- 1 trial, unless one were targeting a very substantial
- 2 reduction in the death rate on that.
- DR. LORELL: Thank you.
- DR. BORER: Lloyd, you had a comment?
- DR. FISHER: Yes, you are right. It would take
- 6 a larger trial. Actually, from what I have been informed,
- 7 it's not as large as Tom would think probably. And the
- 8 reason is that the cardiovascular event rate really goes up
- 9 when the people hit dialysis. Now, I'm not familiar with
- 10 that literature, but everything that I've been hearing, as
- 11 we've been rehearsing for this meeting, assuming that's
- 12 true -- and the independent people brought in here could
- 13 discuss that. So, if you followed long enough, if you're
- 14 willing to let a lot of people get to dialysis and so on
- 15 and so forth, and not feel you had to intervene to prevent
- 16 that in every way you could, then actually surprisingly not
- 17 just the death rate but the cardiovascular event rate would
- 18 go up more than you would think.
- 19 DR. COOPER: And in that situation, we would
- 20 have continued coded medication throughout the study rather
- 21 than discontinuing it at the first event.
- DR. EDMUND LEWIS: If I could address that,
- 23 just to finish Lloyd's statement, the mortality rate, once
- 24 a patient reaches dialysis, hasn't changed much over the
- 25 last several years, and it is much greater in patients who

- 1 have diabetic nephropathy than it is in patients with other
- 2 diagnoses on dialysis programs. The one-year mortality for
- 3 these patients is 25 percent, and the two-year mortality is
- 4 50 percent. So, the goal is to prevent the patient from
- 5 going on to dialysis as long as possible because they're
- 6 not dying renal deaths, they are dying cardiovascular
- 7 deaths, and whatever it is about dialysis that does this,
- 8 these patients do very badly.
- 9 DR. BORER: Steve?
- DR. NISSEN: I just want to make sure I
- 11 understand whether any of the cardiovascular endpoints were
- 12 censored in this trial. Am I or am I not correct? When
- 13 they reached ESRD, from then on were the cardiovascular
- 14 events included or were they censored?
- DR. COOPER: They weren't captured.
- DR. NISSEN: They were not captured.
- DR. COOPER: Right.
- DR. NISSEN: They were captured or captured and
- 19 censored?
- DR. COOPER: They were not captured. The
- 21 patients were no longer on study drug, so there's wasn't a
- 22 safety effect that we were following, and because of the
- 23 interventions associated with ESRD and the change to the
- 24 patient's status as a result of those interventions, we did
- 25 not capture any cardiovascular events that happened once a

- 1 subject reached ESRD.
- DR. NISSEN: Okay. Well, maybe I'll have more
- 3 to say in the discussion period, but I'd sure like to see
- 4 that data.
- DR. COOPER: That's the design.
- 6 Can we have Dr. Pfeffer now?
- DR. BORER: Alan, did you have one question
- 8 first here?
- DR. HIRSCH: This may also just relate and
- 10 maybe Dr. Pfeffer can answer it as well.
- In transition again from the balance of renal
- 12 benefit to cardiovascular benefit, I want to go back to
- 13 Steve's point on figure C-16 where you see a reduction in
- 14 heart failure events with irbesartan, but a relatively
- 15 favorable effect on the ischemic events in the amlodipine
- 16 group. You've shown us baseline data for many renal
- 17 parameters. I just want to make sure there wasn't any
- 18 misallocation or randomization imbalances. Do you have
- 19 data on clinical coronary disease, myocardial infarction
- 20 history, heart failure in the three cohorts you can share
- 21 with us?
- DR. COOPER: We didn't collect data at baseline
- 23 to that level of degree, but the frequency of prior
- 24 cardiovascular events at the time of randomization was
- 25 similar in all three treatment groups.

- DR. HIRSCH: I saw that. I was wishing to
- 2 break that down a little bit.
- DR. BORER: Marc?
- DR. PFEFFER: I'd like to start with an apology
- 5 for some of the confusion. I am a member of this group,
- but my tenure was supposed to start after this meeting
- 7 because I obviously knew I was working on this project
- 8 since 1995, and I knew this date. When I was invited to
- 9 join, I asked that my tenure start after this session. And
- 10 apparently my paperwork went through faster than
- 11 anticipated. So, I apologize to --
- DR. BORER: A first.
- 13 (Laughter.)
- DR. PFEFFER: But my history with this trial I
- 15 think is relevant because it goes back to the design phase.
- 16 Dr. Lewis and the collaborative group had been working
- 17 with the sponsor -- and this is relevant to the difference
- 18 between cardiovascular and renal -- to design a renal study
- 19 in a patient population that had never been tested with a
- 20 new class of agents that had never been evaluated.
- 21 At that time, I came in and had discussions
- 22 with Dr. Lewis and the sponsor and said how could you not
- 23 look at cardiovascular events. That's what will happen
- 24 with these patients. And he said, Marc, you have to
- 25 understand. We're getting these people at the point of the

- 1 spectrum where they're more likely to have renal events,
- 2 but why don't we prospectively look at cardiovascular
- 3 events too but as a clear secondary. As a matter of fact,
- 4 all the alpha in this project is on the renal events. So,
- 5 this was a renal study known in a population with a high
- 6 likelihood to have a propensity for cardiovascular events.
- Now, given that, the sample size was based on
- 8 the renal events. So, it was a sample size of
- 9 approximately 600 per group with three active comparators.
- 10 So, there wasn't a chance to talk about cardiovascular
- 11 death.
- If I could have the first slide. We built a
- 13 composite. Why does one build a composite? First of all,
- 14 this is a secondary endpoint. And we built a composite
- 15 knowing that with 600 people, three groups, two
- 16 comparisons, to get a signal that there was an ability to
- 17 influence a cardiovascular outcome, we would need as many
- 18 what we thought were clinically important events as
- 19 possible.
- 20 So, as you've heard, it's cardiovascular death
- 21 plus nonfatal MI, and I would say prospectively we even
- 22 built in an ECG core lab where the baseline ECG was looked
- 23 at 6 months, 1 year, and approximately 6,000
- 24 electrocardiograms were looked at. Hospitalization for
- 25 heart failure required a hospitalization and an

- 1 adjudication committee, as did neurologic deficit, and the
- 2 amputation was clear, above the ankle. So, we felt this is
- 3 a smorgasbord of bad news cardiovascular events, and let's
- 4 see, if we have a signal that in these three active
- 5 comparators, if we can see something.
- To give you an idea of where we stood, we also
- 7 said 600 might not be enough. Let's broaden the
- 8 definitions and now let's call this a tertiary. That's
- 9 clearly a definition of where we are. We're in the
- 10 exploratory phase, but we didn't want to miss something
- 11 with this new class of agents in this important population.
- So, what we added to what you had seen before
- 13 was nonfatal MIs called by the site. So, if a site called
- 14 it, we'd add that. We also added revascularization
- 15 procedures. We now added heart failure that didn't quite
- 16 require a hospitalization, but the investigator said I'm
- 17 not comfortable here. We're going to start an ACE
- 18 inhibitor or an angiotensin receptor blocker, and we also
- 19 added a different level of amputation and peripheral
- 20 vascular procedures.
- 21 And the results were surprising to me that with
- 22 that smorgasbord of cardiovascular events adding all these
- 23 together, in only 2.9 years -- everyone on active blood
- 24 pressure control, and blood pressure levels are going from
- 25 about 160 to approximately 140 systolic -- we had a 25

- 1 percent event rate overall. Contrast that to the renal
- 2 where it's 37. So, Dr. Lewis was right. These people were
- 3 more likely to have a renal event.
- 4 But that didn't mean that we didn't prespecify
- 5 and look at these things. This is the actual numbers. The
- 6 most common event that happened to one of these randomized
- 7 patients who was then followed for a cardiovascular event,
- 8 the most common event was the development of a
- 9 hospitalization for heart failure.
- If we look at the overall composite, I think
- 11 the conclusion is that this therapy, these three arms, that
- 12 there's no distinction in the overall cardiovascular event
- 13 rate.
- 14 Now, again, all the groups are receiving
- 15 antihypertensive therapy. There's a central committee
- 16 blindly working with all the investigators to try to get
- 17 the pressures down, not knowing the assignment, and this
- 18 was the overall.
- Now, when the investigators presented this --
- 20 and the first time that was done was in Stockholm at the
- 21 European Congress of Cardiology -- our conclusion was that
- 22 there was no difference in this prespecified composite,
- 23 lumping all cardiovascular events.
- When you have a composite, I think it's fair to
- 25 look at the components for hypothesis-generating

- 1 information, and we did that. And what that showed was the
- 2 most important line is the first dot, which is the
- 3 narrowest confidence interval, which is the overall
- 4 predefined, and you can see that that is right around the
- 5 nil, which is what that Kaplan-Meier showed.
- But then when you break it down into what were
- 7 the components, the only thing that really leaves the line
- 8 -- and we are not making a point of this because it's one
- 9 component of many -- is this hospitalization, but it's
- 10 counterbalanced by other factors. The event that we had
- 11 the narrowest confidence interval, of course, is the
- 12 overall, and we choose to make the statement that there's
- 13 no influence on cardiovascular events, some very
- 14 interesting things here that will need further study.
- The tertiary analysis, which is even broader,
- 16 just confirms what I've just said, and once again, the
- 17 components go back and forth. Really no difference and
- 18 nothing that you would say we found something here in this
- 19 one of six subanalyses in a tertiary analysis, but
- 20 interesting observations that will require larger studies,
- 21 which are already underway. There are large studies
- 22 comparing ARBs to calcium channel blockers. VALUE has
- 23 approximately 15,000 patients; LIFE has 9,000 patients.
- 24 That's what's going to be required.
- 25 Post hoc for the combined -- you've seen this

- 1 -- was let's add the renal bad news to the cardiovascular
- 2 bad news and see if it's a shallow victory. Are we just
- 3 offsetting those renal benefits by more cardiovascular
- 4 adverse events? And that wasn't true.
- But I think an even more important analysis to
- 6 some of the points that I've heard raised appropriately
- 7 today, what about the patient? The patient doesn't care if
- 8 they're referred to the nephrologist, the neurologist, or
- 9 the cardiologist if they had something happen to them.
- 10 This isn't a "who's my specialist here." It's "how am I
- 11 doing?"
- 12 We looked at the hospitalizations. Now, this
- 13 is also skewed in a way that the data collection stopped at
- 14 the development of end-stage renal failure. So, censoring
- 15 from the time of development of end-stage renal failure
- 16 means that we had slightly longer exposure in the
- 17 irbesartan group. With that slightly longer exposure,
- 18 there were fewer hospital admissions and the time in the
- 19 hospital was reduced. I think that's a global measure.
- Now, of interest, the cardiovascular component
- of the hospitalizations was not changed in these three arms
- 22 with all active therapy. So, our conclusion would be that
- 23 although we did not show a measurable impact on
- 24 cardiovascular disease, we did show a measurable
- 25 improvement in global health, best measured I think by the

- 1 total hospitalizations.
- DR. BORER: Steve or Tom, do you have any other
- 3 points you want to make?
- 4 DR. NISSEN: I tend to look at these events in
- 5 more of a hierarchical way, and I guess that's why I
- 6 focused so narrowly on what we would consider the hard
- 7 cardiovascular endpoints of cardiovascular death, nonfatal
- 8 MI, and stroke. I would really like to see an analysis
- 9 where those hard endpoints are looked at. And the reason I
- 10 say that, Marc, is that most of the "benefit" on the
- 11 irbesartan versus amlodipine comparison comes from the
- 12 hospitalization for heart failure, and we all know that
- 13 amlodipine tends to produce some peripheral edema and that
- 14 patients with peripheral edema are much more likely to get
- 15 into a hospital with a diagnosis of heart failure. So,
- 16 what you're trying to do is equate a soft endpoint like
- 17 hospitalization for heart failure with much harder
- 18 endpoints.
- 19 And I really want to know what the statistical
- 20 significance would be if one looked at -- and I recognize
- 21 it's exploratory and I recognize it's not prespecified, but
- 22 in terms of looking at overall benefit, I think you have to
- 23 look at cardiovascular events in that kind of hierarchical
- 24 way because they have different importance in terms of the
- 25 overall benefit to the patient. Do we have such an

- 1 analysis?
- DR. PFEFFER: Well, Steve, I think if we could
- 3 prespecify the importance of a nonfatal event, then give it
- 4 a rank, we'd all be in much better shape for designing
- 5 trials. Your bias is that having a nonfatal MI, you'll do
- 6 better than getting hospitalized for development of heart
- 7 failure. Well, there are nonfatal MIs and there are
- 8 nonfatal MIs, and there are developments of heart failure.
- 9 And I think that's the whole problem with once you get
- 10 below death, how do you rank these things. Even with the
- 11 diagnosis of an MI, sometimes it's a triponin leak versus,
- 12 wow, this person is not going to get out of their chair
- 13 again. So, I think that's treading in an area that we
- 14 can't do within this study or that most studies couldn't
- 15 do. Therefore, we chose to give you the whole global
- 16 smorgasbord and let you interpret that.
- I think the hospitalizations are a very
- 18 important component of this.
- 19 DR. NISSEN: One follow-up and that is --
- DR. JULIA LEWIS: Could I comment?
- DR. NISSEN: Sure.
- DR. JULIA LEWIS: On the adjudication committee
- 23 -- and Marc can speak to this too -- we were very sensitive
- 24 to that issue of peripheral edema associated with
- 25 amlodipine use that you mentioned. In fact, as we

- 1 adjudicated the heart failure hospitalizations, we required
- 2 the patients to have other manifestations such as rales, a
- 3 chest x-ray that showed pulmonary congestion, wedge
- 4 pressure. I mean, there had to be more to it than swollen
- 5 ankles.
- DR. NISSEN: Sure.
- 7 Let me just ask one more question, and that is
- 8 I want to know the justification for not collecting the
- 9 cardiovascular event data once they got to dialysis. I'm
- 10 very troubled by that because we don't have data that I
- 11 think we should have.
- DR. EDMUND LEWIS: Well, once a patient goes on
- 13 to dialysis, their caregiver, their environment, everything
- 14 really changes. Plus, their clinical course changes in a
- 15 highly expected way. So, that data was not collected
- 16 because of that, because in fact the way we looked at it,
- 17 requiring end-stage renal disease was the endpoint here.
- 18 And the high mortality rate of these patients, while it
- 19 would be of interest to know the exact number, I agree, but
- 20 we didn't anticipate that it would be any different than
- 21 any other type 2 diabetic nephropathy that reached end-
- 22 stage renal disease. They, after all, had not been on
- 23 coded medication for some considerable period of time.
- 24 They may have had their blood pressure controlled better
- 25 than the average patient, so maybe they had a more benign

