sol extinction optical thickness 7*(h) instead of Sun radiance as 
an initial data set for the retrieval. This is because aerosol 

extinction optical thickness is one of the standard products 

derived from AERONET Sun photometer measurements 
(since the instrument output is calibrated to retrieve 7*(h) 
rather than the absolute radiance) and operating with 7*(h) 
helps us to use both the extensive experience regarding the 
accuracy of AERONET-derived aerosol optical thickness and 
the existing knowledge of T*(A) variability for atmospheric 
aerosol. Thus the two basic data sets in (9) correspond to sky 
radiance measurements (k = 1) and spectral aerosol optical 
thickness (k = 2). However, to define the elements of both 
the fitted vectors fk and the vectors of the unknowns (including 
size distribution and complex refractive index), we need to 
outline the alternatives, namely, operating with logarithms or 
absolute values. 

4.2.1.1. Logarithmic transformation (nonnegativity as- 
sumption): Retrieval of logarithms of physical characteris- 
tics, instead of their absolute values is an obvious way to avoid 
retrieval of negative values for fundamentally positive param- 

eters (such as dR”(r,)/d In r). However, the literature devoted 
to inversion techniques tends to consider this apparently useful 

tactic as an artificial trick rather than a scientific technique to 
optimize solutions. Such misconception is probably caused by 
the fact that the pioneering efforts on inversion optimization 

by Phillips [ 19621, Twomey [1963], and Tikhonov [1963] were 
devoted to overcoming the difficulties in solving the Fredholm 
integral equation of the first kind, i.e., a linear system produced 
by quadrature. Problems of that nature involve the retrieval of 
size distribution by inverting spectrally dependent optical 
thickness (equation (23)) or by inverting angularily dependent 
sky radiance. Considering T.. .(A) and T,,,~( A) P( 0; h) as func- 
tions of the logarithm of the size distribution In x,(ln Y) (i.e., 

d In R” (r)/d In r) instead of x, (In Y) requires replacing ini- 
tially linear equations (23) by nonlinear ones. On the face of it, 

such a transformation of linear problems to nonlinear ones is 
difficult to accept as an optimization. On the other hand, in 
cases when a forward model is a nonlinear function of param- 
eters to be retrieved (e.g., atmospheric profiling), the retrieval 
of logarithms is more likely to be the logical approach. 

In our studies we follow the concept proposed in earlier 
papers [e.g., Dubovik et al., 19951. According to that concept, 
using logarithms of measured and retrieved characteristics in 
the retrievals is often expedient due to both rigorous statistical 
considerations and practical experience. It is well known that 
the curve of the normal distribution is symmetrical. In other 
words, the assumption of a normal PDF necessarily implies the 
possibility of negative results arising even in the case of phys- 
ically nonnegative values (e.g., intensities, fluxes, etc.). For 

nonnegative characteristics (T*(A) and I( 0; h) in our studies) 
the choice of the lognormal distribution for the measurement 
noise (i.e., {fl }, = In I( 0, 1; A,,) and if&-, = In T*( $2)) 
seems more reasonable due to the following considerations: 

(1) lognormally distributed values I( 0, , ; hJ2) and T* ( h,2) are 
positively defined, and (2) there are a number of theoretical 
and experimental reasons showing that for positively defined 
characteristics the lognormal curve (multiplicative errors, see 
Edie et al. [1971]) is closer to reality than normal noise (addi- 
tive errors) (a statistical discussion can be found in the work of 
Tarantola [ 19871). A s well, the use of the lognormal PDF for 
noise optimization does not require any revision of normal 
concepts and can be implemented by simple transformation of 
the problem to the space of normally distributed logarithms. 

A similar situation is found for retrieving logarithms of pos- 
itively defined unknowns (e.g., x,,(ln r) in (23) and (24)) in- 
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stead of their absolute values. In fact, according to the statis- 
tical estimation theory, LSM estimates Q (obtained under the 
assumption of normal PDF) are also normally distributed. It is 

obvious, even without rigorous statistical consideration, that 
for nonnegative X, = x,,( In r;), this statement can be applied 
only approximately, because the normal distribution cannot 
provide zero probability for X, < 0. On the other hand, the 
retrieval of In xi instead of x, illuminates the above contradic- 
tion, because the normal distribution of In i’i is a reasonable 
expectation for positively defined xi. 

Moreover, the analysis by Dubovik et al. [1995] has shown 
that the logarithmic transformation can be considered as one 
of the cornerstones of the practical efficiency of Chahine-like 

iterative procedures. These techniques are popular in atmo- 
spheric research in spite of the fact that they solve linear 
systems (equations (23) and (24)) by means of nonlinear iter- 
ations. In Appendices C and D we show that logarithm-based 
retrievals lead to the methods of Chahine [1968] and Twomey 
[1975]. The mathematical treatments given in Appendices C 
and D show the close relation of Chahine-like techniques to 
the steepest descent method (equation (22b)). 

It should be noted that in many situations, retrieval of absolute 

values or their logarithms is practically similar. This is because 
narrow lognormal or normal noise distributions are almost equiv- 
alent. For example, for small variations of a nonnegative value of 

a the following relationship between Aa and Aa/a is valid: 

A In a = In (a + Aa) - In (a) = %, (284 

if A In a << 1. 

Correspondingly, if only small relative variations of the value of a 
are allowed, the normal distribution of A In a is almost equivalent 
to the normal distribution of absolute values Aa. The covari- 
ante of these normal distributions are connected as follows: 

C In a = (WUL-‘, (28b) 

where 1, is diagonal matrix with the elements {l,}i, = a,. 
To make our inversion algorithm flexible we allow two pos- 

sibilities in its implementation, namely, using (1) absolute val- 
ues or (2) logarithms for both measured characteristics (sky 
radiance and optical thickness) and retrieved parameters (size 
distribution, real and imaginary parts of complex refractive 
index). However, everywhere below, we focus our discussion 
on operating with logarithms. This is because all considered 
characteristics (both measured and retrieved) are positively 
defined. In addition, by using logarithms it is simple to operate 
simultaneously with characteristics that have different units 
and values varying over a wide range of magnitude. Thus the 
vectors of measurements are defined as follows: 

{fy}, = ln I*(@,,; A,?) and {f;}, = ln T*(&). (294 

The vector a of unknowns unites the parameters of size distri- 
bution and complex refractive index as 

{a}, = lnx,,(ln r,,) for i = 1, . . . , N,, 

{a}, = In n(h,,) fori=N,+l,...,N,+N,, WV 

{a), = In kO,,) fori=N,+N,+l,...,N,+2N,, 

where N, is number of points used for the retrieval of size 
distribution, and N, is the number of wavelengths. 

4.2.1.2. Weight matrices of measurement data sets: We 

consider a set of sky radiance measurements I*( 0; A) as a 
critical piece of information that is absolutely necessary for the 
retrieval of size distribution and complex refractive index. 
Therefore we have assigned k = 1 (i.e., vector fT) in (29) and 
the Lagrange multipliers of all other data sets (fk, k > 1) 
according to (15) should be defined by rating the variance of 
corresponding errors to the variance of the errors in sky radi- 
ance. Hence the central question in the algorithm design is the 
comparison of errors in other data sets to sky radiance errors. 

Another question relates to the presence of error correlation 
for each set. In other words, should weight matrices W, be 
assumed diagonal (no correlation) or nondiagonal (there is 
correlation). At present, we are not aware of any clear corre- 
lation between random errors in measurements of radiance at 
different wavelengths or angles. Therefore in our current study 
we consider the simplest case of diagonal weight matrices; that 

is, WJ),+, = 0. The diagonal elements of weight matrices 
reflect the spectral and angular changes of instrumental signal/ 
noise ratio of atmospheric radiance. 

. 

The accuracy of sky channel radiance measurements is 
maintained by calibration of the sky radiometer with an inte- 
grating sphere radiance source at the level of 5% or better for 
all wavelengths [Holben et al., 19981. Therefore we assume the 
same 5% accuracy of sky radiance measurements for all wave- 
lengths and angles of observation, independent of the magni- 
tude of the sky radiance signal (i.e., relative accuracy is a 
constant). According to (28a), relative errors are approxi- 
mately equal to logarithmic errors, i.e., for logarithms of mea- 
surements (equation (29)); that is, &I - A,,,,,;,, = 0.05 and 
the weight matrix is equal to unit matrix W, = 1 (where 1 has 
diagonal elements equal to 1). 

