
Performance of a Block Structured, Hierarchical Adaptive Mesh

Refinement Code on the 64k Node IBM BlueGene/L Computer∗

Jeffrey A. Greenough, Bronis R. de Supinski, Robert K. Yates

Lawrence Livermore National Laboratory
Livermore, CA 94550

Charles A. Rendleman, David Skinner, Vince Beckner, Mike Lijewski, and John Bell

Lawrence Berkeley National Laboratory
Berkeley, CA 94720

James C. Sexton

IBM, T.J. Watson Research Center
Yorktown Heights, NY 10598

April 25, 2005

Abstract

We describe the performance of the block-structured Adaptive Mesh Refinement (AMR)
code Raptor on the 32k node IBM BlueGene/L computer. This machine represents a significant
step forward towards petascale computing. As such, it presents Raptor with many challenges
for utilizing the hardware efficiently. In terms of performance, Raptor shows excellent weak
and strong scaling when running in single level mode (no adaptivity). Hardware performance
monitors show Raptor achieves an aggregate performance of 3.0 Tflops in the main integration
kernel on the 32k system. Results from preliminary AMR runs on a prototype astrophysical
problem demonstrate the efficiency of the current software when running at large scale. The
BG/L system is enabling a physics problem to be considered that represents a factor of 64
increase in overall size compared to the largest ones of this type computed to date. Finally, we
provide a description of the development work currently underway to address our inefficiencies.

1 Application and Software Overview

Raptor is a multi-physics Adaptive Mesh Refinement (AMR) code being developed at Lawrence
Livermore National Laboratory. It can simulate physical systems in such diverse fields as as-
trophysics and Inertial Confinement Fusion (ICF). Raptor has a fairly complete set of physics
capabilities as required by these applications. These include gray diffusion radiation, electron

∗This work was performed under the auspices of the U.S. Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48 and the Applied Mathematics Program
of the DOE Office of Mathematics, Information, and Computational Sciences under the U.S. Department of Energy
under contract No. DE-AC03-76SF00098.

1

conduction and multifluid hydrodynamics. Raptor can also simulate a wide variety of materials
by either using analytic or tabular equation-of-state.

The current work on BlueGene/L (BG/L) at LLNL is focused on multifluid hydrodynamics.
The governing equations, the Euler equations, are solved using a higher-order Godunov method
that has evolved from and is based on the original method of Colella [5] and later extended to
multiple materials [6]. The radiation and conduction algorithms require the use of an ancillary
software package, HYPRE [7], for solving implicit equations using an iterative multigrid method.
At present this package’s port to BG/L is not yet completed. Raptor has been proven to
provide high-fidelity simulations of shock accelerated interfaces by comparison with experimental
data [9, 13, 18].

Raptor is a hybrid C++/Fortran code that uses software infrastructure developed and
maintained by the Center for Computational Sciences and Engineering at Lawrence Berkeley
National Laboratory [8, 17]. The base library, known as BoxLib, provides C++ classes and data
containers for representing block-structured data and software for distributing and exchanging
data on parallel computers using MPI. An Additional library, AmrLib, implemented in BoxLib,
supports AMR methods on block-structured data. The algorithms contained in this library are
much the same as those described in the original AMR papers [4, 3]. Rendleman, et al. describe
how AMR methods are extended to parallel computations within the BoxLib framework [17].
These libraries, in addition to the tasks of controlling the details of a calculation (number of levels
of refinement, how many steps to take, parallel I/O, etc.), implement the main operations found
in an AMR method. These are communicating among the grids at a particular level of refinement
(intra-level communications) and communications between different levels of refinement (inter-
level communications). The former is handled by copying data from one block to another using
an efficient point-to-point protocol while the later is handled by interpolation and averaging
operations between data at different spatial resolutions and temporal locations.

The remainder of the Raptor code consists of an applications layer containing the physics
classes defined in terms of virtual functions within the AmrLib class hierarchy. Data blocks are
managed in C++, in which ghost cells are filled and temporary storage is dynamically allocated,
so that when the calls to physics algorithms (usually finite difference methods implemented
in Fortran) are made, the same stencil can be used for all points and no additional special
treatments are required. By structuring the software in this way, the high-level objects that
encapsulate the functionality for parallelization and AMR, are independent of the details of the
physics algorithms. This makes it easy to replace or add physics modules as long as they adhere
to the AmrLib interface requirements.