- 1 course. But we did not feel that having detail of that
- 2 stage of the patient's life would actually contribute
- 3 meaningful information to what we were studying, and what
- 4 we were studying was does our intervention prevent the
- 5 patient from requiring dialysis according to what the
- 6 course of things would be.
- 7 DR. NISSEN: But an intention-to-treat analysis
- 8 says you continue to collect the data as the endpoints
- 9 occur. I mean, I think it's an unusual approach. I can
- 10 understand why you might argue that the data might be
- 11 censored, but I certainly would like to see the data.
- DR. JULIA LEWIS: I just want to make two quick
- 13 comments to add to the reasons why we chose not to do that
- 14 in the design committee, and that's because there are two
- 15 ongoing trials, one sponsored by the NIH and one sponsored
- 16 by a pharmaceutical company, looking at elements of the
- 17 dialysis membrane interaction with the patient and looking
- 18 at phosphate binders and certain things that we use to
- 19 manage them once they're on dialysis that are thought --
- 20 the hypothesis is that those things actually impact on
- 21 cardiovascular events. So, we really thought this was a
- 22 fairly contaminated population.
- Also, recall we only start out with 1,715
- 24 patients at the beginning of the trial. Our other feeling
- 25 was that there were going to be so few patients for a

- 1 cardiovascular outcome analysis that actually reached
- 2 dialysis that it wasn't the appropriate setting in which to
- 3 do a study in what happens to cardiovascular events in ESRD
- 4 patients.
- 5 DR. BORER: Tom and then Bob and then I have
- 6 some final questions for you before we break for the FDA-
- 7 mandated lunch.
- DR. FLEMING: There's much to say here. It's
- 9 in a certain sense philosophically troubling to me because
- 10 we are -- and I can accept this in a certain sense --
- 11 arguing that we need to follow patients long enough to
- 12 really be able to see the full clinical benefits achieved
- 13 by an intervention that is effectively extending the time
- 14 to doubling of creatinine. Yet, at the same time we're
- 15 hearing, gee, when you get out far enough, there's such a
- 16 myriad of complicated phenomenon influencing the outcomes
- 17 of these patients, that we don't really want to capture all
- 18 of these events because it's difficult to interpret them.
- In essence, what I want to understand is what
- 20 are the true clinical consequences of an intention to
- 21 deliver an intervention versus not and follow all the
- patients forward in time. And it may not be possible to
- 23 expect statistical significance on all the cardiovascular
- 24 endpoints. That doesn't mean it's not very informative to
- 25 understand whether there's a pattern here that is

- 1 suggestive of benefit or lack of benefit. So, it's a
- 2 simple question.
- Marc, you've indicated that you were a bit
- 4 surprised that cardiovascular events were about two-thirds
- 5 what the renal events were. Maybe that's what it is. I
- 6 have trouble knowing whether that's what it is because we
- 7 stopped systematically following the cardiovascular events
- 8 at certain points in time. So, it's a little difficult to
- 9 understand that.
- What I would like to see, Marc, about three
- 11 slides from the end, you threw something up that is getting
- 12 at, at least indirectly, what some of us have been really
- 13 struggling to see. Could you put the slide up again that
- 14 shows the actual number of documented events of each type
- 15 when we're looking at the secondary endpoint? And I'd like
- 16 to have this left up for several minutes so at least we can
- 17 make some notes as we go on to other discussions.
- Fundamentally, what I'd like to see --
- 19 descriptive or inferential isn't critical to me. What I
- 20 want to see is what the data show about the difference
- 21 between the three intervention arms in the fraction of
- 22 patients that have the more renal endpoints here, death,
- 23 dialysis, survival. Show me what that analysis is.
- And then it is relevant to be able to see more
- 25 globally how those renal and cardiovascular outcomes pool

- 1 not that I have to prove statistical significance or not.
- 2 I'd like to understand what the data show about the actual
- 3 influence of the strategies here in impacting both renal
- 4 and cardiovascular outcomes. So, at some point before we
- 5 get into voting, I'm really hoping someone can put those
- 6 specific analyses before us.
- 7 DR. JULIA LEWIS: Can I make just a quick
- 8 comment? I know you're cardiologists and I know that heart
- 9 attacks and cardiovascular deaths are really important
- 10 outcomes for you. But again, as a nephrologist, I have to
- 11 tell you whether or not you have to go to a dialysis unit
- 12 three times a week is also a very important outcome, and if
- 13 the government ran out of money, 100 percent of those
- 14 people would be dead without dialysis. So, we don't have
- 15 renal death because we're rich and fortunate in our
- 16 country. It's a huge factor for patients. Many of them
- 17 are more frightened of it than they are of a heart attack.
- DR. BORER: Bob?
- 19 DR. TEMPLE: I quess I have a couple of
- 20 observations. Maybe this should be left for the
- 21 discussion, but it seems to me the discussion is bearing on
- 22 them.
- This was not a trial to describe which the best
- 24 antihypertensive is. A trial of 40,000 people is
- 25 attempting to do that. We don't know what success it's

- 1 having. But you really wouldn't expect a trial of this
- 2 size to be able to pin down the question of whether
- amlodipine is better at preventing heart attacks than
- 4 irbesartan. There are mountains of data on that question.
- 5 Most of it, I admit, is ACE inhibitors not A2 blockers.
- 6 But it's obvious that trials go every which way. I mean, a
- 7 big trial in diabetics -- not so big -- the ABCD trial sort
- 8 of suggested that calcium channel blockers are death and
- 9 ACE inhibitors make you live, and then other trials don't
- 10 show the same thing.
- 11 It doesn't seem surprising to me that in
- 12 people, all of whom are treated apparently appropriately
- 13 for their blood pressure, you see twists and turns, and I'm
- 14 not sure how much you can make out of a trial of this size
- 15 on those endpoints when hundreds of thousands of patients
- 16 have not allowed anybody but certain individuals to reach a
- 17 conclusion about whether calcium channel blockers are
- 18 better or worse. So, I wonder how much one should make of
- 19 this. So, that's one observation.
- 20 The second is -- people have said this
- 21 repeatedly but I'm not sure whether everybody buys it --
- 22 that when you reach a creatinine of 6 or something like
- 23 that, you are on your way to dying or going on dialysis,
- 24 although this trial didn't follow that long enough. So,
- 25 there seems to be a minimization of that because you didn't

- 1 die or go on dialysis yet. I wonder about that because the
- 2 contention is at least you're on your way there. If we
- 3 followed you another year or two, you'd definitely be
- 4 there. But those are not counted as serious events because
- 5 they didn't quite happen yet. So, I wonder about that. It
- 6 seems to me worth discussing. Does any disagree with that?
- 7 Then, of course, the other observation is that
- 8 there are two comparisons here. One is against placebo
- 9 which actually translates to a wide variety of other drugs,
- 10 but not including calcium channel blockers or ACE
- 11 inhibitors or something like that. And that doesn't show
- 12 this funny thing on cardiovascular events. So, it's not
- 13 clear what to make of that.
- 14 You might say that these data certainly don't
- 15 tell you you should always use irbesartan instead
- 16 amlodipine in everybody because those other events seemed
- 17 to go the wrong way and it's ambiguous on that. But does
- 18 that interfere with reaching a conclusion about the effect
- 19 on renal function? And I think those are somewhat separate
- 20 questions.
- DR. BORER: Thank you.
- I have three final questions for you before we
- 23 break. No discussion, just give me an answer if you can,
- 24 and they'll probably come up again as we go through the
- 25 discussion of the formal questions later.

- I asked you before about what happened to the
- 2 people once they were taken off their coded drug. That
- 3 question had several components. First of all, what were
- 4 they put on? How were they treated after they were taken
- 5 off the coded drug, number one? And number two, what
- 6 happened to their rates of progression compared with the
- 7 rate of progression in the first portion of the trial
- 8 before they were taken off the coded drug? So, that's one
- 9 set that I'd like to hear an answer to.
- Second, I want to know something about the
- 11 exclusions beyond that point at which people were taken off
- 12 their coded drug. There were several other people who were
- 13 analyzed one way or another that I'd like to hear about.
- And third, you made a point about blood
- 15 pressure differences not being important, and I think it's
- 16 useful that Dr. Kopp is here because I think that the data
- 17 that exists might not support that statement and it may be
- 18 important for us to know about that.
- 19 But we'll go through them one at a time. First
- 20 of all, what about the patients who stopped their coded
- 21 drug? How were they treated and what happened?
- DR. COOPER: Can we have the first slide on
- 23 concomitant medication on double-blind therapy please?
- This slide displays the use of the different
- 25 classes of antihypertensives in this patient population

- 1 during the double-blind period. As you recall, earlier I
- 2 was asked a question about beta-blockers, and you see that
- 3 the frequency of use was 52 percent in the placebo group.
- 4 In most of the classes, placebo patients by and large
- 5 received more antihypertensives.
- We do not have specific information about the
- 7 use of agents once patients reached double of serum
- 8 creatinine because there's no approved indication and it
- 9 was up to the investigator to decide what to continue to
- 10 use. Our feeling is everyone was very committed to
- 11 maintaining blood pressure control and the use of these
- 12 agents most likely continued subsequent to discontinuing
- 13 coded medication.
- DR. BORER: So had you replaced the coded
- 15 medication to maintain the blood pressure? By increasing
- 16 the doses of these others?
- DR. COOPER: I don't have that information. We
- 18 didn't collect that level of detail of information.
- 19 DR. BORER: At some point it would be important
- 20 to know, because I'd like to know if they were put on ACE
- 21 inhibitors or ARBs. If they were, you'd interpret
- 22 subsequent data one way; if they weren't, you wouldn't.
- DR. COOPER: In the second slide that I'd like
- 24 to show -- and I believe that this slide is on an overhead
- 25 and not on a projector, so if we could have the overhead

- 1 set up. The reason why halving of GFR as measured by a
- 2 doubling of serum creatinine was considered a clinically
- 3 relevant outcome was because the study investigators felt
- 4 that once you've lost half of your renal function, you
- 5 needed to allow the study investigator to treat the patient
- 6 with whatever therapy, even though there's no approved
- 7 indication, should be used to delay the progression of
- 8 renal disease.
- Interestingly enough, not all investigators put
- 10 their patients on an ACE inhibitor. I don't have the exact
- 11 percent, but it's certainly not all. And what this slide
- 12 shows you is the rate of progression to end-stage renal
- 13 disease after doubling of serum creatinine in subjects with
- 14 and without ACE inhibitors following the endpoint. So,
- 15 with ACE inhibitors is on the lower curve, and there is
- 16 data here suggesting that if you treat them with an ACE
- 17 inhibitor, you are going to delay their progression of
- 18 renal disease.
- 19 And subjects who did not receive an ACE
- 20 inhibitor. And there could have been many reasons for why
- 21 the patients weren't treated with an ACE inhibitor. These
- 22 patients could have had severe hyperkalemia because of
- 23 their progression of disease as an example. The rate of
- 24 progression was more rapid.
- DR. BORER: Okay. That's not the way I would

- 1 interpret those curves, but I can be corrected by any
- 2 statistician sitting here. It looks to me like those lines
- 3 are parallel. They just have a different 0 offset. Am 1
- 4 wrong about that?
- 5 DR. COOPER: If you look at the medians that
- 6 were calculated until ESRD, it is shorter for those without
- 7 ACE inhibitors, 6.4 months, rather than those with ACE
- 8 inhibitors. It's 12.9 months.
- DR. BORER: Perhaps we need a little bit more
- 10 evaluation. Lloyd, can you clarify that for me?
- DR. FISHER: I agree with Dr. Borer. What he
- 12 is saying is the offset are the people who at the time they
- 13 doubled already were at ESRD, according to the creatinine
- 14 criteria, reinforcing the point these are different
- 15 populations. But if you put the offset together mentally,
- 16 it's not nearly as impressive. So, it's not really clear
- 17 whether there's benefit or not from these data.
- DR. BORER: Well, I'm not sure how much we can
- 19 infer from this, but I would have been happier to see a
- 20 real difference between the people who actually were put on
- 21 renin-angiotensin system affecting agents after the coded
- 22 drug was stopped than not, and I don't really see that.
- 23 So, I'm not sure what to make of that.
- 24 MR. WILLIAMS: George Williams from Bristol-
- 25 Myers Squibb.

- I think we have to be careful in these kinds of
- 2 interpretations of different therapeutic events for
- 3 cohorts, as described here. These are certainly not
- 4 randomized comparisons.
- DR. BORER: Right, I understand.
- 6 DR. COOPER: I do have one more slide to show
- 7 and that's the slide that shares the rate of progression to
- 8 ESRD by treatment group in subjects who were not put on an
- 9 ACE inhibitor. So, if they weren't treated with an ACE
- 10 inhibitor or an A2 receptor antagonist, that's the closest
- 11 we have to looking at whether or not there was some
- 12 preserved benefit after study drug was discontinued but
- 13 they had halved their GFR.
- 14 So, you see irbesartan in yellow, placebo in
- 15 pink, and amlodipine in blue. There is no real difference
- 16 here statistically, but if you look at the trends, the rate
- 17 of progression for irbesartan seems to be -- I don't want
- 18 to say similar because I can't show you the corresponding
- 19 curve before doubling of serum creatinine, but it is less
- 20 than it is for the other two groups.
- DR. EDMUND LEWIS: May I add something?
- DR. BORER: Yes, Dr. Lewis.
- DR. EDMUND LEWIS: I just wanted to remind the
- 24 panel of the hyperbolic relationship that I showed you
- 25 between creatinine clearance or GFR and the serum

- 1 creatinine because now we're talking about a period along
- 2 that curve that is at the tail where very small changes in
- 3 glomerular filtration rate are associated with very large
- 4 changes in the serum creatinine. So, if you actually
- 5 wanted to have a valid study of anything, ACE inhibitors or
- 6 where the patient was randomized first and so forth, those
- 7 changes in GFR leading to large changes in creatinine on
- 8 your hyperbolic curve are so large that you would really
- 9 need a lot of patients to get anything other than the sort
- 10 of identical curves that we're showing you here.
- DR. BORER: Well, perhaps it's just not
- 12 evaluable because the study wasn't designed to do this, but
- 13 you've shown us the data.
- What about the exclusions? Now, you've told us
- 15 what happened or what you know about what happened to
- 16 people after they stopped coded drug when they doubled
- 17 their serum creatinine. What about the others? There were
- 18 patients who never received any treatment. There were
- 19 patients who had ESRD and creatinine doubling at the same
- 20 time and were counted one way rather than another way. Can
- 21 you tell us what you did about, for example, the patients
- 22 who never received treatment? How were they handled?
- DR. COOPER: Dr. Natarajan?
- There were 16 subjects who did not receive a
- 25 dose of study drug even though they had been randomized.

