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Abstract

The (e™,e")—pair annihilation in the bi-positronium Pss (or e"ete e™)
is considered. In particular, the two-, three-, one- and zero-photon anni-
hilation rates are determined to high accuracy. The corresponding analyti-
cal expressions for these annihilation rates are also presented. By using our
most recent and accurate variational wave functions produced for the ground
S(L = 0)—state of the bi-positronium Psy (EF = —0.5160037754 a.u.) we have
found for the two-photon annihilation rate I's, & 4.66424 - 10° sec™!, while
I3, (Psg) ~ 1.2022-10% sec™!, I'1y ~ 1.954- 107! sec™! and Toy ~ 2.34-10°
sec”!. Also, a large number of bound state properties have been determined

for this system.
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In this study we consider the (e¢~, e™)-pair annihilation in the bi-positronium system Ps,
(or e"eTe e'). The stability of the single bound state in the bi-positronium Ps, has been
shown many years ago [1], [2]. The bi-positronium is of great interest in some applications
to astrophysics [3], solid state physics [4] and other problems [5] - [7]. Most of such appli-
cations are related to the electron-positron pair annihilation (or (e~, e™)—pair annihilation,
for short) in the Psy system. For instance, a long-standing problem in astrophysics is related
to an unknown and very intense source of positrons in the center of our Galaxy. In fact,
this source(s) is located at a distance of ~ 8 kpc (1 kpc ~ 3.086 - 10'® km) in the direction
of Galactic center with a radius ~ 1 kpc. It generates ~ 1.3 - 10*® positrons per second [§]
(or ~ 1.18-10° tonnes of positrons per second). All these positrons annihilate in this area
(so-called Galactic bulge). An intense emission of the 511 KeV annihilation y—quanta from
Galaxy bulge indicates that the (e, e™)-pair annihilation proceeds mainly from the bound
states of various electron-positron species (e.g., Ps, Ps™, Psy, etc) and positron compounds
with some atoms. Therefore, to make some quantitative evaluations one needs to know the
relative probabilities of different annihilation channels in the Ps™ ion, bi-positronium Ps,
and other similar systems.

On the other hand, the (e~, e™)—pair annihilation in the Ps, system is a very important
problem of quantum electrodynamics. In the Psy system the electron-positron annihilation
proceeds with the emission of the two-, three-, ..., n—photons. The one- and zero-photon
annihilations are also possible. Accurate evaluation of the corresponding annihilation rates
is extremely complicated problem. The two-photon annihilation rate in the bi-positronium
has been evaluated in [9]. Our earlier evaluations of the two-photon annihilation rate I'y,
can be found in [10]. The one- and zero-photon annihilation rates in the bi-positronium
have been approximately evaluated in [10].

However, in [10] we could use only very approximate variational wave functions which
have relatively poor accuracy. In fact, for many two-particle bound state properties those
wave functions have provided relatively good numerical accuracy. The two-particle property

is an expectation value of some operator which explicitly depend upon the coordinates of the



two different particles. Analogously, one can define the three- and four-particle properties in
arbitrary four-body systems. As follows from the results obtained in [10] our wave functions
could not provide even sufficient accuracy for a number of three- and four-particle properties
in the bi-positronium Psy system. In particular, the three- and four-particle delta-functions
have been determined quite approximately in [10]. Furthermore, in [10] to evaluate some
annihilation rates in the Psy system we have used the approximate Ferrante’s relations [11].
Recently, however, a remarkable progress has been achieved in obtaining the accurate
variational wave functions for numerous Coulomb four-body systems. Currently, in com-
putations of various four-body systems one can use significantly more accurate variational
wave functions than the wave function used in [10]. This allow us to re-evaluate many bound
state properties of the bi-positronium Ps,. In particular, the main goal of this study is to
determine the expectation values of the electron-positron delta-function (§,_), triple delta-
function (§;__) = (d;4_) and four-body delta-function (6, ,__). These delta-functions are
included in the analytical expressions for the two-, one- and zero-photon annihilation rates
of the bi-positronium Pss. Another goal of this study was to re-derive the analytical expres-
sions used for the two-, three-, one- and zero-photon annihilation rates. In particular, we
have re-derived the corresponding analytical formulas (the formulas for one- and zero-photon
annihilation rates have been originally obtained in [10] and [12]). For the two-photon anni-
hilation rate our present formula includes the lowest-order radiative correction [13]. With
the use of improved formulas and accurate expectation values for all required delta-functions
this work contains the most accurate annihilation rates in the bi-positronium Psy system.
The Hamiltonian of the considered Ps, system is written in the form (in atomic units

f=1,m,=1and e =1):

