DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION CENTER FOR DRUG EVALUATION AND RESEARCH

ADVISORY COMMITTEE FOR PHARMACEUTICAL SCIENCE

Tuesday, May 7, 2002 8:30 a.m.

5630 Fishers Lane Rockville, Maryland

PARTICIPANTS

Vincent H.L. Lee, Ph.D. , Acting Chair Kathleen Reedy, R.D.H., M.S., Executive Secretary

MEMBERS:

Gloria L. Anderson, Ph.D., Consumer Representative

Mary J. Berg, Pharm.D.
John Doull, M.D., Ph.D.
Judy P. Boehlert, Ph.D.
William J. Jusko, Ph.D.
Joseph Bloom, Ph.D.
Nair Rodriguez-Hornedo, Ph.D.
Lemuel A. Moye, M.D., Ph.D.
Jurgen Venitz, M.D., Ph.D.
Marvin C. Meyer, Ph.D.
Arthur H. Kibbe, Ph.D.
Patrick P. DeLuca, Ph.D.

GUEST PARTICIPANT: Ian Wilding, Ph.D.

INDUSTRY REPRESENTATIVES: Leon Shargel, Ph.D. R.Ph. Efriam Shek, Ph.D.

INDUSTRY GUEST PARTICIPANTS:
Aziz Karim, Ph.D.
Dr. Jack Cook

SGE PARTICIPANT:
Gordon Amidon, Ph.D.

FDA PARTICIPANTS:
Steven Galson, M.D., M.P.H.
Helen N. Winkle
Ajaz Hussain, M.D.
Larry Lesko, Ph.D.
Ameeta Parekh, Ph.D.
Dale Conner, Pharm.D.
Lawrence Yu, Ph.D.

	3
CONTENTS	
Introductions	4
Conflict of Interest	6
Introduction to Meeting, Dr. Helen Winkle	8
Comments, Steven Galson, M.D., M.P.H.	17
Future Subcommittees:	
Introduction and Overview, Ajaz Hussain, Ph.D. Clinical Pharmacology Subcommittee,	20
Lawrence J. Lesko, Ph.D.	25
Committee Discussion	33
Draft Guidance: Food Effect BE Studies:	
Introduction and Overview, Dale Conner, Pharm.D. Science Background and Issues, Ameeta Parekh,	49
Ph.D.	62
Open Public Hearing:	
Brian P. Kearney, Pharm.D. (read by Ms. Reedy) David M. Fox (read by Ms. Reedy)	137 138
Russell J. Rackley, Generic Pharmaceutical Association	143
Biopharmaceutics Classification System - Next	113
Steps:	
<pre>Introduction and Overview, Lawrence Yu, Ph.D. Presentations:</pre>	160
Gordon Amidon, Ph.D.	161
Jack Cook, Ph.D. Lawrence Yu, Ph.D.	185 197
Committee Discussion	211
COMMUTELEE DISCUSSION	$\Delta \perp \perp$

- 1 PROCEEDINGS
- DR. LEE: Good morning. I am calling this
- 3 meeting to order. I am Vincent Lee, the acting
- 4 chair of this committee. It is the Advisory
- 5 Committee for Pharmaceutical Science. I would like
- 6 to begin by going around the table and letting the
- 7 members introduce himself or herself, and we will
- 8 start with my colleague on my left.
- 9 Introductions
- DR. ANDERSON: I am Gloria Anderson,
- 11 Fuller E. Callaway Professor of Chemistry at Morris
- 12 Brown College in Atlanta.
- DR. BLOOM: Joseph Bloom, University of
- 14 Puerto Rico.
- DR. VENITZ: Jurgen Venitz, Virginia
- 16 Commonwealth University.
- DR. MOYE: Lem Moye, University of Texas.
- DR. BOEHLERT: Judy Boehlert, consultant
- 19 to the pharmaceutical industry.
- DR. RODRIGUEZ-HORNEDO: Nair Rodriguez,
- 21 professor of pharmaceutical sciences, University of
- 22 Michigan.
- DR. SHEK: Efriam Shek, Abbott
- 24 Laboratories.
- DR. SHARGEL: Leon Shargel, Eon Labs

- 1 Manufacturing.
- 2 DR. WILDING: Ian Wilding, Pharmaceutical
- 3 Profiles.
- 4 DR. KARIM: Aziz Karim, Takeda
- 5 Pharmaceuticals, in Chicago.
- 6 DR. CONNER: Dale Conner, FDA.
- 7 DR. GALSON: Steve Galson, FDA.
- 8 DR. WINKLE: Helen Winkle, FDA.
- 9 DR. HUSSAIN: Ajaz Hussain, FDA.
- 10 DR. LESKO: Larry Lesko, clinical
- 11 pharmacology at FDA.
- DR. BERG: Mary Berg, College of Pharmacy,
- 13 University of Iowa.
- DR. DOULL: John Doull, KU Medical Center.
- DR. JUSKO: William Jusko, State
- 16 University of New York at Buffalo.
- 17 DR. DELUCA: Pat DeLuca, University of
- 18 Kentucky.
- DR. MEYER: Marvin Meyer, emeritus
- 20 professor, University of Tennessee, College of
- 21 Pharmacy.
- DR. KIBBE: Art Kibbe, Wilkes University
- 23 School of Pharmacy.
- MS. REEDY: Kathleen Reedy, FDA.
- DR. LEE: Once again, Vincent Lee,

- 1 University of Southern California. Let me ask the
- 2 committee members to raise their hand so everybody
- 3 knows who is on the committee. Thank you very
- 4 much. I think the committee is wide awake and
- 5 ready to go. Kathleen, would you please read the
- 6 conflict of interest?
- 7 Conflict of Interest
- 8 MS. REEDY: This is the acknowledgement
- 9 related to general matters waivers for the Advisory
- 10 Committee for Pharmaceutical Science for May 7,
- 11 2002.
- 12 The Food and Drug Administration has
- 13 prepared general matters waivers for the following
- 14 special government employees, Drs. Marvin Meyer,
- 15 Mary Berg, Judy Boehlert, Vincent Lee, Lemuel Moye,
- 16 Gordon Amidon and Patrick DeLuca which permit their
- 17 participation in today's meeting of the Advisory
- 18 Committee for Pharmaceutical Science.
- 19 The committee will discuss, one, the
- 20 current status of, and future plans for the draft
- 21 FDA guidance entitled guidance for industry,
- 22 food-effect bioavailability and fed bioequivalence
- 23 studies: study design, data analysis, and labeling;
- 24 two, discuss and provide comments on the
- 25 biopharmaceutics classification system, BCS; and,

- 1 three, discuss and provide direction for future
- 2 subcommittees.
- 3 Unlike issues before a committee in which
- 4 a particular product is discussed, issues of
- 5 broader applicability, such as the topic of today's
- 6 meeting, involve many industrial sponsors and
- 7 academic institutions.
- 8 The committee members have been screened
- 9 for their financial interests as they apply to the
- 10 general topic at hand. Because general topics
- 11 impact on so many institutions, it is not prudent
- 12 to recite all potential conflicts of interest as
- 13 they apply to each member. FDA acknowledges that
- 14 there may be potential conflicts of interest, but
- 15 because of the general nature of the discussion
- 16 before the committee these potential conflicts are
- 17 mitigated.
- 18 We would also like to note for the record
- 19 that Drs. Leon Shargel of Eon Labs Manufacturing,
- 20 Efriam Shek of Abbott Laboratories, Thomas Garcia
- 21 of Pfizer, Tobias Massa of Eli Lilly & Company,
- 22 Aziz Karim of Takeda Pharmaceuticals North America
- 23 and Jack Cook of Pfizer Global Research and
- 24 Development are participating in this meeting as
- 25 industry representatives, acting on behalf of

- 1 regulated industry. As such, they have not been
- 2 screened for any conflicts of interest.
- 3 In the event that the discussions involve
- 4 any other products or firms not already on the
- 5 agenda for which FDA participants have a financial
- 6 interest, the participants are aware of the need to
- 7 exclude themselves from such involvement and their
- 8 exclusion will be noted for the record.
- 9 With respect to all other participants, we
- 10 ask in the interest of fairness that they address
- 11 any current or previous financial involvement with
- 12 any firm whose product they may wish to comment
- 13 upon.
- DR. LEE: Thank you, Kathy. Now I would
- 15 like to call Helen Winkle, Acting Director of OPS,
- 16 to introduce the meeting.
- 17 Introduction to Meeting
- DR. WINKLE: Good morning, everyone. It
- 19 is really nice to see everybody here. I think this
- 20 is one of the few times everyone has actually been
- 21 in the room and present because normally we have a
- 22 lot of people on the telephone. So, it is good to
- 23 have all our members here.
- I want to welcome everyone to the meeting
- 25 today, and I think this is really going to be a

- 1 great opportunity for us to meet with the committee
- 2 and to discuss what I consider to be a number of
- 3 really important scientific topics. My job this
- 4 morning is just basically to give everyone a
- 5 rundown on the agenda for the next two days, and it
- 6 is a pretty full agenda but I think there will be a
- 7 lot of things we can discuss and I think it will be
- 8 very worthwhile.
- 9 Today, Dr. Hussain will introduce the
- 10 Center's proposal for future subcommittees to this
- 11 advisory committee. As you all know, Dr. Hussain
- 12 has oversight for the advisory committee, and has
- 13 been looking at a variety of ways that we might
- 14 help in making the committee as effective as
- 15 possible. I think it is very difficult with
- 16 running this type of committee that is focused on a
- 17 variety of issues because you have to have a number
- 18 of different disciplines in the room to discuss the
- 19 issues, and sometimes it is not as easy to flesh
- 20 those issues out for presentation to the main
- 21 committee. So, I think we have been sort of
- 22 bouncing around ideas internally in OPS for ways in
- 23 which we can help the committee members in being
- 24 able to be better prepared to make recommendations.
- 25 So, Dr. Hussain will talk about our proposal for

- 1 that.
- Next, following that discussion, we will
- 3 discuss two biopharm topics, and Dr. Larry Lesko,
- 4 who has already introduced himself, from the Office
- 5 of Clinical Pharmacology and Biopharmaceutics, will
- 6 lead those discussions. The Office of Clinical
- 7 Pharmacology and Biopharmaceutics, along with the
- 8 Office of Generic Drugs, has been sort of grappling
- 9 with these issues in order to finalize several
- 10 guidances or to actually, in one case, expand on a
- 11 guidance. So, we will present those issues today
- 12 and talk about ways that we can move forward in
- 13 these two really important areas.
- 14 The first issue that we will talk about in
- 15 the biopharm area is regulatory recommendations on
- 16 bioequivalence studies under fed conditions. In
- 17 order to facilitate getting the guidance out we
- 18 have basically two questions which need to be
- 19 addressed today. One is regarding the waivers of
- 20 in vivo fed studies for ANDAs for BCS Class I drugs
- 21 and drug products, and the second is the confidence
- 22 intervals and criteria to claim between fasted and
- 23 fed states of new drugs and between fed states for
- 24 generic drugs. This is an issue that I think will
- 25 have a lot of discussion with it, and I look

- 1 forward to hearing that. We want to listen
- 2 basically to what can be added to this
- 3 scientifically, to get your feel on this and then
- 4 we will go back and regroup internally, and decide
- 5 where we need to go with this guidance.
- The second topic we want to discuss under
- 7 the biopharm area is next steps for the
- 8 biopharmaceutics classification system. The BCS
- 9 has been discussed here I think on several
- 10 occasions. Basically, we have a guidance out which
- 11 is what I would call conservative in those
- 12 particular products that we allow to come in with
- 13 waivers under BCS.
- 14 So, what we want to do today is talk about
- 15 expanding the BCS; get your thoughts on the
- 16 expansion of it, and to get some ideas as far as
- 17 the next steps for justifying the expansion or
- 18 extension of BCS. We have already come up against
- 19 some challenges, and I think we would like to talk
- 20 about how we can handle these challenges as far as
- 21 BCS in the future.
- There is already some work going on in
- 23 PQRI, the Product Quality Research Institute, on
- 24 expanding BCS and we will share a little of that
- 25 information and discuss whether that research is

- 1 actually all that we need to sort of capture where
- 2 we need to go in our efforts with BCS.
- 3 As I said, obviously this is a pretty full
- 4 day. I mean, I think there will be a lot of
- 5 discussion around these topics. Then, tomorrow we
- 6 will have several items on the agenda as well. The
- 7 first thing we are going to talk about is to give
- 8 you an update on the process analytical
- 9 technologies, PAT. You all know that we have a
- 10 subcommittee that was formed. The subcommittee met
- 11 for the first time in February. I think it was an
- 12 extremely good meeting and I think a lot came out
- 13 of that meeting as far as helping us focus on the
- 14 whole initiative of PAT. Dr. Tom Layloff, who is
- 15 chairing the subcommittee, will report on that
- 16 meeting that was held in February. Then, Dr.
- 17 Hussain will provide a progress report and describe
- 18 what the next steps are for PAT. Then, we will
- 19 appreciate your input into those steps and what
- 20 your thoughts are as far as where we need to go.
- 21 Of course, this is an extremely exciting
- 22 subcommittee and the issues I think are really good
- 23 in helping us focus on what we need to do, and the
- 24 underlying science for the whole initiative.
- 25 Also along the same line, at an earlier

- 1 meeting last year we discussed some of the general
- 2 issues related to rapid microbial testing.
- 3 Tomorrow we will update you on those issues. Then
- 4 we will discuss whether the PAT program can
- 5 adequately address the issues relating to the
- 6 introduction of rapid microbial testing.
- 7 After that we will introduce the topic of
- 8 blend uniformity again. At the last meeting we
- 9 talked about the PQRI proposal that was coming out
- 10 on the PQRI research that is being done, and PQRI
- 11 has now formally submitted that proposal to the
- 12 agency, and we are finalizing our decision on
- 13 whether to incorporate their recommendations into
- 14 our regulatory scheme. So, we will talk a little
- 15 bit about that final proposal. We still have some
- 16 questions we need to address as far as that
- 17 proposal or recommendations and we will discuss
- 18 that tomorrow as well.
- Just to mention one thing along this line,
- 20 as everyone on the committee knows, we did have a
- 21 draft guidance that was out on blend uniformity for
- 22 ANDAs and, because of the fact that we felt that
- 23 guidance really didn't fit into our current
- 24 regulatory scheme and with the idea that at least
- 25 the recommendation from PQRI would stimulate our

- 1 thoughts and expand what we believe to be our
- 2 regulatory position, we have withdrawn the
- 3 guidance, the draft guidance on blend uniformity.
- 4 So, that makes it sort of necessary for us to move
- 5 on getting the new guidance out. So, we would
- 6 really like to get to our final conclusions with
- 7 your recommendations today and move forward on that
- 8 because we have a lot of people who, you know, are
- 9 sort of waiting to hear what the results of our
- 10 decision is in this area.
- 11 The last item on the agenda tomorrow will
- 12 be a discussion of regulatory issues related to
- 13 polymorphism. Basically, I consider this to be an
- 14 awareness topic, just to seek your input on maybe
- 15 the direction we need to go in, and then we will
- 16 plan a more in-depth discussion at a subsequent
- 17 meeting on polymorphism.
- 18 Again, a very full agenda and I look
- 19 forward to hearing the discussion. I think these
- 20 are all very, very stimulating scientific topics
- 21 and it will be very helpful to us as we move ahead
- 22 in these areas.
- There are a number of other topics that
- 24 will be coming up in future meetings, including a
- 25 follow-up on DPK. I know you all have been dying

- 1 to hear where we are with DPK. I think what we
- 2 will talk about the next time we discuss this is
- 3 basically not only DPK, but to look at other
- 4 possible methods for determining bioequivalence of
- 5 topical products. I think at the last advisory
- 6 committee meeting we talked a lot about DPK and
- 7 felt that it wasn't completely fleshed out, and
- 8 that probably we did need to expand our focus as we
- 9 looked at possibilities for determining
- 10 bioequivalence. So, I don't think DPK is
- 11 completely off our agenda for the future, but I
- 12 think that what we want to focus on is other
- 13 methodology and discuss that with you. I sort of
- 14 call it a toolbox of methods that you could use for
- 15 bioequivalence in this area, and I think it will be
- 16 important for us to discuss these various methods
- 17 with the committee in the future. We have put out
- 18 a Federal Register notice--it should come out any
- 19 day--which will withdraw the draft guidance on DPK.
- This is just to touch on future topics,
- 21 but I would also like to encourage members of the
- 22 advisory committee to bring possible topics to our
- 23 attention. I think, obviously, you all are out in
- 24 the working world every day, dealing with a lot of
- 25 these scientific issues, and we would be glad to

- 1 hear your recommendations for possible things we
- 2 can discuss before the committee. So, if you do
- 3 have any suggestions, please feel free to share
- 4 those with Dr. Hussain and myself or with Dr. Lee.
- 5 Last, before I hand over the meeting to
- 6 Dr. Hussain, I would like to introduce Dr. Steven
- 7 Galson. Dr. Galson, who is sitting here, on the
- 8 end, joined the Center last year as the Deputy
- 9 Director to Dr. Woodcock. We sort of asked him
- 10 here this morning because we thought it would be
- 11 helpful to him to meet the committee and get a feel
- 12 for the types of issues that we do discuss at this
- 13 meeting. You know, Dr. Galson is already playing a
- 14 very important role, despite the short time he has
- 15 been here, in a number of things that are going on
- 16 in the Center. Mainly he has been what I consider
- one of the main forces behind risk management
- 18 implementation. I have asked Steven to say a few
- 19 words today to sort of introduce himself and some
- 20 of the things he has focused on, but what I would
- 21 like to do is bring him back in the future to talk
- 22 more about risk management. So, before I give it
- 23 back to Ajaz, I would like to hear from Dr. Galson
- 24 for a minute.

25 Comments

```
1 DR. GALSON: Good morning, everybody. I
```

- 2 am really happy to be here. As you have heard, I
- 3 have just been with CDER about a year, and I want
- 4 to start out by really just apologizing that it has
- 5 taken me a whole year to come and say hello to you
- 6 as a group. The work of our advisory committees is
- 7 incredibly important and in the Office of
- 8 Pharmaceutical Sciences, headed by Helen and Ajaz,
- 9 we really are on the cutting edge science in how it
- 10 is applied to drug regulation. Without your advice
- 11 frequently in the year, telling us what you think
- 12 about changes that we may be making or other policy
- issues, we really can't stay on top of cutting edge
- 14 science nationally and internationally. So, the
- 15 work that you do is really extremely important and
- 16 we are very, very grateful for the commitment of
- 17 your time. We know that you all have lots of other
- 18 things you could be doing. Also, your commitment
- 19 to public service. It is really important for the
- 20 agency and really important for the country to have
- 21 people like you who are willing to commit to us.
- 22 The state of the Center for Drugs is very
- 23 good. We have an excellent working relationship
- 24 with the new administration. We have a new Deputy
- 25 Commissioner, as I think you know, Dr. Lester

- 1 Crawford, and we have already been working
- 2 extremely closely with him and he is very involved
- 3 in some of our issues, and we have a great
- 4 relationship.
- 5 Also, the state of the Center is very good
- 6 with regards to Congress and our overall funding.
- 7 I think many of you heard about the Prescription
- 8 Drug User Fee Act. We have been working hard to
- 9 negotiate a proposal to extend our user fees with
- 10 the drug industry over the last few months, the
- 11 last year really, and this has concluded very
- 12 successfully. We have sent a proposal to Capitol
- 13 Hill which we are hoping they are going to act on
- 14 expeditiously. What this is really going to do is
- 15 re-authorize and re-fund the user fee program in a
- 16 way that will help us use our resources in a way to
- 17 continue to apply the best science in a rapid way
- 18 to get drugs on the market and to the American
- 19 people, having a positive impact on public health.
- 20 So, we are very positive about that. It is a very
- 21 important thing going on. It will happen in the
- 22 next year.
- 23 As Helen said, I would really like to come
- 24 back at a further meeting and talk to you about
- 25 many of our initiatives in risk management. This

- 1 is going to be very important to us, as it is now.
- 2 Congress and outside groups are very, very
- 3 interested, some of them quite critical, of how we
- 4 make decisions about approving drugs and how we
- 5 make decisions about the degree of risk that we
- 6 allow in our products and in the way our products
- 7 are used out there in the real world. So, this is
- 8 an important initiative and I would like to come
- 9 back and talk to you about it in general when I can
- 10 and when there is time on the schedule.
- I have been generally assisting Dr.
- 12 Woodcock in running the Center for about six
- 13 months. After September 11 Dr. Woodcock stepped
- down and worked on a detail on emergency
- 15 preparedness in the Commissioner's office so I was
- 16 actually running the Center on an active basis for
- 17 about six months, and I got an incredibly intense
- 18 introduction to what everybody was doing and I
- 19 think I have a good understanding of the Center
- 20 now, and am going back now, focusing on initiatives
- 21 and helping in the general management.
- So, again, I would like to come back later
- 23 and meet with you more. I will spend a little time
- 24 here this morning listening to the beginning of
- 25 your meeting. Again, thank you for all your time

- 1 and commitment to being here with us.
- DR. LEE: Thank you very much. Dr.
- 3 Hussain?
- 4 Future Subcommittees
- 5 Introduction and Overview
- 6 DR. HUSSAIN: Good morning. At a previous
- 7 meeting of the Advisory Committee for
- 8 Pharmaceutical Science we had sort of briefly
- 9 discussed the need for creating discipline-specific
- 10 subcommittees under this committee itself. We
- 11 perceived the need because of the broad scientific
- 12 disciplines that are under the oversight of OPS. I
- 13 think we are all familiar with chemistry and
- 14 biopharmaceutics as the key area but clinical
- 15 pharmacology is one of the major areas, and I think
- 16 its importance is increasing tremendously. Also,
- 17 microbiology. We have a subcommittee on PAT but I
- 18 think I want to talk to you about other committees
- 19 that we want to bring under this advisory
- 20 committee.
- 21 The thoughts are to keep the Advisory
- 22 Committee for Pharmaceutical Science broadly
- 23 focused and have expertise from various disciplines
- 24 that we need to address issues in OPS. The
- 25 subcommittees will then essentially focus on more

- 1 detailed discipline-specific topics for discussion.
- 2 If I use the example of the PAT
- 3 subcommittee and what we have learned from that
- 4 subcommittee, bringing experts with hands-on
- 5 experience in the areas I think really helps us to
- 6 identify issues and find solutions quickly and more
- 7 effectively. In that regard, how do we use the PAT
- 8 subcommittee? Do we keep the PAT subcommittee or
- 9 do we do something different?
- 10 The proposal that I will just discuss
- 11 briefly, before I call on Dr. Lesko to talk about
- 12 the clinical pharmacology subcommittee as an
- 13 example of the new subcommittee structure that we
- 14 want to present, is to look at PAT as a new
- 15 technology area but in a sense it addresses issues
- 16 in manufacturing. Chemistry manufacturing controls
- 17 is a major part of review activities within the
- 18 Center for Drugs. But, at the same time, issues
- 19 related to GMPs, which are equally important, also
- 20 need to be addressed.
- 21 Currently, for example, the gaps that
- 22 exist between review and inspection--there is no
- 23 mechanism to address some of those gaps. Blend
- 24 uniformity, that you will talk about tomorrow, is
- 25 one such example. Was blend uniformity a review

- 1 issue or was it an inspection issue? I think we
- 2 will discuss that tomorrow.
- 3 But the frustration that we sometimes feel
- 4 because of the organization structures and
- 5 different roles and responsibilities, it is not
- 6 often feasible, or we don't have a mechanism to
- 7 bring issues which are on the boundaries of these
- 8 organization structures or disciplines to address
- 9 them more effectively.
- 10 So, the PAT subcommittee right now is
- 11 focusing on a very specific charter to address
- 12 process analytical technologies. That committee
- 13 essentially could sort of be sunset after its
- 14 initial assignment is over, and be replaced by a
- 15 manufacturing subcommittee because manufacturing is
- 16 a general long-term issue and we need a mechanism
- 17 for addressing issues with respect to GMPs and
- 18 review in the area of CMC.
- 19 We currently don't have any mechanism to
- 20 have discussion or even analysis of issues that are
- 21 technical in nature, which are in the area of
- 22 manufacturing, and how do we do that? So, we are
- 23 thinking probably that as the PAT subcommittee
- 24 completes its charter of the assigned task, to
- 25 sunset that committee and put in the place of that

- 1 subcommittee on manufacturing. That will bring the
- 2 Office of Compliance, Office of Pharmaceutical
- 3 Science and Office of Regulatory Affairs together.
- 4 So, essentially it would sort of be a team approach
- 5 from the FDA to bring issues to the subcommittee
- 6 related to GMPs, manufacturing and so forth. Most
- 7 of the time, we hope there will be focus on general
- 8 technical issues that need to be addressed. This
- 9 committee could then possibly provide a means for
- 10 addressing technical issues that are not being
- 11 addressed today.
- 12 One way of looking at the current
- 13 situation is that the Center for Drugs is
- 14 responsible for developing policies, especially in
- 15 the area of chemistry, manufacturing and controls,
- 16 but the field has to enforce that. We have
- 17 internal mechanisms to address that but, from the
- 18 industry perspective, we don't have a way to
- 19 address technical issues or disputes which are
- 20 technical in nature. The only solution right now
- 21 is to issue a 483 or a warning letter. We want to
- 22 see whether we can have a subcommittee that can be
- 23 a mechanism to address some of those issues. So,
- 24 that is sort of an example of what we could do with
- 25 respect to manufacturing.

- 1 Microbiology is a very important
- 2 discipline. Helen has essentially brought the
- 3 microbiology review staff to the Office of
- 4 Pharmaceutical Science level to give them
- 5 visibility; to give them more recognition in terms
- of importance; and we are starting to discuss
- 7 microbiology issues. Would we need a subcommittee
- 8 on microbiology? I think that is a question that I
- 9 will leave for now but I think we will have to come
- 10 back to discuss it.
- 11 Clinical pharmacology will be the next
- 12 committee, which probably will be the first
- 13 subcommittee we will form under this new umbrella.
- 14 I will ask Larry Lesko to walk you through his
- 15 proposal of what he thinks the clinical
- 16 pharmacology subcommittee would do, and how he
- 17 feels we can constitute that.
- 18 Following that presentation, I request you
- 19 to sort of have a general discussion on the concept
- 20 of this, the subcommittee structure which will be
- 21 focused on disciplines and what subcommittees do
- 22 you think would be necessary and what we should
- 23 move forward with. Our current thought is that the
- 24 next subcommittee we will form will be the clinical
- 25 pharmacology, followed by manufacturing by

- 1 sunsetting PAT and moving that into the
- 2 manufacturing subcommittee.
- 3 Pharmacology/toxicology is another idea we have;
- 4 non-clinical studies subsection. I think how we
- 5 manage that transition to a more general
- 6 subcommittee on pharmacology/toxicology will be a
- 7 subject for discussion later on, and so forth.
- 8 So, with that introduction, I will ask
- 9 Larry to present his talk on clinical pharmacology
- 10 and then we can have a general discussion on this
- 11 concept. Larry?
- 12 Clinical Pharmacology Subcommittee
- DR. LESKO: Thanks, Ajaz. Good morning,
- 14 everybody.
- 15 [Slide]
- 16 You should have in front of you two things
- 17 that are relevant to my remarks this morning. The
- 18 first is a one-page proposal for a clinical
- 19 pharmacology subcommittee and the second is a set
- 20 of slides that I am going to show to walk you
- 21 through the steps of the formation of this
- 22 subcommittee.
- I like what Dr. Galson said in his
- 24 introductory remarks. He said that OPS is on the
- 25 verge of cutting edge science. I think this is

- 1 really no more true than in clinical pharmacology
- 2 where we are seeing many rapid developments that
- 3 can impact drug development to the regulatory
- 4 processes, and it is because of this that we feel
- 5 that there is a need to develop this clinical
- 6 pharmacology subcommittee.
- 7 [Slide]
- 8 What we have in mind is a membership that
- 9 would consist of external recognized and respected
- 10 experts in the general field of clinical
- 11 pharmacology. However, we would like to emphasize
- 12 three specific areas. The first is
- 13 pharmacometrics, which has certainly been growing
- 14 rapidly over the last five years; the field of
- 15 pharmacogenetics and pharmacogenomics, which is an
- 16 emerging field; and the field of pediatrics.
- I want to point out that none of these
- 18 areas are the sole domain of clinical pharmacology,
- 19 so we anticipate that any issues that come before
- 20 the clinical pharmacology subcommittee would be
- 21 issues that we would work on collaboratively with
- 22 our medical staff and with our biostatisticians
- 23 within the Center.
- 24 [Slide]
- 25 What would be the responsibilities of the

- 1 subcommittee? Well, we see this as a committee
- 2 that would advise and counsel us on a broad range
- 3 of issues and questions from new and emerging areas
- 4 of clinical pharmacology, specifically to talk
- 5 about the science and how we might use it or apply
- 6 it in specific areas relative to regulatory review
- 7 of INDs or ANDAs and then, further downstream, how
- 8 we might integrate this new information into
- 9 research or into regulatory policies that might
- 10 take the form of, for example, guidances.
- 11 [Slide]
- 12 Let's talk about those three areas and
- 13 explain a little bit more specifically what I mean
- 14 by those. The first is pharmacometrics.
- 15 Pharmacometrics encompasses, in our mind, three
- 16 broad areas. The first is the area of population
- 17 PK/PD analyses, using samples from clinical trials.
- 18 The second is modeling of
- 19 exposure-response relationships, whether they be
- 20 broadly speaking dose response or more specifically
- 21 PK/PD. The third is clinical trial simulation.
- What we see as potential applications of
- 23 this technology and where we would like to go in
- 24 working with the subcommittee is to develop
- 25 standardized approaches using each of these

- 1 technologies in regulatory decision-making. That
- 2 is to say, what are the best practices given the
- 3 current state of knowledge?
- 4 Secondly, in particular we are interested
- 5 in developing a standardized approach to adjusting
- 6 doses in special populations when we see an
- 7 increase or decrease in exposure as defined by area
- 8 under the curve or Cmax.
- 9 Third, we would like to apply this
- 10 knowledge in a more integrated way in the selection
- 11 of optimal doses for drug approval and, last, to
- 12 use clinical trial simulation in the design of
- 13 Phase III trials to try to focus a little bit more
- 14 on optimized doses.
- 15 [Slide]
- 16 The second area is very exciting. It is
- 17 the area of pharmacogenetics and pharmacogenomics.
- 18 We are quite interested in this area because of the
- 19 rapid increase in the number of NDAs and INDs that
- 20 contain this type of information. In our Office we
- 21 recently conducted an informal survey and found
- 22 that over fifty applications have this type of
- 23 information in them. Two-thirds of those
- 24 applications utilize genetic information from the
- 25 polymorphic aspects of drug metabolism. Many of

- 1 these applications have come about in the last two
- 2 years, even though our informal survey covered five
- 3 years.
- 4 But some of the things we would like to
- 5 bring before the committee for discussion include
- 6 the role of genotyping in the management of risk of
- 7 previously approved products. We have some very
- 8 good examples where prospective trials of TPNT
- 9 polymorphism, for example, has been shown to
- 10 influence the toxicity of the purine drugs such as
- 11 6-mercaptopurine. If you look at the label for
- 12 those products, there is no indication in the
- 13 dosage or administration section of the label that
- 14 a physician should utilize these genotypes, which
- 15 are now becoming widely available, before
- 16 prescribing the drug.
- 17 Secondly, we are beginning to sense a
- 18 development of drug-device combinations where
- 19 approvals are based on the measurement of genetic
- 20 markers, oftentimes linked to clinical outcome,
- 21 utilizing pharmacodynamic measures of one sort or
- 22 another. An example might be the
- 23 haplotype-dependent receptor polymorphism that has
- 24 been reported publicly in the literature and on the
- 25 web page of certain companies.

- 1 The third thing we would like to think
- 2 about in the subcommittee is the study design and
- 3 analysis of early phase clinical trials. These
- 4 could be Phase I trials or Phase II trials but
- 5 basically with the ability to genotype patients as
- 6 potential entry criteria. It would be worthwhile
- 7 to talk about enrichment strategies for Phase I and
- 8 Phase II trials.
- 9 [Slide]
- 10 This is a slide of a pediatric study
- 11 decision tree that we developed in the Center with
- 12 our other disciplines. I am putting it on here to
- 13 illustrate a framework which we have used in
- 14 approving drugs for pediatrics under the
- 15 exclusivity arrangements that we have.
- 16 If you look down that tree very carefully
- 17 you see that many elements of it have to do with
- 18 clinical pharmacology, whether it is PK studies,
- 19 whether it is concentration response relationships
- 20 or PD measurements.
- 21 [Slide]
- We have been using this as a general
- 23 framework but it brings us to the next issue, which
- 24 is the fact that over the past couple of years we
- 25 have had a huge number of written requests from

- 1 sponsors to conduct pediatric trials. As of March
- 2 1 of this year, we have had 241 written requests
- 3 which embodied 568 studies and over 33,000
- 4 pediatric patients. That is not to say that all of
- 5 these studies have been or will be conducted but
- 6 they represent the intention of sponsors to gain
- 7 pediatric drug approval.
- 8 Where we have seen these types of written
- 9 requests and, in fact, where we have seen studies
- 10 conducted, the breakdown of those studies is
- 11 illustrated on this slide. Notice that efficacy
- 12 studies represent 34 percent of the studies; safety
- 13 and PK, 30 percent; safety, 17 percent; and PK/PD,
- 14 10 percent. The point is that many of these
- 15 studies rely upon clinical pharmacology to provide
- 16 the evidence of efficacy or safety in the pediatric
- 17 population. We see this across all medical
- 18 divisions, the exception being imaging where we
- 19 have had not much activity, and that slide gives
- 20 you a range from 0-45 in cardiorenal.
- 21 Following that, we have had 56 approved
- 22 active moieties that have been given exclusivity.
- 23 We have changed about 30 or 40 drug labels with
- 24 regard to pediatric dosing. But it brings us to
- 25 the question that we would like to interact with

1 the subcommittee on, and that is to say what have

- we learned from all of this?
- 3 [Slide]
- 4 What we would like to do in the upcoming
- 5 months is to do a retrospective characterization of
- 6 this database on pediatrics, and look at the
- 7 magnitude of age and body size dependence of PK and
- 8 PD of the studied drugs, compare those to the adult
- 9 population and check whether our assumptions going
- 10 into these studies were accurate or whether they
- 11 need to be refined. We have a tremendous database
- 12 here that needs to be looked at very critically,
- 13 and I think we would like to do that and bring the
- 14 information to the clinical pharmacology
- 15 subcommittee.
- 16 Why would we like to do that? We want to
- 17 do that because with this experience in hand we
- 18 could then discuss the general principles that
- 19 underpin the types of studies that the agency
- 20 requests for pediatrics, and begin to look at the
- 21 role of clinical pharmacology studies and whether
- 22 we should continue with that role or refine it
- 23 based on the evidence that these studies have
- 24 provided.
- 25 [Slide]

- 1 That is the initial charge of the
- 2 subcommittee. What we would like to do going
- 3 forward is to nominate a chair and at least one
- 4 other member from the current advisory committee,
- 5 the ACPS; constitute this clinical pharmacology
- 6 subcommittee with no more than nine members. These
- 7 would be renewable terms of three years. We hope
- 8 to meet at least once a year for general briefing
- 9 on these and other issues. However, we would like
- 10 to also have the ability to consult on more
- 11 occasions on specific issues that might relate to
- 12 the areas I just mentioned. Thank you.
- 13 Committee Discussion
- DR. LEE: Thank you, Larry. Ajaz, shall
- 15 we take questions now or do you have other
- 16 subcommittees?
- 17 DR. HUSSAIN: Well, I think the
- 18 discussion, if you could focus specifically on
- 19 clinical pharmacology but also broadly on the
- 20 concept of specific subcommittees.
- 21 DR. LEE: So, you have no other
- 22 subcommittees to introduce?
- DR. HUSSAIN: No.
- DR. LEE: Any questions for Larry? I
- 25 think Larry has introduced a very important topic.

