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Abstract. The last decade has witnessed a rapid proliferation of super-
scalar cache-based microprocessors to build high-end computing (HEC)
platforms, primarily because of their generality, scalability, and cost effec-
tiveness. However, the growing gap between sustained and peak perfor-
mance for full-scale scientific applications on such platforms has become
major concern in high performance computing. The latest generation of
custom-built parallel vector systems have the potential to address this
concern for numerical algorithms with sufficient regularity in their com-
putational structure. In this work, we explore two and three dimensional
implementations of a lattice-Boltzmann magnetohydrodynamics (MHD)
physics application, on some of today’s most powerful supercomputing
platforms. Results compare performance between the the vector-based
Cray X1, Earth Simulator, and newly-released NEC SX-8, with the
commodity-based superscalar platforms of the IBM Power3, Intel Ita-
nium2, and AMD Opteron. Overall results show that the SX-8 attains
unprecedented aggregate performance across our evaluated applications.

1 Introduction

The last decade has witnessed a rapid proliferation of superscalar cache-based
microprocessors to build high-end computing (HEC) platforms. This is primar-
ily because their generality, scalability, and cost effectiveness convinced com-
puter vendors and users that vector architectures hold little promise for future
large-scale supercomputing systems. However, the constant degradation of su-
perscalar sustained performance has become a well-known problem in the sci-
entific computing community. This trend has been widely attributed to the use
of superscalar-based commodity components whose architectural designs offer a
balance between memory performance, network capability, and execution rate,
that is poorly matched to the requirements of large-scale numerical computa-
tions. The latest generation of custom-built parallel vector systems are address-
ing these challenges for numerical algorithms amenable to vectorization.
Superscalar architectures are unable to efficiently exploit the large number of
floating-point units that can be potentially fabricated on a chip, due to the small
granularity of their instructions and the correspondingly complex control struc-
ture necessary to support it. Vector technology, on the other hand, provides an



efficient approach for controlling a large amount of computational resources pro-
vided that sufficient regularity in the computational structure can be discovered.
Vectors exploit these regularities to expedite uniform operations on independent
data elements, allowing memory latencies to be masked by overlapping pipelined
vector operations with memory fetches. Vector instructions specify a large num-
ber of identical operations that may execute in parallel, thus reducing control
complexity and efliciently controlling a large amount of computational resources.
However, when such operational parallelism cannot be found, the efficiency of the
vector architecture can suffer from the properties of Amdahl’s Law, where the
time taken by the portions of the code that are non-vectorizable easily dominate
the execution time.

In order to quantify what modern vector capabilities entail for the scien-
tific communities that rely on modeling and simulation, it is critical to evaluate
them in the context of demanding computational algorithms. This work com-
pares performance between the vector-based Cray X1, Earth Simulator (ES)
and newly-released NEC SX-8, with commodity-based superscalar platforms:
the IBM Power3, Intel Itanium2, and AMD Opteron. We study the behavior
of two scientific codes with the potential to run at ultra-scale, in the areas of
MHD physics simulations (LBMHD2D and LBMHD3D). Our work builds on
our previous efforts [1,2] and makes the contribution of adding recently acquired
performance data for the SX-8, and the latest generation of superscalar proces-
sors. Additionally, we explore improved vectorization techniques for LBMHD2D.
Overall results show that the SX-8 attains unprecedented aggregate performance
across our evaluated applications, continuing the trend set by the ES in our pre-
vious performance studies.

2 HEC Platforms and Evaluated Applications

In this section we briefly describe the computing platforms and scientific appli-
cations examined in our study. Tables 1 and 2 present an overview of the salient
features for the five parallel HEC architectures. Observe that the vector machines
have higher peak performance and better system balance than the superscalar
platforms. Additionally, the X1, ES, and SX-8 have high memory bandwidth
relative to peak CPU speed (bytes/flop), allowing them to more effectively feed
the arithmetic units. Finally, the vector platforms utilize interconnects that are
tightly integrated to the processing units, with high performance network buses
and low communication software overhead.