- DR. NATARAJAN: Again, Kannan Natarajan from
- 2 Bristol-Myers Squibb.
- The 16 patients were analyzed as per the
- 4 intent-to-treat guidelines, in essence, actually as they
- 5 were randomized.
- 6 Can I have that slide for the 16 patients
- 7 please?
- These are the 16 subjects who were randomized
- 9 but never got a single treatment, never treated. These 6
- $_{
 m 10}$ patients were on placebo, 2 patients on irbesartan, and 8
- 11 patients on amlodipine. All of these patients were treated
- 12 as if they received study drug and they were analyzed by
- 13 the intent-to-treat principle.
- 14 Some of these patients did have an event very
- 15 soon after the randomization and were counted as having an
- 16 event. If we were to do a sensitivity analysis, counting
- in a more demonic way, the irbesartan subject is the only
- 18 one who is actually going to have the event. Still, it
- 19 does not change your conclusion.
- DR. BORER: How about the people who were lost
- 21 to follow-up? There were 13, as I recall, or something
- 22 like that.
- DR. COOPER: There were 8 subjects lost to
- 24 follow-up for which we did not have mortality status, and
- 25 we have a sensitivity analysis for those 8 subjects as

- 1 well.
- 2 DR. NATARAJAN: Can I have the slide for the 8
- 3 subjects?
- Again, 8 subjects were lost to follow-up. We
- 5 did not get any information on these subjects at the time
- 6 of the study closure. There were 2 placebo subjects, 4
- 7 irbesartan patients, and 2 amlodipine patients. In the
- 8 sensitivity analysis, we again considered the worst
- 9 possible scenario in which all the placebo subjects, as
- 10 well as the amlodipine subjects, didn't have an event.
- 11 However, all irbesartan subjects did have an event. As you
- 12 see, the primary composite endpoint is still very similar.
- DR. BORER: Okay, that's great.
- 14 You also had patients who had some events known
- 15 but their mortality status wasn't known, and how did you
- 16 deal with them?
- DR. NATARAJAN: Can I have the 19-patient
- 18 slide?
- There were 19 subjects who had variable follow-
- 20 up. There were 11 patients for whom we had the mortality
- 21 status known. Most of these subjects had withdrawn consent
- 22 and the only thing that we know of is actually whether they
- 23 were dead or alive at the end of the study. One subject
- 24 died during follow-up and is included in the ITT analysis.
- 25 Assuming the other 7 subjects had a primary event, this is

- 1 how -- and again, this is in the worst case scenario which
- 2 is highly unlikely to happen in the sense that it's more of
- 3 a demonic way of looking at it. The placebo subjects and
- 4 the amlodipine subjects didn't have any event. The
- 5 irbesartan subjects alone had an event, and this is how it
- 6 will turn out to be.
- 7 DR. BORER: At least we have the data in front
- 8 of us, and I appreciate that.
- The final question before we break. You
- 10 suggested that although there was a 2 to 3 percent
- 11 difference in blood pressure between the placebo group and
- 12 the irbesartan group -- forget for a moment the amlodipine
- 13 group because I'm going to suggest to you that that issue
- 14 may or may not be relevant since we haven't considered the
- 15 possibility that amlodipine might do something bad. But if
- 16 you just think about the placebo patients versus
- 17 irbesartan, there was a 2 to 3 percent difference in blood
- 18 pressure favoring irbesartan, and you suggested that though
- 19 that was statistically significant, it wasn't clinically
- 20 relevant.
- About 6 months ago, we sat at a meeting
- 22 listening to data from ALLHAT, and there was a rather
- 23 formidable presentation, suggesting something very
- 24 different from what you said, that is, that 2 to 3
- 25 millimeters of mercury could account for a lot of

- 1 difference. And I wonder if either you or someone from the
- 2 committee who's familiar with ALLHAT or with the relevant
- 3 data here can talk about that a little bit.
- 4 One might infer that the better results in the
- 5 irbesartan group versus the placebo group had something to
- 6 do with the difference in blood pressure control rather
- 7 than some independent effect of blockade of the renin-
- 8 angiotensin system. How would you respond to that?
- DR. COOPER: Well, that was the reason why we
- 10 did the Cox regression analysis using blood pressure levels
- 11 during the study to adjust for the primary composite
- 12 endpoint, and in that analysis, the relative risk
- 13 reduction, 19 percent, is similar to what was observed
- 14 without that analysis. It was 20 percent.
- 15 I guess I'm interested in your comment about
- 16 comparing the amlodipine and irbesartan group because
- 17 amlodipine could have been doing harm. One of the points
- 18 is that the amlodipine event rate was similar to the
- 19 placebo event rate, and it is our interpretation that it is
- 20 unlikely that amlodipine was doing any harm with respect to
- 21 this composite endpoint.
- DR. BORER: You may well be right. I'm
- 23 cognizant of the fact -- and in fact I had come to the same
- 24 conclusion that Bob stated -- we had two different
- 25 comparisons here, and we're asking several different

- 1 questions.
- I don't want to lose my train of thought here
- 3 before we close. Yes, I do remember now.
- 4 I don't know technically how one makes
- 5 adjustments with the Cox model. I don't know how valid it
- 6 is to say there was 20 percent and 19 percent and whatever.
- 7 What I would be willing to accept is that there is an
- 8 independent effect of treatment even when you consider
- 9 blood pressure differences, which I assume is what you
- 10 found. Maybe you can expand on that.
- 11 DR. NATARAJAN: Yes. Can I have slide 354?
- 12 What we did is basically address the issue of
- 13 the differences in the blood pressure between the treatment
- 14 groups whether it's clinically relevant or not. From a
- 15 statistical point of view, we adjusted in a time-dependent
- 16 manner and these are the results of the analyses, both
- 17 unadjusted, as well as adjusted for time varying mean
- 18 arterial pressure. As you can see, the risk reduction
- 19 change is very small, from 20 percent to 19 percent, and
- 20 the significance still exists. And with regard to
- 21 amlodipine, we did not see any difference in the blood
- 22 pressure, and thus the estimate did not differ, nor does
- 23 the p value.
- DR. BORER: Tom, can you comment on this?
- DR. FLEMING: Well, I think what's been

- 1 attempted here with the time varying covariate is a
- 2 reasonable approach. The question is how interpretable or
- 3 convincing is it really.
- 4 Essentially -- and I assume this is what you've
- 5 done, although there are lots of variations to how you
- 6 might do this -- what you're saying is we know at baseline
- 7 that blood pressure is predictive of risk of many types of
- 8 events, renal and cardiovascular. So, what we'd like to do
- 9 to fully capture that influence, particularly if there's a
- 10 difference in the blood pressure profile over time across
- 11 two different regimens, is put a time varying covariate in
- 12 that says anytime there's an event, what is that person's
- 13 blood pressure at that point and adjust for blood pressure,
- 14 not just at baseline but as it's varying over time.
- DR. NATARAJAN: That is correct, yes.
- DR. FLEMING: And that's a very reasonable
- 17 approach to take here.
- 18 There are some pretty significant assumptions
- 19 we're making, though, and that is the way in which blood
- 20 pressure truly is influencing outcome is fully being
- 21 captured by whatever that latest measured blood pressure
- 22 was at that point.
- I've attempted these kinds of adjustments in
- 24 other trials in which we have seen evolving differences in
- 25 outcomes and evolving differences in blood pressure levels,

- 1 and we haven't also been able to explain these differences
- 2 by the time varying covariate analysis. So, I consider
- 3 what they've done as a reasonable approach, but it
- 4 certainly doesn't reliably allow us to conclude that there
- 5 are not differences in these event rates that could well
- 6 still be impacted by the difference in blood pressure
- 7 control between the arms.
- DR. JULIA LEWIS: If I may add something. I'm
- 9 an investigator in the African American study of kidney
- 10 disease and hypertension, which has been presented at the
- 11 American Heart Association, and I sit on the writing
- 12 committee.
- We in that NIH-sponsored trial randomized
- 14 African Americans with kidney disease and hypertension to a
- 15 mean arterial blood pressure of 102 to 107 versus less than
- 16 92. We achieved between a 10 and 11 millimeter mercury
- 17 difference in mean arterial blood pressure. By any measure
- 18 of renal function, including time to event and iothalamate
- 19 GFR, we were unable to demonstrate a beneficial effect of
- 20 being randomized to the lower mean arterial blood pressure
- 21 group of less than 92.
- 22 Although that's a different group -- it's
- 23 African Americans with high blood pressure and kidney
- 24 disease -- I thought I would share that piece of renal data
- 25 with you, which may suggest that the renal bed is somehow

- 1 perhaps different than the cardiac bed in its response or
- 2 that we're in a range of the continuum where it's less of
- 3 an impact.
- DR. NATARAJAN: I would like to just add one
- 5 more thing. Whether or not we adjust and do this time-
- 6 dependent analysis, the thing to keep in mind is that there
- 7 was no difference with respect to amlodipine and
- 8 irbesartan, and that would actually suggest that that is
- 9 independent of the blood pressure lowering.
- DR. FLEMING: Although you're making
- 11 assumptions there about what other mechanisms of action
- 12 could differ between the two that might offset a difference
- 13 that would be attributable to blood pressure lowering.
- DR. BORER: I think that's been a very
- 15 informative presentation. I really want to thank you, Dr.
- 16 Cooper. You've been very clear and concise and given us a
- 17 lot of numbers.
- DR. COOPER: I'm a nephrologist.
- 19 (Laughter.)
- DR. BORER: Yes. Well, when I was in medical
- 21 school, our physiology department was primarily skewed
- 22 towards renal physiology because Robert F. Pitts was the
- 23 chairman. Knowing that I would be a cardiologist when I
- 24 grew up, I was very excited when one of the teaching
- 25 fellows said that he had a grant from the American Heart

- 1 Association. So, I said, what are you doing relative to
- 2 the heart? He said, nothing of course. The only purpose
- 3 of the heart is to pump blood to the kidneys. Everybody
- 4 knows that.
- 5 (Laughter.)
- DR. BORER: So, I understand what you're saying
- 7 here.
- In any case we will take a break until 1
- 9 o'clock when public comment will be possible, and then
- 10 we'll finish the last two formal presentations and go on to
- 11 the questions.
- 12 (Whereupon, at 12:10 p.m., the committee was
- 13 recessed, to reconvene at 1:00 p.m., this same day.)

14

15

16

17

18

19

20

21

22

23

24

25

1 AFTERNOON SESSION

- (1:15 p.m.)
- DR. BORER: We'll begin again.
- 4 The meeting is open for public comment. There
- 5 were no applications for public comment, but are there any
- 6 individuals who have comments that need to be made?
- 7 (No response.)
- DR. BORER: If not, we'll go ahead. We have
- 9 some additional questions and I believe the sponsor has
- 10 some responses first to Tom Fleming's questions, and once
- 11 you do that, we have some more questions from JoAnn and
- 12 from Tom before we get on to the next phase of the
- 13 presentation.
- DR. COOPER: Thank you.
- 15 What I'm going to present now are the data to
- 16 respond to the remaining questions. Can I have the first
- 17 slide please?
- 18 Part of the earlier discussion focused on the
- 19 effect of treatment on end-stage renal disease,
- 20 specifically transplantation and dialysis. I did want to
- 21 share with you the results of the time-to-event analysis
- 22 for end-stage renal disease, including serum creatinine of
- 23 6.0 milligrams percent and greater.
- In this Kaplan-Meier curve in which irbesartan
- 25 is displayed in yellow and amlodipine and placebo are in

- 1 blue and pink, respectively, a treatment effect was
- 2 observed with a 23 percent risk reduction in favor of
- 3 irbesartan. Once again, this is all patients who had an
- 4 ESRD event even after they discontinued study medication.
- Next slide. This is the first of the analyses
- 6 that was requested, time to dialysis, transplantation, or
- 7 death comparing placebo and irbesartan. And in this
- 8 analysis, the relative risk reduction was 13 percent, the
- 9 confidence interval between .7 and 1.09.
- 10 The next slide --
- 11 DR. FLEMING: Could you leave that up for a few
- 12 seconds please?
- DR. COOPER: Yes.
- 14 (Pause.)
- DR. FLEMING: Thank you.
- DR. COOPER: The next slide contains the time
- 17 to event for dialysis and death. Once again, a relative
- 18 risk reduction in favor of treatment with irbesartan was
- 19 observed, 11 percent. Confidence intervals are on the
- 20 slide.
- 21 (Pause.)
- DR. COOPER: Next slide please. This is the
- 23 analysis of time to event of ESRD or death. In this
- 24 analysis, serum creatinine of 6 is included. The relative
- 25 risk reduction in favor of treatment with irbesartan

- 1 compared to placebo is 15 percent.
- 2 (Pause.)
- DR. COOPER: And lastly, the new, redefined,
- 4 combined composite endpoint, which includes dialysis,
- 5 transplantation, death, and cardiovascular events. The
- 6 relative risk reduction in favor of treatment with
- 7 irbesartan observed is 14 percent. It's not expected that
- 8 any of these post hoc analyses would be statistically
- 9 significant. They're not powered to detect differences
- 10 between treatments for any of the components.
- 11 DR. FLEMING: Do you happen to know what the
- 12 amlodipine total is?
- DR. COOPER: We do. That's slide MC-128
- 14 please.
- 15 For the same combined composite endpoint, the
- 16 relative risk reduction was 10 percent in favor of
- 17 treatment with irbesartan.
- 18 DR. FLEMING: This is much of what we wanted to
- 19 see. I guess the last was this specific analysis, but only
- 20 driven by the death, dialysis, and cardiovascular. Did you
- 21 happen to do that?
- DR. COOPER: Death, dialysis, transplantation,
- 23 cardiovascular events. This does not include a serum
- 24 creatinine of 6.
- DR. FLEMING: This does not.

- DR. COOPER: No.
- DR. FLEMING: Okay.
- DR. COOPER: Our conclusions from these results
- 4 are that treatment with irbesartan is renoprotective. When
- 5 you consider this patient population and the fact that you
- 6 need anywhere between two and four antihypertensives to
- 7 optimize their blood pressure control, we feel that these
- 8 data support the use of irbesartan to protect the renal
- 9 function, but we also recognize that this does not exclude
- 10 the use of another antihypertensive to protect the heart.
- DR. BORER: Thank you very much.
- 12 JoAnn, you had several additional questions.
- DR. LINDENFELD: Just to make sure I understand
- 14 here, when a patient was admitted for heart failure or
- 15 admitted for another event, was that creatinine included in
- 16 the events? For instance, if a patient was admitted for
- 17 heart failure in between the routine evaluations and their
- 18 creatinine had doubled, was that then evaluated as a
- 19 doubling of creatinine assuming that it was reproduced?
- DR. COOPER: All events were adjudicated by the
- 21 outcome confirmation classification committee. If a
- 22 patient had two events at the same time, they would have
- 23 been adjudicated independently of each other, and all of
- 24 the criteria would have had to have been fulfilled.
- 25 Certainly there could have been -- and probably were -- a

- 1 number of patients who, because of their compromised renal
- 2 function due to diabetic nephropathy, at the time of the
- 3 hospitalization where there are other insults to their
- 4 system, if you will, could have been pushed over into end-
- 5 stage renal disease at that time and had incurred doubling
- 6 of serum creatinine.
- 7 DR. LINDENFELD: I guess what I'm asking is
- 8 whether or not patients who had worsening heart failure
- 9 were sampled more often and they're more likely to reach
- 10 the endpoint of doubling of creatinine earlier because
- 11 there was this significant excess of heart failure. That
- 12 could have made a difference of a number of endpoints.
- DR. JULIA LEWIS: Let me see if I can answer
- 14 the question for you. In order for a patient to reach a
- 15 doubling of serum creatinine, they had to have a persistent
- 16 doubling of their serum creatinine on two measurements up
- 17 to 4 weeks apart. During the time interval between the
- 18 first measurement of doubling of serum creatinine and the
- 19 second, the investigator would be encouraged to treat any
- 20 reversible causes of the rise in serum creatinine.
- So if, for example, a patient was in the
- 22 hospital with heart failure and had a transient rise in
- 23 their serum creatinine, when they came to their next study
- 24 visit, the study coordinator would be checking their serum
- 25 creatinine as part of that visit. If at that visit, the

- 1 serum creatinine was doubled, it would then fall into the
- 2 usual path of confirming the doubling.
- Did that answer your question?
- DR. LINDENFELD: I think so.
- 5 I'd like to just get back to this issue of race
- 6 just a little bit. Could you show me what the doubling of
- 7 creatinine was in blacks versus whites? I recognize there
- 8 was a small number of blacks in the study, but is there a
- 9 substantial difference?
- The reason I ask that is there were 98
- 11 doublings of creatinines in the irbesartan group and 135 in
- 12 the placebo, so a difference of 37 patients. There were 78
- 13 black patients in the placebo group, 63 in the irbesartan,
- 14 and 87 in the amlodipine group. This is several percentage
- 15 points difference because the total number in each group
- 16 was slightly different.
- So, I'm just concerned. If, as we've heard,
- 18 the progression of renal disease is significantly different
- 19 in minorities and there's a difference in minorities,
- 20 whether or not that's a significant point here.
- So, I think to just start that, could you tell
- 22 me was there a difference in the doubling of creatinine in
- 23 black patients compared to white patients?
- DR. COOPER: The answer is yes. Do we have the
- 25 subgroup analysis specifically for blacks versus whites?