- 1 In fact, maybe I can begin and ask you a question.
- 2 You identified three topics and those three are
- 3 pretty diverse, and it would seem unreasonable to
- 4 have one subcommittee to cover the entire
- 5 waterfront.
- 6 DR. LESKO: We thought about that and, you
- 7 know, at the core each of these topics we have
- 8 basic principles of clinical pharmacology relating
- 9 exposure to response. You know, response can be a
- 10 genetic marker; it could be a pharmacodynamic
- 11 measure in a pediatric population; and, of course,
- 12 pharmacometrics is the tool that we would use to
- 13 analyze that data. So it is a lot like three
- 14 overlapping circles and I think they have some
- 15 commonality to them that will allow us to nominate
- 16 a strong subcommittee group.
- 17 The other aspect of this is that we would
- 18 like to take, as I mentioned, nine members of the
- 19 group and try to identify three or four experts in
- 20 each one of these areas as lead individuals on the
- 21 subcommittee so that they can take the discussion
- 22 based on their specific expertise. So, we kind of
- 23 think the specific expertise of three or more
- 24 members in a given area, plus the general
- 25 background of clinical pharmacology would provide

- 1 an excellent committee for input.
- DR. LEE: Thank you. Dr. Doull, you have
- 3 comments to make?
- DR. DOULL: Yes, I am delighted to see
- 5 that you are going to deal with the pediatrics
- 6 problem. What you are really dealing with is the
- 7 issue of sensitive populations. As I am sure you
- 8 know, EPA in regard to pesticides, has well as
- 9 Congress, has simply established a dose factor of
- 10 ten in the Food Quality Protection Act for
- 11 pesticides. It would be a disaster, I think, if we
- 12 were to do that in the drug area. So, this makes
- 13 much more sense. You are going to use science to
- 14 decide in which cases you do need, in fact, a
- 15 protective factor.
- 16 But my question is there are lots of other
- 17 sensitive populations, and how would you deal with
- 18 those? Add those on? Old folks, diabetics and
- 19 what-have-you?
- DR. LESKO: That is a good point. I think
- 21 the pediatric population is particularly
- 22 interesting now because we have so much data
- 23 in-house that we have gained from the pediatric
- 24 exclusivity situation. That is not to say our
- other special populations may not be of interest.

- 1 In fact, we are looking at gender, ethnic origin
- 2 and other intrinsic factors that define special
- 3 populations in other settings. But that is not to
- 4 say this committee's purvey wouldn't include a
- 5 discussion on, for example, exposure response and
- 6 dose adjustments in those special populations.
- 7 I think that is kind of the beauty of the
- 8 subcommittee. The principles that underlie all
- 9 these are pretty much the same. How do you bridge
- 10 data acquired in one setting, for example in an
- 11 efficacy/safety trial, to a special population
- 12 whether it be pediatrics, or a population defined
- 13 by genetics, or a population defined by age or
- 14 gender. So, I think that is something that we
- 15 would certainly be open to in the subcommittee. It
- 16 would depend on the priority and what is going on
- in other working groups and other committees.
- DR. LEE: Dr. Berg?
- 19 DR. BERG: Yes, in regards to gender and
- 20 the special populations, just so I understand, you
- 21 would be looking at products already on the market
- 22 as well as new applications? In other words, what
- 23 we have on the market and then also new ones in the
- 24 hopper?
- DR. LESKO: I think we need to look at

- 1 both. We certainly have a database of products
- 2 that are on the market for which information, for
- 3 example in pediatrics, has been obtained. Ideally,
- 4 I think we want to look at this information in a
- 5 more prospective fashion to learn as we are moving
- 6 forward and I think treat it as a continual
- 7 refinement of the paradigm for assessing pediatric
- 8 information and drug dosing.
- 9 DR. BERG: I know just recently FDA
- 10 received some appropriations for a database for
- 11 gender--for the globalization through the Office of
- 12 Women's Health--
- DR. LESKO: Right.
- DR. BERG: I think that is very good for
- 15 the new products.
- DR. LESKO: Right.
- DR. BERG: But looking at the products
- 18 already out on the market, I know we have been
- 19 looking at this back in Iowa for about three to
- 20 four years actually with my students, and literally
- 21 there still is question with regards to looking at
- $22\,$ gender analysis and then getting into the question
- 23 of ethnicity analysis for a database. So, those
- 24 populations are as sensitive as the pediatric group
- 25 as well.

```
1 DR. LESKO: Yes, a lot of the analyses of
```

- 2 databases are focused on the numbers, how many have
- 3 been in clinical trials, as opposed to the results
- 4 and what has the result signal in terms of need to
- 5 look at something differently or reassess the way
- 6 we interpret the data. So, I would see this
- 7 initiative as really getting into the data in the
- 8 population and really analyzing it in a systematic
- 9 way. We have begun to do this in the Office with
- 10 some projects that the Center has funded. It is
- 11 not starting out from scratch but it is starting
- 12 out with a preliminary assessment of the database
- 13 that I think will be much more quantitative as we
- 14 move forward, and then use it in a real-time
- 15 fashion to provide us feedback on how we are
- 16 approaching these special populations.
- DR. BERG: Yes, this is really good
- 18 because it gets back to the push for the GO reports
- 19 in regards to gender analysis that came out last
- 20 year. In other words, industry has been recruiting
- 21 women into studies but there hasn't been a separate
- 22 analysis. I know there was quite a big to-do last
- 23 summer in regards to the report. So, this really
- 24 helps to really push that issue for that subgroup
- 25 analysis.

- DR. LESKO: And I think we can go from the
- 2 specific to the general. I mean, if we look at a
- 3 class of drugs for which we have had some, say,
- 4 pediatric approvals or other special populations,
- 5 what can we say about the class in general so that
- 6 one might take the next member of that class and
- 7 perhaps treat it a little bit differently based on
- 8 what has been learned so far.
- 9 DR. BERG: Yes, this is a really great
- 10 start.
- DR. LEE: Any questions from the other
- 12 side of the table? Jurgen, any comments?
- DR. VENITZ: I only want to support that
- 14 wholeheartedly. I think it is an excellent idea.
- 15 One of the things I guess I am still unsure about
- 16 is what is the reporting mechanism in terms of
- 17 reporting information back from the subcommittee to
- 18 this committee.
- DR. LESKO: I don't know if we have a
- 20 precedent for this or not but, in my mind, what
- 21 would happen would be that the chair of the
- 22 clinical pharmacology subcommittee would report
- 23 back to this committee at least once a year and if
- 24 this committee met more often and there was a need,
- 25 more than once a year. But I think the chair of

- 1 this committee will be very important and that
- 2 would be the connection between the ACPS and the
- 3 subcommittee.
- 4 DR. HUSSAIN: I think that the process
- 5 would be similar to any other subcommittee. Two
- 6 members of this committee would be members of the
- 7 subcommittee and essentially the chair reports
- 8 back, like, tomorrow Tom Layloff reports back to
- 9 you for the PAT subcommittee. The subcommittee
- 10 essentially is advisory to this and decisions
- 11 essentially are made in this committee.
- DR. LEE: It seems to me that this
- 13 committee is rather proactive. Is that what you
- 14 have in mind? A rather proactive committee
- 15 identifying new issues?
- DR. LESKO: You know, knowing the members
- 17 of this community in clinical pharmacology, I
- 18 expect it will be very proactive and we will be
- 19 too. We have some issues in mind that we want to
- 20 start with so I think that is important.
- 21 DR. LEE: What about the issue of life
- 22 style?
- DR. LESKO: Well, that is an interesting
- 24 issue. I haven't thought of it in the context of
- 25 this particular subcommittee but I am sure you are

- 1 leading up to another comment.
- 2 DR. LEE: If you have a global community
- 3 and all this kind of stuff, I think it is very
- 4 exciting and I will be very interested to see how
- 5 this subcommittee will evolve because in my
- 6 estimation it will probably work rather closely
- 7 with your Office as well. Isn't that true?
- 8 DR. LESKO: That is what I expect will
- 9 happen but, again, there will be other disciplines
- 10 involved with this as well like, for example, if we
- 11 start out with the drug safety group there will be
- 12 multiple disciplines involved.
- DR. LEE: Dr. Doull?
- DR. DOULL: I think the only thing that
- 15 still concerns me is that it seems to me that you
- 16 are going to be right in the middle of the area of
- 17 risk management in a sense when you deal with
- 18 sensitive populations, and somehow the decisions
- 19 that we make in clinical pharmacology are going to
- 20 have some really broad implications in terms of
- 21 risk management. I guess somehow one needs to
- 22 coordinate so that you don't get crosswise in this
- 23 subcommittee with, say, a policy that affects risk
- 24 management for the agency as a whole, food and
- 25 devices and all that.

- DR. LESKO: That is a good point. I mean,
- 2 risk management in the Center, as we think about
- 3 it, is really not one-dimensional by any means.
- 4 Any risk management strategy has had multiple
- 5 dimensions and sometimes is pretty complex.
- 6 I think working with Dr. Galson and others
- 7 at the Center level on various risk management
- 8 approaches, this is going to be a piece of the
- 9 puzzle but I think it is an important piece that we
- 10 need to look at and integrate with other pieces of
- 11 information. I can see the information being
- 12 learned from this exercise going on to become part
- 13 of other risk management plans that are being put
- 14 in place. Maybe it will lead to a more systematic
- 15 approach to risk management that I think the Center
- 16 would like to get to.
- 17 DR. GALSON: Just one comment on that, I
- 18 think that is an excellent point but it shouldn't
- 19 be a cause of worry really because there isn't any
- 20 other advisory committee that is working on this
- 21 particular angle. We do need to put it all
- 22 together. There aren't any other advisory
- 23 committees with the expertise of this one that is
- 24 being discussed that will be dealing with this
- 25 specific issue. So, we will really count on what

- 1 is coming out of this group in figuring out what
- 2 direction to go in for the whole Center. But
- 3 coordination is very important.
- 4 DR. LEE: Any other comments? Efriam?
- DR. SHEK: I have more general comments
- 6 with regard to the characteristics of the
- 7 subcommittees. If you take the PAT example, it
- 8 looks like it was a specific task, an assignment to
- 9 look at that. Now this committee, it looks like it
- 10 is a more standing committee which will be a
- 11 permanent, let's say, subcommittee. The same thing
- 12 may be for toxicology and safety.
- 13 When we bring up the manufacturing the
- 14 issue is should we consider broadly if that is
- 15 going to be permanent for the whole area of CMC? I
- 16 believe we, in industry, realize that CMC is an
- 17 umbrella. We cannot just look at drug product
- 18 manufacturing; we have to look at the drug
- 19 substance; we have to look at the QC. Everything
- 20 is tied together, and whether we should consider
- 21 broadening it to CMC type of a subcommittee.
- DR. HUSSAIN: That is a good point. What
- 23 we will plan to do is bring a proposal, like Larry
- 24 did, on the manufacturing committee and its makeup
- 25 at the next meeting. The thought process is to not

- 1 only discuss CMC from the review side, but bring
- 2 and invite Office of Compliance and our Office of
- 3 Regulatory Affairs to be partners with us on that.
- 4 So, it will be a whole umbrella of all CMC and
- 5 manufacturing issues in sort of one direction. So,
- 6 we will flesh out the proposal and bring that to
- 7 you next time.
- 8 DR. LEE: Other comments? Larry, I think
- 9 you have touched on a topic that is quite
- 10 interesting so I have another question. What about
- 11 geriatrics? People like me?
- 12 DR. LESKO: You have about ten more years
- 13 before you worry about that! That was probably the
- 14 first ever "special population" that the agency
- looked at back in 1983 or '84, '85, and we do have
- 16 things in place that direct a sponsor to look at
- 17 age on the high side, specifically within a
- 18 clinical trial, along with race and gender.
- 19 Again, I am not excluding that from the
- 20 domain of this subcommittee but I would say at the
- 21 moment it is not a high priority, based on where we
- 22 are with other policies in place with respect to
- 23 the elderly. We usually have a pretty nice
- 24 assessment of that within the clinical pharmacology
- 25 database and look at it quite routinely for any

- 1 need of dose adjustment.
- DR. LEE: Thank you.
- 3 DR. MEYER: Would you be more politically
- 4 correct if you said pediatrics and other special
- 5 populations?
- 6 DR. LESKO: I think that would be a good
- 7 idea. It would really encompass a lot of the
- 8 comments that the committee members made and
- 9 signalled that other things can be brought before
- 10 the committee. So, I would be in favor of that
- 11 change, sure.
- DR. LEE: Bill?
- DR. JUSKO: I have a very strong
- 14 endorsement of this plan and commend you for doing
- 15 it. I imagine the committee membership will be
- 16 somewhat like this one with independent consultants
- 17 of sorts, as opposed to having representatives of
- 18 scientific organizations?
- 19 DR. LESKO: That is correct. I envision
- 20 the committee as being one of expertise based on
- 21 the science and the clinical experience as opposed
- 22 to organizational dependence, for the reasons that
- 23 we have indicated the reasons for the subcommittee
- 24 are.
- DR. LEE: Ajaz?

- DR. HUSSAIN: The plan is to move forward
- 2 and actually hold the first meeting of the
- 3 subcommittee to coincide with the next meeting of
- 4 this committee. I think Larry has already looked
- 5 at individuals he wants to be on this committee,
- 6 and I think after this meeting we will be moving
- 7 forward, contacting them and actually putting the
- 8 subcommittee together.
- 9 DR. LEE: I am delighted to see this topic
- 10 on the agenda. I think it is good to have a
- 11 somewhat formalized system of subcommittees working
- 12 with this full committee and also with the Office
- 13 so that there will be tighter integration and
- 14 continuity and a sense of progressiveness.
- 15 Are there other questions before we let
- 16 Dr. Lesko off the podium? If not, we are doing
- 17 very well. Thank you, Larry.
- DR. LESKO: Thank you.
- DR. LEE: Yes?
- DR. HUSSAIN: One question would be since
- 21 the thought process is clinical pharmacology,
- 22 followed by manufacturing, pharm tox and
- 23 microbiology are on the tabl, does the committee
- 24 have any thoughts on what the priority should be
- 25 with respect to the next few committees? Clinical

- 1 pharmacology, we thought, was the highest priority
- 2 committee to move forward. What do you thing the
- 3 other priority should be for the rest of the
- 4 disciplines?
- 5 DR. LEE: Shall we turn to the industry
- 6 representatives?
- 7 DR. SHARGEL: I would think manufacturing,
- 8 from my perspective. I don't know if Efriam would
- 9 agree.
- 10 DR. SHEK: Yes, I think as you raised the
- 11 thing with regard to compliance and GMP issues,
- 12 there are a lot of activities going on there.
- DR. BOEHLERT: I would agree with the
- 14 manufacturing, and I also would suggest that you
- 15 broaden the area to include things like product
- 16 development because they are all tied together. It
- 17 is not just manufacturing of a finished product, an
- 18 active ingredient or the control but product
- 19 development is definitely tied in, as we found with
- 20 PAT. That is a very important part of the process.
- 21 DR. LEE: Well, it looks like the
- 22 committee is fairly quiet this morning. We are
- 23 ahead of schedule. Shall we take a break?
- DR. HUSSAIN: Yes, we could and then we
- 25 can get started with the next part.

- 1 DR. LEE: All right. Let's come back at
- 2 about, shall we say, 9:35? Thank you.
- 3 [Brief recess]
- DR. LEE: I have been asked about why I
- 5 didn't get a conversation going before the break
- 6 because I do know that we have some substantive
- 7 issues we need to talk about for the rest of the
- 8 day. Kathy whispered in my ear that she new
- 9 something about the difference between a
- 10 subcommittee and a committee, and I thought it
- 11 would be very useful for us to hear what the
- 12 regulation has to say.
- MS. REEDY: The structure is codified in
- 14 FACA, the Federal Advisory Committee Act, for
- 15 subcommittees and their relationship to parent
- 16 committees and 21 CFR Part 14 delineates the report
- 17 system, and it is as was described. So, it is
- 18 codified.
- DR. LEE: In other words, we cannot do
- 20 whatever we want.
- 21 [Laughter]
- Now we are going to the next agenda item,
- 23 which is on draft guidance, food effect BE studies.
- 24 You all have the agenda, and i would like to invite
- 25 Dale Conner to introduce the topic.

- 1 Draft Guidances: Food Effect BE Studies
- DR. CONNER: Good morning. First off,
- 3 before I start I would like to thank Drs. Ian
- 4 Wilding and Aziz Karim who have graciously come
- 5 here to help us and the committee out. They are
- 6 both experts who have worked in this area before,
- 7 and the committee can call on them for opinions in
- 8 this particular area and I am sure they will have
- 9 some interesting things to say, perhaps not all
- 10 agreeing with me but that is what makes it
- 11 interesting.
- 12 [Slide]
- 13 It is my job today to introduce this
- 14 topic, and then Dr. Ameeta Parekh will do the bulk
- of the work by actually showing the data and some
- 16 of the thinking in that regard. I am going to try
- 17 and give some background on this because one of the
- 18 issues I found, even among the experts, is when you
- 19 talk about--most of this topic is about
- 20 bioequivalence and people often get confused and
- 21 they sometimes mix up issues that are pertinent to
- 22 bioavailability to those of bioequivalence.
- 23 Sometimes the issues and the endpoints in what you
- 24 are trying to accomplish are quite different. So
- 25 in the next couple of slides you are going to see

- 1 quite a bit of information comparing BA and BE,
- 2 bioavailability and bioequivalence, and that is
- 3 mainly to try and introduce those topics to make
- 4 sure that we keep each one straight and separate.
- 5 As my slide says, this is based on
- 6 discussions of a portion of the new FDA proposed
- 7 draft guidance. You will note from the slide that
- 8 this replaces another draft guidance that was out
- 9 for quite a few years, and has some substantial
- 10 changes over that original. Larry keeps correcting
- 11 me but I would say that we have been working on
- 12 this draft guidance anywhere from about 7 years to
- 13 12 years, depending on how you count it. When you
- 14 look at the guidance you are amazed that it took us
- 15 so long. However, it has proven to be a very
- 16 difficult enterprise and has gone to a lot of
- 17 iterations, but I think that we, at least the
- 18 authors, are content that this is something that
- 19 was worthy to go out and be discussed in the
- 20 public.
- That is, indeed, what we did. The draft
- 22 guidance was issued in October, 2001 and went
- 23 through a comment period. We received comments
- 24 back and basically some of the issues we have
- 25 before you today are based on those comments. We

- 1 will talk about what those issues are.
- 2 [Slide]
- 3 Basically, I have started off by saying
- 4 why do we do these studies? Why do we do
- 5 bioavailability studies and why do we do
- 6 bioequivalence studies, and what is the nature of
- 7 the studies? Basically, the bioavailability
- 8 studies are mostly done in NDA type of efforts, IND
- 9 or NDA. They attempt to be descriptive and to
- 10 understand how the drug substance and also the drug
- 11 product, the formulation, behaves; how it is
- 12 absorbed, over what time course; what factors
- 13 affect that absorption; and also the interaction of
- 14 the drug substance with whatever proposed
- 15 formulation is made. So, the BA part is very much
- 16 new drugs or an NDA type of question of how does
- 17 this work. How does the drug behave? And, how do
- 18 formulations effects affect that knowledge?
- 19 When we get to bioequivalence it is
- 20 somewhat different in that, at least if you look at
- 21 the way we do generic drugs or pharmaceutically
- 22 equivalent products, the drug substance is the
- 23 same. So, the BA part is merely a comparison of
- 24 two formulations. If it is a generic drug type of
- 25 situation, an NDA type of situation, the

- 1 formulations are pharmaceutically equivalent. So,
- 2 if you have an immediate release tablet you are
- 3 comparing it against an immediate release tablet.
- 4 If it is a solution, it is against a solution. If
- 5 it is a suppository, it is against a suppository
- 6 and they contain the exact same amount of drug
- 7 substance. So, the comparison is entirely on how
- 8 that formulation performs. That is basically what
- 9 I have said here.
- 10 What we are interested in is, is there a
- 11 differential effect in this particular case, when
- 12 we talk about food studies, of food on the
- 13 formulation compared. That is not the same
- 14 question you would ask early on in the BA, is there
- 15 a food effect? It is a question of is the food
- 16 effect different between the two formulations. So,
- 17 we are looking either for a differential food
- 18 effect of a lack of a differential food effect. In
- 19 other words, are they equivalent in the fed state?
- 20 This can be a direct effect of food on the
- 21 formulations or it can be based on physiologic
- 22 effects because, as we all know, food has very
- 23 significant physiologic effects on the GI tract and
- 24 a number of other systems as well.
- 25 So just to keep it in perspective, when we

- 1 are talking about BE, and a lot of these issues and
- 2 discussions that we are going to talk about are
- 3 more about bioequivalence issues than
- 4 bioavailability, keep in mind that it is strictly a
- 5 formulation question or a comparison of two
- 6 formulations containing the exact same drug
- 7 substance.
- 8 [Slide]
- 9 I have expanded the first part into a
- 10 series of questions, and these might be termed
- 11 questions either the FDA asked, or a sponsor, or
- 12 someone who is trying to develop a drug or drug
- 13 product to answer the questions or points that I
- 14 brought up originally.
- 15 First I am going to go over the BA or the
- 16 bioavailability. The first one is does the food
- 17 affect the drug substance? It is really a question
- 18 of is there some property of that drug substance
- 19 whose bioavailability or pharmacokinetics is
- 20 affected by food? That almost says that that
- 21 effect is going to occur within reason, no matter
- 22 what formulation I put it in. It is just simply a
- 23 property of the drug substance.
- 24 Furthermore, does food affect the
- 25 formulation performance? When I use the term

- 1 formulation performance, I mean how that
- 2 formulation--that tablet, that capsule, that
- 3 suppository, whatever--releases the drug substance
- 4 into an available state, usually into solution.
- 5 So, does the food actually affect, in effect, the
- 6 tablet or the formulation as a delivery system in a
- 7 way that delivery system works or functions?
- 8 Sponsors always ask, well, what food effect
- 9 bioavailability studies should be done in an NDA?
- 10 How should they be analyzed? Is it simply a
- 11 descriptive effect with little statistics, or is it
- 12 actually a rigorous statistical method that should
- 13 be applied to make, for an NDA, eventual labeling
- 14 statements? Are the effects statistically
- 15 significant if I am doing statistics and,
- 16 furthermore, beyond the statistical part of it, are
- 17 those effects clinically relevant? So, I may get a
- 18 statistically significant effect but, you know,
- 19 does it really mean anything in a clinical sense?
- 20 [Slide]
- 21 For BE the considerations are somewhat
- 22 different and in some cases significantly different
- 23 if you read carefully. Does the food affect the
- 24 formulation to different extents? Again, we get
- 25 back to what I said originally. This is looking at

- 1 differential effects of two formulations. what we
- 2 are interested in is perhaps two formulations that
- 3 are pharmaceutically equivalent and in a fasting
- 4 state perform exactly the same way but when I give
- 5 them in the fed state I see a big difference in the
- 6 way they perform. One is what is dramatically
- 7 affected by food and the other one perhaps stays
- 8 the same or goes in the opposite direction.
- 9 That is what I am interested in
- 10 discovering with these studies, are these products
- 11 equivalent and, therefore, interchangeable when I
- 12 give them with food? Of course, the sponsors and
- 13 even FDA reviewers often ask what fed BE studies
- 14 need to be done to determine this. What strengths
- 15 need to be studied? Do I need to do every single
- 16 strength in the product line, or is one strength
- 17 enough? And, we have ways in our regulations that
- 18 instruct us on how to do that. How should these
- 19 studies be analyzed, which is part of the questions
- 20 we are getting into today, and what are the BE
- 21 acceptance criteria is another part of the issue
- 22 that you are going to be talking about today.
- 23 [Slide]
- Just to briefly discuss, and Ameeta will
- 25 go into a little bit more detail on what the actual

- 1 comments were from the industry, as I said, we put
- 2 out the draft guidance for public comment. There
- 3 was a comment period. We received comments from
- 4 about 13 sources. Currently only 11 of them were
- 5 submitted in the official accepted way, which is to
- 6 the docket where all the public can look at them.
- 7 Two more were sent in e-mails and we are trying to
- 8 get those people to also submit to the docket as
- 9 well, which is the proper method. Just as an
- 10 aside, if any of you do submit comments to any
- 11 draft guidance, whether this one or any other,
- 12 please submit them to the docket because that is
- 13 the proper way, and instructions are usually
- 14 included with the draft guidance about how to
- 15 properly submit those.
- So, the total number of sources, including
- 17 two that were not submitted to the docket, are 13.
- 18 The approximate number of comments was about 130.
- 19 I say approximately because some of them were text
- 20 comments and it was very difficult to determine
- 21 where one comment stopped and the next one began.
- 22 So, I am saying approximately 130 by our count. It
- 23 is not 130 different and unique comments. A lot of
- 24 them were duplicates, either commenting on the same
- 25 thing or actual identical duplicates of the other.

- 1 So, people obviously collaborated and sent in the
- 2 same comments under different covers. So, there
- 3 are really not even 130 unique comments.
- 4 When we distilled all those down--we
- 5 actually took a couple of months and read them over
- 6 very carefully and complied them and what we have
- 7 come to you today with, based on those comments, is
- 8 two issues that we felt were very significant to
- 9 the commentors and very significant to the FDA as
- 10 far as how the comments came in and the amount of
- 11 controversy that those particular points raised.
- 12 [Slide]
- 13 The first of two issues in the draft
- 14 guidance provide for a waiver of BE studies under
- 15 fed conditions based on biopharmaceutics
- 16 classification system. I think you have all
- 17 probably heard talks in this committee before about
- 18 what the BCS, the biopharmaceutics classification
- 19 system, is but I will give a very brief review, and
- 20 you will hear plenty about that this afternoon,
- 21 probably as much as you can handle.
- 22 Specifically, the guidance tried to allow
- 23 for the waiver of fed bioequivalence studies for
- 24 Class I drugs. If you recall, under BCS the Class
- 25 I status is achieved when a drug substance is

- 1 highly soluble, highly permeable and the drug
- 2 product is rapidly dissolving. So, one has to have
- 3 all of those three to be granted a waiver of
- 4 fasting studies under the current final BCS
- 5 guidance. As I say down below, when these
- 6 characteristics are proven about a product or a
- 7 drug substance through scientific studies, then
- 8 that is suitable for waiver under Class I status.
- 9 I think the question comes down to should
- 10 we also waive fed bioequivalence studies under this
- 11 same rationale? I mean, if we put the science
- 12 together that says that we can not only waive the
- 13 fasting studies but we can also waive for many
- 14 products the fed studies. My interpretation of
- 15 this is that a deeper scientific question is when
- 16 you have a Class I drug that is classified as such,
- 17 does something that the food does change it into a
- 18 different category? I think that is the heart of
- 19 the question really. Do you believe or have any
- 20 evidence that you would have a Class I drug clearly
- 21 categorized that you would waive in the fasted
- 22 state, yet, something about giving it with food
- 23 changes its characteristics? And, I am talking
- 24 about the characteristics that I have listed. For
- 25 example, giving food with a drug substance might

- 1 change its permeability or might change its
- 2 solubility. Or, giving it with that product may
- 3 slow down the dissolution of the dosage form to
- 4 such a degree that it could no longer be considered
- 5 rapidly dissolving. Therefore, effectively it
- 6 would essentially transfer that into another class
- 7 which we wouldn't normally waive. I think that is
- 8 the basic question.
- 9 [Slide]
- 10 This is a study that I have adapted from a
- 11 talk that Ajaz gave. I think the question is,
- 12 well, why is it BCS at all? Why is it so
- 13 important? I think the justifications are that we
- 14 have a need to decrease or reduce our reliance on
- 15 in vivo studies as much as possible. A part of the
- 16 regulations actually instruct us that no
- 17 unnecessary human research should be done. So,
- 18 when we get to the point where the science advances
- 19 to such a state that we consider those studies
- 20 unnecessary, then the regulations actually instruct
- 21 us that we shouldn't be doing them anymore, or that
- 22 we should find some method of decreasing those in
- 23 vivo studies.
- 24 The additional factor is that, the more in
- 25 vivo studies you do, the more the time of drug

- 1 development is extended and the more time on our
- 2 part to review those studies as well. So, if good
- 3 science dictates that those studies are unnecessary
- 4 and that we can make the same decisions effectively
- 5 with, say, only in vitro information, then the
- 6 regulations, common sense and good practice force
- 7 us to go and actually decrease the number of in
- 8 vivo studies.
- 9 [Slide]
- 10 The second issue that came out of the
- 11 comments, and probably the second significant part
- 12 of this guidance is a proposed change in how we are
- 13 going to be analyzing the fed bioequivalence
- 14 studies. As you may recall, for studies currently
- 15 that are done in the fed state for bioequivalence
- 16 the criteria are that the geometric mean of the
- 17 ratios has to be within 80 to 125. So, there is no
- 18 real analysis of the variability of the comparison
- 19 or variability of the products as we do with fasted
- 20 studies.
- 21 So, the second issue of the proposal is to
- 22 change the criteria for those fed bioequivalence
- 23 studies to true equivalence criteria, identical to
- 24 what we do with the fasted studies as well. This
- 25 approach would also be used for NDAs to say that if

- 1 a BA study which is fed against fasted was shown to
- 2 be not equivalent under this criterion, then it
- 3 would be labeled as having a food effect.
- 4 For the fed BE studies it would say that
- 5 two formulations are truly interchangeable. It is
- 6 a scientifically and statistically rigorous
- 7 approach that we already use in other types of
- 8 studies, especially the fasting studies, to say
- 9 that two products are interchangeable or
- 10 switchable.
- 11 So, the questions that I pose under this
- 12 issue or the questions that I think this distills
- 13 down to are in two parts. These reflect what the
- 14 concerns of the commentors were. A good deal of
- 15 the comments were from industry. The first is, is
- 16 an equivalence approach desirable? You know, I am
- 17 guessing, purely guessing that if you went out to
- 18 physicians or the public patients and said when you
- 19 switched from, say, a brand name to a generic, do
- 20 you want to be assured that when you take this with
- 21 food that it is truly interchangeable? You know,
- 22 perhaps the naive answer would be yes, of course, I
- 23 want that. The second question is how much does
- 24 this cost?
- Number one, is it worth it and the second

- 1 one is in doing this are we going to be increasing
- 2 dramatically the number of subjects that are
- 3 studied and, therefore, not only the number of
- 4 people exposed in these trials but also the dollar
- 5 cost of drug development and eventual dollar cost
- 6 of the product? Again, it is a benefit versus cost
- 7 type of equation.
- 8 I think Ameeta will show you we did a
- 9 survey of some of the studies, food studies done
- 10 under ANDAs under current practices and what type
- 11 of a change we would predict based on the data of
- 12 studies that were done in the current way.
- 13 Approximately how many studies would pass under the
- 14 current power and how many wouldn't need to have an
- 15 increased power and, therefore, increased subjects?
- 16 Basically, that is the introduction to the two
- 17 issues and now I will turn it over to Dr. Ameeta
- 18 Parekh who will go into a lot more depth and show
- 19 you some of the data that we have put together to
- 20 support these issues.
- 21 Science Background and Issues
- DR. PAREKH: Thanks, Dale. That was a
- 23 nice comprehensive overview of the different
- 24 components of the food effect bioavailability and
- 25 bioequivalence studies guidance.