The calibration procedure of the Sun channels is expected to 
reduce the absolute uncertainty in T(A) to the level of about 
kO.01 for A L 440 nm and 20.02 for A < 440 nm wavelength 
dependence [Holben et al., 1998; Eck et al., 19991. The studies 
by Schmid et al. [1999] have shown good agreement to this 
expected accuracy for an AERONET instrument in field ex- 
periment conditions. Thus we estimate T(A) with an absolute 
confidence interval of 20.01 for the wavelengths used in the 
retrieval which are all ~440 nm. For the simplicity of further 
consideration we neglect any minor wavelength dependence. 
Correspondingly, relative error changes with T(A) and the 
value of the logarithmic error A In T(A) depends on the mag- 
nitude of optical thickness. Indeed, applying (28a), we can use 
0.01 = AT(A) = T(A) A In T(A); that is, A In T(A) =r 0.01/~(A). 
Thus to define the weight matrix W,, we normalize the covari- 
ante matrix of A In T(A) by the variance of optical thickness 
logarithmic error at 440 nm (.Y: - A:, T(440j = (O.O~/T(~~O))*) 

and obtain the following diagonal elements (equation (14)): 

{w,jjj = h-(440)/T(A,))‘. (30) 

4.2.1.3. Values of the Lagrange multiplier: In the litera- 
ture devoted to inversion techniques [e.g., Twomey, 1977; Tik- 
honov and Arsenin, 1977; Tarantola, 19871 the Lagrange mul- 
tiplier is defined as a nonnegative multiplier that serves to 
weight the contribution of a priori (smoothness) constraints, 
relative to the contribution of the measurements. The value of 
this contribution is usually evaluated by correspondent sensi- 
tivity studies [King, 19821. 

In our investigations we pursued a statistical optimization 
approach that defined the optimum inversion of multisource 
data as a minimization of the multiterm quadratic form given 
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by (13). This approach does not make any distinction between 

measured and a priori characteristics except for the different 
accuracy of each data set. The contribution of each data set is 

weighted by corresponding parameter yx related to the con- 
tribution of the basic set of measurements (i.e., for basic data 
set: y, = 1). Hence we assign parameter yk for every set of a 
priori or measurement data and call this yk a Lagrange mul- 

tiplier following the traditional terminology. The value of each 
Lagrange multiplier is clearly defined by (15) as a ratio of error 
variances. However, the practical choice of Lagrange multipli- 

ers is a challenging task, because accurate values of error 
variances are not typically available in practice. Nevertheless, 
(15) is very helpful in evaluating the expected range of yx 

values. 
In our implementation the relative impacts of sky radiance 

and optical thickness measurements on the retrieval result are 
assumed to be clomparable. Therefore in designing the current 
algorithm we focus especially on the control of fitting errors of 
both sky radiance and spectral optical thickness measurements. 
Namely, we anticipate that a successful retrieval should simul- 
taneously satisfy the following criteria for all k: 

Wh 5 N,a;, (31) 

where N, is the number of values in the fitted vector pk, and (TV 
is the measurement accuracy. Correspondingly, the values of 
q’x, and the contribution of each term T’k in the total value of 
q, directly depend on N,. However, this dependence on the 
number of measurements is not appropriate in practice, be- 

cause a simple increase of N, may lead to an increasing num- 
ber of redundant measurements without an increase of infor- 
mation content. Therefore our strategy of combining data pk is 
to consider sky radiance and optical thickness data sets as two 
critical pieces of information, and the importance of each piece 
of information is independent of the numbers of measurement 
N,. Hence on tihe basis of our criteria given by (31) we define 

the Lagrange multipliers yk (for the measurements; that is, 
k = 1, 2) as the following function of the numbers of mea- 
surements: 

N,a; N, 
Yx = m = jq r;. (34 

Obviously, this definition of yk forces equal values of yxq’/, 

and makes reasonable the consideration of parameters yi (in- 
stead of yk), because of their independence of N, in each data 

set. It should be emphasized that defining (32) is practically 
equivalent to the assumption that the expected accuracy (TV of 
a single measurement is related to the uncertainty Ek of the 
data set, which includes N, measurements of radiance, as 
follows: 

& ,: = N/p;. (33) 

This relationship assumes that &k increases with the number of 
measurements as <. Such a result can be caused by the fact 
that the number of various random error sources may increase 
(as m) with the increase of measurement number. For 
example, the increase of angular and spectral resolution of 
radiance measurements requires a longer measurement time 
resulting in an increase of errors due to natural temporal 
variability of sky radiance. 

Thus the Lagrange multipliers y; and y; can be defined as 
follows: Obviously, y; is always equal to unity and is included 
in (13) for identity in formulation of all terms. The multiplier 

y; in our algorithm is the ratio of variances of sky radiance and 
optical thickness measurement errors and according to our 
assumptions about these errors (a, = Aln I(+j;hj = 0.05 and 

u* = A In T(440) = 0.01/7(440)), the value of yh is the following 
from (32): 

y; = 25(~(440))'. (34) 

It should be noted that the values used for (T, and cr2 are rather 

approximate. Also, the correctness of the assumption in (33) 
needs validation (e.g., it may not work for rather small Nk). 
Therefore we consider (34) as an estimation of y; that needs 
further verification. 

4.2.2. A priori constraints. The retrieval of the aerosol 
size distribution from measurements of scattered light belongs 

to the class of so-called ill-posed inverse problems. Ill-posed 
problems tend to have an unstable nonunique solution, and 
using a priori constraints is essential for solving such problems 

successfully [e.g., Tikhonov and Arsenin, 19771. Applying 
smoothness constraints on the variability of the size distribu- 
tion (or other retrieved characteristics) is well established and 
a commonly accepted technique for eliminating unrealistic os- 
cillations in the retrievals. Twomey [1977] gives the basic prin- 

ciples of solution smoothing for optical and remote sensing 
applications. In our algorithm we retrieve several functions 
(particle size distribution and complex refractive index) requir- 
ing different a priori constraints. The purpose of the current 
subsection is to introduce the specific limitations on retrieved 
dR”/d In r, n(A), and k(A) by defining vectors fk>2 in (9). 

We apply two basic methods of constraining the solution. 
The first method constrains the solution by a sample solution 
a*. This constraint has been proposed by Twomey [1963] and 
expanded in the scope of the statistical approach by Strand and 
Westwater [ 19681. Rodgers [ 1976, 19901 accomplished further 
development and application of this method in atmospheric 
remote sensing applications. The second method constrains 
only the differences between elements of vector P and does not 
restrict their values. In another words, this method applies 
pure smoothness constraints to eliminate only strong oscilla- 

tions in the retrieved characteristics. Twomey [1977] and Tik- 
honov and Arsenin [1977] give the basic techniques of imple- 
menting such smoothing. This type of smoothing is commonly 
used in aerosol optical properties retrievals [e.g., King et al., 
1978; Shaw, 1979; King, 1982; Nakajima et al., 1983, 1996; 
Spinhirne and King, 1995; Dubovik et al., 19951. 

4.2.2.1. Constraining the solution by a priori estimates: 
The most straightforward method of eliminating unrealistic 
values in the solution B is to use an a priori estimate of the 
solution a* (in another words, virtual measurements of re- 
trieved characteristics). For example, the climatological data of 
dR’*/d In r, n(A), and k(A) ( or of d In R”/d In r, In (n(A)), 
and In (k(A)), if the lognormal statistic is applied), can be 
considered as a priori estimates. In this case, the kth equation 
system can simply be defined as 

a* = a + A,,, (35) 

where A,, denotes the error in a priori estimates (climatolog- 
ical data) a*. Defining the covariance matrix C, of errors A,, 
in an a priori estimate a* should not be a problem (at least for 
climatological data). Since (35) is very simple, incorporating 
(35) into (17)-(19) is rather transparent, and we will not dis- 

cuss it (for details, see Dubovik et al. [1995]). 
In our algorithm we include the option of employing an a 
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priori estimate only for restricting the values of the real part of 

the refractive index. This is done for two reasons. First, the 
range of n(A) for aerosol is limited (for example, Tanr6 et al. 
[1999] give values of n(A) within a range of 1.40-1.55 for 

470-1240 nm). Second, the information content of atmo- 
spheric radiance measured by AERONET is not sufficient for 
accurate retrieval of n(A) in some situations (for discussion, 
see Dubovik et al. [2000]). Nevertheless, we will not employ an 
a priori estimate of n(A) because we focus our efforts on the 
situation where n(A) can be retrieved without forcing retriev- 
als by an a priori range of values of n (A). Examples of using a 
priori estimates of n (A) can be found in the paper by Romanov 
et al. [1999], where a similar approach has been applied. It 
should be noted that in contrast with a simple fixing of the 
refractive index the use of a priori estimates of refractive index 

through (35) gives some freedom (depending on correspond- 
ing yk) to obtain a refractive index different from its a priori 

value. 
4.2.2.2. Smoothness constraints of the solution: For 

smoothing the solution the norm of the mth logarithmic de- 
rivatives of the retrieved characteristics y(z) are restricted: 

= (AzZ)-~‘~+‘~~(S~)~(S,,J~, (364 

where A”y(z,) denote mth differences (m = 1, 2, 3, . . . ), 
which are defined as 

A’Y(zJ = ~(-4 - Y(z,+,> = Y, - y,+,; 

A!Y(z,) = A’Y(z,) - A’yk+J = Y, - 2y1+, + y,+,; ww 

A3y(zJ = A~?(z,> - Ajl(z,+J = Y, - 3y,+, + 3y,+, - Y,+~. 

