
FEDERAL EXECUTIVE TEAM

Director, Climate Change Science Program:	William J. Brennan
Director, Climate Change Science Program Office:	Peter A. Schultz
Lead Agency Principal Representative to CCSP, Associate Director for Research, Earth Science Division, National Aeronautics and Space Administration:	Jack Kaye
Lead Agency Point of Contact, Earth Science Division, National Aeronautics and Space Administration:	Hal Maring
Product Lead, Laboratory for Atmospheres, Earth Science Division, Goddard Space Flight Center, National Aeronautics and Space Administration:	Mian Chin
Chair, Synthesis and Assessment Product Advisory Group Associate Director, National Center for Environmental Assessment, U.S. Environmental Protection Agency:	Michael W. Slimak
Synthesis and Assessment Product Coordinator, Climate Change Science Program Office:	Fabien J.G. Laurier
EDITORIAL AND PRODUCTION TEAM	
Editors:	Ralph A. Kahn, NASA
Graphic Design:	Sally Bensusen, NASA

This document, part of the Synthesis and Assessment Products described in the U.S. Climate Change Science Program (CCSP) Strategic Plan, was prepared in accordance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and the information quality act guidelines issued by the National Aeronautics and Space Administration pursuant to Section 515. The CCSP Interagency Committee relies on National Aeronautics and Space Administration certifications regarding compliance with Section 515 and Agency guidelines as the basis for determining that this product conforms with Section 515. For purposes of compliance with Section 515, this CCSP Synthesis and Assessment Product is an "interpreted product" as that term is used in National Aeronautics and Space Administration guidelines and is classified as "highly influential". This document does not express any regulatory policies of the United States or any of its agencies, or provides recommendations for regulatory action.

Atmospheric Aerosol Properties and Climate Impacts

Synthesis and Assessment Product 2.3
Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research

COORDINATING LEAD AUTHOR:
Mian Chin, NASA Goddard Space Flight Center

LEAD AND CONTRIBUTING AUTHORS:
Ralph A. Kahn, Lorraine A. Remer, Hongbin Yu, NASA GSFC;
David Rind, NASA GISS;
Croham Foingald, NOAA ESBL: Batrioia K. Oving, NOAA BMEL

Graham Feingold, NOAA ESRL; Patricia K. Quinn, NOAA PMEL; Stephen E. Schwartz, DOE BNL; David G. Streets, DOE ANL; Philip DeCola, Rangasayi Halthore, NASA HQ

January 2009,

Members of Congress:

On behalf of the National Science and Technology Council, the U.S. Climate Change Science Program (CCSP) is pleased to transmit to the President and the Congress this Synthesis and Assessment Product (SAP) *Atmospheric Aerosol Properties and Climate Impacts*. This is part of a series of 21 SAPs produced by the CCSP aimed at providing current assessments of climate change science to inform public debate, policy, and operational decisions. These reports are also intended to help the CCSP develop future program research priorities.

The CCSP's guiding vision is to provide the Nation and the global community with the science-based knowledge needed to manage the risks and capture the opportunities associated with climate and related environmental changes. The SAPs are important steps toward achieving that vision and help to translate the CCSP's extensive observational and research database into informational tools that directly address key questions being asked of the research community.

This SAP reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It was developed in accordance with the Guidelines for Producing CCSP SAPs, the Information Quality Act (Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554)), and the guidelines issued by the National Aeronautics and Space Administration pursuant to Section 515.

We commend the report's authors for both the thorough nature of their work and their adherence to an inclusive review process.

Sincerely,

Sumuel a NS

Carlos M. Gutierrez
Secretary of Commerce
Chair, Committee on Climate Change
Science and Technology Integration

Samuel W. Bodman Secretary of Energy Vice Chair, Committee on Climate Change Science and Technology Integration John H. Marburger III
Director, Office of Science and
Technology Policy
Executive Director, Committee
on Climate Change Science and
Technology Integration

. [
. I
.
. I
.2
.2
.3
.3
.4
.4
.4
.5
.5
.5

CHAPTER

	9
Introduction	
I.I Description of Atmospheric Aerosols	9
1.2 The Climate Effects of Aerosols	12
1.3. Reducing Uncertainties in Aerosol-Climate Forcing Estimates	16
I.4 Contents of This Report	
2	21
Remote Sensing and <i>In Situ</i> Measurements of Aerosol Properties, Burde and Radiative Forcing	
2.1. Introduction	
2.2. Overview of Aerosol Measurement Capabilities	
2.2.1. Satellite Remote Sensing	
2.2.2. Focused Field Campaigns	27
2.2.3. Ground-based In situ Measurement Networks	27
2.2.4. In situ Aerosol Profiling Programs	28
2.2.5. Ground-based Remote Sensing Measurement Networks	29
2.2.6. Synergy of Measurements and Model Simulations	32
2.3. Assessments of Aerosol Characterization and Climate Forcing	34
2.3.1. The Use of Measured Aerosol Properties to Improve Models	34
2.3.2. Intercomparisons of Satellite Measurements and Model Simulation of	
Aerosol Optical Depth	37
2.3.3. Satellite Based Estimates of Aerosol Direct Radiative Forcing	
2.3.4. Satellite Based Estimates of Anthropogenic Component of Aerosol Direct	
Radiative Forcing	
2.3.5. Aerosol-Cloud Interactions and Indirect Forcing	
2.4. Outstanding Issues	
2.5. Concluding Remarks	

3	55
Modeling the Effects of Aerosols on Climate Forcing	
3.1. Introduction	55
3.2. Modeling of Atmospheric Aerosols	
3.2.1. Estimates of Emissions	
3.2.2.Aerosol Mass Loading and Optical Depth	
3.3. Calculating Aerosol Direct Radiative Forcing	
3.4. Calculating Aerosol Indirect Forcing	
3.4.1.Aerosol Effects on Clouds	
3.4.2. Model Experiments	
3.4.3. Additional Aerosol Influences	
3.4.4. High Resolution Modeling	
3.5. Aerosol in the Climate Models	
3.5.1. Aerosol in the IPCC AR4 Climate Model Simulations	
3.5.2. Additional considerations	
3.6. Impacts of Aerosols on Climate Model Simulations	78
3.6. l. Surface Temperature Change	
3.6.2. Implications for Climate Model Simulations	
3.7. Outstanding Issues	
3.8 Conclusions	
4	85
The Way Forward	
4.1. Major Research Needs	85
4.2. Priorities	
4.2.1. Measurements	
4.2.2. Modeling	
4.2.3. Emissions	
4.3. Concluding Remarks	
Glossary and Acronyms	
•:•••• with the following the second control of the second contr	

References99

AUTHOR TEAM FOR THIS REPORT

Executive Summary Lorraine A. Remer, NASA GSFC; Mian Chin, NASA GSFC; Philip DeCola, NASA

HQ; Graham Feingold, NOAA ERSL; Rangasayi Halthore, NASA HQ/NRL; Ralph A. Kahn, NASA GSFC; Patricia K. Quinn, NOAA PMEL; David Rind, NASA GISS; Stephen E. Schwartz, DOE BNL; David G. Streets, DOE ANL; Hongbin Yu, NASA

GSFC/UMBC

Chapter 1 Lead Authors: Ralph A. Kahn, NASA GSFC; Hongbin Yu, NASA GSFC/UMBC

Contributing Authors: Stephen E. Schwartz, DOE BNL; Mian Chin, NASA GSFC; Graham Feingold, NOAA ESRL; Lorraine A. Remer, NASA GSFC; David Rind, NASA GISS; Rangasayi Halthore, NASA HQ/NRL; Philip DeCola, NASA HQ

Chapter 2 Lead Authors: Hongbin Yu, NASA GSFC/UMBC; Patricia K. Quinn, NOAA PMEL;

Graham Feingold, NOAA ESRL; Lorraine A. Remer, NASA GSFC; Ralph A. Kahn,

NASA GSFC

Contributing Authors: Mian Chin, NASA GSFC; Stephen E. Schwartz, DOE BNL

Chapter 3 Lead Authors: David Rind, NASA GISS; Mian Chin, NASA GSFC; Graham Fein-

gold, NOAA ESRL; David G. Streets, DOE ANL

Contributing Authors: Ralph A. Kahn, NASA GSFC; Stephen E. Schwartz, DOE

BNL; Hongbin Yu, NASA GSFC/UMBC

Chapter 4 David Rind, NASA GISS; Ralph A. Kahn, NASA GSFC; Mian Chin, NASA GSFC;

Stephen E. Schwartz, DOE BNL; Lorraine A. Remer, NASA GSFC; Graham Feingold, NOAA ESRL; Hongbin Yu, NASA GSFC/UMBC; Patricia K. Quinn, NOAA PMEL;

Rangasayi Halthore, NASA HQ/NRL

ACKNOWLEDGMENTS

First, the authors wish to acknowledge the late Yoram J. Kaufman both for his inspiration and contributions to aerosol-climate science throughout his career and for his early leadership of the activity that produced this document. His untimely passing left it to the remaining authors to complete this report. Yoram and his contributions to our community are greatly missed.

This Climate Change Science Program Synthesis and Assessment Product (CCSP SAP) 2.3 has been reviewed by a group of experts, the public, and Federal Agencies. The purpose of these independent reviews was to assure the quality of this product.

We wish to thank the following individuals for their expert review of this report: Sundar Christopher (University of Alabama Huntsville), Daniel Jacob (Harvard University), Steven Ghan (Pacific Northwest National Laboratory), John Ogren (NOAA Earth System Research Laboratory), and Susan Solomon (NOAA Earth System Research Laboratory).

We also wish to thank the following individuals/group for their public/federal agency review of this report: Joel D. Scheraga (EPA), Samuel P. Williamson (NOAA/OFCM), Alan Carlin, David L. Hagen, Douglas Hoyt, Forrest M. Mims III (Geronimo Creek observatory), John Pittman, Nathan Taylor (Texas A&M University), Werner Weber (Technische University Dortmund, Germany), and the NOAA Research Council.

The work by Bates et al. (2006), Penner et al. (2006), Yu et al. (2006), Textor et al. (2006), Kinne et al. (2006), Schulz et al. (2006), and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007) provided important groundwork for the material in Chapter 2 and Chapter 3.

RECOMMENDED CITATIONS

For the Report as a Whole:

CCSP 2009: *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA, 128 pp.

For the Executive Summary:

Remer, L. A., M. Chin, P. DeCola, G. Feingold, R. Halthore, R. A. Kahn, P. K. Quinn, D. Rind, S. E. Schwartz, D. Streets, and H. Yu, 2009: Executive Summary, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter I:

Kahn, R. A., H. Yu, S. E. Schwartz, M. Chin, G. Feingold, L. A. Remer, D. Rind, R. Halthore, and P. DeCola, 2009: Introduction, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter 2:

Yu, H., P. K. Quinn, G. Feingold, L. A. Remer, R. A. Kahn, M. Chin, and S. E. Schwartz, 2009: Remote Sensing and *In Situ* Measurements of Aerosol Properties, Burdens, and Radiative Forcing, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter 3:

Rind, D., M. Chin, G. Feingold, D. Streets, R. A. Kahn, S. E. Schwartz, and H. Yu, 2009: Modeling the Effects of Aerosols on Climate, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

For Chapter 4:

Rind, D., R. A. Kahn, M. Chin, S. E. Schwartz, L. A. Remer, G. Feingold, H. Yu, P. K. Quinn, and R. Halthore, 2009: The Way Forward, in *Atmospheric Aerosol Properties and Climate Impacts*, A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., USA.

Earth observed from space. Much of the information contained in this image came from the MODIS instrument on the NASA Terra satellite. This 2002 "Blue Marble" features land surfaces, clouds, topography, and city lights. Credit: NASA (image processed by Robert Simmon and Reto Stöckli).

The Way Forward

Authors: David Rind, NASA GISS; Ralph A. Kahn, NASA GSFC; Mian Chin, NASA GSFC; Stephen E. Schwartz, DOE BNL; Lorraine A. Remer, NASA GSFC; Graham Feingold, NOAA ESRL; Hongbin Yu, NASA GSFC/UMBC; Patricia K. Quinn, NOAA PMEL; Rangasayi Halthore, NASA HQ/NRL

4.1. Major Research Needs

This review has emphasized that despite the increase in understanding aerosol forcing of the climate system, many important uncertainties remain. By way of perspective, concerted effort has been directed toward this issue for only about the past 20 years. In view of the variety of aerosol types and emissions, uncertain microphysical properties, great temporal and spatial variability, and the added complexity of aerosol-cloud interactions, it is easy to understand why more work is required to define anthropogenic aerosol forcing with confidence comparable to that for other climate forcing agents.

When comparing surface temperature changes calculated by climate models with those observed, the IPCC AR4 noted "broad consistency" between the modeled and observed temperature record over the industrial period. However, understanding of the degree to which anthropogenic aerosols offset the better-established greenhouse gas forcing is still inadequate. This limits confidence in the predicted magnitude of climate response to future changes in greenhouse gases and aerosols.

This chapter briefly summarizes the major research needs that have been highlighted in previous chapters, recognizing that achieving them will not necessarily be easy or straightforward. Although some important accomplishments will likely be possible in the next decade, others may, realistically, take considerably

longer. Several important points should be kept in mind:

The uncertainty in assessing anthropogenic and aerosol impacts on climate must be much reduced from its current level to allow meaningful projections of future climate. Using statistical methods, IPCC AR4 concluded that the present-day globalaverage anthropogenic RF is 2.9 ± 0.3 W m-2 for long-lived greenhouse gases plus ozone, -1.3 (-2.2 to -0.5) W m-2 for aerosol direct plus aerosol-cloud-albedo, and +1.6 (0.6 to 2.4) W m⁻² for total anthropogenic forcing (Figure 1.3 in Chapter 1). As shown in Chapter 1, the current estimate of total anthropogenic RF yields the transient climate sensitivity range of 0.3 - 1.1°C/(W m-2). This translates to a possible surface temperature increase from 1.2°C to 4.4°C at the time of (equivalent) doubled CO₂ forcing, which will likely occur toward the latter part of this century. Such a range is too wide to meaningfully predict the climate response to increased greenhouse gases.

The large uncertainty in total anthropogenic forcing arises primarily from current uncertainty in the current understanding of aerosol RF, as illustrated in Figure 1.3. One objective should be to reduce the uncertainty in global average RF by anthropogenic aerosols over the industrial period to ± 0.3 W m⁻², equal to the current uncertainty in

The uncertainty in assessing anthropogenic aerosol impacts on climate must be much reduced from its current level to allow meaningful projections of future climate.

Evaluation of aerosol effects on climate must take into account high spatial and temporal variation of aerosol amounts and properties.

Understanding of the aerosol effects on the global water cycle requires much improvement. RF by anthropogenic greenhouse gases over this period. Then, taking the total anthropogenic forcing as the IPCC central value, 1.6 W m⁻², the range in transient climate sensitivity would be reduced to 0.37 – 0.54°C/(W m⁻²), and the corresponding increase in global mean surface temperature change at the time of doubled CO₂ forcing would be between 1.5°C and 2.2°C. This range is small enough to make more meaningful global predictions pertinent to planning for mitigation and adaptation.

- 2. Evaluation of aerosol effects on climate must take into account high spatial and temporal variation of aerosol amounts and properties. Determining the global mean aerosol TOA RF is necessary but far from sufficient, because of the large spatial and temporal variation of aerosol distributions and composition that is in contrast to the much more uniformly distributed longer-lived greenhouse gases such as CO₂ and methane. Therefore, aerosol RF at local to regional scales can be much stronger than its global average.
- 3. Understanding of the aerosol effects on global water cycle requires much improvement. Besides the radiative forcing, aerosols have other important climate effects. Their heating the atmosphere and cooling the surface affect atmospheric circulations and water cycle. The level of scientific understanding of these effects is much lower than that for aerosol direct RF; concerted research effort is required to move forward.

The approach taken for assessing aerosol forcing of the climate system includes both measurement and modeling components. As discussed in Chapters 2 and 3, improved observations, with some assistance from models, are already helping produce measurement-based estimates of the current aerosol direct effect on climate. Global models are now converging on key parameters such as AOD, and thanks to satellite and other atmospheric measurements, are moving toward better assessments of present-day aerosol RF. However, given the relatively short history of satellite observations and the nature of future climate prediction, the assessment of anthropogenic aerosol climate

impact for past and future times will inevitably depend on models. Models are also required to apportion observed aerosols between natural and anthropogenic sources. Therefore, improving model predictions of aerosol climate forcing is the key to progress. To do so, it is essential to advance the current measurement capabilities that will allow much better validation of the models and fundamental improvement of model components.

The accuracy of regional to global-scale AOD measured by satellites is currently poorer than needed to substantially reduce uncertainty in direct radiative forcing by aerosols, but the required capability is within reach, based on the accuracy of current local surface-based measurement techniques. Problems remain in converting total aerosol forcing to forcing by anthropogenic aerosols. The accuracy of aerosol vertical distributions as measured by Lidar from space is approaching that required to be useful for evaluating chemical transport models, and is within reach of that required to reduce uncertainties in aerosol direct radiative forcing.

Measurement accuracy for remotely sensed aerosol optical and physical properties (e.g., SSA, g, size) is poorer than needed to significantly reduce uncertainty in aerosol direct radiative forcing and to effect satisfactory translation between AOD retrieved from radiation-based remote-sensing measurements and AOD calculated from CTMs based on aerosol mass concentrations (the fundamental quantities tracked in the model) and optical properties. Combinations of remote-sensing and targeted *in situ* measurement with modeling are required for near-term progress in this area.

Measurements for aerosol indirect effect remain a major challenge. Sensitivity of remotesensing measurement to particle size, composition, concentration, vertical distribution, and horizontal distribution in the vicinity of clouds is poor. Combinations of detailed *in situ* and laboratory measurements and cloud-resolved modeling, along with spatial extrapolation using remote-sensing measurements and larger-scale modeling, are required for near-term progress in this area.

The next sections address the priorities and recommend approach to moving forward.

4.2. Priorities

4.2.I. MEASUREMENTS

Maintain current and enhance the future satellite aerosol monitoring capabilities. Satellites have been providing global aerosol observations since the late 1970s, with much improved accuracy measurements since late 1990s, but some of them, such as the NASA EOS satellites (Terra, Aqua, Aura), are reaching or exceeding their design lives. Timely follow-on missions to at least maintain these capabilities are important. Assessment of aerosol climate impacts requires a long-term data record having consistent accuracy and high quality, suitable for detecting changes in aerosol amount and type over decadal time scales. Future satellite sensors should have the capability of ac-

quiring information on aerosol size distribution, absorption, vertical distribution, and type with sufficiently high accuracy and adequate spatial coverage and resolution to permit quantification of forcing to required accuracy. The separation of anthropogenic from natural aerosols, perhaps based on size and shape, is essential for assessing human impacts. A brief summary of current capabilities and future needs of major aerosol measurement requirements from space is provided in Table 4.1. (More detailed discussion is in Chapter 2.)

Maintain, enhance, and expand the surface observation networks. Long-term surface-based networks such as the NASA AERONET network, the NOAA ESRL and the DOE ARM sites have for more than a decade been providing essential information on aerosol properties

Table 4.1. Summary of current status and future needs of major aerosol measurements from space for characterization of tropospheric aerosol and determination of aerosol climate forcing.