1 1
H:—§A1—§A2——A3——A4+ _________ +— (1)

where the notation 1 and 2 designate the positrons, while 3 and 4 stand for electrons. Note
that all our present calculations have been performed in atomic units (A = 1,m, = 1 and

e =1). Also, in this equation and below 7;; =| r; — r; |= r;; are the six relative coordinates
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uniformly defined in the considered four-body system. In fact, in all formulas and tables
below, the subscripts 1 and 2 always designate the two positrons, while the subscripts 3 and
4 mean the two electrons in the bi-positronium Pss (e"ete”e™). An alternative (i.e. ‘4’
and ‘-’) system of notation is also used below.

The corresponding Schrodinger equation is HU = EWV, where F is the total bound state
energy (E < 0) and ¥ is the bound state wave function. To determine the energies and other
bound state properties of the bi-positronium Ps, in this study we have used the variational
expansion written in the basis of six-dimensional (or four-body) gaussoids. This basis has
been proposed in [14]. In fact, in [14] this variational expansion has been proposed and
used for an arbitrary N—body non-relativistic system, but for the considered four-body
systems this variational expansion takes a very simple form [14]. In particular, for the
ground S(L = 0)—state of the Coulomb four-body Ps, system we have

N
U (712,713, 723, T14, T'24, T34) = Ag 2 Ci [exp(—alz(i)rfg - a13(i)r%3 - 0423(i)T§3 - (2)
i=1

g (1)r7y — Qi) — 0434(i)T§4)] ;
where N is the total number of terms in this expansion, C; are the linear (or variational)
coefficients (here 1 <17 < N), while oy, (2) ((kn) = (12), (13), (23), (14), (24) and (34)) are
the non-linear parameters of the variational expansion Eq.(2). The operator A, designates
the appropriate symmetrizer (or antisymmetrizer), i.e. a projection operator which produces
the final wave function with the correct permutation symmetry. The construction of the A,
is described in detail in the literature, e.g., in our earlier works [10].

In reality, the variational expansion, Eq.(2), converges very slow. Therefore, it can
be effective in actual applications, if (and only if) all 6 X N non-linear parameters (%)
(1 < i < N and (kn) = (12), (13), (23), (14), (24) and (34)) in Eq.(2) are carefully
optimized. In this study the Powell’s method of conjugate directions [15], [16] has been
used. This method produces quite accurate variational wave functions for an arbitrary
Coulomb four-body system. In our present calculations we have used the variational wave

functions with N = 600, 700 and 800 terms. The optimization of the non-linear parameters
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has been produced with the use of standard double precision computer accuracy. However,
to determine the expectation values of all properties we have used the extended numerical
accuracy.

The obtained accurate wave function of the bi-positronium system Ps, allows us to
determine a large number of bound state properties for this system to very good accuracy.
The results of our present calculations can be found in Table I. In general, each of the
properties presented in Table I is now known to much better accuracy, than it was known
from our previous works (see, e.g., [10]).The observed agreement of all computed bound
state properties with the numerical values presented in [17] can be considered as very good.
Relatively large deviations, however, can be found (as expected) for the expectation values
of the three- and four-particle delta-functions [10] which determine the one- and zero-photon
annihilation rates. For instance, in Table I we have (§,__) = 9.16710-107° and (6, ,__) =
4.5889-107°, while the best values obtained in [10] were (6, ) = 9.2580-107° and (6, )
= 4.3908-107°.

As mentioned above the (e7, e*)-pair annihilation in the bi-positronium Ps, can proceed
with the emission of one-, two-, three- and even larger number of photons. The zero-photon
annihilation is also possible. In general, the two-photon annihilation of the (e~,e™)-pair
has significantly larger probability than all other annihilation processes. The analytical
expression for the two-photon annihilation rate which also includes the lowest-order radiative
correction [18] takes the from

4

[y, = 7r[1 — %(5 — WZ)] ot n(cagt) - (64 ) = 52.73841022-10° - n - (0, ) sect (3)

where o ~ 0.7297352568 - 1072 is the fine structure constant, ¢ = 0.299792458 - 10° m - sec™*
is the speed of light, ag = 0.5291772108 - 1071° m is the Bohr radius. All physical constants
in this study have been chosen from [19]. Also, in this equation n is the total number is the
total number of electron-positron pairs, i.e. n = 4 in the Ps, system. The notation (J,;_)
designates the expectation value of the electron-positron delta-function d,_. By using the

expectation value for the electron-positron delta-function (§,_) from Table I one finds that
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[y, (Psg) & 4.664238 - 10° sec™ .

