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Abstract

Computational scientists have seen a frustrating trend of stagnating application performance despite dramatic in-
creases in the claimed peak capability of HPC systems. This trend has been widely attributed to the use of superscalar-
based commodity components whose architectural designs are unbalanced for large-scale numerical computations.
Recently, two innovative parallel-vector architectures have become operational: the Japanese Earth Simulator (ES)
and the Cray X1. In order to quantify what these modern vector capabilities entail for the scientists that rely on mod-
eling and simulation, it is critical to evaluate this architectural paradigm in the context of demanding computational
algorithms. Our evaluation study examines four diverse scientific applications with the potential to run at ultrascale,
from the areas of plasma physics, material science, astrophysics, and magnetic fusion. We compare performance be-
tween the vector-based ES and X1, with leading superscalar-based platforms: the IBM Power3/4 and the SGI Altix.
Our research team was the first international group to conduct a performance evaluation study at the Earth Simulator
Center; remote ES access in not available. Results demonstrate that the vector systems achieve excellent performance
on our application suite - the highest of any architecture tested to date. However, vectorization of a particle-in-cell
code highlights the potential difficulty of expressing irregularly structured algorithms as data-parallel programs.

1 Introduction

Computational scientists have seen a frustrating trend of stagnating application performance despite dramatic in-
creases in the claimed peak capability of leading parallel systems. This trend has been widely attributed to the use
of superscalar-based commodity components whose architectural designs are unbalanced for large-scale numerical
computations. Superscalar architectures are unable to efficiently exploit the large number of floating-point units that
can potentially be fabricated on a chip, due to the small granularity of their instructions and the correspondingly com-
plex control structure necessary to support them. Alternatively, vector technology provides an efficient approach for
controlling a large amount of computational resources provided that sufficient regularity in the computational structure
can be discovered. Vectors exploit symmetries in the computational structure to expedite uniform operations on inde-
pendent data sets. However, when such operational parallelism cannot be found, efficiency suffers by the properties of
Amdahl’s Law, where the time taken by the non-vectorizable code portions can quickly dominate the execution time.

Recently, two innovative parallel-vector architectures have become available to the supercomputing community:
the Japanese Earth Simulator (ES) and the Cray X1. In order to quantify what these modern vector capabilities en-
tail for the scientists that rely on modeling and simulation, it is critical to evaluate this architectural approach in the
context of demanding computational algorithms. A number of previous studies[8, 10, 17, 11] have examined paral-
lel vector performance for several scientific codes; however, few direct comparisons of large-scale applications are
currently available. In this work, we compare the vector-based ES and X1 architectures with three state-of-the-art su-
perscalar systems: the IBM Power3, Power4, and the SGI Altix. Our evaluation study examines four diverse scientific
applications with potential to operate at ultrascale, from plasma physics (LBMHD), material science (PARATEC),
astrophysics (Cactus), and magnetic fusion (GTC). Our research team was the first international group to conduct a
performance evaluation study at the Earth Simulator Center; remote ES access in not available. Results demonstrate
that the vector systems achieve excellent performance on our application suite - the highest of any platform tested
to date. However, vectorization of a particle-in-cell code highlights the potential difficulty of expressing irregularly
structured algorithms as data-parallel programs. Overall the ES and X1 are comparable in absolute terms, but the ES
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generally sustains a significantly higher fraction of peak. Results also indicate that using CAF programming constructs
can dramatically reduce the X1 communication overhead.

2 Architectural Platforms and Scientific Applications

Table 1 presents a summary of the architectural characteristics of the five supercomputers examined in our study.
Observe that the vector systems are designed with higher absolute performance and better architectural balance than the
superscalar platforms. The ES and X1 have high memory bandwidth relative to peak CPU (bytes/flop), allowing them
to continuously feed the arithmetic units with operands more effectively than the superscalar architectures examined
in our study. Additionally, the custom vector interconnects show superior characteristics in terms of point-to-point
messaging (bandwidth per CPU) and all-to-all communication (bisection bandwidth) – in both raw performance (GB/s)
and as a ratio of peak processing speed (bytes/flop). Overall the ES appears the most balanced system in our study,
while the Altix shows the best architectural characteristics among the superscalar platforms.

Platform CPU/ Clock Peak Memory BW Peak MPI Latency Netwk BW Bisect BW Network
Node (MHz) (GF/s) (GB/s) bytes/flop (µsec) (GB/s/CPU) bytes/flop Topology

Power3 16 375 1.5 0.7 0.47 8.6 0.13 0.087 Fat-tree
Power4 32 1300 5.2 2.3 0.44 7.0 0.06 0.012 Fat-tree
Altix 2 1500 6.0 6.4 1.1 3.0 0.40 0.067 Fat-tree
ES 8 500 8.0 32.0 4.0 5.6 1.5 0.19 Crossbar
X1 4 800 12.8 34.0 2.7 7.3 6.3 0.0881 2D-torus

Table 1: Architectural highlights of the Power3, Power4, Altix, ES, and X1 platforms.

Power3 The Power3 experiments reported here were conducted on the 380-node IBM pSeries system running
AIX 5.1 and located at Lawrence Berkeley National Laboratory. Each 375 MHz processor contains two floating-point
units (FPUs) that can issue a multiply-add (MADD) per cycle for a peak performance of 1.5 Gflop/s. The Power3 has
a pipeline of only three cycles, thus using the registers more efficiently and diminishing the penalty for mispredicted
branches. The out-of-order architecture uses prefetching to reduce pipeline stalls due to cache misses. The CPU has
a 32KB instruction cache, a 128KB 128-way set associative L1 data cache, and an 8MB four-way set associative L2
cache with its own private bus. Each SMP node consists of 16 processors connected to main memory via a crossbar.
Multi-node configurations are networked via the Colony switch using an omega-type topology.

