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ABSTRACT 

 
Over the past decade or so, the utility of multiple scattering Green functions has been 
demonstrated in a number of applications in cloud remote sensing.  In view of (i) the 
large optical thicknesses observed for several important types of cloud, and (ii) the 
predominance of scattering over absorption by cloud droplets throughout most of 
the solar spectrum, the diffusion or “P1” limit of radiative transfer theory proves to be 
a productive framework for computing Green functions, as needed, in space and/or 
time.  This is largely because the diffusion approximation leads to analytical 
expressions in Fourier‐Laplace variables that return space‐time radiation 
characteristics in the form of moments or of  probability distributions (i.e., normalized 
Green functions).  These characteristics are in turn shown to be quite accurate in 
comparison with Monte Carlo solutions of the full 3D radiative transfer equation.  
Moreover, physical insights into non‐trivial multiple scattering processes are gained 
because diffusion has an analog in particle random walk theory that predicts 
qualitatively correct behavior of remote sensing observables as cloud parameters are 
varied.   
 
In this review, we cover many aspects of the diffusion‐theoretical approach to the 
calculation of radiation transport Green functions for internal as well as boundary 
sources, and for in situ detectors as well as remote cloud observations.  
Homogeneous, stratified and moderately variable stratiform cloud models are 
examined.  Solar as well as pulsed laser sources are considered and closed‐form 
expressions for responses in reflection as well as transmission are computed and 
validated.  Last but not least, we discuss applications to current and futuristic cloud 
remote sensing technologies from ground‐level, airborne and space‐based platforms.  
Both active (lidar) and passive (especially, oxygen A‐band spectroscopic) modalities 
are described.  As it turns out, they share a surprising amount of common theoretical 
background that is best described in terms of multiple scattering Green functions. 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5 Space-time Green functions for diffusive
radiation transport, in application to
active and passive cloud probing

Anthony B. Davis, Igor N. Polonsky, Alexander Marshak

5.1 Context, motivation, methodology, and overview

Clouds are a feast for the eye but, when contemplating their fluid beauty, it is im-
portant – at least for scientists – to bear in mind that they are also key elements of
the Earth’s climate system. They are indeed the first-order regulators of the intake
in solar energy: What portion goes back to space? What reaches the surface (then
warms the ground, drives photosynthesis, etc.)? Clouds also contribute strongly
to the vertical distribution of solar heating and, from there, the thermal balance
of the atmosphere. These are well-known and relatively well-understood/modeled
climate roles of clouds, as can be expected for such naturally occurring components
of the atmosphere. We note that these roles involve radiative transfer across the
electromagnetic spectrum. What is far less understood about clouds is how they
interact microphysically, chemically and thermo-hydrodynamically, with other nat-
ural and anthropogenic constituents, especially aerosols. These are known as cloud
feedback mechanisms in the parlance of climate science, and have been identified
as the single most resilient roadblock in the way of reducing uncertainty in future
climate prediction [1], an enterprise that relies heavily on models to explore various
scenarios in global greenhouse gas emissions.

The first order of business in addressing cloud feedback issues is therefore to
improve statistics and accuracy in cloud observation, which is prerequisite to the
improvement of cloud process models, which are in turn expected to enable the
progress we so desperately need in global and regional climate modeling. Policy-
makers need and deserve the absolute best climate science deliverables if they are
to propose in some ways painful regulations for greenhouse gas emissions in accord
with future international treaties. Because cloud systems have regional influence
and strong diurnal cycles, communities engaged in the meteorology, air-quality and
surface hydrology are also stakeholders in improved cloud science, both in obser-
vations and in models.

As soon as we realize that direct airborne probing of clouds is prohibitively
expensive on a per datum basis, it follows that improving cloud observations glob-
ally is primarily a charge to the cloud remote sensing community. Whether from
ground or from space – and these perspectives are in many ways complementary
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– we need better coverage (number of satellites, and their swaths),1 better sam-
pling (spatial and angular resolution), and better retrieval techniques (exploitation
of spectral and polarization measurements). This picture is overly simplistic. The
notion that we can infer all the cloud properties that matter using only spectral
and, with increasing appeal and availability, polarization data follows from the pre-
vailing ‘1D thinking’ behind all current cloud remote sensing products delivered by
space agencies world-wide. The operational assumption is indeed that clouds can
be represented, for the purposes of the unavoidable radiative transfer, as horizon-
tally infinite plane-parallel slabs at the pixel-scale, irrespective of the size of the
pixel. We thus ignore the pixel-to-pixel variations that make satellite cloud imagery
so interesting, not to mention the likely presence of sub-pixel variability. This as-
sumption may in fact be justified in view of other uncertainties: there is more than
just radiative transfer modeling error to worry about, and a relatively fool-proof
way of minimizing its impact is to steer away from cloud boundaries. This makes
cloudy- versus clear-column discrimination an important preliminary task.

However, those interesting interactions between clouds and aerosols happen
in the (often only partially [2]) cloudy pixels, as well as in those pixels at the
cloudyclear interface [3] – precisely where we are sure that neither cloud nor aerosol
retrievals are accurate due to unaccounted 3D radiative transfer effects. The emerg-
ing paradigm in cloud and aerosol remote sensing is therefore 3D and integrative:
multi-spectral and multi-polarization methods are merged with multi-pixel and
multi-angle ones and, ultimately, synergies across very different kinds of instru-
mentation are used to optimize cloud property retrievals.

No one ever said that cloud remote sensing is easy!
This review covers in detail the theory of radiation transport Green functions,

as it applies to optical probing of cloud structure by remote observers on both sides
of the clouds, as well as in situ observers. We are only interested in scattering – and
indeed multiple scattering – phenomenology based primarily, but not exclusively,
on solar and laser sources. Our focus will be on the more opaque clouds that form
in the Earth’s atmosphere, since we favor analytical methods based on mathemat-
ically tractable problems that arise in the diffusion (small mean-free-path) limit
of transport theory at large.2 Finally, we will make the standard assumption of
horizontally extended stratiform cloud geometry.3

In spite of this cascade of restrictions, the modeling framework we present sheds
new light on a wide variety of radiometric modalities: some active and some pas-
sive; some advanced concepts and some well-established ones; some from ground,

1From geostationary platforms, one sees the whole visible face of the Earth; however,
their distance limits the achievable spatial resolution.

2We are thus building on the shoulders of the giants that founded and developed
statistical physics: kinetic theory (going at least back to L. Boltzmann), neutron transport
theory (going back to J. von Neumann, N. Metropolis, R. Peierls, and others), stellar
astrophysics (going back to A. Eddington, A. Milne, V.A. Ambartsumian, V.V. Sobolev,
S. Chandrasekhar, and others), and even turbulence (going back to L.F. Richardson, A.N.
Kolmogorov, G.I. Taylor, and others).

3However, the space-time Green function is a 3D radiative property, and we will re-
visit the challenging problem of practical (i.e., efficient and targeted) 3D cloud radiative
transfer armed with said Green functions in various parts of the paper.
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some from space, and yet others from aircraft. The application field is so vast that
we have opted to survey the relevant theoretical and observational literatures as we
encounter different topics. Our main message is that they all branch away from the
same radiation transport theory, namely, the unifying framework of Green func-
tions. We present this body of theory up-front in a hierarchical manner: starting
with a very detailed incarnation of radiative transfer4 in three spatial dimensions
and with time dependence, implemented numerically mostly with slow-but-accurate
Monte Carlo methods, and ending with simple scaling arguments, implemented
with the proverbial back-of-the-envelope algebra. In our individual experiences, it
is this multi-tiered modeling toolkit that has enabled the pursuit of instrument de-
velopment ... even though our training is in applied theoretical and computational
physics and mathematics. This solid theoretical background also enabled us to pro-
pose new ways to use under-exploited components of existing radiometric signals,
some of them considered previously as contamination (for example, 3D adjacency
effects in remote sensing at high spatial resolutions) or even as noise (for example,
solar background in lidar).

Although no real-world data is used in this paper, we point the reader to nu-
merous publications by ourselves and others that are all about data analysis. They
are all success stories that, as a whole, have shored up our now firm belief in bal-
ance – as well as intense interaction – between (i) theory, (ii) computation, and
(iii) observation/experimentation. Stakes are often much higher for engineering
projects than for cloud remote sensing: we can think, for instance, of aircraft or
nuclear reactor safety and reliability. It is therefore not surprising to learn that
engineering scientists have developed a quite formal choreography for the interac-
tion between these three elements. In the process, the notions of ‘verification’ and
‘validation’ have been given precise meanings that Roache [6] has distilled into two
fundamental questions: Are the equations solved right? (Verification) Are they the
right equations? (Validation). The first V in ‘V&V’ leads in particular to code-
to-code comparisons, while the second invariably leads to model-to-measurement
comparisons. This framework can be adapted to the study of atmospheric radia-
tion transport in the presence of clouds [7,8]. We believe many other communities,
remote sensing included, have much to gain by adopting – or at least taking inspi-
ration from – this tested framework.

In the next section, we survey the necessary prerequisites in time-domain 3D
radiative transfer theory. In section 5.3, Fourier–Laplace transformation is intro-
duced, which will prove useful in several ways. Sections 5.4 and 5.5 are the core
material of the paper: formulation and solution of the diffusive Green function prob-
lem. In other words, how do we obtain analytic expressions for the Green function
in time and/or space, or for its marginal or conditional moments, for light either re-
flected or transmitted by clouds? Appendices provide the required technical details
as well as heuristic approaches to Green functions, in standard as well as anomalous
diffusion regimes, using random walk theory. A comprehensive list of symbols and
abbreviations is provided for reference at the end of the paper. Since the analyti-
cal expressions are delivered in Fourier and/or Laplace spaces, section 5.6 presents

4Radiative transfer has itself been connected to Huygens’ scalar wave theory [4], and
only quite recently in final form to Maxwell’s classic electromagnetic wave theory [5],
through rigorous methods of statistical optics.
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special cases where inverse transforms can be performed in closed-form. The short
section 5.7 on (airborne) in situ cloud ‘lidar’, a new probe of optically thick clouds
from the inside, is followed by two longer sections devoted to emerging technolo-
gies in cloud remote sensing per se. Both time-domain radiative transfer via O2

A-band spectroscopy (section 5.8) and multiple-scattering cloud lidar (section 5.9)
can be implemented in ground-, aircraft- or space-based configurations. We show
in particular that there is additional information to harvest in the spatial domain
by lidars if the stand-off distance is not too large. A selection of other theoretical
and observational applications of Green functions are described in section 5.10, for
the most part based on well-established instrumentation. We offer some closing
remarks in section 5.11 with an emphasis on future developments.

Notes on reproducibility and validation

The bulk of the analytic diffusion theoretical computations described in sections
5.5 to 5.10 were performed using a commercially available symbolic mathematics
package. We believe that any such product can be used at the reader’s convenience
for replicating, generalizing and/or applying these results. Although it is possible to
derive them by hand, the exercise can prove extremely tedious. We did it ourselves
only in the simplest of cases.

Furthermore, diffusion is in essence an asymptotic limit of radiative transfer.
Before trusting our diffusion results to give us insights about radiation transport
processes in real clouds, we compare them on a regular basis using a numerical
time-dependent radiative transfer solver, generally a straightforward Monte Carlo
scheme. Is this comparison of model outputs verification and validation? In our
view, it would be the former if the very same equations were solved, but that is
not the case. One model is higher in the accuracy-based hierarchy than the other,
so Monte Carlo can be used to validate diffusion. However, because of their role
in validation, our Monte Carlo simulations were designed to follow as closely as
possible the assumptions of the diffusion problem: single-parameter phase functions,
predictions for fluxes, and so on. This way, we are informed about the range of
cloud parameters where a specific diffusion model can be applied, and about the
magnitude of associated modeling error.

5.2 Elements of time-dependent three-dimensional radiative
transfer

5.2.1 Radiant energy transport

Let G(t,x,Ω) denote radiance at instant t and position x in 3D space propagating
into direction Ω (units are W/m2/sr). In view of the focus of the present study on
Dirac δ-sources introduced in the next subsection, we denote radiances here by G,
the usual mnemonic for Green functions, and reserve I for ‘at-detector’ radiances
discussed in various parts of the paper. At-the-detector is indeed where we quite
literally leave the realm of radiative transfer and enter that of radiometry.
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The flow of Green function radiance, G(t,x,Ω), in its (1+3+2)-dimensional
space is determined by the monochromatic time-dependent 3D radiative transfer
(RT) equation [9], written succinctly as

LG = SG+Q. (2.1)

On the l.-h. side, we identify the propagation operator

L = c−1 ∂

∂t
+ Ω · ∇+ σ(x) (2.2)

where σ(x) is the extinction coefficient (in 1/m), assumed to depend only on posi-
tion. The two last terms in L represent losses for the intensity of the light beam as
it crosses an elementary volume aligned with Ω, respectively to advection across
boundaries and extinction.5 We caution here that ` = 1/σ(x) may have a popu-
lar interpretation as the local value of the mean-free-path (MFP); however, it will
generally differ from the actual MFP, except in strictly uniform media [10].

On the r.-h. side of (2.1), we find the gains of the elementary volume aligned
with Ω. First comes the in-scattering operator

S = σs(x)
∫
4π

p(Ω′ ·Ω)[·] dΩ′ (2.3)

where σs(x) is the scattering coefficient. It is also assumed to depend only on
position and, for simplicity, in such a way that the single scattering albedo (SSA),

$0 =
σs(x)
σ(x)

(2.4)

remains constant. The scattering phase function (expressed here in 1/sr) is de-
noted p(Ωin ·Ωout); it is also assumed, for simplicity, uniform in space as well as
axisymmetric around the incident direction Ωin. The local source term, denoted
by Q(t,x,Ω) in (2.1), is another net gain for the elementary volume (expressed in
W/m3/sr).

Apart from boundaries, to be examined momentarily, the net losses of radiant
energy for the whole medium are determined locally by the absorption coefficient
σa(x) = σ(x)− σs(x) = (1−$0)σ(x).

The general RT equation spelled out in (2.1)–(2.3) is usually derived from purely
phenomenological considerations grounded in radiant energy conservation [11] or,
more formally, by analogy with particle kinetic theory leading to Boltzmann’s trans-
port equation, which is narrowed to the case of ‘photons’ [12], often viewed simply
as neutrons without the possibility of multiplication events (that cause the SSA to
exceed unity). However, when dealing with electromagnetic radiation, one cannot
be satisfied with these derivations since, in particular, they do not make clear the
conditions of validity of the transport model. Progress towards a wave-theoretical
foundation for radiative transfer was achieved steadily using a scalar wave approach

5As far as we know, extinction σ can only be negative inside a lasing medium due to
stimulated emission under conditions far from thermal equilibrium.
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to physical optics [4]. We refer the interested reader to Mishchenko’s recent review
[13, and several key references therein], to gain understanding of how the RT equa-
tion – without temporal or spatial variability, but plus polarization – follows from
Maxwell’s equations through the rigorous methods of statistical optics. The three
most important lessons from this definitive microscopic foundation for RT theory
are probably:

1. that the mesoscopic 3D RT equation is valid in all ‘dilute’ optical media, i.e.,
where inter-particle distances are much larger than the wavelengths of interest;

2. that multiple scattering paths ending in propagation exactly backwards toward a
source have a residual wave-theoretical signature in the interesting phenomenon
of ‘weak localization’ (resulting in an enhancement of radiance very near the
backscattering direction); and

3. that, in view of the purely classical derivation, ‘photons’ have nothing to do with
the story in spite of the often-used analogy with particle transport, especially
by Monte Carlo (MC) practitioners.

As an illustration of the last point, we should probably talk about e-folding dis-
tances rather than MFPs, a notion inherited from kinetic theory, which is patently
about particulate material.

In the following, we will continue to depend on the microscopic description of
radiation-matter interactions (Maxwell’s equations and, as needed, their quantum
mechanical counterparts) only to provide us with transport coefficients (σ’s) and
phase functions; see, for example, the monographs by Goody and Yung [14] for
molecules, Bohren and Huffman [15] for spherical particles, and Mishchenko et
al. [16] for nonspherical ones. We will actually be taking a step in the opposite
direction: from the above mesoscopic 3D RT equation to the macroscopic picture
where scattering dominates to such a degree that angular details are smoothed
down to just two spherical harmonics. That is the ‘diffusion’ (a.k.a. ‘P1’) limit
of RT theory. In this asymptotic (small MFP) approximation to RT, the analogy
between light (highly scattered) and particles (in Brownian motion) regains some
usefulness, bearing in mind the caveat in the above lesson #3; cf. Appendix E.

Strictly speaking, the new microphysical derivation of the RT equation [5] is for
spatially uniform, although not necessarily plane-parallel, media under steady and
uniform illumination by a collimated beam. Mishchenko [17] extended his derivation
to media with fluctuations at scales that are small with respect to the MFP; specif-
ically, one neglects the contributions of electromagnetic wave interactions between
particles inside the same (randomly placed) ‘inclusion’. However, extensions of this
rigorous framework to pulsed and/or narrow beams and/or larger-scale fluctuations
– all topics of interest here – are considered open problems [13]. Pending its deriva-
tion from first principles (Maxwell’s equations), we will use the time-dependent
3D RT equation in (2.1)–(2.3) as the ‘exact’ numerical benchmark against which
analytical diffusion-based approximations are assessed.

5.2.2 Dirac-δ boundary sources

In view of the potential for spatial variability of σ(x), no generality is lost by
bounding the cloudy medium by two horizontal planes at z = 0 and z = H. If we
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exclude from the definition of G the un-collided part of the radiance impinging on
the medium from an external source, then we can subject the 3D RT equation to
homogeneous boundary conditions (BCs):

G(t, x, y, 0,Ω) = 0, µ > 0, (2.5)
G(t, x, y,H,Ω) = 0, µ < 0, (2.6)

where we denote direction cosines as

Ω(θ, φ) =

 η cosφ
η sinφ
µ


in Cartesian coordinates using polar angles, with µ = cos θ and η =

√
1− µ2. In

this case, nontrivial solutions of the RT equation require a non-vanishing source
term Q in (2.1). For boundary-source Green functions, we use

Q(t,x,Ω) = δ(t− z/c)δ(x)δ(y)σs(0, 0, z)p(µ)

× exp

− z∫
0

σ(0, 0, z′) dz′

 (2.7)

where we assume, for the moment, vertical beam alignment (normal to the bound-
ary at z = 0). Note from the writing of the first δ-function that the instant t = 0
is when the the laser pulse hits the cloud at z = 0, precisely at x = y = 0 for con-
venience. Lasers are indeed physical sources that approximate Dirac-δ’s extremely
well in all the variables that matter here: time, location and directionality. In
other applications, their δ-in-wavelength and δ-in-polarization qualities also come
in handy.

Alternatively, we can set Q(t,x,Ω) ≡ 0 in the RT equation and model the
source in a revised statement of the BC (2.5) at z = 0:

G(t, x, y, 0,Ω) = δ(t)δ(x)δ(y)δ(Ω− ẑ), Ωz = µ > 0, (2.8)

where ẑ = (0, 0, 1)T orients the positive z-axis. In this case, the radiance field
contains both direct and diffuse components. Apart from this interpretation of
what is contained in G(t,x,Ω) or not, the two ways of modeling the normally
incident Dirac-δ source at a boundary are equivalent.

Figure 5.1 offers a comprehensive view of the spatial Green function excited by
a steady narrow beam normal to the upper boundary of a uniform non-absorbing
cloud assumed to be between altitudes 1 km and 2.2 km. Mean radiance, averaged
over all directions, is plotted. We immediately notice that the multiple-scattering
Green function permeates the whole optically thick (τ = 36) cloud. In view of
the logarithmic scale, we notice the exponential-type decay of the light field with
distance from the beam inside the cloud. This contrasts with the much slower decay
of overall light levels with distance to the cloud boundaries (viewed as sources for
remote observers), which is based on a 1/r2 law in the absence of any significant
scattering or absorption. Let us assume we have a single laser pulse with ∼1018

photons (for example, a 532 nm solid-state device with 5 W in cw power pulsing
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Fig. 5.1. Mean radiance for the search-beam problem in a finite homogeneous slab. The
steady-state version of the RT problem defined in (2.1)–(2.7) was solved with the Spherical
Harmonic – Discrete Ordinate Method (SHDOM) [18, 19] for a uniform non-absorbing
($0 = 1) cloud with thickness H = 1.2 km and uniform extinction σ = 30 km−1, hence
optical thickness τ = σH = 36. The phase function is for a ‘C1’ distribution of droplet size
[20] in a Mie scattering computation [15] for λ = 532 nm, which yields asymmetry factor
g ≈ 0.85 in (2.21). Mean radiance, J/4π from (4.5), is plotted for a domain larger than
the cloud itself. The ‘rays’ emanating from the source region near the top of the cloud are
an artifact of the discrete ordinates scheme (in this case, Nµ = 12 and Nφ = 24). This
result was graciously contributed by Dr K. Franklin Evans (University of Colorado).

at 10 Hz), and a modest (but highly efficient) detector with a modest aperture
of ∼1 mm2 and a 1-sr field-of-view (FOV) corresponding to ≈66◦ from side to
side. A typical number of photons detected per pulse by such a sensor in the light
shaded zone (for example, ground level, right below the source) is then ∼ 1018

×10−6/m2/sr ×1 sr ×(10−3)2 m2 = 106, which appears to be enough to spread
over, say, several 1000s of bins in space (direction) and/or time before the signal-
to-noise ratio (SNR) falls below

√
106/1000s ∼ 10s for shot noise alone. This leaves

plenty of room for a different FOV, reduced optical throughput, quantum efficiency,
and so on.6

For oblique illumination along Ω0(θ0, φ0), the internal source formulation with
(2.7) becomes

Q(t,x,Ω) = δ

(
t− z/c

µ0

)
δ

(
x− η0 cosφ0

z

µ0

)
δ

(
y − η0 sinφ0

z

µ0

)
σs(x, y, z)

× p(Ω0 ·Ω) exp

− z∫
0

σ

(
η0 cosφ0

z′

µ0
, η0 sinφ0

z′

µ0
, z′
)

dz′

µ0

 , (2.9)

while the BC source model in (2.8) becomes simply

G(t, x, y, 0,Ω) = δ(t)δ(x)δ(y)δ(Ω−Ω0), (2.10)

6If it dominates the shot noise, background noise (sun- or moonlight) can be dealt
with by appropriate filtering and time integration [21].
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where µ, µ0 > 0. Although we will focus primarily on uniform and slant (solar)
or pointwise and normal (lidar) illumination geometries, the above model for the
boundary source is general enough to cover all possible spatial, temporal and an-
gular distributions of sources by using straightforward space-time translations and
linear superposition (i.e., convolutions).

A final type of unitary source we are highly interested in is isotropic boundary-
point-sources, which can be expressed as

G(t, x, y, 0,Ω) = δ(t)δ(x)δ(y)/π, (2.11)

for all µ > 0 in the BC (2.5) at z = 0.
All of the primary sources of radiation, in the bulk or at the boundary of

the optical medium, have now been accounted for. In the same way that the in-
scattering operator in (2.3) produces a secondary source of radiance for a given
beam, boundaries can become secondary sources via partial reflection, as opposed to
the systematic absorption/escape described in (2.5)–(2.6). This process of boundary
scattering is formalized in a revised r.-h. side for the BC (2.6) at z = H for incoming
radianceG(t, x, y,H,Ω) with µ < 0. Specifically, we introduce in analogy with (2.3),

Ss = αH(x, y)
∫

µ′>0

ps(Ω′ → Ω)[·] dΩ′, (2.12)

which is applied to the local G; αH(x, y) is the local albedo of the boundary and
ps(Ω′ → Ω) is the surface phase function (in 1/sr).7 If necessary, we could similarly
define a reflective BC for the illuminated boundary at z = 0; this would only mean a
change of sign in µ and µ′. Two contrasting examples of surface scattering/reflection
are the isotropic (a.k.a. Lambertian) case, ps(Ω′ → Ω) = |µ′|/π, and the specular
(a.k.a. Fresnel) case, ps(Ω′ → Ω) = δ(µ′ + µ)δ(φ′ − φ).

We have now defined all the components of the RT equation, its BCs, and the
boundary δ-sources of primary interest here. This completes the determination of
the multiple-scattering Green function in the spirit of Bell and Glasstone [23], who
introduced it as a powerful modeling tool in nuclear reactor design and analysis.
The remainder of this section narrows our interest to outgoing boundary radiances
and their properties.

5.2.3 Remotely observable fields

In remote sensing applications, we use detectors outside the medium. We can there-
fore access only the outgoing radiance fields at cloud boundaries, which echo the
boundary conditions in (2.5)–(2.6) but with z-axis direction cosines of opposite sign:
G(t,−→ρ , 0,Ω), when Ωz = µ < 0, for reflection; G(t,−→ρ ,H,Ω), when Ωz = µ > 0,
for transmission. We denote here

−→ρ =
(
x
y

)
, hence x =

(−→ρ
z

)
.

7To connect with the popular ‘bidirectional reflection distribution function’ (BRDF)
[22]: ρ(Ω′ → Ω) = αHps(Ω

′ → Ω)/|µ′|.
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More precisely, we assume an imaging detector is measuring this radiance at some
finite stand-off distance dobs > 0 from the cloud boundary of interest: the sensor is
thus positioned at xobs = (

−→
0 ,−dobs)T or (

−→
0 , H+dobs)T. See schematic in Fig. 5.2.

Fig. 5.2. Schematic of boundary-source/boundary-detector Green function problem. We
illustrate the case of normal incidence and an observer along the incident beam.

Notice that we assume geometric alignment with the normally incident col-
limated beam. For reflected light, this is tantamount to modeling a monostatic
lidar (i.e., transmitter and receiver collocated). For transmitted light, the detec-
tor is looking straight at the point-source on the opposite boundary of the optical
medium, a typical configuration in imaging and visibility studies. In the latter case,
the proportion of the emitted light directly transmitted from the collimated source
in (2.7) or (2.8) to the detector is exp[−τ(

−→
0 )]. More generally, we define

τ(−→ρ ) =

H∫
0

σ(−→ρ , z) dz (2.13)

as the optical thickness of the medium at horizontal position −→ρ . The interesting
questions, however, are about the diffuse component generated by one or more
scatterings. We are thus restricting ourselves to coaxial source–detector geometry
(−→ρ 0 = −→ρ obs =

−→
0 ), simply because of the applications treated in the present study;

if necessary, generalization to −→ρ obs 6=
−→
0 is straightforward.

We denote the radiance recorded by the time-resolving/imaging detector as
Iobs(tobs,Ωobs). From this vantage point, we just sub-sample the Green func-
tion for boundary illumination, G(t,−→ρ , 0,Ω) or G(t,−→ρ ,H,Ω) is equated with
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G(t,−→ρ , ·,Ωobs(−→ρ )). In the time-domain, t refers to the time interval from entry
at the z = 0 boundary to escape from anywhere; however, unless the point of es-
cape is the closest to the detector, an observer at finite distance will see an extra
delay illustrated in Fig. 5.2. So we have

t = tobs −
(

1
cos θobs

− 1
)
dobs

c
. (2.14)

In the case of monostatic lidar observations (in reflection, when the detector is near
the source), one might use tround-trip = tobs + 2dobs/c. To equate ‘at detector’ and
‘at cloud’ radiances in the spatial domain, we must also factor into the independent
variables the finite distance to the observation point:

ρ(θobs) =
√
x2 + y2 = dobs tan θobs,

hence,
θobs(ρ) = tan−1(ρ/dobs),

and

Ωobs(−→ρ ) = ∓

 cosφobs sin θobs(ρ)
sinφobs sin θobs(ρ)

cos θobs(ρ)

 , (2.15)

where − is for reflection and + is for transmission.
In the limit dobs → ∞, a reasonable approximation for an orbital detector,

the connections in (2.14)–(2.15) still make sense by taking simultaneously the limit
θobs → 0, but keeping ρ constant. We thus denote the detector response as Iobs(t, ρ),
after accounting for the large but finite time delay; the last connection in (2.15)
simplifies to Ωobs(ρ) = (0, 0,∓1)T = ∓ẑ.

5.2.4 Flux-based spatial and temporal moments

To summarize, we are interested in computing and measuring the time-dependent
equivalent reflectance (or albedo) field

Robs(t,−→ρ ) = πG(t,−→ρ , 0,Ωobs(−→ρ ))/µ0 (2.16)

normalized by total source energy, and its counterpart in transmittance

Tobs(t,−→ρ ) = πG(t,−→ρ ,H,Ωobs(−→ρ ))/µ0. (2.17)

These are just alternatives to boundary-leaving radiance using

1. a Lambertian assumption about outgoing directions other than Ωobs (hence the
factor π), and

2. normalization by total incoming flux integrated over space, time and direction
(hence the 1/µ0 factor that accounts for the reduction in flux when illumination
is unitary but oblique).
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Temporarily ignoring angular sampling and truncation issues in real measurements,
we define

R(t,−→ρ ) =
1
µ0

+π∫
−π

π∫
π/2

| cos θ|G(t,−→ρ , 0,Ω(θ, φ)) sin θ dθ dφ, (2.18)

T (t,−→ρ ) =
1
µ0

+π∫
−π

π/2∫
0

cos θ G(t,−→ρ ,H,Ω(θ, φ)) sin θ dθ dφ, (2.19)

as the local time-dependent reflected and transmitted flux fields, respectively. The
equivalent and actual reflectance and transmittance fields displayed above are by
definition ratios of outgoing-to-incoming hemispherical fluxes, estimated or actual.
Lastly, we note that (2.19) is either diffuse or total transmittance depending on the
adopted formulation of the 3D RT equation. If we only have the diffuse transmit-
tance, then the total one is obtained by adding exp[−τ(Ω0)]/µ0 where

τ(θ0, φ0) =

H∫
0

σ

(
η0 cosφ0

z

µ0
, η0 sinφ0

z

µ0
, z

)
dz
µ0

is the optical path across the whole medium along the incident beam. It coincides
with (2.13) only when µ0 = 1 here and −→ρ =

−→
0 there.

Fig. 5.3. Space-time boundary Green functions of a uniform cloud under diffuse pointwise
illumination for reflection (left) and transmission (right). These responses in flux were
estimated numerically using a MC simulation with 109 histories that resulted in reflection
with probability R = 0.557 and transmission with probability T = 1−R. The logarithmic
grayscale is the same for both panels. Lateral transport distance ρ runs vertically from
0 to 1.5 km while in-cloud path ct runs horizontally from 0 to 3 km. Reproduced from
Ref. [24] with permission. More details in text.
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Figure 5.3 displays numerical (hence binned) estimates of R(ct, ρ) and T (ct, ρ)
for a uniform cloud, using the convenient units of in-cloud path ct rather than
transit time per se. The pointwise illumination is isotropic: boundary condition at
z = 0 from (2.11) and Q ≡ 0 in (2.1). The cloud has H = 0.3 km and τ = 16; there
is no absorption ($0 = 1) and scattering is according to the Henyey–Greenstein
(H–G) model [25]:

p(µs) =
(

1
4π

)
1− g2

(1 + g2 − 2gµs)3/2
, (2.20)

where µs is the cosine of the scattering angle, i.e., Ω′ · Ω. The new parameter g,
the well-known ‘asymmetry factor’, is critical to this study of diffusion regimes. In
general, it is defined as

g =
∫
4π

Ω′ ·Ωp(Ω′ ·Ω) dΩ′ = 2π

+1∫
−1

µsp(µs) dµs. (2.21)

In this case, we used8 g = 0.85.
The most striking difference between the two radiative responses in Fig. 5.3 for

a localized and pulsed excitation is that reflectance happens immediately, thanks to
low orders of scattering, while transmittance occurs only for ct ≥ H, with ‘=’ being
very unlikely since it calls for a direct transmission (at the e−16 ≈ 10−7 probability
level). Supports of both responses are inside the causality cone (ρ ≤ ct) dictated by
shallow quasi-ballistic lateral propagation away from the isotropic source followed
by a reflection. At large ct and ρ, the two responses are indistinguishable since after
a large number of scatterings escape is equally probable through either boundary.
Also, for fixed ct & H, we see that the value of ρ that maximizes the Green function
(where the tangent to the isophote is vertical in the panels of Fig. 5.3) follows a
roughly parabolic trend (ρmax(ct) ∼

√
ct). This is typical of diffusive radiation

transport, as we will see further on.
Figure 5.4 focuses on spatial Green functions. The l.-h. panels are the axisym-

metric fields F (−→ρ ) ≡ F (ρ), F = R, T , from (2.22) for a uniform cloud with τ = 13
and conservative g = 0.85 H–G scattering under normal collimated illumination by
a narrow beam. As in Fig. 5.3, the main differences between reflection and transmis-
sion are in the near-axis region. The top and r.-h. panels are F (−→ρ ), F = R, T , for a
randomly variable cloud with long-range spatial correlations. The fluctuating values
of the local optical depth in (2.13) have the same mean optical depth τ = 13; verti-
cal structure is assumed uniform.9 The boundary flux fields for this scaling (a.k.a.
‘fractal’) stratocumulus (Sc) cloud model of course have no axial symmetry. Closer
examination shows that there is less overall reflection and correspondingly more
transmission; in both cases, we see a slight increase in the horizontal dispersion
quantified by the root-mean-square (RMS) value of −→ρ .

8It is notable that phase functions for observed droplet-size distributions in boundary-
layer clouds yield g ≈ 0.85 with remarkably small variability [26].