Three superscalar commodity-based platforms are examined in our study.
The IBM Power3 experiments reported were conducted on the 380-node IBM
pSeries system, Seaborg, running AIX 5.2 (XIf compiler 8.1.1) and located at
Lawrence Berkeley National Laboratory (LBNL). Each SMP node consists of
sixteen 375 MHz processors (1.5 Gflop/s peak) connected to main memory via
the Colony switch using an omega-type topology. The AMD Opteron system,
Jacquard, is also located at LBNL and contains 320 dual nodes, running Linux
2.6.5 (PathScale 2.0 compiler). Each node contains two 2.2 GHz Opteron proces-



sors (4.4 Gflop/s peak), interconnected via Infiniband fabric in a fat-tree config-
uration. Finally, the Intel Itanium experiments were performed on the Thunder
system, consisting of 1024 nodes, each containing four 1.4 GHz Itanium?2 proces-
sors (5.6 Gflop/s peak) and running Linux Chaos 2.0 (Fortran version ifort 8.1).
The system is interconnected using Quadrics Elan4 in a fat-tree configuration,
and is located at Lawrence Livermore National Laboratory.

We also examine three state-of-the-art parallel vector systems. The Cray X1
is designed to combine traditional vector strengths with the generality and scal-
ability features of modern superscalar cache-based parallel systems. The compu-
tational core, called the single-streaming processor (SSP), contains two 32-stage
vector pipes running at 800 MHz. Each SSP contains 32 vector registers hold-
ing 64 double-precision words, and operates at 3.2 Gflop/s peak for 64-bit data.
The SSP also contains a two-way out-of-order superscalar processor running
at 400 MHz with two 16KB caches (instruction and data). Four SSP can be
combined into a logical computational unit called the multi-streaming processor
(MSP) with a peak of 12.8 Gflop/s. The four SSPs share a 2-way set associative
2MB data Ecache, a unique feature for vector architectures that allows extremely
high bandwidth (25-51 GB/s) for computations with temporal data locality. The
X1 node consists of four MSPs sharing a flat memory, and large system config-
uration are networked through a modified 2D torus interconnect. All reported
X1 experiments were performed on the 512-MSP system (several reserved for
system services) running UNICOS/mp 2.5.33 (5.3 programming environment)
and operated by Oak Ridge National Laboratory.

The vector processor of the ES uses a dramatically different architectural
approach than conventional cache-based systems. Vectorization exploits regular-
ities in the computational structure of scientific applications to expedite uniform
operations on independent data sets. The 500 MHz ES processor is an enhanced
NEC SX6, containing an 8-way replicated vector pipe with a peak performance
of 8.0 Gflop/s per CPU. The Earth Simulator is the world’s third most pow-
erful supercomputer [3], containing 640 ES nodes connected through a custom
single-stage IN crossbar. The 5120-processor ES runs Super-UX, a 64-bit Unix
operating system based on System V-R3 with BSD4.2 communication features.
As remote ES access is not available, the reported experiments were performed

Table 1. CPU overview of the Power3, Itanium2, Opteron, X1, ES, and SX-8 platforms.

Platform CPU/| Clock | Peak |Mem BW Peak
Node |(MHz)|(GF/s)| (GB/s) |(Byte/Flop)

Power3 16 375 1.5 0.7 0.47
Itanium?2 4 1400 5.6 6.4 1.1
Opteron 2 | 2200 4.4 6.4 1.5
X1 4 800 12.8 34.1 2.7
ES (Modified SX-6)| 8 500 8.0 32.0 4.0
SX-8 8 2000 16.0 64.0 4.0




during the authors’ visit to the Earth Simulator Center located in Kanazawa-ku,
Yokohama, Japan in 2003 and 2004.

Finally, we examine the newly-released NEC SX-8, the world’s most pow-
erful vector processor. The SX-8 architecture operates at 2 GHz, and contains
four replicated vector pipes for a peak performance of 16 Gflop/s per processor.
The SX-8 architecture has several enhancements compared with the ES/SX6
predecessor, including improved divide performance, hardware square root func-
tionality, and in-memory caching for reducing bank conflict overheads. However,
the SX-8 used in our study uses commodity DDR-SDRAM; thus, we expect
higher memory overhead for irregular accesses when compared with the special-
ized high-speed FPLRAM (Full Pipelined RAM) of the ES. Both the ES and
SX-8 processors contain 72 vector registers each holding 256 doubles, and uti-
lize scalar units operating at the half the peak of their vector counterparts. All
reported SX-8 results were run on the 36 node (72 soon to be available) system
located at High Performance Computer Center (HLRS) in Stuttgart, Germany.
This HLRS SX-8 is interconnected with the NEC Custom IXS network and runs
Super-UX (Fortran Version 2.0 Rev.313).