Power4 The Power4 experiments were performed on the 27-node IBM pSeries 690 system running AIX 5.1 and
operated by Oak Ridge National Laboratory (ORNL). Each 32-way SMP consists of 16 Power4 chips (organized as 4
MCMs), where a chip contains two 1.3 GHz processor cores. Each core has two FPUs capable of a fused MADD per
cycle, for a peak performance of 5.2 Gflop/s. The superscalar out-of-order architecture can exploit instruction level
parallelism through its eight execution units; however a relatively long pipeline (six cycles) if necessitated by the high
frequency design. Each processor contains its own private L1 cache (64KB instruction and 32KB data) with prefetch
hardware; however, both cores share a 1.5MB unified L2 cache. The L3 is designed as a stand-alone 32MB cache,
or to be combined with other L3s on the same MCM to create a larger 128MB interleaved cache. The benchmarks
presented in this paper were run on a system employing the Colony interconnect, although future large-scale systems
will use the lower latency Federation switch.

Altix 3700 The SGI Altix is a unique architecture, designed as a cache-coherent, shared-memory multiprocessor
system. The computational building blocks of the Altix consists of four Intel Itanium2 processors, local memory, and a
two controller ASICs called the SHUB. The 64-bit Itanium2 architecture operates at 1.5 GHz and is capable of issuing
two MADD per cycle for a peak performance of 6 Gflop/s. The memory hierarchy consists of 128 floating-point (FP)
registers and three on-chip data caches with 32K of L1, 256K of L2, and 6MB of L3. Note that the Itanium2 cannot
store FP data in L1 cache (only in L2), making register loads and spills a potential source of bottlenecks; however, the
relatively large FP register set helps mitigate this issue. The superscalar Itanium2 processor performs a combination

1X1 bisection bandwidth is based on a 2048 MSP configuration
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of in-order and out-of-order instruction execution referred to as Explicitly Parallel Instruction Computing (EPIC).
Instructions are organized into set of groups, where all instructions within a group can be executed in parallel; the
groups themselves are restricted to in-order processing.

The Altix interconnect uses the NUMAlink 3 interconnect, a high-performance custom network in a fat-tree topol-
ogy. This configuration enables the bisection bandwidth to scale linearly with the number of processors. In additional
to the traditional distributed-memory programming paradigm, the Altix systems implements a cache-coherent, nonuni-
form memory access (NUMA) protocol directly in hardware. This allows a programming model where remote data
are accessed just like locally allocated data, using loads and stores. A local/store cache miss causes the data to be
communicated in hardware (via the SHUB) at a cache-line granularity, and automatically replicated in the local cache.
Additionally, one-sided programming languages can be efficiently implemented by leveraging the NUMA layer. The
Altix experiments reported in this paper were performed on the 256-processor system (several reserved for OS ser-
vices) at ORNL, running 64-bit Linux version 2.4.21 operating as a single system image.

Earth Simulator The vector processor of the ES uses a dramatically different architectural approach than conven-
tional cache-based systems. Vectorization exploits regularities in the computational structure of scientific applications
to expedite uniform operations on independent data sets. The 500 MHz ES processor contains an 8-way replicated
vector pipe capable of issuing a MADD each cycle, for a peak performance of 8.0 Gflop/s per CPU. The processors
contain 72 vector registers, each holding 256 64-bit words (vector length = 256). For non-vectorizable instructions, the
ES contains a 500 MHz scalar processor with a 64KB instruction cache, a 64KB data cache, and 128 general-purpose
registers. The 4-way superscalar unit has a peak of 1.0 Gflop/s (1/8 of the vector performance) and supports branch
prediction, data prefetching, and out-of-order execution.

Unlike conventional architectures, the ES vector unit is a cache-less architecture; memory latencies are masked
by overlapping pipelined vector operations with memory fetches. The main memory chip for the ES uses a spe-
cially developed high speed DRAM called FPLRAM (Full Pipelined RAM) operating at 24ns bank cycle time. Each
SMP contains eight processors that share the node’s memory. The Earth Simulator is the world’s most powerful su-
percomputer [5], containing 640 ES nodes connected through a custom single-stage crossbar. This high-bandwidth
interconnect topology provides impressive communication characteristics, as all nodes are a single hop from one an-
other. However, building such a network incurs a high cost since the number of cables grows as a square of the node
count. The 5120-processor ES runs Super-UX, a 64-bit Unix operating system based on System V-R3 with BSD4.2
communication features. As remote ES access is not available, these experiments were performed during the authors’
visit to the Earth Simulator Center located in Kanazawa-ku, Yokohama, Japan in December 2003.

X1 The recently-released X1 is designed to combine traditional vector strengths with the generality and scalability
features of modern superscalar cache-based parallel systems. The computational core, called the single-streaming
processor (SSP), contains two 32-stage vector pipes running at 800 MHz. Each SSP contains 32 vector registers
holding 64 double-precision words (vector length = 64), and operates at 3.2 Gflop/s peak for 64-bit data. The SSP also
contains a two-way out-of-order superscalar processor running at 400 MHz with two 16KB caches (instruction and
data). The scalar unit operates at 1/8 peak of the vector performance, making a high vector operation ratio critical for
effectively utilizing the underlying hardware.