- 1 Since Dale started out with a comment on
- 2 how long we have worked on this guidance, I would
- 3 like to add a little bit to it because I have been
- 4 with this guidance throughout. Just to clarify the
- 5 history, I think we, as the agency, started looking
- 6 into these since mid-'80's when theophylline issues
- 7 surfaced and one of our visitors here, Dr. Aziz
- 8 Karim, was directly involved in that. Since then,
- 9 we started looking at the science of food effect
- 10 studies. I would say that for the last ten, twelve
- 11 years that Dale mentioned we were discussing the
- 12 science of food effect bioavailability studies.
- 13 Specific to the guidance though, we have been
- 14 looking at the guidance for the last five years.
- 15 That is a reasonable amount of time but, given the
- 16 complexities, we are trying to make sure that
- 17 everything is ironed out.
- 18 I would like to take this opportunity to
- 19 acknowledge the food effect working group who
- 20 contributed to the development of the guidance, and
- 21 also several other people who helped in this
- 22 effort.
- 23 [Slide]
- I will just start with some background.
- 25 As Dale mentioned, the draft food effect

- 1 bioavailability-bioequivalence studies guidance was
- 2 published in November of last year and there were
- 3 public comments that we received. We got comments
- 4 from 11 sources to the docket but there were two
- 5 others, as Dale mentioned, that we are trying to
- 6 get to the docket as well. There was a total of
- 7 about 130 comments and, as Dale mentioned, several
- 8 were repetitious. A lot of them were editorial,
- 9 format type of comments, but there were several
- 10 that were very good scientific comments and we are
- 11 looking through these. We have gone through all
- 12 the comments and we have identified two primary
- 13 issues that represent a change from our current
- 14 position. We have taken these two comments for
- 15 discussion with the advisory committee meeting
- 16 today.
- 17 The advisory committee was presented with
- 18 a background package that contains these two
- 19 issues. These two issues were identified in the
- 20 package, and related to these two issues, we also
- 21 have a list of questions that we will try to focus
- 22 on today.
- 23 [Slide]
- 24 Again, I am going to reiterate something
- 25 that Dale mentioned already but I think it is

- 1 important to make a distinction between the food
- 2 effect bioavailability and the fed bioequivalence
- 3 studies here. The reason I think it is very
- 4 critical is that the rest of the discussion really
- 5 hinges on this discussion. Just to emphasize, we
- 6 are not going to discuss the food effect
- 7 bioavailability part of the guidance today. We are
- 8 going to stay focused on the two issues that Dale
- 9 mentioned that are related to the fed
- 10 bioequivalence studies.
- 11 But just to reiterate what the
- 12 distinctions are, the food effect bioavailability
- 13 studies, the ones listed on the top, are typically
- 14 sent with new drug applications, NDAs, and the
- 15 question here is for companies developing a new
- 16 product there is one product which is the test
- 17 product and how does this test product perform
- 18 under fed conditions as compared to the fasted
- 19 conditions? When we say "perform" we are really
- 20 looking for measures of exposure. How is the
- 21 exposure, the rate and extent, different under fed
- 22 conditions as compared to the fasted conditions?
- 23 If there is a difference, how clinically relevant
- 24 is this difference and how should it be labeled?
- 25 Basically, as you can sense, the question is that

- 1 of prescribability. Typically, we ask this
- 2 question of all new chemical entities, of all new
- 3 products, new formulations.
- 4 The fed bioequivalence studies, on the
- 5 other hand, are typically submitted to ANDAs. Here
- 6 the question is I have two formulations; one is
- 7 already on the market. Here is an ANDA product
- 8 that is likely to be switched with this other
- 9 product. How similar are they under these
- 10 conditions of use? So, the question here is, is
- 11 the test product, which is the ANDA product, close
- 12 enough to the reference product under fed
- 13 conditions that they could be switched in the
- 14 patient population? The question here is that of
- 15 switchability and approval. All modified release
- 16 formulations for ANDAs typically are expected to do
- 17 these studies. For immediate release dosage forms,
- 18 however, whether or not a fed BE study is done, it
- 19 really is label driven.
- The current criteria, as Dale mentioned,
- 21 for approval of these fed BE studies is hinged on
- 22 acceptance of ratio within a certain range
- 23 typically or commonly known as point estimates.
- 24 So, it is basically the geometric mean ratio of the
- 25 test and the reference product, called point

- 1 estimate, to fall within a certain boundary. In
- 2 other words, is the test product given under fed
- 3 conditions within a reasonable distance on average
- 4 from the reference product given under fed
- 5 conditions? Note that the acceptance is based on
- 6 point estimates. The distribution around this is
- 7 not taken into consideration based on the current
- 8 criteria.
- 9 [Slide]
- 10 The two items that I have listed with an
- 11 asterisk are the two issues that we are going to
- 12 discuss today. Issue number relates to immediate
- 13 release dosage forms, are there some types of
- 14 products that could be classified as BCS Class I
- 15 drugs and BCS Class I drug products, rapidly
- 16 dissolving? Could we comfortably say that we could
- 17 waive those fed BE studies in vivo provided there
- 18 is in vitro data to support our comfort level on
- 19 the equivalence of those products? So, basically
- 20 using similar dissolution profiles as a surrogate
- 21 for the measure of in vivo fed bioequivalence, and
- 22 this is not the first time we are approaching this
- 23 premise. We have done this in the recent past with
- 24 the fasted BE studies as well. So, here we are
- 25 trying to extrapolate this to the fed BE studies.

```
1 The second issue for discussion, again as
```

- 2 Dale mentioned, is implementation of true a
- 3 statistical equivalence approach and the criteria
- 4 for the fed bioequivalence studies. As I mentioned
- 5 earlier, right now we use point estimates and we
- 6 are considering maybe moving to a more statistical
- 7 approach of confidence intervals within a certain
- 8 range, and that is what we currently use for the
- 9 fasted BE studies.
- 10 [Slide]
- I will discuss these two issues
- 12 sequentially. Where possible, I will give a
- 13 scientific rationale and, where available, I will
- 14 provide some confirmatory and supportive data.
- 15 Some justification for waiver of BCS Class I, and
- 16 Dale has already touched upon that, but the primary
- 17 supportive data that I am going to provide is from
- 18 our University of Tennessee studies that were
- 19 funded by the FDA.
- 20 [Slide]
- Just to go into the scientific basis for
- 22 this, and again we are revisiting this; this is
- 23 nothing new, we use these for the fasted BE studies
- 24 waiver and we are really extrapolating that to the
- 25 fed BE situation now. Just to emphasize, the BCS

- 1 Class I drugs and drug products are defined as
- 2 those that are rapidly dissolving across a range of
- 3 pH's, therefore, the formulation effect is
- 4 minimized. So, we have kind of negated any
- 5 formulation effect if there is any. Once
- 6 dissolved, the belief is that once you take this
- 7 product it is practically in solution very rapidly.
- 8 So, in solution the drug substance, with it comes
- 9 from formulation A or B it is the dug substance,
- 10 and the drug substance is highly soluble and highly
- 11 permeable and, therefore, well absorbed.
- 12 So, given that there is minimal
- 13 formulation effect, given that the drug substance,
- 14 whether it comes from formulation A or B is well
- 15 absorbed, there are several examples, and Dr. Aziz
- 16 Karim has published on this, several BCS Class I
- 17 drugs have no food effect. They are well absorbed.
- 18 They are pH independent or, I should say, they are
- 19 similar between the two formulations and generally
- 20 there are no food effects unless they are high
- 21 first-pass drugs or if there is some complexation
- 22 but both of these are drug substance effects rather
- 23 than the formulation effect. Therefore, the bottom
- 24 line is if there are two formulations of the same
- 25 drug that have minimal formulation effect, BCS

- 1 Class I drugs, rapidly dissolving drug products,
- 2 they should be bioequivalent and if, in fact, there
- 3 is some effect it is probably because of the drug
- 4 substance and, therefore, we could probably waive
- 5 fed BE studies for the two products.
- 6 [Slide]
- 7 To provide some supportive data that we
- 8 collected from FDA-funded studies at the University
- 9 of Tennessee, the objective of these studies--there
- 10 were two studies and the objectives were to
- 11 investigate the relative bioavailability of two
- 12 FDA-approved generic products administered under
- 13 fed conditions. So, the two model drugs that we
- 14 picked were metoprolol and propranolol. They are
- 15 BCS Class I and, in fact, metoprolol happens to
- 16 have high solubility, high permeability boundary
- 17 but they are, in fact, BCS Class I drugs. The two
- 18 generic products that we chose for each of these
- 19 drugs were based on the furthest possible in vitro
- 20 dissolution. So, we chose the worst possible
- 21 scenarios that we had for these two formulations
- 22 for metoprolol and propranolol independently.
- 23 [Slide]
- I will share some results with you for
- 25 these bioequivalence studies that we performed

- 1 under fed conditions. Metoprolol, 18 subjects. As
- 2 you can see in the last column, it met the
- 3 confidence interval. The point estimates were
- 4 reasonably close, three percent for AUC and seven
- 5 percent for Cmax. Again, note that metoprolol is
- 6 highly soluble, highly permeable boundary
- 7 conditions, and note that both these drugs have an
- 8 increase in bioavailability with food and that is
- 9 theorized to be partly due to the high first-pass.
- 10 So, in spite of this big food effect that we see
- 11 for propranolol and metoprolol, we used those as
- 12 the challenge drugs for testing this hypothesis of
- 13 BCS Class I potential waivers and metoprolol shows
- 14 that, yes, it could meet bioequivalence.
- 15 [Slide]
- The same thing was shown for propranolol.
- 17 Again, propranolol is a high solubility, high
- 18 permeability drug; much more increase in
- 19 bioavailability with food. When I say increase in
- 20 bioavailability wit food, I am talking about
- 21 fed-fasted comparison and also again for point
- 22 estimated differences, two percent on average; five
- 23 percent on average for EC and Cmax.
- 24 [Slide]
- Just for completeness, I will show the

- 1 hydrochloric acid. I forgot to mention that. The
- 2 propranolol that was used was from a combination
- 3 product, propranolol hydrochlorothiazide. The
- 4 consideration here is that there was no
- 5 interaction; there is no pharmacokinetic
- 6 interaction of propranolol with
- 7 hydrochlorothiazide. We thought this would be a
- 8 challenge to propranolol using a drug that doesn't
- 9 have high solubility, high permeability in
- 10 combination with propranolol. So, we used a
- 11 combination product for the test of propranolol as
- 12 the model for BCS Class I. So just for completion
- 13 I am showing you the hydrochlorothiazide data as
- 14 well. You can see that met bioequivalence as well.
- 15 [Slide]
- 16 Conclusion: Formulation factors are
- 17 likely to play a minor role in the bioavailability
- 18 determination of BCS Class I rapidly dissolving
- 19 drug products. Studies with metoprolol and
- 20 propranolol, which are BCS Class I rapidly
- 21 dissolving drug products, demonstrated
- 22 bioequivalence under fed conditions and, therefore,
- 23 the data supports the BCS-based recommendation for
- 24 the waiver of fed BE studies.
- 25 [Slide]

- I will move on to the next issue, issue
- 2 number two, again reiterating what Dale had
- 3 mentioned, that this is basically saying we are
- 4 going to try and see if a different approach,
- 5 implementation of a true statistical equivalence
- 6 approach for fed BE studies would be a better
- 7 approach to go with the fed BE assessment. Right
- 8 now, as I mentioned, we go with the point estimates
- 9 for the ratio of the test and the reference,
- 10 geometric mean ratios of the test and the
- 11 reference. Here we are proposing the same criteria
- 12 that we used for the fasted BE studies, namely, 90
- 13 percent confidence intervals for the test and the
- 14 reference, log transformed ratio to fall within a
- 15 range which is 80 to 125. This is both for AUC as
- 16 well as Cmax. With this approach, the question I
- 17 think we need to ask ourselves--
- DR. MOYE: Excuse me. I am sorry to
- 19 interrupt. I have to ask a question just to make
- 20 sure I understand what this is about. Can you go
- 21 back for a second, please? When you talk about the
- 22 criteria for the 90 percent confidence interval,
- 23 are you saying that the entire confidence interval
- 24 has to fall within the 80-125? Overlapping is not
- 25 sufficient? It must lie completely within?

```
DR. PAREKH: Right. So, it is a
```

- 2 bioequivalence approach and we use the same for the
- 3 fasted BE studies.
- DR. MOYE: Thank you. Sorry to interrupt.
- DR. PAREKH: Does that mean I can start
- 6 talking?
- 7 [Laughter]
- 8 [Slide]
- 9 All right, the question is what is the
- 10 purpose of these fed BE studies, and it depends on
- 11 what your answer is. If your answer is to assure
- 12 interchangeability of two formulations, and I snuck
- in another question, how certain do you need to be?
- 14 then the answer is right there. This is nothing
- 15 new. We have used these for fasted BE studies. If
- 16 your answer is, yes, we want to be sure that they
- 17 are interchangeable products under fed conditions,
- 18 then we already have these criteria in place. So,
- 19 the regulated criteria for the BE studies right now
- 20 for interchangeability assessment is 90 percent
- 21 confidence intervals for the ratio of population
- 22 geometric means for the test and the reference
- 23 treatments to fall within 80 to 125.
- 24 [Slide]
- 25 But every good thing I guess comes with a

- 1 price. So the next question relates to what is the
- 2 price for this, and are these criteria likely to
- 3 increase the regulatory burden? We are concerned
- 4 about that too. So, what we did was, rather than
- 5 just putting it in place, we thought let's go and
- 6 see what it means if people will consider these
- 7 criteria for fed BE studies.
- 8 So we went back and did a retrospective
- 9 analysis for the ANDA database that we had. It is
- 10 a partial analysis. We took a subset of 40 ANDAs.
- 11 I just counted and I think there were about five
- 12 that were repetition drugs; 35 were independent
- 13 drugs. We looked at the fed-fed BE aspect of these
- 14 ANDAs that were turned in and reviewed in the
- 15 Office of Generic Drugs.
- So, we looked at the fed BE studies.
- 17 Remember, these studies right now are not powered
- 18 for meeting the confidence interval criteria. That
- 19 is an important thing to keep in mind. Right now
- 20 the criteria, as I mentioned earlier, is point
- 21 estimates to fall within a range. With that, we
- 22 did consider are we looking at a biased piece of
- 23 data and we thought not really because these
- 24 studies are not powered for confidence intervals.
- 25 These are really just assessment of point estimates

- 1 being close enough. So we thought let's go back
- 2 and recalculate the 90 percent confidence intervals
- 3 on these fed-fed BE studies. So, we did that with
- 4 40 ANDAs.
- 5 [Slide]
- 6 This slide summarizes the results of this
- 7 small pilot retrospective analysis that we
- 8 conducted. Of the 40 ANDAs, as shown in this pie
- 9 chart, 35 passed the confidence interval. So you
- 10 could say 87.5 percent of this small subset made it
- in spite of the fact that these were not powered
- 12 for confidence intervals. There is a small subset
- 13 that didn't make it and, again, keep in mind that
- 14 these studies were not prospectively powered for
- 15 confidence intervals.
- 16 For those five ANDAs that failed to meet
- 17 the 90 percent confidence interval, it doesn't
- 18 necessarily mean that they were not bioequivalent
- 19 if they were powered right. If you look at the
- 20 numbers on the top, that represents the confidence
- 21 intervals for all of those five that didn't make
- 22 it. But a small subset did not make the confidence
- 23 interval criteria. However, it was a small subset
- 24 and, keep in mind, these studies were not powered.
- 25 Of the five, there were two that failed on AUC and

- 1 there were three that failed to meet the confidence
- 2 intervals on Cmax.
- 3 [Slide]
- 4 In conclusion, if the current criteria for
- 5 fed bioequivalence studies, which is point
- 6 estimate, were to be changed to confidence
- 7 intervals a retrospective analysis of the existing
- 8 data suggests that for most studies no increase in
- 9 number of subjects would be necessary, however,
- 10 there will be a small subset that may need a larger
- 11 sample size.
- 12 With that, I want to summarize and say
- 13 that there are situations where in vitro
- 14 dissolution comparisons could suffice or could
- 15 serve as an acceptable surrogate for in vivo
- 16 bioequivalence studies, the case being BCS Class I
- 17 rapidly dissolving drug products. A waiver for in
- 18 vivo bioequivalence studies, in this case fed
- 19 conditions, could be considered. However, when the
- 20 studies are conducted, depending on what the
- 21 question is, if the question is what is the purpose
- 22 of these studies, the fed BE studies--is the
- 23 purpose to address a switchability question, then
- 24 if so, we need to address the appropriate
- 25 statistical criteria in that situation. Thanks.

- DR. LEE: Thank you very much, Ameeta.
- 2 There are two questions put before us, and I have
- 3 asked Marvin Meyer to digest this information and
- 4 provide us with some perspective. Before we start,
- 5 since we have plenty of time, what is the
- 6 definition of food? This is a half-serious
- 7 question.
- 8 DR. PAREKH: That definition of food took
- 9 us the first twelve years.
- DR. LEE: I see.
- [Laughter]
- DR. PAREKH: We went through a lot of
- 13 scientific discussion trying to debate what is
- 14 food. There were papers that said there is no such
- 15 thing as the right meal. You could be eating
- 16 something; I could be eating something totally
- 17 different. Rather than addressing it as a social
- 18 question, we thought we could address it as what is
- 19 the regulatory question here. The regulatory
- 20 question is what happens when I take a drug with
- 21 meals. Given all the physiology of food
- 22 effects--gastric emptying time, cholecystokinin,
- 23 all those things, bile acids, pH changes--we went
- 24 through a lot of literature. We went through the
- 25 examples that were tested for theophylline which

- 1 were bench-marking the meals that could be
- 2 discriminating. We thought let's take a meal that
- 3 would represent the worst case scenario for maximum
- 4 perturbation of the gut, and let's use that as the
- 5 meal. The meal that was chosen was similar to the
- 6 meal that was shown to be discriminatory in those
- 7 early theophylline studies.
- 8 DR. LEE: So, we are asked to think about
- 9 food that way. Also, I suppose we should think
- 10 about the subject not as pediatrics or geriatrics
- 11 but the average population in age. Right?
- DR. PAREKH: That is right.
- DR. LEE: And also think about Class I
- 14 drugs as the average of that range. Right? So,
- 15 these are the boundary conditions. I am beginning
- 16 to complicate matters.
- 17 DR. HUSSAIN: Yes, I am not sure. With
- 18 respect to bioequivalence, we have always tried to
- 19 have sort of a general population to study that.
- 20 The issue essentially is making sure in vivo that
- 21 the release of the drug from the product is
- 22 essentially similar. So, that is the question we
- 23 are asking. With respect to special populations, I
- 24 think that is more a bioavailability question, not
- 25 a bioequivalence question. So, if we can keep

- 1 those two separate.
- DR. LEE: Thank you.
- 3 DR. CONNER: Just an aside, the meal was
- 4 very high in fat, the meal that Ameeta was talking
- 5 about. After a lot of discussion and a lot of
- 6 research, they came up with a very high fat meal.
- 7 Now, if you go to different places in the world or
- 8 even in the United States, that is not necessarily
- 9 a representative breakfast, hopefully, that most
- 10 people eat. If they do, their arteries are going
- 11 to be in very bad shape after a few years. So, in
- 12 another country, that country may have chosen to do
- 13 a much more representative meal. For instance, I
- 14 have reviewed some ANDA food studies for Japan
- 15 where they took a typical Japanese breakfast which
- 16 was much, much different than what we are talking
- 17 about here. It is interesting to look at those
- 18 side by side. However, we chose something that
- 19 would have the highest likelihood of being a
- 20 challenge to the dosage form and the drug
- 21 substance.
- DR. LEE: Okay, I wanted to make sure we
- 23 understand it because now we are looking at version
- 24 two and pretty soon we will be working on version
- 25 three.

```
1 DR. HUSSAIN: I think in terms of
```

- 2 standardization, the question you raised also goes
- 3 to the standardization of the meal because this is
- 4 a quality assurance type of a test. We went to the
- 5 commercial sources that provide this reproducibly.
- DR. PAREKH: Yes, we went and picked up
- 7 things from little fast food places. I remember a
- 8 few years back Hank Malinowski took a group and we
- 9 tried out the meal. It is a big meal. I could
- 10 handle it!
- 11 [Laughter]
- Just to get to specifics, Dr. Lee, the
- 13 meal that is defined in the draft guidance is about
- 14 800-1000 calories, and we specify the meal as an
- 15 example meal but 150, 250 and about 500 calories
- 16 from protein, carbohydrate and fat. You don't have
- 17 to stick to a certain meal in terms of the
- 18 components as long as the fat, carbohydrate and
- 19 protein are similar or close to this, because this
- 20 is what has been tested in the literature to cause
- 21 the maximum perturbation. So, we want to know what
- 22 is the worst case scenario and so go with the meal
- 23 that represents the worst case scenario.
- DR. LEE: Very well. Thank you very much.
- 25 I want to remind the committee that we have two

- 1 consultants, at the other end of the table, to
- 2 collaborate with. Yes?
- 3 DR. ANDERSON: On page two of the handout
- 4 you have something about similar dissolution
- 5 profiles. Would you comment on how close the
- 6 dissolution profiles have to be in order to qualify
- 7 for this?
- 8 DR. HUSSAIN: In terms of the fasting
- 9 study where the BCS guidance was first used, the
- 10 rapid dissolution is defined in terms of a time
- 11 limit in terms of the rate of dissolution. It has
- 12 to essentially dissolve within 30 minutes, and it
- 13 has to dissolve in a pH range of, say, 1 to 6.8 and
- 14 three different pH conditions. The similarity is
- 15 that it has to be within about 10 percent. The two
- 16 profiles should be within plus/minus 10 percent; it
- 17 is an approximate similarity.
- DR. ANDERSON: Plus or minus, yes.
- DR. LEE: Thank you. We do have two
- 20 questions in front of us. We need to answer these
- 21 questions and if there is time we can go into other
- 22 questions. Marv?
- DR. MEYER: I have a question of your
- 24 presentation before I get to that, and then I want
- 25 to make a comment before I get to that. You have

- 1 40 ANDAs that you sampled. Out of how many
- 2 possible does the 40 represent, and were they a mix
- 3 of IR and modified release? Thirdly, do you have a
- 4 recollection of what the point estimates were for
- 5 the five drugs that failed?
- 6 DR. PAREKH: I am glad I got up early this
- 7 morning and checked that. Yes, it was a mix of IR
- 8 and MR. We didn't select ANDAs based on a certain
- 9 thing; we just took 40 and there were IR and there
- 10 were MR. The ones that represent not making the
- 11 confidence intervals are a mix of IR and MR. So,
- 12 it is not just all MR or IR. For AUC, there was
- one that was as high as 151. The point estimate
- 14 was about 20 off, so 1.2, 120. The other one was
- 15 also close. It was 118 or somewhere in that range.
- 16 You can see from the width that that is where it
- 17 would be.
- DR. MEYER: So, one could argue that of
- 19 the five failures, the Cmax failures all could have
- 20 been taken care of by a few more subjects, and
- 21 maybe the AUC failures, the 120 and the 118 really
- 22 shouldn't be approved anyway.
- DR. CONNER: You know, in looking at that,
- 24 and obviously I have the ability to know which
- 25 applies to which product, but I actually just

- 1 looked at the overall and I had the same reaction.
- 2 You know, when Ameeta and I were going over the
- 3 results I looked at those five and I said, well,
- 4 the Cmax, some more subjects, we didn't go through
- 5 the exercise of calculating how many more subjects
- 6 would have been required although it is perfectly
- 7 reasonable to be able to do that. But when I
- 8 looked at the AUCs I said, oh, these don't look so
- 9 very good to me because the point estimates,
- 10 although we don't have them on the slide, are
- 11 obviously pretty far out. I mean, they are within
- 12 the 80 to 125 but they are like about 120 or in
- 13 that range. I don't have the exact numbers. So, I
- 14 think that simply adding power to that, although
- 15 theoretically if you added enough power it might
- 16 squeak by, it is pretty unlikely that adding a
- 17 reasonable number of subjects to that study would
- 18 get those to pass the confidence intervals.
- 19 The open question still is do we really
- 20 feel comfortable approving those? Now, it is
- 21 important to say for the record that we are not in
- 22 any way saying that what we have done in the past
- 23 or what we are currently doing with the point
- 24 estimates, that there is anything wrong with that.
- 25 I don't want anyone to conclude that there is a

- 1 real hazard here. I think we have had some good
- 2 experience with that. Doing it this way hasn't
- 3 really created any clinical problems that we are
- 4 aware of. Our attempt here is, I would say, just
- 5 to tighten things up and to make a more rigorous
- 6 equivalence evaluation rather than, you know, what
- 7 is kind of a "feel good" type of approach but a
- 8 more rigorous type of approach in what we are doing
- 9 with point estimates. So, I don't think that what
- 10 we have been doing in the past is wrong; I think
- 11 this is just better.
- DR. MEYER: One point of order, Vince. We
- 13 have two invited guests and I think a couple of
- 14 other speakers on this topic. I always wonder why
- 15 we don't hear from those people before we
- 16 deliberate.
- DR. LEE: Because once they start
- 18 talking--
- 19 [Laughter]
- 20 --but I am sure that they will interject
- 21 at the appropriate time.
- DR. MOYE: One advantage of moving away
- 23 from just using the point estimate is that you
- 24 really don't know what the operational
- 25 characteristics of it are. You have historical

- 1 information. Sometimes historical information can
- 2 be very leading and sometimes it can be misleading.
- If I understand this process correctly,
- 4 the way it currently is now, and please tell me if
- 5 I am wrong and I apologize for interrupting you
- 6 earlier but I was in imminent danger of being badly
- 7 and irreversibly confused so I really needed to
- 8 stop and ask you--the way it currently is now, a
- 9 sponsor will carry out a research effort and come
- 10 up with an effect size, a point estimate. Even
- 11 though there is a standard error associated with
- 12 that and even though the standard error is
- 13 available, that standard error is set aside and the
- 14 question is simply asked whether that point
- estimate is greater than 0.8 or less than 1.25.
- 16 The suggestion is to replace that with the
- 17 confidence interval of 90 percent and ask whether
- 18 the 0.8 to 1.25 range completely encompasses and
- 19 encloses the 90 percent confidence interval. That
- 20 is correct?
- I am not really sure why we need to go
- 22 through this two-step process, the first step to
- 23 compute the confidence interval and then, the
- 24 second step, decide whether the confidence interval
- 25 falls completely within 0.8 to 1.25. It seems to

1 me in order to determine how well that is going to

- 2 work, again holding historical information aside,
- 3 it is kind of a complex computation to ask about
- 4 where the range of a confidence interval is going
- 5 to fall. So why not, as an alternative, just ask
- 6 the question how likely is it that the population
- 7 ratio will fall between 0.8 and 1.25 given the
- 8 point estimate and given the standard error? That
- 9 is a fairly easy computation to do, and you can set
- 10 a value for that probability. That probability
- 11 must be above some value, and for that the
- 12 computation is much more direct and, hopefully,
- 13 much more interpretable.
- 14 DR. CONNER: It is important to point out
- 15 that this is not a new method, which is what we are
- 16 talking about, which is the two one-sided test
- 17 procedure to determine equivalence. That is
- 18 something that we have been doing for quite a few
- 19 years for fasted studies. If you are saying that
- 20 this, when applied to food studies, may not be
- 21 totally understood I don't agree with you but I
- 22 take that criticism. But as far as the properties
- 23 of this calculation, the properties of the
- 24 statistics, we understand those very well. We have
- 25 been doing them for perhaps ten or twelve years

- 1 now, I think, on fasting studies.
- DR. MOYE: There are two statistics here I
- 3 think. Are you talking about the one that just
- 4 uses the point estimate and asks whether that is
- 5 between 0.8 and 1.25? Is that the one you are
- 6 talking about?
- 7 DR. CONNER: No, no--
- 8 DR. MOYE: Or are you talking about the 90
- 9 percent CI?
- 10 DR. CONNER: The fasting studies are done
- 11 in exactly the way we are proposing to now do fed
- 12 studies. It was developed by Dr. Sherman and
- 13 others, the two one-sided test procedure. In other
- 14 words, what the test essentially does is run two
- 15 one-sided tests, one in one direction and the other
- 16 in the other, you know, one test one bound and the
- 17 other test the other bound. They are run at the
- 18 alpha equals 0.05 level. So, we have 0.05 on one
- 19 side--
- DR. MOYE: Right.
- DR. CONNER: --and 0.05 on the other. So,
- 22 the way of actually doing all this in one test, one
- 23 calculation, is to calculate the 90 percent
- 24 confidence interval so you get the 5 on one side
- 25 and 5 on the other, and each one of those has to be

- 1 what we have determined to be a clinically
- 2 significant difference. The actual operation of
- 3 this, for the most part the point estimates of
- 4 fasting studies, when we have done similar types of
- 5 surveys, for the vast majority of the products we
- 6 approve based on the fasting results the point
- 7 estimates don't vary by more than about 4 percent
- 8 either way from a ratio of 1. We have a few
- 9 isolated cases where we have as much as 10 or 12
- 10 percent, but most of them cluster right around the
- 11 ratio of 1, plus/minus 4 percent for both Cmax and
- 12 AUC. So, the operational characteristics of
- 13 controlling that point estimate, the experimental
- 14 point estimate are actually quite good.
- DR. MOYE: It sounds like the answer to my
- 16 question is that this is a procedure that has been
- 17 well established--
- DR. CONNER: Yes.
- DR. MOYE: -- and has been used in other
- 20 analyses looking at bioavailability for fed and
- 21 fasting. Is that right?
- DR. CONNER: It is used somewhat in the
- 23 NDA world but primarily this is used to determine
- 24 the equivalence or switchability of two
- 25 pharmaceutically equivalent products. So, the drug

- 1 substance, the amount of drug substance, the type
- 2 of dosage, all that is held constant and most of
- 3 the studies we do are crossover so, you know, each
- 4 individual gets both products. And, we want to
- 5 make sure that in the end the judgment we make and
- 6 the generic product we approve, if someone goes
- 7 into their pharmacy and they are currently taking,
- 8 say, the brand name, if the doctor switches them to
- 9 this other pharmaceutically equivalent dosage form
- 10 they will be getting essentially the same results
- 11 without any distinguishable difference.
- DR. LEE: So, you are answering question
- 2.3, what alternative approaches?
- DR. MOYE: If you say so.
- DR. CONNER: As an aside, I am not sure we
- 16 should get much into it today, but if you have
- 17 suggestions on how we might do this whole thing
- 18 better--I mean, what we are doing now is simply
- 19 expanding what we have done for many years to this.
- 20 If you have some other, you know, just general
- 21 comments that you might have a better method,
- 22 perhaps another forum might be the time.
- DR. MOYE: Well, I wouldn't say it is
- 24 better at this point; I just say it is an
- 25 alternative and it may be simpler.

- DR. LEE: Do you have slides?
- DR. MOYE: Not right now but I can prepare
- 3 them.
- 4 DR. LEE: All right. Since the two
- 5 consultants were mentioned, maybe I will just take
- 6 the opportunity to see if they have anything to
- 7 say.
- 8 DR. KARIM: You mentioned about food
- 9 effect. I have been talking about food effect for
- 10 the last thirty years, and one of the most usual
- 11 and common questions asked is we never have this
- 12 type of meal so why does FDA do a food effect
- 13 study? The question here is it is not really the
- 14 sort of food you would be taking every day. It is
- 15 really performance of a dosage form under
- 16 conditions which would produce maximal perturbation
- 17 of the formulation. So, it is really a quality
- 18 control test of your formulation, and that is the
- 19 food which would produce the maximum effect. So,
- 20 it is not the usual food you take but it is quality
- 21 control type of food.
- The second point I want to make is that,
- 23 in fact, it is correct that I have found that drugs
- 24 which belong to Class I do not show food effect
- 25 response in terms of AUC, and in drug development

- 1 the very first study in humans that we do is a food
- 2 effect study because if there is no food effect
- 3 response, then we are able to categorize our drug
- 4 as a Class I drug which, I think, is a new approach
- 5 of food effect response. We use it a great deal in
- 6 drug research.
- 7 One thing which I still feel hasn't been
- 8 covered is that food will produce, even for Class I
- 9 drugs, delay in absorption because 50 g of fat will
- 10 result in stomach emptying time, and if you have a
- 11 drug which is specifically used for very fast onset
- 12 of action--an analgesic, antiarrhythmic--you will
- 13 miss the point because the Tmax is not used in
- 14 bioequivalency assessment. So, I think the agency
- 15 needs to look at that before saying that the Class
- 16 I drugs would not require food effect response
- 17 because the question of Tmax has not been
- 18 addressed, what is the effect of a given meal or of
- 19 food on Tmax.
- 20 The third point I want to make is that if
- 21 a drug or formulation is labeled to be taken with
- 22 food, and if that is how patients take the drug,
- 23 then it is obvious that the bioequivalency must be
- 24 shown under fed conditions. I have said that again
- 25 and again. We should use all the statistical

- 1 criteria used under fasting state to apply to the
- 2 fed state.
- I am surprised that the bioequivalency was
- 4 shown in even 17 to 18 subjects with food because
- 5 when you give the drug with food you are adding
- 6 another variable, and that is gastric emptying
- 7 time. I would be very interested to see whether in
- 8 a crossover situation the gastric emptying time
- 9 under fed condition is similar or not. I know
- 10 under fasting state they are very similar, but I
- 11 would have expected under fed conditions the
- 12 gastric emptying time to vary more, and I would
- 13 have expected that we would need quite a few more
- 14 subjects to do bioequivalency testing. Thanks.
- DR. LEE: Thank you.
- DR. MEYER: Can I ask Aziz a question?
- 17 DR. WILDING: Can I pick up first because
- 18 we do a lot of work actually visualizing what fat
- 19 does to gastric emptying properties in formulation
- 20 performance. It is certainly true that the current
- 21 high fat meal as put into regulatory guidance has a
- 22 maximum effect on the GI tract. That is, it
- 23 effectively stops the stomach for a couple of hours
- 24 in most individuals. The reality is that if you
- 25 put that amount of fat into the stomach, it takes a

- 1 while to realize that it has that large amount of
- 2 material to deal with and actually sits still for a
- 3 period of time.
- 4 What you have to recognize also is that
- 5 today's population eats less fat than the previous
- 6 populations. Therefore, what was maximal for them
- 7 is probably now super-maximal for today's
- 8 individuals. That is an issue that is worth
- 9 contemplating. So, I think what we see often is an
- 10 effect on Tmax associated with significant delays
- 11 in gastric emptying.
- Now, the question is, is the CV percent
- 13 greater in terms of intra-variability fed compared
- 14 to fasted? Certainly, in our experience there will
- 15 be no difference between those two that will be
- 16 noticeable from statistical comparison purposes.
- 17 Now, unlike Aziz, I don't think that Tmax is an
- 18 issue because it is a bioequivalence issue or
- 19 switchability, not prescribability. Therefore, I
- 20 don't think in this context I could imagine where
- 21 there will be a Tmax difference associated with a
- 22 Class I drug that would lead to issues in that
- 23 particular regard.
- 24 My final comment, food effects are a
- 25 generic phrase and we do run risks with the phrase

- 1 food effects because it is, in many respects, an
- 2 active pharmaceutical ingredient issue, a
- 3 formulation issue, and there is the combination of
- 4 the API, the formulation and the food. That is
- 5 where I think, as Ameeta indicated, it is
- 6 bioavailability in terms of API alone, formulation
- 7 alone, but there is also a
- 8 bioequivalence/bioavailability issue that kicks in
- 9 when you are contemplating active forms of
- 10 ingredients of the formulation and drug together,
- 11 and that is the hardest one to tease out.
- DR. LEE: Thank you.
- DR. MEYER: Aziz, you were talking about
- 14 Class I and saying you have not personally seen any
- 15 differences in bioequivalence under fed conditions.
- 16 You said AUC. How about Cmax?
- 17 DR. KARIM: Yes, what I do is we take AUC
- 18 ratio fed/fasting and if they fall within 10 or 20
- 19 percent we categorize it as Class I drug. Now,
- 20 Cmax I haven't looked at in that detail, but I
- 21 would say probably it won't be as rigid as AUC.
- DR. HUSSAIN: Let me sort of go to the
- 23 issue of Tmax that Aziz raised, and so forth, and
- let me go through the thought process of the BCS in
- 25 the fasting state. One of the reasons we designed

- 1 or devised rapid dissolution criteria for the
- 2 fasting state was because of unpredictability of
- 3 the gastric residence time and the rapid emptying
- 4 that occurs under the fasting state, and there were
- 5 concerns with volume and you will see that in the
- 6 afternoon discussion also.
- 7 In fact, the 30 minutes that we have as
- 8 rapid dissolution criteria was for fasting state.
- 9 That is overly conservative for a fed state.
- 10 Although we are not suggesting we change that, we
- 11 don't believe there will be Tmax differences
- 12 because of formulation effects. There will
- 13 definitely be a shift in Tmax because of the
- 14 gastric emptying time. But if you are going to
- 15 retain the dosage form in the stomach, which is
- 16 essentially a reservoir, for a long period of time,
- 17 then you are giving far more time for dissolution
- 18 to become peak before it gets emptied out. So, it
- 19 is less of a concern under the fed condition. We
- 20 were more sensitive and more conservative in the
- 21 fasting state.
- 22 So, that is the reason dissolution-release
- 23 in vivo under fed conditions, because of the large
- 24 volume and because of the long gastric residence
- 25 time, is less of a concern. So, I think our

- 1 proposal will be far more conservative for the fed
- 2 state.
- 3 DR. MEYER: Ready?
- 4 DR. LEE: Yes.
- DR. MEYER: The questions at hand then are
- 6 posted there, as well as in the handout we received
- 7 from Kathleen Reedy on April 22. The questions are
- 8 really broken into two sections. To what extent
- 9 can we waive fed bioequivalence studies for Class I
- 10 drug? Then, secondly, should confidence intervals
- 11 be applied to fed studies?
- 12 The first question then, can we waive fed
- 13 bioequivalence studies for Class I drugs which, of
- 14 course, are highly soluble, very rapidly dissolving
- 15 and highly permeable?
- One question I have, that will come up
- 17 again this afternoon, is the definition of high
- 18 permeability. Is propranolol really highly
- 19 permeable? It is fine to do an intestinal
- 20 intubation but then what other kinds of
- 21 measurements can be made? My recollection is that
- 22 propranolol is not 90 percent systemically
- 23 available; large first-pass effect. How do we
- 24 measure high permeability if all we have is bio
- 25 data? I have no problem with the definition of

- 1 high permeability if it is 90 percent excreted
- 2 unchanged in the urine or the AUC relative to IV
- 3 doses is 90 percent. Beyond that, it becomes a
- 4 little more arbitrary. I see Ajaz is shaking his
- 5 head.
- 6 DR. HUSSAIN: No. The BCS guidance that
- 7 was issued in September of 2000 actually went
- 8 through and described several methodologies to
- 9 assess permeability. It also includes a method
- 10 based on in vitro and HeLa cell culture methods, PK
- 11 studies, extent of absorption. So, you have a
- 12 whole host or toolkit for assessing permeability.
- 13 You are absolutely right, metoprolol and
- 14 propranolol are both high first-pass effect drugs.
- 15 If I am not mistaken, the absolute bioavailability
- of propranolol is 35 percent but its extent of
- 17 absorption is actually complete and that is the
- 18 basis for the high permeability class membership.
- 19 That is the reason we selected propranolol for the
- 20 challenge studies that we did at the University of
- 21 Tennessee. The reason is it is so sensitive to
- $22\,$ food effect. In fact, there is a study from an
- 23 Australian hospital--I am not able to quote the
- 24 reference of that, but you can actually induce fed
- 25 effect studies of propranolol by just smelling

- 1 food; not even eating it. So, that is how
- 2 sensitive propranolol is to food effects.
- 3 DR. LESKO: I will address the same
- 4 question and remind us that the propranolol and
- 5 metoprolol were two of the drugs that we had in our
- 6 initial database that defined the BCS. That means
- 7 the permeability of these drugs was established in
- 8 human volunteers through intubation of the small
- 9 intestine. Thus, we have very accurate, gold
- 10 standard type permeability on those two drugs as
- 11 opposed to circumstantial data which might have
- 12 come from CACO 2 or bioavailability studies.
- 13 As Ajaz said, the reason we picked those
- 14 two recent studies in Tennessee on fed effects is
- 15 because we had established previously their
- 16 membership in the class. Propranolol is highly
- 17 permeable in terms of passing through the gut wall.
- 18 Metoprolol was picked because it was more of a
- 19 borderline between Class I and some other classes
- 20 based on its permeability characteristics. But
- 21 they both succeeded in those two studies.
- DR. LEE: Larry, are you saying that it
- 23 has taken the metabolism into account, the
- 24 permeability?
- DR. LESKO: Well, we have to separate two

- 1 things, absorption from the lumen of the intestinal
- 2 tract and the bioavailability. The permeability
- 3 refers to the passage of the drug from the lumen of
- 4 the intestinal tract into the blood stream. So, it
- 5 is talking about transversing that border. After
- 6 it transverses that border there may be some
- 7 first-pass effects in the liver that will reduce
- 8 the bioavailability. So, when we talk about
- 9 permeability we are thinking about absorption as
- 10 opposed to bioavailability. So, you could have a
- 11 drug with good absorption characteristics but
- 12 relatively low bioavailability if the reduction in
- 13 bioavailability is related to a first-pass effect,
- 14 say, in the liver.
- DR. LEE: I think that maybe what Marv was
- 16 alluding to is the metabolism during passage across
- 17 the gut wall.
- DR. LESKO: Well, if it is a 3A4 substrate
- 19 that is being metabolized in that passage it still
- 20 has permeated that segment of the wall, as
- 21 indicated by its high permeability.
- DR. HUSSAIN: One other way of looking at
- 23 permeability is that it is essentially the ability
- 24 of the drug to leave the aqueous compartment that
- 25 is in contact with the epithelium and get into the

- 1 cell. Essentially, when we went to the BCS, as
- 2 Larry said, we distinguished between transport and
- 3 then subsequent metabolism.
- DR. MEYER: Personally, I think I would
- 5 feel if the regulation said a product that is 90
- 6 percent bioavailable relative to IV or maybe even
- 7 an oral solution, that is something I can hang my
- 8 hat on and I don't have to worry about gut wall
- 9 metabolism or metabolism prior to reaching the gut
- 10 wall. Short of intestinal intubation, let's say,
- 11 the generic industry--I doubt very many of them are
- 12 going to do intubation type studies to establish
- 13 permeability, and CACO 2 and those other surrogates
- 14 haven't been totally proven, I don't think.
- DR. HUSSAIN: I think we have.
- DR. MEYER: Have you?
- DR. HUSSAIN: Yes. I think those are
- 18 established.
- DR. MEYER: Given that then, to what
- 20 extent does the committee feel that in-house data,
- 21 which I take it are partially propranolol and
- 22 metoprolol--
- DR. HUSSAIN: I think the challenge
- 24 studies that we did in Tennessee were two products,
- one metoprolol alone; one containing propranolol

- 1 and hydrochlorothiazide. Hydrochlorothiazide is
- 2 not a highly permeable drug. So, that was an
- 3 additional challenge that we had. So, those were
- 4 prospective studies designed to challenge the
- 5 system, and we selected two generic products to
- 6 have a head-to-head comparison. We didn't have
- 7 such data before because we have looked at
- 8 historical data that we have in-house and made that
- 9 conclusion, and we wanted to truly challenge that.
- 10 DR. LEE: I think the question is very
- 11 simple, you know, Class I and Class II and so
- 12 forth, fed state, fasting. I think we all
- 13 understood that. But I guess Marv was thinking
- 14 about exceptions. He was thinking beyond the
- 15 current definition and is not comfortable with the
- 16 risk.
- DR. VENITZ: To follow-up on something,
- 18 Dale, that you mentioned, is there any evidence to
- 19 suggest that for the Class I and non-Class I drugs
- 20 there is a differential food effect between the
- 21 formulations? Because you alluded to the fact that
- 22 it is unlikely, and I guess based on my
- 23 understanding of BCS I would agree with that, but
- 24 do you have any experimental evidence to the
- 25 contrary?

```
DR. CONNER: I am not sure I was trying to
```

- 2 imply that it was unlikely. I think that is a
- 3 question for you.
- 4 DR. VENITZ: Right.
- DR. CONNER: You know, how likely you
- 6 think it is. I posed the question because it
- 7 seemed to me that the critical thing is do we have
- 8 any examples, or do we realistically believe that
- 9 one exists that when we gave a product that was
- 10 rated as Class I that it would behave differently,
- 11 that it would behave like it was another class
- 12 which we wouldn't ordinarily waive? So, I will
- 13 give you some theoretical examples, and I can't
- 14 come up with any examples to say the food got in
- 15 there and this would affect both the formulations
- 16 equally, but if something in the food complexed
- 17 with the drug substance and actually formed, say, a
- 18 permanent or semi-permanent complexation which
- 19 didn't have the solubility or, more likely, didn't
- 20 have the permeability that the original drug
- 21 substance had, I mean, then your resultant effect
- 22 would be that it wouldn't be permeable anymore; it
- 23 wouldn't have the bioavailability that it started
- 24 out with if something in the food complexed with
- 25 it.