3 Magneto-Hydrodynamic Turbulence Simulation

Lattice Boltzmann methods (LBM) have proved a good alternative to conven-
tional numerical approaches for simulating fluid flows and modeling physics in
fluids [4]. The basic idea of the LBM is to develop a simplified kinetic model that
incorporates the essential physics, and reproduces correct macroscopic averaged
properties. Recently, several groups have applied the LBM to the problem of
magneto-hydrodynamics (MHD) [5, 6] with promising results. We use two LB
MHD codes, a previously used 2D code [1,7] and a more recently developed
3D code. In both cases, the codes simulate the behavior of a conducting fluid
evolving from simple initial conditions through the onset of turbulence. Figure 1
shows a slice through the xy-plane in the (left) 2D and right (3D) simulation,
where the vorticity profile has considerably distorted after several hundred time
steps as computed by LBMHD. In the 2D case, the square spatial grid is coupled

Table 2. Interconnect performance of the Power3, Itanium2, Opteron, X1, ES, and
SX-8 platforms.

Platform Network MPI Lat| MPI BW | Bisect BW | Network
(usec) |(GB/s/CPU)|(Byte/Flop)|Topology

Power3 Colony 16.3 0.13 0.09 Fat-tree
Ttanium2 Quadrics 3.0 0.25 0.04 Fat-tree
Opteron InfiniBand 6.0 0.59 0.11 Fat-tree

X1 Custom 7.3 6.3 0.09 2D-torus

ES (Modified SX-6)|Custom (IN) 5.6 1.5 0.19 Crossbar
SX-8 IXS 5.0 2.0 0.13 Crossbar




to an octagonal streaming lattice and block distributed over a 2D processor grid
as shown in Figure 2. The 3D spatial grid is coupled via a 3DQ27 streaming lat-
tice and block distributed over a 3D Cartesian processor grid. Each grid point is
associated with a set of mesoscopic variables, whose values are stored in vectors
proportional to the number of streaming directions — in this case 9 and 27 (8
and 26 plus the null vector).

Fig. 1. Contour plot of xy-plane showing the evolution of vorticity from well-defined
tube-like structures into turbulent structures using (left) LBMHD2D and (right)
LBMHD3D.
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The simulation proceeds by a sequence of collision and stream steps. A col-
lision step involves data local only to that spatial point, allowing concurrent,
dependence-free point updates; the mesoscopic variables at each point are up-
dated through a complex algebraic expression originally derived from appro-
priate conservation laws. A stream step evolves the mesoscopic variables along
the streaming lattice, necessitating communication between processors for grid
points at the boundaries of the blocks.

Additionally, for the 2D case, an interpolation step is required between the
spatial and streaming lattices since they do not match. This interpolation is
folded into the stream step. For the 3D case, a key optimization described by
Wellein and co-workers [8] was implemented, saving on the work required by
the stream step. They noticed that the two phases of the simulation could be
combined, so that either the newly calculated particle distribution function could
be scattered to the correct neighbor as soon as it was calculated, or equivalently,
data could be gathered from adjacent cells to calculate the updated value for
the current cell. Using this strategy, only the points on cell boundaries require

copying.



Fig. 2. Octagonal streaming lattice superimposed over a square spatial grid (left) re-
quires diagonal velocities to be interpolated onto three spatial gridpoints (right).
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3.1 Vectorization details

The basic computational structure consists of two or three nested loops over
spatial grid points (typically 1000s iterations) with inner loops over velocity
streaming vectors and magnetic field streaming vectors (typically 10-30 itera-
tions), performing various algebraic expressions. Although the two codes have
kernels which are quite similar, our experiences in optimizing were somewhat
different.