Satellite instrument	Time Period	AOD	Size or Shape ¹	Absorption ²	Vertical Profile	Global Coverage
Historic / Current			•		•	
AVHRR	Since 1981	V	√			Ocean only
TOMS	1979-2001	√		V		√
POLDER	Since 1997	V	√			√
MODIS	Since 2000	√	√			√
MISR	Since 2000	√	√	√		V
OMI	Since 2004	V		√		V
GLAS	Since 2003 ³		√		√	
CALIOP	Since 2006		√		√	
Scheduled to Launch						
VIIRS (on NPP/NPOESS)	2009-	V				V
OMPS (on NPP)	2009-	V		√		V
APS (on Glory)	2009-	V	√	√		
HSRL (on EarthCARE)	2013-				√	

Future Needs

Next generation instruments (polarimeter, lidar, etc.) with much improved detection accuracy and coverage for AOD and absorption, enhanced capability for measuring vertical profiles, aerosol types and properties, augmented capacity with measurements of aerosol, clouds, and precipitation.

¹ Size is inferred from the spectral variation of AOD, expressed as the Ångström exponent.

² Determination of absorption from MISR is conditional and not always available.

³ Aerosol detection by GLAS is limited to only a few months each year because of laser power problems.

that is vital for satellite validation, model evaluation, and climate change assessment from trend analysis. Observation should be enhanced with additional, routine measurements of size-resolved composition, more lidar profiling of vertical features, and improved measurements of aerosol absorption with state-of-art techniques. This, along with climate-quality data records constructed from satellites, would help establish connections between aerosol trends and the observed trends in radiation (e.g., dimming or brightening).

Execute a continuing series of coordinated field campaigns. These would aim to: (1) broaden the database of detailed particle optical, physical, and chemical (including cloudnucleating) properties for major aerosol types, (2) refine and validate satellite and surfacebased remote-sensing retrieval algorithms, (3) make comprehensive, coordinated, multi-platform measurements characterizing aerosols, radiation fields, cloud properties and related aerosol-cloud interactions, to serve as testbeds for modeling experiments at several scales, and (4) deepen the links between the aerosol (and cloud) measuring and modeling communities. New and improved instrument capabilities will be needed to provide more accurate measurements of aerosol absorption and scattering properties across the solar spectrum.

Initiate and carry out a systematic program of simultaneous measurement of aerosol, clouds, and precipitation variables. Measurements of aerosol properties must go hand in hand with measurements of cloud properties, and also with measurements of precipitation and meteorological variables, whether this will be from aircraft, ground-based remote sensing or satellite. Assessing aerosol effects on climate has focused on the interactions of aerosol with Earth's radiation balance (i.e., radiative forcing), but in the near future, focus will shift to include aerosol effects on precipitation patterns, atmospheric circulation, and weather.

Fully exploit the existing information in satellite observations of AOD and particle type. An immense amount of data has been collected. Table 4.1 lists the most widely used aerosol property data sets retrieved from satellite sensors. A synthesis of data from multiple sensors would in many cases be a more effec-

tive resource for aerosol characterizing than data from individual sensors alone. However, techniques for achieving such synthesis are still in their infancy, and multi-sensor products have only begun to be developed. The full information content of existing data, even with individual sensors, has not been realized. There is a need to: (1) refine retrieval algorithms and extract greater information about aerosols from the joint data sets, (2) quantify data quality, (3) generate uniform (and as appropriate, merged), climate-quality data records. These must be applied to: (4) initialize, constrain, and validate models, (5) conduct detailed process studies, and (6) perform statistical trend analysis.

Measure the formation, evolution, and properties of aerosols under controlled laboratory conditions. Laboratory studies are essential to determine chemical transformation rates for aerosol particle formation. They can also provide information, in a controlled environment, for particle hygroscopic growth, light scattering and absorption properties, and particle activation for aerosols of specific, known composition. Such measurements will allow development of suitable mixing rules and evaluation of the parameterizations that rely on such mixing rules.

Improve measurement-based techniques for distinguishing anthropogenic from natural aerosols. Current satellite-based estimates of anthropogenic aerosol fraction rely on retrievals of aerosol type. These estimates suffer from limited information content of the data under many circumstances. More needs to be done to combine satellite aerosol type and vertical distribution retrievals with supporting information from: (1) back-trajectory and inverse modeling, (2) at least qualitative time-series of plume evolution from geosynchronous satellite imaging, and (3) surface monitoring and particularly targeted aircraft in situ measurements. Different definitions of "anthropogenic" aerosols will require reconciliation. The anthropogenic fraction of today's aerosol, estimated from current measurements, will not produce the same aerosol radiative forcing defined as the perturbation of the total aerosol from pre-industrial times. Consistently defined perturbation states are required before measurement-based and modelbased aerosol radiative forcing estimates can be meaningfully compared.

4.2.2. MODELING

Improve the accuracy and capability of model simulation of aerosols (including components and atmospheric processes) and aerosol direct radiative forcing. Spatial and temporal distributions of aerosol mass concentrations are affected primarily by sources, removal mechanisms, atmospheric transport, and chemical transformations; calculations of aerosol direct RF require additional information about aerosol optical properties. Coordinated studies are needed to understand the importance of individual processes, especially vertical mixing and removal by convection/ precipitation. Observational strategies must be developed to constrain and validate the key parameters describing: (a) aerosol composition, (b) mass concentration, (c) vertical distribution, (d) size distribution, (e) hygroscopic growth, (f) aerosol absorption, (g) asymmetry parameter and (h) aerosol optical depth. As many models now include major aerosol types such as sulfate, BC, primary POM, dust, and sea salt, progress is needed on simulating nitrate and secondary organic aerosols. In addition, aerosol microphysical processes should be much better represented in the models. In practice, improving the capability of aerosol composition modeling will require improved remote sensing and in situ observations to discriminate among aerosol components. Improvement in modeling radiative forcing could be aided by data assimilation methods, in which the observed aerosol distributions that are input to the model, and the modeled shortterm response, could be compared directly with RF observations.

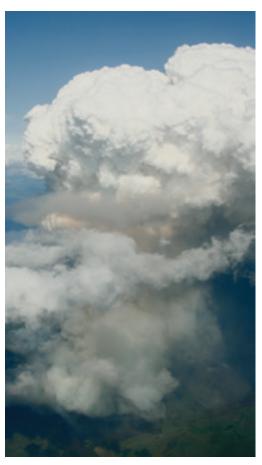
Advance the ability to model aerosol-cloud-precipitation interaction in climate models, particularly the simulation of clouds. The interaction between aerosols and clouds is probably the biggest uncertainty of all climate forcing/feedback processes. The processes involved are complex, and accurate simulation will require sub-grid calculations or improved aerosol and cloud parameterizations on global-model scales. Among the key elements required are: (a) cloud nucleating properties for different aerosol types and size distributions, (b) CCN concentrations as functions of supersaturation and any kinetic influences, (c) algorithms to simulate aerosol influences on

cloud brightness, that include cloud fraction, cloud liquid water content, and precipitation efficiency, and (d) cloud drop concentration for known (measured) updraft, humidity, and temperature conditions. Improved aerosol-cloud interaction modeling must be built upon more realistic simulation of clouds and cloud process in GCMs. Cloud-resolving models offer one approach to tackling these questions, aided by the continual improvement in computing capability that makes possible simulations at the higher resolutions appropriate to these processes. Realizing the latter approach, however, may be a long-term goal.

Incorporate improved representation of aerosol precesses in coupled aerosol-climate system models to assess the climate change. Coupling aerosol processes in the GCMs would represent a major step in climate simulation beyond the IPCC AR4. This would enable aerosols to interact with the meteorological variables such as clouds and precipitation. Climate change simulations need to be run for hundreds of years with coupled atmosphere-ocean models. Inclusion of aerosol physics and chemistry, and increasing the model resolution, will put large demands on computing power and resources. Some simplification may be necessary, especially considering that other required model improvements, such as finer resolution and carbon cycle models, also increase computing time. The near-term step is to include simple representations of aerosols directly in climate models, incorporating the major aerosol types, basic chemistry, and parameterized cloud droplet activation schemes. Such models exist today, and are ready to be applied to longterm simulations, making it possible to calculate first-order aerosol climate feedbacks. The next generation of models will include aerosol processes that allow for more realistic interactions, such as aerosol and cloud microphysical processes; however, the complexity included should be commensurate with that for other relevant components of the simulation, such as clouds and convection. Fully coupled aerosolchemistry-physics-climate models will likely be a model-development focus for at least the next decade. This should eventually lead to increasingly sophisticated model simulations of aerosol effects on climate, and better assessments of climate sensitivity.

Narrowing the gap between the current understanding of the contribution of anthropogenic aerosols to radiative forcing and that of the long lived greenhouse gases will require progress in all aspects of aerosolclimate science.

Greater synergy among different types of measurements, different types of models, and especially between measurements and models, is critical.


4.2.3. EMISSIONS

Develop and evaluate emissions inventories of aerosol particles and precursor gases. A systematic determination of emissions of primary particles and of aerosol precursor gases is needed as input to modeling the geographical and temporal distribution of the amount and radiative forcing of aerosols. The required description of emissions includes the location, timing, activity, and amount. For particles, the emissions should be characterized by size distributed composition, not simply by mass emissions, because of the effects these properties have on direct and indirect forcings. Natural emissions from biogenic and volcanic sources should be systematically assessed. Satellite fire data are now being used to help constrain biomass-burning emissions, which include new information on aerosol injection height. Dust emission from human activities, such as from farming practices and land-use changes, likewise needs to be quantified. Characterization of aerosol trends and radiative forcing also requires historical emission data. For assessing anthropogenic impacts on future climate, projections of future anthropogenic fuel use and changes in wildfire, desert dust, biogenic, and other sources are needed, and methods used to obtain them carefully evaluated and possibly refined. Some such efforts are being pursued in conjunction with the IPCC.

4.3. Concluding Remarks

Narrowing the gap between the current understanding of the contribution of anthropogenic aerosols to radiative forcing and that of the long lived greenhouse gases will require progress in all aspects of aerosol-climate science. Development of new space-based, field, and laboratory instruments will be needed, and in parallel, more realistic simulations of aerosol, cloud, and atmospheric processes must be incorporated into models. Most importantly, greater synergy among different types of measurements, different types of models, and especially between measurements and models,

is critical. Aerosol-climate science must expand to encompass not only radiative effects on climate, but also aerosol effects on cloud processes, precipitation, and weather. New initiatives will strive to more effectively include experimentalists, remote sensing scientists and modelers as equal partners, and the traditionally defined communities of aerosol scientists, cloud scientists, radiation scientists increasingly will find common ground in addressing the challenges ahead.

Intense heat generated by the wildfires below causes smoke to rise in violent updrafts; updrafts and water vapor emanating from the fires also combine to produce towering pyrocumulus clouds. Photo taken from the NASA P-3B aircraft during the ARCTAS field experiment in July 2008 over Canada. Credit: Cameron McNaughton, University of Hawaii.

GLOSSARY

(Note: Terms in *italic* in each paragraph are defined elsewhere in this glossary.)

Absorption

the process in which incident radiant energy is retained by a substance.

Absorption coefficient

fraction of incident radiant energy removed by *absorption* per length of travel of radiation through the substance.

Active remote sensing

a remote sensing system that transmits its own energy source, then measures the properties of the returned signal. Contrasted with *passive remote sensing*.

Adiabatic equilibrium

a vertical distribution of temperature and pressure in an atmosphere in hydrostatic equilibrium such that an air parcel displaced adiabatically will continue to possess the same temperature and pressure as its surroundings, so that no restoring force acts on a parcel displaced vertically.

Aerosol

a colloidal suspension of liquid or solid particles (in air).

Aerosol asymmetry factor (also called asymmetry parameter, g)

the mean cosine of the scattering angle, found by integration over the complete scattering *phase function* of aerosol; g=1 denotes completely forward scattering and g=0 denotes symmetric scattering. For spherical particles, the asymmetry parameter is related to particle size in a systematic way: the larger the particle size, the more the scattering in the forward hemisphere.

Aerosol direct radiative effect

change in radiative flux due to aerosol scattering and absorption with the presence of aerosol relative to the absence of aerosol.

Aerosol hemispheric backscatter fraction (b)

the fraction of the scattered intensity that is redirected into the backward hemisphere relative to the incident light; can be determined from measurements made with an integrating nephelometer. The larger the particle size, the smaller the b.

Aerosol indirect effects

processes referring to the influence of aerosol on cloud droplet concentration or radiative properties. Effects include the effect of aerosols on cloud droplet size and therefore its brightness (also known as the "cloud albedo effect", "first aerosol indirect effect", or "Twomey effect"); and the effect of cloud droplet size on precipitation efficiency and possibly cloud lifetime (also known as the "second aerosol indirect effect" or "Albrecht effect").

Aerosol mass extinction (scattering, absorption) efficiency

the aerosol extinction (scattering, absorption) coefficient per aerosol mass concentration, with a commonly used unit of m^2 g^{-1} .

Aerosol optical depth

the (wavelength dependent) negative logarithm of the fraction of radiation (or light) that is extinguished (or scattered or absorbed) by aerosol particles on a vertical path, typically from the surface (or some specified altitude) to the top of the atmosphere. Alternatively and equivalently: The (dimensionless) line integral of the absorption coefficient (due to aerosol particles), or of the scattering coefficient (due to aerosol particles), or of the sum of the two (extinction coefficient due to aerosol particles), along such a vertical path. Indicative of the amount of aerosol in the column, and specifically relates to the magnitude of interaction between the aerosols and shortwave or longwave radiation.

Aerosol phase function

the angular distribution of radiation scattered by aerosol particle or by particles comprising an *aerosol*. In practice, the phase function is parameterized with *asymmetry factor* (or *asymmetry parameter*). Aerosol phase function is related to *aerosol hemispheric backscatter fraction* (b) and aerosol particle size: the larger the particle size, the more the forward *scattering* (i.e. larger g and smaller b).

Aerosol radiative forcing

the net energy flux (downwelling minus upwelling) difference between an initial and a perturbed aerosol loading state, at a specified level in the atmosphere. (Other quantities, such as solar radiation, are assumed to be the same.) This difference is defined such that a negative aerosol forcing implies that the change in aerosols relative to the initial state exerts a cooling in-

fluence, whereas a positive forcing would mean the change in aerosols exerts a warming influence. The aerosol radiative forcing must be qualified by specifying the initial and perturbed aerosol states for which the radiative flux difference is calculated, the altitude at which the quantity is assessed, the wavelength regime considered, the temporal averaging, the cloud conditions, and whether total or only human-induced contributions are considered (see Chapter 1, Section 1.2).

Aerosol radiative forcing efficiency

aerosol direct radiative forcing per aerosol optical depth (usually at 550 nm). It is governed mainly by aerosol size distribution and chemical composition (determining the aerosol single-scattering albedo and phase function), surface reflectivity, and solar irradiance.

Aerosol semi-direct effect

the processes by which *aerosols* change the local temperature and moisture (e.g., by direct radiative heating and changing the heat releases from surface) and thus the local relative humidity, which leads to changes in cloud liquid water and perhaps cloud cover.

Aerosol single-scattering albedo (SSA)

a ratio of the *scattering coefficient* to the *extinction coefficient* of an aerosol particle or of the particulate matter of an aerosol. More absorbing aerosols and smaller particles have lower SSA.

Aerosol size distribution

probability distribution function of the number concentration, surface area, or volume of the particles comprising an aerosol, per interval (or logarithmic interval) of radius, diameter, or volume.

Albedo

the ratio of reflected flux density to incident flux density, referenced to some surface; might be Earth surface, top of the atmosphere.

Angström exponent (Å)

exponent that expresses the spectral dependence of *aerosol* optical depth (τ) (or scattering coefficient, absorption coefficient, etc.) with the wavelength of light (λ) as inverse power law: $\tau \propto \lambda^{-\hat{A}}$. The Ångström exponent is inversely related to the average size of aerosol particles: the smaller the particles, the larger the exponent.

Anisotropic

not having the same properties in all directions.

Atmospheric boundary layer (abbreviated ABL; also called planetary boundary layer—PBL)

the bottom layer of the troposphere that is in contact with the surface of the earth. It is often turbulent and is capped by a statically stable layer of air or temperature inversion. The ABL depth (i.e., the inversion height) is variable in time and space, ranging from tens of meters in strongly statically stable situations, to several kilometers in convective conditions over deserts.

Bidirectional reflectance distribution function (BRDF)

a relationship describing the reflected radiance from a given region as a function of both incident and viewing directions. It is equal to the reflected *radiance* divided by the incident *irradiance* from a single direction.

Clear-sky radiative forcing

radiative forcing (of gases or aerosols) in the absence of clouds. Distinguished from total-sky or all-sky radiative forcing, which include both cloud-free and cloudy regions.

Climate sensitivity

the change in global mean near-surface temperature per unit of *radiative forcing*; when unqualified typically refers to equilibrium sensitivity; transient sensitivity denotes time dependent change in response to a specified temporal profile.

Cloud albedo

the fraction of solar radiation incident at the top of cloud that is reflected by clouds in the atmosphere or some subset of the atmosphere.

Cloud condensation nuclei (abbreviated CCN)

aerosol particles that can serve as seed particles of atmospheric cloud droplets, that is, particles on which water condenses (activates) at *supersaturations* typical of atmospheric cloud formation (fraction of one percent to a few percent, depending on cloud type); may be specified as function of supersaturation.

Cloud resolving model

a numerical model that resolves cloud-scale (and mesoscale) circulations in three (or sometimes two) spatial dimensions. Usually run with horizontal resolution of 5 km or less.

Coalescence

the merging of two or more droplets of precipitation (or aerosol particles; also denoted coagulation) into a single droplet or particle.

Condensation

in general, the physical process (phase transition) by which a vapor becomes a liquid or solid; the opposite of *evaporation*.

Condensation nucleus (abbreviated CN)

an aerosol particle forming a center for *condensation* under extremely high *supersaturations* (up to 400% for water, but below that required to activate small ions).

Data assimilation

the combining of diverse data, possibly sampled at different times and intervals and different locations, into a unified and physically consistent description of a physical system, such as the state of the atmosphere.

Diffuse radiation

radiation that comes from some continuous range of directions. This includes radiation that has been scattered at least once, and emission from nonpoint sources.

Dry deposition

the process by which atmospheric gases and particles are transferred to the surface as a result of random turbulent air, impaction, and /or gravitational settling.

Earth Observing System (abbreviated EOS)

a major NASA initiative to develop and deploy state-of-theart *remote sensing* instruments for global studies of the land surface, biosphere, solid earth, atmosphere, oceans, and cryosphere. The first EOS satellite, Terra, was launched in December 1999. Other EOS satellites include Aqua, Aura, ICESat, among others.

Emission of radiation

the generation and sending out of radiant energy. The emission of radiation by natural emitters is accompanied by a loss of energy and is considered separately from the processes of *absorption* or *scattering*.

Emission of gases or particles

the introduction of gaseous or particulate matter into the atmosphere by natural or human activities, e.g., bubble bursting of *whitecaps*, agriculture or wild fires, volcanic eruptions, and industrial processes.