- The subgroup analysis shows that the point
- 2 estimate for doubling of serum creatinine favors treatment
- 3 with irbesartan. The effect in white patients is greater
- 4 with a relative risk reduction of 25 percent compared to
- 5 nonwhite patients with a relative risk reduction of $5\,$
- 6 percent. This is a subgroup analysis with a very small
- 7 number of patients, and once again the results are going to
- 8 be driven by the number of patients.
- 9 DR. LINDENFELD: It doesn't look like there's
- 10 enough difference in the baseline to make a difference.
- 11 But there is an under-representation of, I
- 12 think, blacks in the irbesartan group compared to both the
- 13 placebo and the amlodipine group. There's under-
- 14 representation in the entire trial, but I think there's
- 15 about a 5 percentage point difference in the number of
- 16 blacks here. It just concerns me because if blacks are
- 17 likely to progress at a higher rate, then a small
- 18 difference could make an event difference of 10 or 12 in
- 19 that group, which could change the total number of 37
- 20 events substantially. Again, I think this is a problem in
- 21 this kind of trial of not stratifying for the groups that
- 22 are more likely to progress.
- DR. COOPER: Dr. Lewis, do you want to address
- 24 the rate of progression of renal disease in black patients?
- DR. EDMUND LEWIS: Well, not any further than

- 1 what I've said before. I don't think we have information
- 2 about the rate of loss in black patients in the study in
- 3 terms of delta creatinine clearance for blacks versus
- 4 whites. So, I really can't expand very much on what was
- 5 said before. I think that here you have this data, and I
- 6 don't think that there's any further that I can say about
- 7 that, although I will point out that the effect of race on
- 8 the outcome -- clearly patients who are white had more
- 9 irbesartan effect, if you will, than blacks. But I really
- 10 can't comment about your other point.
- 11 DR. JULIA LEWIS: I think I can comment a
- 12 little bit more about it. Can I have my slide 1?
- This is true that if you look at the age-
- 14 adjusted incidence of ESRD, African Americans have a higher
- 15 age-adjusted incidence of ESRD based on the USRDS data.
- Also, there's data out there that suggests that
- 17 an African American with high blood pressure and kidney
- 18 disease compared to a white person with high blood pressure
- 19 and kidney disease, between the ages of 20 and 45, has a 20
- 20 times increased risk of developing kidney disease.
- 21 However, in the African American study of
- 22 kidney disease and hypertension, sponsored by the NIH that
- 23 I alluded to earlier, 1,094 African Americans were
- 24 randomized in a three-by-two factorial design. I've
- 25 already commented on the results of the blood pressure

- 1 randomization. I will comment that the ACE inhibitors
- 2 protected their kidneys, but I would also like to comment
- 3 that the average rate of decline of renal function in this
- 4 study in African Americans with high blood pressure and
- 5 kidney disease was 2 mls per minute per year, which would
- 6 mean that if you started out with a normal kidney function,
- 7 a GFR of 100, it would take you 50 years to reach end-stage
- 8 renal disease. So, some of our conceptions based on
- 9 epidemiologic data on the rate of decline of renal function
- 10 in African Americans may reflect the fact that unlike in
- 11 clinical trials, their blood pressure is not under
- 12 exquisite control.
- DR. LINDENFELD: I don't think that helps me
- 14 much because it isn't a diabetes trial.
- 15 Again, actually what you've said concerns me
- 16 just a little bit more because if there's an over-
- 17 representation of blacks in the amlodipine and the placebo
- 18 groups compared to irbesartan and blacks progress faster,
- 19 then to me that biases the study a bit in favor of
- 20 irbesartan.
- In addition, if irbesartan doesn't appear to
- 22 work in blacks and it does in whites, from the data you've
- 23 shown me, then that's an additional problem more than just
- 24 the fact that renal function progresses more rapidly in
- 25 blacks. So, that data actually concerns me.

- I'm really concerned because these are not very
- 2 large numbers. I'd be interested. Maybe I'm overdoing it
- 3 here, but doubling of creatinine is everything here, and
- 4 there's only 37 patients difference in the doubling of
- 5 creatinine. Yet, between amlodipine and irbesartan, there
- 6 are 24 more blacks and 15 more between placebo and
- 7 irbesartan. You know, just a few patients here makes a
- 8 difference between a significant and a nonsignificant
- 9 study.
- DR. NATARAJAN: I agree, but I wanted to
- 11 actually caution the committee in terms of actually over-
- 12 interpretation of subgroups of very small sizes. Again,
- 13 yes, actually there are very few blacks, and the
- 14 differences among the treatment groups, though numerically
- 15 there, they were not statistically significant. They were
- 16 not actually any different between any of the treatment
- 17 groups.
- DR. LINDENFELD: Well, I agree with that, but
- 19 I'm not talking about that. What I'm talking about is the
- 20 fact that it seems to me from a cardiologist's standpoint,
- 21 if you just go back and review the reviews, that blacks
- 22 progress more rapidly and other subgroups too. Maybe
- 23 Hispanics. But it appears that the literature suggests --
- 24 you may have some data that I don't have -- that the
- 25 progression is more rapid. Again, just help me with this.

- 1 Maybe you can explain why that's not a concern.
- DR. FLEMING: I think JoAnn is talking more
- 3 specifically about race in its role as a predictor and
- 4 hence a potential confounder rather than as an effect
- 5 modifier, although both are issues. But if in fact it's a
- 6 predictor such that blacks would have a poor outcome and
- 7 they are under-represented in the intervention group, then
- 8 you would have some level of confounding. It's not a
- 9 serious imbalance, but her point is the strength of
- 10 evidence here is marginal at the level of significance, so
- 11 even a minor imbalance could somewhat compromise the
- 12 convincingness of results.
- DR. LINDENFELD: That's exactly right, but it
- 14 could also be an effect modifier if in fact irbesartan --
- 15 there are not enough numbers -- but if it's less effective
- 16 in blacks than whites, then it becomes an effect modifier
- 17 too in a sense. They are small numbers, but the study is
- 18 based on very small differences in numbers.
- 19 DR. EDMUND LEWIS: I don't know about helping
- 20 you. All that I can say about the preconceptions of how
- 21 much faster or how more malignant a course patients with
- 22 type 2 diabetic nephropathy have does not take into
- 23 consideration the fact that these patients do not have
- 24 their blood pressure controlled to the recommendations that
- 25 are made. And I think that in this study, we get the

- 1 closest that has come actually to blood pressure control
- 2 recommendations in both the hypertensive and type 2
- 3 diabetic population.
- So, I think that the assumption that because
- 5 somebody is African American, they therefore are going to
- 6 have a much more malignant course is really not exactly an
- 7 accurate assumption. It's based on literature where the
- 8 black population, the African American population, has more
- 9 problems with blood pressure control than does the white
- 10 population.
- I think that once you get into the subgroup
- 12 analyses, you're getting into small numbers. I personally
- 13 don't think that our outcomes are that small of numbers.
- 14 But when you get into the subgroup populations, you are
- 15 getting into small numbers, and I think that before you
- 16 make certain assumptions, you have to have the data.
- And I don't really believe that you have data
- 18 showing that the black population -- the natural course of
- 19 their diabetic nephropathy is that much worse. The natural
- 20 course of diabetic nephropathy, as we're showing you, is
- 21 bad and that's with blood pressure control. That's in
- 22 everybody.
- So, I think there's a certain assumption here.
- 24 I just don't think we can go any further with it because I
- 25 don't think that there's a number we can put on it. I

- 1 don't think that you can say because somebody is African
- 2 American, their chances of doubling is 1. something
- 3 compared to a white because that information really doesn't
- 4 exist.
- DR. LINDENFELD: No, I agree, and I certainly
- 6 don't pretend to be an expert. But if one just goes to the
- 7 reviews, the reviews all strongly suggested that
- 8 progression is substantially faster without specific data.
- 9 But the reviews suggest, from studying the data, that it's
- 10 faster in blacks and certainly American Indians and perhaps
- 11 non-white Hispanics.
- DR. EDMUND LEWIS: Well, I would be glad to go
- 13 through whatever data you're picking out of your reviews
- 14 because I think that I will have no problem showing you
- 15 that there is a blood pressure issue.
- I will say, though, that the Hispanic
- 17 population and the best study population which is relevant
- 18 here is the Pima Indian population. The NIH has supported
- 19 longitudinal studies. 50 percent of the total Pima Indian
- 20 population gets type 2 diabetes and most of them get
- 21 nephropathy. And the time from birth to onset of diabetes
- 22 is very well-known. From the onset of diabetes to
- 23 proteinuria is very well-known. From proteinuria to
- 24 decreasing renal function and end-stage renal disease is
- 25 very well-known in this patient population. They've even

- 1 had serial renal biopsies, frankly. And I think that you
- 2 will see, if you look at that population, which genetically
- 3 really represents the problem in Hispanic populations in
- 4 North America, that the curves to those various events are
- 5 the same as those reported from Germany in type 2 diabetic
- 6 nephropathy.
- 7 So, when you start studying populations
- 8 carefully, controlling for things like blood pressure and
- 9 so forth, you won't necessarily come up with the
- 10 conclusions that you get out of reviews. That's all that I
- 11 can say.
- DR. BORER: Bev and then Dr. Kopp?
- DR. LORELL: Thank you.
- In a little different subgroup, I'd like you to
- 15 address the issue of the subgroup of women. The point
- 16 estimate for women for the primary endpoint is even closer
- 17 to unity than for non-whites, .98. And perhaps you can
- 18 address that for us.
- DR. COOPER: Yes. Dr. Breyer Lewis?
- DR. JULIA LEWIS: I'm going to first remind you
- of the statistical results, and then I'm going to comment
- 22 on putting it in some perspective.
- First, I would remind you that we were not
- 24 powered for exploratory subgroup analysis. There were, for
- 25 example, nearly 900 white males in this trial and only 91

- 1 black females.
- 2 However, as you can see from this, the common
- 3 point estimate of .8 crosses all the confidence intervals,
- 4 suggesting a common risk reduction between males and
- 5 females.
- 6 Similarly, the confidence intervals overlap,
- 7 again suggesting that there's not a statistically
- 8 significant difference.
- 9 Lastly, when looking at multiple subgroup
- 10 comparisons, it's important that the point estimate favors
- 11 irbesartan. That's the statistical response to that
- 12 question.
- In terms of putting it in perspective of what's
- 14 known about the impact of gender on women in hypertension
- 15 and renal disease, I would first remind you of the
- 16 hypertension studies. I'll remind you that when the first
- 17 studies were done, examining whether or not treating people
- 18 with hypertension with basically beta-blockers and
- 19 diuretics versus placebo was of benefit. The first three
- 20 trials, the MRC done in England, the hypertension detection
- 21 and follow-up program done here in the United States, and
- 22 the Australian therapeutic trial, when the subgroup
- 23 analysis was done in women, not only did they either not
- 24 find a benefit or actually found that the women had a
- 25 higher mortality rate in the treated group.

- Now, although there was concern expressed when
- 2 these studies were done, no one at that time advocated
- 3 strongly that women should be withheld from the treatment
- 4 of hypertension. Subsequently, the INDANA analysis, which
- 5 has incorporated seven clinical trials looking at the
- 6 treatment of hypertension, has concluded what in fact has
- 7 been I think common medical practice, and in fact women
- 8 benefitted from the treatment of their hypertension,
- 9 although not in all the categories as did men, but in key
- 10 categories, including main cardiovascular events.
- In the area of renal disease, I'll just review
- 12 only clinical trials that have in the definition that you
- 13 would accept that are randomized, double-blind with
- 14 sufficient numbers of patients enrolled to have power to
- 15 look at the group as a whole. But again, the analysis of
- 16 the impact on women is a subgroup analysis in each of these
- 17 trials. I also selected trials that have outcomes similar
- 18 to the one used in IDNT.
- The first, of course, is the captopril trial,
- 20 which you are familiar with, in type 1 diabetics. Males
- 21 and females had equal outcomes. Males did not have a worse
- 22 rate of decline of renal function, nor was there any
- 23 difference in efficacy of the ACE inhibition for males.
- 24 A study done in nondiabetic patients with
- 25 proteinuric kidney disease in Europe found that males had a

- 1 worse outcome and that there was worse efficacy of ACE for
- 2 males. Excuse me. It was better efficacy for ACE in
- 3 males.
- 4 Another study done in nondiabetic proteinuric
- 5 patients in Europe. Worse outcome for males, no. But
- 6 better outcome for males.
- If you look at the MDRD, which was not a study,
- 8 looking at an intervention with a specific antihypertensive
- 9 agent, but at other interventions, males had worse
- 10 outcomes.
- So, in fact, the subgroup analysis in the
- 12 available renal studies is all over the map, suggesting
- 13 that perhaps all of these studies are not powered for these
- 14 exploratory subgroup analyses.
- DR. KOPP: I just wanted to make a comment
- 16 about the progression of diabetic nephropathy in blacks
- 17 versus whites. My understanding is very close to what Dr.
- 18 Lewis said, that in the setting of diabetes, blacks are
- 19 something like 2- to 3-fold more likely to develop
- 20 nephropathy, but I'm not aware, although he may have come
- 21 across something that I don't know about, that once
- 22 diabetic nephropathy appears, that the rate of progression
- 23 is different.
- DR. BORER: Why don't we move ahead with the
- 25 presentation, and we'll get to any residual -- we have

- 1 another speaker down at the end of the table.
- DR. TEMPLE: A short question. Going back to
- 3 the possibility that the greater number of blacks in one
- 4 group influenced the results, isn't that answered by the
- 5 breakdown into the black and white populations that we saw
- 6 in which the effect was larger in the white population?
- 7 That doesn't seem to be compatible with the whole result
- 8 being driven by the excess of blacks. Isn't that right?
- 9 DR. LINDENFELD: If you think that the
- 10 progression -- I don't want to make a huge issue of this.
- 11 I just think these are small numbers. But if you assume
- 12 that progression is greater in blacks and there are more
- 13 blacks in the non-treatment group, that group would
- 14 progress faster.
- DR. TEMPLE: No. I agree with that. But then
- 16 they showed separate results for the white population than
- 17 the black population. The effect, if anything, was larger
- 18 in the white population.
- DR. LINDENFELD: Right.
- DR. FLEMING: One has to be careful, Bob, in
- 21 keeping these issues of confounding and effect modification
- 22 separate. If you look at page 73, for example, in the
- 23 sponsor's briefing document where they present this
- 24 summary, if you look in the control arm, non-whites have a
- 25 somewhat higher event rate, 43.5 percent, from whites at