For the 2D case, in our earlier work on the ES, attempts to make the compiler
vectorize the inner gridpoint loops rather than the streaming loops failed. The
inner grid point loop was manually taken inside the streaming loops, which were
hand unrolled twice in the case of small loop bodies. In addition, the array
temporaries added were padded to reduce bank conflicts. With the hindsight
of our later 3D code experience, this strategy is clearly not optimal. Better
utilization of the multiple vector pipes can be achieved by completely unrolling
the streaming loops and thus increasing the volume of work within the vectorized
loops. We have verified that this strategy does indeed give better performance
than the original algorithm on both the ES and SX-8, and show results that
illustrate this in the next section. Turning to the X1, the compiler did an excellent
job, multi-streaming the outer grid point loop and vectorizing the inner grid
point loop after unrolling the stream loops without any user code restructuring.
For the superscalar architectures some effort was made to tune for better cache
use. First, the inner gridpoint loop was blocked and inserted into the streaming
loops to provide stride-one access in the innermost loops. The streaming loops
were then partially unrolled.

For the 3D case, on both the ES and SX-8, the innermost loops were unrolled
via compiler directives and the (now) innermost grid point loop was vectorized.
This proved a very effective strategy, and was also followed on the X1. In the
case of the X1, however, the compiler needed more coercing via directives to
multi-stream the outer grid point loop and vectorize the inner grid point loop
once the streaming loops had been unrolled. The difference in behavior is clearly
related to the size of the unrolled loop body, the 3D case being a factor of



approximately three more complicated. In the case of X1 the number of vector
registers available for a vectorized loop is more limited than for the SX systems
and for complex loop bodies register spilling will occur. However, in this case, the
strategy pays off as shown experimental results section below. For the superscalar
architectures, we utilized a data layout that has been previously shown to be
optimal on cache-based machines [8], but did not explicitly tune for the cache
size on any machine.

Interprocessor communication was implemented using the MPI library, by
copying the non-contiguous mesoscopic variables data into temporary buffers,
thereby reducing the required number of send/receive messages.

These codes represent candidate ultra-scale applications that have the po-
tential to fully utilize leadership-class computing systems. Performance results,
presented in Gflop/s per processor and percentage of peak, are used to compare
the relative time to solution of our evaluated computing systems. Since different
algorithmic approaches are used for the vector and scalar implementations, this
value is computed by dividing a baseline flop-count (as measured on the ES) by
the measured wall-clock time of each platform.

3.2 Experimental Results

Tables 3 and 4 present the performance of both LBMHD applications across
the five architectures evaluated in our study. Cases where the memory required
exceeded that available are indicated with a dash. For LBMHD2D we show the
performance of both vector algorithms (first strip-mined as used in the original
ES experiment, and second the new unrolled inner) for the SX-8. In accordance
with the discussion in the previous section, the new algorithm clearly outper-
forms the old.

Table 3. LBMHD2D performance in GFlop/s (per processor) across the studied ar-
chitectures for a range of concurrencies and grid sizes. The original and optimized
algorithms are shown for the ES and SX-8. Percentage of peak is shown in parenthesis.

original |optimized| original |optimized

| P[ Size [Power3[Itanium2[Opteron| X1 ES ES SX-8 SX-8
16[40962[0.11 (7)] 0.40 (7) [0.83 (19)[4.32 (34)[4.62 (58)[5.00 (63) [6.33 (40)] 7.45 (47)
64/4096%|0.14 (9)] 0.42 (7) [0.81 (18)|4.35 (34)|4.29 (54)|4.36 (55) [4.75 (30)|6.28 (39)
64/8192%|0.11 (7)] 0.40 (7) [0.81 (18)|4.48 (35)|4.64 (58)|5.01 (62) 6.01 (38)|7.03 (44)
256(8192%(0.12 (8)] 0.38 (6) 2.70 (21)]4.26 (53)|4.43 (55) |4.44 (28)] 5.51 (34)

Observe that the vector architectures clearly outperform the scalar systems
by a significant factor. Across these architectures, the LB applications exhibit
an average vector length (AVL) very close to the maximum and a very high vec-
tor operation ratio (VOR). In absolute terms, the SX-8 is the leader by a wide



Table 4. LBMHD3D performance in GFlop/s (per processor) across the studied ar-
chitectures for a range of concurrencies and grid sizes. Percentage of peak is shown in
parenthesis.