Equilibrium vapor pressure

the pressure of a vapor in equilibrium with its condensed phase (liquid or solid).

Evaporation (also called vaporization)

physical process (phase transition) by which a liquid is transformed to the gaseous state; the opposite of *condensation*.

External mixture (referring to an *aerosol*; contrasted with *internal mixture*)

an aerosol in which different particles (or in some usages, different particles in the same size range) exhibit different compositions.

Extinction (sometimes called attenuation)

the process of removal of radiant energy from an incident beam by the processes of *absorption* and/or *scattering* and consisting of the totality of this removal.

Extinction coefficient

fraction of incident radiant energy removed by extinction per length of travel of radiation through the substance.

General circulation model (abbreviated GCM)

a time-dependent numerical model of the entire global atmosphere or ocean or both. The acronym GCM is often applied to Global Climate Model.

Geostationary satellite

a satellite to be placed into a circular orbit in a plane aligned with Earth's equator, and at an altitude of approximately 36,000 km such that the orbital period of the satellite is exactly equal to Earth's period of rotation (approximately 24 hours). The satellite appears stationary with respect to a fixed point on the rotating Earth.

Hygroscopicity

the relative ability of a substance (as an *aerosol*) to adsorb water vapor from its surroundings and ultimately dissolve. Frequently reported as ratio of some property of particle or of particulate phase of an aerosol (e.g., diameter, mean diameter) as function of *relative humidity* to that at low relative humidity.

Ice nucleus (abbreviated IN)

any particle that serves as a nucleus leading to the formation of ice crystals without regard to the particular physical processes involved in the nucleation.

In situ

a method of obtaining information about properties of an object (e.g., *aerosol*, cloud) through direct contact with that object, as opposed to *remote sensing*.

Internal mixture (referring to an *aerosol*; contrasted with external mixture)

an aerosol consisting of a mixture of two or more substances, for which all particles exhibit the same composition (or in some usage, the requirement of identical composition is limited to all particles in a given size range). Typically an internal mixture has a higher *absorption coefficient* than an external mixture.

Irradiance (also called radiant flux density)

a radiometric term for the rate at which radiant energy in a radiation field is transferred across a unit area of a surface (real or imaginary) in a hemisphere of directions. In general, irradiance depends on the orientation of the surface. The radiant energy may be confined to a narrow range of frequencies (spectral or monochromatic irradiance) or integrated over a broad range of frequencies.

Large eddy simulation (LES)

A three dimensional numerical simulation of turbulent flow in which large eddies (with scales on the order of hundreds of meters) are resolved and the effects of the subgrid-scale eddies are parameterized. The typical model grid-size is < 100 m and modeling domains are on the order of 10 km. Because they resolve cloud-scale dynamics, large eddy simulations are powerful tools for studying the effects of aerosol on cloud microphysics and dynamics.

Lidar (light detection and ranging)

a technique for detecting and characterizing objects by transmitting pulses of laser light and analyzing the portion of the signal that is reflected and returned to the sensor.

Liquid water path

line integral of the mass concentration of the liquid water droplets in the atmosphere along a specified path, typically along the path above a point on the Earth surface to the top of the atmosphere.

Longwave radiation (also known as terrestrial radiation or thermal infrared radiation)

electromagnetic radiation at wavelengths greater than 4 µm, typically for temperatures characteristic of Earth's surface or atmosphere. In practice, radiation originating by *emission* from Earth and its atmosphere, including clouds; contrasted with *shortwave radiation*.

Low Earth orbit (LEO)

an orbit (of satellite) typically between 300 and 2000 kilometers above Earth.

Mass spectrometer

instrument that fragments and ionizes a chemical substance or mixture by and characterizes composition by amounts of ions as function of molecular weight.

Nucleation

the process of initiation of a new phase in a supercooled (for liquid) or supersaturated (for solution or vapor) environment; the initiation of a phase change of a substance to a lower thermodynamic energy state (vapor to liquid condensation, vapor to solid deposition, liquid to solid freezing).

Optical depth

the *optical thickness* measured vertically above some given altitude. Optical depth is dimensionless and may be applied to Rayleigh scattering optical depth, aerosol *extinction* (or *scattering*, or *absorption*) *optical depth*.

Optical thickness

line integral of *extinction* (or *scattering* or *absorption*) *coefficient* along a path. Dimensionless.

Passive remote sensing

a remote sensing system that relies on the emission (transmission) of natural levels of radiation from (through) the target. Contrasted with *active remote sensing*.

Phase function

probability distribution function of the angular distribution of the intensity of radiation scattered (by a molecule, gas, particle or aerosol) relative to the direction of the incident beam. See also *Aerosol phase function*.

Polarization

a state in which rays of light exhibit different properties in different directions as measured azimuthially about the direction of propagation of the radiation, especially the state in which all the electromagnetic vibration takes place in a single plane (plane polarization).

Polarimeter

instrument that measures the polarization of incoming light often used in the characterization of light scattered by atmospheric aerosols.

Primary trace atmospheric gases or particles

substances which are directly emitted into the atmosphere from Earth surface, vegetation or natural or human activity, e.g., bubble bursting of *whitecaps*, fires, and industrial processes; contrasted with *secondary* substances.

Radar (radio detection and ranging)

similar to lidar, but using radiation in microwave range.

Radiance

a radiometric term for the rate at which radiant energy in a set of directions confined to a small unit solid angle around a particular direction is transferred across unit area of a surface (real or imaginary) projected onto this direction, per unit solid angle of incident direction.

Radiative forcing

the net energy flux (downwelling minus upwelling) difference between an initial and a perturbed state of atmospheric constituents, such as carbon dioxide or aerosols, at a specified level in the atmosphere; applies also to perturbation in reflected radiation at Earth's surface due to change in albedo. See also *Aerosol radiative forcing*.

Radiative heating

the process by which temperature of an object (or volume of space that encompasses a gas or aerosol) increases in response to an excess of absorbed radiation over emitted radiation.

Radiometer

instrument that measures the intensity of radiant energy radiated by an object at a given wavelength; may or may not resolve by wavelength.

Refractive index (of a medium)

the real part is a measure for how much the speed of light (or other waves such as sound waves) is reduced inside the medium relative to speed of light in vacuum, and the imaginary part is a measure of the amount of *absorption* when the electromagnetic wave propagates through the medium.

Relative humidity

the ratio of the vapor pressure of water to its saturation vapor pressure at the same temperature.

Remote sensing: a method of obtaining information about properties of an object (e.g., aerosol, cloud) without coming into physical contact with that object; opposed to *in situ*.

Saturation

the condition in which the vapor pressure (of a liquid substance; for atmospheric application, water) is equal to the *equilibrium vapor pressure* of the substance over a plane surface of the pure liquid substance, sometimes similarly for ice; similarly for a solute in contact with a solution.

Scattering

in a broad sense, the process by which matter is excited to radiate by an external source of electromagnetic radiation. By this definition, reflection, refraction, and even diffraction of electromagnetic waves are subsumed under scattering. Often the term scattered radiation is applied to that radiation observed in directions other than that of the source and may also be applied to acoustic and other waves.

Scattering coefficient

fraction of incident radiant energy removed by *scattering* per length of travel of radiation through the substance.

Secondary trace atmospheric gases or particles

formed in the atmosphere by chemical reaction, new particle formation, etc.; contrasted with *primary* substances, which are directly emitted into the atmosphere.

Secondary organic aerosols (SOA)

organic *aerosol* particles formed in the atmosphere by chemical reactions from gas-phase precursors.

Shortwave radiation

radiation in the visible and near-visible portions of the electromagnetic spectrum (roughly 0.3 to $4.0~\mu m$ in wavelength) which range encompasses the great majority of solar radiation and little longwave (terrestrial thermal) radiation; contrasted with *longwave* (terrestrial) radiation.

Single scattering albedo (SSA)

the ratio of light scattering to total light extinction (sum of *scattering* and *absorption*); for *aerosols*, generally restricted to scattering and extinction by the aerosol particles. More absorbing aerosols have lower SSA; a value of unity indicates that the particles are not absorbing.

Solar zenith angle

angle between the vector of Sun and the zenith.

Spectrometer

instrument that measures light received in terms of the intensity at constituent wavelengths, used for example to determine chemical makeup, temperature profiles, and other properties of atmosphere. See also *Mass spectrometer*.

Stratosphere

the region of the atmosphere extending from the top of the *troposphere*, at heights of roughly 10-17 km, to the base of the mesosphere, at a height of roughly 50 km.

Sunglint

a phenomenon that occurs when the sun reflects off the surface of the ocean at the same angle that a satellite sensor is viewing the surface.

Supersaturation

the condition existing in a given portion of the atmosphere (or other space) when the *relative humidity* is greater than 100%, that is, when it contains more water vapor than is needed to produce *saturation* with respect to a plane surface of pure water or pure ice.

Surface albedo

the ratio, often expressed as a percentage, of the amount of electromagnetic radiation reflected by Earth's surface to the amount incident upon it. In general, surface albedo depends on wavelength and the directionality of the incident radiation; hence whether incident radiation is direct or diffuse, cf., bidirectional reflectance distribution function (BRDF). Value varies with wavelength and with the surface composition. For example, the surface albedo of snow and ice vary from 80% to 90% in the mid-visible, and that of bare ground from 10% to 20%.

Troposphere

the portion of the atmosphere from the earth's surface to the tropopause; that is, the lowest 10-20 kilometers of the atmosphere, depending on latitude and season; most weather occurs in troposphere.

Transient climate response

The time-dependent surface temperature response to a gradually evolving forcing.

Wet scavenging or wet deposition

removal of trace substances from the air by either rain or snow. May refer to in-cloud scavenging, uptake of trace substances into cloud water followed by precipitation, or to below-cloud scavenging, uptake of material below cloud by falling precipitation and subsequent delivery to Earth's surface.

Whitecap

a patch of white water formed at the crest of a wave as it breaks, due to air being mixed into the water.

Major reference: *Glossary of Meteorology*, 2nd edition, American Meteorological Society.

ACRONYMS

\boldsymbol{A}	Surface albedo (broadband)
\mathring{A}	Ångström exponent

ABC Asian Brown Cloud

ACE Aerosol Characterization Experiment

AD-Net Asian Dust Network

ADEOS Advanced Earth Observation Satellite

ADM Angular Dependence Models

AeroCom Aerosol Comparisons between Observa-

tions and Models

AERONET Aerosol Robotic Network

AI Aerosol Index

AIOP Aerosol Intensive Operative Period ANL Argonne National Laboratory (DOE)

AOD (τ)Aerosol Optical DepthAOTAerosol Optical ThicknessAPSAerosol Polarimetry SensorAR4Forth Assessment Report, IPCC

ARCTAS Arctic Research of the Composition of the Troposphere from Aircraft and Satellites

ARM Atmospheric Radiation Measurements
AVHRR Advanced Very High Resolution

Radiometer

A-Train Constellation of six afternoon overpass

satellites

BASE-A Biomass Burning Airborne and Space-

borne Experiment Amazon and Brazil

BC Black Carbon

BNL Brookhaven National Laboratory (DOE)
BRDF Bidirectional Reflectance Distribution

Function

CALIOP Cloud and Aerosol Lidar with Orthogonal

Polarization

CALIPSO Cloud Aerosol Infrared Pathfinder Satellite

Observations

CAPMoN Canadian Air and Precipitation Monitoring

Network

CCN Cloud Condensation Nuclei

CCRI Climate Change Research Initiative
CCSP Climate Change Science, Program
CDNC Cloud Droplet Number Concentration
CERES Clouds and the Earth's Radiant Energy

System

CLAMS Chesapeake Lighthouse and Aircraft

Measurements for Satellite campaign

CTM Chemistry and Transport Model

DABEX Dust And Biomass-burning Experiment

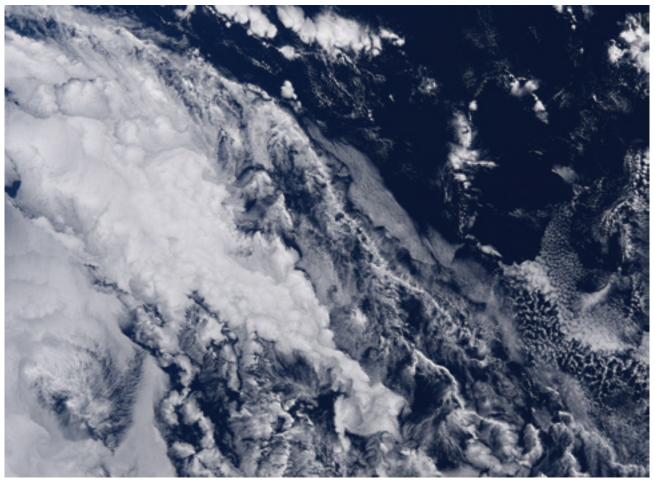
DOE Department of Energy

DRF Direct Radiative Forcing (aerosol)EANET Acid Deposition Monitoring Network in

East Asia

EARLINET European Aerosol Research Lidar Network **Earth CARE** Earth Clouds, Aerosols, and Radiation

Explorer



Atmospheric Aerosol Properties and Climate Impacts

EAST-AIRE	East Asian Studies of Tropospheric	LMDZ	Laboratoire de Météorologie Dynamique
	Aerosols: An International Regional		with Zoom, France
FLORES	Experiment	LOA	Laboratoire d' Optique Atmosphérique,
EMEP	European Monitoring and Evaluation	LOCH	France
EOG	Programme	LOSU	Level of Scientific Understanding
EOS EP	Earth Observing System Earth Pathfinder	LSCE	Laboratoire des Sciences du Climat et de
EPA	Environmental Protection Agency	LWC	l'Environnement, France Liquid Water Content
ERBE	Earth Radiation Budget Experiment	LWP	Liquid Water Path
ESRL	Earth System Research Laboratory	MAN	Maritime Aerosol Network
ESKE	(NOAA)	MEE	Mass Extinction Efficiency
E au	Aerosol Forcing Efficiency (RF	MILAGRO	Megacity Initiative: Local and Global
	normalized by AOD)		Research Observations
FAR	IPCC First Assessment Report (1990)	MFRSR	Multifilter Rotating Shadowband
FT	Free Troposphere		Radiometer
g	Particle scattering asymmetry factor	MINOS	Mediterranean Intensive Oxidant Study
GAW	Global Atmospheric Watch	MISR	Multi-angle Imaging SpectroRadiometer
GCM	General Circulation Model, Global Climate	MODIS	Moderate Resolution Imaging Spectro-
	Model		radiometer
GEOS	Goddard Earth Observing System	MOZART	Model for Ozone and Related chemical
GFDL	Geophysical Fluid Dynamics Laboratory		Tracers
	(NOAA)	MPLNET	Micro Pulse Lidar Network
GHGs	Greenhouse Gases	NASA	National Aeronautics and Space
GISS	Goddard Institute for Space Studies		Administration
	(NASA)	NASDA	NAtional Space Development Agency,
GLAS	Geoscience Laser Altimeter System		Japan
GMI	Global Modeling Initiative	NEAQS	New England Air Quality Study
GOCART	Goddard Chemistry Aerosol Radiation and Transport (model)	NOAA	National Oceanography and Atmosphere Administration
GOES	Geostationary Operational Environmental	NPOESS	National Polar-orbiting Operational
	Satellite		Environmental Satellite System
GoMACCS	Gulf of Mexico Atmospheric Composition	NPP	NPOESS Preparatory Project
0070	and Climate Study	NPS	National Park Services
GSFC	Goddard Space Flight Center (NASA)	NRC	National Research Council
HSRL	High-Spectral-Resolution Lidar	OC OM	Organic Carbon
ICARTT	International Consortium for Atmospheric	OMI PARASOL	Ozone Monitoring Instrument
ICESat	Research on Transport and Transformation Ice, Cloud, and Land Elevation Satellite	PARASUL	Polarization and Anisotropy of Reflectance for Atmospheric Science, coupled with
IMPROVE	Interagency Monitoring of Protected		Observations from a Lidar
IMIROVE	Visual Environment	PDF	Probability Distribution Function
INCA	Interactions between Chemistry and	PEM-West	Western Pacific Exploratory Mission
11 (011	Aerosol (LMDz model)	PM	Particulate Matter (aerosols)
INDOEX	Indian Ocean Experiment	PMEL	Pacific Marine Environmental Laboratory
INTEX-NA	Intercontinental Transport Experiment -		(NOAA)
	North America	POLDER	Polarization and Directionality of the
INTEX-B	Intercontinental Transport Experiment -		Earth's Reflectance
	Phase B	POM	Particulate Organic Matter
IPCC	Intergovermental Panel on Climate	PRIDE	Pueto Rico Dust Experiment
	Change	REALM	Regional East Atmospheric Lidar Mesonet
IR	Infrared radiation	RF	Radiative Forcing, aerosol
LBA	Large-Scale Biosphere-Atmosphere	RH	Relative Humidity
T DC	Experiment in Amazon	RTM	Radiative Transfer Model
LES	Large Eddy Simulation	SAFARI	South Africa Regional Science,
LITE	Lidar In-space Technology Experiment		Experiment

SAMUM SAP SAR SCAR-A SCAR-B SeaWiFS SGP	Saharan Mineral Dust Experiment Synthesis and Assessment Product (CCSP) IPCC Second Assessment Report (1995) Smoke, Clouds, and Radiation - America Smoke, Clouds, and Radiation - Brazil Sea-viewing Wide Field-of-view Sensor Southern Great Plain, ARM site in Oklahoma Saharan Dust Experiment	SZA TAR TARFOX TCR TexAQS TOA TOMS TRACE-A	Solar Zenith Angle Third Assessment Report, IPCC Tropospheric Aerosol Radiative Forcing Observational Experiment Transient Climate sensitivity Range Texas Air Quality Study Top of the Atmosphere Total Ozone Mapping Spectrometer Transport and Chemical Evolution over
SMOCC	Smoke, Aerosols, Clouds, Rainfall and	I KACE-A	the Atlantic
SOA SPRINTARS	Climate Secondary Organic Aerosol Spectral Radiation-Transport Model for	TRACE-P UAE2	Transport and Chemical Evolution over the Pacific United Arab Emirates Unified Aerosol
SIKINIAKS	Aerosol Species	UAEZ	Experiment
SSA SST	Single-Scattering Albedo Sea Surface Temperature	UMBC	University of Maryland at Baltimore County
STEM SURFRAD	Sulfate Transport and Deposition Model NOAA's national surface radiation budget network	UV VOC WMO	Ultraviolet radiation Volatile Organic Compounds World Meteorological Organization

Assessing the environmental impact of cloud fields becomes even more complicated when the contributions of aerosol particles in and around the cloud particles are also considered. Image from MODIS. Credit: NASA.