The multi-streaming processor (MSP) combines four SSPs into one logical computational unit. The four SSPs
share a 2-way set associative 2MB data Ecache, a unique feature for vector architectures that allows extremely high
bandwidth (25–51 GB/s) for computations with temporal data locality. MSP parallelism is achieved by distributing
loop iterations across each of the four SSPs. The compiler must therefore generate both vectorizing and multistreaming
instructions to effectively utilize the X1. An X1 node consists of four MSPs sharing a flat memory, and large system
configuration are interconnected through a modified 2D torus interconnect. The torus topology allows scalability
to large processor counts with relatively few links compared with the fat-tree or crossbar interconnect of the other
platforms in our study; however, the torus topology suffers from limited bisection bandwidth. Finally, the X1 has
hardware supported globally addressable memory which allows efficient implementations of one-sided communication
libraries (SHMEM, MPI-2), as well as implicitly parallel programming languages (UPC and CAF). All X1 experiments
reported in this paper were performed on the 256-MSP system (several reserved for OS services) running UNICOS/mp
2.3.07 and operated by ORNL.
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2.1 Scientific Applications

Four applications from diverse areas in scientific computing that were chosen to compare the performance of the
vector-based ES and X1 with the superscalar-based Power3, Power4, and Altix systems. The application are: LBMHD,
a fusion energy application that uses the Lattice-Boltzmann method to study magneto-hydrodynamics; PARATEC,
a first principles materials science code that solves the Kohn-Sham equations to obtain electronic wavefunctions;
Cactus, an astrophysics code that solves Einstein’s equations from the Theory of General Relativity; and GTC, a
magnetic fusion application that uses the particle-in-cell approach to solve non-linear gyrophase-averaged Vlasov-
Poisson equations. These represent candidate ultrascale applications that have the potential to fully utilize a leadership-
class system of Earth Simulator scale. Performance results, presented in Gflop/s and percentage of peak, are used to
compare the relative time to solution of the computing platforms in our study. When different algorithmic approaches
are used for the vector and scalar implementations, his value is computed by dividing a valid baseline flop-count
by the measured wall-clock time of each architecture. To characterize the level of vectorization, we also examine
vector length (AVL) and vector operation ratio (VOR) for the ES and X1 where possible. Hardware counter data were
obtained with hpmcount on the Power systems, pfmon on the Altix, ftrace on the ES, and pat on the X1. Missing
results will be presented in the final paper.

3 LBMHD

Lattice Boltzmann methods (LBM) have proved a good alternative to conventional numerical methods for simulating
fluid flows and modeling physics in fluids [19]. The basic idea of the LBM is to develop a simplified kinetic model that
incorporates the essential physics, and reproduces correct macroscopic averaged properties. Recently, several groups
have applied the LBM to the problem of magneto-hydrodynamics (MHD) [7, 16] with promising results. LBMHD
simulates the behavior of a two-dimensional conducting fluid evolving from simple initial conditions and decaying to
form current sheets. The 2D spatial grid is coupled to an octagonal streaming lattice and block distributed over a 2D
processor grid. Each grid point is associated with a set of mesoscopic variables, whose values are stored in vectors
proportional to the number of streaming directions - in this case nine (eight plus the null vector). The simulation
proceeds by a sequence of collision and stream steps. A collision step involves data local only to that spatial point,
allowing all spatial point to be updated concurrently; the mesoscopic variables at each point are updated through
a complex algebraic expression originally derived from appropriate conservation laws. A stream step evolves the
mesoscopic variables along the streaming lattice, necessitating communication between processors for grid points at
the boundaries of the blocks. Additionally, an interpolation step is required between the spatial and stream lattices
since they do not match. Overall the stream operation requires interprocessor communication, dense and strided
memory copies, as well as third degree polynomial evaluation.

3.1 Porting details

Various schemes were tried in order to optimize the collision routine for each of the architectures. The basic compu-
tational structure consists of two nested loops over spatial grid points (typically 100-1000 iterations) with inner loops
over velocity streaming vectors and magnetic field streaming vectors (typically 10-30 iterations), performing various
algebraic expressions. For the Power3/4 and Altix systems, the inner grid point loop was blocked to increase cache
re-use leading to a modest improvement in performance for the largest grids and smallest concurrencies. For the ES,
the inner grid point loop was taken inside the streaming loops and vectorized. The temporary arrays introduced were
padded to reduce memory bank conflicts. We note that the compiler was unable to perform this transformation based
on the original code. In the case of the X1, the compiler did an excellent job, multi-streaming the outer grid point
loop and vectorizing (via strip mining) the inner grid point loop without any user restructuring being required. No
additional vectorization effort was required due to the data-parallel nature of LBMHD.

Interprocessor communication was implemented using the MPI library, by copying the non-contiguous mesoscopic
variables data into temporary buffers, thereby reducing the required number of send/receive messages. Additionally,
a Co-array Fortran (CAF) [2] version was implemented for the X1 architecture. CAF is a one-sided parallel pro-
gramming language implemented via an extended Fortran 90 syntax. Unlike explicit message passing in MPI, CAF
programs can directly access non-local data through co-array references. This allows a potential reduction in interpro-
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cessor overhead for architectures supporting one-sided communication, as well as opportunities for compiler-based
optimizing transformations. For example, the X1’s measured latency decreased from 7.3µsec using MPI to 3.9µsec
using CAF semantics [3] In CAF implementation of LBMHD, the spatial grid is declared as a co-array and boundary
exchanges are performed using co-array subscript notation.