The two-photon annihilation plays a leading role in the bi-positronium annihilation. The
three-photon annihilation rate is ~ 1000 smaller than the I';, rate computed above, but
the three-photon annihilation is of interest in a number of applications. The three-photon

annihilation rate I's,(Psy) can be written in the form

4
I3, = g(ﬂ —9)a® - n(cay") - (6,_) = 1.35927298 - 10" - - (0, ) sec™’ (4)

By using the (§,_) expectation value from Table I we determine that I's,(Ps;) ~ 1.202155 -
108 sec™!. The difference A between the corresponding inverse values ﬁ and i can be
considered as the positron quenching for the bi-positronium Psy;. The positron quenching
(A ~ 8.31625 - 1077 sec) is a unique characteristic of the considered (Ps,) system.

The one-photon (e~, et)-pair annihilation in the bi-positronium Ps, was considered in
[10]. The one-photon annihilation rate in the Psy system is written in the form

1287

Ty =— ca®(cag') - (04-—) =2.1315138 - 10* - (6, __) sec™" (5)

where (0;__) = (0;4_) in the Psy system. The one-photon annihilation is followed by
the emission of one fast electron/positron. The Lorentz y—factor of the emitted fast elec-
tron/positron is bounded between 1 and 2. By using the (§,__) from Table I we can evaluate
the one-photon annihilation rate in the bi-positronium Ps, as ~ 1.95398 - 10~! sec™!.

As mentioned above the bi-positronium Ps, is the Coulomb four-body system. In general,
the (e™,e")-pair annihilation in such a system can also proceed without any emission of
v—quanta. This case corresponds to the zero-photon annihilation of the bi-positronium
Psy.  Roughly speaking, the zero-photon annihilation can be considered as the regular,
two-photon annihilation of the (e™,e™)-pair and the following internal conversion of the
two emitted y—quanta. In reality, however, the annihilation and internal conversion of the

emitted y—quanta proceed simultaneously. The analytical expression for the zero-photon

annihilation rate is

147373 N
=

Lo, (cag") - (644 —) =5.0991890- 10 *- (5,1 ) sec’ (6)



where (0,,__) is the expectation value of the four-particle delta-function in the bi-

positronium Psy. Now, by using our (§,,__) expectation value from Table I one finds
Lo, = 2.33997-1077 sec™! . (7)

Thus, we have considered the annihilation of electron-positron pairs in the bi-positronium
Psy. The closed analytical formulas and numerical values are presented for the I's,, I's,, 'y,
and I'y, annihilation rates. These rates are now known to significantly better accuracy than
it follows from earlier calculations. In other words, the analytical formulas and numerical
values for the corresponding annihilation rates presented in this study can be considered as
the final solution for the electron-positron pair annihilation in the bi-positronium system
Ps,. A large number of bound state properties of the ground state in the bi-positronium Ps,
(e"eTe~e™) system have been also re-evaluated by using our recently optimized variational

wave functions.
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TABLES

TABLE I. The expectation values in atomic units (m, = 1,h = 1,e = 1) of some properties for

the ground S(L = 0)—state of the bi-positronium Psy (e"ete~et)

E -0.51600377536 (ry _2|_) 0.07344438 (re+) 6.0332004
(T) 0.51600373242 (r:2) 0.30310368 (ry ) 4.4871505
V) -1.03200750796 (r:1) 0.22079014 (r2.) 46.374614
X 0.4143-10~7 (r71) 0.36839698 (r2_) 29.112598
(r3.) 443.8486 (rt.) 5201.915 (—iv2) 0.129000933
(r3 ) 253.0438 (rt ) 2807.197 (—3v2) 0.129000933
(844) 6.26735-10~4 (64__) 9.1671-107°
(64-) 2.211025-10~2 TGN 4.5889-10~¢

=|1 + | is the virial parameter which indicates the overall quality of the wave function
used [20].
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