- 1 37.3 percent. And as a result, if you end up with some
- 2 excess of whites in the intervention arm, then there would
- 3 be a small level of confounding. I don't think this is a
- 4 very large risk of confounding. It would be very modest.
- 5 But I think JoAnn's point was in a setting where the
- 6 significance is very close to the border, this could have
- 7 some influence.
- A separate point entirely, also a relevant
- 9 point, is is race also an effect modifier, not only is it a
- 10 predictor such that it appears that non-whites have a
- 11 somewhat higher rate, does treatment effect differ by race,
- 12 which is an entirely separate phenomenon from whether race
- 13 is a confounder. And it also appears here, that in
- 14 addition to it being a potential confounder because non-
- 15 whites have a somewhat higher risk, it's also true that the
- 16 effect seems to be greater in the whites than it is in the
- 17 non-whites. Two separate issues.
- DR. BORER: Without --
- 19 DR. NATARAJAN: Could I address that?
- DR. BORER: No. Just one moment because I
- 21 think we may have gone as far as we need to go with this.
- There may be some differential effect based on
- 23 race. It seems plausible to me. We know that renin levels
- 24 are, by and large, a lot lower in the black population with
- 25 hypertension than in the white population with

- 1 hypertension, and here we're blocking the renin-angiotensin
- 2 system.
- I don't want to go into the realm of
- 4 speculation. These are the data. Indeed, there may be
- 5 some comments, if the drug is judged to be approvable,
- 6 about labeling issues or maybe not. But let's deal with
- 7 that when we get to the questions, and let's hear the
- 8 remainder of the data that we're going to hear.
- DR. FLEMING: Jeff, there were two quick
- 10 questions that I wanted to raise.
- DR. BORER: Sure, absolutely.
- DR. FLEMING: If I could go back to the
- 13 sponsor's presentation, slide C-13. What you had done
- 14 there is you had broken out the relationship between having
- 15 had a creatinine event versus dialysis or transplantation.
- 16 Surely there is, obviously as this shows, a relationship,
- 17 as we would fully expect. It's interesting that 26 percent
- 18 of these events of dialysis or transplantation occur in
- 19 that right-hand column, people that didn't have a serum
- 20 creatinine event.
- I guess I have two questions. One is trying to
- 22 understand why a quarter of these people would have gone on
- 23 dialysis or transplantation without having had a creatinine
- 24 event is question one.
- 25 Question two is how do those 69 break out by

- 1 intervention arm? Hopefully not with more of them on the
- 2 irbesartan group.
- DR. COOPER: The answer to your first question
- 4 is, by and large, when patients presented requiring
- 5 dialysis, it was because they either missed visits and so
- 6 we were no longer able to measure their serum creatinine
- 7 and then assess whether they had had a doubling or an ESRD
- 8 event, as determined by the serum creatinine, or the other
- 9 most frequent reason was because these were patients who
- 10 were on a rapid slope of decline of renal function, hadn't
- 11 yet doubled, or achieved a serum creatinine of 6, were
- 12 hospitalized because of an intercurrent and severe illness
- 13 that compromised whatever remaining function they had left
- 14 and pushed them over into permanent end-stage renal
- 15 disease.
- DR. FLEMING: So, there's not a fully
- 17 consistent relationship, at least in terms of documenting a
- 18 doubling versus having dialysis occur. There are a
- 19 substantial number that will actually have dialysis occur
- 20 before you document.
- Can you tell us how those 69 broke out in the
- 22 three groups?
- DR. COOPER: I honestly do not remember. Do we
- 24 have that data?
- DR. FLEMING: If you don't have it now, I can

- 1 wait and we can get it at the end of the next presentation.
- 2 It would be useful to know that.
- DR. BORER: Yes, let's try and get it.
- 4 Just a clarification in response to Tom. If I
- 5 understood what you said correctly, it's not that there may
- 6 not have been doubling or far greater than doubling of
- 7 creatinine in many of these patients who didn't have a
- 8 doubling event or a 6.0 creatinine before they went on
- 9 dialysis, but that they went on dialysis in the context of
- 10 a situation which was not the time at which these events
- 11 were measured and therefore they wouldn't be captured that
- 12 way in the data set. They may well have had a creatinine
- 13 of 6 in the context of another disease, but you didn't
- 14 count it that way. They just had to go on dialysis. Am I
- 15 correct in saying that?
- DR. COOPER: Yes, that's correct.
- DR. BORER: Steve?
- DR. NISSEN: I don't want to belabor this, but
- 19 we talked about other subgroups. I was very struck by the
- 20 North America versus non-North America data, and I would
- 21 really like a comment because we've seen an awful lot of
- 22 studies, particularly recently, where drugs didn't seem to
- 23 have any effect in the North American population but did in
- 24 the out-of-U.S. population. I personally am troubled by
- 25 that, and I want to know if you have any comments or

- 1 thoughts or can you help me understand why there was only a
- 2 5 percent point estimate for the North American population.
- DR. COOPER: Part of that is driven by the fact
- 4 that all of the black patients that were enrolled and
- 5 randomized were actually in North America, so a number of
- 6 those events were in that subgroup. There is no other
- 7 biological explanation for why the rates of progression
- 8 would be different or the treatment effect would be
- 9 different between the different regions. Certainly in
- 10 Latin America and in the Pacific region, the event rate
- 11 that was observed -- and there are minority populations in
- 12 those regions -- was very consistent with what was seen in
- 13 Europe.
- 14 Any other comments?
- DR. BORER: Dr. Temple.
- DR. TEMPLE: Some people have expressed some
- 17 degree of nervousness about not having a sort of ultimate
- 18 endpoint on the people who got their creatinine to 6 or
- 19 doubled it or something like that. A fair amount of time
- 20 has now elapsed since you published and collected data.
- 21 Would it be of interest or a possibility to find out when
- 22 all the people in the trial went on dialysis?
- DR. COOPER: We could certainly do that for all
- 24 subjects who didn't withdraw consent and for all subjects
- 25 that didn't participate in a site that was closed.

- 1 Actually ascertaining dialysis or ESRD is more difficult
- 2 than mortality because with mortality you can just access a
- 3 death certificate. But yes, we can do that.
- DR. TEMPLE: Even if the site is closed, they
- 5 could find out when the person went on dialysis. I'm not
- 6 saying it would be easy and I'm not even saying it's
- 7 necessary. I just wondered if you could do it.
- DR. COOPER: Yes, we can make an attempt to do
- 9 that.
- DR. FLEMING: Just a follow-up on that. Why
- 11 wouldn't that be a compellingly obvious thing to do in the
- 12 sense that what we're hearing is clearly there is a real
- 13 relationship between creatinine elevation and dialysis, the
- 14 latter being an obvious clinically important endpoint, the
- 15 former being at least debatable as to the level of
- 16 surrogacy that it actually presents? But the answer is
- 17 there in this database, and the answers that we have in
- 18 this database are marginal, even if you focus on the
- 19 primary endpoint, and if it's just a matter of time, which
- 20 we keep hearing, then wouldn't it be potentially very
- 21 informative to know what an updated data set would say?
- DR. BORER: We could ask the sponsor to do
- 23 that.
- I just want to make one quick comment and then
- 25 we must move on. We shouldn't get into a debate here. I

- 1 have no problem with recognizing that somebody with a
- 2 creatinine of 6 is sick. I'm just a cardiologist, but even
- 3 I know that. They don't feel well and Dr. Lewis actually
- 4 recited the problems that are associated with creatinine at
- 5 that level left untreated by dialysis. So, I don't think
- 6 we should spend too much time talking about whether these
- 7 people are sick or not. If they're not dialyzed, they're
- 8 real sick, and we can debate that later when we go through
- 9 the questions. But I don't think that's a key issue.
- DR. JULIA LEWIS: Could I expand on that for
- 11 just one second? In type 2 diabetes, there are 135
- 12 million. By the year 2025, there are going to be 325
- 13 million, a 100 percent increase in the third world, if
- 14 you'll forgive me for referring to it, the Asian countries.
- 15 For them an elevated creatinine is death. We wouldn't be
- 16 able to go count them going on dialysis later. They're
- 17 dead because it's not an available therapy.
- DR. FLEMING: Then we should be able to see in
- 19 those people a survival in that as well.
- DR. BORER: We should.
- DR. COOPER: Right. We will make every effort
- 22 to collect that data.
- It is with great pleasure that I now introduce
- 24 Dr. Parving --
- (Laughter.)

- DR. COOPER: -- who will be discussing the IRMA
- 2 2 study. You will be hearing about the ability of
- 3 irbesartan to alter the course of diabetic nephropathy
- 4 earlier in the disease so that patients do not advance from
- 5 the stage of microalbuminuria to proteinuria, the onset of
- 6 which in diabetes heralds the inevitable decline in renal
- 7 function. Thank you very much.
- DR. PARVING: So, I'm supposed to say good
- 9 afternoon from Denmark.
- I am pleased to give you information on the
- 11 early course of diabetic kidney disease and I'm going to
- 12 present the data from the study called IRMA 2. It's
- 13 dealing with irbesartan in type 2 diabetic patients who are
- 14 suffering from persistent microalbuminuria.
- I will present data in two segments, one giving
- 16 you some background information and then go to the
- 17 presentation of IRMA 2.
- 18 First, the background. This is actually
- 19 linking up to what you have just been told, dealing with
- 20 the IDNT study. It's a Kaplan-Meier estimate of the
- 21 primary composite endpoint in the IDNT study in relation to
- 22 quartiles of albumin excretion rate at baseline. The
- 23 message from this baseline estimate is the following. If
- 24 you have levels of albuminuria, low 1,000 milligrams, the
- 25 event rate is approximately less than 20. If you go the

- 1 very high rate, the upper quartile, then you have an event
- 2 rate of nearly four-fold higher, at least suggesting that
- 3 the level of proteinuria or albuminuria is reflecting the
- 4 underlying cause of the kidney disease as first
- 5 demonstrated by Bright in 1836 in England.
- This cartoon is giving you information on the
- 7 different levels of albuminuria. We have a log scale and
- 8 we are dealing with the overnight albumin excretion rate,
- 9 and the reason why we are dealing with the overnight
- 10 albumin excretion rate is in an attempt to standardize the
- 11 collection. So, we are avoiding the marathon runner, we
- 12 are avoiding other special activities of standing up and
- 13 lying down because we have that phenomenon. So, we are
- 14 standardizing it by using overnight collection. So, you
- 15 collect all the urine during the nighttime.
- 16 Normal albuminuria is defined as an albumin
- 17 excretion rate below 20 micrograms per minute. If you have
- 18 an excretion rate between 20 and 200 micrograms, we call it
- 19 microalbuminuria.
- This range of albuminuria is usually not
- 21 depicted by the dip stick test. You need to develop
- 22 sensitive tests in order to pick it up. This was described
- 23 the first time 20 years ago by Viberti, Mogensen, and
- 24 myself as something important in relation to diabetic
- 25 kidney disease. And we actually have an anniversary this

- 1 year.
- 2 (Laughter.)
- DR. PARVING: Then about the 200 microgram
- 4 level, we are speaking about overt nephropathy.
- 5 You will also appreciate that while the IDNT
- 6 studies carried out in patients with overt nephropathy
- 7 having an excretion rate of more than 2,000, way up here,
- 8 IRMA 2 is a study carried out very early in the course of
- 9 diabetic kidney disease because, as Ed Lewis already told
- 10 you, microalbuminuria is an abnormality in the glomerular
- 11 capillaries leaking protein. So, it's the earliest
- 12 clinical sign we have of an underlying diabetic kidney
- 13 disease. So, IRMA 2 is carried out in this range.
- 14 Very important information is that 60 percent
- 15 of our type 2 patients will never, ever develop kidney
- 16 disease. Unfortunately, 40 percent of our patients in
- 17 America, in Europe, and in certain parts of Asia, even
- 18 higher, will develop this devastating kidney disease.
- 19 It's also true that in order to develop the
- 20 disease, you are progressing through the level of
- 21 microalbuminuria, the earliest state of diabetic kidney
- 22 disease, into overt nephropathy.
- 23 Important to note is that the GFR, meaning the
- 24 glomerular filtration rate -- the drop in normal man with
- 25 normal albumin excretion rate is 1 ml per minute per year.

- 1 If you have microalbuminuria, the drop in kidney function
- 2 is ranging between 1 to 3 mls per minute per year and that
- 3 is based on all the available data. You'll appreciate
- 4 later on in my speech that the rate of decline in the IRMA
- 5 2 is 2 mls per minute per year.
- If we go to overt nephropathy, the rate of
- 7 decline is increasing, and it's ranging between 2 to 20,
- 8 with the average rate reported in the literature of 10 mls
- 9 per minute per year. Actually the level of decline from
- 10 the IDNT study -- we haven't discussed that today -- was
- 11 6.5 mls per minute per year. So, you can clearly see if
- 12 you go from this level of proteinuria to this level, you
- 13 have a progressive worsening of the kidney function.
- 14 Consequently the aim of IRMA 2 is to keep the patients
- 15 within that region. We don't want to get them out of the
- 16 box.
- More background information about
- 18 microalbuminuria in type 2 diabetes. As already stressed
- 19 by Ed Lewis, it is an early marker of diabetic kidney
- 20 disease. We have structural lesions too, and we have
- 21 discussed that already. That's the alternative. If you
- 22 don't like the clinical physiology, you need to do repeat
- 23 biopsies. You have no other alternative if you want to
- 24 evaluate the lesions. We have biochemical evidence
- 25 suggesting abnormalities, as also seen later on in the

- 1 disease.
- Important to note, again based on all available
- 3 literature, 5 to 10 percent of these type 2 patients with
- 4 microalbuminuria will convert into overt nephropathy every
- 5 year.
- As already stated, as long as you have
- 7 microalbuminuria, the rate of decline in the glomerular
- 8 filtration rate is ranging between normality and slightly
- 9 elevated, but a very low rate of decline as compared to
- 10 what happens if you are running with overt nephropathy.
- 11 Then I think in all fairness it should be
- 12 mentioned that the American Diabetes Association and the
- 13 International Diabetes Federation actually are advocating
- 14 that we are screening for microalbuminuria, and if we
- 15 detect it persistently, we need treatment.
- The hypothesis in IRMA 2, the earliest study of
- 17 irbesartan in diabetic kidney disease, is exactly the same
- 18 as in IDNT. The objective is to evaluate the
- 19 renoprotective effect of irbesartan above and beyond the
- 20 blood pressure lowering effect on the progression to overt
- 21 nephropathy, and we are comparing that with conventional
- 22 antihypertensive treatment and it's done in hypertensive
- 23 patients who have type 2 diabetes and persistent
- 24 microalbuminuria. So, in essence, this is not a blood
- 25 pressure trial. This is a trial aiming at evaluating the