Matrix S, contains the coefficients for calculating vector d” 
(with elements {d”}i = Amy( z,)) of m th differences ofy(x): 

d” = S,y, (37) 

where y(z) is replaced by correspondent vectors x (with ele- 
ments z, = z1 + (i - l)A,, A, = const) and y (with elements 

Yi = Y(‘i)>. F or example, the matrix of second differences is 
given by 

i 

1 -2 1 0 . . . 
0 l-2 10 

s2= 0 0 1 -2 1 ‘0’ . . . * (38) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 
. . . . . . . . . . . . . . . 0 1 -2 1 1 

This matrix is most commonly used for aerosol size distribution 
retrieval [cf. Twomey, 1977; King et al., 1978; King, 1982; Na- 
kajima et al., 19961. In our studies we are following the ap- 
proach of Dubovik et al. [1995] and define smoothing con- 
straints statistically in the form of the corresponding vector 
equation given by (9). In particular, we know that the mth 
derivatives of function y(x) are limited and approach zero as 

the degree m increases: d” = 0 - Adm (Adm defines devia- 
tions from zero). Correspondingly, we can write 

0 = S,y + Adm. (39) 

Using this equation in the case when 0 = Adm defines function 
y(x) as follows (constant, straight line, parabola, etc.): 

444 ()- dz + o = y](z) = c, 

o = 444 

dz2 3 0 = Y,(z) = Bz + c, 

d3yW 
0 = -&r * 0 = Y,(z) = AZ2 + Bz + c, 

where A, B, C are arbitrary constants. 
Equations (39) and (40) are helpful for qualitative and, 

together with (36), quantitative evaluations of the effects of 
introducing smoothness constraints into retrieval algorithms. 

For example, we can always assume that we have a set of 
virtual measurements of m th degree derivatives of an unknown 
characteristic y(z) (e.g., particle size distribution). The vari- 
ance of the errors in such a data set can be easily estimated as 
follows: 

&in, = ((y, - Ym(z,))2) = (a,)(Az)2mP’ I a~ax(Az)2m-1, (41) 

where Y,(z) is given by (40). The value aEax is the maximum 
possible norm of the m th order derivatives of y (x) and can be 
calculated according to (36) for most y (z) . For example, below 
we will estimate azax for the aerosol size distribution on the 
basis of climatological data. 

The difference between our algorithm and other known 
aerosol retrieval algorithms [King et al., 1978; Nakajima et al., 
19831 is that we are restricting several functions simultaneously 
(y(z) = lnx(lnr);y(z) = Inn(A) andy(z) = In k(A)) and 

for each function different values of a, (k = 1, 2, 3) and Ek 
are to be defined. Indeed, admissible variations of the size 
distribution In x(ln r) = d In Rnld In r are expected to be 
much stronger than for spectral variations of the real n (A) and 
imaginary k(A) parts of the refractive index. Therefore we 
should define smoothness vectors fk (and correspondent La- 
grange multipliers) in (9) separately for particle size distribu- 
tion and real and imaginary parts of the index of refraction; 
that is, each smoothness vector fk should depend only on the 
part of the retrieved vector a corresponding to x( In r), n (A), 
or k(A). Thus we have three vectors fk (k = 3, 4, 5) defining 
a priori constrains: 

f; = f,(a) + A3 = U3a + A3 

f: = fJa> + A4 = U4a + A4 + 

f: = f,(a) + A, = U,a + A, 

(42a) r 

where vectors a,, a, and ak denote parts of the complete 
Vector a (i.e., aT = (a,, a,, ak) T), matrices S,, S,, and Sk 
denote matrices of the corresponding differences, vectors O* 
and matrices 0 denote, correspondingly, vectors and matrices 
with zero elements. The corresponding weight matrices are 

defined as unit matrices: 

wk= 1 (k = 3, 4, 5). Wb) 

Finally, to complete the description of smoothness con- 
straints in our algorithm (i.e., to define S,, S,, Sk, y3, y4, and 
y5), we need to evaluate the required orders of the derivatives 



DUBOVIK AND KING: FLEXIBLE ALGORITHM FOR AEROSOL RETRIEVAL 20,685 

Table 1. Results of Evaluating Smoothness (Norm of First, Second, and Third Differences) of Modeled Particle Size 

Distributions and Corresponding Lagrange Multipliers (yJ for a Priori Constraints 

Aerosol Size Distributions Smoothness Characteristics 

Number of Volurne Standard Volume Mode Type of Norm of Standard 
Equivalent Modes Deviation Radii Y, (pm) Differences Differences Deviation (+) 

Calculations for Retrieving Logarithms: a, = In (dR”(r,)ld In r) 
2 0.6 0.33; 5 A’a, 25 2.6 

A’a, 68 1.2 
A’a, 524 0.9 

3 0.4 0.1; 0.75; 5 Ala, 43 3.5 
A”a, 320 2.5 
A3al 4200 2.5 

3 0.15 0.1; 0.75; 5 Ala, 3400 30 
A’a, 30000 25 
A”a, 490000 27 

Calculations for Retrieving Absolute Values of Volume Particle Size Distribution: a, = dV(r,)ld In r 
2 0.6 0.33; 5 Ala, 0.04 0.10 

A’a, 0.37 0.09 
A’a, 4.46 0.08 

3 0.4 0.1; 0.75; 5 Ala, 0.53 0.38 
A2a, 4.85 0.31 
A3ai 56.4 0.29 

3 0.15 0.1; 0.75; 5 Ala, 1.31 0.60 
A’a, 46.4 0.96 
A”a, 1945 1.70 

*The results are given for volume particle size distribution a, = In (dV(r,)ld In r). 

Lagrange 
Multipliers ( y3) 

0.0004* 
0.002 
0.003 
0.0001* 
0.0004 
0.0004 
3.0-6* 
4.0-6 
3.5-6 

0.23 
0.34 
0.38 
0.02 
0.025 
0.03 
0.007 
0.003 
0.001 

and norms a. . . for the retrieved functions ( y(z) = In x( In r) ; 
y(z) = In n(A) andy(z) = In k(A)). 

4.2.2.3. Smoothness of the particle size distribution: The 

particle size distribution of tropospheric aerosols may contain 
several distinct modes and each mode is most commonly mod- 
eled by a lognormal function [whitby, 1978; Remer et al., 1997, 
1998; Remer and Kaufman, 19981. The norms a.. . of (36) thus 
evaluated using 

y(z) = lnx,,(ln r) = 
d In R”(r) 

d In r 

= ln[ 2 &exp[--i [‘“’ ~hirZ)‘~]Y (43) 

To evaluate azax, we should estimate ak for the most variable 

function In x,,( In r). For the particle size distribution given by 
(43) the norm of the derivatives would increase with increasing 

1 number J of t!he components and with decreasing standard 
deviation a1 for each component. Accordingly, the size distri- 
bution with the largest number of narrow components has the 

greatest value of azax (the smaller aJ the narrower the func- 

tion). Physical processes in the atmosphere most frequently 
result in a bimodal structure of the aerosol size distribution 
[Remer and Kaufinan, 19981. At the same time, the appearance 
of a third mode is also realistic. For example, a volcanic erup- 
tion may produce optically thick stratospheric aerosol, which 
adds a stable third additional mode to the commonly appear- 
ing accumulation mode (small particles; r < 0.6 pm) and 
coarse mode (large particles; r > 0.6 pm) composing tropo- 
spheric aerosol [Kaufman and Holben, 19961. The standard 
deviation aj of the aerosol size distribution varies, depending 
on the type of aerosol and the atmospheric conditions. Tan& 
et al. [ 19991 give (T = 0.4 for the narrowest aerosol modes. In 
practice the size distributions can most likely be even nar- 
rower than size distributions corresponding to u = 0.4. 

However, we cannot expect resolution smaller than the in- 
terval A In r = In r,+l - In ri chosen for defining the linear 

systems in (23)-(26); that is, particle size distribution should 
not be narrower than A In r (a = A In r). 

Thus to estimate the maximum norm ammax, we calculate the 
norm of the first, second and third derivatives for a trimodal 

lognormal size distribution for two cases (T = 0.4 and (T = A In 
r. The results of these calculations are summarized in Table 1. 
Corresponding to these calculations, the values of the La- 

grange multiplier ( y3), obtained by means of (41) and (15) 
assuming E i = 0.05, are found to be in the range 3 .Oe -6- 
3.0e-3. It should be noted that Table 1 contains the results of 

calculations for the size distribution of particle volume d V/d In 
r. However the values of a, for the logarithmic differences of 
the second and greater order are the same for all distributions 

dR”/d In r. This is because the differences A In (dRn/d In r) 
of the second and greater order are independent of n. Thus the 
same smoothness restrictions can be used for the distributions 

of particle number, radius, area, and volume if these restric- 
tions are applied to the logarithms In x (In r). 