- 1 DR. VENITZ: But it would be a
- 2 bioavailability not a bioequivalence issue. Right?
- 3 DR. CONNER: Yes, but it would then mean
- 4 though that this BCS system that we designed would
- 5 technically no longer apply to it. It would not
- 6 necessarily then result in bioinequivalence. It
- 7 would take it out of the realm of the BCS system
- 8 into another class and, therefore, even though we
- 9 would think the likelihood that there would be
- 10 bioequivalence would not necessarily increase, we
- 11 would then, based on our BCS system, have to do an
- 12 in vivo test to confirm that. But the likelihood
- 13 of a differential effect on the drug substance is
- 14 small, very small but it would still take it out of
- 15 the realm of BCS.
- DR. HUSSAIN: Let me sort of add to that.
- 17 I think when we were going through this development
- 18 we had extensive discussion on this. I said I want
- 19 to have a formulation that would behave differently
- 20 than the other one. For immediate release
- 21 formulations it is very difficult to come up with
- 22 an example, but since Dale raised the issue of
- 23 complexation, how can I formulate two products, one
- 24 which will have food effect and one which may not
- 25 have food effect? If I use complexation as a

- 1 mechanism, then I could include in one of the
- 2 formulations a chelating agent, sodium EDTA for
- 3 example, and that could be a trigger for saying, if
- 4 its a metal complex, you are essentially binding
- 5 the available metal, and so forth.
- 6 But those are sort of theoretical
- 7 assessments and we haven't seen any real examples
- 8 that actually could be achieved. When we look at a
- 9 waiver, we also look at the excipients and so
- 10 forth. So, actually in a BCS waiver we go through
- 11 an analysis of excipients, and so forth. So, that
- 12 would sort of come up and be covered under that.
- 13 So.
- 14 DR. VENITZ: So, it is correct for me to
- 15 assume that you haven't seen any evidence either
- 16 in-house or in the public literature that a Class I
- 17 drug shows a differential food effect?
- DR. HUSSAIN: We couldn't find any
- 19 evidence of that.
- 20 DR. LESKO: I think I want to qualify that
- 21 a bit though because in trying to find those kind
- 22 of differences you described there are two
- 23 obstacles. One is that frequently you can't
- 24 identify the BCS class, say, in a new drug
- 25 application based on the data submitted. So, the

- 1 best we can work on is a suspicion of what the
- 2 class would be because the company had no reason
- 3 necessarily to define the solubility at all pH's to
- 4 measure permeability. So, when we looked at that
- 5 question to look for the exceptions, we were flying
- 6 a little bit blind by not knowing for sure whether
- 7 these were Class I drugs. So, there is that
- 8 aspect.
- 9 On the ANDA side, we are sort of a captive
- 10 audience to what is being submitted to the Office
- 11 so there are things that may be out there that we
- don't see or aren't aware of. That may address
- 13 your question. But recognizing those two
- 14 limitations, I guess the answer would be no, we
- 15 don't have any direct knowledge of exceptions.
- DR. LEE: There is another question about
- 17 the issue about the mechanism of absorption as
- 18 well. What if a drug falls in Class I because of
- 19 an affinity for whatever transport might be in
- 20 place in the gut?
- 21 DR. HUSSAIN: With respect to the fasting
- 22 study, the mechanism of absorption I think came
- 23 into consideration with respect to the methods of
- 24 permeability. For example, there is no restriction
- 25 that a carrier-mediated transport of an active

- 1 transport mechanism would preclude a drug from
- 2 being a Class I or a highly permeable drug. But
- 3 the methodology used to assess permeability then
- 4 has to be looked at more carefully. For example,
- 5 in the BCS guidance use of CACO 2 or in vitro,
- 6 essentially we don't recommend using those for
- 7 actively transported drugs, and so forth. So, that
- 8 is how we managed that process.
- 9 DR. VENITZ: But don't you also have a
- 10 restriction on dose proportionality--
- DR. HUSSAIN: Yes. Dose linearity was one
- 12 of the mechanisms to address some of that question.
- DR. LEE: Other comments from the
- 14 committee? Yes, Judy?
- DR. BOEHLERT: I have a question coming
- 16 back to the dissolution profile when you said it
- 17 could be plus/minus ten percent. If bioequivalence
- 18 were waived and then the manufacturers were relying
- 19 on dissolution to show equivalence and if, indeed,
- 20 they had test and reference products that were at
- 21 the extremes of that range and one was plus ten and
- 22 the other was minus ten, are there any data to say
- 23 there would be clinical relevancy to that
- 24 difference?
- DR. HUSSAIN: I think we looked at that

- 1 quite extensively, and for Class I drugs we don't
- 2 think there is a reason to believe that. If we
- 3 were looking at only one pH condition, then I would
- 4 not be confident with that. That is the reason we
- 5 request multiple pH conditions. The reason for not
- 6 relying on one pH condition is, for example, a
- 7 wheat base. If you just do the dissolution in 0.1
- 8 normal HCL that may not truly be reflective or
- 9 discriminating under, say, a less acidic condition,
- 10 and so forth. That is the reason we went with
- 11 multiple pH conditions.
- DR. BOEHLERT: Would that imply that the
- 13 product would be continually tested at those
- 14 multiple pH conditions, or would you refer it just
- 15 to the 0.1 normal HCL and would that be enough to
- 16 show a difference in physical properties?
- DR. HUSSAIN: The multiple pH conditions
- 18 come into play when there is a request for a waiver
- 19 or there is a substantial formulation change under,
- 20 say, the SUPAC. For routine quality control or
- 21 quality assurance you will have the traditional
- 22 classification.
- DR. LESKO: I just want to clarify that a
- 24 bit. With the Class I drugs, when you talk about
- 25 dissolution it is possible to have a single time

- 1 point. In other words, if the products dissolve
- 2 within 15 minutes, 85 percent, then we will look at
- 3 that and say they are the same because that is such
- 4 a trivial difference. On the other hand, if the
- 5 dissolution goes to 30 minutes, we then would look
- 6 at a profile and what we are looking at is
- 7 basically two profiles, a test product and a
- 8 reference product. The statistics that are used to
- 9 differentiate those are called the F-2 statistic.
- 10 The reality is that to have an F-2 of 50 or
- 11 greater, which is "passing," you need to have very
- 12 similar profiles and they can differ by no more
- 13 than ten percent between the test and the
- 14 reference. So, you really can't have ten on this
- 15 side or ten on that side. It is really comparing
- 16 the two profiles. Generally the differences that
- 17 cause something to not pass an F-2 statistic occur
- 18 very early on, say, in the first five minutes or
- 19 first ten minutes where, clinically speaking, I
- 20 doubt that they are important but we do have that
- 21 standard in place to look at that.
- DR. LEE: Bill?
- 23 DR. JUSKO: I am in strong agreement with
- 24 the theoretical and practical arguments pertaining
- 25 to the Class I type of drugs in relation to

- 1 bioequivalence, but I don't have a very good
- 2 feeling for the extent of literature that confirms
- 3 these observations. There were early review
- 4 articles and now I am hearing that it is rather
- 5 difficult to determine permeability of these
- 6 compounds so it is uncertain with a new chemical
- 7 entity exactly what its permeability is so as to be
- 8 able to preclassify it in this group.
- 9 Is there any better evidence for numbers
- 10 of drugs that have been evaluated to find that
- 11 there is no problem with bioavailability or
- 12 bioequivalence for Class I compounds?
- DR. HUSSAIN: I think the hesitation to
- 14 say a drug is Class I and Class II has sort of
- 15 regulatory implications, in a sense. Unless we
- 16 follow the guidelines that we have provided to
- 17 classify we hesitate to say this is Class I and
- 18 Class II. But, clearly, we have a sense of what
- 19 the likelihood is, and based on that, I think
- 20 Ameeta did an internal survey and I think Aziz has
- 21 published extensively on that too. So, maybe they
- 22 can comment on that. So.
- DR. KARIM: I think I agree with the
- 24 theoretical background that if you have a Class I
- 25 drug, in vitro dissolution specially F-2 tests

- 1 would be appropriate, and you don't even have to do
- 2 the food effect study. But, believe me, I feel
- 3 that determining permeability has not been
- 4 established, and that is a big issue. I mean, you
- 5 talk about absolute bioavailability of 90 percent.
- 6 For how many drugs do we have absolute
- 7 bioavailability or 90 percent? Very few. So, to
- 8 me, the major unknown is permeability. I think to
- 9 measure solubility is very easy. To measure
- 10 dissolution is also reasonable. That is why I use
- 11 the food effect response as a way of classifying
- 12 whether the drug is Class I or not and it works
- 13 very well.
- So, to answer your question, if you have a
- 15 Class I drug and truly establish that it is a Class
- 16 I drug, then I think I am all in favor of the
- 17 guidance that you don't need to do a bio study.
- DR. HUSSAIN: Again, I would respectfully
- 19 disagree with that in a sense because folks who are
- 20 familiar with CACO 2 and other methodologies, and
- 21 so forth, are very confident of their method. So,
- 22 our position essentially is that in vitro methods
- 23 are acceptable under certain conditions once you
- 24 have established method suitability, and so forth.
- 25 And, just relying on a food effect study to

- 1 classify a drug was not an acceptable method in our
- 2 guidance. The reason is that permeability is based
- 3 on extent of absorption and you do see food effect
- 4 for highly soluble, highly permeable drugs that
- 5 have a high first-pass effect, and those are the
- 6 two drugs we selected for the study. So, that is
- 7 sort of our position.
- 8 DR. LEE: I think we are caught in a
- 9 circular argument. My sense is that question 1.1
- 10 is premature. Yes?
- 11 DR. SHEK: Just one comment, looking at
- 12 the way the question is being phrased--
- DR. LEE: Yes?
- 14 DR. SHEK: --it talks about bioequivalence
- 15 about ANDAs. It doesn't say anything about the
- 16 existing labeling for the reference, whether that
- 17 indicates it might be a Class I and indicates
- 18 specifically food effect. Will that be taken into
- 19 consideration, or how is that going to be handled?
- 20 I don't know how many of those 40 ANDAs have
- 21 something in the labeling about food effect. And,
- 22 if we don't do the study will the labeling be
- 23 changed?
- DR. CONNER: Well, I can tell you our
- 25 current policy for what triggers us to ask an ANDA

- 1 sponsor for a fed bioequivalence study, and you
- 2 have to differentiate between a food effect study
- 3 which asks if there is a food effect on the product
- 4 or the drug substance versus a fed bioequivalence
- 5 study where the two products are compared under
- 6 equivalent or the same fed conditions. The trigger
- 7 that causes us to ask for a fed bioequivalence
- 8 study is some mention of food in the innovator
- 9 labeling, the reference listed drug labeling.
- 10 People are often confused by saying, well, so it
- 11 has to be some positive food effect; there is a
- 12 change. Simply saying, you know, in the labeling
- 13 we have studied it and there isn't any is enough to
- 14 cause us to ask an ANDA sponsor for a fed
- 15 bioequivalence study. So, almost any reasonable
- 16 mention at the current time of food in the labeling
- 17 will cause us to ask for a fed bioequivalence
- 18 determination of an ANDA sponsor. I think that is
- 19 actually in this guidance. This question simply
- 20 says, okay, we have gone there; we have determined
- 21 that we need some kind of decision or determination
- 22 of fed bioequivalence studies but, further, if it
- 23 is a Class I drug we could still waive the
- 24 necessity for that in vivo study based on what we
- 25 have just described here and discussed. So, that

- 1 is basically our current policy and how we hope or
- 2 have proposed it to evolve in the this guidance.
- 3 DR. MEYER: I think we have to remember
- 4 though that permeability is drug specific. It has
- 5 nothing to do with the formulation. So, even if we
- 6 are off a bit in our permeability assessment, the
- 7 key measurements to me are the solubility that is
- 8 fairly rigorous, that is fairly reasonably defined,
- 9 the highest dose in a certain volume; dissolution
- 10 over a range of pH's, which I think is excellent;
- 11 and very rapid dissolution for Class I drugs.
- 12 So, given that scenario, I feel
- 13 comfortable, I think, with the Class I waiver.
- 14 Going beyond that I feel much less comfortable.
- 15 So, I think there is a lot of rationale here. If
- 16 you don't like what they are presenting, how are
- 17 they going to fix it is really the 1.2 question.
- 18 What additional data and what types of experiments,
- 19 what does the committee need to see next time in
- 20 order to say, well, they are right?
- DR. LEE: Yes, Larry?
- DR. LESKO: I want to get back to the
- 23 discussion of the permeability issue because it is
- 24 one that is already established in our guidance.
- 25 In other words, we can now, today, allow a sponsor

- 1 to identify a drug as a Class I drug based on
- 2 solubility and permeability in a way that we have
- 3 indicated in the BCS guidance which came out in
- 4 2000. So, I think we have established some
- 5 standards already on how to define permeability,
- 6 and we can probably better not go back and debate
- 7 that today but the question is, given that
- 8 standard, can we then extrapolate it to the fed
- 9 state?
- Now, behind that standard, when we put the
- 11 2000 guidance out on the BCS for fasting studies
- 12 there was a fairly extensive database of 30 drugs
- 13 in which we actually measured permeability, extent
- 14 of absorption, and then correlated the two. That
- 15 then was built into the guidance in that a company
- 16 would standardize their CACO 2's using internal
- 17 controls that represent those drugs in that
- 18 database. So, there was a continual linkage of
- 19 human data to CACO 2 and to the other
- 20 circumstantial evidence such as extent of
- 21 absorption that gave reliability to characterizing
- 22 something as permeability.
- I am not sure how we can do much better
- 24 with permeability, other than do human studies all
- 25 the time. But we did get to the point, and we did

- 1 present to the committee here, the ACPS, the
- 2 fasting BCS guidance and the standards we were
- 3 going to use for permeability, and that has been in
- 4 place now for a year and a half. So, I just want
- 5 to remind people that we are not crossing new
- 6 ground with this permeability definition.
- 7 DR. LEE: Art?
- 8 DR. KIBBE: Just a couple of things, and I
- 9 love being a devil's advocate so I will probably
- 10 raise some issues. But to start with, when drugs
- 11 are marketed, in the labeling they usually have
- 12 indications as to whether to take them with food or
- 13 without food. If you have a drug on the market
- 14 that is clearly indicated to take without food,
- 15 then the question in my mind is why do we care
- 16 about a food study if patients are told not to take
- 17 it with food anyhow? If they follow the
- 18 instructions, and if their physician and clinician
- 19 get them to do it correctly, they are not going to
- 20 even introduce that variable. So, if you have a
- 21 Class I drug whose labeling from the innovator says
- 22 take it without food, or take it on an empty
- 23 stomach, it is almost a moot question to try to
- 24 look for the other.
- 25 The second, what we are saying in effect

- 1 by waiving food studies for Class I drugs is that
- 2 we cannot imagine a formulator formulating
- 3 something where a formulation would interact with
- 4 food differently than any other formulation, and I
- 5 am not prepared to say that. So, I don't know how
- 6 I respond to that situation because the
- 7 classification is all about the active ingredient,
- 8 and the interaction that we care about when we do a
- 9 bioequivalence study is not about the active
- 10 ingredient; it is about the formulation. So, at
- 11 that point I am saying, well, as long as you use
- 12 spray dry lactose for your direct compressible I
- don't care if you do a fed study because lactose
- 14 dissolves so fast that it is out of the way and
- 15 leaves the drug behind. But if you use a directly
- 16 compressible product made out of the chick bean
- 17 grown in Upper Uganda I don't like it. mean, that
- 18 whole road is kind of difficult for me.
- 19 DR. HUSSAIN: Just to add to that, that is
- 20 the reason why a waiver is limited to immediate
- 21 release dosage forms, not even suggesting it is for
- 22 modified release. In fact, Ameeta kept mentioning
- 23 theophylline and the dose dumping situations that
- 24 we have with theophylline were for modified release
- 25 only. So, we are talking about immediate release

- 1 dosage forms that dissolve rapidly under different
- 2 pH conditions. The focus is on formulation
- 3 similarity from that respective. So, you are
- 4 talking about pharmaceutical equivalence. You are
- 5 looking at an excipient database of an acceptable
- 6 set of excipients and then you are looking at
- 7 similarity and dissolution as a function of the pH.
- 8 DR. KIBBE: So, what you are saying is
- 9 that I could use starch 1500 as a directly
- 10 compressible excipient, and the agency says it is
- 11 exactly the same as lactose.
- DR. HUSSAIN: No, we are not saying that
- 13 the excipients are the same. The excipients could
- 14 be different but as long as the product dissolves
- in a comparatively similar profile under different
- 16 pH conditions that should be okay. In fact, I will
- 17 turn that around. I say, all right, now you have a
- 18 direct compression tablet, say, based on dicalcium
- 19 phosphate. All right? Then you have a formulation
- 20 based on starch lactose. So, if you look at it,
- 21 the dose would still be pharmaceutically equal and
- 22 they have very different sort of pH behavior.
- 23 Dicalcium phosphate tends to be fairly highly
- 24 soluble at pH 1 but the solubility goes down at pH
- 25 2, and so forth. So, a product containing that

- 1 will not have a similar dissolution profile as that
- 2 of starch or lactose based formulation. So,
- 3 actually dissolution is far more discriminating
- 4 under those conditions for a formulation difference
- 5 than in vivo. In fact, my concern is that I think
- 6 the dissolution that we are recommending is far
- 7 more conservative for the fed state.
- 8 DR. KIBBE: What you are saying is that
- 9 the generic which has that is going to have to
- 10 prove that there is no food effect because a
- 11 dissolution study isn't going to be similar.
- DR. HUSSAIN: Unfortunately, yes.
- DR. WILDING: I would like to echo Ajaz'
- 14 comments. I mean, that is the key here in the
- 15 sense that if those two formulations are rapidly
- 16 dissolving and meet the current requirements under
- 17 the BCS guidance, then given the fact that they are
- 18 going to be extended in their residence time in the
- 19 stomach and they have longer to dissolve in vivo,
- 20 it is a very conservative approach that we are
- 21 taking in this particular regard. I think as was
- 22 indicated by one of your colleagues, if we go
- 23 outside Class I it is a whole new ball park. In
- 24 the context of Class I, I think given we have an
- 25 acceptance of in vitro bioequivalence for Class I

- 1 compounds taking it into the fed domain is actually
- 2 not a big leap of faith.
- 3 DR. MEYER: Could I ask just one question?
- 4 In all the comments that you received, did anyone
- 5 cite an example that said, well--I like Ajaz'
- 6 approach of if there are two formulations and I
- 7 have all the wealth at my command I can make
- 8 whatever formulations I want, can I make two that
- 9 will dissolve in 15 minutes; will have similar
- 10 dissolution profiles but will have a pronounced
- 11 different food effect? Did anyone comment with an
- 12 example?
- DR. PAREKH: No.
- 14 DR. MEYER: So, we are dealing with a fear
- of the hypothetical or a fear of the unknown, and
- 16 the only way to prove the unknown is to do
- 17 everything which is going to be very expensive.
- DR. LESKO: But related to that, there is
- 19 prior information that we can go back to. When we
- 20 did the original research with the BCS we did make
- 21 formulations designed specifically to be far apart
- 22 in their dissolution profile, huge differences in
- 23 dissolution, probably more so than you would expect
- 24 to see even with food and fasting. Those
- 25 dissolution differences for the Class I drugs did

- 1 not translate into bioinequivalence in in vivo
- 2 studies. They were very close to being
- 3 superimposable in essence.
- So, we know that. I mean, that is prior
- 5 information. We have that document not only for
- 6 the model drugs, in this case propranolol and
- 7 metoprolol, but some other drugs as well. I think
- 8 that is useful information as background to have
- 9 with regard to differences in dissolution for Class
- 10 I drugs and what it means in vivo for
- 11 bioequivalence.
- I also want to comment on Dr. Kibbe's
- 13 comment, and maybe Dale can confirm it but I
- 14 believe if the label says "take on an empty
- 15 stomach" there is no food effect for an ANDA
- 16 because, you are right, patients aren't going to
- 17 take it that way. Is that correct, Dale?
- DR. CONNER: Yes. I think that is
- 19 supported by the language in this guidance.
- 20 However, if you read a lot of labeling, you know,
- 21 you expect these definitive statements which really
- 22 aren't there. I mean, a lot of times that type of
- 23 statement which you mentioned will say, we
- 24 recommend--you know, I am not literally
- 25 translating, we recommend that you kind of take

- 1 this with food, leaving the option open to the
- 2 physician or the patient to say, well, you know, I
- 3 don't really want to take it with food, or
- 4 sometimes I want to take it with food and sometimes
- 5 not. As long as you leave discretion open to the
- 6 clinician or to the patient you don't have a
- 7 definite "must take with food." So, I would say
- 8 that if the labeling is very strong, the
- 9 instruction saying "do not take this with food," or
- 10 "take only on an empty stomach," then I agree with
- 11 you, that should kick into place. But if it is
- 12 very wishy-washy, giving discretion to the
- 13 clinician or the patient I would say we have no
- 14 guarantee that they are not going to instruct the
- 15 patient, you know, if it will upset your stomach
- 16 take it with food, or don't.
- 17 DR. LEE: I think we do need to move on.
- DR. HUSSAIN: One point that has not been
- 19 made and I just want to make is that in terms of
- 20 bioequivalence studies, the fasting studies are far
- 21 more discriminating than the fed studies. That has
- 22 been our position. So, if we waive a fasting study
- 23 it is logical that we would waive a fed study. So,
- 24 we are actually caught in a logical bind here
- 25 because when we put the BCS guidance together we

- 1 went for the most difficult part and left the
- 2 easier part, in my opinion, behind. So, there is
- 3 an inconsistency in our approach with BCS.
- 4 DR. LEE: Yes, I think this is the
- 5 conclusion I want to draw. I am glad that you said
- 6 it, and I think on that basis we should move on.
- 7 Sometimes you don't have data in the literature
- 8 because it can never be published.
- 9 The question then is what other additional
- 10 evidence will you need to make yourself feel
- 11 better? I think that has to be on a case by case
- 12 basis. It depends on the mechanism, complexation
- 13 and all that kind of stuff. Isn't that true?
- 14 DR. DOULL: Wasn't that Marv's suggestion?
- 15 The question of what additional information would
- 16 you need, the question is what do you really need
- 17 to know versus what would be nice to know. The
- 18 need to know would be additional Class I drugs.
- 19 You know, we really only have the two just to prove
- 20 this hypothesis. So, the question is how much more
- 21 information do you really need in order to be
- 22 comfortable with accepting that all Class I drugs
- 23 should not meet that food criteria?
- DR. LEE: More sponsor studies.
- DR. DOULL: More drugs, information on

- 1 more drugs.
- DR. HUSSAIN: I am not sure. Let me sort
- 3 of summarize. The question is are we willing to
- 4 agree or make a recommendation that with the
- 5 guidance, as it is in the draft form right now, we
- 6 can move ahead and make the recommendation that the
- 7 waiver for food effect bioequivalence studies for
- 8 Class I rapidly dissolving drugs is okay. That is
- 9 the question.
- 10 DR. KARIM: Just to comment, who puts the
- 11 rubber stamp that this is a Class I drug?
- DR. HUSSAIN: It is a review decision.
- 13 So, FDA.
- DR. MEYER: Do we need to come to a
- 15 consensus?
- DR. LEE: Well, I don't think we need to
- 17 come to a consensus. I think what is important is
- 18 for the agency to hear what our individual
- 19 collective thoughts are. Some issues may not ever
- 20 come to consensus. It has taken them about seven
- 21 years to--
- DR. LESKO: That was the debate about
- 23 food. But to answer Dr. Karim's question, the
- 24 specific review division that is looking at the
- 25 application makes that decision, but a lot of those

- 1 decisions are discussed within the BCS technical
- 2 committee as well. So, it is really a collective,
- 3 joint decision between the Office of Generic Drugs
- 4 and the Office of Clinical Pharmacology.
- 5 DR. MEYER: In case my individual opinion
- 6 then wasn't heard, I am in favor of the proposal.
- 7 DR. LEE: So, what about question number
- 8 two, the confidence intervals?
- 9 DR. SHARGEL: I have a question on that,
- 10 if I may, Vince. My understanding from the agency,
- 11 as you mentioned, Dr. Conner, is the question of
- 12 clinical risk. In the past we have only done point
- 13 estimates. From what I understand, the desire for
- 14 confidence intervals is to have a more rigorous
- 15 test. If we use a more rigorous test, the data
- 16 showed that five studies out of 40 failed. Those
- 17 would not have been approved on the basis of the
- 18 new guidance if it were formalized.
- 19 DR. CONNER: Basically, presumably if you
- 20 knew the new criteria you would have done those
- 21 studies all properly powered. You know, I am
- 22 looking at them again not with a lot of in-depth
- 23 analysis of those particular studies and probably
- 24 three of them with somewhat more power would have
- 25 likely passed. Two of them would have had a great

- 1 deal of difficulty and would probably have failed
- 2 no matter what the power. But we can't definitely
- 3 say that. It just looks like to me that the ones
- 4 that had such extreme AUC values, I am not really
- 5 sure power would have helped those if the criteria
- 6 were changed.
- 7 As you know, when you change the criteria
- 8 people then adapt to the change and design their
- 9 studies accordingly with, hopefully, appropriate
- 10 power calculations. I actually found this even a
- 11 little surprising, that so many from a randomly
- 12 selected group like this would have passed using
- 13 the power that people use to power for point
- 14 estimates. I was pleasantly surprised. I expected
- 15 it to be a small difference but the results of the
- 16 group we picked surprised me. I would have
- 17 expected a few more to be on the edge but I was
- 18 pleasantly surprised when we actually looked at the
- 19 values.
- DR. SHARGEL: May I just continue on this
- 21 a little bit because I am just curious in terms of
- 22 if there is no risk, clinical risk, what the basis
- 23 is for a more rigorous test. What we are doing is
- 24 we are using a meal that gives maximal
- 25 perturbation, as has been mentioned, and this would

- 1 give the largest variability to be observed on Cmax
- 2 and AUC. Generally in the labeling it would say
- 3 food effects of the drug but it never really
- 4 specifically says what kind of food, so that any
- 5 sort of diet--I prefer a bagel and cream cheese in
- 6 the morning; that is my preference--we would know
- 7 if there is a clinical effect of the food. If
- 8 there is a clinical effect, then you would say take
- 9 it without food, in the development of the product
- 10 if there is a big effect in the bioavailability
- 11 study. Or, if there is reason to take it with
- 12 food, we already require the 90 percent confidence
- 13 interval. So, my question here really is, is the
- 14 requirement here really necessary to have a more
- 15 rigorous test? And, what does it mean if we fail
- 16 in terms of safety risk?
- DR. CONNER: Well, there are a great many
- 18 products that are labeled out there with simply a
- 19 descriptive statement of a food effect and, in some
- 20 cases, how much, the estimate of how much. It
- 21 doesn't mean that those are unusable products. It
- 22 doesn't mean that they are automatically restricted
- 23 from taking with food. A lot of it is in that area
- 24 of concern where I think the firm and the division
- 25 that is reviewing it at FDA feel that it is

- 1 important to let clinicians know about that. But,
- 2 based on the labeling, the physician can still use
- 3 that drug under those conditions as long as that
- 4 effect is known.
- 5 Granted, although there is some variance
- 6 in the type of meals that people do for NDAs, I
- 7 think in most modern NDAs we have a very similar
- 8 meal used. In fact, part of what this guidance
- 9 does is to bring the ANDA meal and the NDA meal to
- 10 be the same thing. So, basically what we are
- 11 saying is, no matter what other food studies are
- 12 done, the NDA will have a determination of the
- 13 effect on bioavailability with a virtually
- 14 identical meal. So, I mean, that will be part of
- 15 the NDA and part of the labeling.
- I think from a statistical standpoint,
- 17 this is really just saying that, you know, we are
- 18 doing a test here. The meal that we have chosen,
- 19 as has been said before--you know, we can't really
- 20 test every conceivable meal. I don't think the
- 21 generic industry would want to go in for that kind
- of thing, doing 30 different meals and 30 different
- 23 studies. So, if we only have one study to do, the
- 24 meal that we have chosen I think has the most
- 25 likelihood of being extreme and causing an effect.