9This stochastic cloud model was generated with a so-called ‘bounded cascade’ model
[27] tuned to have a Kolmogorov-type wavenumber spectrum in k−5/3 and an amplitude
of variation similar to those observed in marine stratocumulus [28]. More details on this
fractal cloud model are provided in section 5.10.6.



182 A.B. Davis, I.N. Polonsky, and A. Marshak

Fig. 5.4. Spatial Green functions of homogeneous (left) and fractal (right) clouds with
the same mean optical depth under steady normal illumination by a narrow beam. These
are the outcome of two MC simulations, each with 108 histories; these events resulted in
reflection (b,b’) with probability R ≈ 0.5 in the uniform case and ≈ 0.3 in the fractal
case, or in transmission (c,c’) with probability T = 1−R. A 128×128 grid was used to bin
the boundary fluxes F (~ρ) with F = R, T . In the fractal case, we notice the systematically
larger spread towards rows with high rank, which correspond to the more tenuous region
in the top graphic (a) showing τ(x, y) from (2.13). Reproduced from Ref. with permission.
More details in text.
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Partly to improve the SNR and partly for conceptual simplicity, we like to
use spatial and/or temporal integrals of the observed flux field F (t,−→ρ ), for F =
R, T . We are particularly interested in statistical moments when it is viewed as
a probability density function (PDF) for escape in reflection or transmission. In
order to normalize the PDFs, we start by estimating

F =

∞∫
0

F (t) dt =

+∞∫∫
−∞

F (−→ρ ) d−→ρ (x, y) =

∞∫
0

dt

+∞∫∫
−∞

F (t,−→ρ ) d−→ρ (x, y), (2.22)

the cloud’s albedo (F = R) or transmittance (F = T ) for steady and uniform
illumination, either collimated or isotropic. We can then proceed to compute

〈tq〉F =
1
F

∞∫
0

tqF (t) dt =
1
F

∞∫
0

tq dt

+∞∫∫
−∞

F (t,−→ρ ) d−→ρ (x, y) (2.23)

for q = 1, 2, or more, and

〈ρ2〉F =
1
F

+∞∫∫
−∞

ρ2F (−→ρ ) d−→ρ (x, y) =
1
F

∞∫
0

dt

+∞∫∫
−∞

ρ2F (t,−→ρ ) d−→ρ (x, y). (2.24)

Angular brackets will always denote averages over space and/or time in cloud ra-
diative responses while an overscore denotes an average over spatial disorder, i.e.,
cloud structure. Examples of 〈ρ2〉1/2F (RMS horizontal transport) for normal illu-
mination are rendered graphically with double-headed arrows in Fig. 5.4.

The above are ‘marginal’ moments; ‘joint’ moments 〈tqρp〉F and ‘conditional’
moments can also be estimated. Of particular interest in this last class is

〈ρ2〉F (t) =
1

F (t)

+∞∫∫
−∞

ρ2F (t,−→ρ ) d−→ρ (x, y), (2.25)

the mean-square horizontal transport at a fixed time, where F (t) follows from (2.22)
without the time integral.

Note that the moment estimations in (2.24)–(2.23) are immune to uncertainties
in a multiplicative constant for F (t,−→ρ ). From an observational standpoint, and
in sharp contrast with the estimation of cloud albedo or transmittance based on
(2.22), absolute calibration is not required. The easier task of flat-fielding of the
imager’s focal-plane array is, however, still necessary.

Of course, real-world observations give us no information on the boundary Green
function G(t,−→ρ , 0,Ωobs(−→ρ )), hence on R(t,−→ρ ), outside of the receiver’s FOV, i.e.,
the actual limits of all the above integrals over −→ρ (x, y) are finite when F = R, and
similarly for T . Moreover, for each value of −→ρ we only get one value of θ and φ
in (2.15). The latter problem is resolved by using an angular model to convert an
observed radiance into a boundary flux. The former problem is best addressed by
designing instruments with the widest possible FOV, such that it contains at least
a couple of the Green function’s e-folding distances away from the axis. We can
then assume quite safely that the residual truncation errors in both numerator and
denominator in (2.24)–(2.23) do not bias the estimates too much.
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5.2.5 Vertical variation of scattering coefficient

From this point on, we restrict our interest to stratiform clouds that can be rea-
sonably well represented by plane-parallel slabs of uniform thickness H,

M(H) = {x ∈ R3; 0 < z < H},

still allowing for some degree of internal structure. In the above, we examined
cloud models with fractal behavior in the horizontal plane but uniformity in the
vertical. In the following, we will consider two complementary kinds of variability:
smooth (convection/radiation-driven) stratification along the z-axis and random
(turbulence-driven) 3D fluctuations. Discussion of the latter is postponed until
section 5.4.2.3, leaving us until then with σ(x) ≡ σ(z), and similarly for σs and
σa. The parameters of primary interest for a purely stratified cloud are its physi-
cal thickness H and optical depth τ from (2.13), but without the dependence on
−→ρ (x, y).

Basic cloud physics informs us that stratus clouds are expected to be strongly
stratified. For instance, liquid water content (LWC) is predicted and widely ob-
served [30] to follow the adiabatic gradient in their ‘convective cores’, i.e., a linear
trend in z over the vertical extent of the cloud.10 This classic result from the base-
line ‘rising parcel’ theory in cloud microphysics (number density assumed constant)
leads to a 2/3 power-law in extinction, from straightforward dimensional analysis.
Formally, and depending on what side of the cloud is being illuminated by the
δ-source, we can write this as

σ0(γ; z) = σ × (1 + γ) (z/H)γ , or
σH(γ; z) = σ × (1 + γ) (1− z/H)γ , (2.26)

with γ ≥ 0 (in this case, 2/3) and σ denoting the mean extinction (obtained, say,
from cloud optical depth τ = σH).

Instead of the power-law model, it is advantageous to use a linear (constant
gradient) model,

σ∆(z) = σ × [1 + ∆ (z/H − 1/2)], (2.27)

where |∆| ≤ 2 is the relative difference in extinction at the two cloud boundaries
with respect to its mean value (invariably crossed at z = H/2). To put the linear
and power-law models in one-to-one correspondence, we propose to minimize their
difference squared (distance in L2). This exercise leads to

∆(γ) = ±6×
(

2
γ + 1
γ + 2

− 1
)

(2.28)

where + is mapped to σ0(γ; z) and − to σH(γ; z). Values of special interest are
∆ = ±3/2 since they approximate γ = 2/3, the abovementioned expectations based
on parcel theory for a cloud illuminated from below (+) and above (−). Conversely,
we have

γ(∆) = 2|∆|/(6− |∆|). (2.29)
10In a broader view of liquid water clouds, the maximum value of LWC is typically

reached at a depth of ≈H/3 from the top.
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Fig. 5.5. The impact of internal stratification on space-time cloud responses in flux to an
isotropic point-source (top) and a narrow collimated beam (bottom). These results are from
a number of MC simulations (2 · 108 histories) with H–G scattering (2.20). For simplicity,
the maximum cross-section algorithm was used to account for internal structure; see Refs
[19, 29]. Moments defined in (2.23)–(2.24) were computed, using their square-root for
second-order moments, and normalized to H = 1. We used τ = 15 with g = 0.46 in the
top panel, and τ = 20 with g = 0.85 in the lower panel. In spite of the larger optical
depth, we notice the smaller spread of results in the latter case (half the vertical range)
due to more forward-peaked scattering and a more anisotropic source. More discussion in
the main text.



186 A.B. Davis, I.N. Polonsky, and A. Marshak

Stratification in σ(z), as parameterized in the above, will directly affect the
spatial (2.24) and temporal (2.23) observables, even if it has no effect whatsoever
on the cloud’s albedo (F = R) or transmittance (F = T ) in (2.22). Indeed, the
local value of the MFP will be different at the top and bottom of the cloud and,
physically, this means that the random walk representing the diffusing light propa-
gation is scaled up (near cloud base) or down (near cloud top). Active and passive
instruments are already probing clouds from both sides and will continue to do so;
it is therefore imperative to quantify the effect of stratification on the observables.

Figure 5.5 shows numerical MC results for
√
〈ρ2〉F /H, for 〈ct〉F /H and for√

〈(ct)2〉F /H (F = R, T ) using both stratification models. The constant-gradient
model in (2.27) is sampled at 0.5 intervals from ∆ = −2 to +2 for the prescribed
clouds and sources. The power-law model in (2.26) degenerates to the linear case
when γ = 1 (∆ = ±2), and of course when γ = 0 (∆ = 0), but it is interesting to
seek differences between the γ = 2/3 cases and the associated values of ∆ = ±3/2
using (2.28). They are very small compared to the overall effect of stratification.
In turn, these effects are significantly larger for reflection than for transmission,
especially in the time domain. We also note in the top panel that, when illumina-
tion is pointwise but isotropic and the response is for boundary fluxes, the Green
functions for transmission depend only on |∆| due to source–detector reciprocity
and a mirror-symmetry around z = H/2.

The qualitative differences between boundary-flux responses R and T we have
uncovered can be traced to the fact that reflected light is a balanced mix of low-
and high-order scattering. The low orders in the observed signal come almost surely
from near the source, hence from the illuminated side of the cloud, while the high
orders come from radiation that has permeated the whole cloud. In contrast, radia-
tion transmitted by optically thick clouds is made almost entirely of highly scattered
light.

5.3 Formulation in the Fourier–Laplace domain

Moment integrals in (2.23)–(2.24) are easy to compute by manipulation of trans-
forms in Fourier–Laplace space. In probability theory, the Fourier or Laplace trans-
form of a PDF is called its ‘characteristic’ function or, more tellingly, ‘moment-
generating’ function [31]. Which transform is used depends on the support of the
PDF. In our application, we need both Laplace for time t ∈ [0,∞) and 2D Fourier
for position −→ρ in the z = 0, H planes.

We are thus interested in the behavior of

F̃ (s,
−→
k ) =

∞∫
0

dt

+∞∫∫
−∞

exp(−st+ i
−→
k · −→ρ )F (t,−→ρ ) d−→ρ (x, y)

= F × 〈 exp(−st+ i
−→
k · −→ρ )〉F , F = R, T. (3.1)

We will apply a similar transformation to other ‘3+1D’ quantities as needed.
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5.3.1 Temporal Green functions and pulse-stretching problems

Consider the case of uniform, but still pulsed, illumination (
−→
k ≡ −→0 ). One can

show [32] from (3.1) that coefficients of the Taylor expansion of F̃ (s,
−→
0 ) at s = 0

can be used to estimate temporal moments in (2.23). Specifically, we compute
F = F̃ (0,

−→
0 ), and then

〈tq〉F =
1
F

(
− ∂
∂s

)q
F̃

∣∣∣∣
s=0,k=0

. (3.2)

These numbers describe quantitatively how the incoming pulse is stretched out in
the responses of the scattering medium.

There is an interesting interpretation of the Laplace conjugate variable s in
terms of absorption by a uniformly distributed gas in the otherwise purely scat-
tering medium. Taking the Laplace transform of the general 3+1D RT equation,
boundary conditions, and source term in (2.1)–(2.7), we find notable changes, on
the one hand, in L̂Ĝ = SĜ+ Q̂ where

L̂ = Ω · ∇+ σ(x) + s/c (3.3)

and, on the other hand, in

Q̂(s,x,Ω) = δ(x)δ(y)σs(0, 0, z)p(µ)

× exp

− z∫
0

σ(0, 0, z′) dz′ − s

c
z

 , (3.4)

and similarly using (2.9) if µ0 < 1. All is therefore as if the extinction coefficient is
boosted everywhere by s/c, but the scattering coefficient is unchanged.

This reading of (3.3)–(3.4) is known as the ‘equivalence theorem’ that attracted
considerable attention in the 1960s and early 1970s [33–39]. It clearly separates
absorption and scattering processes in the general RT problem, and states that
radiance at an absorbing wavelength can be calculated from the radiance at a non-
absorbing one and the attenuation along all possible paths from the sources to
the point/direction of interest. It is interesting to note that the earliest numerical
investigations (known to the authors) of time-domain RT with multiple scattering
(MC-based of course) were performed in the same time period; see Ref. [40].

Most of these early studies of pulse stretching, with or without the Laplace
transform, were focused on the F = R scenario. We will exploit it computationally
and observationally further on for both F = R and F = T , this balance being a
recurring theme in this review. We can thus gain access to temporal moments of
sunlight ... even though the source is steady and the detection system is passive
(cf. section 5.8).

5.3.2 Spatial Green functions and pencil-beam problems

The rotational symmetry acquired in section 5.2.5 for the cloud under already
normal/collimated or isotropic illumination conditions in direction space carries
over from physical to Fourier space; we therefore have F̃ (s,

−→
k ) ≡ F̃ (s, k).
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Consider now the case of steady illumination (s ≡ 0). One can easily show from
(3.1) that the Taylor coefficients of F̃ (0, k) at k = 0 can be used to estimate spatial
moments in (2.24). Specifically, we compute F = F̃ (0, 0), and then11

〈ρ2〉F =
−2
F

∂2F̃

∂k2

∣∣∣∣∣
s=0,k=0

. (3.5)

RT problems, generally in uniform semi-infinite (H →∞) media, with localized
narrow (collimated) steady beams, are known in the literature as ‘pencil-beam’ or
‘search-light’ problems (cf. Figs 5.1 and 5.4). They have attracted quite a lot of
attention ever since the very earliest investigations of 3D RT we are aware of
[41–47]. Lately, such problems have been proposed as analytical benchmarks for
numerical transport code verification [48, 49]. There is not an exact equivalence
between horizontal wavenumber k > 0 with an effective absorption process, except
if we remove the dependence of the source on Ω (that controls the direction of the
derivative in L) and consequently forgo all but isotropic scattering. At any rate,
more effort and creativity is required than in the time-only problem.

5.4 Diffusion approximation for opaque scattering media

In the above, we have established a complete formalism for computing space-time
Green functions for scattering media illuminated and observed at a boundary.
However, it invariably leads to a numerical implementation, for example, a MC
algorithm. This is fine for case studies but impractical for applications in remote
sensing. Our goal now is to establish a physically reasonable theory leading to
F (t, ρ) or, equivalently, F̃ (s, k) in closed form (section 5.5). We can then use the
above definitions and relations that predict analytically the spatial, temporal, joint
or conditional moments of the Green functions (sections 5.8 and 5.9), even derive
closed-form expressions for the Green functions themselves (sections 5.6 and 5.7).

5.4.1 Derivation from the time-dependent 3D RT equation

Consider dense clouds, say, through which one cannot detect the silhouette and
maybe not even the general direction of the sun in the transmitted radiance field.
According to Bohren et al. [50], this translates to optical thickness &9 ± 1 (geo-
metrical thickness &9± 1 MFPs). We can then safely assume that the transmitted
light at least is transported via diffusion, the well-known approximation to RT per
se. That statement should carry over to reflected light as long as we focus on higher
orders of scattering; in space-time Green function studies, that translates to later
times and further distances from the source. In other words, while bearing in mind
the caveat in section 5.2.1 about thinking about RT as ‘photon’ transport, all is as
if the radiative fluxes measured in transmission or, for the most part, in reflection

11The factor of 2 originates, when the axial symmetry is applied, from the 2D dyadic

tensor
−→
k
−→
k used in the multivariate Taylor expansion of F̃ (0,

−→
k ) in (double-dot) combi-

nation with the second-order differential tensor operator
−→
∇k
−→
∇k.
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were currents of particles executing long convoluted random walks starting at the
localized and/or collimated source and ending at a cloud boundary.

Equations for this simplified transport theory can be derived by integrating
(2.1)–(2.3) angularly term-by-term over 4π, once directly and once after multipli-
cation by Ω. This leads to [51]:

c−1 ∂J

∂t
+∇ · F = −σa(x)J + qJ(t,x), (4.1)

c−1 ∂F

∂t
+∇ · K = −σt(x)F + qF (t,x). (4.2)

In (4.2), an important new coefficient appears: the ‘transport’ extinction,

σt(x) = (1− g)σs(x) + σa(x), (4.3)

equivalently (1−$0g)σ(x), with $0 from (2.4) and g from (2.21). The associated
(local) transport MFP[4,52] is denoted

`t(x) = 1/σt(x). (4.4)

There was been some controversy over the past 15 years about the exact role of
σa (i.e., absorption) in σt, hence in the diffusivity D, which we define further on as
c`t/3. In the mid-1990s, the rising importance of biomedical imaging applications
of ‘photon migration’ (diffusion) theory motivated several authors [53–58] to revisit
and confirm the idea originated by Furutsu [59] in 1980 that σa is not present in
(4.3)–(4.4). Rather, the effect of absorption is added to J after the fact with a mul-
tiplicative term in exp(−σact), assuming a uniform medium. This makes sense from
the standpoint of the equivalence theorem discussed in section 5.3.1. Subsequent
investigations [60–63], all based on steady-state transport, argued convincingly that
absorption does impact σt, although more weakly than in (4.3), for example, Aron-
son and Korngold [62] give D = 1/3(σs+σa/5) when g = 0. Cai et al. [64] re-ignited
the debate by framing D as dependent on time rather than absorption. We believe
that Pierrat et al. [65] have resolved the controversy by distinguishing between the
dynamical diffusion constant without σa, and steady-state one with it. All this is
for uniform media where one can gain insights by way of analytical manipulations,
even solutions, of the RT (not just diffusion) equation. In the presence of spatial
variability, we further need to distinguish absorption by a uniform interstitial gas
and by the clumped material that produces the scattering. The former case can
be treated with the equivalence theorem as stated, but not the latter unless it is
extended to include a discrete sum over successive orders of scattering [66].

We also introduced here the zeroth-, first-, and second-order angular moments
of Green-function radiance as

J(t,x) =
∫
4π

G(t,x,Ω) dΩ,

F (t,x) =
∫
4π

ΩG(t,x,Ω) dΩ, (4.5)

K(t,x) =
∫
4π

ΩΩG(t,x,Ω) dΩ,
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respectively, the scalar- (a.k.a. actinic-), vector- and (dyadic) tensor-fluxes. We
similarly define

qJ(t,x) =
∫
4π

Q(t,x,Ω) dΩ, (4.6)

qF (t,x) =
∫
4π

ΩQ(t,x,Ω) dΩ. (4.7)

For instance, based on (2.7), we have

qJ(t,x) = δ
(
t− z

c

)
δ(x)δ(y)σs(z) exp

− z∫
0

σ(z′) dz′

 , (4.8)

qF (t,x) = qJ(t,x) g ẑ. (4.9)

More generally, (2.9) yields here

qJ(t,x) = δ

(
t− z/c

µ0

)
δ

(
x− η0 cosφ0

z

µ0

)
δ

(
y − η0 sinφ0

z

µ0

)

× σs(z) exp

− z∫
0

σ(z′)
dz′

µ0

 , (4.10)

qF (t,x) = qJ(t,x) gΩ0, (4.11)

noting that in (2.9) we had not yet assumed that extinction is at most depen-
dent on z; here, the horizontal variations are driven only by the pointwise source
distribution.

In analogy with particle transport theory, (4.1)–(4.2) are local expressions of
the conservation of radiant energy and momentum respectively [12]. These are
the basic ingredients of a macroscopic theory of radiation transport where the
3D RT equation describes mesoscopic processes involving directional details while
Maxwell’s equations describe microscopic details involving wave phenomena.

As stated, the ‘continuity’ (or conservation) equations for energy (4.1) and mo-
mentum (4.2) are exact. The diffusion approximation follows from making two
simplifying assumptions about (4.2): first, the time-derivative is assumed negli-
gible and, second, a natural closure is introduced. The closure statement is that
the radiation pressure tensor K/c is isotropic, i.e., off-diagonal components vanish
and on-diagonal components are equipartitioned (each one is equal to 1/3 of the
radiant energy density J/c) [51]. This is indeed the expectation when radiation –
viewed as a monokinetic gas – is in local equilibrium with a dense highly scattering
medium. Small deviations from isotropy are then entirely captured by two spherical
harmonics, namely, a monopole and a dipole. Specifically, we have12

G(t,x,Ω) ≈ [J(t,x) + 3Ω · F (t,x)] /4π (4.12)
12We refer to the key paper by King, Radke, and Hobbs [67] for empirical evidence

of this representation of in-cloud radiance collected in extensive marine boundary-layer
stratocumulus clouds, which are of considerable interest here.
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and, accordingly,
p(Ω′ ·Ω) ≈ [1 + 3gΩ′ ·Ω] /4π (4.13)

for the phase function. These two expressions are often used as the point of depar-
ture in diffusion (a.k.a. ‘P1’) theory.

We notice right away that (4.13) is a rather poor representation of the phase
function of real distributions of cloud droplet size [20], most notably, the forward
diffraction-induced peak is absent. By the same token, (4.12) is a poor repre-
sentation of radiance anywhere near the highly collimated beam illuminating the
medium, whether localized like a laser source or spread out like the solar source.
The latter problem is mitigated by separating the un-collided beam from the diffuse
field and thus using internal source terms rather than a source in the boundary
conditions. The former problem is addressed in the following subsection.

No matter how one derives the diffusion transport model from the RT equa-
tion,13 we obtain the ‘constitutive’ equation:

∇J/3 = −σt(x)F + qF (t,x), (4.14)

a.k.a. Fick’s law, especially when the source term is absent (F = −∇J/3σt). This
defines the diffusion approximation as a first-order closure of the hierarchy of trans-
port equations started in (4.1)–(4.5). In the applications to come, we will focus on
wavelengths where the condensed water in cloud particles has negligible absorption:
σa(x) ≡ 0, hence $0 = 1 and σs(x) = σ(x). The continuity equation (4.1) then
simplifies to

c−1 ∂J

∂t
+∇ · F = qJ(t,x). (4.15)

These coupled partial differential equations (PDEs) encapsulate the diffusion trans-
port model we will exploit in the remainder of this paper.

5.4.2 Directional and spatial enhancements

Diffusion theory can easily be improved in highly relevant ways for cloud remote
sensing applications. Among many possibilities, we discuss one well-known ap-
proach in previously raised issues in direction space, and two quite recent develop-
ments germane to position space.

5.4.2.1 δ-Eddington rescaling for the impact of the diffraction peak in
the phase function

As previously mentioned, an inherent weakness of diffusion-based radiation trans-
port modeling is the smooth one-parameter phase function in (4.13) whereas real-
world phase functions have prominent forward peaks. We can partially mitigate this

13A more contemporary derivation of the 3D diffusion approximation would use asymp-
totic analysis of the general RT equation where the magnitude of the local MFP 1/σ(x) is
small and only large terms are kept; see Refs [68,69]. Yet another notable derivation [70]
makes use of a special limiting case of the discrete-angle phase function in the ‘six-flux’
model for 3D RT [71].
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disconnect by applying the classic δ-Eddington rescaling [72]. The phase function is
recast as a combination of a δ-function in the forward direction and a complemen-
tary term with two spherical harmonics. In the absence of absorption, this results
in a rescaling given by

σ′(x) = (1− f)σ(x), (1− g′) = (1− g)/(1− f), (4.16)

where f is the fraction of ‘δ-scattering’ (physically, just prolonged ballistic propaga-
tion). This operation decreases σ ≡ σs (increases the MFP), but leaves σt invariant
in (4.3). We will see in the next section that this scaling therefore leaves a large
class of diffusion models with isotropic boundary sources unaffected.

A popular choice is f = g2 because it fits the second as well as first spherical
harmonic coefficients of the H–G model phase function, hence

g′ = (g − f)/(1− f) = g/(1 + g). (4.17)

For liquid water clouds, where g ≈ 0.85, we get f ≈ 0.72, hence σ′ ≈ 0.28σ and
g′ ≈ 0.46. Alternatively, the whole diffraction peak – half of the scattered energy
for particles with very large size parameters (Babinet’s principle) – can be recast
as prolonged propagation in the original direction: f = 0.5, hence σ′ ≈ 0.5σ and
g′ ≈ 0.7.

5.4.2.2 Effects on bulk radiation transport of turbulence-driven
random 3D variability of extinction, general considerations

Although not our preferred approach in Green function calculation, F can be elim-
inated between (4.14) and (4.15), leading to

[∂t −∇ · (D∇)] J = cqJ −D∇ · qF (4.18)

where
D(x) = c/3σt(x) = c`t(x)/3 (4.19)

is the (local) radiative diffusivity.14 In an arbitrary 3D optical medium with neither
sources nor sinks (absorption), apart from boundaries, the local expression for
conservation of radiant energy is [∂t−∇D · ∇−D∇2]J = 0. In the Fokker–Planck
interpretation of this boundary-value diffusion problem, −∇D is an effective drift
velocity. Radiant energy thus flows naturally from low to high diffusivity (high to
low extinction) regions.

Dwelling on the no-source/no-sink media, we can use (4.18) to equate the clas-
sic operator for diffusion in a uniform medium with a specific variability term:
[∂t − D∇2]J = ∇D · ∇J . In the vector-flux picture, this new term on the r.-h.
side can be written as ∇ lnD · F , and it formally acts as a pseudo-source/sink
term for the mean flow in the hypothetical uniform medium. Davis and Marshak
[73] investigated the steady-state (∂tJ ≡ 0) problem in detail, showing systematic

14We recall that transport coefficients are the product of particle density and cross-
section for scattering, absorption, or both (extinction), per particle. Although there is no
compelling rationale for this, we tend to assign the random spatial fluctuations to the
particle density and hold the optical properties constant.
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effects of any given 3D structure on flux line geometry and, from there, domain-
average boundary flux (T = 1−R). The transport mechanisms behind systematic
3D effects observed in absorbing media and time-dependent deterministic flows re-
main open to investigation. For our present purposes, we now tap into a statistical
approach developed for steady sources to account for 3D effects, be they for tem-
poral characteristics – a conjecture that will eventually call for at least numerical
verification.

Barker and Davis [74] survey the two broad classes of models in 3D RT that
target large-scale effects of unresolved small-scale variability in cloud structure,
which is invariably assumed random in nature. Members of one class of such ‘mean
field’ theories lead to new transport equations to solve. Members of the other class
pursue homogenization: redefine coefficients in 1D RT so that the known solutions
of that problem capture the main 3D effects, which is clearly the path of least
resistance. Among these ‘effective medium’ approaches to random 3D variability,
we favor the rescaling techniques proposed by Cairns et al. [75] and by Larsen [76].
Although one-parameter solutions, they stem from careful treatments of both both
1- and 2-point statistics, i.e., the PDF of σ(x) and its autocorrelation function
respectively.

5.4.2.3 Homogenization via Cairns’ rescaling

Starting with the δ-rescaled (primed) quantities in (4.16) that account for the
problematic forward-scattering peak in the phase function, Cairns’ renormalization
theory leads to

σ′′(x) = (1− ε)σ′(x), (1− g′′) =
1− 2ε
1− ε

(1− g′), (4.20)

in the case of conservative scattering, where ε is the new variability parameter. We
see immediately that 1/2 is a strict upper limit for ε, and that it is probably best
to not approach too closely in practice, and especially not in diffusion modeling.
While δ-Eddington rescaling leaves the product (1 − g)σ invariant, it decreases
here both through σ and through 1− g as ε increases (since g′′ > g′). For diffusion
models with strict similarity (dependent only on σt = (1 − g)σ = (1 − g′)σ′), we
have

σ′′t (x) = (1− 2ε)σt(x). (4.21)

About the dependence of σ (or σt) on x, we should bear in mind here that, as
soon as we apply this rescaling, we have taken care of all the arguably random
small-scale variability – up to a few MFPs (see below). So, implicitly, we are now
interested only in cloud scale variations of the extinction, such as the stratification
trends discussed in section 5.2.5.

How does one compute ε? Recalling that overscores denote averages over the
spatial variability, Cairns et al. show specifically that, for moderate-amplitude fluc-
tuations, the 3D RT effects are captured with

ε = a−
√
a2 − v2 (4.22)

where
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Fig. 5.6. Cairns’ scaling factor ε used in (4.20). The parameter ε is plotted as function

of σ2
1/2
/σ and σlc using (4.22)–(4.23). Values up to ∼1/3 can be used with some confi-

dence (this divides 1 − g at most by 2). Therefore at most moderate 1-point variability
ratio (RMS/mean for σ) can be considered (only slightly more than unity), unless the
correlations are very short range vis-à-vis the MFP (defined here as 1/σ, even though
this is known to be an underestimation [10]). More discussion in main text.

a =
1
2

(
1 +

1
σlc

)
, v =

√
σ2

σ2 − 1. (4.23)

Parameter v is the standard deviation to mean ratio, itself expressed with the
RMS-to-mean ratio, for σ and we denote here the characteristic correlation scale
of the spatial variability by lc. We see that

– for small-scale fluctuations (i.e., when lc � MFP ≈ 1/σ), we anticipate little
effect since ε ≈ (v/a)2/2≪ 1 (irrespective of v) as a becomes very large;

– for fluctuations at larger scales (i.e., when σlc & 1), we can have a strong
impact (ε . 1/2) although this scenario clearly stretches the validity of the
model, in particular, amplitude is then limited to cases where v2 . a − 1/4
(σ2/σ2 . 5/4 + 1/σlc);

– for fluctuations at the largest scales (σlc � 1, hence a ≈ 1/2 and v . 1/2),
one should average over macro-scale responses rather than try to find a single
effective medium to account for micro-scale variability effects.

Figure 5.6 illustrates this analysis of ε. In the last (‘slow’) variability regime, the
large-scale averaging of radiative responses can be computed locally using a strong
uniformity assumption, which is the essence of the independent pixel approximation
(IPA). See Ref. [74], references therein, and the penultimate section of this paper for
applications of the IPA to solar RT (section 5.10.3) and to a related time-dependent
problem (section 5.10.4).

The above scale-by-scale breakdown of spatial variability impacts is consistent
with the first-principles analysis by two of the present authors [10] who, incidentally,
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show that the actual MFP is ≈1/σ in a broad class of variable media with long-
range correlations, including clouds. Moreover, that estimate always exceeds 1/σ
(they are equal only when σ is uniform). This is a direct consequence of Jensen’s
inequality [77] in probability theory concerning averages of functions with definite
convexity (in this case, the exponential).

Those authors come to the same scale-based classification of variability effects in
RT from the standpoint of steady-state 3D diffusion theory [73]. The only difference
is that the transport MFP in (4.4) replaces the usual MFP used in the present
arguments based on propagation between successive scatterings (or, for example,
an emission or an absorption).

5.4.2.4 Homogenization via Larsen’s rescaling

As competition for Cairns’ model, we highlight another notable development in
homogenization theory by Larsen [76], who includes a diffusion limit of immediate
interest here. It builds on the ideas of Kostinski [78], Davis and Marshak [10]
who predict non-exponential step distributions between scatterings in randomly
variable media: sub-exponential distributions if spatial correlations are positive,
super-exponential otherwise [79]. Positive correlations are the norm in clouds, so we
anticipate the higher-order moments of to exceed the exponential-based prediction.

Let P (s) be the distribution of steps in the Markovian propagation process
of multiply scattered light. Recall that ` = 〈s〉 is the well-known MFP. Then
the exponential case is completely defined, P (s) = exp(−s/`)/`, and it leads to
〈sq〉 = Γ (q)`q (for any real q > −1). The sub-exponential laws of interest here will
therefore have 〈sq〉 > Γ (q)`q for q > 1 because of the longer tail (slower decay).
Dwelling on moments of lowest integer order, we can use

r =
〈s2〉
2〈s〉2

> 1 (4.24)

to measure the deviation of P (s) from the exponential case.
By taking a careful asymptotic limit, Larsen finds (in different notations) that,

in the case where $0 = 1, homogenized diffusivity is

Deff = Dexp × [(1− g)r + g], (4.25)

which exceeds the classic value of Dexp = c`/3(1 − g) if r > 1, for all |g| <
1. Interesting things happen to radiation transport when 〈s2〉 = ∞ leading to
‘anomalous’ diffusion, which is out of the scope of this article; they are briefly
discussed in Appendix F and in Refs [80,81].

To implement this statistical 3D RT correction, we can assign the boost
Deff/Dexp in (4.25) to an effective reduction of σt in our diffusion models with
isotropic boundary or internal sources, hence strict similarity. Before application
to models with non-isotropic internal sources, the derivation in Ref. [76] would have
to be revisited. In analogy with Cairns’ rescaling in (4.21), we can use

εL =
1
2

(
1− 1

r − (r − 1)g

)
, (4.26)
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Fig. 5.7. Larsen’s scaling factor εL(g, r) from (4.26). Parameter εL is to be used in lieu
of Cairns’ counterpart in (4.21). It is plotted here as function of asymmetry factor g and
the ratio r of the second-order moment of P (s) and its predicted value based on the
exponential distribution. As expected from the definition in (4.21), εL does not exceed
1/2. We believe that values up to ∼1/3 can be used with confidence, which would at most
divide σt = (1− g)σ by 2, hence for 1 < r . 10 based on g = 0.85.

which of course does not exceed 1/2 for r ≥ 1 and |g| < 1. This homogenization
factor is plotted in Fig. 5.7 for the relevant range of its arguments (g, r). Larsen’s
εL depends on one local optical parameter, g, and only one variability parameter,
r. The later in turn depends however on both 1-point/PDF and 2-point/correlation
statistics in ways that are not yet well understood. Indeed, it can be shown that
if correlations are only very short range compared to the MFP, then P (s) is very
near exponential [10, 17]. Correlations that are very long by the same standard
of comparison are better treated by the above-mentioned IPA methods, leaving
correlations on the same scales as the MFP as the ones15 where homogenization
theories are truly helpful.