| P| Size| Power3 |Itanium2| Opteron| X1 | ES | SX-8 |
16[256°] 0.14 (9) [ 0.26 (5) [0.70 (16)[5.19 (41)]5.50 (69)]7.89 (49)
64/2563(0.15 (10)| 0.35 (6) |0.68 (15)|5.24 (41)|5.25 (66)[8.10 (51)

256(5123| 0.14 (9) | 0.32 (6) |0.60 (14)|5.26 (41)|5.45 (68)]9.66 (60)

512|512 0.14 (9) | 0.35 (6) |0.59 (13) — 15.21 (65) —

margin, achieving the highest per processor performance to date for LBMHD3D.
The ES, however, sustains the highest fraction of peak across all architectures
— 65% even at the highest 512-processor concurrency. Examining the X1 be-
havior, we see that in MSP mode absolute performance is similar to the ES.
The high performance of the X1 is gratifying since we noted several outputed
warnings concerning vector register spilling during the optimization of the colli-
sion routine. Because the X1 has fewer vector registers than the ES/SX-8 (32 vs
72), vectorizing these complex loops will exhaust the hardware limits and force
spilling to memory. That we see no performance penalty is probably due to the
spilled registers being effectively cached.

Turning to the superscalar architectures, the Opteron cluster outperforms the
Itanium?2 system by almost a factor of 2X. One source of this disparity is that the
2-way SMP Opteron node has STREAM memory bandwidth [9] of more than
twice that of the Itanium2 [10], which utilizes a 4-way SMP node configuration.
Another possible source of this degradation are the relatively high cost of inner-
loop register spills on the Itanium?2, since the floating point values cannot be
stored in the first level of cache. Given the age and specifications, the Power3
does quite reasonably, obtaining a higher percent of peak that the Itanium2, but
falling behind the Opteron.

Although the SX-8 achieves the highest absolute performance, the percentage
of peak is somewhat lower than that of ES. We believe that this is related to
the memory subsystem and use of commodity DDR-SDRAM. In order to test
this hypothesis, we recorded the time due to memory bank conflicts for both
applications on the ES and SX-8 using the ftrace tool, and present it in Table 5.

Most obviously in the case of the 2D code, the amount of time spent due to
bank conflicts is appreciably larger for the SX-8. Efforts to reduce the amount
of time for bank conflicts for the 2D 64 processor benchmark produced a slight
improvement to 13%. In the case of the 3D code, the effects of bank conflicts are
minimal.

4 Conclusions

This study examined two scientific codes on the parallel vector architectures of
the X1, ES and SX-8, and three superscalar platforms, Power3, Itanium2, and



Table 5. LBMHD2D and LBMHD3D bank conflict time (as percentage of real time)
shown for a range of concurrencies and grid sizes on ES and SX-8.

Grid| ES SX-8
Size |BC (%)|BC (%)
2D | 64[8192%] 0.3 16.6
2D [256(81922| 0.3 10.7
3D | 64| 256% | >0.01 | 1.1
3D |256| 5122 | >0.01 | 1.2

Codey P

Opteron. A summary of the results for the largest comparable problem size and
concurrency is shown in Figure 3, for both (left) raw performance and (right)
percentages of peak. Overall results show that the SX-8 achieved the highest
performance of any architecture tested to date, demonstrating the tremendous
potential of modern parallel vector systems. However, the SX-8 could not match
the sustained performance of the ES, due in part, to a relatively higher memory
latency overhead for irregular data accesses. Both the SX-8 and ES also con-
sistently achieved a significantly higher fraction of peak than the X1, due to
superior scalar processor performance, memory bandwidth, and network bisec-
tion bandwidth relative to the peak vector flop rate. Finally, a comparison of
the superscalar platforms shows that the Opteron consistently outperformed the
Itanium2 and Power3, both in terms of raw speed and efficiency - due, in part,
to its on-chip memory controller and (unlike the Itanium2) the ability to store
floating point data in the L1 cache. The Itanium2 exceeds the performance of
the (relatively old) Power3 processor, however its obtained percentage of peak
falls further behind. Future work will expand our study to include additional
areas of computational sciences, while examining the latest generation of super-
computing platforms, including BG/L, X1E, and XT3.

Fig. 3. Summary comparison of (left) raw performance and (right) percentage of peak
across our set of evaluated applications and architectures.
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