- Abdou, W., D. Diner, J. Martonchik, C. Bruegge, R. Kahn, B. Gaitley, and K. Crean, 2005: Comparison of coincident MISR and MODIS aerosol optical depths over land and ocean scenes containing AERONET sites. *Journal of Geophysical Research*, 110, D10S07, doi:10.1029/2004JD004693.
- **Ackerman**, A.S., Toon, O. B., and P. V. Hobbs, 1994: Reassessing the dependence of cloud condensation nucleus concentration on formation rate. *Nature*, **367**, 445-447, doi:10.1038/367445a0.
- Ackerman, A., O. Toon, D. Stevens, A. Heymsfield, V. Ramanathan, and E. Welton, 2000: Reduction of tropical cloudiness by soot. *Science*, 288, 1042-1047.
- Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. *Nature*, 432, 1014-1017.
- Ackerman, T., and G. Stokes, 2003: The Atmospheric Radiation Measurement Program. *Physics Today* **56**, 38-44.
- Albrecht, B., 1989: Aerosols, cloud microphysics, and fractional cloudiness. *Science*, 245, 1227-1230.
- Alpert, P., P. Kishcha, Y. Kaufman, and R. Schwarzbard, 2005: Global dimming or local dimming? Effect of urbanization on sunlight availability. *Geophysical Research Letters*, 32, L17802, doi: 10.1029/GL023320.
- Anderson, T., R. Charlson, S. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg, 2003: Climate forcing by aerosols—A hazy picture. *Science*, 300, 1103-1104.
- Anderson, T., R. Charlson, N. Bellouin, O. Boucher, M. Chin, S. Christopher, J. Haywood, Y. Kaufman, S. Kinne, J. Ogren, L. Remer, T. Takemura, D. Tanré, O. Torres, C. Trepte, B. Wielicki, D. Winker, and H. Yu, 2005a: An "A-Train" strategy for quantifying direct aerosol forcing of climate. Bulletin of the American Meteorological Society, 86, 1795-1809.
- Anderson, T., Y. Wu, D. Chu, B. Schmid, J. Redemann, and O. Dubovik, 2005b: Testing the MODIS satellite retrieval of aerosol fine-mode fraction. *Journal of Geophysical Research*, 110, D18204, doi:10.1029/2005JD005978.
- Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo and M. A. F. Silvas-Dias, 2004: Smoking rain clouds over the amazon. *Science*, 303, 1337-1342.
- Andrews, E., P. J. Sheridan, J. A. Ogren, R. Ferrare, 2004:
 In situ aerosol profiles over the Southern Great Plains cloud and radiation test bed site: 1. Aerosol optical properties. Journal of Geophysical Research, 109, D06208, doi:10.1029/2003JD004025.

- Ansmann, A., U. Wandinger, A. Wiedensohler, and U. Leiterer, 2002: Lindenderg Aerosol Characterization Experiment 1998 (LACE 98): Overview, *Journal of Geophysical Research*, 107, 8129, doi:10.1029/2000JD000233.
- Arnott, W., H. Moosmuller, and C. Rogers, 1997: Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. *Atmospheric Environ*ment, 33, 2845-2852.
- **Atwater**, M., 1970: Planetary albedo changes due to aerosols. *Science*, **170**(3953), 64-66.
- Augustine, J.A., G.B. Hodges, E.G. Dutton, J.J. Michalsky, and C.R. Cornwall, 2008: An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD). *Journal of Geophysical Research*, 113, D11204, doi:10.1029/2007JD009504.
- Baker, M. B., and R.J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. *Nature*, 345, 142-145.
- Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert, 2007: Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data. Atmospheric Chemistry and Physics, 7, 81-95.
- Bates, T., B. Huebert, J. Gras, F. Griffiths, and P. Durkee (1998): The International Global Atmospheric Chemistry (IGAC) Project's First Aerosol Characterization Experiment (ACE-1)—Overview. *Journal of Geophysical Research*, 103, 16297-16318.
- Bates, T.S., P.K. Quinn, D.J. Coffman, J.E. Johnson, T.L. Miller, D.S. Covert, A. Wiedensohler, S. Leinert, A. Nowak, and C. Neusüb, 2001: Regional physical and chemical properties of the marine boundary layer aerosol across the Atlantic during Aerosols99: An overview. *Journal of Geophysical Research*, 106, 20767-20782.
- Bates T., P. Quinn, D. Coffman, D. Covert, T. Miller, J. Johnson, G. Carmichael, S. uazzotti, D. Sodeman, K. Prather, M. Rivera, L. Russell, and J. Merrill, 2004: Marine boundary layer dust and pollution transport associated with the passage of a frontal system over eastern Asia. *Journal of Geophysical Research*, 109, doi:10.1029/2003JD004094.
- Bates T., et al., 2006: Aerosol direct radiative effects over the northwestern Atlantic, northwestern Pacific, and North Indian Oceans: estimates based on *in situ* chemical and optical measurements and chemical transport modeling. *Atmospheric Chemistry and Physics*, 6, 1657-1732.

- Baynard, T., E.R. Lovejoy, A. Pettersson, S.S. Brown, D. Lack, H. Osthoff, P. Massoli, S. Ciciora, W.P. Dube, and A.R. Ravishankara, 2007: Design and application of a pulsed cavity ring-down aerosol extinction spectrometer for field measurements. *Aerosol Science and Technology*, 41, 447-462.
- Bellouin, N., O. Boucher, D. Tanré, and O. Dubovik, 2003: Aerosol absorption over the clear-sky oceans deduced from POL-DER-1 and AERONET observations. *Geophysical Research Letters*, 30, 1748, doi:10.1029/2003GL017121.
- **Bellouin**, N., O. Boucher, J. Haywood, and M. Reddy, 2005: Global estimates of aerosol direct radiative forcing from satellite measurements. *Nature*, **438**, 1138-1140, doi:10.1038/nature04348.
- Bellouin, N., A. Jones, J. Haywood, and S.A. Christopher, 2008: Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. *Journal of Geophysical Research*, 113, D10205, doi:10.1029/2007JD009385.
- Bond, T.C., D.G. Streets, K.F. Yarber, S.M. Nelson, J.-H. Woo, and Z. Klimont, 2004: A technology-based global inventory of black and organic carbon emissions from combustion. *Journal of Geophysical Research*, 109, D14203, doi:10.1029/2003JD003697.
- Bond, T.C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D.G. Streets, and N.M. Trautmann, 2007: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850-2000. *Global Biogeochemical Cycles*, 21, GB2018, doi:10.1029/2006GB002840.
- **Boucher**, O., and D. Tanré, 2000: Estimation of the aerosol perturbation to the Earth's radiative budget over oceans using POLDER satellite aerosol retrievals. *Geophysical Research Letters*, **27**, 1103-1106.
- Brenguier, J. L., P. Y. Chuang, Y. Fouquart, D. W. Johnson, F. Parol, H. Pawlowska, J. Pelon, L. Schuller, F. Schroder, and J. Snider, 2000: An overview of the ACE-2 CLOUDYCOLUMN closure experiment. *Tellus*, 52B, 815-827.
- Caldeira, K., A. K. Jain, and M. I. Hoffert, 2003: Climate sensitivity uncertainty and the need for energy without CO₂ emission. *Science*, 299, 2052-2054.
- Carmichael, G., G. Calori, H. Hayami, I. Uno, S. Cho, M. Engardt, S. Kim, Y. Ichikawa, Y. Ikeda, J. Woo, H. Ueda and M. Amann, 2002: The Mics-Asia study: Model intercomparison of long-range transport and sulfur deposition in East Asia. *Atmospheric Environment*, 36, 175-199.
- Carmichael, G., Y. Tang, G. Kurata, I. Uno, D. Streets, N. Thongboonchoo, J. Woo, S. Guttikunda, A. White, T. Wang, D. Blake, E. Atlas, A. Fried, B. Potter, M. Avery, G. Sachse, S. Sandholm, Y. Kondo, R. Talbot, A. Bandy, D. Thorton and A. Clarke, 2003: Evaluating regional emission estimates using the TRACE-P observations. *Journal of Geophysical Research*, 108, 8810, doi:10.1029/2002JD003116.

- Carrico, C. et al., 2005: Hygroscopic growth behavior of a carbon-dominated aerosol in Yosemite National Park. Atmospheric Environment, 39, 1393-1404.
- CCSP, 2008: Climate Projections Based on Emissions Scenarios for Long-lived and Short-lived Radiatively Active Gases and Aerosols. A Report by the U.S. Climate Change Science, Program and the Subcommittee on Global Change Research, H. Levy II, D, T. Shindell, A. Gilliland, M. D. Schwarzkopf, L. W. Horowitz, (eds.). Department of Commerce, NOAA's National Climatic Data Center, Washington, D. C. USA, 116 pp.
- Chand, D., T. Anderson, R. Wood, R. J. Charlson, Y. Hu, Z. Liu, and M. Vaughan, 2008: Quantifying above-cloud aerosol using spaceborne lidar for improved understanding of cloudy-sky direct climate forcing. *Journal of Geophysical Research*, 113, D13206, doi:10.1029/2007JD009433.
- Charlson, R. and M. Pilat, 1969: Climate: The influence of aerosols. *Journal of Applied Meteorology*, 8, 1001-1002.
- Charlson, R., J. Langner, and H. Rodhe, 1990: Sulfate aerosol and climate. *Nature*, **348**, 22.
- **Charlson**, R., J. Langner, H. Rodhe, C. Leovy, and S. Warren, 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. *Tellus*, **43AB**, 152-163.
- Charlson, R., S. Schwartz, J. Hales, R. Cess, R. J. Coakley, Jr., J. Hansen, and D. Hofmann, 1992: Climate forcing by anthropogenic aerosols. *Science*, 255, 423-430.
- Chen, W-T, R. Kahn, D. Nelson, K. Yau, and J. Seinfeld, 2008: Sensitivity of multi-angle imaging to optical and microphysical properties of biomass burning aerosols. *Journal of Geophysical Research*, 113, D10203, doi:10.1029/2007JD009414.
- Chin, M., P. Ginoux, S. Kinne, O. Torres, B. Holben, B. Duncan, R. Martin, J. Logan, A. Higurashi, and T. Nakajima, 2002: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements. *Journal of the Atmospheric Sciences*, 59, 461-483.
- **Chin**, M., T. Diehl, P. Ginoux, and W. Malm, 2007: Intercontinental transport of pollution and dust aerosols: implications for regional air quality. *Atmospheric Chemistry and Physics*, 7, 5501-5517.
- **Chou**, M., P. Chan, and M. Wang, 2002: Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties. *Journal of the Atmospheric Sciences*, **59**, 748-757.
- Christopher, S., and J. Zhang, 2002: Daytime variation of short-wave direct radiative forcing of biomass burning aerosols from GEOS-8 imager. *Journal of the Atmospheric Sciences*, 59, 681-691.
- Christopher, S., J. Zhang, Y. Kaufman, and L. Remer, 2006: Satellite-based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud-free oceans. *Geophysical Research Letters*, **33**, L15816.

- Christopher, A., and T. Jones, 2008: Short-wave aerosol radiative efficiency over the global oceans derived from satellite data. *Tellus*, (B) **60(4)**, 636-640.
- Chu, D., Y. Kaufman, C. Ichoku, L. Remer, D. Tanré, and B. Holben, 2002: Validation of MODIS aerosol optical depth retrieval over land. *Geophysical Research Letters*, 29, 8007, doi:10.1029/2001/GL013205.
- Chung, C., V. Ramanathan, D. Kim, and I. Podgomy, 2005: Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. *Journal of Geophysical Research*, 110, D24207, doi:10.1029/2005JD006356.
- Chung, C. E. and G. Zhang, 2004: Impact of absorbing aerosol on precipitation. *Journal of Geophysical Research*, 109, doi:10.1029/2004JD004726.
- Clarke, A.D., J.N. Porter, F.P.J. Valero, and P. Pilewskie, 1996: Vertical profiles, aerosol microphysics, and optical closure during the Atlantic Stratocumulus Transition Experiment: Measured and modeled column optical properties *Journal of Geophysical Research*, 101, 4443-4453.
- Coakley, J. Jr., R. Cess, and F. Yurevich, 1983: The effect of tropospheric aerosols on the earth's radiation budget: A parameterization for climate models. *Journal of the Atmospheric Sciences*, 40, 116-138.
- Coakley, J. A. Jr. and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. *Journal of the Atmospheric Sciences*, **59**, 668-680.
- Collins, D.R., H.H. Jonsson, J.H. Seinfeld, R.C. Flagan, S. Gassó, D.A. Hegg, P.B. Russell, B. Schmid, J.M. Livingston, E. Öström, K.J. Noone, L.M. Russell, and J.P. Putaud, 2000: *In Situ* aerosol size distributions and clear column radiative closure during ACE-2. *Tellus*, 52B, 498-525.
- Collins, W., P. Rasch, B. Eaton, B. Khattatov, J. Lamarque, and C. Zender, 2001: Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX. *Journal of Geophysical Research*, 106, 7313-7336.
- Conant, W. C., T. M. VanReken, T. A. Rissman, V. Varutbang-kul, H. H. Jonsson, A. Nenes, J. L. Jimenez, A. E. Delia, R. Bahreini, G. C. Roberts, R. C. Flagan, J. H. Seinfeld, 2004: Aerosol, cloud drop concentration closure in warm cumulus. *Journal of Geophysical Research*, 109, D13204, doi:10.1029/2003JD004324.
- Cooke, W.F., and J.J.N. Wilson, 1996: A global black carbon aerosol model. *Journal of Geophysical Research*, 101, 19395-19409.
- Cooke, W.F., C. Liousse, H. Cachier, and J. Feichter, 1999: Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. *Journal of Geophysical Research*, **104**, 22137-22162.

- Costa, M., A. Silva, and V. Levizzani, 2004a: Aerosol characterization and direct radiative forcing assessment over the ocean. Part I: Methodology and sensitivity analysis. *Journal of Applied Meteorology*, 43, 1799-1817.
- Costa, M., A. Silva AM, and V. Levizzani, 2004b: Aerosol characterization and direct radiative forcing assessment over the ocean. Part II: Application to test cases and validation. *Journal of Applied Meteorology*, 43, 1818-1833.
- de Gouw, J., et al., 2005: Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002. *Journal of Geophysical Research*, 110, D16305, doi:10.1029/2004JD005623.
- **Delene**, D. and J. Ogren, 2002: Variability of aerosol optical properties at four North American surface monitoring sites. *Journal of the Atmospheric Sciences*, **59**, 1135-1150.
- Delworth, T. L., V. Ramaswamy and G. L. Stenchikov, 2005: The impact of aerosols on simulated ocean temperature and heat content in the 20th century. *Geophysical Research Letters*, 32, doi:10.1029/2005GL024457.
- Dentener, F., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J.J. Hoelzemann, A. Ito, L. Marelli, J.E. Penner, J.-P. Putaud, C. Textor, M. Schulz, G.R. van der Werf, and J. Wilson, 2006: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed datasets for AeroCom. Atmospheric Chemistry and Physics, 6, 4321-4344.
- Deuzé, J., F. Bréon, C. Devaux, P. Goloub, M. Herman, B. Lafrance, F. Maignan, A. Marchand, F. Nadal, G. Perry, and D. Tanré, 2001: Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. *Journal of Geophysical Research*, 106, 4913-4926.
- Diner, D., J. Beckert, T. Reilly, et al., 1998: Multiangle Imaging SptectrRadiometer (MISR) description and experiment overview. *IEEE Transactions on Geoscience and Remote Sensing*, 36, 1072-1087.
- Diner, D., J. Beckert, G. Bothwell and J. Rodriguez, 2002: Performance of the MISR instrument during its first 20 months in Earth orbit. *IEEE Transactions on Geoscience and Remote Sensing*, 40, 1449-1466.
- Diner, D., T. Ackerman, T. Anderson, et al., 2004: Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON): An integrated approach for characterizing aerosol climatic and environmental interactions. *Bulletin of the American Meteorological Society*, 85, 1491-1501.
- Doherty, S.J., P. Quinn, A. Jefferson, C. Carrico, T.L. Anderson, and D. Hegg, 2005: A comparison and summary of aerosol optical properties as observed in situ from aircraft, ship and land during ACE-Asia. Journal of Geophysical Research, 110, D04201, doi: 10.1029/2004JD004964.

- Dubovik, O., A. Smirnov, B. Holben, M. King, Y. Kaufman, and Slutsker, 2000: Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky radiance measurements. *Journal of Geophysical Research*, 105, 9791-9806.
- **Dubovik**, O., and M. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. *Journal of Geophysical Research*,, **105**, 20673-20696.
- Dubovik, O., B. Holben, T. Eck, A. Smirnov, Y. Kaufman, M. King, D. Tanré, and I. Slutsker, 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. *Journal of the Atmospheric Sciences*, 59, 590-608.
- Dubovik, O., T. Lapyonok, Y. Kaufman, M. Chin, P. Ginoux, and A. Sinyuk, 2007: Retrieving global sources of aerosols from MODIS observations by inverting GOCART model, *Atmospheric Chemistry and Physics Discussions*, 7, 3629-3718.
- Dusek, U., G. P. Frank, L. Hildebrandt, J. Curtius, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, and M. O. Andreae, 2006: Size matters more than chemistry in controlling which aerosol particles can nucleate cloud droplets. *Science*, 312, 1375-1378.
- Eagan, R.C., P. V. Hobbs and L. F. Radke, 1974: Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires. *Journal of Applied Meteorology*, 13, 553-557.
- Eck, T., B. Holben, J. Reid, O. Dubovik, A. Smirnov, N. O'Neill, I. Slutsker, and S. Kinne, 1999: Wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. *Journal of Geophysical Research*, 104, 31333-31350.
- Eck, T., et al., 2008: Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer. *Journal of Geophysical Research*, **113**, D01204, doi:10.1029/2007JD008944.
- Ervens, B., G. Feingold, and S. M. Kreidenweis, 2005: The influence of water-soluble organic carbon on cloud drop number concentration. *Journal of Geophysical Research*, 110, D18211, doi:10.1029/2004JD005634.
- **Fehsenfeld**, F., et al., 2006:International Consortium for *Atmospheric Research* on Transport and Transformation (ICARTT): North America to Europe—Overview of the 2004 summer field study. *Journal of Geophysical Research*, **111**, D23S01, doi:10.1029/2006JD007829.
- **Feingold**, G., B. Stevens, W.R. Cotton, and R.L. Walko, 1994: An explicit microphysics/LES model designed to simulate the Twomey Effect. *Atmospheric Research*, **33**, 207-233.

- Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. *Journal of the Atmospheric Sciences*, 56, 4100-4117.
- **Feingold**, G., Remer, L. A., Ramaprasad, J. and Kaufman, Y. J., 2001: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach. *Journal of Geophysical Research*, **106**, 22907-22922.
- **Feingold**, G. W. Eberhard, D. Veron, and M. Previdi, 2003: First measurements of the Twomey aerosol indirect effect using ground-based remote sensors. *Geophysical Research Letters*, **30**, 1287, doi:10.1029/2002GL016633.
- **Feingold**, G., 2003: Modeling of the first indirect effect: Analysis of measurement requirements. *Geophysical Research Letters*, **30**, 1997, doi:10.1029/2003GL017967.
- **Feingold**, G., H. Jiang, and J. Harrington, 2005: On smoke suppression of clouds in Amazonia. *Geophysical Research Letters*, **32**, L02804, doi:10.1029/2004GL021369.
- **Feingold**, G., R. Furrer, P. Pilewskie, L. A. Remer, Q. Min, H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations Period. *Journal of Geophysical Research*, **111**, D05S14, doi:10.1029/2004JD005648.
- **Fernandes**, S.D., N.M. Trautmann, D.G. Streets, C.A. Roden, and T.C. Bond, 2007: Global biofuel use, 1850-2000. *Global Biogeochemical Cycles*, **21**, GB2019, doi:10.1029/2006GB002836.
- Ferrare, R., G. Feingold, S. Ghan, J. Ogren, B. Schmid, S.E. Schwartz, and P. Sheridan, 2006: Preface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences. *Journal of Geophysical Research*, 111, D05S01, doi:10.1029/2005JD006908.
- **Fiebig**, M., and J.A. Ogren, 2006: Retrieval and climatology of the aerosol asymmetry parameter in the NOAA aerosol monitoring network. *Journal of Geophysical Research*, **111**, D21204, doi:10.1029/2005JD006545.
- **Fishman**, J., J.M. Hoell, R.D. Bendura, R.J. McNeal, and V. Kirchhoff, 1996: NASA GTE TRACE A experiment (Septemner-October 2002): Overview. *Journal of Geophysical Research*, **101**, 23865-23880.
- **Fitzgerald**, J. W., 1975: Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. *Journal of Applied Meteorology*, **14**, 1044-1049.
- **Fraser**, R. and Y. Kaufman, 1985: The relative importance of aerosol scattering and absorption in Remote Sensing. *Transactions on Geoscience and Remote Sensing*, GE-23, 625-633.

- Garrett, T., C. Zhao, X. Dong, G. Mace, and P. Hobbs, 2004: Effects of varying aerosol regimes on low-level Arctic stratus. *Geophysical Research Letters*, 31, L17105, doi:10.1029/2004GL019928.
- Garrett, T., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. *Nature*, 440, 787-789.
- Geogdzhayev, I., M. Mishchenko, W. Rossow, B. Cairns, B., and A. Lacis, 2002: Global two-channel AVHRR retrievals of aerosol properties over the ocean for the period of NOAA-9 observations and preliminary retrievals using NOAA-7 and NOAA-11 data. *Journal of the Atmospheric Sciences*, 59, 262-278.
- Ghan, S., and S.E. Schwartz, 2007: Aerosol properties and processes. Bulletin of the American Meteorological Society, 88, 1059-1083.
- **Gillett**, N.P., et al., 2002a: Reconciling two approaches to the detection of anthropogenic influence on climate. *Journal of Climate*, **15**, 326–329.
- **Gillett**, N.P., et al., 2002b: Detecting anthropogenic influence with a multimodel ensemble. *Geophysical Research Letters*, **29**, doi:10.1029/2002GL015836.
- Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. *Journal of Geophysical Research*, 20, 20255-20273.
- Ginoux, P., L. W. Horowitz, V. Ramaswamy, I. V. Geogdzhayev, B. N. Holben, G. Stenchikov and X. tie, 2006: Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate. *Journal of Geophysical Research*, 111, doi:10.1029/2005JD006707.
- **Golaz**, J-C., V. E. Larson, and W. R. Cotton, 2002a: A PDF-based model for boundary layer clouds. Part I: Method and model description. *Journal of the Atmospheric Sciences*, **59**, 3540-3551.
- **Golaz**, J-C., V. E. Larson, and W. R. Cotton, 2002b: A PDF-based model for boundary layer clouds. Part II: Model results. *Journal of the Atmospheric Sciences*, **59**, 3552-3571.
- **Grabowski**, W.W., 2004: An improved framework for superparameterization. *Journal of the Atmospheric Sciences*, **61**, 1940-52.
- Grabowski, W.W., X. Wu, and M.W. Moncrieff, 1999: Cloud resolving modeling of tropical cloud systems during Phase III of GATE. Part III: Effects of cloud microphysics. *Journal of the Atmospheric Sciences*, 56, 2384-2402.
- **Gregory**, J.M., et al., 2002: An observationally based estimate of the climate sensitivity. *Journal of Climate*, **15**, 3117-3121.

- Gunn, R. and B. B. Phillips. 1957: An experimental investigation of the effect of air pollution on the initiation of rain. *Journal of Meteorology*, 14, 272-280.
- Han, Q., W. B. Rossow, J. Chou, and R. M. Welch, 1998: Global survey of the relationship of cloud albedo and liquid water path with droplet size using ISCCP. *Journal of Climate*, 11, 1516-1528.
- Han, Q., W.B. Rossow, J. Zeng, and R. Welch, 2002: Three different behaviors of liquid water path of water clouds in aerosol-cloud interactions. *Journal of the Atmospheric Sciences*, 59, 726-735.
- Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. *Journal of Geophysical Research*, 102, 6831-6864.
- Hansen, J., et al., 2005: Efficacy of climate forcings. *Journal of Geophysical Research*, 110, doi:10.1029/2005JD005776, 45pp.
- **Hansen**, J. et al., 2007: Climate simulations for 1880-2003 with GISS model E. *Climate Dynamics*, **29**, 661-696.
- Harrison, L., J. Michalsky, and J. Berndt, 1994: Automated multifilter rotating shadowband radiometer: An instrument for optical depth and radiation measurements. *Applied Optics*, 33, 5118-5125.
- Harvey, L.D.D., 2004: Characterizing the annual-mean climatic effect of anthropogenic CO₂ and aerosol emissions in eight coupled atmosphere-ocean GCMs. *Climate Dynamics*, 23, 569-599.
- Haywood, J. M., V. Ramaswamy, and B. J. Soden, 1999: Tropospheric aerosol climate forcing in clear-sky satellite observations over the oceans. *Science*, 283(5406), 1299-1303.
- **Haywood**, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. *Reviews of Geophysics*, **38**, 513-543.
- Haywood, J., P. Francis, S. Osborne, M. Glew, N. Loeb, E. Highwood, D. Tanré, E. Myhre, P. Formenti, and E. Hirst, 2003: Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1.Solar spectrum. *Journal of Geophysical Research*, 108, 8577, doi:10.1029/2002JD002687.
- Haywood, J., and M. Schulz, 2007: Causes of the reduction in uncertainty in the anthropogenic radiative forcing of climate between IPCC (2001) and IPCC (2007). *Geophysical Research Letters*, 34, L20701, doi:10.1029/2007GL030749.
- Haywood, J., et al., 2008: Overview of the Dust and Biomass burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0. *Journal of Geophysical Research*, 113, D00C17, doi:10.1029/2008JD010077.
- Heald, C. L., D. J. Jacob, R. J. Park, L. M. Russell, B. J. Huebert, J. H. Seinfeld, H. Liao, and R. J. Weber, 2005: A large organic aerosol source in the free troposphere missing from current models. *Geophysical Research Letters*, 32, L18809, doi:10.1029/2005GL023831.

- **Heintzenberg**, J., et al., 2009: The SAMUM-1 experiment over Southern Morocco: Overview and introduction. *Tellus*, **61B**, in press.
- **Henze**, D. K. and J.H. Seinfeld, 2006: Global secondary organic aerosol from isoprene oxidation. *Geophysical Research Letters*, **33**, L09812, doi:10.1029/2006GL025976.
- Herman, J., P. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997: Global distribution of UV-absorbing aerosols from Nimbus-7/TOMS data. *Journal of Geophysical Research*, 102, 16911-16922.
- Hoell, J.M., D.D. Davis, S.C. Liu, R. Newell, M. Shipham, H. Akimoto, R.J. McNeal, R.J. Bemdura, and J.W. Drewry, 1996: Pacific Exploratory Mission-West A (PEM-WEST A): September-October, 1991. *Journal of Geophysical Research*, 101, 1641-1653.
- Hoell, J.M., D.D. Davis, S.C. Liu, R. Newell, M. Shipham, H. Akimoto, R.J. McNeal, R.J. Bemdura, and J.W. Drewry, 1997: The Pacific Exploratory Mission-West Phase B: February-March, 1994. *Journal of Geophysical Research*, 102, 28223-28239.
- Hoff, R. et al., 2002: Regional East Atmospheric Lidar Mesonet: REALM, in *Lidar Remote Sensing in Atmospheric and Earth Sciences*, edited by L. Bissonette, G. Roy, and G. Vallée, pp. 281-284, Def. R&D Can. Valcartier, Val-Bélair, Que.
- Hoff, R., J. Engel-Cox, N. Krotkov, S. Palm, R. Rogers, K. Mc-Cann, L. Sparling, N. Jordan, O. Torres, and J. Spinhirne, 2004: Long-range transport observations of two large forest fire plumes to the northeastern U.S., in 22nd International Laser Radar Conference, ESA Spec. Publ., SP-561, 683-686.
- **Holben**, B., T. Eck, I. Slutsker, et al., 1998: AERONET—A federated instrument network and data archive for aerosol characterization. *Remote Sensing of the Environment*, **66**, 1-16.
- Holben, B., D. Tanré, A. Smirnov, et al., 2001: An emerging ground-based aerosol climatology: aerosol optical depth from AERO-NET. *Journal of Geophysical Research*, 106, 12067-12098.
- Horowitz, L. W., et al., 2003: A global simulation of tropospheric ozone and related tracers: Description and evaluation of MO-ZART, version 2. *Journal of Geophysical Research*, 108, 4784, doi:10.1029/2002JD002853.
- Horowitz, L., 2006: Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal. *Journal of Geophysical Research*, 111, D22211, doi:10.1029/2005JD006937.
- Hoyt, D., and C. Frohlich, 1983: Atmospheric transmission at Davos, Switzerland 1909-1979. Climatic Change, 5, 61-71.
- **Hsu**, N., S. Tsay, M. King, and J. Herman, 2004: Aerosol properties over bright-reflecting source regions. *IEEE Transactions on Geoscience and Remote Sensing*, **42**, 557-569.

- Huebert, B., T. Bates, P. Russell, G. Shi, Y. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003: An overview of ACE-Asia: strategies for quantifying the relationships between Asian aerosols and their climatic impacts. *Journal of Geophysical Research*, 108, 8633, doi:10.1029/2003JD003550.
- Huneeus, N., and O. Boucher, 2007: One-dimensional variational retrieval of aerosol extinction coefficient from synthetic LI-DAR and radiometric measurements. *Journal of Geophysical Research*, 112, D14303, doi:10.1029/2006JD007625.
- Husar, R., J. Prospero, and L. Stowe, 1997: Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. *Journal of Geophysical Research*, 102, 16889-16909.
- IPCC, 1992: Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. J. T. Houghton, B. A. Callander and S. K. Varney (eds). Cambridge University Press, Cambridge, UK, 198 pp.
- IPCC (Intergovernmental Panel on Climate Change), 1995: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios, in Climate Change 1994, Cambridge Univ. Press, New York, Cambridge University Press, 1995.
- IPCC (Intergovernmental Panel on Climate Change), 1996: Radiative forcing of climate change, in Climate Change 1995, Cambridge Univ. Press, New York, Cambridge University Press, 1996.
- IPCC (Intergovernmental Panel on Climate Change), 2001: Radiative forcing of climate change, in Climate Change 2001, Cambridge Univ. Press, New York, Cambridge University Press, 2001.
- IPCC (Intergovernmental Panel on Climate Change), 2007: Changes in Atmospheric Constituents and in Radiative forcing, in Climate Change 2007, Cambridge University Press, New York, Cambridge University Press, 2007.
- **Ito**, A., and J.E. Penne, 2005: Historical estimates of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870-2000. *Global Biogeochemical Cycles*, **19**, GB2028, doi:10.1029/2004GB002374.
- Jacob, D., J. Crawford, M. Kleb, V. Connors, R.J. Bendura, J. Raper, G. Sachse, J. Gille, L. Emmons, and C. Heald, 2003: The Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: design, execution, and first results. *Journal of Geophysical Research*, 108, 9000, 10.1029/2002JD003276.
- Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop, 2000: Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. *Aerosol Science and Technology*, 33, 49-70.

- Jeong, M., Z. Li, D. Chu, and S. Tsay, 2005: Quality and Compatibility Analyses of Global Aerosol Products Derived from the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer. *Journal of Geophysical Research*, 110, D10S09, doi:10.1029/2004JD004648.
- Jiang, H., and G. Feingold, 2006: Effect of aerosol on warm convective clouds: Aerosol-cloud-surface flux feedbacks in a new coupled large eddy model. *Journal of Geophysical Research*, 111, D01202, doi:10.1029/2005JD006138.
- Jiang, H., H. Xue, A. Teller, G. Feingold, and Z. Levin, 2006: Aerosol effects on the lifetime of shallow cumulus. *Geophysical Research Letters*, 33, doi: 10.1029/2006GL026024.
- Jiang, H., G. Feingold, H. H. Jonsson, M.-L. Lu, P. Y. Chuang, R. C. Flagan, J. H. Seinfeld, 2008: Statistical comparison of properties of simulated and observed cumulus clouds in the vicinity of Houston during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS). *Journal of Geophysical Research*, 113, D13205, doi:10.1029/2007JD009304.
- **Johnson**, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. *Journal of the Atmospheric Sciences*, **39**, 448-460.
- Jones, G.S., et al., 2005: Sensitivity of global scale attribution results to inclusion of climatic response to black carbon. *Geophysical Research Letters*, 32:L14701, doi:10.1029/2005GL023370.
- Junker, C., and C. Liousse, 2008: A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860-1997. Atmospheric Chemistry and Physics, 8, 1195-1207.
- **Kahn**, R., P. Banerjee, D. McDonald, and D. Diner, 1998: Sensitivity of multiangle imaging to aerosol optical depth, and to pure-particle size distribution and composition over ocean. *Journal of Geophysical Research*, **103**, 32195-32213.
- **Kahn**, R., P. Banerjee, and D. McDonald, 2001: The sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. *Journal of Geophysical Research*, **106**, 18219-18238.
- **Kahn**, R., J. Ogren, T. Ackerman, et al., 2004: Aerosol data sources and their roles within PARAGON. *Bulletin of the American Meteorological Society*, **85**, 1511-1522.
- Kahn, R., R. Gaitley, J. Martonchik, D. Diner, K. Crean, and B. Holben, 2005a: MISR global aerosol optical depth validation based on two years of coincident AERONET observations. *Journal of Geophysical Research*, 110, D10S04, doi:10.1029/2004JD004706.
- Kahn, R., W. Li, J. Martonchik, C. Bruegge, D. Diner, B. Gaitley, W. Abdou, O. Dubovik, B. Holben, A. Smirnov, Z. Jin, and D. Clark, 2005b: MISR low-light-level calibration, and implications for aerosol retrieval over dark water. *Journal of the Atmospheric Sciences*, 62, 1032-1052.

- **Kahn**, R., W. Li, C. Moroney, D. Diner, J. Martonchik, and E. Fishbein, 2007a: Aerosol source plume physical characteristics from space-based multiangle imaging. *Journal of Geophysical Research*, **112**, D11205, doi:10.1029/2006JD007647.
- Kahn, R., et al., 2007b: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies. *Journal of Geophysical Research*, 112, D18205, doi:10.1029/2006JD008175.
- Kalashnikova, O., and R. Kahn, 2006: Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Part 2. Sensitivity over dark water. *Journal of Geophysical Research*, 111:D11207, doi:10.1029/2005JD006756.
- Kapustin, V.N., A.D. Clarke, Y. Shinozuka, S. Howell, V. Brekhovskikh, T. Nakajima, and A. Higurashi, 2006: On the determination of a cloud condensation nuclei from satellite: Challenges and possibilities. *Journal of Geophysical Research*, 111, D04202, doi:10.1029/2004JD005527.
- Kaufman, Y., 1987: Satellite sensing of aerosol absorption. Journal of Geophysical Research, 92, 4307-4317.
- Kaufman, Y.J., A. Setzer, D. Ward, D. Tanre, B. N. Holben, P. Menzel, M. C. Pereira, and R. Rasmussen, 1992: Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A). *Journal of Geophysical Research*, 97, 14581-14599.
- Kaufman, Y. J. and Nakajima, T., 1993: Effect of Amazon smoke on cloud microphysics and albedo—Analysis from satellite imagery. *Journal of Applied Meteorology*, 32, 729-744.
- **Kaufman**, Y. and R. Fraser, 1997: The effect of smoke particles on clouds and climate forcing. *Science*, **277**, 1636-1639.
- Kaufman, Y., D. Tanré, L. Remer, E. Vermote, A. Chu, and B. Holben, 1997: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. *Journal of Geophysical Research*, 102, 17051-17067.
- Kaufman, Y.J., P. V. Hobbs, V. W. J. H. Kirchhoff, P. Artaxo, L. A. Remer, B. N. Holben, M. D. King, D. E. Ward, E. M. Prins, K. M. Longo, L. F. Mattos, C. A. Nobre, J. D. Spinhirne, Q. Ji, A. M. Thompson, J. F. Gleason, and S. A. Christopher, 1998: Smoke, clouds, and radiation—Brazil (SCAR-B) experiment. *Journal of Geophysical Research*, 103, 31783-31808.
- Kaufman, Y., D. Tanré, and O. Boucher, 2002a: A satellite view of aerosols in the climate system. *Nature*, 419, doi:10.1038/ nature01091.
- Kaufman, Y., J. Martins, L. Remer, M. Schoeberl, and M. Yamasoe, 2002b: Satellite retrieval of aerosol absorption over the oceans using sunglint. *Geophysical Research Letters*, 29, 1928, doi:10.1029/2002GL015403.

- Kaufman, Y., J. Haywood, P. Hobbs, W. Hart, R. Kleidman, and B. Schmid, 2003: Remote sensing of vertical distributions of smoke aerosol off the coast of Africa. *Geophysical Research Letters*, 30, 1831, doi:10.1029/2003GL017068.
- Kaufman, Y., O. Boucher, D. Tanré, M. Chin, L. Remer, and T. Takemura, 2005a: Aerosol anthropogenic component estimated from satellite data. *Geophysical Research Letters*, 32, L17804, doi:10.1029/2005GL023125.
- Kaufman, Y., L. Remer, D. Tanré, R. Li, R. Kleidman, S. Mattoo, R. Levy, T. Eck, B. Holben, C. Ichoku, J. Martins, and I. Koren, 2005b: A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. *IEEE Transactions on Geoscience and Remote Sensing* 43, 2886-2897.
- Kaufman, Y. J., I. Koren, L. A. Remer, D. Rosenfeld and Y. Rudich, 2005c: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. *Proceedings of the National Academy of Sciences*, 102, 11207-11212.
- **Kaufman**, Y. J. and Koren, I., 2006: Smoke and pollution aerosol effect on cloud cover. *Science*, **313**, 655-658.
- **Kerr**, R., 2007: Another global warming icon comes under attack. *Science*, **317**, 28.
- Kiehl, J. T., 2007: Twentieth century climate model response and climate sensitivity. *Geophysical Research Letters*, 34, doi:10.1029/2007GL031383.
- Kim, B.-G., S. Schwartz, M. Miller, and Q. Min, 2003: Effective radius of cloud droplets by ground-based remote sensing: Relationship to aerosol. *Journal of Geophysical Research*, 108, 4740, doi:10.1029/2003JD003721.
- Kim, B.-G., M. A. Miller, S. E. Schwartz, Y. Liu, and Q. Min, 2008: The role of adiabaticity in the aerosol first indirect effect. *Journal of Geophysical Research*, 113, D05210, doi:10.1029/2007JD008961.
- Kim, M.-K., K.-M. Lau, M. Chin, K.-M. Kim, Y. Sud, and G. K. Walker, 2006: Atmospheric teleconnection over Eurasia induced by aerosol radiative forcing during boreal spring. *Proceedings of the National Academy of Sciences*, 19, 4700-4718.
- King, M., Y. Kaufman, D. Tanré, and T. Nakajima, 1999: Remote sensing of tropospheric aerosols: Past, present, and future. Bulletin of the American Meteorological Society, 80, 2229-2259.
- King, M., S. Platnick, C. Moeller, Revercomb, and D. Chu, 2003: Remote sensing of smoke, land, and clouds from the NASA ER-2 during SAFARI 2000. *Journal of Geophysical Research*, 108, 8502, doi:10.1029/2002JD003207.
- **Kinne**, S., M. Schulz, C. Textor, et al., 2006: An AeroCom initial assessment—optical properties in aerosol component modules of global models. *Atmospheric Chemistry and Physics*, **6**, 1815-1834.