In short, exponential free-path PDFs prevail only in homogeneous optical media.
Random-but-correlated media have wider step PDFs, in particular, in the sense of
the moment inequality in (4.24). Consequently, they can sustain in steady-state
systematically larger fluxes thanks to greater effective diffusivity for the bulk of
the medium. Guided by the numerical results displayed in Fig. 5.4 for 〈ρ2〉F (F =
R, T ), we speculate that the spatial variability will also lead to increased horizontal
transport away from a localized source. Although their derivations may need to be
revisited for time-dependent transport, we will allow ourselves in the latter sections

15The plural is deliberate since, in stochastic optical media, the MFP is itself a random
variable dependent on position, direction, and realization. Although a mean MFP 〈s〉 can
be defined and investigated, it is no longer the only moment of interest in the step PDF
P (s) for the spatial-, directional- and ensemble-average [10]. So scales ‘commensurate with
the MFP’ could cover a wide range, at least going from 〈s〉 to 〈s2〉/2〈s〉 ≥ 〈s〉 (where ‘=’
is for the exponential case).
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of this paper to use Larsen’s or Cairns’ homogenizations of σt(x) for time-dependent
diffusion.

5.4.3 Boundary conditions, including boundary sources

Bearing in mind that the local optical properties that matter in diffusion
{σ(x), $0, g} can be rescaled to account for unavoidable phase function attributes
and 3D random variability, we now need to assign boundary conditions (BCs) to
the coupled first-order PDE problem at hand.

If the opaque (radiatively diffusive) cloud is reasonably stratiform, then we can
model it with slab geometry {x ∈ R3; 0 < z < H}. We furthermore recall that, in
this plane-parallel framework, cloud optical depth τ is the integral of σ(z) from 0 to
H. BCs for the above coupled PDEs for J and F must then express hemispherical
fluxes crossing a constant-z plane in the ± directions, namely,

F± =

+π∫
−π

dφ

±1∫
0

G(·,Ω)µdµ =
J/2± Fz

2
, (4.27)

obtained from (4.12). The no-incoming-radiance (a.k.a. ‘absorbing’) BCs for radi-
ance bring us flux-based BCs

4F+(t, x, y, 0) = J(t, x, y, 0) + 2Fz(t, x, y, 0) = 0, (4.28)
4F−(t, x, y,H) = J(t, x, y,H)− 2Fz(t, x, y,H) = 0, (4.29)

for all x, y, and t.
If we have partial reflectivity at the z = H boundary, which relates outgoing

(µ > 0) and incoming (µ′ < 0) radiances, as described in (2.12), then the associated
BC becomes

[1− αH(x, y)] J(t, x, y,H)− 2 [1 + αH(x, y)]Fz(t, x, y,H) = 0. (4.30)

The precise kind of reflection (for example, Lambertian vs. specular) is of course
inconsequential since only fluxes are modeled in diffusion theory.

Alternatively – but no longer equivalently – in the diffusion approximation, one
can put the pulsed source in the BC at z = 0. In that case, we set qJ = qF ≡ 0 in
the r.-h. sides of (4.14)–(4.15) and require

J(t, x, y, 0) + 2Fz(t, x, y, 0) = 4q0(t, x, y) (4.31)

for a general distribution of isotropic boundary sources, in lieu of (4.28). The pos-
tulated boundary source term q0(t, x, y) is the µ-weighted angular integral over
µ > 0 of the incoming radiance field. The radiance BC at z = 0 in (2.8) or in
(2.10), irrespective of Ω0, then yields

q0(t, x, y) = δ(t)δ(x)δ(y), (4.32)

as does the expression in (2.11) for an isotropic boundary source; all this while
the homogeneous BC at z = H in (4.29) or (4.30) is unchanged. Since flux alone
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tells us nothing about directionality, we are now effectively modeling the source as
pointwise and pulsed but isotropic in the µ > 0 hemisphere.

Equations (4.28)–(4.29), and their generalizations in (4.30) and (4.31) respec-
tively for secondary and primary sources, express the least usual ‘3rd-type’ of BCs
that occur in generic applications of diffusion-type PDE problems, both time-
dependent (parabolic) or steady-state (elliptical). They involve the density J at
the boundary and the boundary-crossing current Fz, equivalently, J and its nor-
mal derivative from (4.14). These BCs can be expressed as a variable mixture of
Dirichlet/first-type (fix J) and Neumann/2nd-type (fix Fz) BCs:

J(t,−→ρ , 0) + 3χFz(t,−→ρ , 0) = 4q0(t,−→ρ )
[1− αH(−→ρ )] J(t,−→ρ ,H)− 3χ [1 + αH(−→ρ )]Fz(t,−→ρ ,H) = 0. (4.33)

Although often referred to as ‘mixed’ BCs,16 these are known technically as ‘Robin’
BCs [82]. At any rate, they are the most general BCs we will need to consider in
the following applications of diffusion theory to cloud remote sensing.

When q0(t,−→ρ ) does not vanish, the BC mixing factor χ can differ from its 2/3
value used in (4.31), but typically not very much (at least in the most common
transport applications). This is basically a tuning parameter that was introduced by
early neutron transport theorists to help diffusion models reproduce high-precision
solutions of the transport equations in critical applications [52]; this boost in ac-
curacy is naturally applied where diffusion is at its weakest, namely, boundaries.
The physical interpretation of χ is that of an ‘extrapolation length’ measured in
transport MFPs. Indeed, in the absence of anisotropic internal sources, Fick’s law
in (4.14) tells us that Fz(t,−→ρ , 0) = −[∂zJ/3σt(z)]z=0, and similarly at z = H. By
substitution into (4.33), the l.-h. side reads as a linear extrapolation formula for J ,
given its derivative along the z-axis, over a distance χ/σt(0) into the z < 0 region;
we have a similar reading of the BC at z = H, going into the z > H region. Some
values for χ found in the literature are: 1/

√
3 (‘S2’ model [11]), 2/3 (Marshak flux

BCs [51]), 0.7104 · · · (Milne half-space problem [52]), 1/n (nD ‘discrete angle’ RT
model [70], including 3D ‘six-flux’ theory [71]), 4/3 (optically thin limit [52]).

This realization in fact opens the possibility of recasting the above Robin BCs
as ‘extrapolated’ Dirichlet BCs:

J

(
t,−→ρ ,− χ

σt(−→ρ , 0)

)
= 4q0(t,−→ρ ) (4.34)

J

(
t,−→ρ ,H +

χ

σt(−→ρ ,H)
1 + αH(−→ρ )
1− αH(−→ρ )

)
= 0.

We need to assume here that the transport extinction σt(−→ρ , z) in the bulk and the
surface albedo αH(−→ρ ) vary at most rather slowly (almost everywhere finite gradi-
ents). The support of the coupled PDE problem at hand has thus been formally
extended from 0 < z < H to

− χ

σt(−→ρ , 0)
< z < H +

χ

σt(−→ρ ,H)
1 + αH(−→ρ )
1− αH(−→ρ )

,

16In mathematically correct terminology, ‘mixed BCs’ refers to problems with some-
where Dirichlet and elsewhere Neumann BCs.
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which may be between two wavy boundaries. This Dirichlet-type approximation
of the exact Robin BCs normally required for diffusion theory is rarely used in
atmospheric radiation applications, a notable exception being work by E.P. Zege
et al. [83, and references therein]. As demonstrated below, these approximate BCs
lead to simpler expressions that in turn enable deeper results, albeit at a cost in
accuracy and/or reduction of the applicable parameter space.

Finally, we need to reconsider our parameterizations of internal stratification
from section 5.2.5 from a diffusion standpoint. Because g is assumed constant, σt(z)
will have the same behavior as σ0,H(γ; z) for the presumably superior power-law
model. However, the vanishing σt(z) at either z = 0 (source below cloud) or z = H
(source above cloud) is problematic for the diffusion model. Indeed, the BCs in
(4.33) make necessary the evaluation of Fz(t,−→ρ , z) in (4.14) for z = 0 and z = H,
one of which contains a division by σt(z) = 0; this problem is even more obvious in
the extrapolated BCs in (4.34). Physically, the local transport MFP is divergent at
one of the cloud boundaries. Diffusion, as an approximation to RT, is already known
to deteriorate near boundaries. However, if the associated extrapolation length is
infinite, then the failure is likely to be catastrophic. This is the main reason why
we introduced the linear gradient model as a surrogate.

5.4.4 Remote sensing observables

The quantities of interest in cloud remote sensing are local/instantaneous reflec-
tivity and transmittivity, in other words, the outgoing fluxes normalized by total
incident energy. This total energy is the space-time integral of qJ(t,x) always as-
sumed unitary in Green function analyses. Specifically, we seek:

R(t, x, y) =
F−(t, x, y, 0)

F+(0)
=
J(t, x, y, 0)/2− Fz(t, x, y, 0)

2µ0
, (4.35)

T (t, x, y) =
F+(t, x, y,H)

F+(0)
=
J(t, x, y,H)/2 + Fz(t, x, y,H)

2µ0
, (4.36)

where F+(0) is the incoming flux (in the hemisphere with µ > 0) integrated over
time and the illuminated cloud boundary. Allowing for the possibility of oblique
illumination, we have F+(0) = µ0 ≤ 1. Invoking the BC at z = 0 in (4.28), we can
express these basic cloud responses simply as

R(t, x, y) = J(t, x, y, 0)/2µ0, (4.37)
T (t, x, y) = J(t, x, y,H)/2µ0; (4.38)

we recall that when, as is the case here, the source is specified internally, then the
diffuse transmittance in (4.38) does not include the un-collided flux contained in
direct transmittance.

If the isotropic boundary-source model in (4.33) is used for the BCs, then J and
F necessarily contain the incident flux. We must therefore compute the required
space-time reflectivity and transmittivity fields in (4.35)–(4.36) from

R(t, x, y) =
F−(t, x, y, 0)

F+(0)
= J(t, x, y, 0)/2− q0(t, x, y), (4.39)

T (t, x, y) =
F+(t, x, y,H)

F+(0)
= J(t, x, y,H)/2. (4.40)
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The outcome in the latter case will contain the contribution of directly transmitted
flux, although that should not be a significant contribution in diffusion regimes.

If the extrapolated Dirichlet BCs in (4.34) are used then, in principle, reflectivity
R(t, x, y) should be computed as the backward hemispherical flux at z = 0 (now
a point inside the extended domain) combining J and Fz according to (4.27).
However, the gain in accuracy is likely to be small compared to the loss incurred
by simplifying the BCs; so, for simplicity, it can still be obtained from (4.39). The
same remark applies to transmittivity T (t, x, y) from (4.38).

Finally, we recall that diffusion theory only predicts fluxes at cloud boundaries
(and, for that matter, elsewhere). A zeroth-order estimate of cloud-leaving radiance
is given by R(t, x, y)/π, a Lambertian assumption that is not unreasonable for
highly scattered light. A first-order angular model would make use of (4.12). This
radiance-to-flux conversion can be done with better angular models, and should be
for actual cloud remote sensing applications; see, for example, Ref. [84].

We have now completed the modeling framework for predicting remote sensing
signals originating from internally variable stratiform clouds in the spatial and
temporal domains using diffusion theory. Moreover, several options are available to
control the degree of fidelity in the model’s representation of collimated sources.

5.4.5 Fourier–Laplace transformation for stratified media

In the case of constant coefficients, or simple-enough vertical variability models,
Fourier–Laplace transformation of the PDE system in (4.1) and (4.14), with the
appropriate boundary conditions, leads to a class of analytically tractable problems
for our representations of pulsed laser or solar sources. Equipped with an effective
medium approach such as Cairns’ or Larsen’s for small-scale random 3D variability,
we can now restrict ourselves to cloud structure that unfolds only along the z-axis
according to the previously introduced stratification models.

We therefore define

J̃(s,
−→
k ; z) =

∞∫
0

dt

+∞∫∫
−∞

exp(−st+ i
−→
k · −→ρ ) J(t,−→ρ , z) d−→ρ (x, y). (4.41)

We similarly transform all the components of F (t,−→ρ , z), yielding F̃ (s,
−→
k ; z). We

can now think of (s,k) as parameters rather than independent variables, hence the
deliberate insertion of the ‘;’ separator.

Furthermore, we let F = (
−→
F h, Fz)T, similarly for qF , and we recall that ∇ =

(∂/∂−→ρ , ∂/∂z)T transforms to (i
−→
k , d/dz)T. Our PDE system in (4.1) and (4.14)

then becomes a system of three ordinary differential equations (ODEs):

(s/c)J̃ + i
−→
k ·
−→̃
F h + F̃ ′z = −σa(z)J̃ + q̃J

i
−→
k J̃/3 = −σt(z)

−→̃
F h +

−→̃
q Fh,

J̃ ′/3 = −σt(z)F̃z + q̃Fz. (4.42)

Note that
−→̃
q Fh ≡

−→
0 in all of our laser source models by axial symmetry, although

this is an assumption we can relax when dealing with extended uniform (solar)
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sources since it corresponds to the
−→
k =

−→
0 case. From (4.8)–(4.9), Fourier–Laplace

transformed internal source terms are

q̃J(s) = σs(z) e−(s/c)z−
R z
0 σ(z′) dz′ , q̃Fz(s) = g × q̃J(s), (4.43)

independent of k in the case of normal laser-like incidence.

Under these conditions, elimination of
−→̃
F h between the first and second equa-

tions leads to

F̃ ′z = −
[
s

c
+

k2

3σt(z)
+ σa(z)

]
J̃ + q̃J . (4.44)

This last ODE is an expression of energy conservation (with transport) along the
z-axis where local time variation and horizontal divergence of J are recast as ‘ef-
fective’ absorption processes:

σ(e)
a (s, k; z) = s/c+ k2/3σt(z). (4.45)

This is a key coefficient that, in general, is stratified differently than σx(z) (with x
= s,a,t), which all vary together (since $0 and g are assumed constant).

The general boundary conditions in (4.33) become

J̃(s, k; 0) + 3χF̃z(s, k; 0) = 4q̃0(s, k), (4.46)
(1− αH)J̃(s, k;H)− 3χ(1 + αH)F̃z(s, k;H) = 0, (4.47)

where q̃0(s, k) ≡ 0 and χ = 2/3 if the distributed internal source model in (4.43) is
used. If the boundary point-source model is used instead, q0(t, x, y) in (4.32) leads
to q̃0(s, k) ≡ 1 in (4.46). For simplicity, the optional surface albedo at z = H is
assumed uniform; otherwise, we would need to interpret the product of two func-
tions of −→ρ as a convolution in

−→
k -space. Under the same simplifying assumption,

treatment of the extrapolated boundary conditions in (4.34) is straightforward.
We recall finally that in remote sensing our interests are limited to

R̃(s, k) = J̃(s, k; 0)/2µ0, (4.48)
T̃ (s, k) = J̃(s, k;H)/2µ0, (4.49)

for collimated (possibly oblique) illumination, depending on what side of the cloud
the observation is performed. We must bear in mind that the latter expression
is restricted to the diffuse (scattered) component of transmission; for total trans-
mittance, we need to add the un-collided component exp[−(σ + s/c)H/µ0], which
includes the Laplace-space signature of the time-delay going from z = 0 to the
point of escape. When using the (necessarily isotropic) boundary source option, we
instead use

R̃(s, k) = J̃(s, k; 0)/2− 1, (4.50)
T̃ (s, k) = J̃(s, k;H)/2, (4.51)

and recall that, in this case, T stands for total transmission.
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5.5 Solutions of diffusive Green function problems

Not all of our best representations of the source and of the cloud structure
and of the boundary conditions can be used at the same time, even when us-
ing computer-assisted algebra. The mathematical complexity becomes intractable.
However, boundary-source Green functions can be computed in closed-form for
useful regions of the flexible parameter space we have set up in the above diffusion-
theoretical framework. In the following, we will move through the models adding
and removing capability with specific applications in mind. These applications will
be called out here, but described in full detail in the remaining sections of the
paper. In particular, we restrict ourselves here to Fourier–Laplace expressions, and
move on to PDFs and space-time moments in the two following sections on cloud
probing applications, by remote sensing or by in situ radiometry.

Throughout, we assume conservative scattering (σa(z) ≡ 0, $0 = 1), hence
σs(z) ≡ σ(z) and σt(z) = (1− g)σ(z).

5.5.1 Homogeneous cloud with an isotropic boundary point-source

In this first approach to boundary-source Green function calculus, we do not bother
with internal stratification. Moreover, we do not attempt to capture the collimation
property of laser beams nor source anisotropy induced by the forward-peaked phase
function of cloud droplets (beyond the classic scaling of σ by 1− g in σt). This is
the entry-level model used by Davis, Love and co-workers in their 1999 [85] and
2001 [86] proof-of-concept papers on multiple-scattering cloud lidar (reflected laser
light), and by Davis and Marshak in their 2002 paper [24] on transmitted solar
light, primarily with ground-based O2 A-band observations in mind.

The resulting boundary-value problem is quite simple:

F̃ ′z = −σ(e)
a (s, k) J̃ , J̃ ′/3 = −σt F̃z, (5.1)

subject to boundary conditions

J̃ + 3χF̃z
∣∣∣
z=0

= 4, J̃ − 3χF̃z
∣∣∣
z=H

= 0, (5.2)

leaving χ as an unspecified tuning parameter. By inspection, we see that non-
dimensional cloud responses will depend only on the transport or ‘scaled’ optical
depth

τt = H/`t = σtH = (1− g)τ, (5.3)

and of course χ. This means in particular that the δ-Eddington rescaling in (4.16)
for forward scattering has no effect on this model. Furthermore, we will have similar
behavior between s/c and k2/3σt since they are interchangeable in the constant
coefficient σ(e)

a (s, k) in (4.45).
This coupled ODE problem can be formally mapped to the simplest version of

the well-known two-stream model for solar transport in plane-parallel clouds, with a
fixed amount of scattering and a variable amount of absorption; see Ref. [87]. This
identification is purely formal because, in spite of their connection in (4.3), σ(e)

a

varies from 0 to ∞ independently of σt. In practice, this means that the effective
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$0 varies from 1 to −∞. Nonetheless, the analogy can be used if necessary to
obtain the solution of (5.1)–(5.2).

We start with the s/c = k = 0 case, corresponding to steady/uniform illumi-
nation, hence for σ(e)

a = 0. It is easy to show, by direct integration of (5.1)–(5.2),
that radiation density decreases only linearly through the medium:

J̃(0, 0; z) = 2
[
(1 +R) + (1 +R− T )

z

H

]
(5.4)

where we use cloud transmittance T and albedo R given by

T (τt/2χ) =
1

1 + τt/2χ
, R(τt/2χ) = 1− T (τt/2χ). (5.5)

These are the classic results for the two-stream/boundary source model in solar ra-
diation transport at non-absorbing wavelengths, going back to Schuster’s landmark
1905 paper [88] about atmospheric RT in the presence of scattering.17

Letting
L

(e)
D (s, k) = (3σ(e)

a σt)−1/2 = 1/
√
k2 + 3σts/c (5.6)

be the so-called diffusion length (in this case, an ‘effective’ one), the solution we
seek is

J̃(s, k; z) = 4
∑
{±}
±(1±X) e±(1−z/H)Y /

∑
{±}
±(1±X)2 e±Y

= 4
sinh[(1− z/H)Y ] +X cosh[(1− z/H)Y ]

(1 +X2) sinhY + 2X coshY
. (5.7)

We have introduced here the length-scale ratios X = χ`t/L
(e)
D = (2χ/τt)Y where

Y = H/L
(e)
D . Expressions for the required boundary fluxes are then

T̃ (s, k;H, τt/2χ) =
2X cosech Y

1 +X2 + 2X cothY
(5.8)

from (4.51), and

R̃(s, k;H, τt/2χ) =
1−X2

1 +X2 + 2X cothY
(5.9)

from (4.50). L’Hôpital’s rule can be used to retrieve the above baseline limit where
s, k (hence σ(e)

a ) → 0, as do X,Y . Figure 5.8 illustrates this Fourier-space solution,
F̃ (0, k;H, τt/2χ)/F (τt/2χ) (F = T,R) from (5.8)–(5.5), therefore with a focus on
steady sources (s = 0).

For transmission through a diffusive cloud, we have

T̃ (kH; ξ)
T (ξ)

=
(kH/ξ)× (1 + ξ)

[1 + (kH/ξ)2/4] sinh kH + (kH/ξ) cosh kH
, (5.10)

17For the record, the remarkable result in (5.4)–(5.5) was in fact derived in two earlier
but lesser-known papers by Lommel [89] and Chowlson [90].
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Fig. 5.8. Flux-based MTFs for similar diffusing clouds. Top: Fourier space filters
T̃ (k;H, τt/2χ)/T (τt/2χ) are plotted against non-dimensionalized wavenumber kH for
fixed H and χ = 2/3; they determine the loss of definition in imaging (with local
flux, not radiance) through clouds with increasing optical depth, from bottom to top:
τt = 1,

√
10 ≈ 3.16, 10, and the somewhat academic case of∞ (where there is no light left

to transmit). The curvature of the MTF at k = 0 determines the variance of the lateral
transport in transmitted light 〈ρ2〉T . Middle: Same as top panel but for reflection, and
τt = 31.6 is used instead of ∞. Bottom: Same as top panel but plotting the reflection
MTF versus k`t rather than kH; ordering of optical depth (modulated here with H) refers
to r.-h. side, but we note the increasing curvature on the l.-h. side. More discussion in
main text.
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where we define
ξ = τt/2χ = R/T, (5.11)

using (5.5). This normalized response plotted in the top panel of Fig. 5.8 as a
function of kH using χ = 2/3. This is basically a poor-person’s solution of the
pencil-beam problem, with no attempt at accounting for collimation, only local-
ization. It can also be recognized as the flux-based modulation transfer function
(MTF) of the cloud for an isotropic point-source. The MTF has immediate ap-
plications in imaging theory as the spatial Fourier filter that the medium applies
to any pattern viewed by a sensor through the cloud. We refer to Weinmann and
Masutani [91] for an interesting atmospheric application: viewing cities through
clouds at night from space.

Notice how the more tenuous clouds have a narrower band-pass: the resulting
image is brighter but more blurry. This is counterintuitive and results from the
propagation away from the assumed isotropic point-source in a medium where
the transport MFP `t is increasing, thus promoting further horizontal transport.
However, we see that the MTF is not very sensitive to τt as it becomes large:
it rapidly approaches the limiting case, kH/ sinh kH, for ξ ∝ τt → ∞. Since the
negative curvature of T̃ (kH; ξ)/T (ξ) at the origin becomes asymptotically constant,
(3.5) tells us immediately that 〈ρ2〉T will be ∝ H2 (and somewhat larger at finite
τt). This last prediction will be verified and made quantitative in the next section;
see also Appendix E.

For reflection from a diffusive cloud, we have

R̃(kH; ξ)
R(ξ)

=
(1− (kH/ξ)2/4)× (1 + ξ)/ξ

[1 + (kH/ξ)2/4] + (kH/ξ) coth kH
, (5.12)

with the same definition for ξ in (5.11). This normalized response is plotted in the
middle and lower panels with the same value for χ. As in the top one, the middle
panel uses kH as the non-dimensional independent variable. By comparison with
the case of transmission, we see that curvature at the origin decreases as τt increases,
and so will 〈ρ2〉R; the size of the reflected spot on a very opaque/reflective non-
absorbing medium (such as this sheet of paper!) is hardly bigger than the laser
beam (as is easy to verify with a laser pointer).

Another asymptotic limit of interest is when ξ ∝ τt ∝ H →∞ with H/ξ = 2χ`t
held constant; the limiting form of the reflected counterpart of the MTF is
(1−χ|k|`t)/(1+χ|k|`t). The bottom panel re-plots R̃(kH; ξ)/R(ξ) versus wavenum-
ber non-dimensionalized as k`t. Recalling that we are dealing with a necessarily
symmetric function of k (R(−→ρ ) is axisymmetric), we see that the curvature at the
origin is infinite. In other words, 〈ρ2〉R for semi-infinite non-absorbing media is
infinite.
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5.5.2 Stratified cloud with an isotropic boundary point-source

The above bare-bones model for a pulsed point-source was recently generalized [92]
to include stratification according to the constant gradient parameterization from
section 5.2.5.18

We thus wish to solve both the space-domain (s = 0) problem,

F̃ ′z = −[k2/3σt,∆(z)] J̃ , J̃ ′/3 = −σt,∆(z) F̃z, (5.13)

and its time-domain (k = 0) counterpart,

F̃ ′z = −(s/c) J̃ , J̃ ′/3 = −σt,∆(z) F̃z, (5.14)

in both cases, subject to boundary conditions in (5.2) with χ as an floating param-
eter. By inspection, we see that non-dimensional cloud responses can only depend
on ∆ and τt = σtH (and χ). This again implies that δ-Eddington rescaling will
have no effect on the results. In contrast with the previous ∆ = 0 case, however,
we will not have similarity-induced behavior between s/c and k2/3σt since they are
interchangeable in σ

(e)
a (s, k) only when σt is constant.

The spatial diffusion problem in (5.13) and (5.2) for J̃(0, k; z) is solvable in the
Fourier domain in terms of Bessel functions of the second kind (Yn(x), n = 1, 2) and
modified Bessel functions of the second kind (In(x), n = 1, 2); see Appendix A for
details. The temporal diffusion problem in (5.14) and (5.2) for J̃(s, 0; z) is solvable
in the Laplace domain in terms of Airy functions and their derivatives, which are
in turn related to modified Bessel functions with 1/3-integer orders. In both cases,
the expressions are too complex to be reproduced here from the computer-assisted
symbolic math tool and, at any rate, they are only used after setting z = 0 or
z = H. This leads to somewhat simpler expressions for F̂ (s) = F̃ (s, 0), F = R, T ,
in terms of (regularized) confluent hypergeometric functions 0F1(a, x)/Γ (a); see
Appendix B for details.

Boundary fluxes F̃ (s, 0) and F̃ (0, k) are obtained as above for F = R, T and,
at zeroth order in both k and s, we retrieve (again using L’Hôpital’s rule) the
standard result in (5.5) for cloud transmittance F = T and albedo F = R. As
expected, they are insensitive to internal structure since optical properties $0 and
g are held constant with respect to z.

5.5.3 Homogeneous cloud with normally incident illumination at a
point

Rather than an isotropic point-source specified in the boundary conditions, we now
move to a more accurate representation of the pulsed laser beam formalized in (4.8)–
(4.9), hence (4.43) in Fourier–Laplace variables, as an exponential distribution of
anisotropic internal sources along the z-axis. However, to achieve analytical results,
we must abandon the cloud-scale internal structure we just addressed; we can still
apply the Cairns rescaling to correct for the effect of small-scale turbulence.

18For another solvable diffusion model (with a steady isotropic point-source) that fea-
tures exponential stratification, we refer to Section 6.2.2 in Zege et al.’s monograph [83].
Like here, Bessel functions arise; see Appendix A.
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Following Ref. [92], we solve this space-domain (s = 0) problem,

F̃ ′z = −[k2/3(1− g)σ] J̃ + σ e−σz, J̃ ′/3 = −(1− g)σ F̃z + gσ e−σz, (5.15)

and its time-domain (k = 0) counterpart,

F̃ ′z = −(s/c) J̃ + σ e−(s/c+σ)z, J̃ ′/3 = −(1− g)σ F̃z + gσ e−(s/c+σ)z, (5.16)

subject to the Fourier–Laplace version of (4.28)–(4.29):

J̃ + 2F̃z
∣∣∣
z=0

= 0, J̃ − 2F̃z
∣∣∣
z=H

= 0. (5.17)

We anticipate here that non-dimensionalized responses will depend on both τ and g,
not just on (1−g)τ . Consequently, δ-Eddington rescaling can improve the accuracy
of the model by reducing the impact of forward-peaked phase functions, which we
recall is detrimental to diffusion. Also, we notice that s/c enters the exponential
source term, as an effective σa should since it participates in overall extinction, but
k2/3(1 − g)σ does not. This transformed 3D time-dependent problem is therefore
not formally identical to any known solar two-stream problem, at least when k 6= 0.

The desired solution J̃(0, k; z) of (5.15), with (5.17), can be expressed as a
lengthy rational function of k, e±kH , e±kz and e±σz with coefficients containing
σ, g, and e±σH . The diffuse boundary fluxes are now computed from (4.48)–(4.49)
with µ0 = 1; details are provided in Appendix C. The counterpart J̃(s, 0; z) for
(5.16), with (5.17), can similarly be expressed as an even lengthier rational function
of s/c, e±

√
3s/c(1−g)σH , e±

√
3s/c(1−g)σz, e±(s/c)H and e±(σ+s/c)z with coefficients

containing σ, g, and e±σH ; details are given in Appendix D with µ0 = 1.
The zeroth-order result in both k and s, yet again calling for L’Hôpital’s rule,

yields the known expressions [87] for total (direct plus diffuse) cloud transmittance,

T =
5− e−τ

3(1− g)τ + 4
, (5.18)

and its albedo R = 1− T , leading to

R =
3(1− g)τ − 1 + e−τ

3(1− g)τ + 4
, (5.19)

for normal solar incidence, this is as expected when the source becomes steady
(s = 0) and uniform (k = 0). Following Meador and Weaver [87], we note that for
very small optical depths T can slightly exceed unity (hence R becomes slightly
negative) if g > 2/3. Although we do not expect to use diffusion theory for such
optically thin clouds, this underscores the need to use δ-Eddington rescaling in
(4.16), which maps g = 0.85 to g′ = 0.46 (thus crossing the critical 2/3 threshold
for obtaining physical values of R and T for all values of τ).19

19Since Cairns’ rescaling in (4.20) goes in the wrong direction of larger g-values, it is
better not to stretch the diffusion model toward media with insufficient opacity.
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5.5.4 Homogeneous cloud with normally incident illumination at a
point from above and a reflective surface below

This scenario could apply to a down-looking lidar probing fog, low-level arctic
clouds, or turbid coastal water. However, to represent accurately the later situa-
tion one would need to add: (i) a flexible combination of collimated (normal) and
diffuse (isotropic) illumination to account for roughness of the air–water interface;
(ii) partial reflection at the illuminated boundary determined by total internal re-
flection; (iii) the related conservation of flux when crossing a discontinuity in index
of refraction, another Brewster-angle effect [93]; and (iv) some level of absorption
in the optical medium. We explore here the simple version.

In this case, we activate the boundary albedo αH in the boundary condition at
z = H. We thus need to solve the space- and time-domain problems in (5.15) and
(5.16) subject to (4.46)–(4.47) with q0 = 0 and χ = 2/3, specifically,

J̃ + 2 F̃z
∣∣∣
z=0

= 0, J̃ − 2
1 + αH
1− αH

F̃z

∣∣∣∣
z=H

= 0, (5.20)

assuming 0 < αH < 1 (and F̃z(H) = 0, a Neumann boundary condition, when
αH = 1). There is no new or fundamental difficulty in this enhanced version of the
previous problem. The analytical expression of the solution will of course be more
complex. Rather, we have here the opportunity to demonstrate a superposition
principle of 3+1D RT in (s,

−→
k )-space using a physical argument.

If αH = 0, we already know what happens: some light is reflected, some is
transmitted spread over space and time, and we know the Laplace and Fourier
transforms of these distributions. Since the surface at z = H is partially reflective,
each point on it becomes a secondary source for the medium with a space- and
time-dependent intensity determined by the problem with αH = 0. We know from
section 5.5.1 how the homogeneous medium responds to each isotropic point-source
on a boundary.

Let F̃col and F̃iso (F = R, T ) be the boundary fluxes for the two problems in
(s,
−→
k )-space and let us focus on the remote sensing signal R̃(s, k), hence R(t, ρ),

accessible from above the scene.
The zeroth-order contribution, in the sense of lower surface reflections, is

R̃col(s, k). The first-order contribution to the signal is T̃col(s, k)αH T̃iso(s, k). In-
deed, if we think of t and ρ as random variables with PDFs PF (t, ρ) = F (t, ρ)/F ,
then the associated P̃F (s, k) = F̃ (s, k)/F̃ (0, 0) are their characteristic functions.
In probability theory, addition of two independent random variables calls for a
convolution of their PDFs, but just a simple product of characteristic functions.
Consequently, we can read

T̃col(s, k)αH T̃iso(s, k) = Tcol P̃T,col(s, k)× αH × Tiso P̃T,col(s, k)

as the properly composed probability of three sequential but independent ran-
dom events: (1) transmission from z = 0 to z = H and dispersion according to
PT,col(t, ρ); (2) isotropic reflection by the uniform surface; (3) re-transmission back
to z = 0 and dispersion according to PT,iso(t, ρ).

Generalization to the next order is straightforward. Rather than transmission
back to z = 0 the once surface reflected light is reflected back to the surface by
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the cloud/fog, surface reflected again and then transmitted: T̃colαHR̃isoαH T̃iso. By
induction, the contribution for n ≥ 1 surface reflections is T̃col[αHR̃iso]n−1αH T̃iso.
By summing up all the contributions, we have for the requested flux

R̃(s, k) = R̃col(s, k) + T̃col(s, k)×
∞∑
n=0

[
αHR̃iso(s, k)

]n
× αH T̃iso(s, k),

hence

R̃(s, k) = R̃col(s, k) + T̃col(s, k)
αH T̃iso(s, k)

1− αHR̃iso(s, k)
. (5.21)

When working in a software environment for symbolic math, it is easy to implement
this expression once we have solved the two coupled ODEs problems with different
types of source and stored the results.