The remainder of this paper, following an overview of the system architecture of the BG/L
system in Section 2, contains a description of the basic AMR methodology in Section 3, and its
parallel implementation in Section 4. A set of results in Section 5 describe the weak and strong
scaling behavior of the software on BG/L for single level and adaptive simulations, as well as
the floating point performance of the numerical kernels. Section 6 describes the physics problem
to be addressed on the machine and, finally, Section 7 discusses changes underway to support
AMR simulations on very large scale problems.

2 The BlueGene/L Computational Science Platform

BlueGene/L (BG/L) is a massively-parallel computing system for research and development in
computational sciences that was designed and implemented by a partnership between Lawrence
Livermore National Laboratory (LLNL) and IBM. Its extremely high compute-density design
results in a very high cost-performance system with comparatively modest power and cooling
requirements. We briefly describe the system architecture [21], focusing on features that impact
Raptor.

At this writing the fastest computer in the world, based on 135 Tflops achieved on the

2

Linpack benchmark, is a 32,768-node BG/L system installed at LLNL. A compute node of BG/L
is composed of only 10 chips: its 700 MHz compute ASIC plus 9 DRAM main memory chips. The
compute node ASICs include all networking and processor functionality. Each compute ASIC
includes two 32-bit superscalar PowerPC 440 embedded cores (note that L1 cache coherence
is not maintained between these cores). Two copies of the PPC floating point unit (FPU)
are associated with each core; this double FPU does not support independent operations [2].
Instead, the second FPU is used through an extensive set of parallel instructions for which the
double precision operands can come from the register file of either unit. Raptor is well suited to
this design; it has previously demonstrated outstanding performance on SSE units that provide
similar capabilities. Once the compiler support for using the parallel instructions matures, we
expect to make extensive use of them, including in the use of the Fortran MERGE intrinsic.

The system software supports two modes for applications to use the cores. In communication
coprocessor mode (CM), one core is dedicated to servicing communication requests, offloading
substantial message passing overhead from the first core that executes the actual computation.
In virtual node mode (VNM), two MPI tasks run on each node, one on each processor. Although
the coprocessor mode sacrifices half of the compute power of the machine and effectively splits
the available main node memory, it realizes higher network bandwidth and was the original
intent of the hardware design. Testing to date has focused on coprocessor mode, although some
small node count VNM tests have been done.

The scale of LLNL’s system substantially exceeds that of previous high-end computing plat-
forms. The final machine, expected in the fall of 2005, will have 65,536 compute nodes for a
total peak performance of over 360 Tflops; half of that machine is already installed and in use
at LLNL. The bulk of porting applications such as Raptor to this system focuses on coping with
this unprecedented processor count.

As shown in Figure 1, the final system will include 1024 I/O nodes that are nearly identical
to the compute nodes. The difference is that they include gigabit ethernet (Gig-E) connections
that connect the system to a large parallel file system. They also connect the system to the
front-end nodes, on which users compile their codes and launch their jobs.

BG/L includes five networks: three dimensional torus, tree, global interrupt, Gig-E I/O and
control. Three, the torus, the tree and interrupt, are used for MPI communications. Point-to-
point communications are handled by the 16x32x64-node torus, with each node connected to its
nearest neighbors via six independent bidirectional links with a raw hardware performance of
175 MB/s per link.The other MPI networks are used to perform global operations like broadcasts,
reductions, and barriers with very low latency and high bandwidth. For example, the current
32,768-node machine can complete an MPI Barrier across the entire machine in under 2 µsec.

Although measured MPI pingpong bandwidth between neighboring nodes is 150 MB/s, on-
node message processing limits total realized MPI bandwidth over the torus links to less than
500 MB/s. This limitation is particularly relevant to Raptor: its domain decomposition requires
a 26-way stencil computation in which an MPI task communicates with all of its neighbor in
the logically surrounding cube of tasks. As will be discussed later, we are exploring the use of
Hilbert curves to provide efficient MPI task mappings for Raptor.