3.2 Performance Results

Table 2 presents LBMHD performance on the five studied architecture for grid sizes of40962 and 81922. Note
that to maximize performance the processor count is restricted to squared integers. The vector architectures show
impressive results, achieving a speedup of approximately 44x, 16x, and 7x compared with the Power3, Power4, and
Altix respectively (for 64 processors). The AVL and VOR are near maximum for both vector systems, indicating that
this application is extremely well-suited for vectorization. In fact the 3.3 Tflop/s attained on 1024 processor of the ES
represents the highest performance of LBMHD on any measured architecture to date. The X1 gives comparable raw
performance to the ES, however the ES sustains a 50% fraction higher of peak due in part to its superior CPU-memory
balance. The X1 CAF implementation shows about a 10% overall improvement over MPI version for the large test
case. CAF improves communication performance, reducing the memory traffic by a factor of three by eliminating user-
and system-level message copies (latter used by MPI); however the CAF messages are more numerous and smaller
leading to a modest overall speedup.

Grid Power3 Power4 Altix ES X1 (MPI) X1 (CAF)
Size

P
Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk

4096 16 0.107 7% 0.279 5% 0.598 10% 4.62 58% 4.32 34% 4.55 36%
x 64 0.142 9% 0.311 6% 0.615 10% 4.29 54% 4.35 34% 4.26 33%

4096 256 0.136 9% 0.255 5% — — 3.21 40% — — — —

8192 64 0.105 7% 0.283 5% 0.645 11% 4.64 58% 4.48 35% 4.70 37%
x 256 0.115 8% 0.256 5% — — 4.26 53% — — — —

8192 1024 0.108 7% — — — — 3.30 41% — — — —

Table 2: LBMHD per processor performance on 4096x4096 and 8192x8192 grids

The low performance of the superscalar systems is mostly due to limited to memory bandwidth. LBMHD has
a low computational intensity – about 1.5 FP operations per data word of access – making it extremely difficult for
the memory subsystem to keep up with the arithmetic units. Vector systems are able to address this discrepancy
through a superior memory system and support for deeply pipelined memory fetches. Additionally the40962 and
81922 grids require 7.5 GB and 30 GB respectively, causing the subdomain’s memory footprint to exceed the cache
size even at high concurrencies. Nonetheless, the Altix outperforms the Power3 and Power4 in terms of Mflop/s and
fraction of peak due to its higher memory bandwidth, larger caches, and better network characteristics. Observe that
superscalar performance relative to concurrency shows more complicated behavior than the vector systems. Since the
cache-blocking algorithm for the collision step is not perfect, certain data distributions get better performance than
others – accounting for increased performance at intermediate concurrencies. At larger concurrencies, the cost of
communication begins to dominate, thus reducing performance as in the case of the ES and X1. Finally, note that
the Power4 suffers the most significant communication overhead at high concurrency (256 processors), due to the
shortcoming of its communication switch.

4 PARATEC

PARATEC (PARAllel Total Energy Code [4]) performs ab-initio quantum-mechanical total energy calculations using
pseudopotentials and a plane wave basis set. The pseudopotentials are of the standard norm-conserving variety. Forces
can be easily calculated and used to relax the atoms into their equilibrium positions. PARATEC uses an all-band
conjugate gradient (CG) approach to solve the Kohn-Sham equations of Density Functional Theory (DFT) and obtain
the ground-state electron wavefunctions. DFT is the most commonly used technique in materials science, having a
quantum mechanical treatment of the electrons, to calculate the structural and electronic properties of materials. Codes
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based on DFT are widely used to study properties such as strength, cohesion, growth, magnetic, optical, and transport
for materials like nanostructures, complex surfaces, and doped semiconductors.

4.1 Porting Details

In solving the Kohn-Sham equations using a plane wave basis, part of the calculation is carried out in real space and
the remainder in Fourier space using specialized parallel 3D FFTs to transform the wavefunctions. The code typically
spends most of its time in vendor supplied BLAS3 (∼30%) and 1D FFTs (∼30%) on which the 3D FFTs libraries are
built, with the remaining time in hand-coded F90. For this reason, PARATEC generally obtains a high percentage of
peak performance across a spectrum of computing platforms. The code exploits fine-grained parallelism by dividing
the plane wave components for each electron among the different processors [4]. PARATEC is written in F90 and MPI
and is designed primarily for massively parallel computing platforms, but can also run on serial machines. The code
has run on many computer architectures and uses preprocessing to include machine specific routines such as the FFT
calls. Previous work examined vectorized PARATEC performance on a single NEC SX-6 node [11], making porting
to the ES and X1 a relatively simple task. Since much of the computation involves FFTs and BLAS3, an efficient
vector implementation of these libraries is critical for high performance. However, while this was true for the BLAS3
routines on the X1 and ES, the standard vendor supplied 1D FFT routines, on which our own specialized 3D FFTs are
written, run at a relatively low percentage of peak. Code transformation was therefore required to rewrite our 3D FFT
routines to use simultaneous (often called multiple) 1D FFT calls, which allow effective vectorization across many
1D FFTs. Additionally, compiler directives were inserted to force the vectorization and multistreaming (on the X1)
for loops that contained indirect addressing.