4.2.2.4. Smoothness of spectral dependence of complex re- 
fractive index: To define the parameters yA = (c,/E,)’ and 
ys = (E 1/&k)*, we need to evaluate derivative norms of spec- 
tral dependencies y(z) = In n(A) and y(z) = In k(A). 
Spectral variability is usually not expected for both real and 
imaginary parts of the aerosol particle refractive index. For 
example, the widely cited paper by Shettle and Fenn [1979] 
shows practically wavelength-independent complex refractive 
indices in the spectral interval of interest (440-1020 nm) for 
the materials typically composing atmospheric aerosols. Simi- 
larly, aerosol models by Tanrk et al. [1999] assume single con- 
stant values of complex refractive index for the spectral inter- 
val considered. However, in the scientific literature there are 
multiple indications of possible spectral selectivity of the re- 
fractive index for aerosol particles [e.g., Ackerman and Toon, 
1981; Patterson and McMahon, 1984; Horvath, 1993; Dubovik et 
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al., 1998b, Yumasoe et al., 19981. Therefore we constrain the 
spectral variability of the retrieved complex refractive index to 
some practically reasonable ranges rather than to any partic- 
ular model of the atmospheric aerosol. 

To analyze derivative values, we approximate spectral de- 

pendencies n(A) and k(A) by exponential functions in a man- 
ner similar to Dubovik et al. [1998b]: 

n(A) - (A)-an and k(A) - (A)-*k. (44) 

Obviously, the logarithmic derivatives [d” In n(A)]/(d” In A) 

and [d” In k(A)]/(d” In A) are equal to zero for m > 1. 
Therefore we will be using first derivatives for constraining the 
spectral variability of the complex refractive index. The norms 
of the first derivatives a y= directly relate to exponents: a Ty = 
,fax(ln A,, - In A,i”) and a?? = ar=(ln A,, - In A,i”). 
We estimate the maximum spectral dependence of the real 
part of the refractive index as a?: = 0.2, which corresponds to 

change from n(440 nm) = 1.6 to n(1020 nm) = 1.33. The 
value of a ‘1°F = 1.5, given by Dubovik et al. [ 1998b] for biomass 
burning aerosol, is accepted in our studies as an indicator of 

the strongest spectral variability of imaginary part of the com- 
plex refractive index (k(440 nm) = 0.04 to k(1020 nm) = 
0.011). The values of corresponding Lagrange multipliers (y4 
and y5) are given in Table 3. 

It should be noted that the traditional smoothness matrices 

with elements given by integer numbers (e.g., the matrix given 
by (38)) cannot be applied for constraining the spectral depen- 
dence of the refractive index. This is because the spectral 
interval Ahi is not constant in our application. For example, 
sky radiances are measured by AERONET Sun photometers 
at four wavelengths: 440,670,870, 1020 nm, i.e., AAj = hi+ i - 

Ai # const. Correspondingly, we use smoothness matrices S, 
and S, in (42) which are constructed for numerical derivatives 
Ay (z)/Az rather than for differences Ay (2); that is, the ma- 
trices S, and S, account for the AAj in differences with ma- 
trices given by (38). 

The restriction of second derivatives also can be applied for 
the retrieval of the spectral dependence of refractive index. 
Such a restriction would constrain the refractive index spectral 
variability by exponential functions (44). However, it would not 
restrict the values ay, and (Ye. This might be insufficient in 
practice, because limited information content of the Sun/sky 
radiance [Dubovik et al., 20001 may result in retrieval of unre- 

alistically strong spectral selectivity of the refractive index. 
4.2.2.5. Convergence improvements: The procedure 

given by (17)-(19) should provide monotonic and fast conver- 
gence of the iterations to the minimum of the quadratic form 
V!(a) (equation (13)). Equation (19a) contains terms (on both 
the right and the left sides of the equations) which limit the 
length of the correction vector A&’ and help to provide mono- 
tonic convergence of minimization in a similar manner to the 
Levenberg-Marquardt method. 

As was mentioned in section 3.1.1., we implement this cor- 
rection by assuming a priori constraints on the step correction 
A#. We constrain the parts Ae, Ae and A@ of the vector 
AZ+’ differently. Namely, we assume 0* = A&’ + Aaa with the 
weight matrix: 

WAa = (g <I g\J, (45a) 

where 1 is a unit matrix, g, = (E~,/E~,)~ and g, = (EJ 
c~)~. The variances ai,, E:,, and &ik can be estimated on 

the ranges of the variability of particle size distribution, real 
and imaginary parts of complex refractive index as follows: 

E A,~ = 0.5(ln X,,, - lnXmin) E 2.5, 

& A,n = 0.5(ln n,,, - In n,iJ Z 0.05, 

&b,k = o.j(ln k,,, - ln k,,,) == 1. 

W) 

In this equation we considered the interval [In a,,,, In amin] as 
68% confidence interval [In a + E, In a - s]. We used the 
following considerations for choosing the maximum and min- 
imum values. The realistic maximum values of x = dV/d In Y 
(the size distribution of the particle volume in the total atmo- 
spheric column) can be easily expected to be in the range from 
0.005 (pm)“l(pm)2 to 0.5 (em)“/” [Dubovik et al., 20001. 
For the real and imaginary parts of the aerosol complex re- 
fractive index we assume variability ranges from 1.60 to 1.40 
and 0.05 to 0.005, respectively (for the spectral range 440-1020 
nm). Also, the values in (45) are rounded off to number mul- 
tiples of 5. It should be noted that these ranges are only for 
restricting Ati; that is, the correspondent values of AZ+’ are not 
expected to be larger than the length of the above mentioned 
intervals. Obviously, after several iterations, even greater 
changes can be achieved. 

The definition of the Lagrange multipliers yA, is similar to 
the one given by (15) with the difference that instead of el, we 
use its estimate .&(a”) obtained from the residual (equation 

(15)); that is, 

.G2(aP) 
YhW) = 2, 

&A,, 
(46) 

where &‘(a”) = 2q(aP)/(iVf - N,). According to this equa- 
tion the value of the Lagrange multiplier yAa decreases with 
decreasing quadratic form Xl!(#). We have chosen this defini- 
tion because the linear approximation in the small vicinity of 
the solution a’ produces rather accurate AZ+‘, and any restric- 
tion on the solution correction A# is not needed. Moreover, it 
may also slow down the convergence of the iterative process. 

Thus the a priori constraints on the correction Ad-’ help to 
attain a monotonic and fast convergence. The restrictions are 
in effect when 9 is far from the solution and they weaken 
when approaching the solution a’. 

5. Summary and Illustrations 
In sections 2 and 3 we described the concept of forward 

modeling and inversion strategy. Section 4 described the de- 
tails of organizing the inversion algorithm for deriving aerosol 
optical properties from atmospheric radiance measurements 
by AERONET Sun-sky scanning radiometers. Two aspects 
were discussed: the forward model optimization from an in- 
version viewpoint and choosing the values of parameters re- 
quired for setting up the inversion scheme. The purpose of 
section 5 is to summarize and illustrate the result of our algo- 
rithm development. 

The strategy of our development was to make a flexible 
algorithm that can be easily adapted to different practical 

needs and that also can easily be upgraded by new develop- 
ments in radiative transfer modeling and numerical recipes. 
The possibility of upgrading an algorithm is assumed in many 
modern codes and is generally more interesting for the devel- 
oper than for the user. Therefore we will not discuss this aspect 
here. We will emphasize the flexibility in choosing a number of 
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Table 2. Assurned Models of Error in Sky Radiance and Optical Thickness Measurements and Corresponding Weight 
Matrices and Lagrange Parameters Adopted in the Retrieval Algorithm 

Error Model 

Type of Noise Standard Lagrange Multiplier 
Type of Data Error Expectations Distribution Weight Matrix (W,) Deviation (ek) (Yk) 

I(@; A) 

7(h) 

Az(0; A) lognormal-recommended w, = 1 & , = 0.05 Yl = 1 

I(@; A) 5 O-O5 fl(@; A) = In (I(@; h)) 
normal-alternative w*llJ = Z2(@; A,) El = 0.05 Yl = 1 

fl = I(@; A) 

AT(~) I 0.01 lognormal-recommended w,>,, = (7(440)/7(A,))2 

.fAh) = ln (T(A)) E 2 = 0.01/7-(440) y2 = 2 25(7(440))2 

normal-alternative {W,> = 1 

./-2(h) = T(h) E2 = 0.01 y2 = $25 
2 

alternatives for implementing the inversion so that the inver- 
sion scheme can be easily used with other radiative transfer 
schemes, or even in other applications. Correspondingly, we 
have tried to make the forward modeling and inversion parts of 
the algorithm as independent of each other as possible, and we 

have put a significant effort into making the inversion part of 
our algorithm rather transparent and changeable. Therefore 
below we will identify the possible alternatives in implementing 
the inversion and illustrate the resulting differences. 

5.1. Proposed Algorithm and Alternative Implementations 

Here we will discuss the following main questions: (1) ways 
of representing measured radiances in the retrieval algorithm, 
(2) ways of representing optical characteristics of the aerosol in 
the retrieval algorithm, and (3) choosing a matrix or iterative 
inversion for implementing the minimization. 