- Kirchstetter, T.W., R.A. Harley, N.M. Kreisberg, M.R. Stolzenburg, and S.V. Hering, 1999: On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. *Atmospheric Environment*, 33, 2955-2968.
- Kristjánsson, J. E., Stjern, C. W., Stordal, F., Fjæraa, A. M., Myhre, G., and Jónasson, K., 2008: Cosmic rays, cloud condensation nuclei and clouds—a reassessment using MODIS data, Atmospheric Chemistry and Physics, 8, 7373-7387.
- **Kleinman**, L.I. et al., 2008: The time evolution of aerosol composition over the Mexico City plateau. *Atmospheric Chemistry and Physics*, **8**, 1559-1575.
- Kleidman, R., N. O'Neill, L. Remer, Y. Kaufman, T. Eck, D. Tanré, O. Dubovik, and B. Holben, 2005: Comparison of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean. *Journal of Geophysical Research*, 110, D22205, doi:10.1029/2005JD005760.
- Knutti, R., T.F. Stocker, F. Joos, and G.-K. Plattner, 2002: Constraints on radiative forcing and future climate change from observations and climate model ensembles. *Nature*, 416, 719-723.
- Knutti, R., T.F. Stocker, F. Joos, and G.-K. Plattner, 2003: Probabilistic climate change projections using neural networks. Climate Dynamics, 21, 257-272.
- Koch, D., and J. Hansen, 2005: Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment. *Journal of Geophysical Research*, 110, D04204, doi:10.1029/2004JD005296.
- **Koch**, D., G. Schmidt, and C. Field, 2006: Sulfur, sea salt and radionuclide aerosols in GISS ModelE. *Journal of Geophysical Research*, **111**, D06206, doi:10.1029/2004JD005550.
- Koch, D., T.C. Bond, D. Streets, N. Unger, G.R. van der Werf, 2007: Global impact of aerosols from particular source regions and sectors, *Journal of Geophysical Research*, 112, D02205, doi:10.1029/2005JD007024.
- **Kogan**, Y. L., D. K. Lilly, Z. N. Kogan, and V. Filyushkin, 1994: The effect of CCN regeneration on the evolution of stratocumulus cloud layers. *Atmospheric Research*, **33**, 137-150.
- **Koren**, I., Y. Kaufman, L. Remer, and J. Martins, 2004: Measurement of the effect of Amazon smoke on inhibition of cloud formation. *Science*, **303**, 1342.
- Koren, I., Y.J. Kaufman, D. Rosenfeld, L.A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. *Geophysical Research Letters*, 32, doi:10.1029/2005GL023187.
- **Koren**, I., L.A. Remer, and K. Longo, 2007a: Reversal of trend of biomass burning in the Amazon. *Geophysical Research Letters*, **34**, L20404, doi:10.1029/2007GL031530.

- Koren, I., L.A. Remer, Y.J. Kaufman, Y. Rudich, and J.V. Martins, 2007b: On the twilight zone between clouds and aerosols. *Geophysical Research Letters*, 34, L08805, doi:10.1029/2007GL029253.
- Koren, I., J. V. Martins, L. A. Remer, and H. Afargan, 2008: Smoke invigoration versus inhibition of clouds over the Amazon. *Science*, 321, 946, doi: 10.1126/science.1159185.
- Kroll, J. H., N.L. Ng, S.M. Murphy, R.C. Flagan, and J.H. Seinfeld, 2006: Secondary organic aerosol formation from isoprene photooxidation. *Environmental Science and Technology*, 40, 1869-1877.
- Kruger, O. and H. Grasl, 2002: The indirect aerosol effect over Europe. *Geophysical Research Letters*, 29, doi:10.1029/2001GL014081.
- Lack, D., E. Lovejoy, T. Baynard, A. Pettersson, and A. Ravishankara, 2006: Aerosol absorption measurements using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. Aerosol Science and Technology, 40, 697-708.
- Larson, V. E., R. Wood, P. R. Field, J.-C. Golaz, T. H. Vonder Haar, and W. R. Cotton, 2001: Small-scale and mesoscale variability of scalars in cloudy boundary layers: One-dimensional probability density functions. *Journal of the Atmospheric Sciences*, 58, 1978-1996.
- Larson, V.E., J.-C. Golaz, H. Jiang and W.R. Cotton, 2005: Supplying local microphysics parameterizations with information about subgrid variability: Latin hypercube sampling. *Journal of the Atmospheric Sciences*, 62, 4010-4026.
- Lau, K., M. Kim, and K. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing—the role of the Tibetan Plateau. *Climate Dynamics*, 36, 855-864, doi:10.1007/ s00382-006-10114-z.
- Lau, K.-M., and K.-M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. *Geophysical Research Letters*, 33, L21810, doi:10.1029/2006GL027546.
- Lau, K.-M., K.-M. Kim, G. Walker, and Y. C. Sud, 2008: A GCM study of the possible impacts of Saharan dust heating on the water cycle and climate of the tropical Atlantic and Caribbean regions. *Proceedings of the National Academy of Sciences*, (submitted).
- **Leahy**, L., T. Anderson, T. Eck, and R. Bergstrom, 2007: A synthesis of single scattering albedo of biomass burning aerosol over southern Africa during SAFARI 2000. *Geophysical Research Letters*, **34**, L12814, doi:10.1029/2007GL029697.
- Leaitch, W. R., G.A. Isaac, J.W. Strapp, C.M. Banic and H.A. Wiebe, 1992: The Relationship between Cloud Droplet Number Concentrations and Anthropogenic Pollution—Observations and Climatic Implications. *Journal of Geophysical Research*, 97, 2463-2474.

- Leaitch, W. R., C. M. Banic, G. A. Isaac, M. D. Couture, P. S. K. Liu, I. Gultepe, S.-M. Li, L. Kleinman, J. I. MacPherson, and P. H. Daum, 1996: Physical and chemical observations in marine stratus during the 1993 North Atlantic Regional Experiment: Factors controlling cloud droplet number concentrations. *Journal of Geophysical Research*, 101, 29123-29135.
- Lee, T., et al., 2006: The NPOESS VIIRS day/night visible sensor. Bulletin of the American Meteorological Society, 87, 191-199.
- **Lelievel**, J., H. Berresheim, S. Borrmann, S., et al., 2002: Global air pollution crossroads over the Mediterranean. *Science*, **298**, 794-799.
- Léon, J., D. Tanré, J. Pelon, Y. Kaufman, J. Haywood, and B. Chatenet, 2003: Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing. *Journal of Geophysical Research*, 108, 8575, doi:10.1029/2002JD002774.
- Levin, Z. and W. R. Cotton, 2008: Aerosol pollution impact on precipitation: A scientific review. Report from the WMO/ IUGG International Aerosol Precipitation Science, Assessment Group (IAPSAG), World Meteorological Organization, Geneva, Switzerland, 482 pp.
- Levy, R., L. Remer, and O. Dubovik, 2007a: Global aerosol optical properties and application to MODIS aerosol retrieval over land. *Journal of Geophysical Research*, 112, D13210, doi:10.1029/2006JD007815.
- Levy, R., L. Remer, S. Mattoo, E. Vermote, and Y. Kaufman, 2007b: Second-generation algorithm for retrieving aerosol properties over land from MODIS spectral reflectance. *Journal of Geophysical Research*, 112, D13211, doi:10.1029/2006JD007811.
- Lewis, E.R. and S.E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models—A Critical Review. Geophysical Monograph Series Vol. 152, (American Geophysical Union, Washington, 2004), 413 pp. ISBN: 0-87590-417-3.
- Li, R., Y. Kaufman, W. Hao, I. Salmon, and B. Gao, 2004: A technique for detecting burn scars using MODIS data. *IEEE Transactions on Geoscience and Remote Sensing*, 42, 1300-1308.
- Li, Z., et al., 2007: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE). *Journal of Geophysical Research*, 112, D22s00, doi:10.0129/2007JD008853.
- Lindesay, J. A., M.O. Andreae, J.G. Goldammer, G. Harris, H.J. Annegarn, M. Garstang, R.J. Scholes, and B.W. van Wilgen, 1996: International Geosphere Biosphere Programme/International Global Atmospheric Chemistry SAFARI-92 field experiment: Background and overview. *Journal of Geophysical Research*, 101, 23521-23530.
- Liou, K. N. and S-C. Ou, 1989: The Role of Cloud Microphysical Processes in Climate: An Assessment From a One-Dimensional Perspective. *Journal of Geophysical Research*, 94, 8599-8607.

- Liousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman and H. Cachier, 1996: A three-dimensional model study of carbonaceous aerosols. *Journal of Geophysical Research*, 101, 19411-19432.
- Liu, H., R. Pinker, and B. Holben, 2005: A global view of aerosols from merged transport models, satellite, and ground observations. *Journal of Geophysical Research*, 110, D10S15, doi:10.1029/2004JD004695.
- Liu, L., A. A. Lacis, B. E. Carlson, M. I. Mishchenko, and B. Cairns, 2006: Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground-based measurements: A comparison study. *Journal of Geophysical Research*, 111, doi:10.1029/2006JD007334.
- Liu, X., J. Penner, B. Das, D. Bergmann, J. Rodriguez, S. Strahan, M. Wang, and Y. Feng, 2007: Uncertainties in global aerosol simulations: Assessment using three meteorological data sets. *Journal of Geophysical Research*, 112, D11212, doi: 10.1029/2006JD008216.
- Liu, Z., A. Omar, M. Vaughan, J. Hair, C. Kittaka, Y. Hu, K. Powell, C. Trepte, D. Winker, C. Hostetler, R. Ferrare, and R. Pierce, 2008: CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long-range transport. *Journal of Geophysical Research*, 113, D07207, doi:10.1029/2007JD008878.
- **Lockwood**, M., and C. Frohlich, 2007: Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. *Proceedings of the Royal Society A*, 1-14, doi:10.1098/rspa.2007.1880.
- Loeb, N., and S. Kato, 2002: Top-of-atmosphere direct radiative effect of aerosols over the tropical oceans from the Clouds and the Earth's Radiant Energy System (CERES) satellite instrument. Proceedings of the National Academy of Sciences, 15, 1474-1484.
- Loeb, N., and N. Manalo-Smith, 2005: Top-of-Atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations. *Journal of Climate*, 18, 3506-3526.
- Loeb, N. G., S. Kato, K. Loukachine, and N. M. Smith, 2005: Angular distribution models for top-of-atmosphere radiative flux estimation from the Clouds and the Earth's Radiant Energy System instrument on the Terra Satellite. part I: Methodology. *Journal of Atmospheric and Oceanic Technology*, 22, 338–351.
- **Lohmann**, U., J. Feichter, C. C. Chuang, and J. E. Penner, 1999: Prediction of the number of cloud droplets in the ECHAM GCM. *Journal of Geophysical Research*, **104**, 9169-9198.
- **Lohmann**, U., et al., 2001: Vertical distributions of sulfur species simulated by large scale atmospheric models in COSAM: Comparison with observations. *Tellus*, **53B**, 646-672.
- **Lohmann**, U. and J. Feichter, 2005: Global indirect aerosol effects: a review. *Atmospheric Chemistry and Physics*, **5**, 715-737.

- Lohmann, U., I. Koren and Y.J. Kaufman, 2006: Disentangling the role of microphysical and dynamical effects in determining cloud properties over the Atlantic. *Geophysical Research Letters*, 33, L09802, doi:10.1029/2005GL024625.
- Lu, M.-L., G. Feingold, H. Jonsson, P. Chuang, H. Gates, R. C. Flagan, J. H. Seinfeld, 2008: Aerosol-cloud relationships in continental shallow cumulus. *Journal of Geophysical Research*, 113, D15201, doi:10.1029/2007JD009354.
- Lubin, D., S. Satheesh, G. McFarquar, and A. Heymsfield, 2002: Longwave radiative forcing of Indian Ocean tropospheric aerosol. *Journal of Geophysical Research*, 107, 8004, doi:10.1029/2001JD001183.
- Lubin, D. and A. Vogelmann, 2006: A climatologically significant aerosol longwave indirect effect in the Arctic. *Nature*, 439, 453-456.
- Luo, Y., D. Lu, X. Zhou, W. Li, and Q. He, 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. *Journal of Geophysical Research*, 106, 14501, doi:10.1029/2001JD900030.
- Magi, B., P. Hobbs, T. Kirchstetter, T. Novakov, D. Hegg, S. Gao, J. Redemann, and B. Schmid, 2005: Aerosol properties and chemical apportionment of aerosol optical depth at locations off the United States East Coast in July and August 2001. *Journal of the Atmospheric Sciences*, 62, 919-933.
- Malm, W., J. Sisler, D. Huffman, R. Eldred, and T. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United States. *Journal of Geophysical Research*, 99, 1347-1370.
- Martins, J., D. Tanré, L. Remer, Y. Kaufman, S. Mattoo, and R. Levy, 2002: MODIS cloud screening for remote sensing of aerosol over oceans using spatial variability. *Geophysical Research Letters*, **29**, 10.1029/2001GL013252.
- Martonchik, J., D. Diner, R. Kahn, M. Verstraete, B. Pinty, H. Gordon, and T. Ackerman, 1998a: Techniques for the Retrieval of aerosol properties over land and ocean using multiangle data. *IEEE Transactions on Geoscience and Remote Sensing*, 36, 1212-1227
- Martonchik, J., D. Diner, B. Pinty, M. Verstraete, R. Myneni, Y. Knjazikhin, and H. Gordon, 1998b: Determination of land and ocean reflective, radiative, and biophysical properties using multiangle imaging. *IEEE Transactions on Geoscience and Remote Sensing*, 36, 1266-1281.
- Martonchik, J., D. Diner, K. Crean, and M. Bull, 2002: Regional aerosol retrieval results from MISR. *IEEE Transactions on Geoscience and Remote Sensing*, 40, 1520-1531.
- Massie, S., O. Torres, and S. Smith, 2004: Total ozone mapping spectrometer (TOMS) observations of increases in Asian aerosol in winter from 1979 to 2000. *Journal of Geophysical Re*search, 109, D18211, doi:10.1029/2004JD004620.

- Matheson, M. A., J. A. Coakley Jr., W. R. Tahnk, 2005: Aerosol and cloud property relationships for summertime stratiform clouds in the northeastern Atlantic from Advanced Very High Resolution Radiometer observations. *Journal of Geophysical Research*, 110, D24204, doi:10.1029/2005JD006165.
- Matsui, T., and R. Pielke, Sr., 2006: Measurement-based estimation of the spatial gradient of aerosol radiative forcing. *Geophysical Research Letters*, 33, L11813, doi:10.1029/2006GL025974.
- Matsui, T., H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, Y. J. Kaufman, 2006: Satellitebased assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle. *Journal of Geophysical Research*, 111, D17204, doi:10.1029/2005JD006097.
- Matthis, I., A. Ansmann, D. Müller, U. Wandinger, and D. Althausen, 2004: Multiyear aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET. *Journal of Geophysical Research*, **109**, D13203, doi:10.1029/2004JD004600.
- McComiskey, A., and G. Feingold, 2008: Quantifying error in the radiative forcing of the first aerosol indirect effect, *Geophysical Research Letters*, 35, L02810, doi:10.1029/2007GL032667.
- McComiskey, A., S.E. Schwartz, B. Schmid, H. Guan, E.R. Lewis, P. Ricchiazzi, and J.A. Ogren, 2008a: Direct aerosol forcing: Calculation from observables and sensitivity to inputs. *Journal of Geophysical Research*, 113, D09202, doi:10.1029/2007JD009170.
- McComiskey, A, G. Feingold, A. S. Frisch, D. Turner, M. Miller, J. C. Chiu, Q. Min, and J. Ogren, 2008b: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. *Journal of Geophysical Research*, submitted.
- **McCormick**, R., and J. Ludwig, 1967: Climate modification by atmospheric aerosols. *Science*, **156**, 1358-1359.
- McCormick, M. P., L. W. Thomason, and C. R. Trepte 1995: Atmospheric effects of the Mt. Pinatubo eruption. *Nature*, **373**, 399-404.
- McFiggans, G., P. Artaxo, U. Baltensberger, H. Coe, M.C. Facchini, G. Feingold, S. Fuzzi, M. Gysel, A. Laaksonen, U. Lohmann, T. F. Mentel, D. M. Murphy, C. D. O'Dowd, J. R. Snider, E. Weingartner, 2006: The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 6, 2593-2649.
- Menon, S., A.D. Del Genio, Y. Kaufman, R. Bennartz, D. Koch, N. Loeb, and D. Orlikowski, 2008: Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. *Journal of Geophysical Research*, 113, D14S22, doi:10.1029/2007JD009442.

- Michalsky, J., J. Schlemmer, W. Berkheiser, et al., 2001: Multiyear measurements of aerosol optical depth in the Atmospheric Radiation Measurement and Quantitative Links program. *Journal of Geophysical Research*, 106, 12099-12108.
- Min, Q., and L.C. Harrison, 1996: Cloud properties derived from surface MFRSR measurements and comparison with GEOS results at the ARM SGP site. *Geophysical Research Letters*, 23, 1641-1644.
- Minnis P., E. F. Harrison, L. L. Stowe, G. G. Gibson, F. M. Denn, D. R. Doelling. and W. L. Smith. Jr., 1993: Radiative climate forcing by the Mount Pinatubo eruption. *Science*, 259, 411-1415.
- Mishchenko, M., I. Geogdzhayev, B. Cairns, W. Rossow, and A. Lacis, 1999: Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: Sensitivity analysis and preliminary results. *Applied Optics*, 38, 7325-7341.
- Mishchenko, M., et al., 2007a: Long-term satellite record reveals likely recent aerosol trend. *Science*, 315, 1543.
- Mishchenko, M., et al., 2007b: Accurate monitoring of terrestrial aerosols and total solar irradiance. *Bulletin of the American Meteorological Society*, **88**, 677-691.
- Mishchenko, M., and I. V. Geogdzhayev, 2007: Satellite remote sensing reveals regional tropospheric aerosol trends. *Optics Express*, 15, 7423-7438.
- **Mitchell**, J. Jr., 1971: The effect of atmospheric aerosols on climate with special reference to temperature near the Earth's surface. *Journal of Applied Meteorology*, **10**, 703-714.
- Molina, L. T., S. Madronich, J.S. Gaffney, and H.B. Singh, 2008: Overview of MILAGRO/INTEX-B Campaign. IGAC activities, Newsletter of International Global Atmospheric Chemistry Project 38, 2-15, April, 2008.
- **Moody**, E., M. King, S. Platnick, C. Schaaf, and F. Gao, 2005: Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products. *IEEE Transactions on Geoscience and Remote Sensing*, **43**, 144-158.
- Mouillot, F., A. Narasimha, Y. Balkanski, J.-F. Lamarque, and C.B. Field, 2006: Global carbon emissions from biomass burning in the 20th century. *Geophysical Research Letters*, 33, L01801, doi:10.1029/2005GL024707.
- Murayama, T., N. Sugimoto, I. Uno, I., et al., 2001: Ground-based network observation of Asian dust events of April 1998 in East Asia. *Journal of Geophysical Research*, 106, 18346-18359.
- NRC (National Research Council), 2001: Climate Change Sciences: An analysis of some key questions, 42pp., National Academy Press, Washington D.C..
- NRC (National Research Council), 2005: Radiative Forcing of Climate Change: Expanding the Concept and Addessing Uncertainties, National Academy Press, Washington D.C. (Available at http://www.nap.edu/openbook/0309095069/html).