3 The Adaptive Mesh Refinement Algorithm

Adaptive Mesh Refinement is fundamentally a technology for solving partial differential equa-
tions using a hierarchy of grids of differing resolution. The grid hierarchy is composed of different
levels of refinement ranging from coarsest to finest. Each level is represented as the union of
rectangular grid patches of a given resolution contained within the computational domain.

Both the initial creation of the grid hierarchy and the subsequent regriding operations, the
operation of dynamically changing the grid hierarchy to reflect different flow conditions, use
the same procedures to create new grids. Cells requiring additional refinement are identified

3

and tagged using a user supplied error estimation criteria and the tagged cells are grouped
into rectangular patches. In general, the new patches contain cells that were not tagged for
refinement. These rectangular patches are refined to form the grids at the next level. The
process is repeated until either the error tolerance criteria are satisfied or a specified maximum
level of refinement is reached.

The method we use for solving partial differential equations on a grid hierarchy is to solve on
a given level using Dirichlet data obtained from coarser levels. This results in flux errors at the
boundary with the coarse grid, which are then fixed in a synchronization step. The time-step
algorithm recursively advances grids at different levels using time steps appropriate to that level
based on Courant-Friedrichs-Levy (CFL) considerations and the flux corrections are typically
imposed in a time-averaged sense.

Before turning to parallelization issues, we first discuss some of the details of the above
algorithm related to the communication of data. Essentially all inter-level data communication
occurs in two phases of the algorithm. The coarser grids supply boundary data in order to
integrate finer grids, and the coarse and fine grids are synchronized at the end of fine grid time
steps when the coarse and fine grid solution have reached the same time. For the case considered
here, boundary data is provided by filling ghost cells in a band around the fine grid data whose
width is determined by the stencil of the finite difference scheme. In the present case, we use
five ghost cells in the normal direction. Four ghost cells are required by the fourth-order slope
approximation [5] and the fifth one is required for the artificial viscosity calculation. A simple
copy provides the data if it is available from grids at the same level of refinement. If the data
is not available from grids at the same level, it is obtained by interpolation of the coarse grid
data in time and space.

Two corrections are required when we synchronize the coarse and fine grids when they reach
the same time. First, for all coarse cells covered by fine grid cells, we replace the coarse data by
the volume weighted average of the fine grid data. Second, we must correct the coarse cell values
by adding the difference between the coarse and fine grid fluxes because coarse cells adjacent to
the fine cells were advanced using different fluxes than were used for the fine cells on the other
side of the interface.

The AMR software is organized into five relatively separate components: 1) the error estima-
tion and grid generation routines identify regions needing refinement and generate fine grids to
cover the region, 2) grid management routines manage the grid hierarchy allowing access to the
individual grids as needed, 3) interpolation routines initialize a solution on a newly created fine
grid and also provide the boundary conditions for integrating the fine grids, 4) synchronization
routines correct mismatches at coarse/fine boundaries arising because we integrate the levels
independently, apart from boundary conditions and 5) the integration routines that discretize
the physical processes on the grids.

4 Parallelization of AMR

We have adopted a coarse-grained, message-passing model, using MPI [20, 10], as our approach
to parallelization. In this model, the grids or data blocks on a level are distributed across
processors (or nodes) in such a way as to achieve load-balance of computational work across
processors and to minimize the cost of data-communications between processors. For single
level calculations, i.e. ones where we only advance level 0 data it is easy to construct a problem
manually that is ideally load balanced: simply create a set of grids so that there are exactly N
blocks of size M per processor.

For AMR calculations, it is in general difficult to achieve perfect load balance. The current
AMR implementation is quite general in terms of the range of block sizes that can be generated
for a given problem that meet the constraints of the grid generation algorithm. This means that
for a typical problem, on any given level there is a range of sizes of blocks. By size, we mean

4

total number of cells in a block. We can use this range of sizes to our advantage to achieve load
balance [17].

Generality, however leads to additional overhead. On each processor, we duplicate the map-
ping between processors and the array of grids that it contains. This provides a good optimiza-
tion for pre-computing the communications required for filling boundary conditions on each
processor. The storage requirements for storing the mapping per 1000 grids is 28 Kb. For full
machine runs on BG/L, we envision millions of grids. This balloons the storage requirements
for the mapping into the tens of Megabytes. With only 512 Mb total available, this model must
be changed.