5.1.1. Radiances in the retrieval algorithm. As was de- 
scribed in sectioln 4, we optimize the algorithm by accounting 

for measurement error while fitting aerosol optical thickness 
and sky radiances. The chosen settings are summarized in 
Table 2. The key point in these settings is the noise assump- 
tion. We also recommend utilization of lognormal statistics 
(i.e., we fit the logarithms of optical thickness and sky radi- 
ance). As for alternative noise statistics, the normal distribu- 
tion of sky radiance and optical thickness with weight matrices 
given in Table 2 is the most reasonable alternative to the 
assumption of lognormal statistics (i.e., we fit the absolute 
values of optical thickness and sky radiance). The values of the 
weight matrices, covariances, and Lagrange multipliers given 
in Table 2 for normal distributions were not discussed in the 
text; however, they can easily be derived for the expected 
errors based on the same concepts. 

5.1.2. Optical characteristics of aerosol in the retrieval 
algorithm. The questions of defining the retrieved aerosol 
characteristics were described in section 4, and Table 3 sum- 
marizes the chosen settings. This table shows two main possi- 
bilities we considered: to retrieve logarithms (recommended) 
or absolute (alternative) values of aerosol characteristics (X (In 

rl), n(Ai), and k(A,)). F or each case, Table 3 describes the a 
priori constraints for all of the retrieved aerosol characteristics. 
For the particle size distribution and the wavelength depen- 
dence of the imaginary part of refractive index we indicate 
possibilities of constraining the differences (derivatives) of the 
first, second, or third orders. According to our analysis, these 
constraints are approximately equivalent. It is our expectation 

that the differences of the third order (for particle size distri- 
bution) can be more efficient in practice, because it allows for 
the highest variability of x(ln yi). However, this statement 
should be verified in practice and by numerical tests. 

5.1.3. Matrix and iterative inversion. As discussed in sec- 
tion 3, statistical optimization requires the minimization of the 
quadratic form, and various mathematical techniques can be 
employed for implementing this minimization (see section 3.2). 
In our algorithm we include two main alternatives: using ma- 
trix inversion by means of the SVD technique (section 3.2.1) or 
by using combined iterations as described in section 3.2.2. 

Also, we include the possibility of algorithm convergence im- 
provement in a manner similar to the Levenberg-Marquardt 
method. Namely, we include a priori constraints on the solu- 
tion correction A&’ at each p step as described in section 4. 

5.2. Illustrations 

5.2.1. Numerical tests. The algorithm is focused on the 
simultaneous retrieval of particle size distribution and wave- 

length-dependent refractive index (real and imaginary parts). 
The principal difference with known approaches [e.g., Wen- 
disch and von Hoyningen-Huene, 1994; Yamasoe et al., 19981 is 
that we retrieve all aerosol characteristics (x( In Ye), n (hi), and 
k( A,)) at once by simultaneous fitting measurements of optical 
thickness and the angular distribution of sky radiances in the 
entire available spectral range. To succeed in such a global 
fitting, we had to employ an elaborated inversion scheme, 
which has been described and which allows us a significant 
degree of flexibility in realizing the inversion. The purpose of 
this section is accordingly to illustrate how well the inversion 

scheme works and what kind of results can be expected by 
using the different inversion options. 

We have conducted a large number of numerical tests with 

the purpose of verifying the efficiency of the algorithm and 
checking the results regarding the settings of the inversion 
algorithm. Each illustration displayed below illustrates the 
phenomenon that was distinctly observed in a large number of 
numerical tests. 

First, we have tested the efficiency of algorithm convergence 

and the sufficiency of information content for successful re- 
trieval of all aerosol characteristics (x( In yi), n (hi), and 
k( hi)). In this test we simulated aerosol optical thicknesses 

and the angular distribution of sky radiances at several wave- 
lengths for an assumed particle size distribution and complex 
refractive index. Then we inverted the simulated optical thick- 
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Table 3. Summary of a Priori Constraints on the Smoothness of Aerosol Particle Size Distribution and on the Wavelength 

Dependence of Real and Imaginary Parts of Refractive Index 

Smoothness Constraints 

Aerosol 
Characteristics 

dR(rJ 
x (In 6) = dlnr 

Retrieved 
Parameters 

a, = lnx(ln rl) 
recommended 

a, = x(ln r,) 
alternative 

a, = In n(h,) 
recommended 

a, = n(h) 
alternative 

a, = In k(A,) 
recommended 

a, = WJ 
alternative 

Type of 
Constraint 
Differences 

Ala, 
A’a, 
A”a, 
A’a, 
A2a, 
A”a, 

Ala, 

A In A, 

Ala, 

A In h, 

Ala, 

A In h, 

A2a, 

(a 

Ala, 

A In A, 

A2a, 

(a 

Standard Lagrange 
Deviations Multiplier 

C&k) Yk (k = 3, 4, 5) 

e3 = 2.6* y3 = 4.0-4* 
& 3 = 1.2 y3 = 2.ow” 
& 3 = 0.9 y3 = 3.0p3 
E 3 = 0.10* y3 = 0.23* 
& 3 = 0.09* y3 = 0.34* 
& 3 = 0.08* y3 = 0.38* 
& 4 = 0.2 y4 = 0.0625 

& 4 = 0.125 y4 = 0.16 

& 5 = 1.25 ys = 0.0016 

&g = 0 ys = 0.1-f 

& -1 5- ys = 0.025 

&g = 0 ys = 0.3t 

*Results are given for volume particle size distribution x, = dV(r,)ld In r. 
I-Lagrange multipliers used for the tests (they are not related to given es). 

ness and sky radiance and compared the retrieved particle size 
distribution and complex refractive index with the assumed 
values. Given the importance of aerosol absorption to issues of 
radiative forcing [see Kaufman et al., 19971, we thought it is of 
interest to evaluate the agreement between values of single- 
scattering albedo ( mrr (A) = eaLt(A)/<?:(A)) obtained for as- 

sumed and retrieved aerosol characteristics x( In Ye), n (hi), 
and k( Ai). All tests were conducted for the measurement 
scheme (wavelengths, zenith and azimuth angles of observa- 
tion, etc.) established for AERONET radiometers (for details, 
see Holben et al. [1998]). The tests have shown that both real 
and imaginary parts of the complex refractive index can be 
successfully retrieved together with particle size distribution, if 
no noise is introduced in the simulated radiance. In a majority 
of cases the errors did not exceed 20% for k( A,), 0.02 for 
n( A,), 0.015 for w?‘(A), and 10% for dV/d In r for particles in 
the size range from 0.1 to 7 pm (the errors increase in the tails 
of the retrieved particle size distribution). The results remain 
good even in the presence of random noise. For example, 
Figures 1 and 2 illustrate the results of our test for retrieving 
biomass burning aerosol optical properties modeled with wave- 
length-dependent real and imaginary parts of the refractive 
index. A bimodal lognormal size distribution was assumed for 
this illustration according to the biomass burning aerosol 
model given by Remer et al. [1998]. The wavelength depen- 
dence of n (A,) was assumed according to the values of the real 
part of the refractive index retrieved by Yumasoe et al. [1998] 
for smoke in Brazil. The wavelength dependence of the imag- 
inary part of the refractive index was assumed accordingly to 
Dubovik et al. [1998b] for k( hi) of Brazilian smoke with pro- 
nounced wavelength dependence of absorption (“artificial 
soot”). The algorithm computed the retrievals shown in Fig- 
ures 1 and 2 with the settings recommended in Tables 2 and 3. 

According to performance tests the use of the logarithmic 
transformation is a critical aspect of our algorithm (for both 
fitting the logarithm of radiance and retrieving logarithms of 

x(ln r,), n(h), and k(A,)). By using absolute values (i.e., 
settings suggested in Tables 2 and 3 as alternatives) we could 

a.14 

0.12 

0.10 - 

,t 0.06 - 

E 
S L 

E 0.06 - 

2 

% 

0.04 - 

0.02 - 

--+- “Truth” 

---+ Retrieved, no noise 
- A- - Retrieved, random noise 

0.01 0.1 1.0 

Radius (pm) 

10.0 100 

Figure 1. Results (particle size distribution) of the sensitivity 
test on aerosol optical properties retrieval from simulated sky 
radiance and optical thickness both without and with random 
noise added. Particle size distribution dV/d In r for biomass 
burning aerosol [Remer et al., 19981 is modeled by a bimodal 
lognormal function with parameters ~,,i = 0.132 pm; rv2 = 
4.5 pm; (pi = 0.4, a2 = 0.6; C,,,IC,, = 4 (~~~~(440) = 0.5). 



DUBOVIK AND KING: FLEXIBLE ALGORITHM FOR AEROSOL RETRIEVAL 20,689 

not obtain a stable convergence. In this case, the success of the 
retrieval required a special choice of the initial guess for each 
different combination of the retrieved parameters. In contrast, 
by using logarithms, we achieved good retrievals starting with 
the same initial guess (dV(r)ld In Y = 0.0001, n(A,) = 1.50, 
and k( A,) = 0.005) in all cases. 