- 1 blockage of angiotensin II. Is angiotensin II nephrotoxic?
- 2 Yes or no. That's the answer you'll have from this trial.
- 3 The study design was carried out in the
- 4 following way. The patient was run in placebo for at least
- 5 4 weeks. We saw them every week at the clinic. They were
- 6 then randomized either to receive placebo, irbesartan 150
- 7 milligrams once daily, or irbesartan, the yellow one, 300
- 8 milligrams once daily. We used 4 weeks in the titration
- 9 period.
- The aim of the three arms was to obtain blood
- 11 pressure equivalence. So, we were actually trying to get
- 12 exactly the same blood pressure in each and all of the
- 13 arms, keeping the blood pressure below 135 over 85
- 14 millimeters of mercury.
- In the placebo arm, it was not allowed to use
- 16 ACE inhibitor or receptor antagonist. Neither were you
- 17 allowed to use dihydropyridine calcium antagonists. The
- 18 reason for that was that in some of the past literature,
- 19 this kind of compounds, the dihydropyridine calcium
- 20 antagonist, was reported to elevate proteinuria, and we
- 21 consequently felt that it was unfair then to use it.
- The primary outcome in IRMA 2 is time to the
- 23 first occurrence of an albumin excretion rate of more than
- 24 200 micrograms per minute and an increase of at least 30
- 25 percent in albuminuria from the baseline level, and that

- 1 had to take place at two consecutive evaluations. This
- 2 endpoint has been used for the last 10 years within trials
- 3 trying to evaluate the importance of preventing the
- 4 occurrence of disease in type 2 and type 1 diabetes. So,
- 5 we are using exactly the same endpoint that other
- 6 colleagues have applied in the past dealing with this
- 7 question.
- The secondary endpoint is the changes in the
- 9 overnight urinary albumin excretion rate, and finally, we
- 10 are looking also at the changes in estimated creatinine
- 11 clearance. This is based on the so-called Cockcroft-Gault
- 12 formula, which is an old formula based on measurement of
- 13 creatinine knowing the sex of the patient, knowing the
- 14 weight of the patient, and the age, and then you can
- 15 calculate this formula. Actually the formula has been
- 16 validated by ourselves in patients with diabetic kidney
- 17 disease. It works.
- 18 The baseline characteristics in the IRMA 2
- 19 study. The good news is that the three arms are balanced
- 20 dealing with demographic data, dealing with clinical data,
- 21 and dealing with laboratory data.
- We have the same age, 58 years of age.
- We have a male preponderance, as we should have
- 24 in this disease.
- 25 We cannot discuss ethnicity in our study from

- 1 the point of view we don't have any other than whites
- 2 because it was done in Europe. I complained about that.
- 3 Next time we have to do it around the world.
- 4 BMI was, as it should be. They're obese.
- 5 The known duration is identical.
- 6 Hemoglobin A1C -- we were discussing that
- 7 earlier this morning -- was also at the same level, and
- 8 that level was equivalent to a mean blood glucose of 8
- 9 millimoles per liter. I hope you know millimoles per
- 10 liter, because I'm not able to convert it so speedily into
- 11 milligrams per deciliter. It should be all right.
- Microalbuminuria, the level in micrograms per
- 13 minute is also at the same level in the three arms. Of
- 14 course, there are small differences, and we will adjust for
- 15 that when we do our risk ratio measurements.
- Another important issue compared to the IDNT,
- 17 which you just heard about where there was already, when
- 18 they started the study, the GFR was down to 58. So, it was
- 19 in harmony already when they started the study dealing with
- 20 IDNT. In this study they had well-preserved kidney
- 21 function, 109, 109, and 108.
- The blood pressure was equivalent in the three
- 23 arms. The same systolic, 153 in all three arms; 90 in the
- 24 placebo; irbesartan 90, and 91. There was no statistically
- 25 significant differences at baseline.

- So, what happened to the blood pressures during
- 2 the trial? If we started at the bottom line, you'll
- 3 remember that there was identical blood pressure at
- 4 baseline. They went down and they stayed down during the
- 5 study. On average, the blood pressure in the three arms
- 6 was identical. It was 83, 83, and 83 millimeters of
- 7 mercury. If we go to the mean blood pressure calculated
- 8 the usual way, the placebo group and the irbesartan 150
- 9 group had a mean blood pressure of 103, 103, and the
- 10 irbesartan 300 group had 102. And that was significant.
- 11 It was only small reduction but there was a significant
- 12 difference in blood pressure.
- If we then go to the top, the systolic blood
- 14 pressure. Again, you'll remember that it had identical
- 15 values at baseline. The values during the 2 years of
- 16 observation in the placebo group was 144 millimeters of
- 17 mercury. In the group receiving irbesartan, the green one,
- 18 150, it was 143, so there was a 1 millimeter difference.
- 19 And finally in the group, the yellow one, receiving
- 20 irbesartan 300 milligrams once daily, the systolic blood
- 21 pressure was 141 millimeters of mercury, and that was
- 22 definitely lower than in the placebo group. Again, we
- 23 adjusted for that in our hazard estimation.
- This is the main outcome of IRMA 2. This is
- 25 the cumulative event rate, a Kaplan-Meier plot, of the

- 1 development of diabetic kidney disease, defined as earlier.
- 2 First of all, I would like to tell you why this has this
- 3 bumpy appearance. It has to do with the fact that
- 4 albuminuria at these different time intervals -- it's not
- 5 measured continuously. It's measured after a certain
- 6 number of month, 3 months, 6 months, 12 months, and so on,
- 7 and consequently you can only have events at these time
- 8 points.
- 9 After 3 months, you always see a separation,
- 10 and the separation is actually persistent during the 2-year
- 11 study period. At the end of the 2 years, 15 percent in the
- 12 group receiving placebo on top of standardized treatment --
- 13 treatment reduced the blood pressure to nearly the
- 14 identical level as in the two other arms. There was 15
- 15 percent of these patients who progressed to a level of more
- 16 than 200 micrograms per minute. In the group, the green
- one, of irbesartan 150, it was 10 percent, and finally in
- 18 the group of 300 milligrams of irbesartan once daily, it
- 19 was 5 percent.
- 20 At the top you will see the relative risk
- 21 reduction. The relative risk reduction unadjusted was 70
- 22 percent for irbesartan 300 versus placebo, with a p value
- 23 equal to 0.0004.
- If we adjust for the differences in albuminuria
- 25 at baseline and the blood pressure during the trial, then

- 1 the relative risk reduction goes down from 70 percent to 68
- 2 percent.
- If we then look at the dose of irbesartan 150
- 4 once daily versus placebo, we had an unadjusted relative
- 5 risk reduction of 39 percent. It was not statistically
- 6 significant with a p value of 0.085.
- 7 If we adjust for baseline differences and blood
- 8 pressure difference, the relative risk reduction actually
- 9 improved. It was 44 percent and the p value was equal to
- 10 0.05.
- 11 During the study, patients who developed
- 12 diabetic kidney disease were discarded. So, when you hit
- 13 the endpoint, you were out. That's important to understand
- 14 this slide because this is the percentage change in
- 15 albuminuria. The expectation for each and all of us would
- 16 have been a rise in albuminuria, but you have to remember
- 17 that the bad guys are out. So, when they hit more than 200
- 18 micrograms, they leave the study.
- 19 The message is then from those who received
- 20 placebo treatment on top of standardized treatment, there
- 21 was no major difference in albumin excretion rate during
- 22 the 2 years of study. At the end it was 9 percent above
- 23 baseline.
- 24 If we look at irbesartan 150, the mean
- 25 reduction in proteinuria was 24 percent, and this was

- 1 highly statistically different from the placebo group.
- Then if we look at my favorite, irbesartan 300
- 3 milligrams once daily, you see the reduction, and the
- 4 reduction is actually continuing during the trial period.
- 5 So, at 2 years, the difference is 54 percent compared to
- 6 the placebo group.
- 7 Another important issue is that if we compare
- 8 the mean reduction in albuminuria, it was 38 percent
- 9 compared to the 150 with 24. There was a highly
- 10 statistically significant difference with a p value of
- 11 0.001.
- 12 Estimated creatinine clearance. Again,
- 13 remember that the patients who developed diabetic kidney
- 14 disease are leaving the study. So, what you're seeing here
- 15 is, in essence, what is happening in those who remain
- 16 microalbuminuric. You are seeing a picture of a so-called
- 17 biphasic response because we have the estimated creatinine
- 18 clearance, and you see the initial response from time 0 to
- 19 3 months when blood pressure is going down. There is
- 20 rather a steep drop in kidney function, but before giving
- 21 you that figure, I will just mention that the initial value
- 22 of creatinine clearance was identical in the three arms,
- 23 108, 108, 109. If we look at the initial drop, it was 5
- 24 milliliters in the group receiving irbesartan 300 and it
- 25 was 3 in the group receiving placebo or irbesartan 150.

- So, initially when blood pressure is lowered,
- 2 we are losing filtration power. That is a well-documented
- 3 phenomenon when blood pressure is lowered. From 3 months
- 4 and onwards, we are dealing with a so-called sustained rate
- 5 of drop in kidney function, and the good news is that the
- 6 rate is flat.
- 7 Actually when we look from here to here, the
- 8 drop in kidney function in the irbesartan 300 milligram
- 9 group and in the irbesartan 150 milligram group was only
- 10 amounting to 2 mls per minute per year. You'll remember
- 11 that the normal drop, just by getting older, is 1 ml per
- 12 minute per year.
- In the group receiving the placebo, the drop
- 14 was 1 ml per minute per year, and if you remember that we
- initially started off having a GFR of 110 and you're only
- 16 losing approximately 2 mls per minute per year, as long as
- 17 you're microalbuminuric, then it will take you
- 18 approximately 40 to 50 years to know the states which we
- 19 have discussed this morning, if that continues. And of
- 20 course, you will ask me that, so I will give you an answer
- 21 later on.
- The safety profile in the IRMA 2. We are very
- 23 early, so we don't have a lot of concern actually. If we
- 24 are looking at the most important one, the serious adverse
- 25 events, we had 22.8 percent in the placebo group. In the

- 1 group of irbesartan, it was less, 15.8, and the group of
- 2 irbesartan 300, it was 15 percent. So, there were actually
- 3 less severe events. The number of deaths was equivalent.
- So, in summary then, the IRMA 2 study had two
- 5 messages.
- The first is that by using irbesartan in
- 7 patients with type 2 diabetes and microalbuminuria, we
- 8 found a 70 percent risk reduction in the progression from
- 9 microalbuminuria to overt nephropathy.
- The second one is that the risk reduction was
- 11 dose-dependent, meaning that 300 milligrams was superior to
- 12 150, which of course is very important when you treat
- 13 patients, as I do every day.
- 14 Furthermore, the effect was an effect above and
- 15 beyond the blood pressure reducing effect.
- And finally, as already stressed by Melisa,
- 17 it's a safe and well-tolerated compound in these patients.
- 18 Thank you very much.
- 19 DR. BORER: Thank you very much. Again, a
- 20 really clear and lucid presentation.
- Do we have questions here? We'll start with
- 22 our two nephrologist members here, if you have any issues
- 23 to raise. Dr. Brem?
- DR. BREM: I was wondering if you could just
- 25 clarify one point on the slide D-12. The placebo group.

- 1 If I understand it, the patients who met the endpoint were
- 2 not included in this slide for GFR or were they included in
- 3 the GFR?
- DR. PARVING: The patients meeting the
- 5 endpoint, meaning the development of diabetic kidney
- 6 disease, were excluded when they met the endpoint. They
- 7 were in the study until they met the endpoint.
- DR. BREM: So, on this particular slide, D-12,
- 9 were those placebo patients demonstrating a decrease in GFR
- 10 included in this slide or were they not?
- 11 DR. PARVING: All patients, as you can see from
- 12 the numbers here, were included, but when they developed
- 13 diabetic kidney disease, they were no longer included
- 14 because, by design, they had to leave the study.
- 15 Consequently, we could have no additional value on them.
- 16 So, we are following each and all of them until the time
- 17 point where they developed diabetic kidney disease and then
- 18 they are left out.
- DR. BREM: Do those patients have an
- 20 accelerated decrease in GFR in your particular study in the
- 21 placebo group as you described in the general population?
- DR. PARVING: That's a very important question
- 23 which cannot be answered from this study because this
- 24 study, as you see, is only running for 2 years. When you
- 25 go from microalbuminuria, having a very low level of

- 1 progression, to overt nephropathy, you need a couple of
- 2 years in order to actually be able to pick up the signal
- 3 that the rate of decline is worsening.
- DR. BREM: But I thought you demonstrated at
- 5 the beginning -- correct me if I'm wrong -- that patients
- 6 with overt proteinuria have a decline in GFR of about 6 or
- 7 more milliliters per minute --
- DR. PARVING: That's correct.
- DR. BREM: And these patients have a GFR
- 10 decrease of approximately 2. So, if you counted all the
- 11 placebo patients who reached overt proteinuria in this
- 12 particular analysis, wouldn't you expect to see a more
- 13 pronounced decrease in glomerular filtration rate in that
- 14 population?
- DR. PARVING: It's completely correct, as you
- 16 state, in relation to the initial slide. The drop in
- 17 kidney function in these patients is minute, and when they
- 18 go from one level of proteinuria to a next level of
- 19 proteinuria, it's correct that the rates start to go up.
- 20 But you need a certain time interval in order to pick up
- 21 the signal. Actually most nephrologists suggest that you
- 22 have to follow the patient approximately for 2 years in
- 23 order to be pretty sure that you have that signal.
- DR. BREM: So, you'd have to follow these
- 25 patients in this group for an additional --

- DR. JULIA LEWIS: The overt proteinuria
- 2 patients are no longer counted. Once they hit overt
- 3 proteinuria, you're no longer measuring their creatinine
- 4 clearance.
- DR. BREM: Right, but my thought would be, if
- 6 you did, you would be able to demonstrate efficacy in GFR
- 7 much more convincingly. And I'm wondering why you wouldn't
- 8 have included them in this particular analysis because it
- 9 would be more supportive of your argument.
- DR. PARVING: We have data from the literature.
- 11 I would like to share them with you. I think we can show
- 12 you 4-3.
- This is the review of the literature available
- 14 to each and all of you. That's a retrospective study, the
- 15 first one. All the remaining studies are prospective.
- The message from this slide is the following.
- 17 First of all, the conversion from microalbuminuria into
- 18 overt nephropathy is ranging from 4 to more than 9 percent.
- 19 If we look at the drop in kidney function --
- 20 and you have to remember that these studies were followed
- 21 prospectively for 4 to 5 years, so they had a much longer
- 22 observation period than we have in IRMA 2. The rate of
- 23 decline in the study from the Pima was 1, from East Welley,
- 24 it was 2, from our study group at Steno it was 3.2 percent,
- 25 $\,$ from India it was 1 $\,$ percent, from the ABCD trial it was 1 $\,$