4.2 Performance Results

Table 3 presents performance data for 3 CG steps of a 432 and 686 Silicon atom bulk systems and a standard LDA
run of PARATEC with a 25 Ry cut-off using norm-conserving pseudopotentials. A typical calculation would require
between 20 and 60 CG iterations to converge the charge density. PARATEC runs at a high percentage of peak on both
superscalar and vector-based architectures due to the heavy use of the computationally intensive FFTs and BLAS3
routines, which allow high cache reuse and efficient vector utilization. The main limitation to scaling PARATEC to
large numbers of processors, is the distributed grid transformation during the parallel 3D FFTs which requires global
interprocessor communications. It was therefore necessary to write specialized 3D FFT to reduce the communication
requirements. Since our 3D FFT routine maps the wavefunction of the electron from Fourier space, where it is rep-
resented by a sphere, to a 3D grid in real space – a significant reduction in global communication can be achieved
by only transposing the non-zero grid elements. Nonetheless, architectures with a poor balance between their bi-
section bandwidth and computational rate will suffer performance degradation at higher concurrencies due to global
communication requirements.

Results show that PARATEC achieves impressive performance on the ES system, sustaining 2.6 Tflop/s for 1024
processors for the larger system – first time that any architectures has attained over a Teraflop for this code. The
declining performance at higher processor counts is caused by the increased communication overhead of the 3D FFTs,
as well as reduced vector efficiency due to the decreasing vector length of this fixed-size problem. Since only 3 CG

432 Atom 686 Atom
Power3 Power4 Altix ES X1 ES X1

P
Gflop/s %Pk Gflop/s %Pk Gflop/s Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk

32 0.950 63% 1.49 29% 4.76 60% 3.04 24% — — — —
64 0.848 57% 0.750 14% 4.67 58% 2.59 20% 5.25 66% 3.10 24%

128 0.739 49% 4.74 59% 1.91 15% 4.95 62% 2.50 20%
256 0.572 38% — 4.17 52% — — 4.59 57% — —
512 0.413 28% — — — 3.39 42% — — 3.76 47% — —

1024 — — — 2.08 26% — — 2.53 32% — —

Table 3: PARATEC per processor performance on a 432 and 686 atom Silicon Bulk system
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steps were performed in our benchmarking measurements, the mostly non-vectorized set-up phase accounted for a
large fraction of the overall time; preventing us from accurately gathering the AVL and VOR values. The set-up
overhead becomes negligible for actual physical simulations, which require as many as 60 CG steps. Observe that
X1 performance is lower than the ES, even though it has a higher peak speed. One reason for this difference is that,
on the X1, the code spends a much smaller percentage of the total time in highly optimized 3D FFTs and BLAS3
libraries than any of the other machines. The other code segments are handwritten F90 routines and have a lower
vector operation ratio, resulting in relatively poorer X1 performance. In addition, the X1 interconnect has a lower
bisection bandwidth network than the ES (see Table 1, increasing the overhead for global transpositions at higher
processor counts. PARATEC runs efficiently on the Power3, but performance on the Power4 is lower due to, in part,
to network contention for memory bandwidth [11]. The loss in scaling on the Power3 is primarily due to the increased
communication cost as we scale up to 512 processors. The Power4 machine has a much lower internode-bandwidth to
processor speed ratio than the Power3 limiting multi-node performance. Larger systems are expected to show better
scaling characteristics (recently confirmed by preliminary tests of larger silicon and quantum dot systems)

5 CACTUS

One of the most challenging problems in astrophysics is the numerical solution of Einstein’s equations following
from the Theory of General Relativity (GR): a set of coupled nonlinear hyperbolic and elliptic equations containing
thousands of terms when fully expanded. The Cactus Computational ToolKit [1, 6] includes GR solvers that are
designed to evolve Einstein’s equations stably in 3D on supercomputers to simulate astrophysical phenomena with
high gravitational fluxes – such as the collision of two black holes and the gravitational waves that radiate from that
event. While Cactus is a modular framework that supports a wide variety of multi-physics applications [9], this study
focused exclusively on the GR application, which implements the ADM-BSSN method for stable evolutions of black
holes.

The Cactus GR components solve Einstein’s equations as an initial value problem that evolves partial differential
equations on a regular grid using the method of finite differences. For the purpose of solving Einstein’s equations,
the ADM solver decomposes the solution into 3D spatial hypersurfaces that represent different slices of space along
the time dimension. In this formalism, the equations are written as four constraint equations and 12 evolution equa-
tion. Additional stability is provided by the BSSN modifications to the standard ADM method [6]. The evolution
equations can be solved using a number of different numerical methods, including staggered leapfrog, McCormack,
Lax-Wendroff, and iterative Crank-Nicholson schemes. A “lapse” function describes the time slicing between hyper-
surfaces for each step in the evolution. A “shift metric” is used to move the coordinate system at each step to avoid
being drawn into a singularity. The four constraint equations are used to select different lapse functions and the related
shift vectors.

5.1 Porting Details

Cactus is actively maintained by members of the Cactus development team for a worldwide community of users with
diverse requirements and computer architectures at their disposal, and has been ported to a wide variety of architectural
platforms. For the superscalar systems, the computations on the 3D grid are blocked in order to improve cache locality.
Blocking is accomplished through the use of temporary ‘slice buffers’, which improve cache reuse while modestly
increasing the computational overhead. On vector architectures these blocking optimization were disabled, since they
reduced the vector length and inhibited performance. The ES compiler misidentified some of the temporary variables
in the most compute-intensive loop of the ADM-BSSN algorithm as having inter-loop dependencies. When attempts
to force the loop to vectorize failed, a temporary array was created to break the phantom dependency. The boundary
conditions calculations remain unvectorized at this time and will require extensive code reorganization to create vector
lengths that are long enough to support efficient execution. Work continues in this area.