Figures 3-5 illustrate the results of the retrievals, where the 
refractive index is known and fixed, for three different cases: 

large particles dominate (Figure 3) small particles dominate 
(Figure 4), ant1 the presence of small and large particles is 

* comparable with a third minor mode present in the middle 
range of particle size (Figure 5). In such situations, using both 
recommended and alternative settings gave good retrievals for 
the case with no noise added. However, if some random noise 
was added to the simulated radiances, the retrieval using log- 
arithms was superior for both very small and large particle size 
ranges. In this respect, it is important to note that the widely 
used inversion code of Nakajima et al. [1983, 19961 does not 
use the logarithimic transformation (see analysis by Dubovik et 
al. [1998b]). This is probably one of the reasons for the inher- 

ent difficulties of the Nakajima et al. method in reproducing 
size distributions in the range of very small and large particles 

(see the discussion in the papers by Remer et al. [1997, 19981). 
It is important to notice that Figures 3-5 also illustrate the 

fact that in the presence of noise we were obtaining, in general, 
more stable retrievals when both size distribution and complex 
refractive index were retrieved than by retrieving only size 
distribution (with refractive index fixed to the correct value). 

This result can be explained by the fact that when refractive 
index is fixed only the size distribution can be changed during 

the retrieval. Thus the fitting of noisy data forces the size 
distribution to compensate for all of the errors in radiance. 
Alternatively, if both size distribution and refractive index are 

1.6 
I 

1.2 
c 

1.0 1 

-+- “Truth” 

+ .- Retrieved, no noise 
- 1k Retrieved, random noise 

_ ?-._.- - - -- - 

,,,,,,,1111111~111/~1~~~111”’ to-3 

400 500 600 700 800 900 1000 1100 

Wavelength (nm) 

Figure 2. Results (single-scattering albedo, real and imagi- 
nary parts of refractive index) of the sensitivity test on aerosol 
optical properties retrieval from simulated sky radiance and 
optical thickness both without and with random noise added. 
Real part of the real part of refractive index for biomass burn- 
ing aerosol is modeled according to the results by Yamasoe et 
al. [1998]: n(440) = 1.53, n(670) = 1.55, n(870) = 1.59, 
n(1020) = 1.58. 
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---+- “Truth” 

---*---log fitting, y, ,9 - = 10-3, h I’! h 
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Figure 3. Numerical test results of the comparison of retriev- 
als of size distribution by three different approaches (size dis- 
tribution dominated by large particles): aerosol particle size 
distribution retrieval (refractive index is fixed) without loga- 
rithmic transformation (f, (0; A) = I(@; A)); f2(A) = T(A) 
and a, = dV(ri)/d In Y); aerosol particle size distribution 
retrieval (refractive index is fixed) under logarithmic transfor- 
mation (f,(O; A) = In I(@; A)); f*(h) = In T(A) and a, = 
In (dV(ri)/d In Y)); aerosol particle size distribution retrieval 
(refractive index is retrieved) under logarithmic transforma- 
tion (f,(C); A) = In I(@; A)); &,(A) = In T(A) and ai = In 
( dV(ri)/d In r)). The radiance is perturbed by random noise 
(variances: 0.05% for Al(C); A)/I(O; A) and 0.01 for AT(A)). 

retrieved simultaneously, then errors in measured radiances 
will only be partially tied to errors in the size distribution, 
because some compensation or error redistribution will occur 
due to retrieval errors in refractive index. These errors in the 
refractive index retrieved under noisy conditions are accept- 

able. For example, the errors in refractive index for the tests 

0.25 

0.20 - 
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“““I 1 “““I 1”“” 
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Figure 4. Same as Figure 3 but for an aerosol size distribu- 
tion dominated by small particles. 
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Figure 5. Same as Figure 3 but with an aerosol size distribution 
where large and small particles are comparably represented 
with a minor presence of particles in the middle size range. 

shown in Figures 3-5 did not exceed 20% for k( A,) and 0.02 

for n(A,). 
We conducted a series of tests to verify our algorithm and 

settings regarding the smoothness constraints. Indeed, using 

overdetermined and/or inadequate constraints may result in 
smoothing out real (and possibly important) features of the 
retrieved aerosol characteristics (in particular, the particle size 
distribution). The tests have shown that the values of the La- 
grange multipliers, recommended in Table 3, allow one to 
obtain satisfactory results for any monomodal, bimodal, or 
trimodal aerosol particle size distribution. Every mode of par- 
ticle size distribution which was employed in our tests was 
assumed to be as narrow as the narrowest mode given by Tan& 
et al. [1999]. For example, Figure 5 shows a successful retrieval 
of a small feature in the size distribution (a third intermediate 
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Figure 6. Illustration of size distribution retrieval results 
with constraining the first differences of a, = In (dV(r,)/d In r). 

Radius (pm ) 

Figure 7. Illustration of size distribution retrieval results 
with constraining the second differences of ai = In (dV(r,)/d In r). 

size aerosol mode), which was obtained using constraints sim- 
ilar to the ones applied in the tests without this feature (Fig- 
ures 3 and 4). 

Figures 6-8 illustrate the retrievals of particle size distribu- 
tion with constraining first, second, or third derivatives. The 
results look good for the values of the Lagrange multipliers 
given in Table 3. Moreover, even if significantly higher values 
of yJ are used (up to y3 = 0.01) acceptable results for all cases 
were obtained. It is interesting to note that the intercompari- 
son of retrieval results obtained with different constraints (in 
terms of variations of first, second, or third differences) did not 
show any dramatic difference for y3 I 0.01. For higher values 
of the Lagrange multiplier y3, a priori constraints forced the 
retrieved particle size distribution to assume an a priori pre- 
scribed shape (see (40)): horizontal line (for first differences), 
an arbitrary straight line (for second differences), and parabola 

1.00 c I II, ,,, / I, ,I/ 

--+- “Truth -.R.-y3= 1.0 

3 l no smoothing -0 y, = lo2 
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- k- -y,= 10‘4 --+y3= 104 
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Figure 8. Illustration of size distribution retrieval results 
with constraining the third differences of a, = In (dV(ri)/d In r). 
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Figure 9. An illustration of using different mathematical 
techniques for rninimization (no a priori constraints is used). 

Radius (pm ) 

(for third differences). In spite of the fact that all constraints 
yielded satisfactory retrievals (for y3 I 0.01) we have con- 

cluded that using second or third differences is more appro- 
priate for the retrieval of the particle size distribution. First, 
the restricting of first differences is the most severe restriction 
on particle size distribution (since this a priori assumes that the 
solution is a horizontal straight line). Second, the values of the 
Lagrange multiplier y3 for constraining the second- or higher- 
order differences are the same for size distributions of volume, 
area, radius, or number of particles (for the case when we 
retrieve the logarithms of dRn/d In Y in the grid points Y, 
chosen with any equal step A In Y = In ri+ , - In Y, = const). 

This can be easily illustrated using (24) and (36b) on an exam- 
ple of the size distributions of particle volume and number: 

In (dl/(r,+Jld ln r) 

= In (4/37r) -I- 3 In (Y,) + A In r + In (dN(r,+,)/d In r) 

+ Ai In (dV(r,)/d In r) = -A In Y+A’ In (dN(r,)/d In r) 

+ Am?’ In (dV(r,)/d In Y) = ArnZ2 In (dN(r,)/d In r) 

It should be noted that all illustrations show the results for the 
retrieval of volume particle size distribution because dV/d In Y 
is a standard product of AERONET [H&en et al., 19981. 

However, the retrieval of any other kind of particle size distri- 
bution dR’*/d In Y is also assumed in the algorithm and can be 
employed depending on user needs. Equation (24) can also be 
applied rather successfully for transforming the dR’/d In r to 
any other distribution dR”/d In r; however, in general, the 
direct retrieval of the required dR”/d In Y gives slightly better 
accuracy. 

The final illustration of the results of our numerical tests 
relates to the use of iterative versus matrix inversion (the 
methods outlined in section 3.2.1). Figure 9 shows the retriev- 
als of particle size distribution obtained by applying an iterative 
inversion and a SVD technique for matrix inversion (with and 
without applying constraints on A#). The inversions were 
obtained without using any a priori smoothness constraints on 
the solution and without adding any noise to the simulated 

radiance. We obtained good convergence of *(a”) to a mini- 

mum in all three cases, and the results were equally good for 
retrieval of k( h,) and n( A,). However, the results of particle 
size distribution retrievals were significantly different. In spite 
of the fact that the SVD inversion always gives an inverse 
matrix, it forces the appearance of physically unrealistic (but 
optically indistinguishable) oscillations (Figure 9). Using an 
iterative inversion always gives an appropriate solution without 
any inversion modification while requiring a longer time for 

convergence. The SVD technique coupled with the Levenberg- 
Marquardt-type constraints on Ad’ (included according to (45) 
and (46)) appeared to be practically the most efficient way of 
implementing the inversion. Indeed, the retrieval result is 

rather smooth, and the retrieval is faster than for the iterative 
inversion. Thus we have adopted the SVD technique with 

constraints on A6’ (equations (45) and (46)) as the recom- 
mended way of implementing the inversion in our algorithm. 