- 1 So, if we don't see an effect under those
- 2 conditions, we are reasonably confident that lesser
- 3 meals or meals that are less stressful to the
- 4 dosage form are going to have any effect. I mean,
- 5 if you only have one chance you use the maximum
- 6 possibility to obtain an effect.
- 7 From a statistical standpoint, we would
- 8 like at the end of the day to say that these are
- 9 equivalent, that a generic is equivalent to the
- 10 reference listed drug under reasonable conditions
- 11 of us. You know, what we have been doing for many
- 12 years is good but it hasn't really been a true
- 13 equivalence statement, based on a true statement of
- 14 equivalence. And, what we are trying to do here is
- 15 perhaps improve that somewhat so that we can with
- 16 total confidence say that these two are equivalent
- 17 under reasonable conditions of use.
- DR. LEE: Jurgen?
- 19 DR. VENITZ: I would like to follow-up on
- 20 that because I am still trying to understand what
- 21 it is that you are exactly proposing. You are
- 22 saying for any non-Class I drug, regardless of the
- 23 label of the reference drug, a generic has to show
- 24 fasting and fed bioequivalence?
- DR. CONNER: No, that is not what we are

- 1 saying at all. We are saying that based on the
- 2 label of the reference listed drug, should that
- 3 label contain any statement about a food effect and
- 4 most, if not all, of the modern drugs that were
- 5 recently approved, within the last few years, will
- 6 have some type of statement about food effect. If
- 7 you look at, you know, twenty years ago, NDAs or
- 8 products that are still out, a lot of them didn't
- 9 do food studies or they didn't think it was worth
- 10 putting in the labeling, and so forth, a statement
- 11 about food in those old products may be totally
- 12 absent. Those would not trigger us to ask for a
- 13 food study. But any statement of a food effect in
- 14 the reference listed drug labeling will trigger a
- 15 question about whether it is bioequivalent in the
- 16 fed state as well. And, based on the type of
- 17 product or the type of drug substance we are
- 18 proposing dealing with it in different ways. You
- 19 know, if it is a Class I drug we will deal with,
- 20 you know, what the first part of the discussion
- 21 was. If it is not a Class I, then we will do a
- 22 food study, which we would do today. The only
- 23 question is how should we power that study, and how
- 24 should we analyze it, and what kind of conclusion
- 25 can we come up with based on that approach.

```
DR. VENITZ: So, as long as there is any
```

- 2 statement but it says there is no food effect, then
- 3 the official bioequivalence for the fed state--
- 4 DR. CONNER: Yes.
- 5 DR. VENITZ: --or if there is a food
- 6 effect.
- 7 DR. CONNER: I can tell you during the
- 8 five, seven, twelve years, whatever, we went
- 9 through a lot of discussion, a lot of proposals to
- 10 perhaps not make it such a label-based trigger for
- 11 having food considerations. We looked at a lot of
- 12 information on whether the original effect was drug
- 13 substance related, formulation related and so
- 14 forth, the assumption being, well, if we can
- 15 absolutely prove it is drug substance food effect
- 16 it is going to be the same for a generic versus
- 17 not. We went through a lot of this and had some
- 18 proposals to do that, but we finally figured out
- 19 that 99 percent of the time we don't know or are
- 20 unable to determine. So, we seldom, if ever, have
- 21 the data to answer it and we would end up doing
- 22 food studies virtually for everything anyway.
- DR. VENITZ: But the consequence then of
- 24 having done a generic fed study and having failed
- 25 that study would be the generic would not be

- 1 approved or you would relabel?
- 2 DR. CONNER: No, the generic would not be
- 3 approved without a passing study. But that is true
- 4 today. I mean, with the criteria that we are
- 5 looking at today, and really the major change here
- 6 is not doing more studies but simply how we are
- 7 doing the studies that the generic sponsor would do
- 8 anyway.
- 9 DR. VENITZ: And how would that compare to
- 10 the NDA route?
- DR. CONNER: I mean, what we are talking
- 12 about here is a bioequivalence study, which is one
- 13 of the few studies that is done to get a generic
- 14 product on the market. The NDA has literally
- 15 sometimes hundreds of studies of different types,
- 16 many of them bioavailability, a lot of them
- 17 clinical studies, studies on a lot of aspects of
- 18 the drug substance and drug product and how it
- 19 performs clinically. With a generic you
- 20 essentially have anywhere from one to perhaps three
- 21 or four, at the maximum, small in vivo studies to
- 22 be able to make the decision to approve that and
- 23 put it on the market.
- DR. VENITZ: But in terms of assessing a
- 25 food effect you would use the same approach

- 1 basically?
- DR. CONNER: We are not assessing a food
- 3 effect.
- DR. VENITZ: No, I understand, but I am
- 5 saying if you are in an NDA situation so you are
- 6 not talking about generic bioequivalence and you
- 7 want to assess the food effect you would use the
- 8 same approach?
- 9 DR. CONNER: A very similar one.
- 10 DR. PAREKH: But the final decision is not
- 11 that of non-approval for NDAs. The final decision
- 12 is if you fall within this window you can say in
- 13 the label that there is no food effect.
- DR. LEE: Let's come back to question
- 15 number two. Art?
- DR. KIBBE: Just to go down another
- 17 wonderful side path, you decided to limit the
- 18 waiving of a food study to an immediate release
- 19 because you can get good dissolution data that
- 20 would overlap on immediate release, as well as the
- 21 fact that the Class I drug is highly soluble, and
- 22 what-have-you. But if I make a sustained release
- 23 product out of a Class I drug and someone else does
- 24 and we have clearly overlapping dissolution data,
- 25 and the criteria that we are looking at clearly is

- 1 the effect of food on dosage form, is there
- 2 evidence that there will be a problem with food
- 3 when you have delayed release products?
- 4 DR. HUSSAIN: I think to answer that
- 5 question, if I look at the example of theophylline
- 6 controlled release, modified release, the mechanism
- 7 for dose dumping there was different. Jerry Skelly
- 8 and others have actually done in vitro work that
- 9 actually showed that could be predicted. But our
- 10 confidence in in vitro is not at that level at this
- 11 point to go in that direction. So.
- 12 DR. KIBBE: If it is not an effect on the
- 13 drug moiety itself, the active ingredient, then it
- 14 is a matter of how confident you are in the
- 15 formulations being truly similar even if they give
- 16 the same dissolution profiles.
- DR. HUSSAIN: The question is can you rely
- 18 on in vitro dissolution to understand the complex
- 19 mechanisms. Our answer is no, not at this time.
- DR. LEE: Mary?
- 21 DR. MEYER: I tried to jot down the
- 22 reasons why not to use confidence limits. One, no
- 23 one takes drugs with a meal of any type. Well,
- 24 that is obviously not true and since we don't know
- 25 what type let's use the worst condition, confidence

- 1 limits are not a valid measurement of
- 2 bioequivalence. I think if they are good enough
- 3 for fasted, they are good enough for fed. Highly
- 4 variable drugs will pose a problem, and if they
- 5 somehow scrape by fasted they may not scrape by
- 6 fed. Well, that is an economic issue and that is a
- 7 statistical issue and it may be that we need to
- 8 change the stats for both fed and fasted to somehow
- 9 capture a point estimate and the variability of the
- 10 reference relative to the test, or vice versa but
- 11 that is a side issue. Too many failures. Well, we
- 12 have shown here that about five out of 40 would
- 13 fail marginally. With a proper designed study they
- 14 wouldn't. There would be like two or three out of
- 15 40. It would cost too much money; too many
- 16 subjects. We would have to again change our
- 17 statistics. I think FDA can't worry about public
- 18 health in the context of a \$50,000 or \$10,000
- 19 bioequivalence studies that some sponsor may have
- 20 to conduct. Numbers of subjects, we are still only
- 21 talking 30, 40 subjects. So, I think the reasons
- 22 why not to have confidence limits aren't
- 23 substantiated, and I have always felt that if
- 24 fasted need confidence limits, then fed need
- 25 confidence limits.

- 1 DR. LEE: Other points of opinion?
- DR. MOYE: I guess I should say on the
- 3 record that at the conclusion of this session I
- 4 will turn over a synopsis of an alternative
- 5 analysis that would avoid the indirect approach of
- 6 confidence intervals, and would allow one to now
- 7 include this measure of variability that has been
- 8 excluded from the analyses.
- 9 DR. LEE: So you will have this synopsis
- 10 as food for thought.
- DR. MOYE: As an admissible alternative.
- 12 DR. PAREKH: This is just for the record,
- 13 Dr. Meyer, you asked a question earlier about the
- 14 point estimates. For the two products that failed
- on AUC the point estimates were 1.22 and 1.20. For
- 16 the three that didn't make it on Cmax, it was 0.86,
- 17 0.87 and 0.88.
- DR. LEE: Are you satisfied?
- DR. MEYER: Yes.
- DR. LEE: Are there any other ideas or
- 21 suggestions, opinions? If not, thank you very
- 22 much. That concludes the agenda item on food
- 23 effect of BE studies. Now we are into the public
- 24 hearing. We have three submissions. The first two
- 25 cannot make it here, and we do have the last person

- 1 here, Russ Rackley. For the record, I have asked
- 2 Kathy to read the first two, and you all have that
- 3 in your notes.
- 4 Open Public Hearing
- 5 MS. REEDY: Yes, the right side of your
- 6 red folder has your agenda, your questions and the
- 7 open public hearing submissions in writing. On the
- 8 left side are the slides that were submitted in
- 9 advance. For the slides that were not submitted in
- 10 advance, they may show up at the time of their
- 11 presentation.
- 12 But for the open public hearing, the first
- 13 submission is from Brian Kearney, senior scientist,
- 14 clinical pharmacology, Gilead Sciences.
- 15 Guidance for industry food effect
- 16 bioavailability and fed bioequivalence studies,
- 17 commentary on the following issues is not currently
- 18 included in the draft guidance and FDA
- 19 Pharmaceutical Advisory Committee perspectives
- 20 would be much appreciate. One, please comment on
- 21 the acceptability/utility of parallel study designs
- 22 and/or secondary statistical analyses of PK data,
- 23 collected across studies, to evaluate food effects.
- 24 For example, could pharmacokinetic data derived
- 25 from fed studies in later stage PK studies b

1 compared to fasted, reference data from a previous,

- 2 formal crossover food effect study?
- 3 Two, while single dose studies are
- 4 preferred as they are the most sensitive to food
- 5 bioavailability effects, please comment on the role
- 6 and acceptability of steady state comparisons for
- 7 compounds with a short elimination half-life and/or
- 8 with predictable, reproducible PK profiles. Those
- 9 are Brian's comments.
- 10 The next is David Fox, writing to present
- 11 the views of Abbott Laboratories on a matter
- 12 scheduled for discussion at the upcoming meeting of
- 13 the Food and Drug Administration's Advisory
- 14 Committee for Pharmacologic Science on May 7th and
- 15 8th, 2002.
- 16 Specifically, we wish to comment on the
- 17 draft guidance document titled, "Food Effect
- 18 Bioavailability and Fed Bioequivalence Studies:
- 19 Study Design, Data Analysis and Labeling." We ask
- 20 that the committee carefully consider our written
- 21 submission in the course of its deliberations.
- The food effect guidance recognizes that
- 23 foods and beverages often have a clinically
- 24 significant effect on the bioavailability of an
- 25 active drug ingredient or on the bioequivalence of

- 1 two different formulations of the same active
- 2 ingredient. Food effect guidance at 2. A growing
- 3 number of drug products now bear labeling that
- 4 describes a significant food effect, a trend which
- 5 Abbott believes is good for patients. Food effect
- 6 labeling contributes to consistent and more
- 7 accurate dosing and can help patients adopt a
- 8 routine set of conditions under which they take
- 9 their medicines.
- 10 Second, the food effect guidance
- 11 recognizes the need for bioequivalence studies
- 12 under fed conditions, particularly where the
- 13 reference of the pioneer product bears food effect
- 14 labeling. Food effect guidance at 4.
- 15 Food effects may be formulation specific,
- 16 and two different versions of the same drug may
- 17 react differently in the presence of food. In
- 18 fact, two products may react differently depending
- 19 on the quantity or type of food used. And, he uses
- 20 a reference discussing an example of two products,
- 21 each with the same active ingredient and dosage
- 22 form that had clinically significant
- 23 bioavailability differences depending on whether
- 24 the drugs were taken with chocolate milk, apple
- 25 juice or orange juice. For these reasons, the

- 1 guidance endorses the need for well-controlled and
- 2 well-designed fed bioequivalence studies where the
- 3 reference product has a noted food effect. Food
- 4 effect guidance at 3, noting that the mechanism by
- 5 which food may affect bioavailability is often
- 6 unknown and cannot be determined by physical
- 7 inspection of in vitro study.
- 8 Abbott agrees and compliments the agency
- 9 for recognizing these points. Abbott's
- 10 concern, however, is that the agency has not gone
- 11 far enough to address the variable bioavailability
- 12 seen by many drugs under different meal conditions,
- 13 nor has the agency taken steps to ensure that
- 14 bioequivalence studies performed by applicants
- 15 under abbreviated new drug applications follow the
- 16 same meal conditions used in the study of the
- 17 reference drug product. Instead, the agency
- 18 recommends only the use of a high-fat, high-calorie
- 19 test meal to provide the greatest effects on
- 20 gastrointestinal physiology so that systemic drug
- 21 availability is maximally affected, food effect
- 22 guidance at 6.
- For a product with a known sensitivity to
- 24 food, the agency's approach in many instances is
- 25 likely to mask or obliterate important formulation

- 1 differences. The better approach, we suggest, is
- 2 to require fed bioequivalence studies under the
- 3 meal conditions suggested in the labeling or, if
- 4 the labeling is not specific, under the meal
- 5 conditions likely to be followed by patients who
- 6 use the drug. Alternatively, the sponsor of a
- 7 bioequivalence study should follow the meal
- 8 conditions that were used to support the efficacy
- 9 of the reference drug product. Patients on a
- 10 low-fat diet who are instructed to take their
- 11 medications with meals should be assured that a
- 12 generic substitute will behave the same under
- 13 low-fat conditions as the pioneer.
- 14 Finally, while the food effect guidance
- 15 allows for the use of other test meals, food effect
- 16 guidance at 7, the guidance puts the decision
- 17 within the discretion of the sponsor. It is the
- 18 generic drug sponsor's choice, for example, to
- 19 conduct a bioequivalence study with a test meal
- 20 other than the maximum 50 percent fat meal
- 21 described introduction he guidance. Abbott
- 22 disagrees with this approach. The guidance must
- 23 recommend the use of a test meal that closely
- 24 reflects the labeled conditions of use or the
- 25 conditions under which the reference drug was

- 1 studied. In fact, by allowing the sponsor to
- 2 select the test meal, FDA invites the real risk
- 3 that the sponsor may use food selection to drive or
- 4 optimize the showing of bioequivalence.
- 5 In short, the agency's thinking on the
- 6 need for bioequivalence studies is pointed in the
- 7 right direction but, at this stage, is too general.
- 8 For products that are food-sensitive, it may be
- 9 impossible to know in advance whether the product
- 10 will behave in a linear or predictable way under
- 11 different meal conditions. Simply comparing two
- 12 products under fasting and high-fat conditions may
- 13 be insufficient, especially when the drug is
- 14 labeled for us under low-fat or other dietary
- 15 conditions. Food effects are not yes/no
- 16 propositions. Far too little is known about food
- 17 effects for FDA to assume the use of one type of
- 18 meal for all drug products.
- 19 For these reasons, we respectfully request
- 20 that the committee consider three related points.
- 21 The first, the need for fed bioequivalence studies
- 22 under conditions other than the maximum 50 percent
- 23 fat meal described in the food effect guidance.
- 24 Secondly, the need for fed bioequivalence studies
- 25 under the conditions of use recommended or

- 1 described in the labeling; and, thirdly, the need
- 2 for fed bioequivalence studies that follow the same
- 3 study design used in the clinical testing of the
- 4 pioneer product. We greatly appreciate your
- 5 attention to this issue.
- 6 DR. LEE: Thank you very much, Kathy, for
- 7 reading it, and I don't think we can ask any
- 8 questions because the presenter is not here. So,
- 9 next I would like to invite Dr. Rackley, from Mylan
- 10 Laboratories to give a ten-minute presentation. He
- 11 is going to be speaking on behalf of the Generic
- 12 Pharmaceutical Association.
- DR. RACKLEY: Thank you. It is an honor
- 14 to be here to speak before you today on behalf of
- 15 the Generic Pharmaceutical Association.
- 16 [Slide]
- 17 ANDAs have been approved and marketed
- 18 since around 1985 with no documented safety issues.
- 19 The demonstrated safety and wide acceptance of
- 20 these products by the general public are indicative
- 21 of the robustness and adequacy of the current
- 22 approval process. We propose that the current
- 23 system for the evaluation of bioequivalent drug
- 24 products be maintained.
- 25 [Slide]

```
1 For current fasting bioequivalency studies
```

- 2 this represents a standard bioavailability
- 3 comparison of test and reference drug products.
- 4 Ninety percent confidence intervals are well
- 5 accepted as demonstration of bioequivalence.
- 6 [Slide]
- 7 For current fed bioequivalency studies,
- 8 the OGD breakfast represents an extreme food
- 9 condition. The standard breakfast allows for
- 10 effect of food on GI motility, the effect of food
- 11 on the bioavailability of the drug in vivo, the
- 12 effect of food on the formulation of the drug.
- 13 [Slide]
- 14 Point estimate criteria is well-accepted
- 15 for the fed studies as further confirmation of
- 16 bioequivalence. The requirement for 90 percent
- 17 confidence intervals for a food effect study does
- 18 not improve the safety of the generic drug product.
- 19 [Slide]
- 20 Regarding post meal administration,
- 21 logistically it is difficult for everyone to
- 22 consume a standardized breakfast in exactly 30
- 23 minutes and then immediately take the dosage form.
- 24 Study subjects should be allowed to consume the
- 25 standard meal within 30 minutes and the dosage form

1 will be administered 30 minutes after the start of

- 2 the meal.
- 3 [Slide]
- 4 Pharmacokinetic parameters to assess
- 5 bioequivalence, AUC and Cmax should remain the
- 6 primary parameters upon which to assess similarity
- 7 of rate and extent of absorption. Expectation of
- 8 Tmax to be comparable is vague and tends to be
- 9 subjective. Tmax should be provided for
- 10 information purposes only, and not held to a
- 11 statistical criteria.
- 12 [Slide]
- 13 Regarding sprinkle studies and special
- 14 foods, if a dosage form is shown to be
- 15 bioequivalent after a stringent fasting study and
- 16 similarity is confirmed by a fed study, there is no
- 17 reason to believe that it will not be bioequivalent
- 18 when taken with a small amount of food.
- 19 We acknowledge there are no examples where
- 20 vehicle has had a significant effect on
- 21 bioequivalency, and these should be well documented
- 22 in labeling under dosage and administration.
- 23 [Slide]
- 24 However, requirements to demonstrate
- 25 bioequivalence, when taken with special foods or

- 1 vehicles, will lead to anecdotal stories and open a
- 2 flood gate for an infinite number of study
- 3 requirements for generic approval. There is no
- 4 doubt that this will be taken advantage of to delay
- 5 generic approvals.
- 6 [Slide]
- 7 Standard breakfast, the FDA standard
- 8 breakfast is adequate for demonstration of food
- 9 effect on bioavailability. The use of alternate or
- 10 unusual food studies may be used as a tactic to
- 11 further delay generic approvals.
- 12 [Slide]
- 13 In conclusion, the current approach for
- 14 performing food effect bioavailability studies
- 15 using a standardized meal is adequate. Unless the
- 16 current methods and criteria represent a danger to
- 17 public safety, we, as responsible scientists and
- 18 citizens, should challenge unreasonable regulations
- 19 and requirements. The existing fasting BE and fed
- 20 BA studies are time-tested methods. Changes to
- 21 these methods increase the burden to the industry,
- 22 delays approvals and does not seem to be justified.
- DR. LEE: Thank you. Are there questions
- 24 for Dr. Rackley?
- DR. SHARGEL: Dr. Meyer mentioned about

- 1 variability drugs, where you have a highly variable
- 2 drug it would seem to me that food effect and
- 3 trying to match 90 percent confidence intervals
- 4 would be very tough. How do you feel about that,
- 5 or widening the intervals past the 90 percent
- 6 confidence intervals, from 0.8 to 1.25?
- 7 DR. RACKLEY: Clearly, a highly variable
- 8 drug product would have had to be powered
- 9 adequately, probably with large numbers of
- 10 subjects, in a fasting study. If the same
- 11 inter-subject CV were to be held or shown for the
- 12 same drug products in a fed study you would likely
- 13 be doing, again, huge size studies. So, where
- 14 there is 10 percent of studies that might not pass
- 15 confidence intervals, you might also factor in that
- 16 some of these studies might have to be done with
- 17 perhaps even over 100 subjects to do a fed study,
- 18 whereas today they demonstrate or reaffirm what a
- 19 rigorous, stringent fasting bio study has
- 20 demonstrated.
- DR. LEE: Larry?
- DR. LESKO: Are you aware of any evidence
- 23 that food can reduce the variability in a highly
- 24 variable drug case where a drug is highly variable
- 25 under fasting conditions, but when you give it with

- 1 fed the variability actually is reduced? I mean,
- 2 as a general assumption the variability is going to
- 3 go up with food, and I would say we haven't seen
- 4 that in the analysis of our own data. When Ameeta
- 5 showed the ANDA data where 35 out of 40
- 6 applications met confidence intervals, it suggested
- 7 that the variability did not change compared to the
- 8 fasting studies, or else not that high number would
- 9 have passed. So, I am not sure of the assumption
- 10 that food increases variability, unless we have
- 11 some evidence to suggest that is one that is
- 12 necessarily valid. Perhaps in the FDA survey that
- 13 was done with 40 drug products, or if they want to
- 14 add more to it, they would provide those point
- 15 estimates and what the estimates for inter-subject
- 16 variability were under fasted and fed conditions.
- 17 That is just a thought. I mean, the data is out
- 18 there. There is plenty of it that comes in every
- 19 year.
- DR. RACKLEY: I guess one question I was
- 21 going to ask about our own database is what was the
- 22 size of the fasting studies for the corresponding
- 23 applications for which you showed fed data. In
- 24 other words, was the fasting study larger or the
- 25 same size?

- 1 DR. CONNER: I don't know the exact
- 2 numbers that correspond to these 40 but generally
- 3 what we usually see is around a 24-subject study
- 4 for most products. You know, we might see up to
- 5 36. The highly variable drugs are, you know,
- 6 special. Fortunately, in the scheme of things they
- 7 are a relatively small problem but they are a very
- 8 special problem which we have to deal with for
- 9 fasting studies as well. I mean, for most drugs
- 10 that are very highly variable we are talking about
- 11 60 or 80 subjects, but there is a very small subset
- 12 where it is over 100, if not more. So, we are
- 13 currently thinking or working on ways to do
- 14 different types of analysis, say, with perhaps the
- 15 ideas on scaling that came out of the individual
- 16 bioequivalence efforts, but those things are not
- 17 ready yet. We still have a lot of work to do on
- 18 working that out, but we hope to eventually have a
- 19 way of dealing specifically with highly variable
- 20 drugs whether we are doing a fasting or a fed study
- 21 that will, you know, come in with a valid approach
- 22 at a reasonable sample size.
- DR. LEE: Very well, thank you. Let me
- 24 summarize this morning. I think this morning we
- 25 have witnessed the progressive approach to

- 1 reexamine the guidance as science evolves, as drugs
- 2 change, and so forth. I think we can come to some
- 3 cautious conclusions, and I think we are kind of
- 4 cautious because we, as scientists, always think
- 5 about exceptions. Also, as a member of the
- 6 committee I would like to suggest thinking about
- 7 meals, new composition, as a possibility to see how
- 8 far that thinking would go. As you can hear from
- 9 our discussion, what is the intent of the guidance
- 10 to look at the food effect.
- 11 On that note, I think we are ahead of
- 12 schedule but in fear of a long discussion this
- 13 afternoon--yes, Art?
- DR. KIBBE: One quick question. Am I
- 15 right as I read the guidance that you have
- 16 eliminated now therapeutic index drugs a priori
- 17 from consideration, or did you just eliminate the
- 18 ones that don't meet the criteria for high
- 19 solubility? The therapeutic index is an indication
- 20 of their interaction with the receptors and not
- 21 necessarily an indication of the nature of the
- 22 chemical itself or the dosage form.
- DR. LESKO: When you say eliminate,
- 24 eliminate from what?
- DR. KIBBE: I thought there was a

- 1 statement in there.
- 2 DR. LESKO: The waiver of NTIs in the food
- 3 guidance is similar to what we did in the BCS
- 4 fasting guidance, and I believe they are excluded
- 5 from bio waivers in both guidances.
- 6 DR. KIBBE: But my point is that that
- 7 isn't necessarily necessary. If the therapeutic
- 8 index is a function of the way the drug behaves in
- 9 the body and our guidances are a way of helping us
- 10 determine equivalence between products, then I am
- 11 having a hard time getting my hand around
- 12 eliminating a narrow therapeutic index drug from a
- 13 waiver just because when you give it, no matter who
- 14 makes it, no matter how it is administered, it is
- 15 the way that it works in the body that is at issue
- 16 and not the dosage form.
- DR. LESKO: I think that is a good
- 18 question and it is probably an open question. We
- 19 have discussed it here in this committee and it was
- 20 related to the level of certainty about the science
- 21 that you wanted to be careful about expanding this
- 22 to each and every drug, even those that have narrow
- 23 therapeutic index. On a scientific basis,
- 24 mechanistically speaking, you are right in arguing
- 25 that they should not necessarily be excluded

- 1 because the therapeutic index is related to the
- 2 pharmacology and not the pharmaceutics of the
- 3 dosage form. You know, it is something if the
- 4 committee feels we should revisit, I think we can
- 5 do that.
- DR. VENITZ: But I would argue all we are
- 7 doing is risk management. The stakes are higher.
- 8 That is what it really comes down to.
- 9 DR. MEYER: It is okay to continue a
- 10 little bit with the proposed guidance, or do you
- 11 want to break?
- DR. LEE: What would you like to bring up?
- DR. MEYER: Well, I have a couple of
- 14 questions. Dr. Rackley raised the issue of
- 15 sprinkles and special vehicles.
- DR. LEE: Sure.
- DR. MEYER: That wasn't one of the
- 18 questions we should deal with. Can we comment now?
- DR. LEE: Go ahead.
- DR. MEYER: I guess my one question about
- 21 the sprinkles is it seems to make sense if it
- 22 passes a high-fat meal, why also make people put it
- 23 on apple sauce and swallow the sprinkles? Is there
- 24 evidence to suggest that that is a problem?
- DR. CONNER: I don't view that they are

- 1 studying two totally different things. With the
- 2 sprinkle it is I think most of the time it pertains
- 3 to beaded, modified release dosage forms, which
- 4 depend on their mechanism of release with a coating
- 5 or some other mechanism that, on direct and perhaps
- 6 slightly prolonged contact with the food of given
- 7 properties--pH, fat content and so forth--we are
- 8 talking about not mixed up in the milieu of the
- 9 stomach but in actual direct contact, dumped in and
- 10 mixed into this food, that there is at least a
- 11 possibility that that coating could be broken down
- 12 where you wouldn't necessarily see an effect when
- 13 it is mixed up with stomach contents, and so forth.
- 14 And, for these type of products often it
- 15 is stated in the labeling that they are labeled to
- 16 be given this way. If you have ever worked at
- 17 hospitals or had small children that had to take
- 18 this type of dosage form, you know that frequently
- 19 they are dumped into food and left around perhaps
- 20 for half an hour, an hour on normal use. So, the
- 21 worry is that at some point that mechanism that we
- 22 depend on is disrupted. Now, in a bioequivalence
- 23 sense what we worry about is not that both products
- 24 are going to be disrupted in the same way; we are
- 25 worried that we could have a differential effect.

- 1 If I put the innovator product in apple sauce, it
- 2 is perfectly stable; no breakdown; you take it
- 3 after five or ten minutes, and then I put the
- 4 generic in and it immediately dissolves, you know,
- 5 I have a real problem with that because those two
- 6 products are not going to be bioequivalent under
- 7 those conditions. A lot of people say, well, it is
- 8 the same thing as the food study we have always
- 9 done. I think it is a very direct challenge of the
- 10 coating or mechanism of modified release by direct
- 11 and very concentrated contact with the food. That
- 12 is the rationale for doing it.
- DR. MEYER: It almost seems like that
- 14 could be studied in vitro with apple sauce mix in a
- 15 basket, or something.
- DR. CONNER: I can imagine pouring the
- 17 apple sauce after the dissolution. You know,
- 18 theoretically I am not saying that you couldn't
- 19 develop some kind of in vitro method to get at
- 20 this. I don't really think that we know enough
- 21 about it to know what the properties are or how we
- 22 should approach that. If people have some research
- 23 or some ideas in mind, we would love to see the
- 24 data on that. But right now the most direct way of
- 25 studying this is with an in vivo study. Perhaps

- 1 later on we can develop a system to do it in vitro
- 2 in a valid way. We are just uncertain of how to
- 3 approach that with our current knowledge.
- 4 DR. SHEK: There is at least on case for a
- 5 liquid where it makes a difference with what type
- 6 of juice you are using.
- 7 DR. HUSSAIN: In that case I think it is
- 8 far more complex. I would rather not discuss that
- 9 particular case here.
- 10 DR. LESKO: It is worth mentioning one
- 11 thing, the problem you were going to bring up is
- 12 with a fairly old product, I believe. But nowadays
- 13 any NDA that comes in that wants to make a claim
- 14 about administering the drug with food, either
- 15 sprinkles or orange juice, or whatever it is, is
- 16 going to have to have some evidence to make that
- 17 claim in the label. Whereas, in the past I don't
- 18 think we appreciated all the various mechanisms of
- 19 interactions and we sometimes let some of that go
- 20 with the vehicles. But I think that has changed
- 21 today and the label is pretty much going to reflect
- 22 the evidence that company submits.
- DR. LEE: Marv, a second point?
- DR. MEYER: Yes, the one about special
- 25 vehicles, if the label of the reference listed drug

- 1 says apple juice, orange juice, grapefruit jelly,
- 2 what-have-you does not affect the absorption, as I
- 3 read this guidance the generic has to do all of the
- 4 above to show that they do not affect the generic
- 5 formulation. Is that a reasonable thing for us to
- 6 be allowing to happen?
- 7 DR. LESKO: My sense would be it would
- 8 have to be case by case. You would have to look at
- 9 the reference listed product and see what data is
- 10 available that supported that claim in the label
- 11 and with there is any mechanistic reason that a
- 12 study needs to be done. I wouldn't generalize on
- 13 that issue.
- DR. MEYER: But the guidance does
- 15 generalize.
- DR. LESKO: I think the guidance makes
- 17 some recommendations rather than exclude it, and
- 18 you would have to interpret that I think on a case
- 19 by case basis.
- DR. KIBBE: Just following up on that,
- 21 would the generic company then who sees that type
- 22 of labeling on a product they wish to duplicate do
- 23 well to talk to you about whether they need to do
- 24 that study or not before they even go down that
- 25 road?

```
1 DR. LESKO: I would. I think Dale is
```

- 2 going to comment, but I think it might be something
- 3 we can clarify and deal with because I think we
- 4 know what the intent is. It is a matter of getting
- 5 the right words around it.
- 6 DR. CONNER: It comes up with our recent
- 7 experience with certain products, which we don't
- 8 want to talk about today. Fortunately for us,
- 9 these products that are covered by that are very
- 10 few and far between. I think we are not dealing
- 11 with a huge number here. So, we wanted to really
- 12 leave ourselves the option of dealing with these
- 13 problems, not only option but the ability to deal
- 14 with these problems as we saw them. You know,
- 15 should we see a very complex dosage form or a
- 16 liquid dosage form or one that needs to be mixed
- 17 with a beverage, we will have the ability and the
- 18 sponsors will know that that is a potential problem
- 19 and they can put that into their thinking as far as
- 20 how they develop their dosage form, whether it be
- 21 the original innovator dosage form or a generic,
- 22 about how to approach that and what to ask us about
- 23 and what they would like to propose themselves. It
- 24 really just puts both the FDA and the industry on
- 25 notice that this is a potential issue and that they

- 1 need to work it out prior to being approved.
- DR. HUSSAIN: Vince, just to sort of
- 3 clarify, I think if we discuss that example it
- 4 brings up the issue of a particular product, and so
- 5 forth. I think it would be a good question and I
- 6 think we will go back and consider it maybe at the
- 7 next meeting. We could actually make that a case
- 8 study for discussion because for that to happen, I
- 9 think the key sponsors would need to be present in
- 10 the room.
- 11 DR. LEE: Certainly, I think so. As
- 12 science evolves and we know more about something,
- 13 you know, what should we do about it? Yes, Leon?
- DR. SHARGEL: Yes, I agree. You know, for
- 15 specialized diets the guidance sort of leaves open
- 16 possibilities of last minute labeling changes,
- 17 which certainly slows entry of generic products. I
- 18 think it needs to be clarified a little bit more
- 19 clearly when a food is required for specialized
- 20 issues, and I think the innovator who is making the
- 21 claim when there is an issue should actually show
- 22 data.
- DR. LEE: Thank you very much for the
- 24 discussion. I think that we are going to move on
- 25 to the afternoon about the BCS and I don't know

- 1 what this discussion is going to lead to. It
- 2 hopefully won't lead us to come back to revisit the
- 3 food effect today but maybe in a future session.
- 4 Kathy does have some announcements to make.
- 5 MS. REEDY: For those who have contracted
- 6 for the convenience of having your sandwiches here,
- 7 in the building, they will be directly across the
- 8 hall. For those consultants, members and guests
- 9 who have not yet done so, you may do so by finding
- 10 Beverly O'Neal and handing her \$10.00. For all
- 11 others, it is a lovely day and there are a number
- 12 of sandwich shops in the neighborhood.
- DR. LEE: Thank you. We will come back at
- 14 1:15.
- 15 [Whereupon, at 12:05 p.m., the proceedings
- were recessed for lunch, to reconvene at 1:20 p.m.]

1	Α	F	Т	E	R	N	\circ	Ω	N	P	R	Ω	C	F.	E	D	Т	N	G	S

- DR. LEE: Welcome back. We heard about
- 3 BCS all morning. So, this afternoon we will find
- 4 out what exactly BCS is, for those of you who don't
- 5 know about it. More importantly, we want to talk
- 6 about the next steps. These are not baby steps;
- 7 these might be giant steps. We have Lawrence Yu,
- 8 Acting Deputy Director of Science, OGD/OPS, to
- 9 introduce the topic.
- 10 Biopharmaceutics Classification System Next Steps
- 11 Introduction and Overview
- DR. YU: Good afternoon. Dr. Vincent Lee,
- 13 Chairman of the FDA Advisory Committee for
- 14 Pharmaceutical Science, members of the FDA Advisory
- 15 Committee for Pharmaceutical Science, my FDA
- 16 colleagues and distinguished guests, this afternoon
- 17 we will cover the biopharmaceutics classification
- 18 system next steps.
- 19 [Slide]
- We will have three presentations. Dr.
- 21 Gordon Amidon, chairman and professor of
- 22 pharmaceutics at the University of Michigan, will
- 23 give a talk entitled history and applications of
- 24 the biopharmaceutics classification system. Dr.
- 25 Jack Cook, from Pfizer, will give a second talk

- 1 entitled the industrial experience with the BCS. I
- 2 will give the third talk entitled regulatory
- 3 implementation and potential extension of the
- 4 biopharmaceutics classification system.
- 5 [Slide]
- 6 Following the three presentations there
- 7 will be two questions which have been slightly
- 8 modified. The first question is should the agency
- 9 consider revising the pH range of the solubility
- 10 class boundary to be consistent with the
- 11 dissolution pH range?
- 12 The second question is should the agency
- 13 consider expanding the application of the BCS based
- 14 biowaivers to rapidly dissolving and immediate
- 15 release products of the BCS Class III drugs,
- 16 namely, highly soluble and permeable drugs? With
- 17 that introduction, I will turn the podium to Prof.
- 18 Gordon Amidon.
- 19 Presentations
- DR. AMIDON: Thank you, Lawrence. It is a
- 21 pleasure to be here, talking about and seeing the
- 22 evolution of the biopharmaceutics classification
- 23 system, something that I have worked on I think for
- 24 almost 15 years. At least if you count the very,
- 25 very beginnings for an FDA workshop on dissolution

- 1 and absorption, since 1988, I believe, so it has
- 2 been a long time and I will show some of that
- 3 history. Then, to see the application of BCS this
- 4 morning being used as a basis for providing waivers
- 5 for Class I drugs, waiver of food studies for Class
- 6 I drugs, I think of that as a superb extension of
- 7 and use of the BCS concept because how else could
- 8 you come to that conclusion without having a
- 9 mechanism for biowaivers? So, I think that is a
- 10 superb application and I was pleased to see that go
- 11 so well.
- 12 [Slide]
- 13 The process of BCS is based on looking at
- 14 the systemic availability versus the absorption
- 15 processes controlling appearance of drug into the
- 16 plasma, and transitioning from the systemic
- 17 availability view to the absorption view, and then
- 18 using that, in turn, to set standards for drugs.
- 19 Because if we can ensure absorption, we will also
- 20 ensure systemic availability. The advantage of
- 21 ensuring absorption is that now we can talk about
- 22 processes in the gastrointestinal tract and develop
- 23 scientific hypotheses to formulate and proceed.
- 24 That process led then to the guidance, the
- 25 so-called BCS guidance which says waiver of in vivo

- 1 bioavailability and bioequivalence trials. I think
- 2 that choice of terms I am fairly happy with because
- 3 it says waiver of in vivo bioavailability and
- 4 bioequivalence trials. We are not waiving
- 5 bioequivalence. No one has ever proposed that, and
- 6 I think bioequivalence, Cmax and AUC is the gold
- 7 standard and BCS doesn't change that. It provides
- 8 alternatives to ensuring in vivo bioequivalence.
- 9 Our goal is to ensure bioequivalence and to meet
- 10 that standard. In fact, I will argue that I think
- 11 it is clear that for BCS Class I drugs that
- 12 dissolve rapidly the in vitro standard is actually
- 13 a better standard. It is not as good; it is not a
- 14 substitute; it is actually better because the in
- 15 vivo test is not very accurate.
- 16 [Slide]
- 17 BCS is a scientific framework for
- 18 classifying drugs based on their aqueous solubility
- 19 and intestinal permeability. This is fairly
- 20 straightforward. I will say a little bit about the
- 21 science today and the extensions. I do want to
- 22 provide some overview of the process that was
- 23 involved in moving this guidance along.
- When I became involved in bioequivalence
- in the mid to late '80's, it was Cmax and AUC,

- 1 empirical; you do the test and reference and get
- 2 the result; do the statistics and you pass or fail;
- 3 and that was kind of the end of the story. When we
- 4 developed the concept of BCS we also needed a
- 5 database and scientific support to develop the
- 6 standard.
- 7 [Slide]
- 8 So we began some research with the support
- 9 of the FDA, at that time the Office of Generic
- 10 Drugs in 1990 at Michigan and Uppsala and at
- 11 Maryland. Over the period of the next five years
- 12 that led to substantial research. The first
- 13 application of BCS was incorporation actually into
- one of the SUPAC guidances in 1995. We actually
- 15 formed a working group at the FDA. I think we made
- 16 our first presentation to the ACP panel around
- 17 1996. I can't read that well. In 1996 we made our
- 18 first presentation and proposal to this committee
- 19 regarding biowaivers and the BCS approach. It was
- 20 supported at that time and led to more research.
- 21 Also, at that time I took leave of absence and
- 22 spent four months at the FDA, working with Ajaz and
- 23 Larry.
- I should say at the very beginning that
- 25 Larry Lesko was the initiator with me. He referred

- 1 to himself as the grandfather when he passed me
- 2 this morning after the BCS discussion. If he is
- 3 the grandfather, what does that make me, Larry? I
- 4 was trying to think that maybe we could be
- 5 grandparents but that doesn't work somehow. But we
- 6 worked on this over about a five- or six-year
- 7 period, building up the science and the draft
- 8 guidance.
- 9 The actual draft guidance was drafter in
- 10 1995 with Ajaz. So, Ajaz was instrumental. He
- 11 came in, in 1995 to replace Larry because Larry
- 12 moved up and took on other responsibilities and
- 13 Ajaz did a superb job writing the draft guidance.
- 14 I say that so that if there are any problems with
- 15 it, it is Ajaz' problem.
- 16 Many of the extensions, I would say we are
- 17 talking about today, were discussed at that time.
- 18 I can't say all of them because I can't remember
- 19 everything. But in the process of developing the
- 20 guidance we came up with what we thought were the
- 21 most conservative and sure-thing in terms of
- 22 biowaivers because if we were going to change the
- 23 paradigm of biopharmaceutics we wanted to do it
- 24 carefully so that it is accepted. We don't want to
- 25 make a mistake going out there with that first

1 application for biowaivers. So, we ended up with a

- 2 very conservative guidance.
- 3 [Slide]
- 4 The actual draft guidance was published in
- 5 February of 1999 and then the final guidance was
- 6 published in August of 2000. You can see the
- 7 number of workshops and scientific discussions we
- 8 have had--the U.S., Europe and Japan, as well as
- 9 Latin America, including a workshop at PAHO, the
- 10 Pan American Health Organization, because this
- 11 guidance is important in developing countries as
- 12 they develop or phase in bioequivalence standards
- 13 throughout the Americas. So, there is a great deal
- 14 of interest in this approach.
- 15 [Slide]
- 16 There was a lot of discussion and I think
- 17 I can say it is generally accepted. At least we
- 18 have been out talking about it enough so no one
- 19 stands up and argues with me anymore. This is kind
- 20 of the principle of bioequivalence as I think of
- 21 it, kind of like the central dogma in biology which
- 22 we now know is wrong because one gene produces more
- 23 than one protein. At any rate, this is the dogma,
- 24 similar plasma levels, similar pharmacodynamics;
- 25 similar in vivo dissolution, similar plasma levels.