5.2 Performance Results

The full-fledged production version of the Cactus ADM-BSSN application was run on the ES system with results
for two problem sizes shown in Table 4. The problem size was scaled with the number of processors to keep the
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Grid Power3 Power4 Altix ES X1
Size

P
Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s

x 16 0.314 21% 0.892 15% 1.47 18%
80 64 0.217 14% 0.699 12% 1.36 17%
x 256 0.216 14% — — 1.35 17% —
80 1024 0.215 14% — — — — 1.34 17% —
250 1 0.162 11% .603 12% 0.514 9% — —
x 16 0.097 6% 2.83 35%
64 64 0.082 6% 2.70 34%
x 256 0.071 5% — — 2.70 34% —
64 1024 0.060 4% — — — — 2.70 34% —

Table 4: Cactus per processor performance on 80x80x80 and 250x64x64 grids

computational load the same (weak scaling). Cactus problems are typically scaled in this manner because their science
requires the highest-possible resolutions. To date we have been unable to build the full production version of the code
on the X1, and are currently working with Cray engineers to resolve this problem.

For the ES, Cactus achieves almost perfect VOR while the AVL is dependent on the x-dimension size of the local
computational domain. Consequently, the larger problem size (250x64x64) executed with far higher efficiency than
the smaller test case (AVL = 248 vs. 92), achieving 34% of peak. The oddly shaped domains for the larger test case
were required because the ES does not have enough memory per node to support a2503 domain. This rectangular
grid configuration had no adverse effect on scaling efficiency despite the worse surface-to-volume ratio. Additional
performance gains could be realized if the compiler was able to fuse the X and Y loop nests to form larger effective
vector lengths. Observe that unlike vector architectures, microprocessor-based systems generally perform better on the
smaller per-processor problem size because of better cache reuse. Performance on 1024 processors of the ES reached
an impressive 2.7 Tflop/s for the largest problem size. This represents the highest per processor performance (by far)
achieved by the full-production version of the Cactus ADM-BSSN on any evaluated system to date. The Power3 on
the other hand is 45 times slower than the ES, achieving only 60 Mflop/s (6% of peak) at this scale for the larger
problem size. XXX SAY SOMETHING ABOUT ALTIX and POWER4 performance when more results appear XXX
In terms of communication overhead, the ES spends 13% of the overall Cactus time in MPI compared with 23% on
the Power3; highlighting the superior architectural balance of the vector network design. Its important to note that the
boundary conditions have not been vectorized and account for over 20% of the execution time on the ES, compared
with less than 5% on the superscalar systems. This demonstrates a potential limitation of vector systems: seemingly
minor code portions that fail to vectorize can quickly dominate the overall execution time.

The relatively low scalar performance is partially due to register spilling, which is caused by the large number of
variables in the main loop of the BSSN calculation. In addition, the hardware prefetch engines cannot work effectively
due to the irregular accesses in the ghost-zone calculations. The unit-stride regularity of memory accesses (necessary
to activate automatic prefetching) is broken as the calculation skips over the ghost zones at the boundaries, thereby
keeping the hardware streams disengaged for the majority of the time. The result is that the processor ends up stalled
on memory requests even though only a fraction of the available memory bandwidth is utilized. IBM is now aware of
this effect and has added a new Power5 instruction to will keep the prefetch streams engaged when exposed to these
minor irregularities. We look forward to testing Cactus on the Power5 when it becomes available.

6 GTC

The Gyrokinetic Toroidal Code (GTC) is a 3D particle-in-cell (PIC) application developed at the Princeton Plasma
Physics Laboratory to study turbulent transport in magnetic confinement fusion [15, 14]. Turbulence is believed
to be the main mechanism by which energy and particles are transported away from the hot plasma core in fusion
experiments with magnetic toroidal devices. An in-depth understanding of this process is of utmost importance for the
design of future experiments since their performance and operation costs are directly linked to energy losses.

At present, GTC solves the non-linear gyrophase-averaged Vlasov-Poisson equations [13, 12] for a system of
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charged particles in a self-consistent, self-generated electrostatic field. The geometry of the system is that of a torus
with an externally imposed equilibrium magnetic field characteristic of toroidal fusion devices. By using the PIC
method, the non-linear partial differential equation describing the motion of the particles in the system becomes
a simple set of ordinary differential equations that can be easily solved in the Lagrangian coordinates. The self-
consistent electrostatic field driving this motion could be conceptually calculated directly from the distance between
each pair of particles using anN2 calculation, but this method quickly becomes computationally prohibitive as the
number of particles increases. The PIC approach reduces the computational complexity toNlogN , by using a grid
where each particle deposits its charge to a limited number of neighboring points according to its range of influence.
The electrostatic potential is then solved everywhere on the grid using the Poisson equation, and forces are gathered
back to each particle.

The most computationally intensive parts of GTC are the charge deposition and gather-push steps. Both involve
large loops over the number of particles, which can reach several million per domain partition. When running with
MPI on superscalar architecture, the percentage of time spent in these two steps totals about 82%, with the remaining
18% split between solving the Poisson equation, MPI communication, field evaluation, smoothing, and diagnostics.