5.2.2. Application to real measurements. The purpose of 
our development is to make the code perform a reliable inver- 
sion of the measurements. However, we have thus far illus- 
trated the performance of the inversion by inverting simulated 
atmospheric radiances. The difference between simulated and 
real measurements may contain various uncertainties that can 

affect the retrieval results. The random noise used in our tests 
does not reflect the diversity of all uncertainties present in real 
data. To understand the accuracy of inverting real data, some 

special analysis is needed. However, such analysis requires 
extensive studies related to information content of particular 
measurements rather than to the design of the inversion. The 
quality assessments of aerosol optical properties retrieved us- 
ing AERONET spectral optical thickness and atmospheric ra- 
diance measurements are given in the paper by Dubovik et al. 
[2000]. In the current paper we limit ourselves to a single 

example, showing the practical capability of simultaneous re- 
trievals of aerosol particle size distribution and wavelength- 
dependent refractive index from Sun and sky radiance ob- 

tained using AERONET radiometers. For this illustration we 
have chosen observations of different kinds of aerosols (bio- 
mass burning and urban aerosol) with similar wavelength de- 
pendence of optical thickness, (Y = 1.5 (7(h) - K”). Figures 10 
and 11 show the retrieval results for urban aerosol measured in 
hazy conditions at the Goddard Space Flight Center (GSFC) 
and for biomass burning smoke measured in Cuiaba (Brazil) in 
different years (1993 and 1995). The particle size distribution is 
dominated by fine particles in all cases. At the same time, some 
differences in dV/d In Y can also be clearly seen. It is important 
to note that retrievals show very strong differences between 
biomass burning and urban aerosols in the values of real and 
imaginary parts of the refractive index. Indeed, n for urban 
aerosol at GSFC ranges between 1.33 and 1.40 (i.e., close to 
the values of n for water), whereas smoke-retrieved values of 
n are significantly higher than 1.4. This may be the results of 
much greater hygroscopic growth of particles with increasing 
humidity for mid-Atlantic U.S. pollution versus Brazilian 
smoke [Kotchenmther and Hobbs, 19981. As expected, the val- 
ues of the imaginary part of the refractive index are more than 
10 times higher for smoke than for urban aerosol. The values 
of single-scattering albedo are close to unity for urban aerosol 
and significantly smaller for smoke. Moreover, the wavelength 
dependencies of o:“‘(A), obtained for smoke in 1993 and 1995, 
are different for some cases (slightly increases with wavelength 
for aged smoke in 1995). This result qualitatively agrees with 
the results of the w?‘(A) retrievals obtained by independent 
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Figure 10. An application of the algorithm for particle size 
distribution retrieval from sky radiance and optical thickness 
measured by AERONET. The values of plotted particle size 
distribution are scaled to the values corresponding to ~(440) = 1. 
The illustrated retrievals were obtained for the observations with 
similar wavelength dependence of optical thickness (a = 1.5). 

techniques also for Cuiaba, Brazil, in 1995 [Chu et al., 1999; 
J. V. Martins et al., personal communication, 1999; Dubovik et 

al., 1998b]. The retrieved k(h,) for observations of smoke at 
Cuiaba, Brazil, in 1995 show a strong decrease with wave- 
length. This is in good agreement with the results of the dis- 
cussion given in the paper by Dubovik et al. [1998b]. It should 
be noted that retrievals using our algorithm for Cuiaba, Brazil, 
in 1995 for some days other than those illustrated in Figures 
lo-11 also show k(h,) decreasing with wavelengths for aged 
smoke. At the same time, or’(h) is almost wavelength inde- 

pendent. 
These examples thus show that by applying our inversion 

algorithm we were able to derive more detailed information 
from Sun and sky radiance measurements from AERONET 
radiometers than with procedures that were previously em- 
ployed for the retrieval of aerosol optical properties from 
AERONET measurements [see Holben et al., 19981. 

6. Conclusion 

A flexible algorithm for inverting complex sets of measured 
radiative and a priori known aerosol characteristics has been 
developed and implemented for the interpretation of ground- 
based measurements of Sun and sky radiance. The algorithm 
retrieves the particle size distribution over a wide range of sizes 
(0.05-15 pm) together with spectrally dependent complex re- 
fractive index and single-scattering albedo. 

To achieve flexibility of the algorithm, we considered for- 
ward modeling and numerical inversion as two complementary 
but relatively independent components of the retrieval algo- 

rithm. The modeling of atmospheric radiance is performed by 
publicly available discrete ordinates radiative transfer codes 
for a multilayered plane-parallel atmosphere. Aerosol micro- 
structure is incorporated in the inversion scheme by assuming 
homogeneous Mie-scattering spheres. The possibility of re- 
trieving different kinds of particle size distribution (volume, 

- yp4 ---*--n(h) - e- k(k) - Cuiaba (17:09:93) 

- y,(V ---+--n(h) - + -k(h) - Cuiabd (14:09:95) 

- yp) ---r---n(h) - t -k(h) - GSFC (26:06:98) 

Fz 1.6 

n. t 

& ___--- t------t----. 

Wavelength (nm) 

Figure 11. An application of the algorithm for single- 
scattering albedo, real and imaginary parts of refractive index 
retrieval from sky radiance, and optical thickness measured by 
AERONET. 

area, radius, or number) was discussed and included in the 
algorithm. 

The strategy of statistical optimization of multisource data, 
such as different types of measurements as well as a priori 
knowledge, was elaborated point by point. Accounting for dif- 
ferent levels of input data accuracy and the nonnegativity of 
measured and retrieved parameters in the optimized inversion 
was discussed. We outlined the operational alternatives of as- 
suming either normal or lognormal noise distributions in the 
radiance measurements, i.e., using either absolute values of 
Sun and sky radiance or their logarithms. The associated co- 

variance matrices were presented. Similarly, we emphasized 
the differences of retrieving logarithms or absolute values of 
particle size distribution and real and imaginary parts of the 
refractive index. 

The statistical concept of evaluating values of the Lagrange 
multiplier for including both accessory measurements and a 
priori constraints was described. This concept has been applied 
to determining measurement weights of spectral optical thick- 
ness and angular measurements of sky radiance in our proce- 
dure of simultaneous fitting of these characteristics. The re- 
sults of this analysis are summarized in Table 2. On the basis of 
the same concept we defined values of the Lagrange multiplier 
for all a priori constraints employed in the algorithm. Namely, 
we have utilized constraints of variability on the particle size 
distribution and constraints on the spectral variability of real 
and imaginary parts of refractive index. For this purpose we 
applied limitations on the norm of the first, second, and third 
differences of the particle size distribution. In the same way we 
restricted the norm of the first and second derivatives of the 
variability of refractive index with wavelength. To evaluate the 
values of the corresponding Lagrange multiplier, we analyzed 
the maximum changes in atmospheric particle size distribution, 
as well as maximum spectral variability of the refractive index 
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(both real and imaginary parts). Table 3 summarizes applying 
a priori constraints. 

Tables 2 and 3 show the recommended and the alternative 
setting for inverting measurements of spectral optical thickness 
and sky radiance together with a priori constraints. Table 3 also 

shows alternative a priori constraints for limiting differences 
(derivatives) of different orders. According to our results these 
constraints provide almost equivalent retrieval efficiencies. 

Nevertheless, for a number of reasons, we recommend using 
second or thirld differences for the smoothing of retrieved 
particle size distributions. 

We have examined the practical efficiency of implementing 
numerical fitting by diverse mathematical techniques. Particu- 
lar attention has been devoted to considering differences be- 
tween methods using matrix and iterative inversion. Improving 
the convergence of nonlinear fitting by applying Levenberg- 
Marquardt or steepest descent types of iterations was studied. 
As a result we have outlined two alternatives: (1) combined 

linear iterations or (2) matrix inversion using singular value 
decomposition. Both of these methods give reliable conver- 
gence. The matrix inversion is more rapid but requires orga- 
nizing the Levenberg-Marquardt-type iterations to obtain a 
stable result. 

We have done a series of numerical tests for both checking 
the efficiency of the algorithm in general and for each partic- 
ular algorithm setting. In the tests we inverted simulated 
ground-based measurements of Sun and sky radiance at the 
wavelengths and angles defined according to the measurement 
protocol established for AERONET radiometers. The results 
have shown that both the particle size distribution and the 
spectrally dependent parts of the complex refractive index can 
be derived, with reasonable accuracy, from the ground-based 
measurements of Sun and sky radiance. Moreover, these tests 
have shown that the method is sufficiently sensitive to observe 
important minor features in spectral dependencies of the real 

and imaginary parts of the aerosol refractive index and, ac- 
cordingly, in the spectral dependence of single-scattering al- 
bedo. 

The retrieval algorithm is currently being employed for op- 
erational use by the AERONET project. The results of these 
retrievals can be found on the AERONET project web page 
(http://aeronet.gsfc.nasa.gov:8080), and some illustrations are 
given in the text. The paper by Dubovik et al. [2000] discusses 

the stability of retrieval results to the diverse errors occurring 
in AERONET measurements. 