- 1 percent. These patients were treated with blood pressure
- 2 lowering agents here and here, while they were untreated
- 3 here because they were normotensive. So, in long-term
- 4 observational study, the rate of decline, as I depicted to
- 5 you, is between 1 to 3.
- And I can expand on that because we have a
- 7 follow-up of the Steno study, and that will be 4-37.
- The Steno study we published a couple of years
- 9 ago. It's a study dealing with type 2 diabetic patients
- 10 who have microalbuminuria, the same way as in IRMA 2.
- 11 They're very much the same. It's a study where we were
- 12 looking at the potential importance of multifactorial
- 13 intervention. In this study, we were actually measuring
- 14 the glomerular filtration rate using an isotope technique
- 15 initially and during the study period. We reported the
- 16 data after 4 years, and now just before leaving Denmark, I
- 17 had the possibility of looking into the data after 8 years.
- 18 We have 129 patients followed now for 8 years.
- 19 Those patients who remained microalbuminuric in
- 20 this prospective, randomized trial had a rate of decline
- 21 every year during the 8 years of 3.2, while those patients
- 22 who developed overt nephropathy, using exactly the same
- 23 definition as I gave you earlier, had a drop in kidney
- 24 function of 4.7, again showing to you that when you pass
- 25 from one category to the next, then you start to have

- 1 worsening of kidney function.
- But again, the important issue in this very
- 3 early state of diabetic kidney disease is that you have to
- 4 do long-term studies, and this is an 8-year study while
- 5 IRMA 2 is a 2-year study and we could not pick up that
- 6 signal.
- DR. BORER: JoAnn, do you have any specific
- 8 questions?
- 9 DR. LINDENFELD: In the GFR substudy that's
- 10 mentioned in the briefing booklet -- you've explained the
- 11 reason for that not changing. But after 4 weeks of
- 12 withdrawal of drug, certainly in the 150 group, the
- 13 proteinuria went right back up to baseline. And after 2
- 14 years, do you find that disturbing that that doesn't
- 15 suggest that there's been a persistent change? And then
- 16 again, it also went up in the 300 milligram group, but not
- 17 as much. I'm wondering what we would make of that?
- DR. PARVING: In the literature, several
- 19 studies have been carried out and after carrying out the
- 20 studies, some of us, at least those of us from Denmark,
- 21 have stopped the treatment and then see what happens. That
- 22 has been done in type 1 patients, in type 2 patients, early
- 23 and late.
- So, in the IRMA 2 trial, we actually did the
- 25 same. We followed in a subset of patients kidney function

- 1 during, of course, the 2 years of observation, and then
- 2 after 2 years, we stopped all treatment. So, at this time
- 3 point, all kind of blood pressure lowering treatment was
- 4 stopped and we are now looking at the change, after
- 5 stopping treatment for 1 month, in albuminuria. In the
- 6 placebo group, the pink one, actually the level goes back
- 7 to baseline and no change. If we look correctly at the 150
- 8 milligram irbesartan group, there's actually a huge rise of
- 9 80 percent going back to normal, which may suggest that a
- 10 major part of the effect in that particular arm was
- 11 hemodynamic.
- The good news, however, is that in the yellow
- 13 group, the irbesartan 300 group where we saw a significant
- 14 reduction in development of diabetic kidney disease, we
- 15 only saw a rise of 13 percent, and this in my mind is one
- 16 of the first times ever where we have demonstrated that by
- 17 stopping this kind of treatment, we are not regaining what
- 18 we expect. Actually it seems to suggest that there is a
- 19 residual effect of the irbesartan 300 milligrams, but
- 20 again, that has to be proven in a larger number of
- 21 patients. So, all in all, it may suggest that the effect
- 22 of our compound in the high dose has residual
- 23 renoprotection.
- 24 DR. BREM: Were those data controlled for blood
- 25 pressure?

- DR. PARVING: Blood pressure rose. As you may
- 2 remember, the blood pressure was identical in the three
- 3 arms, more or less. The diastolic was identical.
- DR. BREM: But at the end.
- DR. PARVING: All of them had a rise in blood
- 6 pressure when you stopped treatment because you stopped all
- 7 kinds of medication. So, in essence, I think if I recall
- 8 correctly, the rise was less in the placebo group, was
- 9 biggest in the two groups who no longer had the treatment
- 10 with irbesartan. So, it's not a blood pressure phenomenon.
- 11 You'll also remember that despite the fact that
- 12 blood pressure was reduced to the same level in the placebo
- 13 group, as in the irbesartan 150 milligram group, there was
- 14 actually no difference. There was a huge 24 percent
- 15 difference in albuminuria. So, even though there are
- 16 minute changes in blood pressure, this can definitely not
- 17 explain that. But there was a rise in blood pressure.
- 18 And there was also a rise in kidney function,
- 19 the way it should be, meaning that when you stopped that
- 20 kind of treatment, you see a regain in kidney function. As
- 21 I said to you initially, there was a drop the first 3
- 22 months, this biphasic pattern, and this is due to a blood
- 23 pressure drop.
- 24 Actually give me the option of mentioning
- 25 something, which some of you may remember and some of you

- 1 may have forgotten, and that's the story about malignant
- 2 hypertension. The story about malignant hypertension is
- 3 dating back to the 1950s. When you had malignant
- 4 hypertension, the survival until end-stage renal failure
- 5 was 2 years, if you didn't die from stroke before that. It
- 6 was a devastating condition.
- 7 However, when blood pressure lowering was
- 8 initiated, we saw the following pattern. When you lowered
- 9 blood pressure, you saw a rise in creatinine and, of
- 10 course, that always indicates that you may do some harm to
- 11 the patient. However, the creatinine level then
- 12 stabilized, stabilized, and stabilized, and the patient no
- 13 longer went into end-stage renal failure.
- 14 So, this initial phenomenon is actually well
- 15 described more than 50 years ago in malignant hypertension
- 16 and is documented in each and all of the major trials
- 17 dealing with kidney outcome. The MDRD study, the captopril
- 18 study, all of them have this initial drop.
- 19 DR. BORER: I'd like to go back to slide D-12
- 20 again. I don't want to try to over-interpret data that
- 21 have been processed in a certain way with all the dropouts
- 22 that you explained for reaching overt proteinuria. But I'm
- 23 struck with the observation that the people who were left
- 24 in the trial in the placebo arm and the irbesartan 150 arm,
- 25 even though they more frequently had overt proteinuria, as

- 1 we can see from the numbers below, and therefore dropped
- out, even though there were more dropouts, more overt
- 3 proteinuria, those who are left in seem to have a slightly
- 4 better response over the 24 months than the group with
- 5 irbesartan 300. That may be an artifact of all the
- 6 processing of these data, but I'd just like your comment
- 7 about that.
- DR. PARVING: I think definitely it's fair.
- 9 From the point of view that I stated initially, that
- 10 actually the initial drop in kidney function is the
- 11 important player here because the drop in the irbesartan
- 12 300 milligram group, those who gained most in relation to
- 13 avoiding development of nephropathy, was 5.7 milliliters.
- 14 So, the absolute drop was 5.7 here and it was 3 here.
- 15 You will also appreciate that the level
- 16 initially was 1 milliliter lower. So, that's another
- 17 issue.
- 18 At the end of the study, after 2 years of
- 19 observation, the difference between irbesartan 300
- 20 milligrams and the two other groups was 3 mls. So, most of
- 21 the difference is actually explained alone by the fact that
- 22 the initial drop in kidney function in irbesartan 300 was
- 23 bigger than in the two other arms. There was no difference
- 24 in the irbesartan 300 group and in the two arms dealing
- 25 with the slope. It was identical.

- DR. BORER: Should we draw any inferences from
- 2 the fact that the drop was greater in the 300 milligram
- 3 group? I mean, is that a bad thing?
- DR. PARVING: You could say that, unfortunately
- 5 -- luckily, it's the opposite. Actually it turned out that
- 6 in several studies that those who have the biggest initial
- 7 drop in kidney function have the best long-term prognosis.
- 8 That has been demonstrated from our group and from the
- 9 group in Groningen in Holland and also from Italy. It
- 10 actually suggests that the initial drop in kidney function
- 11 is reflecting probably the drop in glomerular pressure
- 12 which is elevated in these patients, at least in animals,
- 13 as demonstrated by Barry Brenner.
- DR. BORER: Blase?
- DR. CARABELLO: It's just that those data seem
- 16 different from the table that we have in our book, table 7,
- 17 where the initial drop in the irbesartan 300 group in GFR
- 18 was 2.3 percent and then the late drop at 24 months was 12
- 19 percent. This is on page 10 for anyone that doesn't have
- 20 it. It seems to be the reverse of that.
- DR. PARVING: This is the intention to treat.
- 22 I don't know what you have there.
- DR. CARABELLO: This is a GFR substudy.
- DR. PARVING: Oh, don't do that.
- 25 (Laughter.)

- DR. PARVING: Because now we are mixing
- 2 everything together, but it's all right. I will clear it
- 3 up.
- 4 This is dealing with all patients enrolled in
- 5 IRMA 2. The substudy is only dealing with a subfraction,
- 6 actually approximately 130 patients, who participated in
- 7 the substudy. The substudy was not a random pick because
- 8 the substudy was dominated by Dr. Parving and his group
- 9 because we had 50 patients in the group after the 130. So,
- 10 the substudy is in no way representative or a random sample
- 11 for the whole population.
- 12 Consequently, this is the important player.
- 13 This is the whole group and all the data based on the
- 14 Cockcroft-Gault. It's not the substudy.
- DR. CARABELLO: So, was the substudy done to
- 16 confuse cardiologists?
- 17 (Laughter.)
- DR. CARABELLO: Or was there another purpose?
- 19 DR. PARVING: I need to be honest now. We were
- 20 actually asked by the FDA to do it.
- 21 (Laughter.)
- 22 DR. PARVING: And I'm pretty sure that the FDA
- 23 did not want to confuse anybody.
- 24 (Laughter.)
- DR. PARVING: What the FDA really wanted us to

- 1 look at was the effect when stopping the drug. That was
- 2 actually the aim of the FDA. They would like to see what
- 3 is the effect when you stop your treatment after 2 years.
- 4 In the high group, in the group of 300 milligrams of
- 5 irbesartan, there seemed to be a persistent effect, at
- 6 least the proteinuria did not go up. And I'm pretty sure
- 7 that the FDA will be pleased to see that.
- DR. PELAYO: I'm the primary reviewer for
- 9 irbesartan diabetic nephropathy.
- I think the issue for the subgroup study --
- 11 that was the wrong question to ask because regardless how
- 12 many patients you study, it doesn't matter for how long you
- 13 are going to follow them up after you stop the medication,
- 14 those studies have no -- you can't interpret them because
- 15 there are multiple scenarios that I could create. So, I
- 16 would totally disregard those studies not only as the
- 17 primary reviewer but also as a nephrologist. And I say
- 18 that to confuse everybody. So, that was the wrong question
- 19 to ask because there is no answer that can be interpreted.
- DR. PARVING: Unfortunately, I happen to
- 21 disagree slightly because we made a paper a couple of years
- 22 ago where we actually demonstrated in type 1 patients with
- 23 microalbuminuria, a randomized trial carried out in Denmark
- 24 for 8 years. Don't shake your head.
- For 8 years we did the study. We published it

- 1 in the British Medical Journal, and what we did after 8
- 2 years, we measured glomerular filtration rate during the 8
- years in these type 1 patients with microalbuminuria, and
- 4 then we stopped the treatment and remeasured glomerular
- 5 filtration rate. And the outcome of this study, with the
- 6 first author as Elizabeth Mathiesen, was the following.
- 7 8 years of treatment with the drug called
- 8 captopril in type 1 patients with microalbuminuria
- 9 stabilized kidney function. There was no drop whatsoever
- 10 during 8 years when we reevaluated after stopping the
- 11 treatment. So, I think actually that FDA was very smart
- 12 asking us to do that.
- DR. KOPP: Just one other question about that.
- 14 In the GFR substudy group, did you drop patients out who
- 15 had met the proteinuria endpoint?
- DR. PARVING: Sorry. Once more.
- 17 DR. KOPP: In the substudy group that we're
- 18 talking about --
- DR. PARVING: In the substudy group, if they
- 20 developed diabetic nephropathy, they were out.
- DR. KOPP: You were out in that study as well.
- DR. PARVING: Yes, exactly because the aim of
- 23 the substudy group was actually to evaluate what happens
- 24 when we stop the treatment. So, they had continue until 2
- 25 years, and then we stopped the treatment.

- DR. LINDENFELD: But in this substudy, without
- 2 belaboring it too much, there really wasn't any difference
- 3 in the dropout rate.
- DR. PARVING: No.
- DR. LINDENFELD: So, again I think it does
- 6 point up that in this study GFR didn't change and you can't
- 7 explain the substudy on the fact that the patients that
- 8 developed proteinuria dropped out.
- DR. PARVING: No, no, no. The important issue
- 10 dealing with the glomerular filtration rate from IRMA 2 is
- 11 the following. I will never, ever dare to claim that there
- 12 is any difference in the drop in kidney function in these
- 13 patients. The message is the opposite. The message is as
- 14 long as the patients stay microalbuminuric, you are only
- 15 losing 2 mls per minute per year. In other words, it lasts
- 16 many, many years. If we calculate this, it will take 40 to
- 17 50 years to go to the department of nephrology asking for
- 18 dialysis, and that is the message.
- DR. BORER: Ray, you had a question?
- 20 DR. LIPICKY: Yes. If you could show slide
- 21 4-197 again because I think you said a few words, and I
- 22 probably missed it.
- So, in the very last end there, week 4, there
- 24 are three data points, and we were sort of led to believe
- 25 at the beginning of today that you developed proteinuria

- 1 when all these things build up in the glomeruli. So, in 4
- 2 weeks, in one of the two possible things, the green and the
- 3 yellow, all of that mass of stuff must have reversed? All
- 4 of those bluish globs that we saw early in the day went
- 5 away -- or came back? I'm sorry. Came back.
- DR. PARVING: No. I will be very pleased to
- 7 answer that.
- First of all, there is a rebound phenomenon.
- 9 That is well demonstrated.
- DR. LIPICKY: Yes.
- 11 DR. PARVING: You have to remember that the
- 12 expectation is actually the following. When you have 2
- 13 years with microalbuminuria, you'll assume, if we have not
- 14 treated the patient, that it will be up here. However,
- 15 there was a rebound to the baseline suggesting that a major
- 16 part of the lowering in this group was due to hemodynamic
- 17 effect. I quite agree.
- DR. LIPICKY: But you have the placebo group
- 19 there.
- DR. PARVING: Sure.
- DR. LIPICKY: So, you don't have to refer to
- 22 something way up there.
- DR. PARVING: But the placebo is not a placebo
- 24 group left untreated.
- DR. LIPICKY: No, no. I understand.