- 1 That is similar in vivo dissolution. Then, in
- 2 vitro dissolution can match in vivo dissolution.
- 3 Oftentimes when we talk about dissolution, we use
- 4 that term too generically, like cancer. You know,
- 5 there are so many different versions of it.
- 6 Dissolution in what? So, what we want to do is
- 7 establish a BE or bioequivalence type dissolution
- 8 methodology which would be more complex and more
- 9 elaborate perhaps than the usual QC or quality
- 10 control dissolution methodology that would be used
- 11 when you make major changes in your formulation
- 12 that engender a bioequivalence question.
- 13 [Slide]
- So, we have changed from systemic view to
- 15 the fraction absorbed view. Marvin, I think your
- 16 point was well taken this morning that
- 17 bioavailability is much easier than fraction
- 18 absorbed. It can be very hard and sometimes even
- 19 impossible if your drug is unstable in the
- 20 gastrointestinal tract and the metabolite or active
- 21 compound, like an ACE inhibitor, is not well
- 22 absorbed. So, it can be impossible almost to
- 23 determine what actually is the fraction absorbed.
- 24 But in the majority of cases you can determine it
- 25 by mass balance studies or IV and oral excretion

- 1 studies or bioavailability.
- Now, the initial rationale for the BCS
- 3 waiver was the following: If a drug dissolves
- 4 rapidly like a solution and becomes essentially a
- 5 solution in the gastrointestinal tract,
- 6 particularly the stomach, a rapidly dissolving
- 7 drug, then the rate-determining step for absorption
- 8 is gastric emptying. It is not a formulation
- 9 difference; it is gastric emptying. So, on the
- 10 basis of that rationale, if gastric emptying is a
- 11 slow step for a high solubility, high permeability,
- 12 rapidly dissolving drug, plasma levels tell you no
- 13 information about formulation differences.
- 14 Consequently, an in vivo test is not the best test
- 15 for ensuring in vivo bioavailability. In this case
- 16 then a dissolution test would be more than an
- 17 adequate surrogate for an in vivo test. And, that
- 18 is where the waivers are currently allowed for a
- 19 high solubility, high permeability, rapidly
- 20 dissolving drug.
- 21 [Slide]
- 22 As you think about extensions of BCS, we
- 23 are going to propose several extensions. We had
- one workshop on January 31, February 1 on
- 25 extensions. We have had one meeting at the FDA

- 1 with the internal working group on extensions, and
- 2 I would say there is a list of about six or eight
- 3 areas we are considering for extensions, of which
- 4 the two that we are proposing today represent what
- 5 we think are the next steps that we should take.
- 6 [Slide]
- 7 I will say a few things about other areas
- 8 of extensions and illustrate them. First is the
- 9 extension to Class III drugs, which are high
- 10 solubility but low permeability. Those are drugs
- 11 like atenolol which are less than about 50 percent
- 12 absorbed, or maybe 60 or 70 percent absorbed. So,
- 13 the remainder of the drug is in the intestine the
- 14 whole time. Fifty percent of the atenolol dose is
- in the colon all the time, or just about that,
- 16 because the majority of the residence time is in
- 17 the colon. That means the colon permeability has
- 18 to be pretty small.
- 19 So, there is position-dependent
- 20 permeability along the gastrointestinal tract.
- 21 While we think if a drug like cimetidine or
- 22 ranitidine dissolves very rapidly in the stomach, a
- 23 waiver should be allowed for those drugs, but they
- 24 must dissolve in the stomach. So, we think
- 25 probably a tighter dissolution specification is

- 1 important for low permeability drugs because of the
- 2 position-dependent permeability, in most cases,
- 3 along the gastrointestinal
- 4 tract--position-dependent in the very least. We
- 5 know some drugs are absorbed in the duodenum
- 6 jejunum because we have plasma levels, and we know
- 7 that it is in the colon all the time and it is not
- 8 completely absorbed. So, there is clearly
- 9 position-dependent permeability, although evidence
- 10 for colon permeability is much harder to obtain.
- 11 It can be obtained but it is much harder.
- 12 A third area of discussion is low
- 13 solubility drugs or so-called Class II drugs that
- 14 dissolve rapidly in the gastrointestinal tract.
- 15 This is more problematical. Let's say there are
- 16 more scientific issues here and we are not ready to
- 17 make a proposal in the area of low solubility
- 18 drugs, but I will give you one example of my own
- 19 thinking, and that is if you take salicylic acids
- 20 like NSAIDs, ibuprofen, ketoprofen, the high
- 21 permeability drugs, we have measured most of them
- 22 in humans, all of them in animals and they dissolve
- 23 very rapidly at pH 6.8 because they ionize. The
- 24 ionize around pH 4-5. So, the solubility goes up
- 25 by two orders of magnitude in the intestine. In

- 1 this case dissolution occurs after emptying but it
- 2 is still a very fast process. So, if we think of
- 3 it kinetically, yes, there is a small effect of
- 4 dissolution on absorption but the principal
- 5 rate-determining step is in gastric emptying. So,
- 6 I think for Class II drugs, there are some Class II
- 7 drugs where we can extend biowaivers but that
- 8 requires more evidence and more debate and
- 9 discussion and we are not going to propose that
- 10 today.
- 11 [Slide]
- 12 Here is the equation that started my
- 13 career down this track, for those of you who are
- 14 interested in it. I am very partial to this triple
- interval because no one has ever asked me a
- 16 question on this thing, but that is good. When I
- 17 had to give my first presentation in 1988, I was a
- 18 late addition to a program on dissolution and
- 19 absorption and had to talk about dissolution at an
- 20 AAPS workshop. I came to the conclusion I was a
- 21 late addition because it was a workshop on
- $22\,$ dissolution and no one wanted to stand up and talk
- 23 about dissolution and absorption and
- 24 bioavailability and bioequivalence, and I was still
- 25 young at the time so I didn't know enough to say

- 1 no.
- 2 So, I wondered how do I handle it and I
- 3 concluded in the morning before the presentation
- 4 that if I showed this I would be safe. And, it
- 5 worked and I have been safe ever since. Basically,
- 6 it says that the determining factors are
- 7 permeability and concentration. Absorption is
- 8 occurring along the gastrointestinal tract. So,
- 9 you have to add up absorption processes across the
- 10 whole surface of the intestine. So, this is just a
- 11 surface integral and then you have to add it up
- 12 over time as well. But the key factors are
- 13 permeability and concentration, and in the limiting
- 14 case the highest concentration is solubility. So,
- 15 that is very simply Fick's first law. The two
- 16 critical variables are permeability and solubility.
- 17 Now, when I was on sabbatical at the FDA
- 18 in 1990-91, thinking about looking at dissolution,
- 19 working with Vinod Shah and Jerry Skelly at the
- 20 time, looking at how dissolution was used to set
- 21 regulatory standards, we had a regulatory issue
- 22 regarding carbamazepine at the time. So, I began
- 23 to think about is there a way--I could see that in
- 24 the struggle to come up with a guidance for
- 25 dissolution you would write a guidance that would

- 1 be so general that it was useless and it was a
- 2 product by product regulatory basis, so I thought
- 3 is there some way to kind of capture drug products
- 4 into categories that would be simpler to manage and
- 5 handle? Over the next couple of years, it took me
- 6 about two years to realize that the place to start
- 7 was Fick's first law. My major professor would be
- 8 appalled at that, Bill Laguchi who taught me Fick's
- 9 first law, but it took me two years to realize that
- 10 the starting point for predicting absorption is
- 11 Fick's first law, and that is P X C, Fick's first
- 12 law applied to a membrane.
- 13 [Slide]
- 14 At any rate, the waiver is applied to high
- 15 solubility drugs. We take the definition of high
- 16 solubility of a drug that the highest strength must
- 17 dissolve in a glass of water. What are you going
- 18 to use for high solubility? What is your reference
- 19 point? You have to come up with something
- 20 practical. This seems very practical to me, the
- 21 highest dose. Then I learned that sometimes you
- 22 can dose two of the highest strengths and
- 23 bioequivalence requirements currently use strength.
- 24 So, we then used highest dose strength but then
- 25 that was confusing too. The highest strength must

- 1 dissolve, the highest marketed strength must
- 2 dissolve in a glass of water. That is a high
- 3 solubility drug. I think it is a very practical
- 4 definition.
- 5 High permeability, we decided to define
- 6 high permeability and well absorbed as a drug that
- 7 is absorbed to 90 percent or more. Maybe we drew
- 8 that bar a little high, and one of the areas of
- 9 possible extensions is to change that to 85 percent
- 10 or 80 percent. We are looking at with that is
- 11 important or not from the point of view of the
- 12 database within the FDA. Further, if we extend
- 13 waivers to Class III drugs, which are low
- 14 permeability drugs, it makes this borderline a
- 15 little less critical perhaps in terms of drug
- 16 product regulation.
- 17 Then, the drug product must dissolve
- 18 rapidly. Based on theoretical simulation work done
- 19 at the time, we decided that 30 minutes would be
- 20 the upper limit for rapid dissolution even though
- 21 our simulation supported a 60-minute upper limit
- 22 for Class I drugs, high solubility, high
- 23 permeability drugs. But we chose 30 minutes, 15
- 24 minutes as a single point determination; 30
- 25 minutes, you would have to do a statistical

- 1 comparison using the F-2 metric.
- 2 [Slide]
- 3 This shows a partial database. Hussain
- 4 referred to a data base of about 25 drugs which is
- 5 being published over the past few years and over
- 6 the next couple of years, studied under virtually
- 7 identical conditions in normal subjects. So, we
- 8 have a permeability database that shows I think
- 9 around 15 or so of them. The high permeability
- 10 definition is appropriate metoprolol, approximately
- 11 where those red arrows are. Unfortunately,
- 12 metoprolol was mis-plotted on that plot but near
- 13 the intersection of the fraction absorbed curve and
- 14 the 90 percent line. So, we have used metoprolol
- 15 as our main reference compound. It is about at the
- 16 borderline between high and low permeability and it
- 17 is about 95 percent absorbed.
- So, when we do permeability, and this is
- 19 permeability in humans, we almost always do it with
- 20 metoprolol being an internal standard. We
- 21 calculate permeability relative to metoprolol.
- 22 Yes, there are some potential interactions and they
- 23 are more theoretical than practical because we
- 24 rarely see them in vivo in humans or in animals.
- 25 So, we use metoprolol as a reference compound. If

- 1 the permeability in rat of CACO 2, if the
- 2 permeability is higher than metoprolol you have a
- 3 high permeability drug.
- 4 This allows you to determine the fraction
- 5 absorbed, the upper limit of the fraction absorbed.
- 6 The beauty of this is that in 1990 if you said you
- 7 could predict absorption people would have laughed
- 8 at you because no one even tried. Now we can
- 9 predict the upper limit. We just measure
- 10 permeability. That is the upper limit to systemic
- 11 availability. Systemic availability is always less
- 12 than or equal to fraction absorbed. So, from
- 13 preclinical data now we can predict how well we can
- 14 do the upper limit. Knowing the upper limit I
- 15 think is very important. We don't know the lower
- 16 limit. That is harder and it also includes
- 17 metabolism. So, the advantage of permeability is
- 18 that it can be scaled to preclinical animal and
- 19 even tissue culture methods for predicting
- 20 absorption.
- 21 Solubility, I didn't know what to say
- 22 about low solubility drugs so I put in my best
- 23 example here. When I think of low solubility and I
- 24 need a reference point of something that is low
- 25 solubility everyone would agree that marble is low

- 1 solubility. Right? I calculated the solubility of
- 2 Venus and she is ten mcg/ml, if I can remember my
- 3 old physical chemistry. As a reference point, a
- 4 drug like resiafulvin is about 15 mcg/ml. Some
- 5 other drugs, like glyburide are around 3 mcg/ml,
- 6 peroxicam about 7 mcg/ml.
- 7 So, I take about 10 mcg/ml as our
- 8 definition of a low solubility drug. But the
- 9 factors that we need to consider there in the
- 10 future are drugs like peroxicam which is actually a
- 11 high solubility drug at pH 6.8, not a pH 3 but pH
- 12 6. So, we will be looking at potential extensions
- 13 for drugs that ionize and dissolve in the
- 14 gastrointestinal tract in the future.
- 15 [Slide]
- Just to illustrate kind of the effect of
- 17 dissolution, I think we have lost sight of the
- 18 importance of dissolution. So, I calculated the
- 19 dissolution times here based on the solubilities
- 20 and assumed particle size. Cimetidine dissolves in
- 21 one minute at 25 micron particle, typical particle
- 22 size. Glyburide, which has a thousand times lower
- 23 solubility, takes 30 hours to dissolve. That is
- 24 the reason dissolution is critical for glyburide
- 25 but for cimetidine it is not. This emphasizes

- 1 compartmentalizing the drugs because some are
- 2 simple and some are hard. Let's not try to
- 3 regulate everything by the hard rules. Let's try
- 4 to separate them out and say these are hard and
- 5 these are simple, and there are some drugs where we
- 6 may be doing in vivo studies forever because it is
- 7 too complicated. I also tried to calculate the
- 8 dissolution time for Venus. I had to use a
- 9 particle size for Venus so that meant I had to go
- 10 to the Louvre and see Venus because, you know, you
- 11 can't tell from pictures. Venus is a big lady, if
- 12 you have ever gone to the Louvre to see Venus. So,
- 13 I used a one meter particle size for Venus and I
- 14 calculated this number. I think it is like
- 15 million, billion, trillion, and I don't know what
- 16 the next number is. Does anyone know what the next
- 17 number is after trillion? One thousand trillion?
- 18 That is a long time although compared to the age of
- 19 the earth it is not so long. At any rate, this is
- 20 the reason solubility is so critical and why for
- 21 high solubility drugs the dissolution is very rapid
- 22 and there is not a problem with regard to
- 23 bioequivalence.
- 24 [Slide]
- The waivers of in vivo, so-called

- 1 biowaivers, and I will emphasize this again,
- 2 biowaivers are not waiving bioequivalence. They
- 3 are waiving the in vivo test. They are
- 4 substituting another test which is as good or
- 5 better. We require bioequivalence. The question
- 6 is what test. Either a single point of 15 minutes
- 7 or a minimum of three points if there is 85 percent
- 8 dissolution at 30 minutes. Then, three pH's,
- 9 simulated gastric fluid, simulated intestinal fluid
- 10 and then an intermediate pH of 4.5 because that is
- 11 a pH which a drug sees as a transition from the
- 12 stomach to the duodenum and jejunum. In the
- 13 duodenum you have the mixing of gastric acid from
- 14 the stomach and the pancreatic bicarbonate secreted
- 15 from the pancreas through the common bile duct, and
- 16 also duodenum mucosal secretions. So, there is a
- 17 tremendous pH fluctuation in the upper duodenum and
- 18 so we included pH 4.5. So, the drug must dissolve
- 19 rapidly at those three pH's. We felt that was a
- 20 very safe criteria for allowing waivers from in
- 21 vivo bioequivalence.
- 22 [Slide]
- Just by way of reference, I included here
- 24 one slide on the gastric emptying work that we
- 25 actually did via intubation, where we intubated

- 1 humans and measured gastric emptying of a liquid.
- 2 Here we used volumes of 50 ml and 200 ml of liquid
- 3 and then measured the gastric emptying rate. We
- 4 monitored motility, phase 1, 2 and 3, and then the
- 5 overall mean. The overall mean for the 50 ml
- 6 volume was around 22 minutes and the overall mean
- 7 for gastric emptying for the 200 ml volume was
- 8 about 12 minutes. So, the gastric half emptying
- 9 time was typical volume we would administer.
- 10 Actually a glass of water, the FDA requirement, is
- 11 8 oz. So, we used 200 ml here because this was a
- 12 long time ago. The gastric emptying time is about
- 13 12 minutes.
- 14 That was the basis for choosing a
- 15 15-minute, 85 percent dissolution time. Other data
- 16 from the literature--Ian Wilding has done a lot of
- 17 that from pharm profiles; and Bob Davis in
- 18 Nottingham. So, the gastric emptying time is very
- 19 well established so we felt very confident in the
- 20 gastric emptying time. We used 200 ml. I have
- 21 come to realize that that is actually closer to the
- 22 official Japanese glass of water which is 6 oz.
- 23 When I realized that I immediately thought of
- 24 harmonization. Do you think we could ever
- 25 harmonize a glass of water? This is an example of

- 1 cultural differences. No matter what we, as
- 2 scientists think might be possible, I doubt that we
- 3 are going to get cultures to change their official
- 4 glass of water.
- 5 [Slide]
- 6 I think I can summarize by saying there
- 7 has been strong support or at least very limited
- 8 resistance. I would like to think of it as strong
- 9 support but I will take limited resistance for BCS
- 10 and biowaivers. There have been some concerns
- 11 expressed at the workshop and commentaries on the
- 12 BCS guidance. For example, there is some
- inconsistency between the solubility and
- 14 dissolution specifications. In particular, for
- 15 solubility we specify up to pH 7.5 while for
- 16 dissolution we only require a pH of 6.8. We think
- 17 we should harmonize those, and one of our proposals
- 18 is to look at the implications of changing the pH
- 19 7.5 solubility to pH 6.8.
- 20 Also, there are many completely absorbed
- 21 drugs whose systemic availability is less than 90
- 22 percent. That is kind of a paraphrase. That is
- 23 like what Marvin was saying this morning.
- 24 Bioavailability is easy. Fraction absorbed can be
- 25 hard. So, there is this concern out there that

- 1 fraction absorbed is actually hard to measure.
- 2 Probably you have to do radiolabeled studies. You
- 3 can use animal data for radiolabeled studies. You
- 4 need to do IV and oral because some drugs may be
- 5 excreted in the feces as well as the urine. You
- 6 need to measure generally your unchanged drug in
- 7 the urine, and the ratio IV to oral can be used to
- 8 estimate fraction absorbed if it is not too highly
- 9 metabolized. But estimating fraction absorbed is a
- 10 little tricky. Nevertheless, from the point of
- 11 view of the scientific approach, focusing on
- 12 fraction absorbed from the point of view of setting
- 13 dissolution standards is the correct view, I
- 14 believe, and fraction absorbed is what we want to
- 15 regulate.
- 16 Systemic availability contains absorption
- 17 plus metabolism. Generally metabolism is not a
- 18 formulation factors. Yes, you can add some things
- 19 and that is another factor. So, the systemic
- 20 availability complicates regulations because of the
- 21 metabolism variability. So, this allows us to
- 22 separate out. While we can't solve and simplify
- 23 all drug products this way, we can simplify I think
- 24 quite a number of them.
- 25 The third point is that we are overly

- 1 conservative. I think everyone agrees with that
- 2 and we should apply waivers to Class III drugs as
- 3 well.
- 4 [Slide]
- 5 More broadly, this kind of summarizes the
- 6 extension issues that we have been debating for the
- 7 past--well, I would say it started in 1995 when
- 8 Ajaz was drafting the guidance. Changing the pH
- 9 for solubility determination to 6.8 from 7.5;
- 10 reduce the permeability class boundary from 90 to
- 11 85 percent. We are not proposing that today
- 12 because, quite frankly, we are not sure about that.
- 13 We need a rationale to come to the committee and
- 14 there are a couple of different ways of doing that
- 15 using actual compounds and data, but we are not
- 16 prepared to do that today.
- 17 Class II, we feel these require extensive
- 18 research and they, again, are not subjects for
- 19 extension at this point in time for this
- 20 intermediate solubility class of drugs that
- 21 dissolve in the intestine. If there is one
- 22 solubility you want to know, it has to be the
- 23 solubility in the intestine for oral delivery
- 24 because that is where the drug is absorbed. So, pH
- 25 6.5 or 6.8 to be consistent. So, the solubility of

- 1 pH 6.8 is the single most important solubility for
- 2 oral delivery. If a drug dissolves rapidly at pH
- 3 6.8 it may be a candidate for waiver as well but,
- 4 again, that is going to require more studies.
- 5 Then you could ask the question about
- 6 surfactant. What about if it dissolves rapidly in
- 7 the presence of surfactants? Again, the Class II
- 8 drugs represent more complicated formulations,
- 9 perhaps more complicated dissolution
- 10 methodologies--not perhaps, more complicated
- 11 dissolution methodologies.
- Then, for the Class III drugs the high
- 13 solubility, the low permeability drugs we want to
- 14 allow waivers if there is 85 percent dissolved in
- 15 15 minutes. So, again, it is a matter of getting
- 16 data and evidence to support that.
- 17 [Slide]
- 18 To conclude, I think we have established a
- 19 new paradigm. It has been a long process, starting
- 20 more than ten years ago with public discussion and
- 21 debate, including the support of this committee and
- 22 the FDA and the support of research, external
- 23 research as well as the many internal meetings in
- 24 developing the consensus in moving this new
- 25 paradigm in bioequivalence ahead.

- 1 I think one of the big advantages, of
- 2 course, is it reduces unnecessary in vivo studies.
- 3 I didn't realize, this was in the code of the
- 4 Federal Register, somebody gave me a new reference
- 5 today that the CFR says we don't want to do
- 6 unnecessary human studies. I didn't know that that
- 7 was in there so I have to add that to my slides.
- 8 But it reduces unnecessary human studies, and it is
- 9 based on scientific principles that allow us to
- 10 formulate a hypothesis, do some tests and move
- 11 ahead.
- 12 To conclude, I quess it is a great
- 13 pleasure for me to be here, talking to this
- 14 committee again and seeing the progress that we
- 15 have made over the past few years and seeing the
- 16 interest in extending and in building on it where
- 17 we can to improve, with our overall goal, of
- 18 course, of improving public health policy
- 19 standards. Thank you.
- DR. COOK: For those that don't know me
- 21 and probably for those that do, I am Jack Cook,
- 22 with Pfizer Global R&D. My purpose today is to
- 23 show you that at least some in industry would
- 24 welcome additional guidance.
- 25 [Slide]

```
1 The agenda is that first I want to talk
```

- 2 about what I see are the benefits for industry with
- 3 the current guidance. Second, I want to talk about
- 4 the barriers because if you talk to Ajaz or
- 5 Lawrence you will find out that there have only
- 6 been six, plus or minus one, applications for
- 7 waivers so far. Finally, I want to talk about what
- 8 I see are the future benefits for the guidance.
- 9 [Slide]
- 10 First the benefits, the BCS guidance
- 11 allows bioequivalence to be shown by dissolution in
- 12 lieu of in vivo studies, but the question is will
- it really save money, and at what cost?
- 14 [Slide]
- I looked at the data availability at the
- 16 FDA web site, and I found over the period from
- 17 January 1998 to May of 2001 that there were 229
- 18 different NDA approvals, at the rate of about 67 a
- 19 year. Over the same time there were 466 ANDA
- 20 approvals, at a rate of 136 per year. NDAs, I
- 21 could find data from a recent study by DiMasi, that
- 22 about 90 percent of those are approved. Also, from
- 23 the DPQR site, we find that three to six studies
- 24 per NDA submitted their bioequivalence studies and
- 25 generics always get it right on the first time so I

- 1 assume that there is one bioequivalence study for
- 2 an ANDA. When you massage all of that data, you
- 3 get that industry as a whole performs 350 to 600
- 4 bioequivalence studies per year. That is probably
- 5 a little low estimate because it doesn't talk about
- 6 the drugs that didn't make it to market, and it
- 7 doesn't talk about studies that aren't submitted.
- 8 But at least that was a starting idea of how many
- 9 studies are performed a year.
- 10 [Slide]
- 11 The next thing I wanted to look at is what
- 12 does it cost. At least at Pfizer, Ann Arbor, when
- 13 you consider the cost for packaging and maintaining
- 14 samples, the clinical cost to run a study, the
- 15 bioanalytical cost, the data analysis and report
- 16 generation or my yearly salary, and then the
- 17 internalization, it costs us about a quarter
- 18 million dollars a study to run.
- 19 [Slide]
- 20 Again, if you take that number, about 25
- 21 percent of all drugs are waiver candidates. I
- 22 don't have a slide on that but that comes from a
- 23 survey I did over the same period of time, looking
- 24 at potentially how many drugs are waiver
- 25 candidates--I should mention that very quickly.

- 1 What I did, I looked at labeling and additional
- 2 data that were out in the literature, decided that
- 3 a drug could be classified as highly soluble if I
- 4 could find that the highest strength was soluble at
- 5 some pH between 1 and 7.5, but there was no other
- 6 pH that would preclude it from being a highly
- 7 soluble drug. So, I didn't have extremely high
- 8 evidence of it being Class I but I couldn't
- 9 preclude it from it. So, it could be as many as 25
- 10 percent.
- To me, for the permeability classification
- 12 there was enough data in the literature where it
- 13 would have to meet one of the BCS requirements.
- 14 Anyway, if you accept that number of 25 percent you
- 15 can find that the industry as a whole could save
- 16 between 22 and 38 million dollars a year.
- 17 [Slide]
- 18 If I were to apply that same thing to
- 19 Pfizer in Ann Arbor, we would find that it is
- 20 somewhere between half and one million dollars a
- 21 year at our site, considering that we do about 17
- 22 bioequivalence studies a year.
- 23 [Slide]
- I call that direct savings. There are
- 25 some direct savings. It is not that unusual for us

- 1 to have bioequivalence studies that are
- 2 rate-limiting to submission. A typical scenario is
- 3 that we are changing the site of manufacture and we
- 4 want to include that bioequivalence study in our
- 5 submission. So, we, those that would do the in
- 6 vivo testing, end up being behind the eight ball as
- 7 rate limiting. Typically, it takes us about six
- 8 weeks to actually run the study and get the results
- 9 back. I won't talk about how long it takes us to
- 10 generate the report, but let's say six weeks to say
- 11 that we have a product going forward. Assuming
- that we have peak sales of a drug of one billion
- 13 dollars, not one trillion dollars, a year, that
- 14 ends up being that there are 110 million dollars
- 15 that one can save by doing the in vitro testing
- 16 rather than the in vivo testing.
- 17 [Slide]
- 18 That is all well and good, I want to
- 19 assure you that there is a cost savings. If you go
- 20 out and do the formal testing of something to
- 21 classify something as an in vitro methodology you
- 22 do, indeed, save money. The characterization cost,
- 23 depending on how you choose to characterize your
- 24 compound as highly soluble, highly permeable, ends
- 25 up being between \$10,000 and \$60,000 per drug.

- 1 Then, to evaluate a formulation, because that is
- 2 the second step because not only to you have to
- 3 have a Class I drug but you have to do the in vitro
- 4 dissolution for the formulation, is about \$15,000
- 5 per formulation. I have stolen this slide from
- 6 another talk, but it ends up that that total cost
- 7 of that \$75,000 is far less than the quarter
- 8 million dollars it costs us to run a study.
- 9 [Slide]
- 10 A few years ago I had the opportunity to
- 11 try this at Pfizer, and I likened it to a favorite
- 12 poem of mine by Robert Frost, the Road Not Taken,
- 13 that talks about decision in life and I thought the
- 14 BCS was the more attractive road and chose to take
- 15 that less traveled path. I have good news with
- 16 drug X, which is that we were able to obtain a
- 17 waiver of in vivo studies and show that it met in
- 18 vitro bioequivalence requirements. We saved four
- 19 bioequivalence studies and, like the last line of
- 20 the Robert Frost poem, that has made all the
- 21 difference in that it saved Pfizer, Ann Arbor, one
- 22 million dollars.
- 23 [Slide]
- So, why isn't everybody else jumping on
- 25 the bandwagon? We have seven applications but,

- 1 yet, a quarter of all drugs could potentially meet
- 2 BCS classification. There are a couple of barriers
- 3 that actually are not within the agency but within
- 4 industry itself. One is what I call wrong
- 5 attitudes, mainly because they don't agree with
- 6 me--
- 7 [Laughter]
- 8 --secondly, about wrong wiring. When I
- 9 first proposed going this different path within the
- 10 company, saying I don't want to run a traditional
- in vivo bioequivalence study; I want to run an in
- 12 vitro bioequivalence study, it wasn't my decision
- 13 alone. I needed to take it to the head of my
- 14 department, the head of regulatory, the head of
- 15 formulations department.
- 16 [Slide]
- To a person, this is the kind of response
- 18 I get, "you want to do what? Does the agency allow
- 19 such a thing?" I said, "well, sure they do. Here
- 20 is the guidance on it." "Has this been done
- 21 before?" I said, "no." They said, "what, are they
- 22 crazy?" There is a good scientific rationale
- 23 behind that.
- 24 [Slide]
- 25 So, some of the questions I get are "you

- 1 can't release a new product on the market without
- 2 testing." That is questioning the science. I do
- 3 point out that we have been doing this all along
- 4 with solutions, and the BCS Class I is something
- 5 that is very similar to solution; it is something
- 6 that is dissolving very rapidly, behaving very much
- 7 like a solution.
- 8 As I mentioned, "the FDA won't allow it."
- 9 They question the procedure. Actually, what I have
- 10 been doing to my colleagues in industry is
- 11 advocating that they get an advocate within the
- 12 agency to talk to their regulatory people within
- 13 the company and say that, yes, indeed, it can be
- 14 done. "Has this been done before?" Fear of the
- 15 unknown. I go all the time and talk about our
- 16 success with trying to encourage it.
- 17 [Slide]
- 18 There is another thing that kind of stops
- 19 industry from doing it and that is wrong wiring.
- 20 This is kind of a diagram of what is needed for BCS
- 21 classification as far as information flow.
- 22 Typically within a company, my colleagues in
- 23 preclinical, there is very good information usually
- 24 coming to me in the clinic. Chemistry provides
- 25 decent information with their formulation

1 scientists. What is actually needed for the BCS is

- 2 something like this, there has to be a lot more
- 3 talk across these inter-departments because we are
- 4 relying on information generated elsewhere. If I
- 5 am using preclinical data to help classify a
- 6 compound as highly permeable, chemical
- 7 characterization is the one that usually does the
- 8 full dissolution profile. So, we need to figure
- 9 out how to have better information flow.
- 10 The next thing I am doing is bringing
- 11 across dollar amounts. The size of the dollar sign
- 12 represents the change in costs for a department.
- 13 Red means that the costs for a department go up
- 14 when they decided to classify something this way.
- 15 For instance, chemical characterization has to do
- 16 more characterization on a compound than they are
- 17 used to. Green means where it saves. So, as you
- 18 can see, I am in clinical pharmacokinetics, I look
- 19 good and I can claim that we saved our company a
- 20 million dollars, but other parts of the company are
- 21 actually spending more. So, this is another
- 22 barrier that one has to overcome within industry
- 23 and is why it hasn't been used so much.
- 24 [Slide]
- I am going to talk about that a little bit

- 1 when I talk about blue sky, how will industry
- 2 benefit from the proposals.
- 3 [Slide]
- 4 Change within a company is kind of like a
- 5 chemical reaction. To orient you on the slide, on
- 6 the Y axis is kind or resources, and going from the
- 7 old, on the left-hand side, to the new, on the
- 8 right, you can see that overall if I use the old
- 9 way, the in vivo bioequivalence, I actually have to
- 10 spend more resources than the new. But I have to
- 11 overcome this barrier of activation energy. I have
- 12 to change how data flows within a company. I have
- 13 to overcome some mind sets.
- I submit that if there is benefit and it
- 15 is only slightly better than the activation energy,
- 16 that change is going to be slow in a company. They
- 17 are going to fail to see that for that little good
- 18 we have to change all these ways that we do things
- 19 within a company. On the other hand, if through
- 20 expanding the BCS we can provide a lot broader
- 21 application of it, those systems will change a lot
- 22 faster and we will see actually a far greater use
- 23 of BCS within industry.
- 24 [Slide]
- In that same survey I looked at how many

- 1 drugs are potentially future candidates for BCS if
- 2 we were to include all highly soluble compounds.
- 3 From that survey we come with something like 45
- 4 percent of all candidates would be considered
- 5 highly soluble, with another 25 percent unknown.
- 6 So, given that some will fall out of that 45
- 7 percent, they may be replaced by the 25 percent and
- 8 I submit that that is probably not too
- 9 unreasonable. So, there is a great potential for
- 10 the number of candidates that the expansions
- 11 proposed today would cover.
- 12 [Slide]
- 13 I would like to leave you with a few
- 14 thoughts. First, we feel that the current guidance
- 15 is useful. Pfizer has saved over a million dollars
- 16 with it. The barriers right now within company on
- 17 changing paradigms result in the low rate of use
- 18 they have so far with the guidance. To overcome
- 19 that, one thing that will help is expanding the BCS
- 20 where more candidates will equal a greater savings,
- 21 and that will be very useful for companies and, as
- 22 I say, you will see it used a lot more. With that,
- 23 I will turn it back over to Lawrence.
- DR. HUSSAIN: Vince, can I make a comment?
- DR. LEE: Yes.