6.1 Porting details

Although the PIC approach drastically reduces the computational requirements, the grid-based charge deposition phase
is a source of performance degradation for both superscalar and vector architectures. Randomly localized particles
deposit their charge on the grid, thereby causing poor cache reuse on cache-based superscalar machines. The effect
of this deposition step is more pronounced on vector system, since two or more particle may contribute to the change
at the same grid point – creating a potential memory dependency and inhibiting vectorization. Fortunately, several
methods have been developed to address this issue during the past two decades. Our approach uses the the work-
vector algorithm [18], where a temporary copy of the grid array is given an extra dimension corresponding to the
vector length. Each vector operation acting on a given data set in the register then writes to a different memory
address, entirely avoiding memory dependencies. After the main loop, the results accumulated in the work-vector
array are gathered to the final grid array. The only drawback of this method is the increased memory footprint, which
can be 2 to 8 times higher than the nonvectorized code version. Other approaches address this memory dependency
problem via particle sorting strategies which increase the computational overhead and overall time to solution.

Since GTC has previously been vectorized on a single-node SX-6 [11], porting to the ES was relatively straight-
forward. However, performance was initially limited due to memory bank conflicts, caused by an access concentration
to a few small 1D arrays. Using theduplicatepragma directive alleviated this problem by allowing the compiler to
create multiple copies of the data structures across numerous memory banks. This method significantly reduced the
bank conflicts in the charge deposition routine and increased its performance by 37%. Additional optimizations were
performed to other code segments with various performance improvements.

GTC is parallelized at a coarse-grain level using message-passing constructs. Although the MPI implementation
achieves almost linear scaling on most architectures, the grid decomposition is limited to approximately 64 subdo-
mains. To run at higher concurrency, a second level of fine-grain loop-level parallelization is implemented using
OpenMP directives. However, the increased memory footprint created by the work-vector method inhibits the use of
loop-level parallelism on the ES. Our short stay at the ES Center prevented further optimization.

Porting to the X1 was straightforward from the vectorized ES version, again using the work-vector methodology.
Several additional directives were necessary to allow effective multistreaming within each MSPs. Note that the X1
suffers from the same memory increase as the ES due to this approach, potentially inhibiting OpenMP parallelism. A
possible solution could be to add another dimension of domain decomposition to the code. This would require exten-
sive code modifications and will be examined in future work. Initial X1 performance was limited. After discovering
that the FORTRAN intrinsic functionmodulowas preventing the vectorization of an important loop in the gather-push
routine, it was replaced by an equivalent but vectorizable statement usingmod. The most time consuming routine on
the X1 became the ’shift’ subroutine. This step verifies the coordinates of newly moved particles to determine whether
they have crossed a subdomain boundary and therefore require processor migration. The shift routine contains nested
if statements that prevent the compiler from successfully vectorizing that code region. However, the non-vectorized
shift routine accounted for significantly more overhead on the X1 than the ES (54% vs. 11% of overall time.) Al-
though both architectures have the same relative vector to scalar peak performance (8/1), serialized loops incur a larger
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penalty on the X1. This is because in a serialized segment of a multistreamed codes, only one of the four SSP scalar
processors within an MSP can do useful work, thus degrading the relative performance ratio to 32/1. Performance on
the X1 was improved by converting the nestedif statements in the shift routine into two successive condition blocks,
allowing the compiler to stream and vectorize the code properly. The overhead therefore decreased from 54% to only
4% of the total time. This optimization has not been implemented on the ES.

6.2 Performance Results

Table 5 presents GTC performance results on the five architectures examined in our study. The first test case is
configured for standard production runs using 10 particles per grid cell (2 million grid point, 20 million particles)
The second experiments examines 100 particles per cell (200 million particles), a significantly higher resolution that
improves the overall statistics of the simulation while significantly (8 fold) increasing the time-to-solution – making
it prohibitively expensive on most superscalar platforms. Observe that for the large test case, both the ES and X1
attain high AVL (228 and 62 respectively) and VOR (99% and 97%) , indicating that the application has been suitably
vectorized; in fact, the vector results represent the highest GTC performance on any tested platform to date. In absolute
terms the X1 shows the highest performance, achieving 1.36 Gflop/s on the largest problem size (1.87 Gflop/s in
usertime) – a 9% improvement over the ES; however, recall that the ES version does not incorporate the vectorized
shift routine, giving the X1 an advantage. Nonetheless, the ES sustains 16% of peak compared with only 11% on
the X1, due to a more balanced architectural design. It should also be noted that since GTC uses single precision
arithmetic, the X1 theoretical peak performance is actually 25.6 Gflop/s; however limited memory bandwidth and
code complexity that inhibits compiler optimizations obviate this extra capability.

Part/ Power3 Power4 Altix ES X1
Cell

Code P
Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk Gflop/s %Pk

32 0.135 9% 0.280 5% 0.290 5% 0.961 12% 1.00 8%
10 MPI 64 0.132 9% 0.279 5% 0.257 4% 0.835 10% 0.803 6%

32 0.135 9% 0.281 5% 0.333 6% 1.34 17% 1.50 12%
1000 MPI 64 0.133 9% 0.274 5% 0.308 5% 1.25 16% 1.36 11%

Hybrid 1024 0.063 4%

Table 5: GTC per processor performance using 10 and 100 particles per cell

Comparing performance with the superscalar architectures, the vector processors are about 10x, 5x, and 4x faster
than the Power3, Power4 and Altix systems (respectively). Observe that using 1024 processors of the Power3 (in
hybrid MPI/OpenMP mode) is still about 20% slower than 64-way vector runs; GTC’s OpenMP parallelism is cur-
rently unavailable on the vector systems, limiting concurrency to 64 processors (see Sec 6.1). Within the superscalar
platforms, the Altix shows the highest raw performance at over 300 Mflop/s, while the Power3 sustains the highest
fraction of peak (9% compared with 5% on the Power4 and Altix).