Regriding, and also some portions of the intra- and inter-level data communication, as cur-
rently implemented, contain some N2 components where N is the number of data blocks. The
algorithm to determine which processors must communicate boundary information when the
blocks are of non-constant size is one such component. At nominal data block counts (e.g.,
1000), regriding time is manageable. But at block counts approaching 1, 000, 000, which is
envisioned for BG/L at 32K nodes, N2 is prohibitive.

5 Results

5.1 Single Level Scaling: Weak and Strong Results

In Figure 2, we show a summary of a number of scans (calculations performed on a fixed size
partition and varying the number of blocks per node) for different partition sizes. We have
performed these scans on both the LLNL machine and the IBM Rochester BG/L systems. In
this plot, we use the time (in seconds) to advance a grid or block one step in time as the metric
for measuring performance; smaller times are better. In computing this number, we take 5
steps and then average the time. Note that the time per step at a given number of blocks on
BG/L is exceptionally reproducible due to very low system noise so that timings for every step
are virtually identical. The curves show different partition sizes on the indicated system, using
different versions of the system software (driver level). The driver levels correspond to the week
of the year in which the source code was frozen. Three driver levels are shown in Figure 2.
Driver 480 using system software source from late November 2004, while drivers 100 and 120
are from the middle and end of February 2005.

We compare runs based on the number of blocks per node. That is, we normalize the total
work in each run by the partition size. This normalization compares the time per step across a
range of partition sizes but ignores the increase in the aggregate amount of work as the partition
size is increased. The normalization provides a compact representation of both weak and strong
scaling in one plot. For blocks per node less than one, some processors are idle and contain no
data. Thus, this part of the plot for a given partition size demonstrates Raptor’s weak scaling
behavior. For partition sizes less than or equal to 8k, the times are very flat which is the desired
result, i.e., the time per step is constant as we scale up the problem size but keep the work per
node constant. For blocks per node greater than 1, we are in the strong scaling regime. Here
the work per node is increasing equally.

Comparing across the partition sizes, we observe a bi-modal distribution. That is, there
is a lower cluster of curves and an upper one. The lower curve contains two results from the
current LLNL BG/L 32k, running driver level 100, machine on 4k and 8k partition sizes. An
8k partition run from the 32k IBM Rochester BG/L system running driver level 120 also lies
in the lower cluster. Although not shown, all smaller partition sizes give curves in this cluster.
The upper curves were also obtained on the current BG/L 32k system on a 16k partition. A
16k IBM Rochester system result also lies in the upper cluster but has a flatter shape.

In the lower cluster of curves, Raptor’s weak scaling is very good as these curves are essen-
tially flat. That is, the time per step is constant as the problem size is scaled up while the work

5

per node is kept constant.
The code is exhibiting excellent strong scaling as shown when the blocks per node is greater

than one. Both clusters are scaling at no worse than a linear rate (e.g., the time per step with
two blocks per node is less than or equal to the twice the time per step with one block per node).

The time per step in the upper cluster is approximately twice that of the lower cluster for any
given number of blocks per node. We are currently investigating the cause of this performance
problem. Initial indications are that it arises from memory usage in the MPI library although
this is as yet uncertain. We will report on these investigations more fully in the final paper.

5.2 Communications Efficiency

We have profiled a number of Raptor runs of various sizes on the BG/L systems using the IPM
software package developed at NERSC [19]. IPM is a portable profiling infrastructure providing
a low-overhead performance summary of the computation and communication in a parallel
program. The amount of detail reported is selectable at runtime via environment variables or
through a MPI Pcontrol interface. IPM is scalable and easy to use, requiring no source code
modification. Figure 3 shows, on the left, a breakdown of the total time spent in the MPI
routines used by Raptor for a 1k run. On the right of the figure is shown the results for a 32k
run. Note that the color coding is based on the relative amounts of time spent in each routine.
MPI Barrier, the largest time consumer, is artificially high since we have added MPI Barrier’s
to the code to force MPI time to be charged to this routine instead of reductions or send/receive.
The timings for the MPI Barrier are also used as a benchmark for examining communications
induced load-imbalance. In the 1k case, MPI Send is the next highest followed by the reductions
(MPI Allreduce and MPI Reduce), MPI WaitAll and then MPI Alltoall. In the 32k run, after
MPI Send, we have a large MPI Waitall that was very small in the 1k case. The reductions and
MPI Alltoall are also very small in a relative sense. The relative communications cost for the
32k run, as compared to the total wall clock time, is nearly 65% compared to only 10% for the
1k run. The differences between MPI routine usage in these two cases may help to understand
the offset discussed above and will be reported more fully in the final paper.