Appendix A:: Derivation of Linear Correction A#’ 
With Noise Optimization 

To define a linear correction AS’, we can consider Af,( A#) 
as a linear functions of A#. Neglecting all terms of second or 
higher order in (18) we can write 

f*k(ii) - fk(ap) = U,,,(ii - a”) 3 Af*, = U,,,AaP. (Al) 

The correction A%’ can be found with accounting for present- 
ing noise as a value A%’ corresponding to the minimum of the 
quadratic form *(A%‘) (defined in a similar manner to (13)): 

K 

*(AaP) = i x yk!Pk(Aap) = i i y,[(Af*, 
k=-1 h=l 

- Uk,apAaP)T(Wk)-‘(Afz - Uk,iJ>Aap)]. (A2) 
The minimum of this quadratic form corresponds to the vector 
Ai?’ which yields a zero gradient vector Vq(Aa”): 

d!P(AaP) 
~ = 0, (i = 1, . . . , 

a (Aaf> 
NJ 3 Vq(AaP) = 0. W) 

The gradient of the quadratic form 
gradients of the following K terms: 

‘P(AP) is a sum of the 

V?(AaP) = ; i ykVqk(AaP). 
k=l 

W) 

The gradient of each quadratic form VT’,( Ahap) can be written 
as follows: 

v%(Aap) = 2(U,,,)T(W,)-1(Uk,ap)AaP 

- 2(U,,idT’(W,)-‘(Af*,). 
Using (A4) and (A5), we can write (A3) as 

i rk,~uk,,)‘(wk~-‘~uk,~~,Aa’-~ Yk[(Uk,aP)T(Wk)-l(Af)xk)] 
k=l k=l 

= 0. (4 

The detailed derivation of (A6) (for the case of K = 1) can be 
found elsewhere in numerous books on statistical estimatiork 
[cf. Serber, 1977; Tarantola, 19871. 

Thus deriving A#’ from (A6) and using it to obtain s9+’ by 
means of (17a) permits the definition of a nonlinear process for 
deriving a statistically optimum solution of (9). 

Appendix B: Including a Priori Estimates Ati* 
in Retrieval of A#’ 

To improve the convergence of the retrieval process (given 
by (17) and (A6)) we can limit the length of AiF’ by assuming 
a vector of a priori estimates for A$*; that is, we add one more 
constraining equation: 

Aii* = Ai? + A Aa’ w 

where Aha are normally distributed errors with zero means and 
covariance matrix C,, . Therefore the PDF of the estimates 
AP* is defined as 

P(APlAl*) - exp (- ;(A&’ - Ai*)T(C~o)-l(APP - Al”)). 

WI 

Since (Bl) restricts only the value of the correction AY but not 
the value of the unknown parameter p itself, this constraint is 
only important for obtaining corrections A#‘. To be consistent 
with this added constraint, we add an additional K + 1 th term 
to the quadratic form *(A#‘) and instead of (A4) we can write 

K 

V’P(AP”) = ; c YkVqk(Aiip) + &J”P,(ALp), 
k=l 

w 

where 

‘PAo(Ai) = (ABP - AP*)T(WA,)p’(Aiip - Ah*). WI 

form The gradient of this quadratic 
expression similar to (A5): 

can be obtained using an 

V’&JA%‘) = 2(WA,)-‘Aa’ - 2(W,,)-‘(Ai*). (B5) 

Thus the vector A&” which minimizes the quadratic form 
Yr(A#‘) corresponds to the solution of the following equation: 
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i 
i Yk[(Uk,aP)T(Wk)-l(Uk,ap)] + YA~(WA,)-’ APp 

k=l 

- x Yk[(Uk,ap)T(Wk)-l(Af~>] - YA~(WA,)-‘A~* = 0. 
k=l 

m 

Appendix C: Derivation of Chahine’s Formula 

The method of Chahine [1968] involves the solution of the 

linear system I(x) = Kx by nonlinear iterations (x?” = x$‘(IT/ 
I$‘)). The utility of this method is limited by the fact that the 
matrix K is square (i.e., the numbers of initial characteristics Ii 
and unknowns xi are equal), when initial characteristics Ij and 
unknownsx, are positively defined. Also, the matrix K must be 
diagonally dominant in order that convergence be achieved. In 
Chahine’s iterative approach, the solution vector is restricted 

to positive and smooth values, thereby eliminating the negative 
and highly oscillatory solutions typical of linear matrix inver- 

sion. 
Analyzing Chahine’s formula, one can see that this formula 

is very different with both matrix inversion by (20) and (21) and 
linear iterations by (22). Namely, Chahine’s formula is nonlin- 
ear and includes multiplication and division instead of addition 
and substruction in the linear methods. The concept of statis- 
tical optimization of the inversion and retrieval of nonnegative 
values (section 4.2.1) prescribes that the initially linear system 

should be solved in logarithmic space: 

I* = Kx 3 InIT= lnI,(lnx,, lnxr, . . . , lnx,). (Cl) 

This nonlinear system can be solved by Newtonian iterations 

similar to (20a) W is canceled for the case of square K: 

In P’ = In rZp - A In %‘“, 

A In gp = (UJ’(ln Ip - In I*). (C2) 

Matrix UP contains the first derivatives, which for I(x) = Kx 
can be expressed as follows: 

W) 

Using Chahine’s condition of a diagonally dominant matrix K, 
we can now approximate UP by the unit matrix; that is, 

for KJj B KJJl+J, Up z 1. 0) 

Substituting matrix (C4) in (C2), we arrive at the formula 
proposed by Chahine [1968]: 

In rip+l = In gp - (In Ip - In I*) 3 x:+’ = xf g 
( 1 

. (C5) 
1 

Chahine’s method converges for any diagonally dominant ma- 
trix K (i.e., Kjj > Kjj, zj), although the approximation for (C4) 
is correct only for a diagonally dominant matrix K where the 
diagonal dominance is strong (i.e., Kjj > Kjj, zj). In this 
regard, the nonlinear univariate relaxation of Chahine is for- 
mally similar to the standard linear Gauss-Seidel algorithm 
used for solving systems of equations and which always con- 
verges if the matrix K is diagonally dominant [e.g., Ortega, 
19881. 

Appendix D: Statistical Derivation of 
Twomey-Chahine Formula 

The generalization of Chahine’s formula was the objective of 
a number of inversion studies, because the convergence con- 
ditions associated with that method (square and diagonally 

dominant matrix K) seriously restrict its application. The ab- 
sence of a clear strategy which exploits the added information 
content of a priori and accessory data is an additional reason 
for seeking out alternatives to the Chahine technique. 

The first nonlinear Chahine-like formula (which is widely 
known in atmospheric studies) was proposed by Twomey [ 19751 
for solving linear overdetermined system I(x) = Kx (m > n): 

xf+'=$G (1 + ($- +J,)> (W 

where ~ji denotes the elements of matrix K which are scaled to 
be less than unity. Below, we do not repeat the original meth- 
odology for deriving these iterations (which can be found in the 
work of Twomey [1975, 19791). Rather, we try to understand 
the Chahine approach in a fashion consistent with the idea of 
the present paper (section 3) inasmuch as we consider the 
solution as a noise optimization procedure. For positively de- 
fined Ii and xi we accordingly assume a lognormal noise dis- 
tribution. The solution of the system I(x) = Kc,xn)~ + A in 
logarithmic space then corresponds to the minimum of the 
quadratic form 

!P(ln xp) = i(ln Ip - In I*)T(W,, r)-‘(ln Ip - In I*). PI 

According to the discussion in section 3.2 the minimum of the 
above residual can be obtained by the Levenberg-Marquardt 
procedure and can be easily reduced to the steepest descent 

method (22b): 

In rZp+’ = In gp - tPV*)XP) 

= In $’ - tPUB(W,,J-‘(ln IP - In I*). (D3) 

Equation (D3) is already quite similar to Chahine-like itera- 
tions, since it restricts the solution to be positively defined and 
since no complicated matrix inversion is involved (the weight 
matrix is diagonal in most of the cases). To emphasize the 
similarity between (D3) and (Dl), we rewrite (D3) in terms of 
X, and Ij: 

if+’ = 2: exp 
i tP 5 I?;,(ln 1; - In 1;) 

i 
\ J=' J 

m 

= Rf fl exp (tpRJ,( In 1: - In I;)), 
/=1 

( w 

R = U,‘(W,, 1) -1. Qw 

For an appropriate initial guess of (ln 1; - In 17) (which must 
be cl), (28a) can be applied. We can, as well, approximate the 
exponents in (D5) by the two first terms of a Taylor expansion 
(exp (Aa) = 1 + Aa + am). Consequently, (D5) can be 
transformed into the form of (Dl): 
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matrix are naturally restricted to be less that unity (see (C3)). 
Kaufman, Y. J., D. Tan& H. R. Gordon, T. Nakajima, J. Lenoble, R. 

Frouin, H. Grassl, B. M. Herman, M. D. King, and P. M. Teillet, 
The multiplier ti’ can be considered as a Levenberg-Marquardt Passive remote sensing of tropospheric aerosol and atmospheric 

multiplier and can, accordingly, be chosen in a manner similar correction for the aerosol effect, J. Geophys. Res., 102, 16,815- 
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(P I 1) in order to provide monotonic convergence. Similar 
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