- 1 DR. HUSSAIN: I think one of the benefits
- 2 that I think needs to be on the table is the
- 3 concept of quality by design and I just want to
- 4 bring a formulator's perspective here. When the
- 5 work of a formulation development group starts, for
- 6 initial screening everything is based on in vitro
- 7 dissolution and we pick a dissolution that we think
- 8 might work. Actually, we have seen cases where
- 9 companies may go down the path and actually
- 10 optimize their formulation before they do the first
- 11 bio study and in that study the dissolution test
- 12 was all wrong to start with.
- So, focusing on the dissolution, relevant
- 14 dissolution, helps us to do the right thing the
- 15 first time and I think that is one of the
- 16 scientific benefits that is not always clear. So,
- 17 bringing more science to formulation development
- 18 and linking biopharmaceutics to formulation
- 19 development is another big benefit here.
- 20 Also, when I was working on the BCS I saw
- 21 18 bioequivalent studies in one NDA, and I am not
- 22 so concerned with the cost at this point. I am
- 23 more concerned that this is a new drug entity for
- 24 which the safety and efficacy has not been fully
- 25 evaluated and you are exposing normal, healthy

- 1 volunteers to a test which may not be adding all
- 2 the value. I think that is the motivation that
- 3 sort of drives us here.
- 4 DR. JUSKO: Could I ask Jack to clarify
- 5 one thing here?
- 6 DR. LEE: Certainly.
- 7 DR. JUSKO: The test compound that you
- 8 described, I presume you already had oral and IV
- 9 data for that compound.
- DR. COOK: Actually, the way we classified
- 11 it as highly permeable is that this drug is
- 12 excreted virtually unchanged in the urine. So,
- 13 just by measuring urinary excretion we were able to
- 14 show that the bioavailability was above 90 percent.
- DR. JUSKO: So it was a Class I compound?
- DR. COOK: Oh, yes. This is a Class I
- 17 because that is the only way currently that you can
- 18 get a waiver for in vivo bioavailability. What we
- 19 are proposing today is to expand that further.
- DR. JUSKO: Thank you.
- 21 DR. YU: Thanks, Dr. Amidon for the
- 22 excellent presentation for an overview and
- 23 applications of the biopharmaceutics classification
- 24 system, and Dr. Cook for an excellent presentation
- on the industrial experience of the BCS.

```
1 I want to emphasize that the driving force
```

- 2 for us to have this current guidance and for future
- 3 extension is the science, the science behind the
- 4 philosophy driving this change. In the next twenty
- 5 minutes or so I will talk about two aspects. One
- 6 is regulatory implementations, and the second is
- 7 basically potential extensions of the BCS.
- 8 [Slide]
- 9 As you can see, this guidance was issued
- 10 in August, 2000. It is now about 18 months. This
- 11 guidance basically allows for biowaiver for highly
- 12 soluble, highly permeable and rapidly dissolving
- 13 and wide therapeutic window index drugs. There are
- 14 also characteristics of the drugs to ensure that
- 15 the solution is not the limiting step in terms of
- 16 oral drug substance process. Again, the
- 17 permeability is also not the rate-limiting step.
- 18 [Slide]
- 19 So, those characteristics allow them to
- 20 say that the gastrointestinal emptying is basically
- 21 the limiting step for these solid oral dose form
- 22 for BCS Class I drugs.
- 23 [Slide]
- 24 In terms of applications, basically this
- 25 guidance allows applications for BCS for

- 1 investigational drug applications for Phase I to
- 2 Phase II post-approval changes certainly as ANDA,
- 3 abbreviated new drug applications.
- 4 [Slide]
- 5 So far, we basically have received strong
- 6 scientific support. As Prof. Gordon Amidon pointed
- 7 out, there is very little resistance. Some
- 8 concerns expressed in the public workshops are that
- 9 we are too conservative or overly conservative with
- 10 respect to solubility class boundary with respect
- 11 to BCS Class III drugs, highly soluble and low
- 12 permeability drugs. Again, the submission activity
- 13 is relatively low. So far we have received a total
- of about five NDAs, ANDAs and post-approval
- 15 changes.
- 16 [Slide]
- I want to discuss with you some of the
- 18 experience we have had with this current BCS
- 19 guidance. This slide shows you basically the
- 20 experience with the solubility . The pH range for
- 21 solubility studies is 1.2, or sometimes we say 1.0
- 22 HCL to 7.5. Temperature is 37 degrees. The
- 23 solubility is basically the highest strength
- 24 divided by 250 at all relevant pH's. For example,
- 25 for diazepam what you are really looking for is

- 1 lowest solubility, in this case a pH of 7.4, to
- 2 determine whether this drug belongs to Class I or
- 3 belongs to another class, Class II or IV. So,
- 4 there are solubility studies, relevant pH, relevant
- 5 temperature, and determined by the lowest
- 6 solubility at all relevant pH's from 1.2 to 7.5.
- 7 [Slide]
- 8 I want to discuss with you the experience
- 9 with permeability. So far, the applications we
- 10 have received classify permeability based on the
- 11 following methods: pharmacokinetic studies in
- 12 humans. For example, bioavailability is basically
- 13 90 percent or above. To ensure the permeability of
- 14 this drug, that it is highly permeable.
- We also received applications using an in
- 16 vitro cell culture model. We sometimes receive
- 17 inquiry about the literature method or literature
- 18 data. I have to point out that the agency has
- 19 little experience to accept literature data as the
- 20 sole evidence to support or to classify
- 21 permeability for the regulatory purpose.
- 22 [Slide]
- In these four slides I took advantage of
- 24 the new technology and I just added them this
- 25 morning in the hope of addressing the concerns,

- 1 especially Dr. Marvin Meyer's concern about
- 2 permeability classification. It is not in your
- 3 handout. First I want to point out that the
- 4 permeability classification, especially the extent
- 5 of intestinal absorption, is not bioavailability.
- 6 Just because bioavailability or extent of
- 7 absorption includes the extent of drug input into
- 8 the system added to circulation, so it includes
- 9 everything, especially for example the solution,
- 10 metabolism and so on.
- However, for the purpose of the BCS, you
- 12 use the extent of intestinal absorption which means
- 13 extent of drug across the intestinal membrane is
- 14 not considered a factor of solubility, for example,
- 15 metabolism is subject to hepatic metabolism. So,
- 16 we only consider one step here, the extent of drug
- 17 across membrane. While the bioavailability
- 18 considers many, many processes involved, including
- 19 the solution, gastric emptying, GI motility,
- 20 hepatic metabolism, and so on. So, there is a
- 21 difference between extent of drug absorption and
- 22 extent of intestinal absorption for the BCS
- 23 biopharmaceutics permeability classification
- 24 purpose, the extent of intestinal absorption.
- 25 [Slide]

```
1 In the guidance we basically specify a
```

- 2 number of methods. You can use any method you
- 3 would like to classify the drug in terms of
- 4 permeability class boundary in terms of
- 5 permeability class membership. So, there is a list
- 6 of a number of methods availability specified in
- 7 the guidance, including in vivo intestinal
- 8 perfusion in humans; including pharmacokinetic
- 9 studies for example in humans; including in vivo
- 10 and in situ intestinal perfusion in animals and,
- 11 certainly, we also include the in vitro cell
- 12 culture model.
- 13 [Slide]
- I just want to elaborate to give you an
- 15 idea, if you use an in vitro method or an in situ
- 16 method, in order for this method to qualify to pass
- 17 the permeability of drugs for the regulatory
- 18 purpose, the sponsor is required to demonstrate
- 19 that he has established the so-called system
- 20 suitability, so basically to show the link or
- 21 relationship between the permeability, for example,
- 22 cell culture permeability, and extent of intestinal
- 23 absorption for 20 representative drugs. For
- 24 example, you have to have a drug, certainly for
- 25 these 20 drugs you have to spread from low, medium

- 1 and high. So, you have a certain range from low to
- 2 medium and high. You also have to show the in
- 3 vitro method integrity, for example using mannitol
- 4 or dextran as a marker. In the case of the cell
- 5 culture models, you have to show that the cell
- 6 culture model expresses the transporter for
- 7 example, in this case Pgp, P-glycoprotein
- 8 transporter.
- 9 [Slide]
- 10 In order for this specific model to
- 11 qualify for regulatory purposes with respect to the
- 12 permeability classification, you need to establish
- 13 the correlation between the extent of intestinal
- 14 absorption and in vitro cell culture permeability
- 15 in this case. This was done at the FDA lab, and
- 16 Donna Volpe is the investigator and actually she is
- 17 sitting in the audience.
- 18 As you can see here, for these 20 drugs we
- 19 pretty much get very reasonable correlations
- 20 between the extent of intestinal absorption and
- 21 apparent CACO 2 cell permeability. With this
- 22 establishment, this specific model in a specific
- 23 sponsor's lab can be utilized for class
- 24 permeability of drugs. Now, if you use the same
- 25 principle in a different lab you have to requalify.

- 1 So, we put in relatively conservative criteria in
- 2 place to make sure the data that come from sponsors
- 3 does show that the permeability of a specific drug
- 4 is highly permeable or poorly permeable.
- 5 [Slide]
- 6 Again, even with the permeability method,
- 7 not only do you need to show that the cell culture
- 8 establishes the system suitability to show that the
- 9 drug is highly permeable, you are also required to
- 10 do stability studies to make sure this drug which
- 11 you are measuring in an in vitro system is stable.
- 12 These are the recommendations in this slide based
- 13 on the guidance. For example, you need to show
- 14 that the drug is stable in simulated intestinal
- 15 fluid. You need to show that the drug is stable in
- 16 simulated gastric fluid. Certainly, for stability
- 17 purposes you need to use stability indicating
- 18 assay, validated assay. The guidance suggests at
- 19 this point that the drug is stable if less than
- 20 five percent is degraded in both small intestinal
- 21 fluid and the gastric fluid.
- 22 [Slide]
- 23 Basically, this is our view in terms of
- 24 regulatory implementation and some of the
- 25 challenges and issues we have faced so far.

- 1 Next I want to discuss with you the
- 2 revisions and extensions with respect to solubility
- 3 class boundary and with respect to biowaiver
- 4 extensions, especially for BCS Class III drugs.
- 5 The objective here, again, is to have a science
- 6 based in vitro solution to BE standards. Again, I
- 7 want to emphasize here that the driving force for
- 8 us to have extensions or to have the current
- 9 guidance is science. It is the science.
- 10 Let's talk about the first proposal
- 11 change, solubility class boundary. Currently, the
- 12 pH range in defined solubility is 1.2 to 7.5. The
- 13 potential future direction is for a pH range from
- 14 1.2 to 6.8 in defined solubility.
- 15 [Slide]
- 16 Basically, this is the GI tract here. You
- 17 have a pH in the stomach, pH in the small
- 18 intestine; pH in the jejunum. The pH range in the
- 19 stomach is 1.4 to 2.1 under fasting condition. The
- 20 pH range for the duodenum is 4.9 to 6.4. The pH
- 21 range in the jejunum is 4.4 to 6.6. Finally, the
- 22 pH range in the ilium is 6.5 to 7.4.
- 23 Let's look at how long it takes for drug
- 24 solid dosage forms to get into the ilium where the
- 25 pH is relatively high, as you can see, at 7.5. On

- 1 average, in terms of residence time it is 85
- 2 minutes for a drug particles to go through the
- 3 stomach, duodenum, jejunum and to the ilium. So,
- 4 it takes 85 minutes for a drug solid dosage form or
- 5 drug particles to get there.
- 6 Now let's look at what are our in vitro
- 7 dissolution criteria. Our in vitro dissolution
- 8 criteria is 85 percent dissolved in 30 minutes.
- 9 So, by the time the drug gets to the ilium it is
- 10 likely all the drug is dissolved. Intuitively we
- 11 would think if all the drug is dissolved, why do we
- 12 need this criteria? That is first.
- 13 Second, in our current dissolution testing
- 14 for BCS, we have a dissolution test at pH 1.2 or
- 15 0.1 HCL, 4.5 and 6.8. So, in this regard to have
- 16 consistency between solubility and dissolution
- 17 class boundary it seems reasonable to reduce the pH
- 18 requirement from 7.5 to 6.8.
- 19 [Slide]
- Now let's move on the next potential
- 21 extension, which is BCS Class III drugs. Currently
- 22 we have a biowaiver for BCS Class I, namely highly
- 23 soluble and highly permeable. One proposal is a
- 24 wavier to highly soluble and poorly permeable
- 25 drugs.

```
1 [Slide]
```

- 2 So, the question we ask is why do we
- 3 choose Class III, why not Class II or Class IV?
- 4 For Class III drugs it is highly soluble and poorly
- 5 permeable drugs in rapid dissolving dosage forms
- 6 which essentially behave like a solution if the
- 7 dissolution of a solid oral dosage form dissolves
- 8 rapidly. It essentially behaves like a solution.
- 9 Let's look at the solution requirements
- 10 here. The FDA policy on oral solutions is
- 11 basically if bioequivalence is self-evident
- 12 biowaiver can be granted, and no in vivo
- 13 demonstration is needed if the test solution
- 14 contains no inactive ingredients or other changes
- in formulation from the reference product that may
- 16 significantly affect the absorption of the active
- 17 moiety or active ingredients. So, only if the
- 18 excipients do not affect absorption.
- 19 [Slide]
- Now let's look further in terms of
- 21 mechanistically. Again, you can dose oral dosage
- 22 forms such as tablets or capsules. A solution is
- 23 certainly a liquid dosage form. When the solid
- 24 tablet comes to the stomach or the solution comes
- 25 to the stomach, what happens for the solution is

- 1 basically gastric emptying, the emptying from the
- 2 stomach to the small intestine. However, for solid
- 3 products there is one process which is the
- 4 dissolution. So, there is a difference in terms of
- 5 the process in the stomach. But when it comes to
- 6 the small intestine there is not much difference
- 7 there. The drugs in solution get absorbed. So,
- 8 basically in the small intestine or in the colon
- 9 there is basically a process in terms of
- 10 mechanistic absorption which is the same for oral
- 11 solutions or for solid dosage forms.
- 12 [Slide]
- Now let's look at the next assumption
- 14 here. We say if the test product equals a simple
- 15 solution, if we can show it, and if we have
- 16 reference products which equal a simple solution
- 17 then automatically you say the test product equals
- 18 the reference product if there are two criteria
- 19 here, they are rapidly dissolving and the second
- 20 criterion is no excipient effect on oral drug
- 21 absorption. No excipient effect.
- 22 [Slide]
- This is basically a list of potential BCS
- 24 Class II drugs. I say potential because there is
- 25 no concrete information to support yes or no and so

- 1 I say potential. This is a list of BCS Class III
- 2 drugs.
- 3 [Slide]
- 4 So the hypothesis here is if two immediate
- 5 release solid dosage forms dissolve rapidly at all
- 6 physiologically relevant conditions and contain no
- 7 excipients that may potentially affect the oral
- 8 drug absorption of the BCS Class III drugs, then
- 9 the bioequivalence of these two solid IR products
- 10 is assured and biowaiver can be granted.
- 11 [Slide]
- 12 This is basically the proposal for studies
- or data collection to test the hypothesis.
- 14 Certainly we can collect data from human
- 15 bioequivalence studies to compare a simple solution
- 16 with two solid dosage forms of at least ten model
- 17 BCS Class III drugs to show that those data may
- 18 confirm the literature, the NDA or ANDA or FDA
- 19 internal studies, maybe unpublished data. We are
- 20 thinking about going through the PQRI to collect
- 21 the unpublished data from the sponsors and, if
- 22 necessary, to do relevant in vitro dissolution and
- 23 cell culture studies.
- There are two potential issues here. The
- 25 first issue is transport which we touched on in the

- 1 morning. As you can see, there is much in vitro
- 2 evidence to show that transport may affect the
- 3 absorption of a certain number of drugs. On the
- 4 other side, we though if dose proportionality is
- 5 shown over the range from the lowest to the highest
- 6 strengths, we can conclude that the effect of the
- 7 transporter may not be significant with respect to
- 8 the bioequivalence. It may be still significant in
- 9 terms of drug-drug interaction but with respect to
- 10 bioequivalence this may not be significant.
- 11 [Slide]
- 12 The next question is the potential effect
- 13 of excipients. Excipients of oral drug absorption
- 14 can certainly affect GI motility. They can affect
- 15 permeability. In order to minimize the risk of the
- 16 bioinequivalence caused by the excipients, we
- 17 basically have two options.
- 18 Option number one, we basically identify
- 19 and exclude excipients that may affect the
- 20 absorption or pharmacokinetics. In other words, at
- 21 this point we consider all excipients acceptable;
- 22 we identify one, we basically exclude it. That is
- 23 the first option.
- The second option is we basically exclude
- 25 every single excipient at this point. We basically

- 1 include them when we find specific excipients have
- 2 no effect whatsoever on oral drug absorption in
- 3 vitro and in vivo. So far we have tested a number
- 4 of products and if they had no effect we included
- 5 them. So, basically those are the two options we
- 6 have.
- 7 [Slide]
- 8 With that, I conclude my talk and with the
- 9 following questions we want feasibility and input
- 10 from you. Thank you very much. Thank you for your
- 11 attention.
- DR. LEE: Thank you, Lawrence. Ajaz?
- 13 Committee Discussion
- DR. HUSSAIN: Just a perspective that I
- 15 wanted to share with the committee before we start
- 16 deliberations. When we put together the first
- 17 guidance that was published in August of 2000, what
- 18 were the reasons why we did not include Class III
- 19 is sort of the one thing which I wanted to point
- 20 out. The other thing which I wanted to point out
- 21 which I will address first is our regulations
- 22 currently allow waiver of in vivo studies when you
- 23 have in vitro and in vivo correlations. For
- 24 immediate release dosage forms we don't have that
- 25 option because correlations are usually not present

- 1 or not apparent because dissolution in many cases
- 2 tends to be not rate limiting.
- 3 So, in vitro and in vivo correlations have
- 4 not actually been very useful for most immediate
- 5 release dosage forms. There are a few exceptions.
- 6 So for the BCS based biowaivers, when you think
- 7 about it, we are making decisions on in vitro
- 8 dissolution as a source of comparison in absence of
- 9 such correlations. So the thought process and the
- 10 justification is based on mechanistic underpinning
- 11 of that.
- 12 If I look at Class III drugs, what sort of
- 13 held us back for recommending waiver in the first
- 14 instance when we looked at it was the issue of
- 15 permeability being a mechanism by which you
- 16 essentially have the same conditions in vivo. So,
- 17 the volume differences for dissolution in vitro and
- in are sort of one reason behind that sort of
- 19 holding back from that recommendation.
- 20 Also, keep in mind that solution
- 21 bioequivalence has always been waived, or options
- 22 have been available for solutions, and some of the
- 23 work we did suggested that the way we evaluate
- 24 excipients would have to be tightened up. So, if
- 25 you look at the bioavailability, bioequivalence

- 1 guidance we actually use a higher standard for
- 2 solubility forms whereby we limit it to highly
- 3 permeable drugs because that is sort of protected
- 4 against some of the excipient effects. In the new
- 5 guidance that we issues on BA/BE it actually
- 6 pointed out some of the issues with respect to
- 7 sorbitol or osmotic ingredients for solution drugs
- 8 because we have been seeing cases were a solution
- 9 actually has lower bioavailability than a tablet,
- 10 and you have one example in your handout. Those
- 11 are sort of the motivations and thought processes
- 12 that held us back at that point. So.
- DR. LEE: Thank you. Are there any
- 14 questions for the presenters? Yes?
- DR. RODRIGUEZ-HORNEDO: Yes, maybe a point
- of clarification, how do you define or how do you
- 17 classify a compound that is ionizable so that the
- 18 pH determines its solubility? It is not clear to
- 19 me from the reading material.
- DR. YU: Solubility over the pH range is
- 21 defined as 1.2 to 7.5. So, if it is ionizable, for
- 22 example as a free base, the solubility will be much
- 23 higher at the low pH; the solubility will be lower
- 24 at the high pH. So, actually whether this drug is
- 25 highly soluble or not is determined by the high pH.

- 1 On the contrary, for acid, for example, the
- 2 solubility will be lower at the low pH and higher
- 3 at the high pH so that basically determines whether
- 4 this compound belong to high solubility or not by
- 5 the low pH. Essentially in terms of ionizable, we
- 6 basically ensure that it matches the solubility of
- 7 all pH's to determine whether it is highly soluble
- 8 or not.
- 9 DR. RODRIGUEZ-HORNEDO: So, it is
- 10 determined by the minimum solubility of the
- 11 compound at any pH?
- DR. YU: Correct, absolutely, yes.
- DR. RODRIGUEZ-HORNEDO: If I may ask a
- 14 question that is related to something we are going
- 15 to be discussing tomorrow, I guess then the
- 16 classification is also dependent on the solid state
- 17 of the material.
- DR. YU: Absolutely.
- DR. RODRIGUEZ-HORNEDO: So, if you have an
- 20 amorphous compound versus a crystalline compound it
- 21 will change the solubility. The classification may
- 22 change depending on solid state structure.
- DR. HUSSAIN: Well, I think this is sort
- 24 of an equilibrium solubility.
- DR. AMIDON: Solid state properties,

- 1 particularly if they can change when the dosage
- 2 form is introduced into the gastrointestinal tract,
- 3 are problematical. I think when we use solubility
- 4 here we think of it as approximate equilibrium
- 5 solubility. But, in reality, we are only
- 6 interested if the drug stays in solution for over,
- 7 you know, four to six, eight hours in the
- 8 gastrointestinal tract. We don't need to wait
- 9 days; in days the drug is out of the GI tract. So,
- 10 in some ways we think of this as kind of a kinetic
- 11 solubility, but to a physical chemist that is an
- 12 oxymoron, right, because solubility is equilibrium
- 13 by definition. So, we think of equilibrium
- 14 solubility. So, amorphous compounds or compounds
- 15 like carbamazepine which hydrate and change their
- 16 physical form in contact with water have to be
- 17 handled more carefully.
- DR. LEE: Yes, Gloria?
- DR. ANDERSON: On page three of your
- 20 presentation you have solubility equal to greater
- 21 than highest strength per 250 ml at all pH's. Is
- 22 there a number that you associate with solubility
- 23 that is highly soluble, not very soluble, or does
- 24 this high strength refer to the dosage?
- DR. AMIDON: That is a good question. We

- 1 are asked that frequently. We use the term high
- 2 solubility of a drug to be one whose highest
- 3 strength dissolves in a glass of water. That is
- 4 not really solubility. That is what we are calling
- 5 a high solubility drug. You know, if your drug
- 6 dose is 250 mg and it has to dissolve in 250 ml, 1
- 7 mg/ml would be a high solubility drug. But if your
- 8 dose is lower, then you could go to a lower
- 9 solubility. So, the actual solubility changes with
- 10 dose. The solubility limit changes with dose.
- DR. ANDERSON: And from drug to drug.
- DR. AMIDON: And from drug to drug, yes.
- DR. LEE: Joe, you have a question?
- DR. BLOOM: Basically when it is called
- 15 high solubility it is depending on dose.
- DR. COOK: It depends on the highest
- 17 formulation strength one would make. So, it is
- 18 drug specific and it is the highest strength, and
- 19 whether that strength will dissolve in 250 ml or
- 20 not at all relevant pH's. So, you can't think of
- 21 it as a milligram/ml; it is just a yes or no.
- DR. KIBBE: And that applies to the
- 23 highest strength that is available whether or not
- 24 there are multiple strengths. No one can get a
- 25 waiver for a 5 mg tablet when a 50 mg won't meet

- 1 that criteria? Is that right?
- DR. COOK: Currently.
- 3 DR. LESKO: I think it is important to be
- 4 clear. The solubility is based on the highest
- 5 approved strength. If you can imagine a
- 6 bioequivalent situation where there is a reference
- 7 product approved and somebody is looking at an
- 8 abbreviated new drug application, the highest
- 9 strength that is approved would be the reference
- 10 for solubility determination. That is different
- 11 than the highest dose that may be approved if, for
- 12 example, somebody can administer two tablets or
- 13 three tablets within the range of an approved dose.
- 14 That is not what we are talking about. We are
- 15 talking about the strength of the tablet. We are
- 16 trying to mimic a bioequivalence study where you
- 17 compare a tablet of drug that is a test to a tablet
- 18 of a drug that is a reference, and that is what we
- 19 want to compare at the highest strength.
- DR. KIBBE: If four products are
- 21 commercially available from the innovator, four
- 22 dosage strengths, 2 mg, 5 mg, 10 mg and 20 mg, then
- 23 your decision to allow people to get a waiver is
- 24 going to be based on the highest one whether or not
- 25 they want to market the highest one or not?

- DR. LESKO: That is correct.
- 2 DR. KIBBE: Even though they want to
- 3 market the 2 mg, they can't claim that the 2 mg
- 4 would meet your criteria and, therefore, it should
- 5 get a waiver.
- 6 DR. HUSSAIN: That is the way it is right
- 7 now.
- 8 DR. LESKO: You didn't say what the
- 9 highest approved strength was, but if 20 was the
- 10 highest approved strength, then that would be the
- 11 basis for the solubility determination.
- DR. KIBBE: Regardless of what the company
- wants to market?
- DR. LESKO: Well, if they want to market
- 15 10 mg and they don't market 20 mg, then 10 mg would
- 16 be the reference.
- DR. KIBBE: That is my point.
- DR. LESKO: Yes.
- DR. KIBBE: That just changed the answer,
- 20 I think. If there is a company on the market that
- 21 has four strengths and the highest strength is not
- 22 a very popular strength but it is on the market as
- 23 the innovator, and I want to only come in as a
- 24 generic and market the bottom two strengths, which
- 25 represent 80 percent of the market, I don't have to

- 1 have, to get a waiver, that the highest strength is
- 2 soluble at 250 ml. I only have to have the highest
- 3 strength I want to market that is soluble at 250.
- 4 DR. LESKO: That is correct.
- DR. LEE: Has there been any thought about
- 6 using dose numbers in all these kind of
- 7 descriptives?
- 8 DR. AMIDON: Well, yes, actually if the
- 9 dose number is less than one than you are a high
- 10 solubility drug. So, really that is the way I
- 11 think of it.
- DR. LEE: Yes, Bill?
- DR. JUSKO: This is a very illuminating
- 14 set of presentations and I have learned a lot from
- 15 it. My first, somewhat facetious, comment is,
- 16 Gordon, I wonder why in your triple integral you
- 17 didn't include the upper limits of the A variable?
- 18 [Laughter]
- 19 We will talk about that later.
- DR. AMIDON: you are the only one that has
- 21 ever asked that question. It is not really written
- 22 right but no one has ever noticed. It really
- 23 should be a vector integral, quite frankly. It
- 24 should be a vector integral written over the
- 25 surface of the intestine, yes.

```
1 DR. JUSKO: That makes everything clear!
```

- 2 [Laughter]
- 3 Speaking computationally, faculty members
- 4 in our department teach students about Lapinsky's
- 5 rule of five. I wondered if there is some role in
- 6 all of what you are doing for a computational
- 7 approach, structure activity kinds of calculations
- 8 to address estimations of permeability values.
- 9 DR. AMIDON: Yes, I actually use them all
- 10 the time. The question is what evidence would you
- 11 want to bring to the FDA. I think within industry,
- 12 if I don't have an experimental partition
- 13 coefficient I would calculate one just using some
- 14 software program. I mean, it is one of the first
- 15 things I do to determine kind of what the
- 16 permeability of this drug might be. So, I find it
- 17 a very useful qualitative tool. I know that there
- 18 has been some interest. Well, Lawrence has actually
- 19 done some computational work when he was with
- 20 Glaxo. I think the FDA is very concerned about
- 21 making decisions based on some computational
- 22 result, but I personally use them all the time,
- 23 yes.
- DR. COOK: As somebody who may work for a
- 25 company who looks into this, we find it very useful

- 1 for candidate selection, realizing that compounds
- 2 with the desirable absorption characteristics are
- 3 ones that likely make to market. If you can have
- 4 activity plus it is well absorbed, you have
- 5 something that you should actually fast-track
- 6 through the system. Our experience is that they
- 7 have been very useful at that stage. The
- 8 correlations haven't been precise enough to where
- 9 we feel comfortable saying for sure it is a Class I
- 10 compound, and to, you know, absolutely predict it
- 11 is above 90 and, therefore, do other tests. But
- 12 some day maybe.
- DR. JUSKO: In the graphs that I saw
- 14 showing the non-linear relationship between
- 15 fraction absorbed and permeability, there was a lot
- 16 of data on the high side and only three or four
- 17 points, some complicated by metabolism issues,
- 18 indicating small fraction absorbed when
- 19 permeability was low. Plus, the relationship was
- 20 very steep. So, that makes people wonder how
- 21 reliable predictions are going to be if the
- 22 critical information has such a steep profile.
- DR. COOK: Well, thank goodness, the area
- 24 of interest is actually the flat part of the curve
- 25 because if you look at where metoprolol is, that is

- 1 kind of where it starts the flat part of the curve
- 2 and you have to be there or greater to be
- 3 considered a highly permeable compound. I think
- 4 most people agree that that is really hard on that
- 5 area of the curve where a little bit of
- 6 insensitivity in your assay measurement could
- 7 result in a big change. Here, we are on the flat
- 8 part of the curve and are less susceptible to that.
- 9 DR. HUSSAIN: I think that is an excellent
- 10 point.
- 11 When we were putting in the class boundary that
- 12 actually came as a decision-making point. The
- 13 reason we said 90 and above is because of that.
- 14 Originally I think we thought of 80 and that is the
- 15 steep part of the curve, and one of the criteria
- 16 for 90 percent as the boundary was driven by that.
- 17 At the same time, I think for assessment
- 18 of permeability one of the recommendations in our
- 19 guidance is actually to use an internal standard, a
- 20 known high permeability internal standard so that
- 21 you can say it is better than that. That is how we
- 22 addressed that.
- DR. JUSKO: That is what I didn't quite
- 24 understand from Dr. Yu's presentation, whether he
- 25 was indicating that the companies needed to study

- 1 all 20 drugs and establish the profile or could
- 2 just use the indicator drug as a cut-off.
- 3 DR. HUSSAIN: The recommendation is to
- 4 actually establish your own system with all 20
- 5 drugs; demonstrate suitability, and once you have
- 6 demonstrated suitability of the method, because lab
- 7 to lab variability is significant in some of those
- 8 things so we wanted every lab to define suitability
- 9 and then, after that you could use one of the
- 10 internal standards.
- DR. JUSKO: In these recommendations you
- 12 are going by cell culture systems. I wonder, is
- 13 there no room for animal data? Win Chao has shown
- 14 a very nice correlation between fraction absorbed
- of a large number of drugs in rats and man.
- DR. HUSSAIN: I think with respect to
- 17 extent of absorption, animal data is allowed with
- 18 respect to perfusion experiments in direct methods
- 19 of permeability. We stopped short of using extent
- 20 of absorption in rat. I know we had that
- 21 discussion with Prof. Win Chao and he had about 100
- 22 compounds. So, we stopped short of that in our
- 23 recommendations in the guidance. But animal
- 24 perfusion experiments truly are okay. They
- 25 qualify. So.

```
DR. YU: In fact, I have a similar plot
```

- 2 which is from rat instead of CACO 2, also 18 drugs.
- 3 DR. LEE: Jurgen?
- DR. VENITZ: I am very supportive of the
- 5 approach and I want to congratulate Gordon and the
- 6 FDA for moving it along as far as you have. Very
- 7 much like Marvin, I have some concern about the
- 8 permeability assessment based on in vitro data. I
- 9 guess I am wondering whether you have any
- 10 experience with misclassification using the human
- in vivo as your gold standard. In other words, if
- 12 you know you have bioavailability of 90 percent or
- 13 above, you have a high permeability drug. How does
- 14 that compare to the in vitro predictions based on
- 15 CACO 2 cells lines?
- DR. HUSSAIN: I don't have any experience
- 17 where we have found that problem occur. We are
- 18 actually in the process of publishing a validation
- 19 study, our own data, on in vitro studies, and Donna
- 20 will be here who has done that work. So, I don't
- 21 have an example.
- DR. VENITZ: I know of one that was
- 23 supposed to be a poor permeability drug and it
- 24 turned out to be a high permeability drug--
- DR. HUSSAIN: Cimetidine would sort of

- 1 come to my mind as probably an example where I
- 2 think extent of absorption in vivo in humans, the
- 3 data would suggest it is either 100 percent or
- 4 slightly less than that. But under CACO 2 and
- 5 other perfusion studies, it comes out as low
- 6 permeability. So, misclassification is on the
- 7 lower side.
- 8 DR. COOK: Yes, I would echo that. I did
- 9 an informal survey of some other companies and that
- 10 is what their indication was, that more often than
- 11 not the CACO 2 system was very conservative.
- DR. VENITZ: With your proposal that
- 13 wouldn't be a big deal because you are lumping one
- 14 and three together. So, it doesn't make a
- 15 difference in terms of the waiver. But as it
- 16 currently exists, that would make a big difference
- in terms of with you are waiving or not.
- DR. AMIDON: it would only make a
- 19 difference in the dissolution standard you would
- 20 have to meet.
- DR. VENITZ: Right. The second question I
- 22 have for you is about this Class III extension. Do
- 23 you have any experimental evidence, other than the
- 24 theoretical considerations that you went through,
- 25 to suggest that for a Class III compound we can

- 1 safely waive it and still show in vivo
- 2 bioequivalence.
- 3 DR. YU: This is basically for
- 4 information. We are considering those extensions
- 5 and we will come back with the data next time. We
- 6 will come back next time to this same committee
- 7 with data.
- 8 DR. LEE: So, Lawrence, you understand
- 9 correctly that probably the high end of the Class
- 10 III would be more like the low end of the Class I?
- DR. YU: Yes.
- DR. LEE: Therefore, you can waive it?
- DR. YU: Yes.
- 14 DR. AMIDON: I think there are some drugs
- 15 where there have bee intubation studies, you know,
- 16 gastric, duodenal, jejunum. So some of those data
- 17 sets are availability for at least one or maybe two
- 18 Class III drugs in published literature. There is
- 19 more data also in NDAs. I think, for example, that
- 20 type of data showing site dependence would be one
- 21 set of data.
- DR. VENITZ: Since you are going to go out
- 23 and come back, that would be the kind of data I
- 24 would like to see to support it experimentally, not
- 25 just theoretically saying we think Class III is

- 1 fine.
- DR. YU: Absolutely. We are looking, for
- 3 example, at the evidence which would show
- 4 bioequivalence between solid oral dosage forms
- 5 versus a solution. We have about seven or eight
- 6 drugs right now. We intend to collect at least ten
- 7 drugs to deny or confirm the hypothesis we
- 8 discussed here today.
- 9 DR. LEE: Larry?
- DR. LESKO: Yes, I wanted to answer that
- 11 last question because when we were doing the
- 12 research at the University of Maryland as part of
- 13 the scientific basis for the SUPAC guidance we had
- 14 two drugs from this class, the class that we are
- 15 talking about today, Class III with the high
- 16 solubility, low permeability, and Lawrence had them
- on one of his slides, cimetidine and ranitidine.
- 18 Those were another two drugs which we tried,
- 19 through various manufacturing method changes, to
- 20 sort of ruin the formulations, create big
- 21 differences in dissolution but in vitro they were
- 22 very robust in terms of bioequivalence. So, I
- 23 think that is some evidence that would support what
- 24 Lawrence is talking about.
- DR. VENITZ: So, you showed that the two

- 1 different solubility forms were bioequivalent in
- 2 vivo?
- 3 DR. LESKO: Yes.
- 4 DR. VENITZ: What about comparing the
- 5 solution to a solid dosage form?
- 6 DR. HUSSAIN: Well, I think that is what
- 7 Lawrence is proposing now but we don't have
- 8 prospective data on that now. We have some
- 9 in-house data but I think Lawrence is proposing to
- 10 do some studies comparing solution to tablet, and
- 11 so forth. So, that is one of the sets of
- 12 experiments that we probably will bring back to
- 13 this committee.
- 14 The other experiment that is ongoing right
- 15 now, we have completed the manufacturing and so
- 16 forth, and actually the studies have begun at
- 17 Tennessee, the biostudies. That is to create
- 18 formulations of a low permeability drug. We took a
- 19 low solubility, low permeability drug, furosemide,
- 20 and created dissolution profiles which are very
- 21 different and actually induced a pH sensitivity in
- 22 that. I don't know when those studies will be
- 23 completed but they have already begun. So.
- 24 The solution as a standard I think is also
- 25 important because when we were doing the BCS

- 1 guidance we looked at excipients. I think
- 2 excipients come back as an issue, and we were
- 3 collecting data with solution, simple solution that
- 4 was established, and I think from that we
- 5 identified about 50 excipients which are commonly
- 6 used which don't seem to have an effect. So, we
- 7 could build a basis for that and I think that was
- 8 one of the questions Lawrence posed, should we
- 9 identify excipients which may be potential
- 10 problems. That is what we tried to do in the first
- 11 guidance. I think that is the easier route because
- 12 for solid dosage forms there are only about 50
- 13 common excipients and you can make all sorts of
- 14 dosage forms with those 50 excipients. Of those,
- 15 the potential problems were surfactants, sodium
- 16 laurel sulfate, and so forth. And, we have
- 17 supportive data to say it may not really be an
- 18 issue in vivo. So, that database also could be
- 19 brought back.
- DR. JUSKO: Do you think you can ever
- 21 really be conclusive about the excipients? Because
- 22 there could be a very specific interaction between
- 23 a particular excipient and a drug based on their
- 24 distinct chemical features.
- DR. HUSSAIN: We that interaction be a