- DR. PELAYO: You know what is the problem? To
- 2 interpret that, you have to understand that the
- 3 antihypertensive medication was discontinued. If it was
- 4 discontinued in the placebo, it was discontinued in in 150
- 5 and it was discontinued in 300.
- 6 DR. LIPICKY: No, I --
- 7 DR. PELAYO: Wait. Let me finish.
- Then if you discontinue the antihypertensive,
- 9 the blood pressure will go up. That in and of itself can
- 10 affect glomerular permeability. If you stop abruptly the
- 11 inhibition of the angiotensin II system, that also can
- 12 modify hemodynamics and glomerular permeability.
- 13 Therefore, to me the data is not surprising.
- But it still is the wrong question to ask
- 15 because it doesn't matter what happened after you
- 16 discontinue the antihypertensive. What matters is what
- 17 happened before because all this could be due just to a
- 18 functional effect.
- 19 I think Dr. Brenner, who is sitting on my
- 20 right, could explain this in a more elegant way and without
- 21 an accent. Dr. Brenner, do you care to enlighten the
- 22 audience with your knowledge about proteinuria, glomerular
- 23 hemodynamics, and antihypertensive treatment, and the wrong
- 24 question and how you can really interpret the data?
- DR. BRENNER: I don't think I can improve on

- 1 it.
- DR. PARVING: Could I have a chance to answer
- 3 the question?
- 4 (Laughter.)
- DR. PARVING: And will you answer all the
- 6 remaining questions for me? That's all right.
- DR. LIPICKY: Well, it's getting mixed up. Let
- 8 me ask the question again.
- 9 We were supposed to take the decrease in
- 10 proteinuria, effect of ARBs, as inducing a morphological
- 11 change in glomeruli and that the proteinuria occurred
- 12 because of some morphological effect. And what you have
- 13 there, at least in one data point, is what looks like
- 14 something morphological happened in 4 weeks that negated 2
- 15 years of therapy. That sort of is mysterious.
- DR. PARVING: No. I think that the question
- 17 raised is quite on target, and I will definitely be very
- 18 pleased to answer it.
- 19 First of all, it's important to realize that
- 20 this kind of kidney complication is not something which is
- 21 done overnight. It takes a number of years to develop that
- 22 kind of lesion, even the early one, with mesangial
- 23 expansion as increased basement membrane. There's also
- 24 good reason to assume that the number of years it takes to
- 25 get rid of it is probably the same. Why should it be

- 1 different?
- We have one marvelous example from the
- 3 literature, and that is the beautiful biopsy study carried
- 4 out by Michael Mauer from Minnesota. He took type 1
- 5 patients, biopsied them, and then he gave them a new
- 6 pancreas. They had this new pancreas working for 10 years
- 7 with completely normal blood glucose values. No insulin,
- 8 no nothing. He rebiopsied after 5 years. There was no
- 9 significant difference. But after 10 years, he saw that
- 10 there was a significant reversal of the structural damage.
- 11 I think to my mind that this study demonstrates that it
- 12 takes a long time to get rid of it.
- I think what we are doing here, we are only
- 14 doing a short-term study. Of course, the message from this
- 15 study is that the patients are put on the treatment. We
- 16 will never, ever stop them. We'll continue of course.
- 17 That's the kind of treatment you need if you need if you
- 18 want to get reversal of the kidney structural damage. But
- 19 I think, in essence, that everybody has to realize that
- 20 it's a very slow process and you need to do it for many,
- 21 many years in order to gain.
- DR. BORER: May I ask? I'll try not to muddy
- 23 the waters a little bit more. It sounds to me like this is
- 24 a two-component model. Number one, the morphological
- 25 changes in the kidney, and number two, superimposed upon

- 1 that, acute hemodynamic changes that can change the
- 2 expression, if you will, of the effects of the morphologic
- 3 changes.
- 4 You took away drugs at week 24 and you said the
- 5 blood pressure went up. Presumably it went up relatively
- 6 rapidly, and we saw here the effect of what was sitting
- 7 there with a new blood pressure level on top of it. And it
- 8 looks worse for at least two of the arms.
- If you followed along further, would you have
- 10 expected -- or let's say you lowered the blood pressure
- 11 further with some other drug. Would you then have expected
- 12 the green point to come back down a little bit again?
- DR. PARVING: It depends on what kind of
- 14 compounds that you're aiming at because all blood pressure
- 15 reduction will eventually reduce the albumin excretion
- 16 rate, each and all of them. But some of them are more
- 17 potent and those that are more potent are those that are
- 18 blocking the effect of angiotensin II. That goes for ACE
- 19 inhibition and for receptor antagonist.
- DR. BORER: I understand that. I didn't want
- 21 to get into that. I see that the irbesartan 300 doesn't
- 22 seem to reverse nearly so much as the others, and that
- 23 suggests that there's some residual effect, et cetera.
- I was only asking the question if you took away
- 25 the new hemodynamic load on top of the morphological change

- 1 that already existed, would you see some tendency towards
- 2 improvement. That's all.
- DR. PARVING: Sure.
- DR. BORER: And you would.
- DR. PARVING: You will see that.
- DR. BORER: Tom?
- 7 DR. FLEMING: I'd like to just, one more time
- 8 for my own sake, go through the interpretation you gave to
- 9 your slide D-12 just to make sure I understand what you're
- 10 telling us your interpretation is.
- 11 We have had explained to us today a biological
- 12 progression that occurs with microalbuminuria first,
- 13 leading to proteinuria, leading to glomerular filtration
- 14 rate changes, leading to end-stage renal disease, which in
- 15 essence is dominated by dialysis, transplant, and renal
- 16 death. This is the progression.
- In the IRMA 2 trial, we're really going back to
- 18 this earlier stage. We're looking at whether or not we can
- 19 delay this progression to clinical proteinuria. Often what
- 20 we would want to do, from a statistical perspective to get
- 21 a sense of the validity of that as a surrogate for ultimate
- 22 clinical benefit, is to see how that translates into
- 23 effects on other tangible phenomena that are downstream in
- 24 terms of clinical consequences. Of course, the next one in
- 25 line is the filtration rate.

- What you're saying is there's not an apparent
- 2 benefit here, but you're saying be careful because it's
- 3 going to take more years of effects before you're going to
- 4 get to a point where you're going to expect to see effects
- 5 on GFR. Is that correct? Is that a correct interpretation
- 6 you're giving to why one shouldn't be too concerned about
- 7 this?
- DR. PARVING: I think you're right.
- 9 DR. FLEMING: And if I take that then as the
- 10 interpretation, I can be -- I'll give my interpretation.
- 11 Jeff, you can comment. Or go ahead. I'll give my
- 12 interpretation after you.
- DR. BORER: No. I just want to ask is that
- 14 really what you -- I mean, if I'm understanding what you
- 15 said correctly, it's not that you were waiting for an
- 16 improvement in GFR. You were waiting to see a worsening
- 17 and it didn't happen.
- DR. PARVING: Exactly.
- DR. BORER: You want to, as you said, keep them
- 20 within the box.
- DR. FLEMING: Sure, but I would like to see
- 22 some evidence of a net benefit relative to placebo. And
- 23 I'm understanding that we would need to have many more
- 24 years of effect on delaying progression to increases in
- 25 proteinuria to be able to expect then, when we look at this

- 1 phenomenon downstream, we'll see an effect.
- DR. BORER: Maybe yes, maybe no. You dropped
- 3 out and didn't collect data on the people who developed
- 4 proteinuria.
- DR. FLEMING: Yes, but my initial sense is,
- 6 looking at the numbers of dropouts -- and it's only a
- 7 speculation. Unfortunately the trial wasn't designed to
- 8 truly answer this. It's not clear that that would have
- 9 reversed this perspective.
- DR. PARVING: But could I give an answer?
- 11 Because exactly what you are saying is that if we should
- 12 have picked up the signal, then of course we should have
- 13 kept the patients who developed diabetic kidney disease in
- 14 the trial. And then we should have told you that those who
- 15 developed diabetic kidney disease and were followed for 5
- or more years did worse than those who didn't.
- 17 Unfortunately, the design of the study was so that those
- 18 who were the bad-doers were actually leaving the study.
- 19 DR. FLEMING: We understand. We understand
- 20 that.
- But I guess the bottom line conclusion to me is
- 22 I could be persuaded that the lack of tangible evidence of
- 23 a benefit on the next phenomenon could, in fact, be that
- 24 we're looking too early. But at a minimum, I'm left
- 25 without any substantive basis to say I've got evidence to

- 1 validate my surrogate. I know natural history. I know the
- 2 progression in natural history, but I don't have any direct
- 3 tangible clinical evidence to show that when I've
- 4 intervened and achieved this effect in delay of
- 5 proteinuria, that this is the magnitude and duration of
- 6 effect that will reliably translate into ultimate clinical
- 7 benefit downstream. It may or it may not. But I'm left
- 8 with much less evidence of validating a surrogate here than
- 9 I would typically expect to have.
- DR. JULIA LEWIS: If I could have the slide
- 11 from the hyperbolic curve from the other Dr. Lewis' talk.
- If you'll remember -- and I'm sure it will be
- 13 up there in a second -- the IRMA 2 trial was not intended
- 14 nor anticipated nor would we ever design a study to look at
- 15 the change in rate of decline of renal function in patients
- 16 who are in this area of the curve for two reasons.
- One, in order to, for example, double your
- 18 serum creatinine, you have to lose a gigantic amount of
- 19 renal function to measure that.
- In addition, in this area of the curve, the
- 21 measurements of GFR -- the scatter in the measurement
- 22 itself is almost equal to the rate of decline in renal
- 23 function when you're in this area of the curve in
- 24 microalbuminuric patients.
- So, in early diabetic kidney disease with

- 1 microalbuminuria, you simply can't reliably measure the
- 2 changes in renal function in those patients, which is why
- 3 we worked in this area of the curve in IDNT. So, we didn't
- 4 anticipate to see changes in GFR in IRMA 2 or to be able to
- 5 detect changes in IRMA 2 in those early microalbuminuric
- 6 patients over a 2-year period.
- 7 DR. LIPICKY: I guess I wanted to follow up on
- 8 what Tom said because he said what I was trying to say much
- 9 better, but I'd like to try just one more time to say what
- 10 I meant.
- 11 And that is that the data from IRMA 2 are
- 12 consistent with the hypothesis that was forwarded. They do
- 13 not prove the hypothesis that was forwarded. In fact, they
- 14 sort of don't help it very much.
- Then secondly, the creatinine doubling is
- 16 consistent with the notion that people get into trouble in
- 17 the first trial, but the actual number of events that were
- 18 observed don't go along with that. So, this is the nature
- 19 of the beast that you're evaluating.
- DR. PARVING: Could I then add? I will not
- 21 disagree but I would like to say that the natural history
- 22 of diabetic kidney disease, where you have such a slow rate
- 23 of progression in kidney function, which is actually what
- 24 causes the death of the patient, if you lose filtration
- 25 $\,$ power, you're a dead man. Initially the drop is so slow --

- DR. LIPICKY: The only thing I said is that if
- 2 you're a believer, you believe and you don't need data. If
- you're not a believer, you need data, and that's going to
- 4 be the problem that's discussed.
- DR. PARVING: I think you have the data. I
- 6 think you have the data telling you that you only have a
- 7 drop of 2 mls per minute per year in those who are
- 8 microalbuminuric. That's exactly what you want to know.
- 9 DR. BORER: Bev.
- DR. LORELL: I think that in this study that
- 11 you're describing, it seems to me it would be extremely
- 12 problematic to follow the patients even longer-term to see
- 13 a more rapid decline in creatinine clearance. And the
- 14 reason I say that, as a non-nephrologist, is if it is true
- 15 in the diabetic, that the development of macroalbuminuria
- 16 precedes this more rapid decline in creatinine from an
- 17 ethical standpoint for the individual physician
- 18 investigators, it would have been impossible I think, once
- 19 a patient reached the point of microalbuminuria, not to use
- 20 the best data available, which would have been the
- 21 captopril study, and to have said at this point ethically
- 22 -- admittedly they're not the same population, but best
- 23 data available -- I must move to treating with an ACE
- 24 inhibitor. So, I don't think even today it would be
- 25 possible to do this study to carry it out long term to look

- 1 at events.
- DR. LIPICKY: This was done today. What do you
- 3 mean?
- DR. LORELL: No. I'm saying we have another
- 5 study here now looking at irbesartan and data from
- 6 losartan.
- 7 DR. LIPICKY: So, you think it's ethical to do
- 8 things you don't know anything about rather than find out
- 9 whether something works or not?
- DR. LORELL: No. I would argue that from the
- 11 point of view of the physician investigators caring for
- 12 individual patients --
- DR. LIPICKY: But to do something where you do
- 14 not know what you're doing is correct.
- DR. LORELL: I didn't say that.
- DR. LIPICKY: Well, why didn't you say that?
- 17 DR. LORELL: I'm sympathetic with the stopping
- 18 endpoint in this trial, given the other data that was
- 19 available, albeit in type 1 diabetes. So, I actually think
- 20 it would be very problematic to keep a patient, once they
- 21 had developed macroalbuminuria, on one of these three
- 22 treatment arms.
- DR. PARVING: That was actually the main reason
- 24 why that was decided because it was tested out at several
- 25 of the safety committees in Europe, and they would not

- 1 allow us to go ahead. So, that was quite simple. So, what
- 2 you're saying is at least the notion in Europe. They may
- 3 be wrong, as Ray Lipicky is saying, but that was the
- 4 notion.
- DR. BORER: Steve?
- 6 DR. NISSEN: Bev, I don't agree with you. If
- 7 it's ethical to take patients at a later stage in the
- 8 disease, as was done in IDNT, and give them placebo for a
- 9 long period of time, it certainly would be ethical to do so
- 10 in an earlier part of the disease curve.
- 11 This is an important question because no matter
- 12 what we decide here, clinicians have to know when in the
- 13 course of the disease might an intervention such as this be
- 14 useful. So, we're looking for a signal here that says,
- 15 well, gee, maybe if you start this therapy very early when
- 16 you get that first microalbuminuria, you can prevent this
- 17 whole cascade. So, we're all kind of looking to find some
- 18 evidence that that's the case, and there isn't any
- 19 evidence, unfortunately, in the data.
- DR. EDMUND LEWIS: Hopefully, I'll get back up
- 21 there. I should be wearing armor the next time I get back
- 22 up there, but hopefully I will get back up there to try to
- 23 convince you otherwise.
- 24 There are complex issues here that involve the
- 25 ethics. First of all, in early type 2 diabetic

- 1 nephropathy, microalbuminuria, the study by Ravid from
- 2 Israel using enalapril showed clearly that ACE inhibitors
- 3 absolutely stabilized microalbuminuria over a period of --
- 4 I forget. I think it was 5 years, and that for that
- 5 reason, ACE inhibitors were appropriate therapy. So, the
- 6 physician, seeing the patient with early type 2 diabetic
- 7 nephropathy using evidence base ethically should be using
- 8 an ACE inhibitor at least.
- 9 Now, in our study, the irbesartan diabetic
- 10 nephropathy trial, it is not fair to say that since they
- 11 had two arms that didn't inhibit renin-angiotensin, what
- 12 about the ethics of that compared to this? Because we were
- 13 facing an entirely different clinical problem. The
- 14 clinical problem that we were facing was not only do type 2
- 15 patients with diabetic nephropathy perform the same as the
- 16 type 1's, when their renin-angiotensin system is blocked,
- 17 but also we're dealing with a much older population of
- 18 hypertensive patients.
- 19 So, the question was also not just benefit, but
- 20 risk. That is, in this patient population, when you use a
- 21 renin-angiotensin system antagonist, is there enough
- 22 bilateral renal artery stenosis to cause serious adverse
- 23 events with acute renal failure, and do they have enough
- 24 hyporeninemic, hypoaldosteronism to cause much more severe
- 25 hyperkalemia during the course of the study than the type 1