5.3 Hardware Performance Counters

We used BG/L’s hardware performance monitors to measure the floating point performance
of Raptor. With only the main integration kernel instrumented, excluding all MPI message
passing, on the full BG/L 32k system Raptor achieves 91.2 Mflops per node or 3.0 Tflops
aggregate performance. This represents about 3.3% of the peak performance of the full BG/L
system in CM despite only using half of the available floating point pipes. Analysis of smaller
partition sizes (1k, 2k, 4k, 8k and 16k) show the same performance.

If we enlarge the portion of the code instrumented to include the MPI message passing
required to fill ghost cells as well as the integration kernel, we obtain for another 32k run only
0.51 Mflops per node. Including the MPI overhead has severely degraded the performance.
This is apparent in the smaller partition runs performed. The flop rates for 1k and 8k runs
are 68.8 Mflops and 22.7 Mflops, respectively. We will continue to investigate this issue as we
currently feel that understanding why MPI is slowing down so drastically will explain the time
per step anomaly seen in the scaling studies.

5.4 AMR Results

Some preliminary AMR calculations have been performed on the LLNL BG/L system. We
constructed a model problem that could be run on a 4k partition at initial time, but that would
evolve to utilize the entire 32k system by the final time. The problem was an Argon bubble,
formed using a soap film, that is accelerated by a planar strong shock wave with Mach number

6

of 2.88 in air. It contained 3 levels of refinement (over the base grid level), each level refined by a
factor of 4. This gave a physical resolution on the finest level of ∆x = ∆y = ∆z = 50 µm. Using
AMR, this is a relatively modest problem containing 250M cells on the finest level containing
34, 746 finest level grids initially. An equivalent uni-grid calculation at this same resolution
would be over 250 trillion cells, clearly a untractable calculation.

The time spent in regrid, according to our native runtime profiling, is 31% of the total
computation time while the main integration kernel used 61% of the time. The remainder of
the time was spent in problem setup (which would be amortized when running for longer times)
and communication overhead. We are pleased with these preliminary results and can make
improvements over the short term.

6 Physics Problem Description

The problem we propose for Gordon Bell Prize consideration is a strong shock wave, Mach
number of 2.88, impinging on an Argon bubble, using soap film to contain the gas, in air. This
problem is based on the model problem reported in Section 5.4. For low Mach numbers, this
problem has been extensively studied experimentally [11] and numerically [15] in two-dimensions.
In the high Mach number regime, there are high energy density experiments conducted on laser
platforms [18] and the recent experimental study at the University of Wisconsin [16], as well
as the three-dimensional numerical work in support of that later experiment [13]. The shock
bubble interaction is an important fluid dynamics problem as it contains all the fundamental
fluid instabilities in a tightly coupled flow as well as having implications that extend into the fluid
dynamics of astrophysics. Specifically, an important problem in astrophysics is the interaction
of shock waves with interstellar gas clouds [12].

Niederhaus, et al. used a resolution of R120 which means there are 120 cells per radius of the
bubble, following the conventional resolution notation for these problems. It was completed on
LLNL’s IA32 ALC Linux Cluster using 128 1.7GHz Xeon Processors for approximately 7 hours.
For these so-called shock/bubble problems, R120 is the highest resolution simulation achieved to
date in three-dimensions. In Figure 4, we show a rendering of the shocked bubble at late time
from this calculation. The red ring-like structures are isosurfaces of vorticity magnitude. The
blue isosurface is the Argon gas concentration and the color field where the Argon is cut-away
is the concentration of soap film material. There are three clearly defined vortex rings in the
flow as well as substantial turbulence. The behavior of the turbulence and the associated vortex
dynamics, the mixing of the Argon with the background gas as well as the late time development
of the ring-like structures are of key scientific importance.