- Nakajima, T., Higurashi, A., Kawamoto, K. and Penner, J. E., 2001: A possible correlation between satellite-derived cloud and aerosol microphysical parameters. *Geophysical Research Letters*, 28, 1171-1174.
- **Norris**, J., and M. Wild, 2007: Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar "dimming", and solar "brightening". *Journal of Geophysical Research*, **112**, D08214, doi:10.1029/2006JD007794.
- Novakov, T., V. Ramanathan, J. Hansen, T. Kirchstetter, M. Sato, J. Sinton, and J. Sathaye, 2003: Large historical changes of fossil-fuel black carbon emissions. *Geophysical Research Letters*, 30, 1324, doi:10.1029/2002GL016345.
- **O'Dowd**, C. D., et al. 1999: The relative importance of sea-salt and nss-sulphate aerosol to the marine CCN population: An improved multi-component aerosol-droplet parameterization. *Quarterly Journal of the Royal Meteorological Society*, **125**, 1295-1313.
- O'Neill, N., T. Eck, A. Smirnov, B. Holben, and S. Thulasiraman, 2003: Spectral discrimination of coarse and fine mode optical depth. *Journal of Geophysical Research*, **108**(D17), 4559, doi:10.1029/2002JD002975.
- Patadia, F., P. Gupta, and S.A. Christopher, 2008: First observational estimates of global clear-sky shortwave aerosol direct radiative effect over land. *Journal of Geophysical Research*, 35, L04810, doi:10.0129/2007GL032314.
- **Penner**, J., R. Dickinson, and C. O'Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. *Science*, **256**, 1432-1434.
- **Penner**, J., R. Charlson, J. Hales, et al., 1994: Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols, *Bulletin of the American Meteorological Society*, **75**, 375-400.
- **Penner**, J.E., H. Eddleman, and T. Novakov, 1993: Towards the development of a global inventory for black carbon emissions. *Atmospheric Environment*, **27**, 1277-1295.
- **Penner**, J. E. et al., 2002: A comparison of model- and satellitederived aerosol optical depth and reflectivity. *Journal of the Atmospheric Sciences*, **59**, 441-460.
- **Penner**, J. E., et al. 2006: Model intercomparison of indirect aerosol effects. *Atmospheric Chemistry and Physics*, **6**, 3391-3405.
- Pincus, R., and S.A. Klein, 2000: Unresolved spatial variability and microphysical process rates in large-scale models. *Journal of Geophysical Research*, 105, 27059-27065.
- **Pinker**, R., B. Zhang, and E. Dutton, 2005: Do satellites detect trends in surface solar radiation? *Science*, **308**, 850-854.
- Procopio, A. S., P. Artaxo, Y. J. Kaufman, L. A. Remer, J. S. Schafer, and B. N. Holben, 2004: Multiyear analysis of Amazonian biomass burning smoke radiative forcing of climate. *Journal of Geophysical Research*, 31, L03108, doi: 10.1029/2003GL018646.

- Qian, Y., W. Wang, L Leung, and D. Kaiser, 2007: Variability of solar radiation under cloud-free skies in China: The role of aerosols. *Geophysical Research Letters*, 34, L12804, doi:10.1029/2006GL028800.
- Quaas, J., and O. Boucher, 2005: Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data. *Geophysical Research Letters*, 32, L17814.
- Quaas, J., O. Boucher and U. Lohmann, 2006: Constraining the total aerosol indirect effect in the LMDZ GCM and ECHAM4 GCMs using MODIS satellite data. *Atmospheric Chemistry* and Physics Discussions, 5, 9669-9690.
- Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satel-lite-based estimate of the direct and indirect aerosol climate forcing. *Journal of Geophysical Research*, 113, D05204, doi:10.1029/2007JD008962.
- Quinn, P.K., T. Anderson, T. Bates, R. Dlugi, J. Heintzenberg, W. Von Hoyningen-Huene, M. Kumula, P. Russel, and E. Swietlicki, 1996: Closure in tropospheric aerosol-climate research: A review and future needs for addressing aerosol direct shortwave radiative forcing. *Contributions to Atmospheric Physics*, 69, 547-577.
- Quinn, P.K., D. Coffman, V. Kapustin, T.S. Bates and D.S. Covert, 1998: Aerosol optical properties in the marine boundary layer during ACE 1 and the underlying chemical and physical aerosol properties. *Journal of Geophysical Research*, 103, 16547-16563.
- Quinn P.K., T. Bates, T. Miller, D. Coffman, J. Johnson, J. Harris, J. Ogren, G. Forbes, G., T. Anderson, D. Covert, and M. Rood, 2000: Surface submicron aerosol chemical composition: What fraction is not sulfate? *Journal of Geophysical Research*, 105, 6785-6806.
- Quinn, P.K., T.L. Miller, T.S. Bates, J.A. Ogren, E. Andrews, and G.E. Shaw, 2002: A three-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. *Journal of Geophysical Research*, 107(D11), doi:10.1029/2001JD001248.
- **Quinn**, P.K., and T. Bates, 2003: North American, Asian, and Indian haze: Similar regional impacts on climate? *Geophysical Research Letters*, **30**, 1555, doi:10.1029/2003GL016934.
- Quinn, P.K., D.J. Coffman, T.S. Bates, E.J. Welton, D.S. Covert, T.L. Miller, J.E. Johnson, S. Maria, L. Russell, R. Arimoto, C.M. Carrico, M.J. Rood, and J. Anderson, 2004: Aerosol optical properties measured aboard the Ronald H. Brown during ACE-Asia as a function of aerosol chemical composition and source region. *Journal of Geophysical Research*, 109, doi:10.1029/2003JD004010.
- Quinn, P.K. and T. Bates, 2005: Regional Aerosol Properties: Comparisons from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS. *Journal of Geophysical Research*, 110, D14202, doi:10.1029/2004JD004755.

- **Quinn**, P.K., et al., 2005: Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization. *Geophysical Research Letters*, **32**, L22809, doi:101029/2005GL024322.
- Quinn, P.K., G. Shaw, E. Andrews, E.G. Dutton, T. Ruoho-Airola, S.L. Gong, 2007: Arctic Haze: Current trends and knowledge gaps. *Tellus*, **59B**, 99-114.
- **Radke**, L.F., J.A. Coakley Jr., and M.D. King, 1989: Direct and remote sensing observations of the effects of ship tracks on clouds. *Science*, **246**, 1146-1149.
- Raes, F., T. Bates, F. McGovern, and M. van Liedekerke, 2000: The 2nd Aerosol Characterization Experiment (ACE-2): General overview and main results. *Tellus*, 52B, 111-125.
- Ramanathan, V., P. Crutzen, J. Kiehl, and D. Rosenfeld, 2001a: Aerosols, Climate, and the Hydrological Cycle. *Science*, 294, 2119-2124.
- Ramanathan, V., P. Crutzen, J. Lelieveld, et al., 2001b: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze. *Journal of Geophysical Research*, **106**, 28371-28398.
- **Ramanathan**, V., and P. Crutzen, 2003: Atmospheric Brown "Clouds". *Atmospheric Environment*, **37**, 4033-4035.
- Ramanathan, V., et al., 2005: Atmospheric brown clouds: Impact on South Asian climate and hydrologic cycle. *Proceedings of the National Academy of Sciences*, USA, 102, 5326-5333.
- Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society, 84, 1547-1564.
- Rao, S., K. Riahi, K. Kupiainen, and Z. Klimont, 2005: Long-term scenarios for black and organic carbon emissions. *Environmental Science*, 2, 205-216.
- Reddy, M., O. Boucher, N. Bellouin, M. Schulz, Y. Balkanski, J. Dufresne, and M. Pham, 2005a: Estimates of multi-component aerosol optical depth and direct radiative perturbation in the LMDZT general circulation model. *Journal of Geophysical Research*, 110, D10S16, doi:10.1029/2004JD004757.
- Reddy, M., O. Boucher, Y. Balkanski, and M. Schulz, 2005b: Aerosol optical depths and direct radiative perturbations by species and source type. *Geophysical Research Letters*, 32, L12803, doi:10.1029/2004GL021743.
- Reid, J., J. Kinney, and D. Wesphal, et al., 2003: Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). *Journal of Geophysical Research*, 108, 8586, doi:10.1029/2002JD002493.

- Reid, J., et al., 2008: An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf. *Journal of Geophysical Research*, 113, D14213, doi:10.1029/2007JD009435.
- Remer, L., S. Gassó, D. Hegg, Y. Kaufman, and B. Holben, 1997: Urban/industrial aerosol: ground based sun/sky radiometer and airborne in situ measurements. *Journal of Geophysical Research*, 102, 16849-16859.
- Remer, L., D. Tanré, Y. Kaufman, C. Ichoku, S. Mattoo, R. Levy, D. Chu, B. Holben, O. Dubovik, A. Smirnov, J. Martins, R. Li, and Z. Ahman, 2002: Validation of MODIS aerosol retrieval over ocean. *Geophysical Research Letters*, 29, 8008, doi:10.1029/2001/GL013204.
- Remer, L., Y. Kaufman, D. Tanré, S. Mattoo, D. Chu, J. Martins, R. Li, C. Ichoku, R. Levy, R. Kleidman, T. Eck, E. Vermote, and B. Holben, 2005: The MODIS aerosol algorithm, products and validation. *Journal of the Atmospheric Sciences*, 62, 947-973.
- Remer, L., and Y. Kaufman, 2006: Aerosol direct radiative effect at the top of the atmosphere over cloud free ocean derived from four years of MODIS data. *Atmospheric Chemistry and Physics*, 6, 237-253.
- Remer, L., et al., 2008: An emerging aerosol climatology from the MODIS satellite sensors, *Journal of Geophysical Research*, **113**, D14S01, doi:10.1029/2007JD009661.
- Rissler, J., E. Swietlicki, J. Zhou, G. Roberts, M. O. Andreae, L. V. Gatti, and P. Artaxo 2004: Physical properties of the sub-micrometer aerosol over the Amazon rain forest during the wet-to-dry season transition—comparison of modeled and measured CCN concentrations. Atmospheric Chemistry and Physics, 4, 2119-2143.
- **Robock**, A., 2000: Volcanic eruptions and climate. *Reviews of Geophysics*, **38**(2), 191-219.
- **Robock**, A., 2002: Pinatubo eruption: The climatic aftermath. *Science*, **295**, 1242-1244.
- Roderick, M. L. and G. D. Farquhar, 2002: The cause of decreased pan evaporation over the past 50 years. *Science*, 298, 1410-1411.
- Rosenfeld, D., and I. Lansky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. *Bulletin of the American Meteorological Society*, 79, 2457-2476.
- **Rosenfeld**, D., 2000: Suppression of rain and snow by urban and industrial air pollution. *Science*, **287**, 1793-1796.
- Rosenfeld, D., 2006: Aerosols, clouds, and climate. *Science*, 312, 10.1126/science.1128972.
- **Ruckstuhl**, C., et al., 2008: Aerosol and cloud effects on solar brightening and recent rapid warming. *Geophysical Research Letters*, **35**, L12708, doi:10.1029/2008GL034228.

- **Russell**, P., S. Kinne, and R. Bergstrom, 1997: Aerosol climate effects: local radiative forcing and column closure experiments. *Journal of Geophysical Research*, **102**, 9397-9407.
- Russell, P., J. Livingston, P. Hignett, S. Kinne, J. Wong, A. Chien, R. Bergstrom, P. Durkee, and P. Hobbs, 1999: Aerosol-induced radiative flux changes off the United States mid-Atlantic coast: comparison of values calculated from sun photometer and in situ data with those measured by airborne pyranometer. Journal of Geophysical Research, 104, 2289-2307.
- Saxena, P., L. Hildemann, P. McMurry, and J. Seinfeld, 1995: Organics alter hygroscopic behavior of atmospheric particles. *Journal of Geophysical Research*, **100**, 18755-18770.
- Schmid, B., J.M. Livingston, P.B. Russell, P.A. Durkee, H.H. Jonsson, D.R. Collins, R.C. Flagan, J.H. Seinfeld, S. Gasso, D.A. Hegg, E. Ostrom, K.J. Noone, E.J. Welton, K.J. Voss, H.R. Gordon, P. Formenti, and M.O. Andreae, 2000: Clearsky closure studies of lower tropospheric aerosol and water vapor during ACE-2 using airborne sunphotometer, airborne *in situ*, space-borne, and ground-based measurements. *Tellus*, 52, 568-593.
- Schmid, B., R. Ferrare, C. Flynn, et al., 2006: How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? *Journal of Geophysical Research*, 111, doi:10.1029/2005JD005837, 2006.
- **Schmidt**, G. A., et al., 2006: Present-day atmospheric simulations using GISS Model E: Comparison to *in situ*, satellite and reanalysis data. *Journal of Climate*, **19**, 153-192.
- Schulz, M., C. Textor, S. Kinne, et al., 2006: Radiative forcing by aerosols as derived from the AeroCom present-day and preindustrial simulations. *Atmospheric Chemistry and Physics*, 6, 5225-5246.
- Schwartz, S. E., R. J. Charlson and H. Rodhe, 2007: Quantifying climate change—too rosy a picture? *Nature Reports Climate Change* 2, 23-24.
- **Sekiguchi**, M., T. Nakajima, K. Suzuki, et al., A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. *Journal of Geophysical Research*, **108**, D22, 4699, doi:10.1029/2002JD003359, 2003
- **Seinfeld**, J.H., et al., 1996. A Plan for a Research Program on Aerosol Radiative Forcing and Climate Change. National Research Council. 161 pp.
- Seinfeld, J. H., G.R. Carmichael, R. Arimoto, et al. 2004: ACE-Asia: Regional climatic and atmospheric chemical effects of Asian dust and pollution. *Bulletin of the American Meteorological Society*, **85**, 367-380.
- **Sheridan**, P., and J. Ogren, 1999: Observations of the vertical and regional variability of aerosol optical properties over central and eastern North America. *Journal of Geophysical Research*, **104**, 16793-16805.

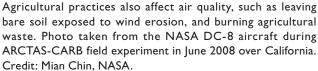
- **Shindell**, D.T., M. Chin, F. Dentener, et al., 2008a: A multi-model assessment of pollution transport to the Arctic. *Atmospheric Chemistry and Physics*, 8, 5353-5372.
- Shindell, D.T., H. Levy, II, M.D. Schwarzkopf, L.W. Horowitz, J.-F. Lamarque, and G. Faluvegi, 2008b: Multimodel projections of climate change from short-lived emissions due to human activities. *Journal of Geophysical Research*, 113, D11109, doi:10.1029/2007JD009152.
- Singh, H.B., W.H. Brune, J.H. Crawford, F. Flocke, and D.J. Jacob, 2008: Chemistry and Transport of Pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B Campaign Overview and First Results. Atmospheric Chemistry and Physics Discussions, submitted.
- Sinyuk, A., O. Dubovik, B. Holben, T. F. Eck, F.-M. Breon, J. Martonchik, R. A. Kahn, D. Diner, E. F. Vermote, Y. J. Kaurman, J. C. Roger, T. Lapyonok, and I. Slutsker, 2007: Simultaneous retrieval of aerosol and surface properties from a combination of AERONET and satellite data. *Remote Sensing of the Environment*, 107, 90-108, doi: 10.1016/j.rse.2006.07.022.
- **Smirnov**, A., B. Holben, T. Eck, O. Dubovik, and I. Slutsker, 2000: Cloud screening and quality control algorithms for the AERONET database. *Remote Sensing of the Environment*, 73, 337-349.
- Smirnov, A., B. Holben, T. Eck, I. Slutsker, B. Chatenet, and R. Pinker, 2002: Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites. *Geophysical Research Letters*, 29, 2115, doi:10.1029/2002GL016305.
- Smirnov, A., B. Holben, S. Sakerin, et al., 2006: Ship-based aerosol optical depth measurements in the Atlantic Ocean, comparison with satellite retrievals and GOCART model. *Geophysical Research Letters*, 33, L14817, doi: 10.1029/2006GL026051.
- Smith Jr., W.L., et al., 2005: EOS Terra aerosol and radiative flux validation: An overview of the Chesapeake Lighthouse and aircraft measurements from satellites (CLAMS) experiment. *Journal of the Atmospheric Sciences*, **62**, 903-918.
- Sokolik, I., D. Winker, G. Bergametti, et al., 2001: Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. *Journal of Geophysical Research*, 106, 18015-18027.
- Sotiropoulou, R.E.P, A. Nenes, P.J. Adams, and J.H. Seinfeld, 2007: Cloud condensation nuclei prediction error from application of Kohler theory: Importance for the aerosol indirect effect. *Journal of Geophysical Research*, 112, D12202, doi:10.1029/2006JD007834.
- Sotiropoulou, R.E.P, J. Medina, and A. Nenes, 2006: CCN predictions: is theory sufficient for assessments of the indirect effect? *Geophysical Research Letters*, 33, L05816, doi:10.1029/2005GL025148

- **Spinhirne**, J., S. Palm, W. Hart, D. Hlavka, and E. Welton, 2005: Cloud and Aerosol Measurements from the GLAS Space Borne Lidar: initial results. *Geophysical Research Letters*, **32**, L22S03, doi:10.1029/2005GL023507.
- **Squires**, P., 1958: The microstructure and colloidal stability of warm clouds. I. The relation between structure and stability. *Tellus*, **10**, 256-271.
- **Stanhill**, G., and S. Cohen, 2001: Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. *Agricultural and Forest Meteorology*, **107**, 255-278.
- Stephens, G., D. Vane, R. Boain, G. Mace, K. Sassen, Z. Wang, A. Illingworth, E. O'Conner, W. Rossow, S. Durden, S. Miller, R. Austin, A. Benedetti, and C. Mitrescu, 2002: The CloudSat mission and the A-Train. *Bulletin of the American Meteorological Society*, 83, 1771-1790.
- **Stephens**, G. L. and J. M. Haynes, 2007: Near global observations of the warm rain coalescence process. *Geophysical Research Letters*, **34**, L20805, doi:10.1029/2007GL030259.
- Stern, D.I., 2005: Global sulfur emissions from 1850 to 2000. *Chemosphere*, **58**, 163-175.
- **Stevens**, B., G. Feingold, R. L. Walko and W. R. Cotton, 1996: On elements of the microphysical structure of numerically simulated non-precipitating stratocumulus. *Journal of the Atmospheric Sciences*, **53**, 980-1006.
- Storlevmo, T., J.E. Kristjansson, G. Myhre, M. Johnsud, and F. Stordal, 2006: Combined observational and modeling based study of the aerosol indirect effect. *Atmospheric Chemistry and Physics*, 6, 3583-3601.
- **Stott**, P.A., et al., 2006: Observational constraints on past attributable warming and predictions of future global warming. *Journal of Climate*, **19**, 3055-3069.
- **Strawa**, A., R. Castaneda, T. Owano, P. Baer, and B. Paldus, 2002: The measurement of aerosol optical properties using continuous wave cavity ring-down techniques. *Journal of Atmospheric and Oceanic Technology*, **20**, 454-465.
- **Streets**, D., T. Bond, T. Lee, and C. Jang, 2004: On the future of carbonaceous aerosol emissions. *Journal of Geophysical Research*, **109**, D24212, doi:10.1029/2004JD004902.
- **Streets**, D., and K. Aunan, 2005: The importance of China's household sector for black carbon emissions. *Geophysical Research Letters*, **32**, L12708, doi:10.1029/2005GL022960.
- **Streets**, D., Y. Wu, and M. Chin, 2006a: Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. *Geophysical Research Letters*, **33**, L15806, doi:10.1029/2006GL026471.