5.5.5 Homogeneous cloud with uniform oblique illumination

We do not foresee the immediate need to investigate the axially asymmetric spatial
patterns of reflected (and even less transmitted) light that would result from oblique
illumination by a narrow laser beam.20 However, it is of interest to understand the
impact of slant illumination on the temporal properties (path-length distributions
and moments) of reflected and diffusely transmitted light. This is largely because
of the emerging capability of measuring such properties from ground and space
using sunlight and differential absorption spectroscopy in the oxygen A-band (to
be discussed in detail in section 5.8).

As always with diffusion, we only obtain responses in flux, at the cloud bound-
aries in particular. However, one can invoke optical reciprocity to find new appli-
cations. In this case, we have spatially and angularly integrated but time-resolved
observation of a pulsed collimated source. This situation can be transposed to a
large-scale single-direction (i.e., radiance) observation of an isotropic burst of light,
which may or may not be localized at a single point (there is no attempt at imag-
ing). This scenario is directly applicable to light-curve analysis, for example, for
optical detection of cloud-to-ground lighting [95–98].

Referring back to (4.10)–(4.11) as needed, with φ0 = 0, it is straightforward
to generalize to µ0 < 1 the source terms in the time-domain problem in (5.16) for
normal (µ0 = 1) illumination. We thus need to solve

F̂ ′z = −(s/c) Ĵ + σ e−(s/c+σ)z/µ0 ,

Ĵ ′/3 = −(1− g)σ F̂z + µ0gσ e−(s/c+σ)z/µ0 , (5.22)

subject to boundary conditions similar to those in (5.17). However, this is only for
Laplace-transformed variables, so we use ·̂ rather than ·̃ symbols, referring back
to section 5.3.1. The sought solution Ĵ(s; z) is a nontrivial generalization of the
already complex expression for J̃(s, 0; z) obtained in section 5.5.3; see Appendix D
for details.

20See Section 6.3 in Zege et al.’s monograph [83] and the paper cited therein by Zege,
Polonsky and Chaikovskaya [94] where this problem is addressed in steady state to obtain
the non-axisymmetric MTF.
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From Ĵ(s; z) we derive R̂(s) and T̂dif(s) using (4.48) and (4.49), ignoring the
horizontal wavenumber k. When s → 0, along with the effective absorption, we
retrieve classic formulas from, for example, Ref. [87], for total cloud transmittance,

T = Tdif + e−τ/µ0 =
(2 + 3µ0) + (2− 3µ0) e−τ/µ0

3(1− g)τ + 4
, (5.23)

and albedo

R = 1− T =
3(1− g)τ + (2− 3µ0)(1− e−τ/µ0)

3(1− g)τ + 4
, (5.24)

resulting from slant illumination by the (steady) solar beam. Here also there are
caveats about unphysical outcomes if g > 2/3µ0 and τ is too small. The same
remedy as above is recommended, namely, to use δ-Eddington rescaling and also
to steer away from grazing solar zenith angles (SZAs) if τ is small.

As demonstrated in the previous case, we can easily add surface reflectivity to
the model without going through the whole derivation. Indeed, since each term in
(5.21) has a physical meaning, it is not hard to transpose it to a different problem.
For instance, what if we were to remotely observe an isotropic point-source on a
reflective surface (0 ≤ α0 ≤ 1) with a non-imaging but time-resolving radiometer
through a cloud layer? This could be a cloud-to-ground lightning stroke viewed
from satellite. Either way, we need to partition what time-dependence belongs to
the source and what ‘pulse stretching’ was added by the intervening scattering
medium. The Laplace transform of the radiance time evolution for a unitary δ-
source viewed at an angle θ = cos−1 µ ≥ 0 (away from nadir) is predicted to
be

Îobs(s) ≈
1
π
× T̂col(s;µ)

1− α0R̂iso(s)
, (5.25)

where we have used reciprocity and emphasized that the T̂ (s) computed here is
for a slant illumination (µ0 < 1) by a uniform collimated beam or, by reciprocity,
remote observation (µ < 1) with a large footprint.

As in all of the previous cases, we postpone discussion of higher-order terms
in the Taylor expansion of R̂(s) and T̂ (s) around s = 0 (in this case, moments
of path-length ct) until we address specific applications to cloud remote sensing
in the following sections. In the interim, we describe what can be done about the
challenge of inverse Fourier–Laplace transformation.

5.6 Inverse Fourier–Laplace transformation

We now face the difficult task of performing inverse Fourier and/or Laplace trans-
forms of analytical (but not simple) expressions to obtain explicit expressions for
cloud remote sensing signals. Or else we need to look for other ways of exploiting the
diffusion models in remote sensing applications, a route we explore in sections 5.8
and 5.9. Since none of the above models have known analytical inverse transforms,
we show here (1) the outcome of a numerical approach and (2) how a somewhat
degraded representation of the laser beam source enables the inverse transforms to
be performed analytically.
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5.6.1 Uniform clouds with an isotropic boundary point-source in (5.1),
using exact boundary conditions in (5.2)

It is highly desirable to validate the diffusion model for Green functions using
numerical solutions of the 3D RT equation, say, by way of Monte Carlo techniques.
It is possible to compute Fourier and/or Laplace transforms of radiative responses
using MC, i.e., characteristic functions of the MC random variables. However, it is
more compelling to see the diffusion predictions and MC benchmarks in physical
space.

Unfortunately, not even the simplest of the above models, isotropic boundary
point-sources in (5.1)–(5.2), has analytical inverse transforms, so we need to imple-
ment them numerically. Figure 5.9 shows an example using the normalized spatial
Green function for transmission PT (ρ) obtained from P̃T (k) = T̃ (0, k)/T in (5.10),
itself plotted in Fig. 5.8(a). In imaging terminology, we are deriving the cloud’s
point spread function (PSF) from its MTF via inverse 2D Fourier transformation.

In axial symmetry, the 2D Fourier transform in (4.41) morphs into the Hankel
transform:

P̃T (k) = 2π

∞∫
0

PT (ρ)J0(kρ)ρ dρ↔ PT (ρ) =
1

2π

∞∫
0

P̃T (k)J0(kρ)k dk, (6.1)

Fig. 5.9. Normalized spatial Green function for transmitted light according to analyti-
cal diffusion theory and numerical transport theory. The cloud optical depth was set to
τ = 16 and illumination was isotropic from a point; the outcome is the PSF for this
diffusive medium. The extrapolation length parameter was set to χ = 0.7 for the diffusion
expression in Fourier space, which was inverted numerically. Other details about the MC
transport simulation are as in Fig. 5.3, which was replicated here for isotropic as well as
forward (H–G) scattering. Adapted from Ref. [24].
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where J0(x) is the zeroth-order Bessel function of the first kind. Agreement between
transport (MC results) and diffusion theories is excellent for the prescribed τ = 16
cloud, especially for isotropic (g = 0) scattering, when χ = 0.7. As is appropriate
for a validation exercise, the MC scheme mimicked the isotropic boundary source
used in the diffusion model. The only noticeable difference is for the near-axis field
when g = 0.85.

5.6.2 Uniform clouds with an isotropic internal point-source, using
extended boundary conditions in (4.34)

The above numerical approach to inverse Fourier or Laplace transformation is vi-
able for case studies, but not for routine application to remote sensing signal anal-
ysis. So we still need an analytical predictor for space-time Green functions, es-
pecially for the multiple-scattering cloud lidar application where both dimensions
are exploited. Since none of the models in the previous section are amenable to
analytic inversion, we first need to modify the diffusion model.

Polonsky and Davis [99] revisited the way the pulsed laser-type sources for the
Green function are represented. Following the path blazed by Zege, Katsev and
Sherbaf [100] for weakly absorbing semi-infinite media and Bushmakova, Zege and
Katsev [101] for finite media, they proposed to compute the radiative Green func-
tion at z = 0 (the illuminated boundary) and z = H (the opposite boundary)
using an isotropic source concentrated at a single point inside the cloud, but judi-
ciously positioned. For the moment, however, we will denote this roaming position
as z0 ∈ (0, H). With the 3D RT equation in mind, we write this as21

Q(t,x,Ω) = δ(t)δ(x)δ(y)δ(z − z0)/4π (6.2)

in the RT equation, which translates to

qJ(t,x) = δ(t)δ(x)δ(y)δ(z − z0), qF (t,x) = 0, (6.3)

for the diffusion model. In Fourier–Laplace space, this translates simply to q̃J(z) =
δ(z − z0) and q̃Fz = 0 (hence no attempt at capturing internal source anisotropy
in this particular diffusion model).

We now need to solve22

F̃ ′z = −σ(e)
a (s, k) J̃ + δ(z − z0), J̃ ′/3 = −σt F̃z, (6.4)

which we subject to homogeneous extended Dirichlet boundary conditions,

J̃(−χ/σt) = 0, J̃(H + χ/σt) = 0. (6.5)

This is a textbook boundary-value problem [103] leading to
21For lidar applications at least, causality dictates that we also shift the δ-in-time by

z0/c. However, this only modulates the Laplace-transformed source q̃J(z) by a constant,
exp(isz0/c), and the shift itself can be implemented simply in the end-result anyway. By
omitting it here, there is thus no loss in generality, but some gain in simplicity.

22Incidentally, this model found an application in one of the earliest papers in 3D RT
known to the present authors: Richards’ 1956 study of point-sources in plane clouds [102].
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J̃(s, k; z0, z) =
cosh[m(τt + 2χ− σt|z − z0|)]− cosh[m(τt − σt(z + z0))]

χm sinh[m(τt + 2χ)]
, (6.6)

where we recognize τt = σtH from (5.3) and define23

m(s/c, k)2 =
3σ(e)

a (s, k)
σt

= 3
s/c

σt
+
(
k

σt

)2

=
s/D + k2

σ2
t

, (6.7)

recalling that D = c/3σt. This Green function reflects reciprocity, i.e., z0 � z
symmetry between the positions of the isotropic source and detector (in this case,
a ‘J-meter’). It also has space-time similarity in the sense that k2 is interchangeable
with s/D in the expression for m2; this will translate in physical space to ρ2 ↔ Dt
maps in, for example, the marginal moments. Most importantly, the analytical
expression contained in (6.6)–(6.7) can be inverse Fourier–Laplace transformed.

Details of the inverse 2D Fourier–Laplace (actually, Hankel-Laplace) transfor-
mation of J̃(s/c, k; z, z0) can be found in Ref. [99]. The most interesting aspect is
that the straightforward expansion of the solution into a series (invertible term-by-
term) that converges slowly at large times and distances from the source – precisely
the regions we are most interested in. Application of Poisson’s sum-rule resolves
this issue and delivers a series with reasonably fast convergence in the regime of
interest. The end-result is:

J(t, ρ, z; z0) =
2cσt

τt + 2χ

(
1
π
× e−ρ

2/4Dt

4Dt

)

×
∞∑
n=1

sin
(
πn

σtz + χ

τt + 2χ

)
sin
(
πn

σtz0 + χ

τt + 2χ

)

exp

[
−
(

πn

τt + 2χ

)2

σ2
tDt

]
. (6.8)

A closely related quantity of interest is net flux in the vertical, from Fick’s law:

Fz(t, ρ, z; z0) = − D

c

∂J

∂z
= − 1

3σt

∂J

∂z
,

= − 2πcσt

3(τt + 2χ)2

(
1
π
× e−ρ

2/4Dt

4Dt

)

×
∞∑
n=1

n cos
(
πn

σtz + χ

τt + 2χ

)
sin
(
πn

σtz0 + χ

τt + 2χ

)

exp

[
−
(

πn

τt + 2χ

)2

σ2
tDt

]
. (6.9)

In particular, the two above expressions can be combined according to (4.27) to
obtain the hemispherical fluxes F± that are directly measured with standard (2π
FOV) radiometers.

23In the case of real absorption in steady-state asymptotic 1D RT, this key non-
dimensional ratio is known as the ‘similarity’ parameter [104].
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At this point, a well-known physical defect of diffusive transport theory be-
comes apparent: one obtains J(t, ρ, z; z0) > 0 for all t > 0, and not just t >√
ρ2 + (z − z0)2/c. For instance, although it is in very small amounts, light reaches

the opposite cloud boundary without delay, thus violating basic causality and in
sharp contrast with the MC simulation outcome in Fig. 5.3(b). This artifact can
be traced back to the choice of neglecting in (4.2) the ∂tF term. Not dropping
that term leaves us with the so-called telegrapher’s equation (system). In some
applications, it is desirable to enforce causality in signal modeling [105–107]. In
our present application, however, we prefer to commit to not use the diffusion re-
sults in regions of space-time where the theory has known defects, over and beyond
the present issue with infinite propagation velocity. Avoidance of the problematic
short times/paths and distances from the source is especially easy when one has
an explicit representation in space and/or time. We discuss another advantage at
the close of section 5.9.

In principle, the response to the correct distribution of internal sources in can
now be reconstructed by linear superposition (integrating over z0).24 However, to
preserve the relative simplicity of the above expression, we propose to select a
single representative value of z0 rather than integrate over all the sources, i.e.,
exponentially weight and integrate25 over z0 between 0 and H (even if we can
safely assume here that the upper limit is ∞).

A physical argument for positioning such an ‘effective’ isotropic point-source
goes as follows. If we were to collapse the axial exponentially decaying distribution
of anisotropic point-sources in (5.15) or (5.16) into a single isotropic point, we would
likely place it at z0 ∼ `t, hence σtz0 ∼ O(1), recalling that χ ∼ O(1) as well.26

Indeed, the basic idea of the transport MFP is to prolong ballistic propagation
just far enough for the memory of the original direction to be erased by multiple
forward-biased scatterings [108]. In essence, `t is the medium’s effective MPF for
an isotropic scattering [80] and, for the same physical reasons, defines the depth of
the radiative boundary-layer in the cloudy medium.

5.6.2.1 Transmission properties

For transmission, we evaluate

T̃ (s, k) =
J̃(s, k;H, z0)

2
=

cosh[m(σtz0 + 2χ)]− cosh[mσtz0]
2χm× sinh[m(τt + 2χ)]

, (6.10)

and we note that the combined numerator and the 2χm factor in the denominator
are well-approximated by cosh′[m(σtz0 + χ)] = sinh[m(σtz0 + χ)] if 2χm� 1. In

24There is, however, no q̃Fz = gq̃J term here, hence no account of first-scattering source
anisotropy.

25This superposition of point-source solutions would change the second sine term in
(6.8)–(6.9) into a combination of two trigonometric functions, four if the upper bound is
set to H <∞.

26A closer look at the spatial Green function plotted in Fig. 5.1 reinforces this choice.
The assumed cloud has τt = H/`t = 5.4. We can see overall light levels decreasing radially
with distance from a point at ∼1–2 transport MFPs `t = 1/σt ≈ 0.2 km below the upper
(illuminated) boundary.
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this case, the desired asymptotic (τt � χ) behavior when m→ 0 is

Tts(τt) ≈
2χ

τt + 2χ
, (6.11)

from basic two-stream theory (5.5). It is obtained when we set σtz0 = χ. It can
be shown that this choice also gives the correct leading terms for 〈ρ2〉T and 〈ct〉T
because the leading term in m2 has the ‘correct’ pre-factor for both k2 and s/c,
using as a benchmark the solutions of (5.1)–(5.2). By enforcing correct small (s, k)
behavior, we are sure to obtain the correct behavior for large (t, ρ) after inverse
transformation.

Rather than using (6.10) in (s, k)-space, we can thus use the somewhat simpler
model27

T̃ (s, k) ≈ sinh[m(2χ)]
sinh[m(τt + 2χ)]

. (6.12)

Figure 5.10 demonstrates how close this model is to (6.10), with σtz0 = χ, and how
well these internal point-source models approximate the boundary-source model in
(5.8) where it matters, i.e., as k → 0.

Fig. 5.10. Three models for T̃ (0, k). We compare in semi-log axes the ‘exact’ diffusion
model in (5.8) for an isotropic boundary source expressed in Robin BCs, its counterpart
in (6.10) based a judiciously positioned internal point-source (σtz0 = χ) with extended
Dirichlet BCs, and the approximation in (6.12). The first of these MTFs is also plotted
in Fig. 5.8 (top panel), but here we use τt = (1 − g)τ = 8.1 and χ = 2/3. Notice the
osculating curvatures at k = 0, meaning that the predicted value for 〈ρ2〉T will be the
same; cf. (3.5).

27Viewed, like in Fig. 5.10, as a model for the MTF, T̃ (0, k), this expression is adapted
from Bushmakova et al.’s 1972 article [46], generalized by the same authors in 1974 to
space-time Green functions. However, those studies use σtz0 = (5/4)χ in our notations
to achieve slightly better accuracy for a collimated beam at normal incidence. See also
Katsev and Zege’s 1986 paper [109] and the monograph by Zege et al. [83, Section 4.3.3].
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Adapting the Fourier–Laplace inversion procedure in [106], we find

T (ct, ρ) ≈ 2π
3H

R2
ts

τt

(
1
π
× 3τt e−3τt ρ

2/4Hct

4Hct

)

×
∞∑
n=1

n sin(πnRts) exp
[
− (πnRts)

2 1
3τt

ct

H

]
. (6.13)

where Rts(τt) is given by 1−Tts(τt) from (6.11), equivalently, the classic two-stream
model outcome in (5.5). We have somewhat rewritten here the Green function to
emphasize the two main cloud remote-sensing unknowns, H and τt = (1− g)τ . As
expected, we see in particular that the outcome of (6.13) does not change, for a
given value of H, within a class of similar clouds, i.e., where (1− g)τ is constant.

We recognize in (6.13) a Gaussian spatial profile of flux with an increasing
value of the variance 〈ρ2〉(t) of the lateral transport at each instant t (or path ct);
specifically,

〈ρ2〉(t) =
4c
3σt

t. (6.14)

This is as expected for 〈ρ2〉 = 〈x2〉+ 〈y2〉 recalling that, for boundary-free isotropic
diffusion away from a point-source, we have 〈r2〉 = 〈x2〉+ 〈y2〉+ 〈y2〉 = 6Dt with
D = c/3σt [103].

Detailed time-only dependence is obtained from (6.13) by multiplying both sides
by 2πρdρ and integrating from 0 to ∞:

T (ct) ≈ π

2H
R2

ts

3τt
×
∞∑
n=1

n sin(πnRts) exp
[
− (πnRts)

2 1
3τt

ct

H

]
. (6.15)

This result can be applied to the monitoring of cloud-to-ground lightning [97] and
other rapidly varying time-dependent sources, through dense clouds from space.
We see in (6.15) a linear superposition of exponential decays in time, the dominant
(slowest, n = 1) rate being [101]

ct? = H ×
(

3
π2

)
× τt
Rts(τt)2

, (6.16)

where we continue to emphasize the invariance within similarity classes (constant
τt).

Integrating (6.13) over path ct from 0 to ∞ yields the spatial response to a
steady source as observed with an imaging detector:28

T (ρ) ≈
(
Rts

H

)2

×
∞∑
n=1

n sin(πnRts)K0

(
πnRts

ρ

H

)
. (6.17)

where K0(·) is the zeroth-order modified Bessel function of the second kind. This
would apply to the monitoring cloudy regions from space for steady localized
sources using imaging sensors; missiles during their boost phase are possible targets.

28Use identity
R∞
0

exp[−(at+ b/t)] dt/t = 2K0(2
√
ab).



5 Space-time Green functions for diffusive radiation transport 217

Although defined above as a sum of Gaussians, the dominant (n = 1) term
decays radially as an exponential approached from above with a relatively slow
power law [110]:

T (ρ) ∼ exp(−ρ/ρ?)
√
ρ

, (6.18)

where the e-folding radius is
ρ? = H/πRts. (6.19)

As expected from k2 ↔ s/cD similarity (D = c/3σt), examination of (6.16) shows
that we have (ρ?)2 = (c/3σt) t?. This connection serves as a reminder that the key
space-time variability parameter m defined in (6.7) is ∝ k when s = 0, but ∝

√
s

when k = 0. Consequently, for this class of models cunningly designed to delivery
explicit expressions in space end/or time, moment predictions will be accurate for
〈ρ2〉 and 〈ct〉, but not 〈(ct)2〉.

5.6.2.2 Reflection properties

With reflection in mind, we propose to set σtz0 ≈ 1, this time irrespective of χ
(although we also have σtz0 ≈ (3/2)χ since χ ≈ 2/3). This leads to

R̃(s, k) =
J̃(s, k; 0, (3/2)χ/σt)

2
=

cosh[m(τt + χ/2)]− cosh[m(τt − (3/2)χ)]
2χm× sinh[m(τt + 2χ)]

.

(6.20)
In the asymptotic regime where τt � σtz0 ∼ χ ∼ O(1), one notes that cosh[m(τt +
χ/2)]− cosh[m(τt−(3/2)χ)] will be very close to 2χm sinh[m(τt−χ/2)] if 2χm� 1.
The boundary flux at z = 0 can therefore be written even more simply as [106]

R̃(s, k) ≈ sinh[m(τt − χ/2)]
sinh[m(τt + 2χ)]

. (6.21)

The above expression still gives us in the limit m → 0 the correct asymptotic
(τt � χ) form of cloud albedo in (5.19) for the collimated-beam model when the
short-lived exponential terms are omitted:

R ≈ τt/2χ− 1/4
1 + τt/2χ

. (6.22)

Here also, we get the correct leading terms for 〈ρ2〉R and 〈ct〉R since the leading
term in m2 has the correct pre-factor for both k2 and s/c.

Figure 5.11 shows how this coarsest of all representations of the pulsed laser
source (in terms of directionality and spatial distribution) compares with our best
model for the pencil-beam problem in reflection. Although there are interesting
deviations at large wavenumbers,29 there is no apparent difference at small k (nor

29We note that the exact diffusion model in Fig. 5.11 leads to negative values of R̃(0, k)
if g > 0; the behavior of this model for k � H, not plotted here, is R̃(0, k) ∼ −3g/2k
(following a single negative minimum). This is unphysical since characteristic functions
(Fourier transforms of PDFs) are everywhere non-negative if the PDF is axisymmetric. In
this sense, the proposed approximation is more useful than the exact theory in applications
where R̃(0, k) must make physical sense over the full range of k. In our case, its utility is
to yield tractable inverse Fourier–Laplace transforms.
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Fig. 5.11. Two models for R̃(0, k). We plot as functions of k (in units of 1/H) results
for both ‘exact’ diffusion theory that models a collimated incident beam that excites
anisotropic sources (details in Appendix C) and a more practical approximation in (6.21)
that uses a single judiciously placed isotropic point-source. Two cases with (1 − g)τ =
(1 − g′)τ ′ = 8.1 are examined. When working with moments and/or long-path and/or
far-field properties, only the behavior near k = 0 matters. In this case, we have identical
behavior up to O(k2), having set χ = 2/3 in the approximate model.

would there be for small s), where it matters for spatial (temporal) moment esti-
mation as well as long-path and far-field trend analyses.

The end-result of the inverse Fourier–Laplace transform of (6.21) is [106]

R(ct, ρ) ≈ 2π
3H

R2
ts

τt

(
1
π
× 3τt e−3τt ρ

2/4Hct

4Hct

)

×
∞∑
n=1

n sin
(

5
4
πnTts

)
exp

[
− (πnRts)

2 1
3τt

ct

H

]
, (6.23)

where Tts = 1− Rts is from (6.11). This result can be applied directly to imaging
cloud lidar systems with a wide field-of-view, but maybe not wide enough for robust
moment estimation [84].

Integration over space yields

R(ct) ≈ π

2H
R2

ts

3τt
×
∞∑
n=1

n sin
(

5
4
πnTts

)
exp

[
− (πnRts)

2 1
3τt

ct

H

]
. (6.24)

This result can be applied directly to non-imaging (for example, space-based) lidar
systems with wide-enough footprints [111].

Figure 5.12 shows how well the model in (6.24) performs with respect to the
usual ‘gold standard’ of Monte Carlo simulation. In this case, no effort was made
to mimic the actual source used in the diffusion model, namely, an isotropic point-
source at about one transport MFP from the observed cloud boundary; as in real
cloud lidar, a collimated source was used. So deviations at early times are expected
and observed, but diffusion-based models are not to be used in this regime anyway.
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Fig. 5.12. Diffusion theoretical and MC estimates of the temporal Green function for
reflected fluxes. We have plotted the closed-form expression in (6.24) for the diffusion-
based model and two numerical solutions of the basic radiative transfer problem for slab
geometry in (2.1)–(2.7). The inset shows the noise level for the adopted MC scheme with
2 · 108 histories. Cloud thickness is H = 1 km. The diffusion prediction is the same for
all similar clouds, i.e., with the same scaled optical depth (1 − g)τ = 8.1, while slightly
different answers are obtained numerically with the RT model (only at early times). All
results are normalized to their respective predictions for steady-state albedo, which are
quoted to the accuracy of the MC simulations; only ≈2% of the signal lies beyond the
cutoff at ct = 10H. We see that the diffusion model is an accurate representation of the
radiation transport when ct & H for the similar cases of H–G scattering with g = 0.85
(τ = 54) and g = 0.46 (τ = 15).

At long times, the agreement is excellent. The vertical double-headed arrow indi-
cates the range (path ct/2) where the single scattering contribution to the signal
vanishes. All the signal beyond this point is from multiple scattering only but none
of it is in the standard model for backscatter lidar signals. It would be interpreted
in classic lidar as a spurious distribution of scattering particles on the opposite side
of the cloud.

Integrating (6.23) over path ct yields:

R(ρ) ≈
(
Rts

H

)2

×
∞∑
n=1

n sin
(

5
4
πnTts

)
K0

(
πnRts

ρ

H

)
. (6.25)
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This spatial response would be observable with an imaging detector for a steady
narrow-beam source such as a cw laser. An interesting laboratory application is
described in Refs [112,113] targeting oxygen levels in blood.

As noted already for Fig. 5.3, there is no difference in the far-field behavior
between reflected and transmitted light in either space or time. So the relations
between observables and cloud parameters in (6.14), (6.16) and (6.19) apply to
both sides of the cloud [114], and has proven useful in remote sensing applications
mentioned previously, but that we now discuss in detail.

5.7 Temporal Green functions applied to in situ cloud lidar

5.7.1 Forward model for the radiometric signal

The bulk of this review is about fluxes emerging from cloud boundaries since they
are the only ones accessible by remote sensing methods. This section is the excep-
tion. We discuss here an interesting new application of forward models for internal
radiative properties: in situ cloud lidar.30

In their feasibility study for in situ (airborne) cloud lidar, Evans et al. [21] stud-
ied the special case z = z0 = H/2 in (6.8) as a first-cut model for a proposed time-
resolving wide-FOV radiometry. Notably, they solved the Green function problem
directly in the space-time domain using the method of images to satisfy extended
Dirichlet BCs (with χ = 2/3). In this highly symmetric situation, the two sine
terms reduce to sin2(nπ/2) = 1 if n is odd, 0 if even. Thus

J(t, ρ,H/2;H/2) =
2cσt

τt + 2χ

(
1
π
× e−ρ

2/4Dt

4Dt

)

×
∞∑
j=0

exp

[
−
(
π(2j + 1)
τt + 4/3

)2
σtct

3

]
. (7.1)

where we recall that diffusivity D = c/3σt = cτt/3H. The authors also argue that,
for short times, one can use the classic diffusion Green function for an isotropic
pulse at the origin in the absence of boundaries:

J(t, ρ, z) =
c

(4πDt)3/2
exp

(
−ρ

2 + z2

4Dt

)
, (7.2)

where z is now reckoned from the position of the isotropic point-source. For sim-
plicity, Evans et al. assume a monostatic configuration where source and detector
are essentially collocated, hence ρ = 0 in (7.1) and ρ = z = 0 in (7.2). From a
cloud characterization perspective, early times can be used to determine a volume-
averaged estimate of opacity σ = σt/(1 − g) from D, knowing g ≈ 0.85, and later
times to determine H = τt/σt.

30Lidar stands for LIght raDAR, or LIght Detection And Ranging, but there is obviously
no cloud ranging to be done in this case. The present time-domain signal is entirely about
multiple scattering while the conventional ranging application in Lidar assumes necessarily
a single scattering or reflection.
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This model for in situ lidar signals can easily be improved by setting the detector
at a horizontal distance ρ ≈ `t = 1/σt from the effective isotropic point-source of
light pulses. Instead, Evans et al. moved to qualitatively better forward modeling by
using a 3+1D MC code in conjunction with many realizations of a realistic (data-
driven) 3D stochastic cloud model [115]. They used this extensive forward modeling
to train a neural network to solve the inverse problem at hand: determine from
the temporal signal the cloud unknowns {σt, H}. Notably, in situ lidar retrieval
methods must also consider the distance to cloud base (z in our present notation)
as an unknown, and its determination calls for estimates of both down- and up-
welling fluxes that can be modeled (for arbitrary z) using (6.8) and (6.9) combined
according to (4.27). The more recent paper by the same authors [116] concludes
the proof-of-concept with the successful exploitation of real cloud data gathered
from a LearJet operated by the Stratton Park Engineering Company (SPEC), Inc.,
in Boulder (Colorado).

5.7.2 Illustration with SNR estimation

Figure 5.13 shows F±(ct) = J(ct, `t, · · · )/4, based on (4.27) and (7.1) in this special
situation were Fz ≡ 0 in (6.9). We upgraded the model only for the radial offset
of the effective isotropic source (to the side of the aircraft the laser is pointing
away from) and the time-resolving radiometer (looking up or down somewhere on
the aircraft). We factored into the result a hypothetical path-bin width of ∆ct =
20 m, which is easily achievable with laser and detector technology currently used
in airborne lidar. The two panels illustrate the sensitivity of this observable as a
function of ct for (a) varying H (equivalently, σ) at fixed τ and (b) viceversa. We
have high sensitivity to σ at all times. Sensitivity to H increases at later times,
which is explained immediately by the dependencies of ct? in (6.16). Increasing
optical depth (equivalently, extinction) for fixed cloud thickness of course increases
the general level of the signal. However, we may not want to depend on absolute
calibration of the radiometer as well as accurate monitoring of the laser power; so
we should rely only on the shapes of the radiative responses in Fig. 5.13, and not
their relative positions on the flux scale.

The positions of the plots in Fig. 5.13 along the vertical (flux) axis can, how-
ever, be used for a rough but informative SNR computation for the airborne in situ
cloud lidar. Lasers used in airborne lidar studies can easily reach 5 W of equivalent
cw radiant power, translating to ≈1018 photons/pulse at 532 nm (assuming here
a frequency-doubled Nd:YAG solid-state laser with a typical 10 Hz rep rate). The
lowest major tick of both plots corresponds to a 10−15 probability of detection per
laser photon by a (non-imaging) sensor with a reasonable 1 cm2 aperture. At the
100s of m/s air speed of a jet aircraft, one should not integrate temporally for more
than a few pulses, or else cloud structure will not be captured at the natural res-
olution of multiple-scattering cloud lidar, as determined by ρ? in (6.19). This still
leaves Nγ ≈ 103 multiply-scattered laser photons available for detection. Ignoring
background (solar/lunar) and electronic noises, this Poisson count rate yields an
estimated SNR of

√
Nγ ≈ 30: enough leeway for losses by optical throughput,

quantum efficiency, an aperture less than 1 cm2 and/or a FOV reduced from 2π sr.
We therefore anticipate all the signals predicted in Fig. 5.13 to be measurable with



222 A.B. Davis, I.N. Polonsky, and A. Marshak

Fig. 5.13. Sensitivities of in situ lidar signal to changes in cloud thickness H and optical
depth τ . As a surrogate for flux captured by a large (but still practical) FOV, we use here
hemispherical fluxes estimated at mid-cloud. Both H and τ are varied over one order-of-
magnitude around a typical value: H = 1 km in upper panel (a) and τ = 31.6 in lower
panel (b). Other parameters used to estimate F± = J/4 from (7.1) are χ = 2/3 and
g = 0.85 to compute τt, hence σt and D; we also assume a finite path bin ∆ct of 20 m.
The presence of a maximum signal at finite time reflects the offset of the detector from the
effective origin of the pulse, which is represented here by a effective isotropic point-source.
The late-time exponential decay and even the details of the approach to this asymptotic
behavior are known to be accurate in the present diffusion model for dense enough clouds,
cf. Fig. 5.12.
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current lidar technology. Evans et al. [116] did just that (with a detector that had
an effective aperture of ≈20 cm2 and a quantum efficiency estimated to be ≈0.1.)
and they successfully inferred cloud thickness and volume-averaged extinction. Val-
idation was conveniently done by executing a ‘porpoising’ flight pattern where the
aircraft goes in and out of cloud base and cloud top.