It is well known [12] that R120 is required to obtain moderate convergence on integral flow
measures in two-dimensions. However to obtain the details of the internal structure of shock
driven flows in three-dimensions, resolution approaching the Taylor scale is required. The model
problem using the resolution described in the Section 5.4 represents an R512 calculation which
is a factor of 4 larger, per bubble radius, than any other previous simulation. Note that a factor
of four in linear dimension corresponds to a three-dimensional problem that is 64 times larger
overall.

Admittedly 50 µm resolution, R512, is insufficient to resolve the Taylor scale, O(1 µm), but
it does represent nearly two orders of magnitude increase in size (factor of 64) over the largest
three-dimensional calculations of this type previously attempted. BG/L is making calculations
possible that currently available machines cannot. We are confident that this problem can be
completed given enough access to the BG/L system at LLNL.

7

7 Path Forward Development

To achieve scalability and to meet the stringent data storage requirements imposed by BG/L’s
limited memory, significant refactoring is required of the general AMR algorithm. The main
feature of AMR that has to be surrendered is the use of arbitrary size data blocks in the AMR
hierarchy. With arbitrary sized data blocks it is not possible to conduct the regrid and data
communications in less than O(N2) (N is the number of blocks) operations or to limit the
amount of meta-data to less than an O(N) amount of storage. It is possible to reduce several,
but not all, of the O(N2) methods used in data-communication to O(N log N) but several
portions of the method can not be so reduced.

The refactored version of Raptor decomposes the data at a given level into equal sized blocks.
This specialization makes load-balance trivial: the software need only ensure that each processor
has an equal number of blocks. This also solves the storage requirement for the mapping on each
processor. With equal sized grids on each level, there is a simple bit-wise method for computing
which processors must communicate boundary condition information that is O(N/P) (P is the
number of processors).

The second issue of ensuring that the data blocks are distributed in such a way as to lower
communication cost is less trivial. In this implementation we have chosen to use compositions
of Hilbert curve mappings. Hilbert curves are examples of space-filling curves that map integers
into the 2 dimensional plane or 3 dimensional space in such a way that integer values that are
close map to positions in the volume that are also close. Hilbert curves, and other space-filling
curves, have been used extensively in the past in a variety of applications including parallel
domain decomposition [1] and in the parallel load-balancing [14]. However, since points close
in 2 or 3 dimensional space are not necessarily mapped to points close in the space filling curve,
the Hilbert curve mapping can, at best, be expected to only reduce the number of messages
that require large communication paths.

Much of the Fortran code will have to be written to gain full performance from the double
FPU. Programming practices that did not affect code performance on DEC Alpha based or Intel
based systems parallel systems seem to matter a great deal on the 440-based BG/L system. For
example, loops containing an if statement must be inverted or replaced with a MERGE statement.
Some care must also be taken to ensure proper 16-byte alignment, but this can probably be
dealt with by inserting conditionally compiled pragmas. Also a more careful examination of the
Fortran may yield opportunities for taking advantage of the double FPU capability for better
floating point performance.

8 Conclusion

Raptor is a block-structured AMR application for simulating a diverse range of physical systems
in fields such as shock physics, astrophysics and ICF. The computational core of Raptor has
achieved 3.0 Tflops aggregate performance on the 32k compute node BlueGene/L system at
LLNL. We have also discussed planned improvements to the application to improve its scaling
behavior as well as issues with some part of the BG/L system software that thus far limits the
code’s overall performance. Despite these limitations, our initial results demonstrate that we can
perform a shock wave computation with important scientific implications at an unprecedented
resolution. The BG/L design is enabling simulations that will provide insight into a problem
with implications both in the laboratory and astrophysics. The BG/L design is providing nearly
two orders of magnitude (factor of 64) increase in the size of the three-dimensional simulations
of this problem, well beyond the current capabilities of other large-scale machines.

8

References

[1] S. Aluru and F.E. Sevilgen. Parallel domain decomposition and load balancing using space-
filling curves. In 4th International Conference on High-Performance Computing, pages
230–235, 1997.

[2] L. Bachega, S. Chatterjee, K. Dockser, J. Gunnels, M. Gupta, F. Gustavson, C. Lapkowski,
G. Liu, M. Mendell, C. Wait, and T.J.C. Ward. A high-performance simd floating point
unit design for BlueGene/L: Architecture, compilation and algorithm design. Parallel Ar-
chitecture and Compilation Techniques (PACT 2004), 2004.