- Streets, D., Q. Zhang, L. Wang, K. He, J. Hao, Y. Tang, and G. Carmichael, 2006b: Revisiting China's CO emissions after TRACE-P: Synthesis of inventories, atmospheric modeling and observations *Journal of Geophysical Research*, 111, D14306, doi:10.1029/2006JD007118.
- Svensmark, H. and E. Friis-Christensen, 1997: Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. *Journal of Atmospheric and Solar-Terrestrial Physics*, 59, 1225-1232.
- **Takemura**, T., T. Nakajima, O. Dubovik, B. Holben, and S. Kinne, 2002: Single-scattering albedo and radiative forcing of various aerosol species with a global three-dimensional model. *Proceedings of the National Academy of Sciences*, **15**, 333-352.
- Takemura, T., T. Nozawa,S. Emori, T. Nakajima, and T. Nakajima, 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. *Journal of Geophysical Research*, 110, D02202, doi:10.1029/2004JD005029.
- Tang, Y., G. Carmichael, I. Uno, J. Woo, G. Kurata, B. Lefer, R. Shetter, H. Huang, B. Anderson, M. Avery, A. Clarke and D. Blake, 2003: Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model. *Journal of Geophysical Research*, 108, 8824, doi:10.1029/2002JD003110.
- Tang, Y., G. Carmichael, J. Seinfeld, D. Dabdub, R. Weber, B. Huebert, A. Clarke, S. Guazzotti, D. Sodeman, K. Prather, I. Uno, J. Woo, D. Streets, P. Quinn, J. Johnson, C. Song, A. Sandu, R. Talbot and J. Dibb, 2004: Three-dimensional simulations of inorganic aerosol distributions in East Asia during spring 2001. *Journal of Geophysical Research*, 109, D19S23, doi:10.1029/2003JD004201.
- Tanré, D., Y. Kaufman, M. Herman, and S. Mattoo, 1997: Remote sensing of aerosol properties over oceans using the MODIS/ EOS spectral radiances. *Journal of Geophysical Research*, 102, 16971-16988.
- Tanré, D., J. Haywood, J. Pelon, J. Léon, B. Chatenet, P. Formenti, P. Francis, P. Goloub, E. Highwood, and G. Myhre, 2003: Measurement and modeling of the Saharan dust radiative impact: Overview of the Saharan Dust Experiment (SHADE). *Journal of Geophysical Research*, 108, 8574, doi:10.1029/2002JD003273.
- **Textor**, C., M. Schulz, S. Guibert, et al., 2006: Analysis and quantification of the diversities of aerosol life cycles within AERO-COM. *Atmospheric Chemistry and Physics*, **6**, 1777-1813.
- **Textor**, C., et al., 2007: The effect of harmonized emissions on aerosol properties in global models—an AeroCom experiment. *Atmospheric Chemistry and Physics*, **7**, 4489-4501.

- **Tie**, X. et al., 2005: Assessment of the global impact of aerosols on tropospheric oxidants. *Journal of Geophysical Research*, **110**, doi:10.1029/2004JD005359.
- **Torres**, O., P. Bhartia, J. Herman, Z. Ahmad, and J. Gleason, 1998: Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical bases. *Journal of Geophysical Research*, **103**, 17009-17110.
- Torres, O., P. Bhartia, J. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002: A long-term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements. *Journal of the Atmospheric Sciences*, 59, 398-413.
- Torres, O., P. Bhartia, A. Sinyuk, E. Welton, and B. Holben, 2005: Total Ozone Mapping Spectrometer measurements of aerosol absorption from space: Comparison to SAFARI 2000 groundbased observations. *Journal of Geophysical Research*, 110, D10S18, doi:10.1029/2004JD004611.
- Turco, R.P., O.B. Toon, R.C. Whitten, J.B. Pollack, and P. Hamill, 1983: The global cycle of particulate elemental carbon: a theoretical assessment, in *Precipitation Scavenging, Dry Deposition, and Resuspension*, ed. H.R. Pruppacher et al., pp. 1337-1351, Elsevier Science, New York.
- **Twomey**, S., 1977: The influence of pollution on the shortwave albedo of clouds. *Journal of the Atmospheric Sciences*, 34, 1149-1152.
- van Ardenne, J. A., F.J. Dentener, J. Olivier, J. Klein, C.G.M. Goldewijk, and J. Lelieveld, 2001: A 1° x 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. *Global Biogeochemical Cycles*, **15**, 909-928.
- Veihelmann, B., P. F. Levelt, P. Stammes, and J. P. Veefkind, 2007: Simulation study of the aerosol information content in OMI spectral reflectance measurements. *Atmospheric Chemistry and Physics*, 7, 3115-3127.
- Wang, J., S. Christopher, F. Brechtel, J. Kim, B. Schmid, J. Redemann, P. Russell, P. Quinn, and B. Holben, 2003: Geostationary satellite retrievals of aerosol optical thickness during ACE-Asia. *Journal of Geophysical Research*, 108, 8657, 10.1029/2003JD003580.
- Wang, S., Q. Wang, and G. Feingold, 2003: Turbulence, condensation and liquid water transport in numerically simulated non-precipitating stratocumulus clouds. *Journal of the Atmospheric Sciences*, 60, 262-278.
- **Warner**, J., and S. Twomey, 1967: The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. *Journal of the Atmospheric Sciences*, **24**, 704-706.
- Warner, J., 1968: A reduction of rain associated with smoke from sugar-cane fires—An inadvertent weather modification. *Journal of Applied Meteorology*, 7, 247-251.

- Welton, E., K. Voss, P. Quinn, P. Flatau, K. Markowicz, J. Campbell, J. Spinhirne, H. Gordon, and J. Johnson, 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micro-pulse lidars. *Journal of Geophysical Research*, 107, 8019, doi:10.1029/2000JD000038.
- Welton, E., J. Campbell, J. Spinhirne, and V. Scott, 2001: Global monitoring of clouds and aerosols using a network of micropulse lidar systems, in Lidar Remote Sensing for Industry and Environmental Monitoring, U. N. Singh, T. Itabe, N. Sugimoto, (eds.), *Proceedings of SPIE*, 4153, 151-158.
- Wen, G., A. Marshak, and R. Cahalan, 2006: Impact of 3D clouds on clear sky reflectance and aerosol retrieval in a biomass burning region of Brazil. *IEEE Geoscience and Remote Sensing Letters*, 3, 169-172.
- Wetzel, M. A. and Stowe, L. L.: Satellite-observed patterns in stratus microphysics, aerosol optical thickness, and shortwave radiative forcing. 1999: *Journal of Geophysical Research*,, 104, 31287-31299.
- Wielicki, B., B. Barkstrom, E. Harrison, R. Lee, G. Smith, and J. Cooper, 1996: Clouds and the Earth's radiant energy system (CERES): An Earth observing system experiment. Bulletin of the American Meteorological Society, 77, 853-868.
- Wild, M., H. Gilgen, A. Roesch, et al., 2005: From dimming to brightening: Decadal changes in solar radiation at Earth's surface. *Science*, 308, 847-850.
- Winker, D., R. Couch, and M. McCormick, 1996: An overview of LITE: NASA's Lidar In-Space Technology Experiment. *Proceedings of IEEE*, 84(2), 164-180.
- Winker, D., J. Pelon, and M. McCormick, 2003: The CALIP-SO mission: spaceborne lidar for observation of aerosols and clouds. *Proceedings of SPIE*, 4893, 1-11.
- **Xue**, H., and G. Feingold, 2006: Large eddy simulations of tradewind cumuli: Investigation of aerosol indirect effects. *Journal of the Atmospheric Sciences*, **63**, 1605-1622.
- Xue, H., G. Feingold, and B. Stevens, 2008: Aerosol effects on clouds, precipitation, and the organization of shallow cumulus convection. *Journal of the Atmospheric Sciences*, 65, 392-406
- Yu, H., S. Liu, and R. Dickinson, 2002: Radiative effects of aerosols on the evolution of the atmospheric boundary layer. *Journal of Geophysical Research*, 107, 4142, doi:10.1029/2001JD000754.
- Yu, H., R. Dickinson, M. Chin, Y. Kaufman, B. Holben, I. Geogdzhayev, and M. Mishchenko, 2003: Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations. *Journal of Geophysical Research*, 108, 4128, doi:10.1029/2002JD002717.



Atmospheric Aerosol Properties and Climate Impacts

- Yu, H., R. Dickinson, M. Chin, Y. Kaufman, M. Zhou, L. Zhou, Y. Tian, O. Dubovik, and B. Holben, 2004: The direct radiative effect of aerosols as determined from a combination of MODIS retrievals and GOCART simulations. *Journal of Geophysical Research*, 109, D03206, doi:10.1029/2003JD003914.
- Yu, H., Y. Kaufman, M. Chin, G. Feingold, L. Remer, T. Anderson, Y. Balkanski, N. Bellouin, O. Boucher, S. Christopher, P. DeCola, R. Kahn, D. Koch, N. Loeb, M. S. Reddy, M. Schulz, T. Takemura, and M. Zhou, 2006: A review of measurement-based assessments of aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 6, 613-666.
- Yu, H., R. Fu, R. Dickinson, Y. Zhang, M. Chen, and H. Wang, 2007: Interannual variability of smoke and warm cloud relationships in the Amazon as inferred from MODIS retrievals. *Remote Sensing of the Environment*, 111, 435-449.
- Yu, H., L.A. Remer, M. Chin, H. Bian, R. Kleidman, and T. Diehl, 2008: A satellite-based assessment of trans-Pacific transport of pollution aerosol. *Journal of Geophysical Research*, 113, D14S12, doi:10.1029/2007JD009349.
- **Zhang**, J., and S. Christopher, 2003: Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, and CERES observations on Terra. *Geophysical Research Letters*, **30**, 2188, doi:10.1029/2003GL018479.
- Zhang, J., S. Christopher, L. Remer, and Y. Kaufman, 2005a: Shortwave aerosol radiative forcing over cloud-free oceans from Terra. I: Angular models for aerosols. *Journal of Geophysical Research*, 110, D10S23, doi:10.1029/2004JD005008.
- Zhang, J., S. Christopher, L. Remer, and Y. Kaufman, 2005b: Short-wave aerosol radiative forcing over cloud-free oceans from Terra. II: Seasonal and global distributions. *Journal of Geophysical Research*, 110, D10S24, doi:10.1029/2004JD005009.
- Zhang, J., J. S. Reid, and B. N. Holben, 2005c: An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products. *Geophysical Research Letters*, 32, L15803, doi:10.1029/2005GL023254.
- Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker, and E.J. Hyer, 2008: A system for operational aerosol optical depth data assimilation over global oceans. *Journal of Geophysical Re*search, 113, doi:10.1029/2007JD009065.
- **Zhang**, Q. et al., 2007: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. *Geophysical Research Letters*, **34**, L13801, doi:10.1029/2007GL029979.
- **Zhang**, X., F.W. Zwiers, and P.A. Stott, 2006: Multi-model multi-signal climate change detection at regional scale. *Journal of Climate*, **19**, 4294-4307.

- Zhang, X., F.W. Zwiers, G.C. Hegerl, F.H. Lambert, N.P. Gillett, S. Solomon, P.A. Stott, T. Nozawa, 2006: Detection of human influence on twentieth-century precipitation trends. *Nature*, 448, 461-465, doi:10.1038/nature06025.
- Zhao, T. X.-P., I. Laszlo, W. Guo, A. Heidinger, C. Cao, A. Jelenak, D. Tarpley, and J. Sullivan, 2008a: Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. *Journal of Geophysical Research*, 113, D07201, doi:10.1029/2007JD009061.
- **Zhao**, T. X.-P., H. Yu, I. Laszlo, M. Chin, and W.C. Conant, 2008b: Derivation of component aerosol direct radiative forcing at the top of atmosphere for clear-sky oceans. *Journal of Quantitative Spectroscopy and Radiative Transfer*, **109**, 1162-1186.
- Zhou, M., H. Yu, R. Dickinson, O. Dubovik, and B. Holben, 2005: A normalized description of the direct effect of key aerosol types on solar radiation as estimated from AERONET aerosols and MODIS albedos. *Journal of Geophysical Research*, 110, D19202. doi:10.1029/2005JD005909.

Photography and Image Credits

Cover/Title Page/Table of Contents:

Image 1: Fire in the savanna grasslands of Kruger National Park, South Africa, during the international Southern African Fire-Atmosphere Research Initiative (SAFARI) Experiment, September 1992. Due to extensive and frequent burning of the savanna grass, Africa is the "fire center" of the world. Credit: Joel S. Levine, NASA.

Image 2: Urban pollution in Hong Kong, May 2007. The persistent pollution haze significantly reduces the visibility. Credit: Mian Chin, NASA.

Image 3: Dust storms of northwest Africa captured by Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on February 28, 2000. Credit: SeaWiFS Project at NASA Goddard Space Flight Center.

Image 4: Breaking ocean waves – a source of sea salt aerosols. Credit: Mian Chin, NASA.

Image 5: Clouds at sunset. Clouds and aerosols scatter the sun's rays very effectively when the sun is low in the sky, creating the bright colors of sunrise and sunset. Credit: Mian Chin, NASA.

Image 6: Ship tracks appear when clouds are formed or modified by aerosols released in exhaust from ship smokestacks. Image from MODIS. Credit: NASA.

For other images in this report, please see the captions/credits located with each image.

Contact Information

Global Change Research Information Office c/o Climate Change Science Program Office 1717 Pennsylvania Avenue, NW Suite 250 Washington, DC 20006 202-223-6262 (voice) 202-223-3065 (fax) The Climate Change Science Program incorporates the U.S. Global Change Research Program and the Climate Change Research Initiative.

To obtain a copy of this document, place an order at the Global Change Research Information Office (GCRIO) web site: http://www.gcrio.org/orders.

Climate Change Science Program and the Subcommittee on Global Change Research

William Brennan, Chair

Department of Commerce National Oceanic and Atmospheric Administration Director, Climate Change Science Program

Jack Kaye, Vice Chair

National Aeronautics and Space Administration

Allen Dearry

Department of Health and Human Services

Anna Palmisano

Department of Energy

Mary Glackin

National Oceanic and Atmospheric Administration

Patricia Gruber

Department of Defense

William Hohenstein

Department of Agriculture

Linda Lawson

Department of Transportation

Mark Myers

U.S. Geological Survey

Tim Killeen

National Science Foundation

Patrick Neale

Smithsonian Institution

Jacqueline Schafer

U.S. Agency for International Development

Joel Scheraga

Environmental Protection Agency

Harlan Watson

Department of State

EXECUTIVE OFFICE AND OTHER LIAISONS

Robert Marlay

Climate Change Technology Program

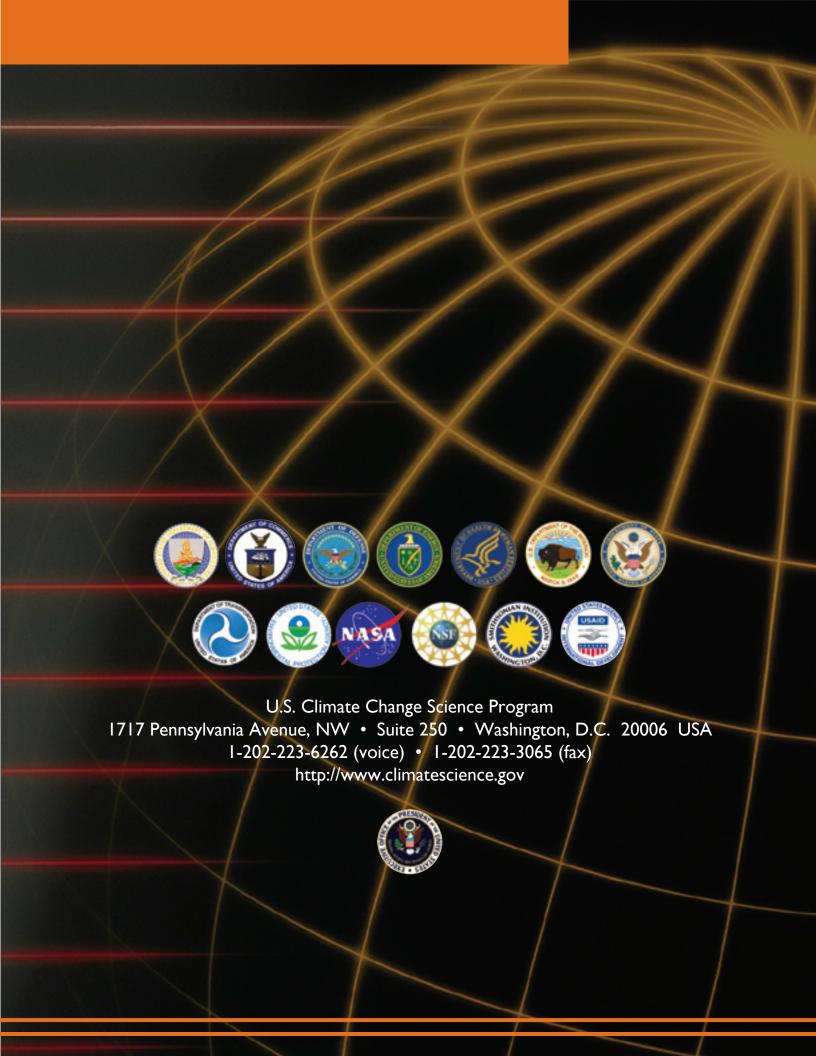
Katharine Gebbie

National Institute of Standards & Technology

Stuart Levenbach

Office of Management and Budget

Margaret McCalla


Office of the Federal Coordinator for Meteorology

Robert Rainey

Council on Environmental Quality

Daniel Walker

Office of Science and Technology Policy