- 1 chemical or physical interaction, or an interaction
- 2 at a transport or absorption level? I think our
- 3 focus is more on the absorption because that is
- 4 where the concern is. If it is a physical
- 5 interaction or a chemical interaction, it sort of
- 6 comes out as a stability issue rather than a bio
- 7 issue in some cases. So, there would be different
- 8 ways of addressing chemical interactions.
- 9 DR. JUSKO: Might one manufacturer use a
- 10 particular excipient in their product and someone
- 11 use a different one, and then there would be a
- 12 potential difference?
- DR. HUSSAIN: That is possible. For oral
- 14 products you could have different excipients.
- DR. LEE: Particularly with the Class IV
- 16 drugs. Well, shall we keep this conversation
- 17 going? Marv has a question.
- DR. MEYER: Yes, one question perhaps to
- 19 Lawrence. Is there a greater potential for an
- 20 error to be made for the Class III than Class I? I
- 21 am asking from the standpoint of your table. If
- 22 you take a drug, Class I by definition is 90
- 23 percent fraction absorbed, the most we can go up to
- 24 is 100 percent. If you take glycinopril, it is 30
- 25 percent fraction absorbed, and that goes up to 40

- 1 percent. Now, you have a third increase in the
- 2 available drug. As you get down in FA you have
- 3 bigger orders of change if you do something to
- 4 cause a change.
- 5 DR. YU: That is why the effect of the
- 6 excipients is kind of critical.
- 7 DR. MEYER: Whatever. The formulation,
- 8 whatever you didn't see because you didn't do the
- 9 biostudy causes it to go from 30 percent to 40
- 10 percent or 30 percent to 20 percent. That is a
- 11 bigger change than 90 to 100 or 90 to 80.
- 12 DR. COOK: If I could jump in, you could
- 13 have a change the other way and have a drug that is
- 14 100 percent and all of a sudden it goes down to 10
- 15 percent. So, it is just depending on whether you
- 16 are looking at increased chance of adverse events
- 17 or a loss of therapeutic benefit. But I think the
- 18 risk is there--
- 19 DR. HUSSAIN: Jack, sort of a different
- 20 perspective on that, I think with the rapid
- 21 dissolution the likelihood is minimized the other
- 22 way around. I think the excipients with sodium
- 23 laurel sulfate, and so forth, I think the concern
- 24 that Marv raised was one of the reasons for holding
- 25 it back to highly permeable drugs. If you have an

- 1 excipient like sodium laurel sulfate that can
- 2 enhance permeability what will happen with highly
- 3 permeable drugs? Very little. But for low
- 4 permeability drugs the margin of error is high.
- 5 DR. AMIDON: I just want to caution or
- 6 advise the committee to not think of excipient
- 7 effects as yes/no but to think of them as
- 8 dose-response curves and it is a matter of at what
- 9 dose and what level they are having an effect. We
- 10 know that sodium laurel sulfate at a very low
- 11 concentration has no effect and at a very high
- 12 concentration dissolves the intestine. So, it is a
- 13 dose-response curve issue. So, having thought a
- 14 lot about this excipient issue and interactions
- 15 with the gastrointestinal track, if we get into the
- 16 excipient issues we should proceed carefully and
- 17 mechanistically in evaluating those potential
- 18 implications.
- 19 DR. HUSSAIN: A different perspective that
- 20 I think also is important with excipients is if
- 21 excipients have significant interactions that
- 22 alters bioavailability it actually is a much larger
- 23 issue than bioequivalence. It becomes a label
- 24 issue because if it is an interaction that changes
- 25 bioavailability the potential for that interaction

- 1 will be there in the marketplace and I think we try
- 2 to avoid that, and I think the excipients that are
- 3 available generally, with a few exceptions, are
- 4 essentially from that perspective. The famous
- 5 example is sorbitol.
- 6 DR. LEE: Then I will just propose that we
- 7 take a 15-minute break so that we can maybe focus
- 8 and discuss some of the issues more. Will you
- 9 please come back at 3:15?
- 10 [Brief recess]
- DR. LEE: Lawrence posed two questions to
- 12 the committee. Actually, I should inform the
- 13 audience that I began to form study groups in the
- 14 committee to look at the issues. I have four
- 15 individuals working this particular topic, Bill
- 16 Jusko, Leon Shargel, Lemuel Moye and myself. Right
- 17 after lunch I delegated my responsibilities to Bill
- 18 and he is going to be the lead correspondent.
- 19 DR. JUSKO: Are you going to put the
- 20 questions back up that we are to focus on? We have
- 21 all heard from this morning's and this afternoon's
- 22 discussion about the BCS classification system and
- 23 the guidance that is in place for Class I drugs.
- 24 It was interesting to learn this afternoon how few
- 25 companies have actually taken advantage of this

1 classification system and proceeded to use it, with

- 2 only five or six having been indicated.
- 3 The discussion this afternoon provided
- 4 much more illumination of the basic scientific
- 5 ideas and regulatory approaches to dealing with the
- 6 BCS system, and we were asked to focus on two
- 7 particular questions. Within the second question,
- 8 it appears that there is plenty of room for
- 9 recommendations as to how to proceed with the
- 10 second question.
- 11 But let's go to the first one since it is
- 12 the easier one to deal with. We were shown that
- 13 there are discrepancies in the pH values used to
- 14 determine solubility versus dissolution. So, the
- 15 first question is should the agency consider
- 16 revising the pH range of the solubility class
- 17 boundary to be consistent with the dissolution pH
- 18 range?
- In my own view, the answer is quite
- 20 obvious that one should seek consistency. Perhaps
- 21 other members of the committee would like to
- 22 provide their comments.
- DR. MEYER: How about changing the other
- one to 7.5, have the same range but have 1 to 7.5
- 25 instead of 1 to 6.8?

- DR. AMIDON: Can we comment?
- DR. LEE: Sure.
- 3 DR. AMIDON: I think one element there,
- 4 Marv, would be the harmonization also with Europe.
- 5 At a workshop we had at the end of January with
- 6 European representatives--6.8 is kind of an
- 7 international standard, U.S., Europe, Japan for
- 8 dissolution studies, simulated intestinal fluid.
- 9 So, I think it is partly also that, harmonization
- 10 to kind of the world standard. I think if we were
- 11 to go from 6.8 to 7.5 we would have some problems.
- DR. KIBBE: Yes, I remember when I was a
- 13 young child my mother always telling me that you
- 14 don't do things because everybody else did them.
- 15 So, we have a harmonized number but the question
- 16 really is, is it missing information or not? That
- 17 is really the bottom line. Would we really miss
- 18 out on something important if we left out going up
- 19 to the physiological pH which exists at the
- 20 terminal end of the GI tract? If w are clear that
- 21 we are not going to lose anything, then it is okay.
- 22 If we are worried that we are, then we should
- 23 extend the other to 7.5 instead of cutting back to
- 24 6.8. That is the question I think.
- DR. COOK: If I can comment on that, I

- 1 think the strongest evidence was when Lawrence put
- 2 up the slide about transit time, and it is 85
- 3 minutes to that terminal end but we are requiring
- 4 dissolution to be essentially complete within 30
- 5 minutes. So, it will never see the higher pH
- 6 before it is all dissolved.
- 7 DR. KIBBE: Your disease requirement is in
- 8 vitro dissolution and it is predictive of in vivo
- 9 dissolution, but in vivo dissolution of something
- 10 in 15 minutes might be 15 minutes and it might be
- 11 45 minutes. Okay. So, that still isn't a
- 12 quarantee. I am not saying that 7.5 is where we
- 13 ought to be, but I think we ought to know whether
- 14 we are losing any information.
- DR. RODRIGUEZ-HORNEDO: I was going to
- 16 comment on that same point, and I struggled with
- 17 the way that the question is worded until I saw
- 18 Lawrence's slide with the pH in the different
- 19 regions of the GI tract. Maybe the question needs
- 20 to be reworded because it is not really a matter of
- 21 consistency with the dissolution range which should
- 22 specify that it is maybe the physiologically
- 23 relevant dissolution range. It wasn't clear if
- 24 this was an in vitro dissolution test that you were
- 25 trying to be consistent with, but what is more

- 1 important is that it is physiologically relevant.
- 2 So, with that in mind, my reaction is more positive
- 3 to the recommendation. However, my question still
- 4 relies on what about acids? Maybe you have weak
- 5 acids that are very poorly soluble at pH 7. Maybe
- 6 it is not relevant physiologically but I would like
- 7 you to address that. Are there any drugs or any
- 8 properties of drugs that are going to be of
- 9 concern?
- 10 DR. AMIDON: For borderline drugs? There
- 11 are a few NSAIDs. There may be. I think that is a
- 12 good example. What might this impact? I think it
- 13 is only a few drugs that it might actually impact.
- 14 I think that is a good point. I think our goal
- 15 here is to get the general view. We will come back
- 16 with the evidence in the future, and we are
- 17 interested in the type of evidence that the
- 18 committee thinks would be supportive of a positive
- 19 answer to this question one. For what types of
- 20 drugs would this have an impact?
- I think I would agree. Harmonization is a
- 22 secondary issue. The question is reflecting the
- 23 physiological process and having a valid BE type
- 24 dissolution. So, I agree completely. On the other
- 25 hand, other things being equal, we would want to

- 1 harmonize rather than disharmonize--other things
- 2 being equal.
- 3 Ultimately, it is dissolution that counts,
- 4 not solubility. Our dissolution standard is based
- 5 currently on 6.8. So, dissolution is what counts.
- 6 Solubility is one of the factors determining the
- 7 dissolution rate but the dissolution rate is what
- 8 counts.
- 9 DR. HUSSAIN: One point that I think needs
- 10 to be kept in mind is the initial introduction of
- 11 BCS was in SUPAC which covered all drugs. The BCS
- 12 guidance, though focused on methods for
- 13 classifying, focused on waivers of highly soluble,
- 14 highly permeable. So, I think that is the
- 15 disconnect that we tend to see, that is, the range
- of 1.2 to 7.5 is because it comes from the SUPAC
- 17 guidance and the rapid dissolution criteria that we
- 18 developed were for the BCS waiver guidance only.
- 19 So, that is how we will have to resolve that.
- DR. LEE: Okay, so we have answered the
- 21 first question.
- DR. JUSKO: I think we have resolved the
- 23 first question reasonably well. To summarize, I
- 24 think the answer to that is the inclination is to
- 25 have them both be determined at pH 6.8 but look

- 1 into the possibility that there may be unusual
- 2 circumstances where pH 7.4 would be particularly
- 3 relevant.
- 4 The second question is should the agency
- 5 expand the application of BCS-based biowaivers to
- 6 rapidly dissolving, immediate release products of
- 7 BCS Class III drugs? That question is a more
- 8 profound one and appears to be connected directly
- 9 to the list of proposed studies and data collection
- 10 efforts to test the hypothesis that this is
- 11 achievable, and it would be good to look again at
- 12 one of the slides from Dr. Yu. That one.
- 13 [Slide]
- 14 Clearly, it is premature that anyone go
- 15 directly to implementing this type of policy, and I
- 16 think we are at a stage where the committee is
- 17 probably recommending that a number of studies be
- 18 done to investigate and confirm that this is a
- 19 reasonable thing to do. This list of studies was
- 20 proposed and I would welcome comments from other
- 21 people on the committee.
- DR. SHARGEL: One, it does strike me as
- 23 being a reasonable approach. I think, if I
- 24 understand this correctly, the premise is that
- 25 these drugs would rapidly dissolve and would be

- 1 very similar to giving it as a solution almost for
- 2 the time spent in the gastrointestinal tract. So,
- 3 the issue then becomes if you have a solution of
- 4 the drug would the excipients in a solid dosage
- 5 form make any difference in the permeability realm.
- 6 That is the issue I think as to make this a
- 7 universal kind of approach.
- 8 DR. YU: That is correct.
- 9 DR. HUSSAIN: I just want to make sure
- 10 that you are not committing to do those studies
- 11 with our money. We will take this recommendation
- 12 to PQRI and have industry do those studies.
- [Laughter]
- 14 DR. JUSKO: With all the money that Pfizer
- 15 has saved, I am sure they are going to be the ones
- 16 to fund it.
- [Laughter]
- DR. COOK: That is how I got my salary all
- 19 the way up to \$20,000 a year!
- DR. LEE: Well, I think it is a serious
- 21 question and I think underlying this is the meaning
- 22 of permeability. I think I have heard repeatedly
- 23 throughout the day that while we are very
- 24 comfortable with dissolution solubilities being
- 25 unambiguous, when it comes to permeability that is

- 1 not so. Since someone else is going to pay for it,
- 2 we may as well address this issue more seriously.
- 3 What do we mean by permeability?
- DR. YU: Yes, for BCS Class III drugs we
- 5 will collect a number of drugs and cover a wider
- 6 span of permeability. From there we will answer
- 7 some of the questions and some of the concerns with
- 8 respect to BCS biowaiver for Class III drugs. For
- 9 example, with internal studies we are proposing
- 10 intermediate permeability. Once we have the data,
- 11 I think the data will tell us which direction we
- 12 should go in. Thank you.
- DR. HUSSAIN: I think one sort of point
- 14 that we would consider, I think is Hans Lennernas
- 15 has published on water, a glass of water. Water
- 16 has a permeability value which is fairly close to
- 17 metoprolol. It so happens that the permeability of
- 18 water itself is at the boundary. So, that has an
- 19 implication that when you give a glass of water and
- 20 a solid drug after an all-night fast, the glass of
- 21 water might get absorbed more quickly than the drug
- 22 has time to dissolve. I think we can bring that as
- 23 a sort of research question and address some of
- 24 that; some of the work that Gordon has done with
- 25 perfusion studies, and so forth, and what

- 1 implication that has.
- DR. LEE: Yes, Larry?
- 3 DR. LESKO: If we look at that slide as a
- 4 way forward in anticipation of bringing results
- 5 back to the committee in the future, to get back to
- 6 the specific question about biowaivers, I wonder if
- 7 the committee members would have any thoughts on
- 8 what they would expect to see from these studies.
- 9 In other words, let's say I go out and I do a
- 10 comparative study of a solution versus these dosage
- 11 forms, would it be important to demonstrate strict
- 12 bioequivalence based on the 90 percent CI of 80 to
- 13 125? Would it be satisfactory to deal with the
- 14 point estimate? These are important considerations
- 15 in terms of designing and powering these studies to
- 16 address the question that we have. So, I wonder if
- 17 anyone has any thought on that.
- 18 The other part of this question is how we
- 19 select the solid dosage forms. Is there any advice
- 20 that committee members could give on the
- 21 identification of particular excipients that would
- 22 come to the forefront of people's mind that would
- 23 be worthwhile considering as part of the selection
- 24 process for the dosage forms. So, let's say that
- 25 we do come back in a year or something like that

- 1 and have data, we don't miss something that may be
- 2 particularly important in terms of potential
- 3 excipient effects.
- DR. SHARGEL: Somehow, Larry, I am
- 5 compelled to talk about 90 confidence intervals and
- 6 bioequivalence. So, if you do the study I would
- 7 expect the same criteria would be held up.
- 8 MR. VENITZ: I would second that.
- 9 DR. BOEHLERT: I don't have a list of
- 10 excipients that you should be looking for, but I
- 11 certainly think that should be one thing you should
- 12 consider in doing these studies because, you know,
- 13 you keep repeating that excipients can have an
- 14 effect on oral absorption and I would like to
- 15 understand that better, where and how, so we could
- 16 begin to identify which excipients might be
- 17 problematic.
- DR. LEE: Lawrence, have you shown us
- 19 those ten mono drugs? Did you provide a list?
- DR. YU: Well, this is just the 12
- 21 potential BCS class drugs. We will come back with
- 22 some other drugs which are potentially Class III
- 23 drugs. That doesn't necessarily mean we will study
- 24 all ten. Maybe some data is already available from
- 25 NDAs and ANDAs.

- DR. HUSSAIN: I think we have done two
- 2 studies, cimetidine and ranitidine, as Larry
- 3 pointed out. So, we have a good database on that
- 4 with manufacturing changes and dissolution changes
- 5 on two of those already. So, one could look at a
- 6 range of permeability values that could be selected
- 7 to account for that. At the end of the experiments
- 8 I think one aspect might be that you might need an
- 9 intermediate class of permeability because right
- 10 now you are going from 0-90, and I think when you
- 11 start going down to 20 and 30 percent, that is
- 12 where you start having problems. So, a range of
- 13 permeability values will help us maybe define and
- 14 intermediate permeability class.
- DR. KIBBE: Is there less concern for a
- 16 company who decides to change the site of
- 17 manufacture from point A to point B and saying,
- 18 okay, it is a Class III and I am just going to show
- 19 you that I have the same dissolution
- 20 characteristics because I have just transferred my
- 21 process than with a second company who has a new
- 22 formulation and wants to do a biostudy? Would that
- 23 delineation help us move Class III's where we could
- 24 waive it in one case and not necessarily in
- 25 another?

- DR. HUSSAIN: Well, I think SUPAC scale-up
- 2 and post-approval change actually did that. It
- 3 brought a risk-based approach or three-tier
- 4 approach for that. For example, for site changes
- 5 alone with no other changes, for a immediate
- 6 release dosage form it is qualification based on
- 7 dissolution alone. If you have other types of
- 8 changes, BCS comes in when there are excipient
- 9 changes, and so forth.
- DR. RODRIGUEZ-HORNEDO: My observation is
- 11 that most of these compounds are weakly basic.
- 12 Right? Almost all of them?
- DR. LESKO: Hydrochlorothiazide is a weak
- 14 acid, I believe.
- DR. RODRIGUEZ-HORNEDO: Yes. Most of them
- 16 are weakly basic, and I am coming back to that
- 17 issue of pH dependence on solubility. I know it is
- 18 not the main issue here with the permeability but
- 19 maybe something that hasn't been addressed is the
- 20 pH dependence of the permeability. Is that of
- 21 concern?
- DR. COOK: I don't know if this list was
- 23 proposed to take the ten drugs from. I think we
- 24 could take it back. We want to look at acids and
- 25 bases, and we want to look at a range of

- 1 permeability that probably even exceeds what we
- 2 have here to provide the best data. So, I don't
- 3 think I would get too hung up in saying that these
- 4 are the model compounds that one would use. It is
- 5 better to use a broader range that encompasses more
- 6 things so we will have more confidence in the
- 7 results.
- 8 DR. AMIDON: That is a good question about
- 9 pH dependence. The pH 6.5 with the perfusing
- 10 system that we use in humans provides a reference
- 11 permeability, kind of like a thermodynamic PK; it
- 12 is not really what is going on in solution but it
- 13 is what you use to move ahead. So, we measure this
- 14 reference PK. We have done permeability studies in
- 15 humans with alpha methyldopa a long time ago, and
- 16 that is pH dependent. It parallels that in
- 17 animals, and there is a variety of reasons for that
- 18 pH dependence. From the point of view of
- 19 predicting drug absorption and drug absorption
- 20 variability, it would be very important. So, I
- 21 would want to know that as a development scientist.
- 22 I don't see how it would help in a regulatory
- 23 classification or decision-making process. We take
- 24 the mean pH of about 6.5 for the human intestine
- 25 and say, okay, we are going to use that as our

- 1 reference value and stay with that. It gets to
- 2 cumbersome otherwise.
- 3 But for some of these drugs, I know
- 4 because we have studied hydrochlorothiazide, they
- 5 are very pH dependent, and we have also done
- 6 furosemide. So, the actual operative permeability
- 7 of pH 6.5, the permeability decreases there greatly
- 8 because it is ionizing. It is probably absorbed.
- 9 It has a very sharp absorption window because it is
- 10 the permeability, solubility procedure that counts.
- 11 Solubility is going up, permeability is going down.
- 12 I think that is why it is a highly variable drug.
- 13 It is not bioequivalent to itself, at least in one
- 14 study, because of the variability so we are getting
- 15 into problem drugs here--I should say variable
- 16 drugs. I am interested in the pH dependence, but I
- 17 can't justify it on the basis of regulatory use.
- DR. LEE: It seems to me that this is an
- 19 ideal situation for forming a subcommittee to work
- 20 with Lawrence to just design a study. Right? The
- 21 choice of drugs, excipients, in vivo, in vitro,
- 22 other kind of parameters.
- DR. YU: That is an excellent suggestion,
- 24 yes.
- DR. JUSKO: I think it would also be good

- 1 to keep in mind making maximum use of complementary
- 2 information, like structure activity types of
- 3 predictions, as well as the data gathered from
- 4 animal studies so that one has more than one
- 5 measurement to base any anticipated results on.
- DR. YU: This comes to my favorite topic,
- 7 my true research interest is in the structure
- 8 activity relationships. As long as my boss says
- 9 okay, do it, we will do it. Definitely.
- 10 DR. LEE: I thought you were going to say
- 11 you would do simulation studies.
- DR. YU: Yes, we will do simulation
- 13 studies.
- DR. LEE: Maybe that is the place to
- 15 start.
- DR. LESKO: I want to get to the proposed
- 17 research because it is such a key to moving
- 18 forward. One of my concerns, and maybe I will ask
- 19 Lawrence to comment on this, is what is the
- 20 possibility or probability that you will be able to
- 21 find two solid dosage forms of these Class III
- 22 drugs that meet the rapid dissolution
- 23 characteristics that are being proposed for it? Is
- 24 this a study that is sort of Jack Cook's blue sky,
- 25 or is this a study where you can actually go into

- 1 the marketplace and find these things, or is it a
- 2 set of studies where you would actually have to
- 3 formulate the products to meet the rapid
- 4 dissolution criteria, or all of the above?
- 5 DR. COOK: Larry, would you consider a
- 6 solution versus tablet sufficient? That way, I
- 7 only need to compare those two rather than two
- 8 solid formulations?
- 9 DR. LESKO: Well, let's say we are doing
- 10 two tablets, but as I understand this research, if
- 11 you are going to go into the marketplace to find
- 12 those solid dosage forms, tablets, whatever, they
- 13 aren't necessarily formulated to be rapid
- 14 dissolution.
- DR. COOK: That is why I was suggesting a
- 16 solution which is, for a highly soluble compound, a
- 17 lot easier to formulate and compare that to a
- 18 tablet. So, you have one that is extremely rapidly
- 19 dissolving, the solution, and then the tablet and
- 20 you can probably look at the excipients in that as
- 21 well.
- DR. LESKO: So the tablet would be rapid
- 23 dissolution as well, 15 minutes?
- DR. COOK: Well, it would have to be 15 or
- 25 30 minutes, whatever we propose. So, you would

- 1 have to make one formulation, is what I am saying,
- 2 rather than two.
- 3 DR. LESKO: I think actually that would be
- 4 a good idea because you are talking about ten drugs
- 5 with a comparative study, which is no less than
- 6 what we have for the original fasting study,
- 7 bioequivalence studies. In fact, it would exceed
- 8 it I think in terms of the total in vivo data to
- 9 support a biowaiver. But, again, that question
- 10 about what is the drug and what is the formulation,
- 11 and whether they are commercially available or not,
- 12 would be a limiting factor.
- DR. YU: Certainly, I think we need to be
- 14 flexible, and we have limited research dollars. If
- 15 it is available on the market we will supply them
- 16 for the studies. That is the value of having a
- 17 subcommittee under the ACPS to get advice from the
- 18 members to see how best to utilize the money to get
- 19 the information we can get.
- 20 Secondly, we certainly want to utilize
- 21 what is out there in the literature and what is out
- 22 there in the NDAs and ANDAs. From there, we would
- 23 design--we only can conduct what is necessary to
- 24 address issues from those studies in NDAs or ANDAs
- 25 which we are not able to address.

```
DR. KIBBE: Larry, why can't you go to the
```

- 2 data the FDA already has and get the dissolution
- 3 profiles of all these products to start with? I
- 4 think it might be a little bit better if there were
- 5 two products out there that would give you relative
- 6 rapid dissolution. I think you would be better off
- 7 looking at them, and using as a fall-back a
- 8 procedure that isn't on the market, a solution.
- 9 DR. LESKO: Yes, I think the missing link
- 10 there is the dissolution studies that would not
- 11 necessarily be available in an application--
- DR. KIBBE: Why not?
- DR. LESKO: Well, because we are talking
- 14 about a very specific set of dissolution test
- 15 conditions to test a hypothesis of Class III.
- 16 Those dissolution conditions may not have been
- 17 studied as part of the normal drug development.
- 18 So, you can't just go back to the applications and
- 19 pull that information out. In almost all cases you
- 20 have to go to a laboratory and redo that to the
- 21 specifications that you would like to support the
- 22 hypothesis. But that is doable. I mean, that is
- 23 just reality; you just have to do it.
- DR. YU: Absolutely. We actually
- 25 conducted a food effect study which was presented

- 1 this morning. When we selected a drug we purchased
- 2 the products and we did a lot of in vitro testing
- 3 before we selected these two specific products for
- 4 in vivo studies. It is doable and we have the
- 5 facility to do that within the agency.
- DR. MEYER: It seems to me though that one
- 7 of the pieces of rationale I heard was that Class I
- 8 and Class III act like solutions. So, if we did
- 9 studies for low permeability drugs, solution versus
- 10 a marketed or experimental tablet, what-have-you,
- 11 just that two-way crossover, you would in a sense
- 12 prove whether the low permeability--while we know
- 13 it dissolves rapidly--also is sufficiently
- 14 permeable or permeability isn't a factor. So, that
- 15 seems to be a rational way of approaching it given
- 16 your initial hypothesis, solution versus tablet.
- DR. YU: You are right. You are
- 18 absolutely correct, yes.
- DR. MEYER: Can I raise one other
- 20 question? Just to kind of support the concept of I
- 21 think we still need to look at low permeability,
- 22 and that is that study that Ajaz had in his handout
- 23 from UT, ranitidine, sorbitol sucrose and
- 24 metoprolol, sorbitol sucrose, both solutions. And
- 25 the metoprolol, which is highly permeable or

- 1 borderline high, had a confidence interval, sucrose
- 2 solution sorbitol 86-100 for AUC so it was
- 3 essentially bioequivalent, unchanged by sorbitol.
- 4 Whereas, ranitidine, which is low permeability,
- 5 dropped to 62 percent. So, the effect of sorbitol
- 6 was much greater on the low permeability ranitidine
- 7 than it was on the high permeability metoprolol.
- 8 So, we do have to worry about excipient effects.
- 9 Maybe this is the worst excipient known to man and
- 10 that is biasing our information, but maybe it isn't
- 11 so I think we still need to look closely at that.
- 12 DR. HUSSAIN: I think we would need to but
- 13 I think I would go back to what Gordon suggested in
- 14 a sense, for a solid oral dosage form it is the
- 15 dose of the excipient that is important. When you
- 16 think of a syrup you are looking at a tablespoonful
- 17 or two tablespoonfuls so sorbitol in a solution is
- 18 a much larger dose and a tablet is a much smaller
- 19 dose. So, that also I think is an issue that
- 20 should be considered. So. But I think Ian Wilding
- 21 has done the work with chewable tablets with
- 22 cimetidine. So. So, two grams of sorbitol with
- 23 mannitol had a dramatic effect on cimetidine. So.
- DR. AMIDON: It may relate to the water
- 25 reabsorption and the absorbable versus not

- 1 absorbable excipients, and it would inhibit water
- 2 absorption which would slow down cimetidine's
- 3 absorption and if the transit is also speeded up
- 4 you can come up with a good rationale for the
- 5 mechanistic reasons, which suggests that maybe you
- 6 should classify excipients in some way. I mean, if
- 7 the excipient is absorbed, it is gone at some
- 8 point. So, maybe it is low permeability or
- 9 non-absorbable excipients that may have a problem
- 10 so you can perhaps reduce the problem that way. I
- 11 don't know.
- DR. HUSSAIN: I think we talked about that
- 13 and actually low permeability, highly soluble
- 14 excipients are the ones which gave problems. If I
- 15 go back to Ian's work, and Ian could comment on
- 16 that, he actually did an experiment--Ian, correct
- 17 me if I am wrong--where he started with equal
- 18 osmotic pressure between sucrose, pyrophosphate and
- 19 sorbitol and mannitol, and showed that initial
- 20 osmotic pressure essentially.
- DR. WILDING: We were trying to produce
- 22 osmotically equivalent concentrations of sodium
- 23 acid pyrophosphate, mannitol, the intention being
- 24 to try to work out what the mechanism was. As
- 25 Gordon indicates, I am sure there are mixed

- 1 mechanisms going on in terms of how the excipients
- 2 have their effect, but I am sure it is the
- 3 non-absorbable excipients that will have the key
- 4 issue in this regard.
- 5 I was just wondering as you were talking,
- 6 the choice of excipients that you use in the
- 7 context of these studies is obviously going to be
- 8 important. I wonder how much of the work, as Vince
- 9 indicated, could be done by modeling in advance to
- 10 create the matrix which is then tested by the human
- 11 biostudies. So, in looking at drugs for different
- 12 fraction absorbed in terms of Class III, given the
- 13 excipients' different release rates, trying to
- 14 build some form of modeling for that which then
- 15 forms the basis on which the human biostudies are
- 16 done. Because what you might find, if you are not
- 17 careful, is that human biostudies might not provide
- 18 the answer to the questions, which would be a waste
- 19 of time, money and effort.
- 20 DR. HUSSAIN: To that effect in the sense
- 21 of we worked with Jim Pauley last two years to look
- 22 at CACO 2 in vitro permeability experiments as a
- 23 screen to try to identify, hopefully, excipients
- 24 which might be affecting the permeability of the
- 25 membrane itself. I think from the literature and

- 1 from what Ian and we have done, we know the
- 2 osmotics. So, we are essentially looking at
- 3 several mechanisms by which these excipients can
- 4 exert an effect. So the studies we do and the
- 5 models we select, if they are mechanistically based
- 6 and based so we can actually get a hypothesis and
- 7 test that, would be far more meaningful than
- 8 randomly selecting those excipients.
- 9 DR. YU: Actually, we have done some
- 10 mathematical modeling work to simulate Ajaz' study
- 11 done at the University of Tennessee, to look at how
- 12 excipients in this particular case, sorbitol five
- 13 grams that one tablet will have, to look at how the
- 14 sorbitol affects oral drug absorption of
- 15 ranitidine. We have really nice results.
- 16 Certainly, we also want to evaluate it in the low
- 17 dose. I think those study results will all be
- 18 valuable in the future for how to address some of
- 19 the concerns expressed here. Thank you.
- DR. HUSSAIN: One example that you have in
- 21 your handout is from my presentation. The drug is
- 22 atenolol, the tablet with a solution, and the
- 23 tablet has twice the bioavailability than the
- 24 solution. There is about 750 mg of sorbitol in
- 25 that. So, you know that even 750 mg in a solution

- 1 can reduce bioavailability by 50 percent compared
- 2 to a solid tablet. So, I think the thing which is
- 3 exciting to me is the major mechanisms by which
- 4 excipients exert their effect. As that happens, we
- 5 actually happen a means of doing hypothesis-based
- 6 testing underpinned by mechanistic basis for this.
- 7 DR. LEE: In other words, the excipients
- 8 can no longer be considered as inert.
- 9 DR. HUSSAIN: I don't want to alarm people
- 10 with that. I think we have to be very pragmatic.
- 11 I think some excipients have effect but I think
- 12 overall in a solid dosage form I don't think there
- 13 is a major concern. So.
- DR. YU: The majority are inactive and
- 15 some of them, like sorbitol, may have some
- 16 concerns, yes.
- 17 DR. ANDERSON: Aren't you talking about
- 18 molecular interactions which are pH dependent,
- 19 particularly with those things that have all those
- 20 OH groups on them?
- DR. YU: For solubility or permeability?
- 22 What aspect?
- DR. ANDERSON: Well, if the solubility of
- 24 the drug is pH dependent, that is, if it has the
- 25 nitrogen or carboxylic acid group in it, and you

- 1 have all the OH's on the other things, whatever you
- 2 call them, you are talking about molecular
- 3 interactions which are pH dependent. The pH really
- 4 affects even those things with the OH groups on
- 5 them because the OH groups are basic as well.
- 6 DR. COOK: I guess that is another way of
- 7 looking at how you are classifying how the active
- 8 adjuvants, to steal somebody else's classification,
- 9 interact because not only are we worried about that
- 10 but things that change the physiology, whether it
- 11 be something that changes the osmolarity or
- 12 something that interacts with the membrane itself.
- 13 I guess the investigation of excipients is even
- 14 broader than just the molecular interaction.
- DR. LEE: Bill?
- DR. JUSKO: It sounds like there has been
- 17 considerable and very fruitful discussion about the
- 18 issues relating to these proposed studies. My
- 19 view, and I believe the committee believes that
- 20 there is good possible potential for future
- 21 biowaiver for the Class III agents, but before that
- 22 is done a very careful assessment of many of these
- 23 basic questions needs to be done. It appears that
- 24 an ample data set needs to be collected, and many
- 25 questions related to the role of excipients remain

- 1 to be resolved. So, there is great encouragement
- 2 from the committee to continue along this line.
- 3 DR. LEE: Well put. Maybe a future
- 4 committee will hear these results. Are there other
- 5 issues to be brought forth before this group? We
- 6 have had a very fruitful day.
- 7 DR. HUSSAIN: One issue, and I don't want
- 8 to be caught again like with the highly soluble,
- 9 highly permeable drugs, is the food effect. If we
- 10 go with a waiver for Class III, I think the logic
- 11 we be that we have to consider the food effect
- 12 alongside because otherwise it doesn't make sense.
- 13 So.
- DR. LEE: That is for the record.
- DR. HUSSAIN: So, this should also expand
- 16 to the food effect too at the same time.
- DR. YU: You are absolutely right. We
- 18 will probably begin to collect the coefficient of
- 19 valence for a number of drugs compared under
- 20 fasting conditions and under fed conditions to see
- 21 if the valence becomes bigger or smaller, and how
- 22 to address this concern that we had this morning.
- 23 Thank you.
- DR. LEE: We began the day talking about
- 25 subcommittees and I think this is an excellent idea

- 1 for clinical pharmacology, and not put a spotlight
- 2 on clinical pharmacology but also may serve as a
- 3 catalyst for other changes in the committee. Then
- 4 we went on to talk about a very interesting issue
- 5 about food effect on Class I drugs. I think the
- 6 committee is not that comfortable. Well, the
- 7 answer seems to be obvious but we don't have enough
- 8 evidence to support our gut feeling.
- 9 This afternoon I think we got a very good
- 10 understanding about the BCS Class I, Class III. I
- 11 don't want to repeat what Bill Jusko just talked
- 12 about. He put it very succinctly what needs to be
- 13 done. I think that we are going to hear about the
- 14 results of this work in a few years time, but the
- 15 committee, or at least I would like to see the use
- 16 of computation as a way to guide the experimental
- 17 design, and also to think about this permeability
- 18 more carefully, especially when we are encountering
- 19 more drugs that require transporters for
- 20 absorption.
- 21 DR. HUSSAIN: Let me go back to the issue
- 22 of the food effect waiver because that is an
- 23 important issue and I think I want to stress the
- 24 logic of the situation being such that it doesn't
- 25 make sense not to give waiver for fed studies for

- 1 Class I rapidly dissolving when we give the waiver
- 2 for fasting studies. I just want to stress that
- 3 fact because I heard from Marv that he is in
- 4 agreement with that. I really would like to have a
- 5 position of the committee on that one. So.
- 6 DR. LEE: That is the position.
- 7 DR. HUSSAIN: What is the position?
- 8 DR. LEE: What you just said.
- 9 [Laughter]
- DR. HUSSAIN: So, the committee agrees
- 11 with Marv and the logic prevails?
- DR. LEE: Right. What I have seen today,
- 13 shall we revise the guidance, reminded me very much
- 14 about curriculum revision. Tomorrow we can forget
- 15 about biology more or less, and we will focus on
- 16 some physical chemical issues. So, we begin
- 17 tomorrow at 8:30. Please plan on staying the
- 18 entire day because we have a full agenda, I mean
- 19 the committee members. You can leave the stuff
- 20 here because it is safe.
- 21 [Whereupon, at 4:00 p.m., the proceedings
- were recessed, to reconvene at 8:30 a.m.,
- 23 Wednesday, May 8, 2002.]

24 - - -