With variable vertical positions (z, z0) restored, as in (6.8), plus the possibility
of ρ > 0 already exercised in Fig. 5.13, this model can be applied to a conceptually
simple cloud observation system based on miniaturized (for example, efficient fiber-
laser) sources and detectors flying inside the cloud, but now on two or more separate
unmanned aerial vehicles (UAVs). This would enable sufficient sampling of the
cloud’s Green function, in both t and ρ, to retrieve the standard set of in situ lidar
unknowns {z, (1−g)σ,H}, given (−→ρ , z0−z) from accurate relative GPS positioning;
cloud base altitude would of course follow from absolute GPS estimation of the
altitude of the various aircraft. We anticipate that Fz = F+ − F−, obtained by
differencing signals from up- and down-looking radiometers, will be sensitive to z
(assuming z0 ≈ z); Fz ≈ 0 would mean near the center of the cloud (z ≈ H/2), and
proximity to the z = 0 and z = H boundaries signaled by different signs. Last but
not least, these slow-moving platforms would enable longer time-integrations, hence
improved SNRs; we indeed expect integration will compensate for the diminished
transmitted and received power due to size/weight limitations. Another possibility
is to outfit UAVs with stand-alone high-resolution spectrometers dedicated to the
A-band of O2 (dispersive devices can be made very compact).

We now show that this is indeed a passive (no-laser-required) approach to time-
domain information. Imagine a uniform pulsed source incident at cloud top with
some zenith angle cos−1 µ0 ≥ 0. The basic theory for the absorption spectrum (i.e.,
uniform gas with variable absorption) is laid out in section 5.5.5 and the associated
Appendix D. However, we now broaden our interest from internal fluxes to those
at the cloud boundaries, specifically about how they depend on cloud properties.

5.8 Temporal Green functions applied to oxygen A-band
spectroscopy of overcast skies

5.8.1 A-band spectroscopy as observational time-domain RT

Oxygen A-band (759–771 nm) spectroscopy has attracted interest in atmospheric
remote sensing for at least four and a half decades. The earliest discussions
[117–119] were already about using it systematically for cloud observations from
space, and the earliest A-band cloud data was indeed collected with a hand-held
camera aboard Gemini 5 [120,121]. Multiple scattering effects were considered from
very early on, especially in the Former Soviet Union [34,35], first in modeling and
eventually in data analysis. Both airborne instruments and spectral models pro-
gressed steadily in the United States [122,123], Europe [124,125] Japan [126,127],
and FSU [128–147]. The oxygen B-band (c. 687 nm) was also investigated, for
example, in Ref. [123].

We are dealing here with a typical differential absorption spectroscopy that tells
us how much O2 was cumulated along the optical path of the light dispersed across
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wavelengths. The lower panel of Fig. 5.14 illustrates the fine spectral structure of the
A-band with its absorption optical depth across an assumed low-level cloud layer.
The upper panel shows examples of simulated spectra for typical clear and cloudy
conditions over a dark ocean surface as observed in reflection, normal viewing with
a 60◦ solar zenith angle (SZA); the inset gives the values of the corresponding nadir
radiance in the continuum.31

What can one do with knowledge of exactly how much of a major gaseous con-
stituent is in the optical path? Some early proposals were to determine atmospheric
pressure in remote locales, especially over oceans where there is a dearth of surface
stations and radiosonde data, the driving application being numerical weather pre-
diction.32 It quickly became clear that atmospheric scattering was a wild card in
this proposition. The optical path is not always straight down from the sun through
an oblique airmass followed by another airmass (say) straight up to a spectral de-
tector. There are both longer and shorter paths because of atmospheric scattering.
Details of the line profiles thus depend on the amounts of aerosol, cloud, etc.

It was soon realized that this nuisance could be turned around and exploited
to study the scattering components of the atmosphere. One can possibly quantify
and qualify the aerosol load, from ground or from space. Concerning clouds, A-
band spectroscopy was first thought to be a means of deriving cloud-top pressure
using the same logic as for the original idea of measuring surface pressure. This
concept also proved problematic because clouds are not optically ‘hard’ targets.
In fact, they are optically speaking very ‘soft’ in that incident light can permeate
the whole cloud before being reflected, i.e., returned from possibly very deep inside
the cloud back to the illuminated boundary. Single- and multiple-scattering are of
course the mechanism for reflection, as well as for diffuse transmission. Current
modeling of reflected A-band signals fully and accurately accounts for multiple
scattering [150–155], and more and more includes 3D RT effects [156–158]. As
will soon become obvious, the standard retrievals from A-band data are cloud-top
pressure and cloud (pressure) thickness.

In this study, we take the standpoint that O2 A-band spectroscopy at high res-
olution is a portal to time-domain radiative transfer in clouds, but using steady
sources. This powerful connection is encapsulated in the so-called equivalence theo-
rem already discussed in differential form in section 5.3.1. This relation states that,
if we know the time-dependent radiance field G(t,x,Ω) resulting from a sudden
burst of light in an arbitrary scattering medium, then we can predict the radiance
that would be observed at the same point in the presence of a uniform gas with a
variable absorption coefficient κν > 0.

31We note that the A-band sits at the peak of the solar spectrum when reckoned in
photons/s/m2 (as opposed to W/m2), which is optimal for the SNR.

32The competition for cloud-top height retrieval from remote sensing data at large
comes (1) from signatures in thermal bands (sometimes called ‘CO2 slicing’) [148], but
the atmosphere’s thermal structure varies far more than its pressure profile, and (2) from
direct geometric method using multi-angle imaging [149], which is foolproof as long as the
clouds have enough ‘texture’ for automated stereo matching. Because of the time-delay
between the observations of a given cloud at different angles (as the satellite moves along
its orbit), the latter method furthermore provides mean wind at the cloud-top altitude.
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Fig. 5.14. Simulated O2 A-band spectra in reflection. Bottom: Fine structure of the A-
band displayed using, as a relevant example, the O2 optical thickness across a layer from
860 to 911 hPa (c. altitudes 0.85 and 1.3 km), where one could find a typical low-level
cloud. Top: The reference spectrum is for a background aerosol atmosphere above an ocean
surface (Cox-Munk BRDF for 5 m/s wind speed). The other is for the same situation plus
a liquid water (Mie scattering) cloud between 911 and 860 hPa with optical depth 64. Line-
by-line computations were coarsened to the 0.0146 nm resolution of the Orbiting Carbon
Observatory (OCO) spectrometer. Both spectra were normalized to maximum radiance
(given, for reference, in the inset). Computations were kindly provided by Dr Hartmut
Bösch (University of Leicester, Dept. of Physics & Astronomy, Earth Observation Science,
Space Research Centre).
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Formally, we let L denote the a priori random path that the light has followed
in the medium. Then the optical path for gaseous absorption is κνL and Beer’s law
of exponential extinction states that light with path L is absorbed with probability
exp(−κνL). In summary, for a fixed κν , radiance is33

I(κν ,x,Ω) =
1
c

∞∫
0

G(L/c,x,Ω) e−κνL dL. (8.1)

The different absorption values are realized at different wavelengths λ, equivalently,
frequency c/λ or (more conventionally) wavenumber ν = 107/λ in cm−1 when
wavelength is expressed in nm. We have thus assumed up front that the coefficient
κν is a function of wavenumber ν, in compliance with spectroscopic tradition. At
any rate, we recognize in (8.1) the Laplace side of (3.1) with radiance rather than
flux and identifying κν with s/c. So, as in (3.2), we can compute path moments
using the spectrometry:

〈Lq〉 =
1

I(0, · · · )

(
− ∂

∂κν

)q
I(κν , · · · )

∣∣∣∣
κν=0

, (8.2)

where the normalizing factor is simply radiance in the continuum near the A-band.
Conveniently, all of our diffusive temporal Green function theory has ended up in

Laplace space, or at least used it as a stepping stone. We can therefore obtain, after
the usual radiance-to-flux conversion, empirical estimates of F̂ (s) = F̃ (s, 0). Identi-
fication of observed and theoretical estimates of radiative properties is of course an
opportunity for cloud remote sensing: retrieval of cloud parameters, for example,
{H, τ}, by standard fitting procedures. Once we have a theoretical fit, one can de-
rive other cloud radiative properties such as the temporal/path-length moments in
(8.2). Another possibility is to use the observed F̂ (s) = I(κν , · · · )/I(0, · · · )|κν=s/c

in (8.2) to derive the path-length moments directly. In practice, both groups cur-
rently engaged in high-resolution A-band spectroscopy from ground (SUNY-Albany
[160–163] and University of Heidelberg [159,164,165]) use a convenient parameter-
ization of F̂ (s) using the first two moments of L, namely,34

F̂ (s) ≈ 1
(1 + 〈L〉s/ca)a

, where a =
1

〈L2〉/〈L〉2 − 1
.

Both of these approaches avoid the problem of inverse Laplace transforming noisy
data from instruments, a numerical process known to be highly unstable.

A third group, from NOAA, has performed ground-based spectroscopy of oxy-
gen under cloudy skies at somewhat lower resolution and focusing on the γ-band of

33We assume in (8.1), purely monochromatic RT. No forward model for A-band spec-
troradiometry is complete without a convolution of this expression with the spectrome-
ter’s ‘slit function’. This issue of spectral resolution, as well as out-of-band rejection, is
absolutely critical to the a priori estimation of how many pieces of path-length/cloud
information can be extracted robustly from the radiometric data [159,160].

34This leads back to a Gamma distribution of path-lengths, cf. (10.1)–(10.2) with τ
replaced by L. We owe to van de Hulst [166] the original idea of approximating the
temporal Green functions with Gamma distributions.
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O2 (c. 628 nm) [167]. Following previous work on low-resolution A-band observa-
tions from space, they preferred to directly compare their spectroscopy to a forward
1D RT model (adapted from [168]) with an assumed cloud, which they varied to
fit the data. Another interesting development from the NOAA group was to adapt
their instrumentation and RT model to work with the spectrally much smoother
absorption features of cloud droplets in the near-IR (0.9 to 1.7 µm). Because ab-
sorption cross-section (where it exists) is ∝ droplet volume, Daniel et al. [169] were
able to retrieve liquid water path (LWP).

It is important to bear in mind that a forward model for A-band spectroscopy
will have more than just the component for in-cloud multiple scattering we have just
described. However, the other contributions are essentially deterministic. Consider
a narrow FOV ground-based instrument measuring zenith radiance. The spectrum
is formed, on the one hand, by the cloud’s temporal multiple-scattering Green
function by identifying s with cκν (a pressure-weighted average over the cloud layer)
in the Laplace transform for transmitted light; on the other hand, this contribution
must be convolved with two degenerate (zero-variance) distributions of optical path
through the absorbing gas, namely, τ (a)

ν /µ0 and τ (b)
ν , the absorption optical depths

of the above- and below-cloud layers respectively. Now, in Laplace/κν-space, the
convolutions translate to simple products and the two δ-like path distributions
transform to constants, T (a)

ν = exp(−τ (a)
ν /µ0) and T (b)

ν = exp(−τ (b)
ν ). In summary,

the forward model for the spectroscopy is

I(κν) = I(0)× T̂ (cκν)× e−(τ(a)
ν /µ0+τ(b)

ν ).

For light reflected back to an instrument on an aircraft or satellite with oblique
viewing capability, the forward model is

I(κν) = I(0)× R̂(cκν)× e−(1/µ0+1/µ)τ(a)
ν .

Substitution of these models into the expression (8.2) for path moments will of
course yield the moment based on F̂ (s), for F = T or R, but offset by a known
constant. Alternatively, one can correct the data for the spectral offsets before
computing the path moments or retrieving cloud properties directly.35

In the remainder of this section, we will exploit a subset of our explicit Laplace-
space solutions (from section 5.5) for the temporal Green function to assess the
cloud information content of O2 A-band data. Specifically, we will formally identify
the random light path L through the absorbing gas with ct, the path covered
between emission from a δ-in-time boundary source and escape in transmission
(F = T ) or in reflection (F = R). We will then determine the dependence of path
moments 〈(ct)q〉F (F = T,R, q = 1, 2) on cloud properties, which we have not
yet done in framework of diffusion, and we will continue to validate the diffusion
model with MC simulations. These are in essence the observables in O2 A-band
spectroscopy. Spatial moments 〈ρ2〉F also play a role. Insights from this kind of a
priori cloud information content analysis are useful in planning for remote sensing
mission objectives as well as in the development of retrieval algorithms.

35The contributions of multiple reflections between the cloud and the surface can also
be added, recalling that green vegetation can have a relatively high albedo at A-band
wavelengths; see Scholl et al. [165].
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5.8.2 Path-length moments from below

5.8.2.1 Isotropic boundary point-source

Using the same assumptions as in our 2002 paper [24] investigating light trans-
mitted by the cloud to a ground-based sensor, we start with the simple diffusion
model based on an isotropic boundary point-source. Applying (3.5) and (3.2) to
(5.8) with all ancillary definitions, we find

〈ct〉T /H =
1
2
τt ×

[
1 + C

(1)
T,ct(τt/2χ)

]
, (8.3)

〈(ct)2〉T /H2 =
7
20
τ2
t ×

[
1 + C

(2)
T,ct(τt/2χ)

]
, (8.4)

〈ρ2〉T /H2 =
2
3
×
[
1 + C

(2)
T,ρ(τt/2χ)

]
, (8.5)

for three low-order moments of interest, all normalized by H. We have highlighted
here the asymptotic trends. The pre-asymptotic correction terms are given by

C
(1)
T,ct(ξ) = C

(2)
T,ρ(ξ) = (4ξ + 3)/2ξ(ξ + 1),

C
(2)
T,ct(ξ) = (56ξ3 + (166ξ2 + 15(10ξ + 3)))/14ξ2(ξ + 1)2,

recalling that ξ = τt/2χ. The leading terms made explicit in (8.3) and (8.5)
make sense from the random-walk perspective on diffusion exposed in Appendix E
wherein the scaling exponents of τt are derived. However, in all cases, pre-factors
and pre-asymtotic corrections terms in (8.3)–(8.5) call for the PDE-based approach
promoted throughout this review.

It is worthwhile to compare these results with those provided by Zege et al. [83].
In their Section 4.8 on pulsed sources, their Eq. (4.8.38) gives, in our notations,
the same asymptotic trends for τt � 1 and � 1 for mean optical path σ〈ct〉T
as in (8.3): respectively, we find (1 − g)τ2/2 (irrespective of χ) and (3χ/2)τ (=
τ when χ = 2/3).36 Zege et al.’s same equation gives the trend of the st.dev.
σ
√
〈(ct)2〉T − 〈ct〉2T of the optical path when τt � 1; in our notations, it yields

a pre-factor of 11/20 rather than 7/20 in (8.4). We interpret this discrepancy as
the result of requiring only second-order accuracy in m(s, k) for (6.21), on which
their temporal moment computations are predicated; to obtain the correct trend
for 〈(σct)2〉T , one needs fourth-order accuracy in m ∼

√
s when k = 0. Finally,

Zege et al.’s counterpart of (8.5) is in their Table 4.1 and follows from Ref. [46].
That paper by Bushmakova et al. generalizes to anisotropic scattering the studies
by Romanova in Refs [44, 45] that focused on the case of g = 0. In our notations,
the early prediction is 〈(σρ)2〉T ≈ τ/3 when τt � 1, irrespective of g and χ. We
find twice that value. It is not clear where this systematic difference comes from

36The relation 〈ct〉T ≈ H = τ/σ for vanishing σ (hence τ) makes intuitive sense:
most of the light goes straight through the medium in direct transmission. However, a
straightforward flux -based estimate of mean path for light transmitted through an optical
vacuum of thickness H under isotropic illumination is 2H (and, interestingly, the RMS
path is divergent). This serves as a reminder (cf. section 5.4.3) that the effective value of
χ for optically thin media (τt � 1) is 4/3.
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but we will see further on that it occurs again with 〈(σρ)2〉R, for reflected light, and
that our MC simulations agree with our diffusion estimates for both transmission
(Fig. 5.15) and reflection (Figs 5.18 and 5.21). We suspect that the factor of 2 in
(3.5), which is nontrivial, may have been omitted.

Figure 5.15 shows the low-order moment predictions in (8.3)–(8.5), making RMS
values out of second-order moments; this suite is augmented with the zeroth-order
transmission term T in (5.5) for the classic two-stream model corresponding to the
s/c, k → 0 limit of this case. MC simulations of the same transport problem, includ-
ing the isotropic boundary point-source, using H–G and isotropic phase functions
show excellent agreement with the diffusion model, as long as the proper χ-value is
used. We note however that χ is not present in the leading terms of the moments
in (8.3)–(8.5).

Fig. 5.15. Cloud responses to a pulsed isotropic point-source in transmission. Diffusion
predictions from (8.3)–(8.5), with correction terms, and (5.5) are in solid lines; MC vali-
dation data are plotted with symbols (two values of χ used to reproduce the MC bench-
marks). The circled points identify parameters used for the space-only case studies in
Fig. 5.9. We note the striking similarity between the two temporal moments. Adapted
from Ref. [24].
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What do these moments tell us about O2 A-band spectroscopy from ground?
The fact that we have 〈(ct)2〉T ≈ (7/5)〈ct〉2T over the whole range of τt, i.e., that one
moment predicts the other one, is not good news for cloud property remote sensing
with stand-alone O2 A-band sensors. If we can somehow merge the time-domain
A-band data with a spatial methodology that yields 〈ρ2〉T (cf. section 5.10.6) or
conventional radiometry with absolute calibration that yields T , then we are in
a far better position. Indeed, the fact that we have different asymptotic scaling
exponents for all three observables (including a null exponent for 〈ρ2〉T ) makes it
at least theoretically possible to determine τt, say, from T and then H from the
measured value of, say, 〈ct〉T and the non-dimensional ratio in (8.3).

Even if there is no direct empirical estimate of 〈ρ2〉T because the sun is a uni-
form source, the utility of (8.5) is to inform other retrievals (A-band or radiometric)
about their minimum effective spatial resolution. It is indeed the fundamental ra-
diative smoothing scale [170] for the transmitted light field [24], below which spatial
details are lost for the remote observer due to horizontal radiative transport caused
by multiple scattering. In ground-based cloud remote sensing, spatial sampling is
determined by temporal sampling ∆t and the mean wind v at cloud level – Taylor’s
classic ‘frozen turbulence’ hypothesis. For instance, if v∆t <

√
〈ρ2〉T ∼ H, then

there is redundancy in the spatial sampling.37 This redundancy can be viewed as
desirable or not, depending on circumstances. A case were spatial redundancy is
counter-indicated is when compiling statistics that target spatial correlations.

5.8.2.2 Stratification effects

We showed in section 5.5.2 that the above model could be generalized to clouds
endowed with internal stratification according to the linear (constant gradient)
model in (2.27). Should we worry about this issue in ground-based O2 A-band
spectroscopy?

We are here in the case of −2 < ∆ < 0 in the upper panel of Fig. 5.5 (gray curves
only), which plots MC results for an isotropic point-source at z = 0 and distributed
flux detectors at z = H, In passing, we note that the converse (0 < ∆ < +2)
yields the same answer, by optical reciprocity. We see that, for the prescribed
cloud (τ = 15, g = 0.46), the spatial statistic in (8.5) is essentially unaffected by
stratification, but there is a ∼10% effect in the time-domain properties of primary
interest here in (8.3)–(8.4). In many modeling applications, this level of accuracy
is worth pursuing.

Further computer-assisted algebra based on the solution presented in sec-
tion 5.5.2 (and Appendix A), following the same guidance as above, leads to

37This estimate of the smoothing scale is for ground-based narrow FOV radiometry.
That is indeed how one can access radiance, hence flux, at the lower cloud boundary. In
ground-based radiometry with a wide FOV (for example, 2π sr, hemispherical flux sen-
sors), the same rule applies but 〈ρ2〉T must account for the extensive horizontal transport
in the sub-cloud layer. Being about a fundamentally non-diffusive transport process, this
problem is out of scope for the present review.
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Fig. 5.16. Effects of stratification on Green functions for transmission. Diffusion pre-
dictions for the prescribed cloud (τt = 8.1) are in solid lines; they were obtained from
(8.6)–(8.8), including correction terms, with χ = 0.71. MC validation data are plotted
with symbols; they are extracted from Fig. 5.5, gray curves in upper panel. We note the
nearly flat behavior of 〈ρ2〉T away from |∆| = 0 and up to the onset of the logarithmic
singularity at |∆| = 2 in (8.8), which is discussed in the main text. This is because the
prescribed cloud, with τt/2χ = 5.7, happens to be very close to (5+

√
35)/2 = 5.46 · · · , the

value that cancels the coefficient of ∆2 in (8.9). For larger values of τt/2χ, the diffusion
model for stratification will improve with respect to MC results, and for smaller values it
is expected to worsen.

〈ct〉T /H =
(

1
2
− ∆2

40

)
τt ×

[
1 + C

(1)
T,ct(ξ,∆

2)
]
ξ=τt/2χ

, (8.6)

〈(ct)2〉T /H2 =
(

7
20
− ∆2(30−∆2)

800

)
τ2
t ×

[
1 + C

(2)
T,ct(ξ,∆

2)
]
ξ=τt/2χ

, (8.7)

〈ρ2〉T /H2 =
1
4

[( 2
∆

)2

− 1

]2
∆
2

ln

√
1−∆/2
1 + ∆/2

+

[
1 +

(
2
∆

)2
]

×
[
1 + C

(2)
T,ρ(ξ,∆

2)
]
ξ=τt/2χ

, (8.8)

which are all symmetric in ∆ and lead back to (8.3)–(8.5) in the limit |∆| → 0.
Figure 5.16 shows how well the full expressions reproduce the MC results from the
gray curves in the upper panel of Fig. 5.5. Overall, the diffusion results are just
slightly offset from their MC counterparts.

The most remarkable difference between the diffusion and MC predictions in
Fig. 5.16 is the logarithmic divergence of 〈ρ2〉T at |∆| → 2 that is manifest in (8.8).
All is as if the effective diffusivity constant 〈ρ2〉T /〈t〉T , as observed at the cloud
boundary (in this case, opposite the δ-source), becomes infinite with the value of
the transport MFP at z = 0 or z = H, for example, `t(0) = 1/σt(1 − ∆/2).
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Diverging `t is clearly a challenge for diffusion models since trajectories become
more ballistic within a transport MFP of cloud boundaries.38 However, this spatial
statistic is only of marginal importance in O2 A-band observations. We therefore
recommend using the uniform cloud (∆ = 0) estimate of 〈ρ2〉T when and where
needed. If more accuracy is needed, one can expand (8.8) in a short series with
respect to ∆:

〈ρ2〉T /H2 =
(

2
3

)
ξ(ξ + 3) + 3/2

ξ(ξ + 1)
− 2ξ(ξ − 5)− 5

60ξ(ξ + 1)
∆2 +O(∆4), (8.9)

recalling that ξ = τt/2χ. The full variation of 〈ρ2〉T in diffusive clouds is quite
small anyway, cf. MC results in Fig. 5.15. Although there is less and less light to
speak of, diffusion becomes quasi-exact deep inside the medium when τt � 1. In
this limit, 〈ρ2〉T is ≈2/3 when ∆ = 0 and using (8.8), with correction term, one
can show that this moment becomes ≈1/2 when |∆| = 2 in the same limit. For a
start, the two terms in (8.9) yield 8/15 when ξ →∞. The range in RMS ρ is even
smaller.

5.8.2.3 Uniform oblique collimated illumination

It is of interest to go beyond isotropic sources in A-band transmission studies since
solar illumination comes at a specific incidence depending on geographic location,
season, and time of day. This can be done for uniform sources using the model
introduced in section 5.5.5 (supplemented by Appendix D).

The same steps as in the previous section are followed: obtain T̂ (s) from Ĵ(s, z =
H)/2µ0; expand into a short Taylor series at s = 0; estimate low-order moments
from coefficients of sq. We find that the scaling, including pre-factors, for τt =
(1− g)τ in (8.3)–(8.4) is unchanged, but that the pre-asymptotic correction terms
are affected. In other words, the simple expression for C(q)

T,ct((1− g)τ/2χ) becomes

a rather complex expression C
(q)
T,ct(τ, g, µ0) for q = 1, 2.

This SZA-independence of the leading terms is not too surprising since we
are characterizing light that has filtered through an optically thick medium, and is
therefore almost always highly scattered. Recall that memory of the initial direction
of propagation is all but forgotten after∼1–2 transport MFPs. Clouds with diffusive
RT regimes have H & 1 transport MFP, so only a subtle dependence on µ0 is
expected in the transmitted radiation emerging at z = H. Figure 5.17 illustrates
for g = 0.46 the effects of SZA on the first two moments of path ct. These plots show
us where in {τ, µ0} parameter space and what is the magnitude of the difference
with the isotropic source prediction.

5.8.3 Path-length moments from above

To summarize so far, we have established that ground-based O2 A-band spec-
troscopy is poised to become a valuable asset in cloud remote sensing as long as

38This problem could probably be fixed by introducing an ad hoc parameterization
χ(∆) where χ→ 0 as |∆| → 2.
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Fig. 5.17. SZA dependence of temporal moments for light transmitted through diffusive
clouds. Rescaled optical depth τ for such clouds must exceed unity using the rescaled
g = 0.46 (original τ , for g = 0.85, is then 3.6× more); we explore up to τ = 101.5 (≈114
for g = 0.85). The upper panel addresses predictions for mean path 〈ct〉T and ranges
from 0.5 to 1.8; we see very little difference between the collimated and isotropic sources
for any µ0 when τ & 3 (11 for g = 0.85), less if µ0 ≈ 1/2. The lower panel compares
the RMS/mean ratio for ct with the quasi-constant prediction for isotropic illumination,
namely,

p
7/5 = 1.183 · · · (cf. Fig. 5.15). The variation is only from 1 to 1.5, and we

see deviations only when τ . 3 and µ0 & 1/2 (SZA less than about 60◦). The ratio for
collimated beams slightly exceeds the isotropic value for all but a small area of low τ
under near-grazing incidence angles.

cloud morphology is approximately plane-parallel. When cloud geometry is far from
plane-parallel, O2 A-band spectroscopy can be used in cloud-radiation diagnostics
that probe the complex (and highly climate-relevant) process of gaseous absorption
in the presence of 3D clouds [161,163–165]; see Appendix F for a brief description.

At the time of writing, a satellite mission with high-resolution oxygen A-band
capability is being prepared for launch in early 2009: the Orbital Carbon Observa-
tory (OCO) [171]. Space-based precursors of OCO with A-band coverage at lower
resolutions – but sufficient to initiate cloud studies – are POLDER/Parasol [172],
GOME [173], and SCIAMACHY/ENVISAT [174]. There are also opportunities for
airborne O2 A-band at high resolution from above the clouds, for example, the Lan-
gley Airborne A-Band Spectrometer (LAABS) instrument. It is therefore timely
to hone our predictive skills for A-band products for clouds when observed from
above, namely, path-length moments 〈(ct)q〉R (q = 1, 2, . . . ).
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We will start our investigation of reflected light, as we did for transmission,
with the simple diffusion model for isotropic illumination of a uniform plane-parallel
cloud. We will then examine the effects of internal stratification. While the emphasis
is on temporal responses, we will keep a tangential interest in spatial properties.
Finally, we turn to SZA effects strictly in the time-domain.

5.8.3.1 Isotropic boundary point-source

A bare-bones model for radiative Green functions was introduced in section 5.5.1
using an isotropic pulsed source at a boundary point. Davis et al. [85] and Love
et al. [86] developed this model with multiple-scattering cloud lidar in mind – an
application to discussed in the next section. However, some of the time-domain
signals of this active remote sensing technology and O2 A-band cloud products
are indistinguishable from the Green function perspective. We are thinking here of
low-order moments of in-cloud path-lengths for reflected light.

The simple diffusion model predicts the following dependencies on cloud prop-
erties:

〈ct〉R/H = 2χ×
[
1 + C

(1)
R,ct(τt/2χ)

]
, (8.10)

〈(ct)2〉R/H2 =
4χ
5
τt ×

[
1 + C

(2)
R,ct(τt/2χ)

]
, (8.11)

〈ρ2〉R/H2 =
4
3

(
2χ
τt

)
×
[
1 + C

(2)
R,ρ(τt/2χ)

]
, (8.12)

where

C
(1)
R,ct(ξ) = C

(2)
R,ρ(ξ) = (ξ + 3/2)/2ξ(ξ + 1),

C
(2)
R,ct(ξ) = (8ξ3 + 41ξ2/2 + 75ξ/4 + 1/8)/2ξ2(ξ + 1)2.

We use here the same definition for ξ as in (5.11). Figure 5.18 shows the outcome of
the above model, in excellent agreement with MC validation data in the regime that
matters (τt > 1). Recalling that Monte Carlo simulation is grounded in random
walk theory, it is in fact possible to perform a very simple form of MC simulation
analytically. We can thus derive the various scaling exponents of the leading terms
in (8.10)–(8.12) from heuristic arguments based on random walk (a.k.a. Brownian
motion) theory; see Appendix E.

In contrast with the corresponding expressions for transmitted light in (8.3)–
(8.5), we see that the idiosyncratic extrapolation length parameter χ in diffusion
theory now affects the leading terms directly. We interpret this difference as a
reminder that, in the case of optically thick (diffusive) cloud, the main physical
difference between reflected and transmitted light is that the latter is almost always
highly scattered while the former is a balanced mixture of low- and high-order
scatterings. Light that has suffered only a few scatterings originates necessarily from
the radiative boundary layer near the source. The present incarnation of diffusion
theory uses χ to mitigate its known weakness in the boundary layer. Unsurprisingly,
this ‘signature’ boundary condition parameter of diffusion theory appears in the
leading terms of reflected characteristics, but not those of transmitted ones.
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Fig. 5.18. Cloud responses to a pulsed isotropic point-source in reflection. Diffusion pre-
dictions from (8.10)–(8.12), with correction terms, and (5.5) are in solid lines; MC vali-
dation data are plotted with symbols. The best overall fit was obtained for χ = 1/

√
3 =

0.577 · · · . In contrast with the corresponding Fig. 5.15 for transmitted light, we see that the
first- and second-order moments of path-length scale differently with τt (cf. Appendix E).
This turns out to be an opportunity for active as well as passive cloud remote sensing.
Adapted from Ref. [86].

As made clear in Appendix E, another consequence of the balanced mixture
of low- and high-order scatterings in reflected light is the different scaling expo-
nents for 〈ct〉R and 〈(ct)2〉1/2R with respect to τt. This gives a unique advantage
to the cloud remote sensing application of O2 A-band spectroscopy from above
the observed cloud layer. Indeed, without any need for radiometric calibration, a
stand-alone O2 A-band spectrometer can now deliver two pieces of information
from the two path-length moments in reflected light. The ratio 〈(ct)2〉R/〈ct〉2R is
now a sensitive function of τt alone, which can be unambiguously inverted; from
there, the known value of τt and the observed value of 〈ct〉R can be used in (8.10)
to infer cloud thickness H.

As was the case for transmitted light, O2 A-band spectroscopy alone does not
give us access to information on the horizontal transport captured in 〈ρ2〉R. How-
ever, the predicted value in (8.12) gives us insight into the spatial resolution of the
A-band spectroscopic cloud remote sensing process. We notice that, again because
of the non-negligible contribution of lower orders of scattering to reflected light,
〈ρ2〉R contracts as τt increases while 〈ρ2〉T in (8.5) remains essentially constant,
on the order of H2. On the other hand, since reflected light also has non-negligible
contributions from light that has diffused almost down to the non-illuminated
boundary and back, the volume of cloud being sampled is effectively ≈H3. We
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will therefore retain H2 as a reasonable estimate of the effective footprint of the
A-band approach to cloud property retrieval.

Finally, we notice in Fig. 5.18 that the diffusion prediction for mean path ex-
ceeds the one for RMS path for scaled optical depths less than about unity (more
precisely, τt/2χ < 0.798); this is a clear violation of Schwartz’s inequality, as it
applies to statistics, and is of course not observed in the corresponding MC results.
This anomaly results ultimately from the fact that solutions of diffusion equations
are not constrained by causality; probabilistically speaking, they need not have
all the defining properties of characteristic (moment-generating) functions, even
though we have used them as reasonable approximations thereof throughout this
paper.

Although we have not found predictions for the temporal moments in (8.10)–
(8.11) for reflected light in the early literature, we did find one for the variance
of horizontal transport distance 〈ρ2〉R in Zege et al.’s [83] Table 4.1. That table is
compiled from 1972 results by Bushmakova et al. [46] that generalize to cases with
g 6= 0 results from Romanova’s 1971 papers [44, 45] based on isotropic scattering.
In our notations, they predict that 〈(σρ)2〉R ≈ (8/9)τ/(1 − g) when absorption is
weak and τt � 1. We find precisely twice39 that value when we set χ = 2/3 in
(8.12), 16/9 rather than 8/9. The origin of this factor-of-2 discrepancy is not clear,
but our estimate is validated by high-precision MC simulations in Fig. 5.18. Since
the same factor-of-2 difference was found for transmitted light in section 5.8.2, we
speculate that it originates at a higher level, possibly with the nontrivial factor of
2 in (3.5).

5.8.3.2 Stratification effects

Looking back at the black curves in Fig. 5.5(top), we see that internal stratification
matters for reflected light, more than for its transmitted counterpart. In particular,
the impact of positive and negative gradients in the extinction (equivalently here,
scattering) coefficient away from the illuminated boundary have opposite effects on
all the space-time moments. This is sufficient numerical evidence for attempting
to capture these effects in the diffusion framework. Moreover, in this observation
geometry, we note that the stratification affects multiple-scattering cloud lidar (spa-
tial moment) as well as O2 A-band (temporal moments only). That is indeed what
first motivated two of the present authors to develop in [92] the diffusion model
described in section 5.5.2 that generalizes the above results to media with a linear
gradient in extinction.