[3] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J.
Comput. Phys., 82(1):64–84, May 1989.

[4] M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential
equuations. J. Comput. Phys., 53:484–512, 1984.

[5] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM J. Sci. Statist.
Comput., 6:104–117, 1985.

[6] P. Colella, H.M. Glaz, and R.E. Ferguson. Multifluid algorithms for Eulerian finite differ-
ence methods. unpublished, 2002.

[7] R.D. Falgout, J.E. Jones, and U.M. Yang. The Design and Implementation of HYPRE,
a Library of Parallel High Performance Preconditioners. Numerical Solution of Partial
Differential Equations on Parallel Computers. Springer-Verlag, to appear.

[8] Center for Computational Sciences and Engineering, Lawrence Berkeley National Labora-
tory. http://seesar.lbl.gov/CCSE.

[9] J.A. Greenough and J.W. Jacobs. A numerical study of shock-acceleration of a diffuse
helium cylinder. Proceedings of the Fifth International Workshop on the Physics of Com-
pressible Turbulent Mixing, July 1995.

[10] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message-Passing Interface. Scientific and Engineering Computation. The MIT Press,
Cambridge, Mass, 1994.

[11] J.-F. Haas and B. Sturtevant. Interation of weak shock waves with cylindrical and spherical
gas inhomogeneities. Journal of Fluid Mechanics, 181:41–76, 1987.

[12] R. I. Klein, C.F. McKee, and P. Colella. On the hydrodynamic interaction of shock waves
with interstellar clouds. I. Nonradiative shocks in small clouds. Astrophysical Journal, 420,
1994.

[13] J. Niederhaus, J. Oakley, M. Anderson, D. Ranjan, R. Bonazza, and J. Greenough. Mach
number scaling and soap film effects in 3-d computations for a shocked spherical gas bubble.
Physics of Fluids, in review, 2004.

[14] J. R. Pilkington and S. B. Baden. Dynamic partitioning of non-uniform structured work-
loads with space-filling curves. IEEE Transactions on Parallel and Distributed Systems,
7(3):288–300, 1996.

[15] J. Quirk and S. Karni. On the dynamics of a shock-bubble interaction. Journal of Fluid
Mechanics, 318:129–163, 1996.

[16] D. Ranjan, M. Anderson, Oakley J., and R. Bonazza. Experimental investigation of a
strongly shock gas bubble. Physical Review Letter, in review, 2004.

[17] C.A. Rendleman, V.E. Beckner, M. Lijewski, W.Y Crutchfield, and J.B. Bell. Paralleliza-
tion of structured, hierarchical adaptive mesh refinement algorithms. Computing and Vi-
sualization in Science, 3(3):147–157, 2000.

9

[18] H.F. Robey, T.S. Perry, R.I. Klein, J.O. Kane, J.A. Greenough, and T.R. Boehly. Experi-
mental investigation of the three-dimensional interaction of a strong shock with a spherical
density inhomogeneity. Physical Review Letters, 89(8), 2002.

[19] David Skinner. National Energy Research Scientific Computing Center, http://www.
nersc.gov/projects/ipm/.

[20] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete
Reference. Scientific and Engineering Computation. The Mit Press, Cambridge, Mass,
1996.

[21] BlueGene/L Team. An overview of the BlueGene/L supercomputer. Proceedings of the
ACM/IEEE SC2003 Conference, November 2003.

10

Figure 1. An overview of the integrated BG/L system architecture.

Figure 2. The summary of Raptor runs on various partition sizes of the BG/L systems
at LLNL and IBM Rochester. The average time per step, in seconds, is plotted versus
data blocks per node.

11

Figure 3. A summary from a 1k and a 32k run, on the left and right respectively, of
the relative amounts of time spent in the various MPI routines used by Raptor. Note
that the color coding is based on the relative amounts of time spent in each routine.

Figure 4. A visualization of the late time structure of an Argon bubble that has been
accelerated by a strong, M = 2.88, shock wave at t = 509 µsec. The blue is an
isosurface Argon, the red is an isosurface of the vorticity magnitude. On the cut-away
is shown the soap film concentration.

12