Examining scalability from 32 to 64 processor, the ES and X1 performance drop 9% (7%) and 20% (9%) re-
spectively, using a fixed size problem of 10 (100) particles per cell This is primarily due to shorter loop sizes and
correspondingly smaller vector lengths, as well as communication overhead. Superscalar architectures, while also suf-
fering from communication overhead, actually benefit from smaller subdomains due to increased cache reuse. Results
show that the Power3/4 sees little overall degradation when scaling from 32 to 64 processor (less than 3%), while the
Altix suffers as much as 11%. This discrepancy is currently under investigation. In summary, GTC attains impressive
performance on vector architectures, however leading superscalar systems are not far behind due to the irregular nature
of this application.

7 Summary and Conclusions

This work compares performance between the parallel vector architectures of the ES and X1, and three leading super-
scalar platforms, the Power3, Power4, and Altix. We examined four diverse scientific applications with the potential to
utilize ultrascale computing systems. Since most modern scientific codes are designed for (super)scalar systems, it was
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Lines ES speedup vs.
Name Code Discipline Approach P Power3 Power4 Altix X1

LBMHD 1,500 Plasma Physics Lattice Boltzmann 64 44.19 16.40 7.19 0.99
PARATEC 50,000 Material Science Density Functional Theory64 5.51 6.23 1.80
CACTUS 84,000 Astrophysics ADM, Method of Lines 64 11.8??

GTC 5,000 Magnetic Fusion Particle in Cell 64 9.40 4.56 4.06 0.92

Table 6: Summary of applications performance, based on largest available processor count and problem size

necessary to port these applications onto the vector platforms; however only minor code transformations were applied
in an attempt to maximize AVL and VOR, extensive code reengineering has not been performed. Table 6 summarizes
the application characteristics and performance relative to the ES. Overall results show that the vector systems achieve
excellent performance on our application suite - the highest of any architecture tested to date - demonstrating the
tremendous potential of modern parallel vector systems. The ES consistently sustained a significantly higher fraction
of peak than the X1, due to a better balance in its architectural design. However, X1 performance improvements are
expected as the hardware, systems software, and numerical libraries mature. It is important to note that X1-specific
code optimizations have not been performed at this time. This complex vector architecture contains both data caches
and multi-streaming processing units, and the optimal programming methodology is yet to be established.

The regularly structured, grid-based LBMHD simulation was extremely amenable to vectorization, achieving an
amazing speed up of over 44X compared to the Power3 using 64 processors; the advantage was reduced to 30X when
concurrency increased to 1024. This decrease in relative performance gain often occurs when comparing cache-based
scalar and vector systems for fixed sized problems. As the computational domain shrink with increasing processor
count, scalar architectures benefit from the improved cache-reuse while vector platforms suffer a reduction in efficiency
due to shorter vector lengths. Additionally, LBMHD highlighted the potential benefits of the CAF programming, which
improved the X1 raw performance to slightly exceed that of the ES for the large test case.

PARATEC, a computationally intensive code, is well suited for most architectures as as it typically spends most of
its time in vendor supplied BLAS3 and FFT routines. This electronic structures code requires the transformation of
wavefunctions between real and Fourier space via specialized 3D FFTs. However, the global interprocessor communi-
cation during the grid transformation phase can become a bottleneck at high concurrencies. Here the ES significantly
outperformed the X1 platform due to its superior architectural balance of bisection bandwidth relative to computation
rate.

The grid structured, computationally intensive Cactus code was also well-suited for vectorization achieving an
XXX improvement over the Power3. However, the boundary condition calculation was unvectorized and consumed a
much higher fraction of the overall runtime compared with superscalar systems (where this routine was insignificant).
This example demonstrates that for large-scale numerical simulations even a small non-vectorizable code segment can
quickly dominate the execution time from the properties of Amdahl’s law. This is especially important in the context
of multistreaming on the X1 architecture. Although both the ES and X1 have the same relative vector to scalar peak
performance (8/1), serialized loops incur a larger penalty on the X1. This is because in a serialized segment of a
multistreamed codes, only one of the four SSP scalar processors within an MSP can do useful work, thus degrading
the relative performance ratio to 32/1. XXX Waiting for CACTUS results to draw more conclusions XXX we need to
say something pithy about the Altix

Finally, vectorizing the particle-in-cell GTC code highlighted some of the difficulties in expressing irregularly
structured algorithms as a data-parallel program. However, once the code successfully vectorized, the vector archi-
tectures once again showed impressive performance, achieving a 4X to 10X runtime improvement over the scalar
architectures in our study. The vector systems therefore have the potential for significantly higher resolution calcula-
tions that would otherwise be prohibitively expensive in terms of time-to-solution on conventional microprocessors.
Implementing the vectorized version for this unstructured code, however, required the addition of temporary arrays,
which increased the memory footprint dramatically (between 2X and 8X). This inhibited the use of OpenMP based
loop-level parallelization, and limited concurrency to a coarse grained distribution of 64 processors. Future work will
address this issue. Nonetheless, 64-processor vector systems still performed 20% faster than 1024 Power3 processors
in one of the best test cases.

Future work will extend our study to include applications in the areas of climate, molecular dynamics, cosmology,
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and combustion. We are particularly interested in investigating the vector performance of adaptive mesh refinement
(AMR) methods, as we believe they will become a key component of future high-fidelity multi-scale physics simula-
tions, across a broad spectrum of application domains.
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