39We show further on that the pre-factor of τt is actually 20/9 for a collimated narrow
beam normally incident on the cloud, as opposed to an isotropic boundary point-source,
cf. (9.4) and Fig. 5.21. This extra offset is traceable to the term we incorporate in (4.14),
hence in (5.15)–(5.16), for the anisotropy of the first-scattering source, i.e., the P1 in the
truncated phase function in (4.13).
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Fig. 5.19. Effects of stratification on Green functions for reflection. Diffusion predictions
for the prescribed cloud (τt = 8.1) are in solid lines; they were obtained from (8.13)–(8.15),
including correction terms, with χ = 2/3. MC validation data are plotted with symbols;
they are extracted from Fig. 5.5, black curves in upper panel. We note the presence of a
logarithmic singularity in 〈ρ2〉R at ∆ = +2, which is manifest in the leading term written
explicitly in (8.15) and discussed in the main text. Adapted from Ref. [92].

Following the usual procedure, we find

〈ct〉R/H = 2χ
(

1 +
∆(10 + ∆)

40

)
×
[
1 + C

(2)
R,ct(ξ,∆)

]
ξ=τt/2χ

, (8.13)

〈(ct)2〉R/H2 =
4χ
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)
τt

×
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]
ξ=τt/2χ

, (8.14)

in the time domain, and in the spatial domain,

〈ρ2〉R/H2 =
1
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∆
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×
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1 + C

(2)
R,ρ(ξ,∆)

]
ξ=τt/2χ

. (8.15)

These all lead back to (8.10)–(8.12) in the limit ∆→ 0. Figure 5.19 compares the
above predictions with the MC results from the black curves in the upper panel
of Fig. 5.5. The analytical results for the temporal responses are in very good
agreement with the numerical benchmarks.

As was the case for transmission, the most notable discrepancy is the logarith-
mic divergence in (8.15). However, this now happens only at ∆ → +2, i.e., when
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the extinction vanishes at the illuminated boundary. We attribute this to the same
physical cause we assign to the appearance of χ in all the pre-factors: the extrap-
olation length (outside the cloud) – as well as the estimated depth of the dreaded
radiative boundary layer (inside the cloud) – goes to ∞ as 1/σ(z) ∝ 1/z when
∆ = +2 in (2.27). This is a clear harbinger of catastrophic failure of the diffusion
model.

In his discussion of multiple-scattering cloud lidar applications, Davis [92] no-
tices that the ‘true’ MC values for the logarithms of 〈ct〉R and 〈ρ2〉R are almost
linear in ∆. He therefore suggests using the diffusion model only to predict the
response at ∆ = 0 from (8.10) and (8.12), or something better, and then use the
new model with stratification capability only to estimate the logarithmic partial
derivatives ∂ ln〈ct〉R/∂∆ and ∂ ln〈ρ2〉R/∂∆ at ∆ = 0; then a log-linear extrapola-
tion is performed that will closely follow the MC validation data. For the spatial
response in (8.15), one can use the short series expansion

〈ρ2〉R/H2 =
(

4
3ξ

)
ξ(ξ + 3/2) + 3/4

ξ(ξ + 1)
+

2
3ξ

∆ +O(∆2), (8.16)

recalling that ξ = τt/2χ, to make this estimation. As noted in Ref. [92], the log-
arithmic derivative for

√
〈ρ2〉R at ∆ = 0, namely, ξ(ξ + 1)/(4ξ2 + 6ξ + 3), is the

same as for 〈ct〉R (cf. Fig. 5.19). Moreover, we note that the useful range for this
quantity is rather small: ≈2/13 to 1/4 for 1 . ξ ≤ ∞.

5.8.3.3 Uniform oblique collimated illumination

Oxygen A-band spectroscopic observations of clouds from above need to account for
the fact that sunlight is collimated and incident under all possible angles. The dif-
fusion model for uniform-but-possibly-slant illumination presented in section 5.5.5
can again be brought to bear, this time, for reflected light. The usual procedure in
computer-assisted calculus and algebra leads to

〈ct〉R/H =
1
3

(2 + 3µ0)×
[
1 + C

(1)
R,ct(τ, g, µ0)

]
, (8.17)

〈(ct)2〉R/H2 =
2
15

(2 + 3µ0) (1− g)τ ×
[
1 + C

(2)
R,ct(τ, g, µ0)

]
, (8.18)

〈(ct)3〉R/H3 =
4
35

(2 + 3µ0) [(1− g)τ ]2 ×
[
1 + C

(3)
R,ct(τ, g, µ0)

]
. (8.19)

We notice that µ0 finds its way into the pre-factor of the dominant power-law rela-
tion for each moment. This is a strong dependence in comparison with counterparts
for transmission described in the previous subsection, where µ0 only influences the
pre-asymptotic correction terms. Revisiting Fig. 5.17 for quantification of the sub-
tle SZA effects in transmission, using the isotropic source predictions as reference.
This difference in sensitivity to SZA between transmitted and reflected fluxes in
the time-domain is once again attributable to the fact that reflected light is a mix-
ture of low and high orders of scattering ns ≈ σct. Indeed, all the light observed
in reflection originates from some last scattering event within the upper radiative
boundary layer of the cloud (i.e., between z = 0 and z ≈ `t); in this mix, the least
scattered light will certainly have a memory of its original direction of incidence.
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Fig. 5.20. SZA dependence of temporal moments for light reflected from diffusive clouds.
Upper panel: (8.17) is plotted for 0 < µ0 ≤ 1 and 1 ≤ τ ≤ 101.5 with g = 0.46, cor-
responding to 3.6 ≤ τ . 114 for the original g = 0.85 if we interpret these values as
δ-rescaled (cf. section 5.4.2.1); the vertical range is between 2/3 (limit for τ → ∞ when
µ0 → 0) and 2.5. Lower panel: (1/2) log10[〈(ct)2〉R/〈ct〉2R)] is plotted for the same range of
parameters; the vertical axis ranges only from 0 (log101, the minimum theoretical value)
to 0.544 (log103.5). Further discussion in the main text.

Figure 5.20 illustrates SZA effects in reflected light, which are easy to show in
their own right. (Unlike transmitted light, there is no need here to refer back to
the isotropic source model as a baseline.) In the upper panel, (8.17) is plotted over
the relevant range of parameters, namely, 0 < µ0 ≤ 1 and 1 ≤ τ ≤ 101.5 for the
δ-Eddington rescaled g = 0.46 (3.6 ≤ τ . 114 for the original g = 0.85). We see
that in-cloud path increases significantly with µ0 at any given τ , which is to be
expected since the light is injected deeper into the cloudy medium as µ0 approaches
unity. The lower panel plots the log of the RMS-to-mean path ratio over the same
region of parameter space. We see a monotonic dependence of the non-dimensional
moment ratio with τ , which confirms our above prediction that cloud optical depth
can be retrieved unambiguously from the two observable moments for any given
SZA.
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5.9 Space-time Green functions applied to
multiple-scattering cloud lidar (MuSCL) observations

We now turn to a new active technology for cloud remote sensing in the diffu-
sive regime: Multiple-Scattering Cloud Lidar (MuSCL),40 that we first proposed
in 1996 on purely theoretical grounds [176]. Although developed independently,
this cloud-probing technique is a direct extension of Multiple-FOV (MFOV) lidar,
which targets aerosols [177–181] as well as clouds [182–184]. MFOV lidar itself ex-
tends the standard design of elastic backscatter lidar implemented, for instance,
in the eye-safe design of micro-pulse lidars [185]. In the classic lidar equation, the
assumption is single scattering through 180◦ for the most common configuration,
so-called ‘monostatic’ systems, where the transmitter and receiver are collocated.
This is indeed the opposite asymptotic limit in RT theory to the diffusion/P1 ap-
proximation used throughout this paper: it is valid only in optically thin media.

In essence, MFOV lidar capitalizes on the strong forward peaked of the scat-
tering phase function for cloud droplets and most aerosol types. To this effect, the
small-angle approximation to time-dependent RT with multiple scattering is in-
voked, and it is known to work well close to the incident beam [83,186,187, among
others]. Although the MFOV lidar project brought it to a high level of sophistica-
tion and application, the time-dependent41 small-angle approximation was applied
to pulse propagation through turbid media at least going back to Belyantsev et
al. in 1967 [193], Romanova in 1970 [194], and Weinman and Shipley in 1972 [195]
who all considered a one-way transit, ending in transmission.42 Investigations of
reflected laser pulses in the same approximation soon followed [196–199].

Because of the necessarily narrow FOV used in classic lidar, which only needs to
contain the volume illuminated by the highly-collimated laser beam, there is little
penetration into opaque media such as the clouds. Even if we could separate the
single-scattering signal from contamination by multiple-scattering, which we can-
not, there would be no photons left to count after two-way propagation to optical
depths in the 10–100 range. MFOV does vastly better by indeed exploiting the mul-
tiple scattering signal coming from relatively near the laser beam. Optical depths
up to 8–10 can be reached; after that wide-angle scattering starts to dominate the
signal and we therefore enter the realm of MuSCL.

MuSCL signal physics are the same as in the in situ cloud lidar discussed in
section 5.7 and, to a large extent, also those of the reflected O2 A-band spec-

40This obvious and compelling acronym is closely related to, but not to be confused
with, MUSCLE (MUltiple-SCattering Lidar Experiments), an on-going series of interna-
tional workshops; see Ref. [175] for a special section of Applied Physics – B that followed
from one of them.

41In steady-state, application of the small-angle approximation to the pencil-beam
problem goes back much further. In charged particle transport, it has been known as
the Fermi–Eyges/Fokker–Planck approximation since c. 1950. This modeling framework
has recently regained considerable interest, largely motivated by emerging applications to
the accurate computation of minimal-yet-effective dosimetry in electron-beam radiation
therapy [188–192].

42Formally, this is an isotropic diffusion process in the non-Euclidean space of directions,
starting from a given initial position and slowly but surely filling the whole unit sphere,
one scatter at a time [81,108].



5 Space-time Green functions for diffusive radiation transport 241

troscopy covered in the previous section. The main difference is that, having a
pulsed laser as a source and observing the Green function from a significant stand-
off distance to the cloud, MuSCL can access and exploit the signal in the spatial
domain . . . although not always easily, as we now show, by starting our discussion
with past and future space-based MuSCL systems.

5.9.1 Space-based MuSCL systems

If the lidar instrument is at a very great distance to the cloud, as in space-based
systems, then there will be limited, if any, information about the horizontal radi-
ation transport away from the beam. We have estimated this span of the spatial
Green function to be ∼H (∼km scales). Although imaging technology exists for
much smaller scales, it would soon be ‘photon-starved’ if also required to resolve
the rapid time evolution. Furthermore, the laser beam itself will be spread out to
a significant diameter, thus diluting the spatial Green function (by convolution).
That said about the present and near-future, systems may prove far more capable
in the longer term.

Following Miller and Stephens [200], we make the safe assumption that we only
have access to time-domain information. But this is exactly what the proposed
cloud remote sensing using reflected oxygen A-band spectroscopy is about. The
difference is that a lidar system will access the temporal signal directly with fast
radiometry, while the spectroscopic technique delivers the path-length moments as
‘products’ derived from the differential absorption spectroscopy. The only other
difference is the in down-looking lidar we have µ0 = 1 while passive A-band obser-
vation can have any incidence angle. So we are in fact looking at a special case of
(8.17)–(8.19):

〈ct〉R/H =
5
3
×
[
1 + C

(1)
R,ct(τ, g, 1)

]
, (9.1)

〈(ct)2〉R/H2 =
2
3

(1− g)τ ×
[
1 + C

(2)
R,ct(τ, g, 1)

]
, and (9.2)

〈(ct)3〉R/H3 =
4
7

[(1− g)τ ]2 ×
[
1 + C

(3)
R,ct(τ, g, 1)

]
, (9.3)

where, following Ref. [92], we have returned to the model for normal incidence
in section 5.5.3. Figure 5.21 illustrates (9.1)–(9.3) along with MC validation data
and the predicted asymptotes using both g = 0.85 and its δ-rescaled counterpart
g′ = 0.45. As expected, the later case is more accurate with respect to the MC
simulation benchmarks. We see that the higher the order of the moment, the longer
it takes to approach the asymptote; this underscores the practical importance of
knowing the C(q)

R,ct terms with high accuracy.
At present, the prime application of this limited set of results is for the analysis

of the nighttime orbit #135 of the Lidar-In-space Technology Experiment (LITE),
which flew on Space Shuttle Discovery (STS-64 mission), September 9–20, 1994
[111]. The LITE payload was in essence a standard research lidar system: 5 W laser
transmitting at 532 nm (the popular ‘doubled Nd:YAG’ solid-state technology)
with a pulse rep-rate of 10 Hz and a diffraction-limited beam divergence leading to
≈0.3 km diameter at cloud level); receiver composed of a ≈1-m telescope feeding



242 A.B. Davis, I.N. Polonsky, and A. Marshak

Fig. 5.21. Spatial and temporal moments of the reflected Green function for normal
illumination by a pulsed narrow beam. From the top down, we have plotted 3

p
〈(ct)3〉/H,p

〈(ct)2〉R/H, and 〈ct〉R/H from (9.1)–(9.3) and
p
〈ρ2〉R/H from (9.4) as functions of

rescaled optical depth. We note the different results for the canonical g = 0.85 value for
liquid water clouds and its rescaled counterpart g = 0.45. Indeed, when the un-collided
and diffuse components of the radiance field are treated separately, we no longer have
exact similarity in (1− g)τ . Adapted from Ref. [92].

a high-efficiency photon-counting detector with a deliberately large FOV, namely,
0.2◦ (footprint at cloud level with ≈0.9 km diameter (at least during nighttime
orbit #135). That data collection targeted a dense marine Sc layer and geometry
tells us that the measured light was transported up to 1.2 km horizontally. Since
the anticipated spatial Green function for such clouds has RMS-ρ ∼ H ≈ 0.3 km,
we can safely assume that very high orders of scattering were present in the LITE
signal. We refer the reader to the studies by Davis et al. [114,201] for quantitative
analyses of temporal moments and other time-domain characteristics of the small-
but-interesting subset of non-saturated LITE returns from this orbit. It suffices to
say here that the inferred cloud properties, i.e., {H, τ} pairs, are consistent with
what we know about such clouds.

5.9.2 Ground-based and airborne MuSCL systems

We now assume that the MuSCL system is at a finite distance from the cloud.
In other words, going back to notation from section 5.2.3 for the distance of the
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observer to the closest cloud boundary, we have dobs . H, & H, but not�H (a case
covered in the previous subsection) nor43 �H. In short, platforms include those
on the ground [84] or in an aircraft (including blimps) flying above the cloud top
[202], up to the ≈20 km limit for high-altitude aircraft; as described in the provided
references, both kinds of MuSCL system have been deployed and demonstrated.
We can then easily measure spatial characteristics such as

〈ρ2〉R/H2 =
20
9

1
(1− g)τ

×
[
1 + C

(2)
R,ρ(τ, g, 1)

]
, (9.4)

given here for the same normal/narrow-beam illumination used for the temporal
moments in (9.1)–(9.3). The RMS value for ρ obtained from the above is also
plotted in Fig. 5.21 with its MC validation data and estimated asymptote. Note
that, for consistency, we have reserved in C

(2)
R,ρ(τ, g, 1) a slot for the possibility of

µ0 < 1 although there is no longer axial symmetry in that case, and one would
need to modify the diffusion model to capture other spatial statistics than the RMS
horizontal transport. At present, however, we have no practical reason to take the
diffusion transport modeling to that level of complexity. But that is only because of
the limited scope of our applications; we refer the interested reader to Zege et al. in
Ref. [83, Section 6.3, and citations therein] who address this steady-state problem in
order to derive the non-axisymmetric MTF that controls off-axis imaging through
a turbid medium.

The random-but-correlated variability of extinction in clouds driven by turbu-
lence affects all aspects of the 3+1D RT, and we have promoted in section 5.4.2.3
a straightforward homogenization approach developed by Cairns et al. [75] to cope
with this issue. We recall that in homogenization theory we simply use new val-
ues of optical properties σ and g dependent on original values – possibly already
δ-rescaled (to account for the anisotropic source and phase function) – and variabil-
ity parameters. Although all the time-domain responses in (9.1)–(9.3) are affected,
we choose to illustrate with the RMS ρ. Figure 5.22 shows the relative effect (in
%-difference) of Cairns rescaling for ε up to 0.4 on

√
〈ρ2〉R. It is systematic and

positive: turbulence makes the RMS horizontal transport larger.
For a more quantitative validation of this prediction, we can turn back to Fig. 5.4

where we see that, going from the uniform to the fractal stratus cloud, the RMS
ρ increases by ≈15–20%. That simulation was for a mean cloud optical depth
τ ≈ 13, hence τ ′ ≈ 3.6 after δ-Eddington rescaling (log10 τ

′ ≈ 0.56). This is
about in the middle of Fig. 5.22 where we see that a 15–20% effect is obtained
for ε(σ2/σ2, σ′lc) ≈ 0.1–0.15. Looking at Fig. 5.6, we see that this magnitude is
delivered by a variety of values of the one-point PDF parameter σ2/σ2 = σ′2/σ′

2

and of the two-point correlation parameter lc (knowing that σ′ = τ ′/H ≈ 3.6/0.3 =
12 km−1). Fractal clouds have, by definition, long-range correlations: horizontally,
the variability spectrum observed for marine Sc goes from tens of meters to tens of

43For dobs = 0, the detector is at the cloud boundary, so no imaging (discrimination
between different values of ρ > 0) is possible, at least in monostatic systems where source
and detector are collocated. This is in fact a limiting case of in situ cloud lidar covered
in section 5.7, corresponding to the occurrence of dense fog for a ground-based system.
Recalling the source/detector geometry for that technique, it may prove useful to decouple
the axis of the receiver FOV from the laser beam.
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Fig. 5.22. The impact of random internal variability on 〈ρ2〉1/2R in %. We have plotted
100× ([〈ρ2〉R(ε)/〈ρ2〉R(0)]1/2 − 1) where ε, obtained from (4.22)–(4.23), is used in (4.20)
to change both σ′ and g′. In turn, this rescaling of optical properties changes the outcome
of (9.4) for 〈ρ2〉R, as an example. We see that over the useful range of ε the parameterized
impact of turbulence-driven variability is significant, but only weakly dependent on optical
thickness.

kilometers [203–205]. However, we are only interested here in the spatial correlations
over the horizontal extent of the spatial Green function, which is ∼H; so we can
take σ′lc ∼ τ ′ ≈ 3.6. Similarly, we are only interested in the relative one-point
variability, as captured by the RMS/mean ratio, over the horizontal extent of the
spatial Green function; this implies that σ′2/σ′

2
is only slightly more than unity. For

this combination of (σ′2/σ′
2
, σ′lc), we indeed find that ε has the right magnitude

in Fig. 5.6.
In summary, we have presented upfront (Fig. 5.4) numerical evidence that, for

the moderate variability found in Sc cloud layers at scales ∼H, we can expect a
boost in

√
〈ρ2〉R on the order of ≈15–20% with respect to strictly uniform clouds

with the same (domain-average) optical depth. Furthermore, this observation is
consistent with our implementation of Cairns’ parameterization for small-scale vari-
ability effects in the spatial Green function.

Finally, it is important to compare quantitatively the impacts of random tur-
bulence and of deterministic stratification (sections 5.2.5, 5.5.2 and 5.8.3) on the
characteristics of reflected light. We summarized the latter effect by estimating the
relative effect of a change in relative gradient |∆| of unity on either 〈ρ2〉1/2R or 〈ct〉R:
it varies between 2/13 (≈15%) and 1/4 (25%) as (1− g)τ goes from ≈1 to�1. We
therefore retain that, under typical circumstances, the two effects are of the same
order of magnitude.

5.9.3 Moment-based methods for MuSCL

Figure 5.23 illustrates how a hypothetical MuSCL retrieval of cloud thickness H
and optical depth τ would proceed, including error propagation. We assume here an
observational technology that can deliver one spatial and two temporal moments.
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Fig. 5.23. A typical moment-based cloud remote sensing algorithm for MuSCL data
processing. The lower curves show the non-dimensional ratio of observable moments
〈ρ2〉R/〈(ct)2〉R as a function of rescaled cloud optical depth (1 − g)τ for g = 0.85 and
the related value of g′ = 0.46. Although not very different, the curve for g′ is favored,
and gives us τ , via scaled optical depth τ ′ (upper axis). We then use the corresponding
prediction for H/〈ct〉 in the upper curves to determine cloud thickness H. The numerical
example uses rescaled g′ = 0.46, which is expected to be the more accurate. A ratio of
second-order moments of (3.0± 0.5) 10−2 is assumed, and yields τ ≈ 34± 4 (12% uncer-
tainty) and, from there, H ≈ (0.560±0.005)× the mean in-cloud path 〈ct〉 (whatever that
may be). Note that the observational error on this first-order moment will very likely over-
whelm the ≈1% error on the multiplier (associated with ≈12% on τ , resulting itself from
the hypothetical ≈17% on the ratio of second-order moments). Adapted from Ref. [92].

As already suggested in our discussion of cloud remote sensing based on A-band
spectroscopy, the non-dimensional property τ is determined from a non-dimensional
ratio of moments, and then the dimensional cloud property H is determined from
any one of the dimensional observables. Here, we opt for the mean in-cloud path.

Hogan and Battaglia [107] recently developed a time-dependent two-stream
model, which is akin to the diffusion model, but with better performance at
early times (in terms of causality in particular). Their model furthermore fea-
tures an improved representation of the source of diffuse radiation by embedding a
propagation-with-dispersion model by Hogan [187] for the pulsed laser beam (in the
small-angle approximation). This idea was pioneered by Dolin [206] and Zege et al.
[207] 20–25 years ago with analytical methods, but Hogan and Battaglia designed
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their model from the start as a numerical tool. In particular, arbitrary vertical
structure can be accommodated. In view of the alternation between physical-space
modeling (requiring inverse Fourier and Laplace transforms) and moment-based
methods in the present study, they offer an interesting middle road. The tempo-
ral signal is modeled in detail (as straightforward outcome of the numerical PDE
solution) and, for space, they predict the conditional moment 〈ρ2〉R(ct) (basically
by assuming, as in diffusion theory, that the instantaneous profile is Gaussian).
This framework should prove very fruitful for all future MuSCL-type probes, and
especially those in space from whence information about horizontal transport will
necessarily be limited.

5.9.4 Deeper mining of MuSCL observations for cloud information

Can we use Cairns’ parameterization of internal variability from section 5.4.2.3 in
cloud remote sensing with MuSL? When using moment-based retrievals, there is
certainly no harm in improving the fidelity of the forward model by prescribing a
value of ε(σ2/σ2, σlc) from the climatology of cloud variability; see Fig. 5.22 for
the impact in the ρ-domain. However, if we wish to determine ε (hence a met-
ric of internal cloud variability) empirically, we would have to start with at least
three moments. We can thus form two or more dimensionless ratios and we in-
clude here, along with moments, cloud albedo R; albedo is indeed the zeroth-order
moment, but also the ratio of overall reflected flux to incoming flux. These data
in principle enable us to determine simultaneously the twice-rescaled τ ′′ and g′′

using the full nonlinear dependence on both parameters (rather than simply pre-
scribe the asymmetry factor); see Fig. 5.24 for an illustration. Then one can derive
ε = 1 − 1/[2 − (1 − g′′)/(1 − g′)] from (4.20) for known g′ = 0.46; from there,
we work back to τ ′ and τ . Knowing τ (and τ ′) and having prescribed g (and g′),
any predicted moment from (9.1)–(9.4) continues to give us H along the way by
comparison with the corresponding observed value.

In the same spirit, a three-moment retrieval scheme can be devised that tar-
gets ∆ (on top of H and τ) using the parameterizations of stratification impact in
(8.13)–(8.15). In principle, a four-moment scheme could target all four cloud pa-
rameters. That, however, may be overextending MuSCL capability in cloud remote
sensing. Only practice in modeling and in the field with specific implementations
will determine how much reliable cloud information can be extracted. Of course,
beyond its ‘validation-by-intercomparison’ phase of development [84,202], MuSCL
can eventually be combined with other cloud remote sensing instruments in opti-
mal multi-modality approaches. We anticipate particularly fruitful integration with
millimeter cloud radar and multi-channel passive microwave radiometers. Natural
complementarity with thermal and solar radiometers should also be examined care-
fully and thoroughly.

Proximity of the observer to the cloud will naturally increase the SNR [92].
However, a serious problem arises when the finite FOV of the instrument prevents
one from estimating moments reliably – the far-field tail of the spatial Green func-
tion is truncated! Although it may not be as obvious, the temporal Green function
will be truncated if the spatial one is. If the receiver is a true imager, then it can be
tilted with respect to the laser beam, thus gaining theoretically (in the absence of
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Fig. 5.24. Feasibility of joint retrieval of the effective τ and g, hence of a metric of
random variability, with MuSCL. Gray-scale plots of cloud albedo R (left) and the non-
dimensional moment ratio 〈ρ2〉R/〈ct〉2R (right) as functions of log10 τ

′′ and g′′, the twice
rescaled cloud parameters in (4.20). Observational determination of R, which requires
absolute calibration, 〈ct〉R and 〈ρ2〉R can lead to physical and optical thickness as well as
the internal variability parameter. As explained in the main text, ε(g′, g′′), τ ′(g′, g′′, τ ′′)
and τ(g, g′, τ ′) are determined in that order, assuming we can take g = 0.85 and the
associated g′ = 0.46 for granted. However, visual inspection of the two panels reveals that
joint retrievals of τ ′′ and g′′ (hence Cairns’ ε) – the cloud’s physical thickness H being
determined later – will not be easy in general because isophotes and ‘iso-moment-ratio’
lines are more parallel than perpendicular. The most favorable region is where τ ′′ is low
(reinforcing the importance of δ-Eddington rescaling as an intermediate step) especially
when g′′ (hence ε) is large.

noise) up to a factor of 2 in off-beam distance at the focal plane. A radical solution
is, however, to return to the models that express the Green function in space and
time, i.e., the PDFs that lead to the moments, cf. section 5.6 and Refs [84,99].

5.10 Further applications to passive solar observations
of clouds

Having covered in detail the application of radiative Green functions to two emerg-
ing cloud remote sensing technologies in the previous sections, we now survey briefly
their application to more tested approaches.

5.10.1 Operational cloud remote sensing in the solar spectrum

Reflected and transmitted sunlight has always been a resource in cloud remote
sensing in the solar spectrum, as long as absolute radiometric calibration is main-
tained. The standard model for retrieving cloud properties is, like here, the plane-
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parallel slab treated at various levels of accuracy in the RT ranging from a two-
stream/diffusion model (with separation of direct and diffuse components) from
section 5.5.5 to a full multi-stream 1D RT model such as DISORT [168]. In the
latter case, the computational burden is heavy enough that the forward modeling
is done ahead of time and used to generate extensive look-up tables used to map
cloud properties to radiances and vice versa [208–210].

Excluding O2 A-band, cloud thickness H is not accessible by passive remote
sensing since all one has is steady-state reflected (R) or transmitted (T ) radiances44

at one or more wavelengths, both being functions of τ,$0 and45 g, as well as of
µ0 and the viewing angle coordinates µ, φ− φ0. The targeted cloud properties are
invariably optical depth τ and the effective radius of the droplet size distribution
re = r3/r2. The latter is obtained indirectly, via an estimate of the SSA, $0(re), at
a wavelength where liquid water has non-negligible absorption. This joint retrieval
is based on the fact that, to a first approximation, σ ∼ r2 and σa ∼ r3, hence
1−$0 ∼ re for the co-SSA.

5.10.2 Opacity-driven 3D radiation transport

The question of how applicable 1D RT is to remote sensing of real (3D) cloud has
been investigated quite thoroughly; see Ref. [211] for a recent survey. Since 1D
RT is applied irrespective of the pixel scale, one must distinguish two qualitatively
different kinds of modeling error:

1. if the pixel size is somewhat greater than the characteristic scale of the spatial
Green function (namely, ∼H), then there is a high probability that there is
significant sub-pixel variability and, because of the nonlinear dependence of
radiance on cloud properties (τ and re), the retrieved values will be biased with
respect to their mean values;

2. if the pixel size is . than H, then the observed radiance is surely ‘contaminated’
(in the 1D RT sense) by horizontal fluxes coming from adjacent pixels.

In the former case (problem #1), so-called ‘plane-parallel’ biases occur, which are
generally systematic in sign [212]; in the latter case (problem #2), so-called ‘in-
dependent pixel approximation’ biases occur, which are of both signs (depending
on structural details) [213–215]. Solutions adapted to both of these situations are
discussed in the remainder of this section.

5.10.3 The independent pixel approximation for steady/uniform
illumination

The above problem #1 (sub-pixel variability) can be addressed simply by averaging
(linearly mixing) the radiances predicted in 1D RT over an assumed variability
in cloud properties. We can anticipate nontrivial results because radiances are

44It is conventional to normalize the observed radiance by estimating the effective
Lambertian reflectivity, R(µ, φ;µ0, φ0) = πI(µ, φ;µ0, φ0)/µ0F0, where F0 is the spectral
solar flux integrated over the band of interest, and similarly for T .

45In this context of multi-stream 1D RT, we understand ‘g’ to symbolize the whole
phase function representation, in whatever space that may be (Ω or Pn).
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nonlinear functions of all the cloud optical properties. This procedure is known
in 3D RT as the independent pixel approximation (IPA) [212]. It is natural and
convenient to choose a model for the variability that leads to analytical treatment.

In stratiform clouds, τ is by far the most variable property in comparison with
H, g and re (or $0). The preferred variability model for τ has been the two-
parameter Gamma distribution:

Pa(τ) =
1

Γ (a)

(a
τ

)a
τa−1 e−aτ/τ , (10.1)

where
a =

1
τ2/τ2 − 1

. (10.2)

Its popularity follows from the ease of integrating rational functions over arbi-
trary combinations of power laws and exponentials, resulting at most in exponen-
tial integral functions and/or incomplete Gamma functions (possibly infinite series
thereof).

In the context of radiation budget parameterization for the large-scale domain-
averages required in GCMs, Barker [216] worked out the integrals

F a(τ ,$0, g;µ0) =

∞∫
0

Pa(τ)F (τ ;$0, g, µ0) dτ (10.3)

for boundary fluxes F = R, T (hence also cloud absorptance A = 1−R−T ) resulting
from uniform collimated illumination in the Eddington/diffusion-based version of
the two-stream approximation [87]. This ‘Gamma-Weighted Two-Stream’ model
was later generalized to multiple partially cloudy layers by Oreopoulos and Barker
[217], thus calling for the same computations for the R and T responses to a
uniform isotropic source, which depend only on 1 −$0 and τt = (1 −$0g)τ . For
instance, at non-absorbing wavelengths ($0 = 1), they use the simple expression
for transmittance in (5.5) and obtain

T a(τ t) =

∞∫
0

1
1 + τt/2χ

Pa(τt) dτt = X eXEa(X)
∣∣
X=2χa/τt

, (10.4)

although in a different notations; here, Ea(X) is the exponential integral of (any
real) order a > 0, and we note that X = a/ξ from (5.11). This leads to
the systematic positive bias observed in Fig. 5.25(a) of T a(τ t) with respect to
T∞(τ t) = 1/(1 + τ t/2χ). This is a well-known result in 3D RT: structured clouds
transmit more than their homogeneous counterparts with the same mean τ . This is
an immediate consequence of Jensen’s [77] inequality in the case of a convex func-
tion like T (τt/2χ). Kokhanovsky [218, 219] performed similar computations, with
satellite remote sensing in mind, using the asymptotic 1D RT [166,220] expressions
for reflected radiances I(τ,$0, g;µ0, µ), which become Ia(τ t, $0, g;µ0, µ).
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5.10.4 The independent pixel approximation for space/time Green
functions

There is no reason why the same averaging procedure cannot be performed on
the spatial or temporal Green functions or associated moments obtained in the
previous sections, as need be. This computation would apply, as for the above
steady-state RT, to solar O2 A-band spectroscopy at coarse scale. In that respect,
it complements the homogenization approaches based on Cairns (section 5.4.2.3) or
Larsen (section 5.4.2.4) rescaling, which applies primarily to small-scale variability.
At any rate, that is precisely how Davis and Marshak [24] preemptively approached
the problem of spatial variability for the spatial dimension in transmitted light,
without considering homogenization. They used (10.3) with τ = 10 and a = 4.5,
typical values found by Barker et al. [221] for stratocumulus, to average T × 〈ρ2〉T
from (5.5) and (8.5), and then normalized by T in (10.4). Davis and Marshak thus
captured quantitatively the ≈10–15% difference in RMS ρ clearly visible in Fig. 5.4
between uniform and fractal plane-parallel clouds.

Here is another example, this one in the time-domain hence directly applicable
to passive (solar) remote sensing of clouds based on O2 A-band spectroscopy. We
apply (10.3) with F (τ ;$0, g, µ0) replaced by 〈ct〉T from (8.3) times the correspond-
ing T (τt) from (5.5). After dividing by T from (10.4), we obtain for the mean path
in variable clouds:

〈ct〉T /H =
T 〈ct〉T
T ×H

=
χ

2
[
1 + a+X + (2−X)/T a(X)

]∣∣∣
X=2χa/τt

, (10.5)

Fig. 5.25. Transmittance and mean path-length for a Gamma-weighted two-stream model.
(a) The expression in (10.4) is plotted versus τ t for selected values of a in log-log axes;
we note the increasing transmission as the unresolved variability increases (a decreases)
at fixed τ t. (b) Mean path-length, in units of H, from (10.5) versus τ t for the same values
of a as in panel (a); we note that paths decrease on average as variability increases (a
decreases) at fixed τ t. See text for more explanation.
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where T a(X) is expressed in (10.4). Figure 5.25(b) shows 〈ct〉T /H for represen-
tative values of a over a relevant range of τ t. We see that, for a given H, the
unresolved variability reduces the observed mean path with respect to the pre-
diction for a uniform cloud with the same optical depth. The physical reason for
this outcome is the same dominance of high transmission values (low τt) that af-
fect T in Fig. 5.25(a). Indeed, the whole variation of flux-weighted mean path,
T × 〈ct〉T = χ(τ2

t + 6χτt + 6χ2)/(τt + 2χ)2, is between χ . 1 and 3χ/2 ≈ 1 for all
choices of χ near its canonical value46 of 2/3.

We note that, if the application is ground-based O2 A-band spectroscopy of
clouds, then the Gamma- or otherwise-weighted averaging should actually be per-
formed on the prediction of the forward RT model in Laplace space, namely,
F̃ (s, 0, τt, χ) from (5.8), or (5.9) for space-based, since that is the quantity ob-
served at a scale so coarse that sub-pixel variability needs to be accounted for.
That is a harder computation yielding the same expressions for the path-length
moments, but it can be used directly with A-band observations.

5.10.5 Landsat-type observations of clouds from space, and the
nonlocal IPA

How can we address the above problem #2 of pixel ‘adjacency’ effects? In this case,
the pixel scale is too small for 1D RT to be realistic. More precisely, the pixel foot-
print is so small that, even if it were internally homogeneous, net horizontal fluxes
coming from denser or more tenuous neighboring pixels would affect the observed
radiance at cloud top. With their 30 m pixels, NASA’s series of Landsat/Thematic-
Mappers are by far the most popular assets delivering imagery that fall in this
category. To the best of our knowledge, the first systematic attempt to go beyond
quantification and actually attempt to mitigate this inescapable 3D RT effect was
by Marshak et al. [222] who proposed the ‘nonlocal IPA’ (NIPA).

NIPA is based on the intuitive idea that multiple scattering processes cause
an apparent smoothing of the cloud structure, as observed in the remotely sensed
radiance field [170,223–225]. Rather than run a full 3D RT simulation with an ex-
pensive MC code, or even a more efficient grid-based solver such as SHDOM [18],
one can simply apply a low-pass filter (smoothing kernel) to the IPA prediction.
This approximate 3D RT method works well, at least for stratiform clouds under
near-normal illumination. At more oblique illumination, brightening/shadowing ef-
fects produce a radiative roughening in the sense of enhanced amplitudes in Fourier
space [226,227] at scales & H.

We note that what is required here is the Fourier transform P̃ (
−→
k ) of the smooth-

ing kernel P (−→ρ ) since we wish to perform the convolution product of P and the
2D IPA-derived radiance field IIPA(−→ρ ):

INIPA(−→ρ ) =

+∞∫∫
−∞

P (−→ρ ′)IIPA(−→ρ −−→ρ ′) d−→ρ ′, (10.6)

46We note that 〈ct〉T /H = 3χ/2 at τt → 0(X → ∞) in (10.5), which is unity when
χ = 2/3, for all values of a (cf. Fig. 5.25(b)). As remarked earlier (in section 5.8.2), this
limit should yield 2 (the mean µ-weighted value of 1/µ) and, accordingly, we should be
using χ = 4/3 for optically thin media, as suggested in section 5.4.3.
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which becomes a simple product in Fourier space, ĨNIPA(
−→
k ) = P̃ (

−→
k )ĨIPA(

−→
k ).

Any one of the Fourier-space reflected Green functions computed in section 5.5
for illumination can be used. They depend parametrically on H, τt and g or ∆.
Depending on whether local albedo or nadir radiance is targeted, we would choose
a spatial Green function for isotropic or normal illumination.

Marshak et al. [222] had an even more empirical approach, however. Eschewing
normalized solutions from section 5.5 in Fourier space, they used a convenient
two-parameter expression like (10.1) but for ρ instead of τ and averages based on
cloud radiative Green functions (in 〈·〉’s) instead of averages over cloud structural
disorder (indicated with ·). The 2D Fourier–Hankel transform in (6.1) of a Gamma-
shaped radial Green function (normalized with the appropriate 2πρ weighting) can
be expressed as an Euler hypergeometric function:

P̃ (k) = 2F1

(
1 + a

2
,

2 + a

2
, 1;−

(
〈ρ〉k
a+ 1

)2
)
. (10.7)

However, the authors did their proof-of-concept computations with cloud models
having optical depth variability in a single horizontal direction, say, x. The required
1D Fourier transform of (10.1), with τ 7→ |x| and division by 2 (to cover the new
support, all of R), is a simpler expression:

P̃ (k) =
cos
[
a tan−1( 〈|x|〉ka )

]
[
1 +

(
〈|x|〉k
a

)2
]a/2 . (10.8)

Just like the diffusion-based MTFs for reflections presented in section 5.5.1 (Fig. 5.8),
these smoothing kernels act in Fourier space as low-pass filters; however, they fea-
ture gentle power-law cutoffs in k−a at wavenumber kc ≈ 1/〈ρ〉R (2D) or 1/〈|x|〉R
(1D).47

Power-law tails in P̃ (k) are a natural choice to reconcile the spatial correlations
observed in satellite images of extensive stratocumulus [225] with those observed
with airborne in situ probes [204] for the same type of cloud system. The lat-
ter have scale-invariant (power-law) internal structure (obviously driven by turbu-
lence); specifically, one finds extinction (actually, liquid water content) fluctuations
in k−5/3, typically over scales from ∼tens of kilometers down to ∼tens of meters.
Satellite (nadir-looking) radiances also have this trend, which follows from the IPA
(a nonlinear but one-to-one mapping of local τ to local radiance), but only down to
a scale found by numerical simulation to be ≈

√
〈ρ2〉R [170]. Above the associated

cut-off wavenumber, a trend approaching k−3 is found, which translates to a func-
tion at least once differentiable.48 Noting that the low-pass filtered NIPA radiance
goes as k−(5/3+a) when k →∞. This sets a to a value . 4/3. Only slightly smaller

47Recall that this substitution of Gamma-type functions for Green functions derived
from transport physics was also done in the time-domain, in particular, for practical data
exploitation in O2 A-band spectroscopy of cloudy skies [159,160]. This is largely because,
as for Fourier transformation, it has a closed-form Laplace transform.

48This level of smoothness is quite remarkable since the 3D RT equation puts no con-
straints on gradients perpendicular to the beams (which, in this situation, are vertical).
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Fig. 5.26. A simple and convenient stochastic cloud model for radiative smoothing studies.
Left: In the first step, a fraction f1 of cloud ‘mass’ is transferred in a random horizontal
direction from one half to the other. For every step after that, a fraction fn is similarly
transferred at scale 1/2n such that fn/fn−1 = · · · = f2/f1. Right: The outcome for one
realization at n = 14 when the parameters are f1 = 1/4 and f1/f2 = 21/3. This so-called
‘bounded cascade’ model [27, 228] has been tuned to yield a 1-point st.dev. of 1/3 of
the (unit) mean and 2-point correlations reflecting a Fourier spectrum in 1/k−5/3. These
values are typical of the observed variability of local optical thickness for real marine
stratocumulus clouds [28]. Both panels are reproduced with permission from Ref. [229].

values (a . 1) are required for consistency between the Landsat observations [225]
and the near-field behavior of simulated [170] and observed [85] spatial Green func-
tions for reflected laser light. In short, the anticipated range for a is quite narrow
and, in any event, its precise value is not as important as that of 〈|x|〉 (or 〈ρ〉) that
determines the spatial extent of the running average.

Figures 5.26 and 5.27 illustrate the NIPA procedure for a fractal cloud model.
The stochastic ‘bounded cascade’ model used to generate horizontal cloud structure
for a stratocumulus is explained graphically in the l.-h. panel of Fig. 5.26 while the
resulting transect of cloud variability normalized to yield a unit mean is plotted in
the r.-h. panel; its wavenumber spectrum is prescribed to be ∝ k−5/3, as observed in
real stratocumulus layers. This model is illustrated for 1D and used here as such, but
it is readily generalized to 2D [230]. Figure 5.27 exemplifies the differences between
MC, IPA and NIPA. The upper panel shows, on the one hand, τ(x) for a 2-km
portion of the synthetic fractal cloud that extends to 12.8 km (and is periodically
replicated beyond that). On the other hand, both MC and IPA predictions are
plotted for the local albedo: we see how the IPA responds immediately to the fractal
variability while the MC results are much like a running mean over several pixels.
The lower panel shows MC, IPA and NIPA predictions for the local value of nadir
radiance over the same portion of cloud. By comparing the two registered panels,
we see that the MC radiance field is not as smooth as its counterpart for albedo,
patently because there is no longer angular averaging. The NIPA computation used
the smoothing kernel in (10.8) with a = 0.5, 〈|x|〉 = 0.1 km (eight pixels). Finally,
we see how much the prediction error with respect to MC ‘truth’ is reduced by
going from the IPA to the NIPA.

That completes the description of the forward NIPA where we improve the
realism of the IPA by introducing scale-specific smoothness. The inverse NIPA
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Fig. 5.27. Comparison of simulated reflectivity fields using MC, IPA and NIPA for a
portion of a 1D fractal stratoculmulus cloud. Top: On the l.-h. axis, we read the 1D
horizontal variation in x of the local optical depth τ(x) (lower curve); the vertically
uniform cloud is generated with a 10-step bounded cascade process from Fig. 5.26 with
τ = 13 and H = 0.3 km (pixel/grid-scale = 12.5 m). The upper curves (r.-h. axis) in the
same panel show the associated fluctuations of albedo R(x), the normalized up-welling
flux in (2.18) for steady and uniform illumination, using both IPA and MC schemes;
SZA is 22.5◦ and scattering is according to a Deirmendjian C1 phase function for a
red wavelength for simplicity (both water- and land-surface albedo is negligibly small).
Bottom: The r.-h. axis is the same as in the top panel but for normalized nadir radiance
in (2.16) rather than hemisphericial flux, under the same conditions of spatially uniform
and steady illumination, and the computational NIPA scheme is added. The lower curves
(l.-h. axis) highlights the reduced error with respect to MC when NIPA is used instead of
IPA. Both panels are reproduced, with permission, from Ref. [229].

consists in taking actual cloud radiances and applying the corresponding rough-
ening filter to restore the IPA and, from there, perform straightforward retrievals
of (say) the cloud optical depth field. Formally, that amounts to solving (10.6),
viewed as an integral equation, for IIPA(−→ρ ) knowing INIPA(−→ρ ) from observation
or 3D RT computation.

In an ideal (infinite-accuracy, noiseless) world, one only needs to perform the
inverse FFT of ĨIPA(

−→
k ) = ĨNIPA(

−→
k )/P̃ (

−→
k ). However, 1/P̃ (

−→
k ) is a high-pass filter

that will amplify any noise or small-scale numerical error. This is a classic ill-posed
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(i.e., numerically unstable) inverse problem. Marshak et al. [222] demonstrate on
‘observations’ obtained with a MC code (where the ‘truth’ is known), that careful
Tikhonov-type regularization [231] can be used to estimate IIPA(−→ρ ) even in the
presence of considerable noise from the MC scheme itself and, from there, obtain
reasonable estimates of the local value of τ from a pre-computed inverse map of τ
to nadir radiance from 1D RT.

While the inverse NIPA can be applied to inject more realism into retrieved
values of τ for stratocumulus-type clouds, the prerequisite determination of the
critical wavenumber kc where the scale break occurs is an opportunity for cloud
remote sensing in its own right. Specifically, it can be used to infer H, knowing the
mean value of τ . Indeed, the reflected MTF used to inverse filter the quasi-nadir
radiance data can only be a function of kH and dimensionless cloud or modeling
parameters (τ , g, maybe χ, maybe a for Gamma-weighting, etc.). So, if we know
kc in 1/km from observations and the suite of cloud parameters, we can estimate
H in km.49 This idea is pursued using physical- rather than Fourier-space methods
in the next example.

5.10.6 Zenith radiance reaching ground, and the nonlocal IPA

Ground-based narrow-FOV radiometers that capture down-welling radiance from
zenith have proven at once quite simple to build/maintain and extremely useful
in cloud probing. One monospectral approach uses the solar background from the
sensitive and well-calibrated detector in an operational ground-based micro-pulse
lidar system [185] to infer optical depth of stratiform clouds by comparison with the
predictions of 1D RT models for spectral zenith radiance at the laser wavelength
[232].50

From the 3D RT standpoint, narrow-FOV observations from ground (or space)
complement the more classic flux-based measurements from ground (and at least
moderately large pixels in MODIS-type instruments): the latter have the above
3D problem #1 while the former present #2. Another application of zenith cloud
radiance measurements proposed by Marshak et al. [235] works around the 3D RT
effects by using a bi-spectral technique for inference of cloud optical depth above
green vegetation; the method works even for a field of broken clouds and, moreover,
does not require absolute calibration.

Viewed as a time-series, rapidly sampled zenith radiance from an overcast sky
contains information about the spatial correlations in the radiance field in essen-
tially the same way high-resolution satellite imagery does. The only difference is

49The simplest approach is to equate 1/kc with the RMS value for ρ, which appears
parametrically in Gamma-approximated MTFs, since the ratio of 〈ρ2〉R and H2 is a known
function of known dimensionless cloud parameters.

50This same calibration-based technique was proposed almost a decade ago [233] for
the ultra-narrow FOVs in space-based lidar systems, but just recently applied to the
Geophysical Lidar and Altimeter System (GLAS) lidar onboard the current ICESat (Ice,
Cloud, and land Elevation Satellite) mission. In this time configuration, a comparison
with 1D RT predictions for nadir reflected radiance at the laser wavelength is performed
[234].
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the nontrivial but standard time-to-space conversion using Taylor’s frozen turbu-
lence hypothesis: just use the mean wind at cloud altitude to account for advection
across the instrument’s FOV.

In this context, the transmitted spatial Green function can be used in both
forward and inverse NIPA, applied respectively

– to approximate a rigorous 3D RT computation of zenith radiance, given the
cloud’s detailed structure, and

– to derive the column optical thickness from a time-series of zenith radiance
observations.

Recall that the transmitted spatial Green function required for NIPA work has the
same exponential decay in the far-field as its reflected counterpart, but it is flat
rather than quasi-singular in the near-beam region. That implies in particular that
the only reasonable Gamma-based parameterization of this Green function is for
the special value of a = 1, yielding a simple exponential for the radial profile in
(10.1); this choice is equivalent to stating that the RMS-to-mean ratio for ρ is

√
2.

There is, however, the possibility of directly exploiting the outcome of the spatial
correlation analysis to derive a key cloud property, namely, the physical thickness
H of the (unbroken) layer. Beyond the Fourier wavenumber spectrum invoked in

Fig. 5.28. Simulated structure functions for local transmittance and zenith radiance. Scale
breaks between smooth (h ≈ 1) and turbulent (h ≈ 1/3) behaviors are clearly visible,
respectively at ≈ H and ≈ H/2. The ensemble of 10 simulated realizations of cloud
optical depth were generated using a 10-step 1D bounded cascade model from Fig. 5.26
with the same parameters. Other cloud parameters of interest are mean optical depth
τ = 13 and the constant physical thickness H = 0.3 km (indicated with a vertical dash-
dotted line). Scattering follows the usual H–G model (2.20) with g = 0.85. SZA is 30◦.
This plot is adapted from Ref. [24].
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the previous subsection, a popular statistical characterization of spatial correlation
is the (second-order) ‘structure function’: SF(r) = [Izen(x+ r)− Izen(x)]2 for a
one-dimensional horizontal transect of zenith radiance, assumed to be along the x
axis; r is a given scale parameter and the average is over a large interval in x. As
for the Fourier spectrum, one naturally seeks power-law behaviors in r:√

SF(r) = [Izen(x+ r)− Izen(x)]2
1/2
∼ rh, (10.9)

where h is the ‘Hurst’ exponent (a.k.a. the global Hölder–Lipschitz exponent).51

Recognizable scaling behaviors are h = 0 for all stationary processes (i.e., that are
decorrelated over the associated range of r), h = 1/3 for turbulence-like variability
(corresponds to a Fourier spectrum in k−5/3, as for the fractal model in Fig. 5.26),
and h = 1 for all smooth (i.e., differentiable) fields.

One can of course find different values of h in (10.9) over different ranges in r.
Indeed, von Savigny et al. [236,237] found that the time-averaged structure function
of ground-based zenith radiance at a non-absorbing (red) wavelength went from
h ≈ 1 scaling to h = 1/3 and ended with h = 0 at very long time lags, in excess of
1/2 to 1 hour or so (translating to 5–10 km for a nominal 5 m/s wind speed). Their
sampling rate was 2 Hz and the longest records covered ≈4 hours. The authors
found the predicted transition from smooth behavior to turbulence-like behavior
at time lags that translated (via Taylor’s hypothesis) to scales commensurate with
the thickness of the cloud deck (known through collocated mm-wavelength radar).

Another way to ‘calibrate’ this simple method of estimating H from zenith
radiance records (without a cloud radar present) is to use 3D RT simulations for
stochastic cloud models tuned to reproduce the amplitude and scaling of real-
world stratus. Figures 5.26(a) and (b) showed how to generate such a model in
one horizontal direction and the outcome for one realization. Figure 5.28 shows
SFs for both the simulations of zenith radiance field and of the local flux field
transmitted at cloud base. Recall from (8.5) and Fig. 5.15 that the RMS radius of
the Green function T (ρ) for transmitted steady-state flux is ≈H over the full range
of interest in transport optical depths. We see in Fig. 5.28 that the scale break
for flux is, as expected, at ≈H. In contrast, the numerics show on the same figure
that the scale-break for zenith radiance – the remotely observable quantity – is at
≈H/2. As was just noted for reflected light, this smaller value (favoring roughness)
is understandable since, unlike oblique views (let alone the angular integration for
flux), a zenith radiance characteristic (i.e., a vertical beam) does not average by
propagation over spatial variability unfolding in the horizontal.

This is clearly an opportunity for a remote-sensing retrieval of H using very
simple ground-based instrumentation described in Ref. [236]. Only a single non-
absorbing wavelength is required; it could be from a few spectral pixels in the
continuum of an O2 A-band spectrometer. Knowing H, one can look back at the
cloud information contained in the main cloud product anticipated from ground-
based A-band spectrometers, namely, the mean in-cloud path-length 〈ct〉T . The
ratio with the estimated values of 〈ct〉T and H can then be used to infer τ from

51A variant of the Weiner–Khintchin theorem for non-stationary processes with sta-
tionary increments relates the Fourier spectrum and the second-order structure function.
In particular, if the spectrum scales as k−β with 1 < β < 3 then β = 2h+ 1.
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a consistently randomized diffusion-theoretical result, such as (10.5), given g, χ
and52 a, or a homogenization approach.

5.10.7 Green functions at work in the adjoint perturbation approach
to 3D radiation transport effects

Finally, we briefly describe here another approach altogether to the above problem
#2 (traced to pixel adjacency effects) that is also grounded in Green function
formalism. Adjoint perturbation theory is very general and can therefore be applied
to many aspects of atmospheric RT [238–241], estimation of 3D transport effects
is just one example [238,242–244].

Focusing on steady sources, we start by recasting the 3D RT problem in formal
operator language:

ΛI = Q where
Λ = L − S, (10.10)

is the linear transport (i.e., propagation and scattering) operator; it is obtained
from (2.2), without the time derivative, and (2.3). In this application, we think of
Q as a general distribution of sources over (x,Ω). We also define the adjoint 3D
RT problem

Λ+I+ = Q+ where
Λ+ = L+ − S+. (10.11)

The general definition of adjoint transport system is that, for all ‘reasonable’ test
functions g and h of x and Ω, we have (g, Λh) = (Λ+g, h) where

(f1, f2) =
∫∫∫
M(H)

∫
4π

f1(x,Ω)f2(x,Ω) dxdΩ (10.12)

is the scalar product in the function space of interest. In cases of interest here, the
optical medium is M(H) = {x ∈ R3; 0 < z < H}.

In particular, we require that the response of a detector with a response function
D(x,Ω) is the functional

E = (D, I) = (I+, Q). (10.13)

With these definitions, it can be shown [245] that

– L+ is L with Ω 7→ −Ω,
– S+ is S with Ω 7→ −Ω′ and Ω′ 7→ −Ω,
– Q+(x,Ω) is D(x,Ω).

Furthermore, the applicable boundary conditions for (10.11) at z = 0, H express
that no adjoint radiance I+ escapes the medium M.

In other words, when going from the direct to adjoint transport problems,
light sources and detectors reverse their roles and, correspondingly, the direction

52The Gamma-weighting parameter a = 9 for the model in Fig. 5.26, generally less in
real Sc.
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of propagation is reversed in space and in scattering. While the response in (10.13)
describes how an arbitrary sensing device samples the radiance field, it also de-
scribes how the adjoint radiance samples an arbitrary distribution of sources. Con-
sequently, adjoint radiance is often called ‘importance’ (of any localized source for
a given detector).

Now suppose we are interested in the nadir radiance generated by reflected
sunlight, as can be observed from space, at a horizontal position −→ρ obs. We then
have Q(x,Ω) = F0δ(z)δ(Ω−Ω0) and D(x,Ω) = δ(z)δ(−→ρ −−→ρ obs)δ(Ω− ẑ), noting
that both distributions at z = 0 can also be expressed in the boundary conditions.
This means that (10.11) is the adjoint counterpart of the defining RT equation for
the spatial Green function. Therefore, I+ ≡ G+ in the present problem.

Adjoint perturbation theory seeks to determine the deviation δE of E in (10.13)
with respect to some known ‘base case’ when Λ goes from Λb to Λb + δΛ (and sim-
ilarly for the adjoints). In the present problem of 3D RT effect quantification, we
naturally take Λb as the uniform plane-parallel case, while δΛ captures deviations
from uniformity in the extinction and scattering coefficients and the ensuing hori-
zontal gradients. Assuming uniform scattering properties (only extinction varies),
this operator perturbation is

δΛ = η
∂

∂−→ρ
+ δσ(x)

1−$0

∫
4π

p(Ω′ ·Ω)[·] dΩ′

 , (10.14)

where δσ(x) = σ(x)− σ.
A general result from perturbation theory is that [241]

δE = −(I+
b , δΛIb) (10.15)

to a first-order approximation. For the present problem in remote sensing of hetero-
geneous clouds, we have I+

b = G+
b , the adjoint Green function for an adjoint source

at a roaming point on the illuminated boundary. The above expression (10.15)
therefore reads in (x, y)-space as the convolution product of G+

b with δΛIb. We
note immediately that the horizontal gradient term in (10.14) contributes nothing
to δΛIb since the base-case radiance field is invariant under arbitrary horizontal
translation.

Such convolutions are of course best done in Fourier space, which is precisely
where we can obtain closed-form expressions for Green functions in the diffusion/P1

approximation. Assuming a non-absorbing wavelength in the example of the nadir-
viewing satellite imager probing an heterogeneous cloud layer, we could determine
G+

b in Fourier space from the following system of ODEs

−F̃+′
z = −[k2/3(1− g)σ] J̃+ + σ e−σz,

−J̃+′/3 = −(1− g)σ F̃+
z + gσ e−σz, (10.16)

subject to
J̃+ − 2F̃+

z

∣∣∣
z=0

= 0, J̃+ + 2F̃+
z

∣∣∣
z=H

= 0. (10.17)

Note the changes in sign with respect to (5.15) and (5.17) that are dictated by the
time-reversal implicit in adjoint transport. The solution of this problem has about
the same complexity as the one presented in Appendix C.
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Since the receivers in the direct problem in section 5.5.3 measure radiation
density J inside the medium and hemispherical boundary fluxes F±z, the easiest
sources to model here are isotropic, either internal or at a boundary. The expression
for Ib has to take this into account. It can of course also be estimated within the
same diffusion approximation. In that case, we would turn to the solution of (5.1),
when σ

(e)
a = 0, subject to (5.2), with χ = 2/3, for a uniform boundary source at

z = 0; for an internal source distributed evenly over a horizontal plane at z = z0,
we would use (6.4)–(6.5), with the same restrictions.53

Recalling that the angular integral implicit in (10.15) is easily carried out in
the diffusion limit, cf. (4.12)–(4.13), the beginning-to-end computation of the 3D
RT effect captured by δE can be done analytically. This is unique in the 3D RT
literature, which is dominated by numerical techniques.

For a glance at computational recipes for higher-order perturbations in 3D
RT, we refer to Box et al. [243]. It is instantly clear that Green functions play a
central role, much like propagators in perturbation expansions used in quantum
mechanics. Incidentally, for domain-average 3D RT effects, the first-order estimate
in (10.15) is zero because the integrated contribution of the second term in (10.14)
vanishes identically. Thus, according to adjoint perturbation theory, large-scale 3D
RT effects are second-order at best. This is corroborated by countless numerical
experiments: the domain-average impact of 3D RT is accurately captured by the
IPA. Physically, the local horizontal fluxes will indeed lead to both positive and
negative deviations from the 1D RT prediction that tend to cancel upon spatial
integration.

This leads us to the idea of using the IPA as the base case instead of the strictly
uniform plane-parallel medium. Details for this approach are out of the scope of
the present review; we refer to Polonsky et al. [244]. However, the three panels of
Fig. 5.29 illustrate the power of the IPA-based adjoint perturbation approach to 3D
RT using a cloud model adapted from the two-dimensional ‘Case 2’ stratus cloud of
the Intercomparison of 3D Radiation Codes (I3RC) project [246]. Rather than the
boundary-leaving radiance of interest in cloud remote sensing, this computation was
for the redistribution of the solar heating inside the cloud due to 3D RT, namely,
J(x, z). Both perturbation and 3D RT results are reduced to the uniform plane-
parallel result based on the mean optical depth. Being based on an implementation
in code of closed-form expressions, the perturbation estimate is instantaneous in
comparison with the full 3D RT estimate. At the same time, most of the 3D RT
effect is reproduced in the right locations.

5.11 Summary and outlook

Our primary goal in this review was to establish the sweeping utility of radiative
Green functions in both passive and active cloud remote sensing, extended to in-
cloud radiometry and used to retrieve cloud properties. We naturally pursue those

53More sophistication is required to account for slant illumination, not for the base-case
radiance (where the diffusion solution for a slant uniform collimated beam is well-known),
but for the adjoint Green function (where a superposition of spatially distributed isotropic
and anisotropic detectors along a narrow line is in order).
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Fig. 5.29. Adjoint perturbation approach to 3D RT. Top: Cloud model structure varies
only in one horizontal (x) direction, from x = 0 to x = 32 km (periodic replication beyond
and before); the local value of the extinction plotted here is uniform in the vertical (z)
direction, from z = 1 km to z = 2.2 km hence H = 1.2 km (the rest of the 0 < z < 2.5 km
domain is empty). Middle: J(x, z)− J1D(z) is plotted for the SHDOM estimate. Bottom:
Same as above, but for the adjoint perturbation estimate. These panels are reproduced
with permission from Ref. [244].
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properties of importance in climate science. The parameters of an opaque stratiform
cloud of primary interest here are therefore, beyond the cloud’s altitude, its physical
thickness H and optical thickness τ (equivalently, its volume-averaged extinction
coefficient σ = τ/H). Properties of secondary interest address internal variabil-
ity of the cloudy medium, both cloud-scale stratification and small-scale random
fluctuations driven respectively by radiation/convection processes and inescapable
turbulence.

For the remote sensing of cloud particle size, also an essential quantity in cli-
mate and precipitation studies, we point the interested readers to the appropriate
passive and active techniques. These methods capitalize either on polarization [247]
or wavelengths where condensed water has non-negligible absorption (sensitive to
particle effective radius) [210], primarily in passive approaches, or on the multiple-
scattering lidar signal coming from short times/ranges and, therefore, from very
near the laser beam. In the latter active approaches, that early/near-beam signal
is indeed dominated by the phase function, especially the forward diffraction peak
(itself sensitive to the particle size distribution) [184]. Neither polarization (a means
of selecting low orders of scattering), nor strong particle absorption processes, nor
small-angle scattering are amenable to diffusion-based modeling presented here for
conservative scattering. They are all serviced, however, by Green function theory
in the broader framework of radiative transfer, including diffusion in the presence
of weak absorption; see, for example, [248] on polarization, [249] on absorption,
[250] on forward scattering.

Our focus has been exclusively on optical wavelengths in the visible and near-
IR where one can confidently assume that absorption by cloud particles is small
and often negligible. Scattering therefore dominates the radiation transport and,
consequently, the physics of radiometry signals. Indeed we soon made the safe as-
sumption for sufficiently opaque clouds – when it is all but impossible to see where
the sun comes from in transmission (τ & 9) – that diffusion theory can be used
to model the multiple scattering. The main benefit of this classic approximation
is that, in many relevant situations, the Green functions can be computed analyt-
ically; either in closed-form for direct comparison with observations, or else their
space-time moments can be expressed analytically and compared with observational
estimates. In this respect, we have simply opened new space-time dimensions in
radiative transfer models that have already served the GCM community very well
for uniform and steady sources, namely, the solar flux.

Another one of our goals was to show that the diffusion-theoretical approach
to Green function estimation provides a powerful signal modeling framework, built
largely with computer-assisted symbolic math, that unifies very diverse modalities
in the remote sensing of clouds. There are at least two emerging technologies that
directly target the Green functions in space and/or time: (1) multiple-scattering
cloud lidar with a very wide FOV, and (2) high-resolution differential absorption
spectroscopy in the oxygen A-band. We have discussed implementations of these
techniques from ground, space, and aircraft, each platform having its own partic-
ularities. In airborne systems, we include those designed to work from inside the
cloud itself. The signal from so-called ‘in situ’ cloud lidar – and probably in situ O2

A-band spectroscopy as well – contains information to glean about the macroscopic
cloud structure, thus complementing the usual microphysics instrumentation car-
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ried by aircraft into the depths of clouds to sample particle sizes, composition, and
so on.

It is not common, at least in atmospheric science, that the kind of advanced
radiative transfer theory surveyed herein influences major thrusts in instrument
development. Yet that is precisely what happened in the case of multiple-scattering
cloud lidar, as well as for the cloud remote sensing application of oxygen A-band
spectroscopy. We wish to reinforce this theory-driven approach to innovation in the
design of actual instruments and/or algorithms for data exploitation. To this effect,
we have (1) revisited better-established methodologies in cloud remote sensing,
showing them to rely implicitly on Green function formalism, and (2) pointed
out throughout this review a number of avenues yet to be explored. Some of these
proposed optical observation techniques target unknown sources below or imbedded
in clouds, for example, lightning strokes. Others simply look for cloud-like media
in Nature: turbid coastal waters, snow packs, sea-ice floes [251], dense vegetation
canopies [252], etc. We have no doubt that, some day, lidars with multiple scattering
capability will probe Europa’s ice cover, Titan’s thick haze, and worlds beyond.

Meanwhile, back on planet Earth, there are applications of atmospheric optics
that are not driven by meteorology or climate science. Visibility studies come to
mind. It has been shown that a large proportion of small aircraft crashes – too often
with fatalities – are due to pilot error that could be avoided with better knowledge
of the prevailing low-visibility conditions. Multiple-scattering lidars are not expen-
sive compared to both the cost of even a single accident and that of the competing
technology in active cloud probing, mm-wave radars.54 So small airports, including
aircraft carriers, will eventually be outfitted with such instruments that reliably
deliver immediately actionable diagnostics on low clouds and fog. First responders
on all-weather rescue missions can also benefit from real-time quantitative knowl-
edge of reduced visibility conditions. And what if that approaching aerosol cloud
is transporting a toxin?

For this potentially life-saving diagnostic, we can take a clue from recent de-
velopments in medical optics. Multiple-scattering cloud lidar was developed simul-
taneously and independently of optical tomography (OT), although they share a
large amount of signal physics. OT [255] uses light diffusely transmitted through
soft tissue, which is highly scattering in the near-IR, to locate and gauge anomalous
(absorbing or vacuous) inclusions indicative of pathology, for example, aneurysms
and tumors. This is made possible by fast and widely available numerical solvers
for Laplace’s equation with a given, although nontrivial, outer geometry and ar-
bitrary internal boundaries; the latter are varied until the forward model fits the
radiometric (Green function) data from as many source and sensor positions as
necessary.55 OT has made tremendous progress as a low-resolution but inherently

54The strategy in mm-wave cloud radar is to retain the single-scattering radar/lidar
equation, and therefore to seek a wavelength in the electromagnetic spectrum where its
assumptions are valid [148,253]. This leads to ∼mm wavelengths, with the extra burden on
theory to connect radar reflectivities from cloud droplets (∝ r6) to properties of interest
in the radiation budget (r2) and hydrology (r3) [254].

55In this picture, multiple-scattering cloud lidar determines the unknown distance of
the absorbing cloud boundary opposite the laser source, as well as the unknown opacity
of the cloud in between. With very restricted Green function sampling by OT standards,
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non-invasive medical imaging technique. A relatively recent development, reviewed
in this volume by Klose [256], is inspirational for our problem of detecting toxic
material in an optically thick cloud of scattering particles from a safe stand-off
distance: we can excite fluorescence with the laser light scattered throughout the
cloud, and tune the detectors to the tell-tale fluorescence wavelengths.

Finally, the scope of this survey was limited to ‘normal’ diffusion modeling,
i.e., amenable to classic PDEs and closely related to standard random-walk theory
(used, for example, in Appendix E to derive a coarse but insightful characteriza-
tion of Green functions based on their asymptotic scaling behavior). Furthermore,
cloud structure was limited to horizontal plane-parallel slabs with random 3D opac-
ity fluctuations around a deterministic stratification in the vertical. Although the
climatically and hydrologically important class of single-layer stratocumulus clouds
can be represented in this framework, many other cloud types require full-blown 3D
radiative transfer with time-dependence. Yet Green functions can still be brought
to bear on this more complex cloudiness, and analytical results (supported by real-
world observations) are achievable using ‘anomalous’ diffusion; a brief overview is
provided in Appendix F.

In conclusion, we strongly advocate systematic exploitation of multiple-scatter-
ing Green functions, particularly for boundary sources and boundary fluxes, which
apply most directly to remote sensing. In the case of the dense clouds that have so
far been our foremost concern, they have proven useful far beyond the effort invested
in a refresher in mathematical physics. We are confident that many other insights
and applications will follow. We also advocate hierarchical modeling frameworks in
any application area. In our case, the fact that we have approaches to Green func-
tion computation that range from back-of-envelope estimations to detailed numeri-
cal simulations of radiation transport physics has enabled us to advance with confi-
dence into quite foreign territory, for instance, completely new instrument concepts.
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one has to make assumptions about inner and outer cloud structure, as described in the
main text.
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A Responses T̃ (k) and R̃(k) for horizontal transport away
from an isotropic boundary source in stratified clouds

A.1 Definitions

We recall from Bessel function theory [110] that

In(x) = i−nJn(+ix),

and we define by analogy
Xn(x) = i+nYn(−ix),

as an alternative modified Bessel function of the second kind; like In(x), it is a
real-valued function for real-valued x. We also define

f(x, y; z) = xI0(z) + yI1(z),
g(x, y; z) = xX0(z) + yX1(z).

Finally, we define

DF (kH; τt/2χ,∆) = f(+kH, (2 + ∆)τt/2χ; (2/∆ + 1)kH/2)
× g(−kH, (2−∆)τt/2χ; (2/∆− 1)kH/2)
+ f(−kH, (2−∆)τt/2χ; (2/∆− 1)kH/2)
× g(−kH, (2 + ∆)τt/2χ; (2/∆ + 1)kH/2).

A.2 Transmitted light

As required in section 5.5.2, the definition in (4.51) leads to

T̃ (kH; τt/2χ,∆) =
8
π
× ∆ τt/2χ
DF (kH; τt/2χ,∆)

. (A.1)

A.3 Reflected light

Similarly, the definition in (4.50) leads to

R̃(kH; τt/2χ,∆) =
NR(kH; τt/2χ,∆)
DF (kH; τt/2χ,∆)

, (A.2)

where

NR(kH; τt/2χ,∆) = f(−kH, (2 + ∆)τt/2χ; (2/∆ + 1)kH/2)
× g(+kH, (2−∆)τt/2χ; (2/∆− 1)kH/2)
+ f(+kH, (2−∆)τt/2χ; (2/∆− 1)kH/2)
× g(+kH, (2 + ∆)τt/2χ; (2/∆ + 1)kH/2).
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B Responses T̂ (s) and R̂(s) for pulse stretching for an
isotropic boundary source in stratified clouds

B.1 Definitions

For a given cloud (τt,∆) and χ, we define the following eight functions of s′ = s/c,
i.e., the Laplace conjugate variable for path ct (expressed in 1/m):

A±n (s′H; τt,∆) =
1

Γ (n/3) 0F1(
n

3
;
τt s
′H

3∆2
(1±∆)3), n = 1, 2, 4, 5,

where Γ (a) is Euler’s Gamma function and 0F1(a, x) is the confluent hypergeomet-
ric function. We also define

DF (s′H; τt, χ,∆) =
(
A−1 − [χs′H(1−∆/2)/∆]A−4

)
×
(
A+

2 + [τt(1 + ∆/2)2/3χ∆]A+
5

)
+
(
A+

1 + [χs′H(1 + ∆/2)/∆]A+
4

)
×
(
A−2 − [τt(1−∆/2)2/3χ∆]A−5

)
.

B.2 Transmitted light

As required in section 5.5.2, the definition in (4.51) leads to

T̂ (s′H; τt, χ,∆) =
√

3
π
× 1
DF (s′H; τt, χ,∆)

. (B.1)

B.3 Reflected light

Similarly, the definition in (4.51) leads to

R̂(s′H; τt, χ,∆) =
NR(s′H; τt, χ,∆)
DF (s′H; τt, χ,∆)

, (B.2)

where

NR(s′H; τt, χ,∆) =
(
A−1 + [χs′H(1−∆/2)/∆]A−4

)
×
(
A+

2 − [τt(1 + ∆/2)2/3χ∆]A+
5

)
+
(
A+

1 − [χs′H(1 + ∆/2)/∆]A+
4

)
×
(
A−2 + [τt(1−∆/2)2/3χ∆]A−5

)
.

C Responses T̃ (k) and R̃(k) for steady illumination by a
normally incident pencil-beam

C.1 Definitions

It is of interest to compare the system of ODEs at hand in (5.15) with the classic
two-stream model (cf. Appendix D). Indeed, if one can find an analogous choice
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of parameters, even allowing for an alternative choice of g and (more formally)
for µ0 6= 1, then one would have a solution. However, no such choice of ODE
parameters exists because our effective absorption coefficient, σ(e)

a = k2/[3(1−g)σ],
contributes neither to the inverse of the diffusivity constant, which multiplies Fz
in the constitutive equation (the lower one), nor to the extinction coefficient in the
exponential source terms. Thus, there are too many constraints, and we therefore
need solve the stated ODEs directly.

We are brought to define

DF (kH; τ, g) =
[
τ2 − (kH)2

]
×
[
(3(1− g)τ + 2kH)2 − (3(1− g)τ − 2kH)2 e−2kH

]
.

C.2 Transmitted light

Define

NT (kH; τ, g) = τ ×[
− (τ + kH)(3(1− g)τ + 2kH)(3(1− g)τ + gkH)

+ 2kH(3(5− g(7− 2g))τ2 + 2(kH)2) e−kH

+ (τ − kH)(3(1− g)τ − 2kH)(3(1− g)τ − gkH) e−(τ+kH)
]
.

Applying the definition in (4.49), as required in section 5.5.3, with µ0 = 1 (and
s = 0), for diffuse transmittance then leads to

T̃ (kH; τ, g) = e−τ +
NT (kH; τ, g)
DF (kH; τ, g)

(C.1)

for total (direct + diffuse) transmittance.

C.3 Reflected light

Define

NR(kH; τ, g) = τ ×[
− (τ − kH)(3(1− g)τ − 2kH)(3(1− g)τ + gkH)

+ (τ + kH)(3(1− g)τ − 2kH)(3(1− g)τ − gkH) e−kH

+ 2kH(3(1− g(3− 2g))τ2 − 2g(kH)2) e−(τ+kH)
]
.

The definition in (4.48), as required in section 5.5.3, with µ0 = 1 (and s = 0), then
leads to

R̃(kH; τ, g) =
NR(kH; τ, g)
DF (kH; τ, g)

(C.2)

for reflectance.
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D Responses T̂ (s) and R̂(s) for pulsed normal or oblique
uniform illumination

D.1 Definitions

The ‘Eddington’ (diffusion-based) version of the classic two-stream model for
steady-state solar radiation transport in uniform plane-parallel clouds is, at first
glance at least, a resource. This is especially attractive since we have easy access
to Meador and Weaver’s [87] definitive treatment. In our notations, this problem
is described by this system of first-order ODEs:

F ′z = −σaJ + σs e−(σs+σa)z/µ0 ,

J ′ = −3[(1− g)σs + σa]Fz + 3µ0gσs e−(σs+σa)z/µ0 .

They are subjected to the same boundary conditions in (5.17) as our model from
section 5.5.3, bearing in mind that Meador and Weaver’s cloud optical depth τ ′ =
τ + σaH. The case of normal incidence (µ0 = 1) is of particular interest in the
application covered in section 5.9.

Comparison of the above classic two-stream problem and the system of present
interest in (5.22) shows that there is no simple analogy to be made because s′ = s/c,
the effective absorption coefficient, does not contribute to the inverse of diffusivity
that multiplies Fz in the constitutive equation (the lower one). A formal analogy
can nonetheless be made, but at the cost of recasting the asymmetry factor as
g? in Meador and Weaver’s expressions. We would then use σa = s′ and σs = σ,
hence SSA (in Meador and Weaver’s notation) ω0 = 1/(1 + s′/σ) ≤ 1, with g? =
g/(1 − gs′/σ) ≥ g (its magnitude can exceed unity!) and τ ′ = τ + s′H. We can
exploit this approach, or solve the stated ODEs directly.

In the end, we define

DF (s′H; τ, g, µ0) =
√

3(1− g)τs′H
×
(
τ2 + τs′H(2− 3(1− g)µ2

0) + (s′H)2
)

×
[
(3(1− g)τ + 4s′H)(1− e−2

√
3(1−g)τs′H)

+ 4
√

3(1− g)τs′H(1 + e−2
√

3(1−g)τs′H)
]
.

D.2 Transmitted light

Applying the definition in (4.49), as required in section 5.5.5, with µ0 ≤ 1 (and
k = 0), for diffuse transmittance then leads to

T̂ (s′H; τ, g, µ0) = e−τ
′/µ0 +

NT (s′H; τ, g, µ0)
DF (s′H; τ, g, µ0)

(D.1)

for total (direct + diffuse) transmittance, where
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NT (s′H; τ, g, µ0) = 3τs′H ×
[
((1 + 2µ0 − 3gµ2

0)(1− g)τ

− (2gµ0)s′H − (1− g)τ2)

×
√

3(1− g)τs′H(1− e−2
√

3(1−g)τs′H) e−(τ+s′H)/µ0

− [(2 + 3µ0)τ + (2 + 3gµ0(1 + 2µ0))s′H]× (1− g)τ

× ((1 + e−2
√

3(1−g)τs′H) e−(τ+s′H)/µ0 − 2 e−
√

3(1−g)τs′H)
]
.

D.3 Reflected light

The definition in (4.48), as required in section 5.5.5, with µ0 ≤ 1 (and k = 0), leads
to

R̂(s′H; τ, g, µ0) =
NR(s′H; τ, g, µ0)
DF (s′H; τ, g, µ0)

(D.2)

for reflectance, where

NR(s′H; τ, g, µ0) = 3τ ×
[√

3(1− g)τs′H[(1− g)τ2 − gµ0s
′H]

− τs′H[(1− g)τ(3µ0 − 2)

+
√

3(1− g)τs′H(2µ0 − (1− g)(1 + 3gµ2
0))]

×
(

1 + e−2
√

3(1−g)τs′H
)

− (1− g)τ(s′H)2[2 + 3gµ0(2µ0 − 1)]

×
(

1− e−2
√

3(1−g)τs′H
)

− 2(1− g)τs′H[2− 3gµ0(2µ0 − 1) + (2− 3µ0)τ ]

× e−
√

3(1−g)τs′H
]
.

E Scaling exponents for diffusive Green function moments
from the random walk approach

In this extensive survey of diffusion theory in application to multiple-scattering
Green function estimation, we have systematically used Monte Carlo simulation
to validate numerically the radiative transfer approximation leading to convenient
closed-form results. It is informative to go to the other extreme of this hierarchy of
Green function modeling and perform a highly simplified version of MC simulation
analytically, namely, estimate statistical properties of random (a.k.a. drunkard’s)
walks. This approach reveals the physical essence of the problem of transport in
dense clouds. In particular, one can derive the scaling exponents for τt = (1− g)τ
in all the dominant terms of the expressions we have derived for Green function
moments, viz. (8.3)–(8.5) for transmitted light and (8.10)–(8.12) for reflected light.
The same scaling appears in all other such groupings based on more sophistication
in the cloud or source representation: the novelty affects only pre-factors and pre-
asymptotic corrections.

We note that in random walk theory τt is the ratio of the only two scales that
matter:
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– H, the outer scale (size of the domain bounding the stochastic process);
– `t, the inner scale (one MFP for an effectively isotropic scattering).

The latter scale defines diffusivity D = c`t/3 in three spatial dimensions.

E.1 Caveat about photons as ‘particles’ of light

The term ‘photon’ was coined by Gilbert Lewis in 1926 to describe the quantum of
the electromagnetic field, of which light is a prime example. Even if this so-called
‘second quantification’ assigns energy E = hν, momentum p = Ωh/λ, and spin
S = ±h to photons, it is fundamentally incorrect to think of them as either classic
or quantic particles traveling through space-time at velocity c. For instance, by
definition, it is not the same photon that is incident and re-emitted by a scattering
entity. Photons can populate energy levels in, for example, thermal sources and
laser cavities; they can also be detected using photoelectric materials. In between,
it is light – not photons – that propagates in optical media according to the laws
of radiative transfer theory, which is a nontrivial construct from statistical optics
[5]. The radiance field predicted by the radiative transfer equation, and associ-
ated boundary conditions, is only a probability of detecting a photon (per photon
emitted at the source) with a roaming virtual instrument.

In Monte Carlo computation, it is very tempting to talk about the ‘photons’
launched in a simulation. This should be avoided, proper terminology is ‘histories’
or ‘trajectories’ or ‘realizations’. Recall that Monte Carlo is only a random quadra-
ture approach for estimating integrals over radiances. The random walk theory
presented here is basically a poor person’s Monte Carlo: too poor to own a com-
puter, and only has some elements of probability theory to work with. So, although
strongly reminiscent of wandering particles, we are dealing with light intensities,
to be interpreted as probability densities for detection events.

E.2 Elements of Brownian motion theory

In boundary-free homogeneous 3D space, an isotropic source at x = y = z = 0
emits a diffusing ‘wavefront’ of particles propagating at a decreasing ‘velocity’ such
that the mean distance from the origin, ≈

√
〈r2〉, grows only as

√
Dt. This is just

a reading of the classic unbounded diffusion relation [257]

〈r2〉 = 6Dt, (E.1)

which results directly from the well-known Green function for the basic diffusion
equation for particle density n(t, r) = J(t, r)/c: [∂t+D∇2]n = δ(t)δ(r)⇔ n(t, r) =
e−r

2/4Dt/(π4Dt)3/2, as stated in (7.2) for the short-time/near-field in situ cloud
lidar signal.

In the statistical physics of Brownian motion, a lesser known but extremely
useful result is the ‘law of first returns’ [258]. Focusing, for simplicity on 1D random
walks (where D = c`t) along the z-axis, we seek the PDF of t > 0, the random
epoch when the coordinate of Brownian particle (that left z = 0 at t = 0) first
changes sign. It can be shown [31,259], that
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Pr{t, dt} =
c√
π`t

(
`t
ct

)3/2

e−`t/2ct dt

∼ dt
t3/2

, (E.2)

if we ignore the exponential cutoff at early times. This is an interesting PDF asso-
ciated with the gambler’s ruin problem: How long does it take a person who comes
to the roulette table with $1, and always bets on ‘red’, to walk away with nothing.
There is no mean time – it is divergent – and that may go a long way in explaining
why gambling is addictive, and why casinos should never close. Before loosing ev-
erything in time with probability one to this casino with an infinite reserve, gains
can be considerable.

The corresponding RT problem in this review is that of reflection from a semi-
infinite (H → ∞) non-absorbing medium, where 〈ct〉 is indeed infinite, as are all
higher moments. Fractional-order moments of order q < 1/2 are, however, finite.

E.3 Transmitted light

Now r2 = x2 + y2 + z2 and, by symmetry, all three components are equal in
magnitude on average. Therefore, since z = H where 〈ρ2〉T is computed, ρ2 =
x2 + y2 ≈ H2. This immediately explains the independence of that moment in
(8.5) with respect to cloud opacity, i.e., optical depth.

As soon as the diffusing wavefront reaches the opposite boundary, i.e., t ≈
3H2/D ∼ H2/c`t = (H/c) × τt based on (E.1), we will detect the transmitted
Green function. In other words, reinterpreting the fixed t in (E.1) as a random
variable, we can anticipate 〈ct〉T /H ∼ τt. This expectation is confirmed by ‘exact’
(PDE-based) diffusion theory in (8.3).

There is no simple argument for the scaling of the second-order moment in time
in (8.4). The fact that it goes as 〈ct〉2T tells us that the distribution of arrival times
at the boundary opposite the source of particles is relatively narrow.

It is interesting that we can estimate at least the scaling of Green function mo-
ments in transmission without knowledge of the overall probability of transmission
for given H and D = c`t/3 (alternatively, τt = H/`t). This calls for the law of first
returns in (E.2). Real clouds have finite physical and optical thicknesses and real
casinos have finite banks. We can approximate the probability of transmission –
breaking the casino’s bank – by truncating the PDF in (E.2) at 〈t〉T ∼ H2/c`t.
This leads to

T ≈ Pr{t > 〈t〉T } =

∞∫
〈t〉T

Pr{t, dt}, (E.3)

which scales as `t/H = 1/τt. That is indeed the asymptotic behavior for T (τt)
in (5.5) and all other transmission laws we have come across for $0 = 1; see, for
example, Fig. 5.15.

E.4 Reflected light

Temporal/path moments for reflected light can be estimated for a finite domain,
namely, 0 < z < H, by defining a truncated (and renormalized) version of the
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PDF in (E.2) for the first-return process. Allowing time for the particle to return
to z = 0 from almost being transmitted at z = H, we compute specifically

Iq =

2〈t〉T∫
0

tq Pr{t, dt},

〈tq〉R ≈
Iq
I0
∼
(
`t
c

)1/2(
H

c`t

)q−1/2

, (E.4)

where we have neglected the difference between I0 and unity, namely, T in (E.3).
Recalling that H/`t = τt, this leads to 〈(ct)q〉1/qR ∼ H × (τt)1−1/q, as was found in
the limit τt →∞ for (8.10)–(8.11) and all other reflection laws.

It is remarkable that the moments 〈(ct)q〉R all scale differently with τt whereas
we fully expect that 〈(ct)q〉T ∼ 〈ct〉qT , for q ≥ 2. We can trace this property to the
mixture, made clear in (E.4), of short and long paths. We have emphasized several
times in the main text how much this helps the cloud remote sensing enterprise.

As we did for the spatial Green function in transmission, we can roughly es-
timate the RMS value of ρ for reflection from (E.1), with D ∼ c`t and (E.4) for
q = 1. We obtain 〈ρ2〉R ∼ D〈ct〉R ∼ H`t. In other words, the RMS ρ for reflected
light goes as the harmonic mean of `t and H, the inner and outer scales of the
diffusion problem at hand.

F Scaling exponents for time-domain anomalous diffusion by
extending the random walk approach

F.1 Anomalous diffusion

At first glance, the problem of 3D RT through an atmospheric column populated
with broken and/or multiple cloud layers seems intractable, except maybe with
heavy-duty numerical methods. Depending on what radiative properties are tar-
geted, that first impression may be quite inaccurate. For instance, Pincus, Barker,
et al. [260, 261] developed (with GCMs in mind) the McICA model, a numerical
but efficient and unbiased method of estimating large-scale boundary fluxes and
flux-divergence profiles, hence radiative heating/cooling rates. McICA creatively
merges the concepts

– of MC, viewed as a robust method of random quadrature (rather than a nu-
merical solution of the 3D RT equation), and

– of IPA, appropriately renamed ICA (for independent column approximation)
in this context of radiation energy budget computation where no pixels exist.

Moreover, two of the present authors have explored the alternate theory of ‘anoma-
lous’ diffusion, which is still far from being well developed, for estimating large-
domain/ensemble average fluxes (currently, only at the boundaries).

In their original paper, Davis and Marshak [80] generalized the random-walk
approach used in Appendix E to situations where steps are usually small (inside
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clouds) but not infrequently very large (between clouds). They assumed distribu-
tions of step size s with power-law tails, ∼ 1/s1+b, such that all moments of an
order greater than b > 1 are divergent; it indeed seems natural to require that the
MFP (average value of s) be finite. We continue to use here the transport MFP
`t = 〈s〉/(1−g) as the effective MFP for an isotropic scattering. Davis and Marshak
then addressed finite cloudy media with slab geometry (thickness H), showing

1. that transmittance Tα scales as τ−α/2t , and
2. that mean path for transmitted light 〈ct〉T goes as H × τα−1

t ,

where τt = H/`t is the total scaled optical depth of the variable cloudy layer, and
α = min{b, 2}. These scaling laws revert to our present findings for any b ≥ α = 2
(cf. Appendix E). Succinct derivations of these generalized scaling laws are as
follows:

– First, we need to consider Lévy’s generalizations [31, 262, 263] of the central
limit theorem. The standard result is that the variance of a sum of indepen-
dent random variables is the sum of their variances, and it becomes normally
distributed as the length of the sum increases without bound. But what if the
variances are infinite? Then other cumulants than variance are additive, and
the PDF of the (normalized) sum becomes asymptotically close to a class of
distributions known as ‘Lévy-stable’. These PDFs are parameterized in partic-
ular by the Lévy ‘index’ α < 2, which is the order of the smallest diverging
moment. Let zn be the coordinate of a 1D random-walking Lévy particle after
n isotropic scatterings, starting at z0 = 0. In the absence of boundaries, it obeys

〈(zn/`t)α〉 ∼ n. (F.1)

where α = min{b, 2} ∈ (1, 2) (restricted here to cases where the MFP `t is fi-
nite). The angular brackets have a somewhat different meaning here: the above
relation can be interpreted as an attempt to estimate the lowest (logarithmi-
cally) diverging moment of the symmetric (randomly oriented) steps ±s when
b < 2 (step variance is then ∞), viz. zn/n =

∑n
i=1±si/n. This replaces 〈z2

n〉 =
(variance of ±s) ×n in classic diffusion, the 1D equivalent in discrete time of
〈z(t)2〉 = 〈r(t)2〉/3 = 2`tct from (E.1). Noting that n ≈ ct/`t if sufficiently large,
we can now obtain from (F.1) the scaling of 〈ct〉T for a finite medium of thickness
H and scaled optical depth τt: Hα ∼ `αt × (〈ct〉T /`t), hence 〈ct〉T /H ∼ τα−1

t .
QED.

– Second, we need to update the continuous law of first returns in (E.2) for path
ct in a semi-infinite domain with a discrete version for n:

Pr{n ≥ N} ∼ N−1/2, (F.2)

where n is the number of scatterings suffered by a light beam before crossing
the z = 0 plane where it departed from. This expression is far more general
than (E.2), which assumes Gaussian steps: (F.2) only only requires that the
distribution of algebraic steps (±s) to be symmetric, i.e., ± with equal prob-
ability [264, 265]. By definition, transmittance is then Tα ∼ Pr{n & 〈ct〉T /`t},
which equals τ−α/2t . QED.
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It is interesting to note that, in order to estimate a steady-state transport prop-
erty like Tα, we need to go through the framework of time-dependent transport.
Transport unfolds in time, even for steady sources.

F.2 Observational validation, and evolution toward anomalous
transport

Surprisingly – or maybe not – empirical evidence has cumulated over the past
decade that supports anomalous diffusion theory [161, 164, 165]. It is based on
estimates of 〈ct〉T from ground-based O2 A-band spectroradiometry collected under
all kinds of cloudy skies; see section 5.3.1 and, for the special case of uniform clouds,
section 5.8.2. Although that theory was first inspired by research in contemporary
statistical physics [266], it was later justified by investigations of light propagation
in random-but-correlated media56 [10, 78,79,267,268].

Further justification of the P (s) ∼ 1/s1+b ansatz for RT in cloudy atmospheric
columns comes in retrospect from the 1996 paper by Barker et al. [221]. Their
finding of Gamma distributions for the optical depth in a wide variety of Landsat
cloud fields can indeed be interpreted as an observation of Gamma-distributed
optical paths across a fixed distance that happens to be H and happens to be along
the vertical. Recall from section 5.10.3 that the Gamma distribution’s parameters
are the mean τ and the variability parameter a = 1/(τ2/τ2 − 1). We then find for
mean direct transmittance

Tdir(τ , a) = Tdir(τ) =
∫ ∞

0

exp(−τ) Pr{τ , a; τ, dτ}

=
1

(1 + τ/a)a
.

It is easy to verify that Tdir(τ , a) → exp(−τ) as a → ∞. The transmission law
in (F.3) can in turn be interpreted as a new propagation kernel with a power-law
tail that can be used in a mean-field 1D RT model. As shown by the first author
in Ref. [81] using the more recent observational evidence [165], this anomalous
transport model supersedes the older anomalous diffusion model where the steps
are effectively Lévy stable; it is however, only a numerical recipe at present.

Interestingly, Barker et al.’s original goal was to motivate Barker’s [216]
Gamma-weighted two-stream model, which develops in the opposite logic: first
solve the multiple-scattering 1D RT problem for cloud optical depth τ , then ran-
domize the result and determine the domain average (cf. section 5.10.3). Here, we
start by averaging the propagation kernel over the spatial disorder, then formulate

56Three of these papers were by Kostinski, Shaw, and Lanterman [78, 79, 267] who
start from very general considerations in discrete-point statistics; these authors challenge
the ability of 3D radiative transfer, a theory grounded in a continuum representation of
optical media, to account for the likely deviations from Poissonian behavior that they
speculate about. The last one in the chronological series is by two of the present authors
[10] who pick up the challenge, and leave only media with the intriguing possibility of
‘super-homogeneity’ (i.e., negatively correlated particle positions discussed in Ref. [79]),
as an open frontier for radiative transfer theory.
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and solve the resulting new 1D RT equation that targets domain average fluxes,
radiances, etc.

As competition for the anomalous diffusion/transport models in explaining the
emerging cloudy-sky climatology of 〈ct〉T /H from O2 A-band (it decreases as vari-
ability increases), we offer the Gamma-weighted diffusion model described in sec-
tion 5.10.4. Equations (10.4) and (10.5) in the main text yield respectively

T ∝ τ
−min{a,1}
t and

〈ct〉T ∝ τ
min{a,1}
t

in the limit of asymptotically large τt. Only future simulations and observations
can help decide which is the more accurate representation of Nature’s way of prop-
agating solar radiation in the Earth’s cloudy atmosphere.

Finally, the importance of pre-factors and pre-asymptotic behavior was amply
demonstrated in the present survey. Since it is based entirely on classic diffusion
theory, we are of course curious about how to predict them for its anomalous coun-
terpart. The Gamma-weighted time-dependent diffusion model from section 5.10.4
delivers the desired pre-factors and pre-asymptotic corrections; see Fig. 5.25. Scholl
et al. [165] propose an ad hoc hybrid of the scaling results from Davis and Mar-
shak [80] and the details they obtained for homogeneous clouds [24]. At present,
all we know [81, 269] is that a rigorous approach to anomalous transport theory
will involve pseudo-differential equations (fractional-order PDEs [270]) that can
be cast as integral equations with singular kernels. This program remains to be
implemented.

List of abbreviations

nD n-dimensional (n = 1, 2, 3)
3+1D three-plus-one-dimensional (i.e., space-time)
BC boundary condition
BRDF bi-directional reflection distribution function
cw continuous-wave (describes steady-source lasers)
FFT Fast Fourier transform
FOV field-of-view
GCM Global Climate Model
GPS Global Positioning System
H–G Henyey–Greenstein (scattering or phase function) from Ref. [25]
IPA independent pixel approximation
LWC [kg/m3] (cloud) liquid water content, (4π/3)r3× the density of water (103

kg/m3 = 1 g/cm3) × droplet concentration (1/m3)
LWP [cm] (cloud) liquid water path, LWC ×H ≈ (2/3)τre in the limit of large

size parameters (2πr/λ)
MC Monte Carlo
MFOV multiple field-of-view (lidar)
MFP mean-free-path
MTF modulation transfer function
MuSCL multiple-scattering cloud lidar
NIPA nonlocal independent pixel approximation
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ODE ordinary differential equation
OT optical tomography
PDE partial differential equation
PDF probability density function
PSF point spread function
RMS root-mean-square
RT radiative transfer
Sc stratocumulus, a frequent cloud formation (especially in the marine

boundary layer) with relatively flat top and bottom, but often with quite
variable opacity in between (observed to have long-range/fractal-like cor-
relation structures).

SF second-order structure function
SNR signal-to-noise ratio
SSA single scattering albedo
SZA solar zenith angle
UAV unmanned aerial vehicle

List of notations

a [-] characteristic exponent in Gamma PDF, inverse of reduced variance
b [-] generic exponent for PDFs with ‘fat’ tails, i.e., decaying in a power law

with exponent 1+b (hence b for the cumulative probability of the random
variable exceeding a given value)

c [m/s] speed of light in vacuum
ct [m] path-length of light since emission from pulsed source
dobs [m] distance from remote observer to nearest cloud boundary
D [m2/s] radiative diffusivity, c`t/3
f [-] fraction of forward vs. P1 scattering in δ-Eddington rescaling
F [J/s/m2] generic for a hemispherical radiative flux, possibly space- or time-

integrated
F [J/s/m2] radiative vector (net) flux
g [-] asymmetry factor of phase function
G [J/s/m2/sr] radiative transfer Green function, almost but not quite always

for a boundary source and boundary observation
H [m] physical thickness of (horizontal) plane-parallel cloud
I [J/s/m2/sr] radiance at detector
J [J/s/m2] radiative scalar flux (radiant energy density ×c)
−→
k [rad/m] horizontal wavenumber (2D Fourier–Hankel conjugate of −→ρ )
K [J/s/m2] radiative tensor flux (radiative pressure ×c)
` [m] mean-free-path (MFP), 1/σ
`t [m] transport MFP, `/(1−$0g) = 1/σt

m [-] non-dimensional effective similarity ratio in space-time Green function
estimation,

√
(k/σt)2 + 3s/cσt

p [1/sr] (volume) scattering phase function
ps [1/sr] surface scattering phase function, its relation to the BRDF being

ps(Ω′ → Ω) = |µ′|ρ(Ω′ → Ω)/α0

P [1/(random variable units)] generic for probability density functions
q [-] integer or fractional order of a statistical (non-centered) moment



5 Space-time Green functions for diffusive radiation transport 277

qF [J/s/m3] anisotropic volume source term (for F )
qJ [J/s/m3] isotropic volume source term (for J)
q0 [J/s/m2] isotropic boundary source term in diffusion theory
Q [J/s/m3/sr] radiative transfer volume source term
r [µm] cloud droplet radius (hence moments rq over the size distribution)
re [µm] effective cloud droplet radius, r3/r2

R [1/s/m2] local/instantaneous reflectance, or integrals thereof
s [1/s] Laplace conjugate variable of t
s/c [1/m] Laplace conjugate variable of ct
t [s] time, typically starting at the release of a radiant energy pulse
T [1/s/m2] local/instantaneous transmittance, or integrals thereof
x [m] position in 3D space (x, y, z)T, where ẑ is vertical (oriented along the

direction of source-beam propagation)

α [-] Lévy index, relating to sums of independent identically distributed
(iid) random variables, infimum of 2 and the order of smallest diverging
moment of the PDF decaying as a power law with exponent −(1 + α)

α0,H [-] surface albedo, ground at z = 0, H
β [-] characteristic exponent of power-law wavenumber spectrum in turbu-

lent media, which decays in 1/kβ

γ [-] exponent for power-law model of internal stratification
∆ [-] parameter for linear gradient model of internal stratification
ε [-] rescaling parameter for Cairns’ or Larsen’s homogenization theories of

small-scale 3D RT effects
η [-] sin θ =

√
1− µ2

η0 [-] sin θ0 =
√

1− µ2
0

θ [◦ or rad] zenith angle for propagation direction
θ0 [◦ or rad] zenith angle for solar source
κν [1/m] absorption coefficient for a gas
λ [nm] wavelength
µ [-] vertical direction cosine, Ωz = cos θ
µ0 [-] µ for solar source, cos θ0

ν [cm−1] wavenumber = 107/λ, when wavelength is in nm
ξ [-] reserved for τt/2χ in strictly similar diffusion models
$0 [-] single scattering albedo, σs/σ−→ρ [m] position in horizontal plane, typically reckoned from a normally inci-

dent laser beam
σ [1/m] local extinction coefficient, cross-section (in m2) × droplet concen-

tration (in 1/m3), where cross-section ≈ 2πr2 in the limit of large size
parameters (2πr/λ)

σa [1/m] local absorption coefficient
σs [1/m] local scattering coefficient
σt [1/m] local transport extinction coefficient
τ [-] cloud optical depth
τt [-] rescaled or transport optical depth, (1−$0g)τ
φ [◦ or rad] azimuthal angle for propagation direction
φ0 [◦ or rad] azimuthal angle for solar source
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χ [-] extrapolation length in units of transport MFPs `t
Ω [-] direction of propagation
dΩ [sr] infinitesimal solid angle, dµdφ
Ω0 [-] propagation direction for source
Ωobs [-] direction of observation (opposite of propagation toward instrument)
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