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Abstract. We present an overview of current research in performance model-
ing, focusing on efforts underway in the Performance Evaluation Research 
Center (PERC).  Using some new techniques, we are able to construct perform-
ance models that can be used to project the sustained performance of large-
scale scientific programs on different systems, over a range of job and system 
sizes.  Such models can be used by vendors in system designs, by computing 
centers in system acquisitions, and by application scientists to improve the per-
formance of their codes. 

1   Introduction 

The goal of performance modeling is to gain understanding of a computer system’s 
performance on various applications, by means of measurement and analysis, and 
then to encapsulate these characteristics in a compact formula.  The resulting model 
can be used to gain greater understanding of the performance phenomena involved 
and to project performance to other system/application combinations. 
 
We will focus here on large-scale scientific computation, although many of the tech-
niques we describe below apply equally well to single-processor systems and to busi-
ness-type applications.  Also, this paper focuses on some work being done within the 
Performance Evaluation Research Center (PERC) [1], a research collaboration funded 
through the U.S. Department of Energy’s Scientific Discovery through Advanced 
Computation (SciDAC) program [2].  A number of important performance modeling 
activities are also being done by other groups, for example at Los Alamos National 
Laboratory [3]. 
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The performance profile of a given system/application combination depends on nu-
merous factors, including: (1) system size; (2) system architecture; (3) processor 
speed; (4) multi-level cache latency and bandwidth; (5) interprocessor network la-
tency and bandwidth; (6) system software efficiency; (7) type of application; (8) 
algorithms used; (9) programming language used;  (10) problem size; (11) amount of 
I/O; and others.  Indeed, a comprehensive model must incorporate most if not all of 
the above factors.  Because of the difficulty in producing a truly comprehensive 
model, present-day performance modeling researchers generally limit the scope of 
their models to a single system and application, allowing only the system size and job 
size to vary.  Nonetheless, as we shall see below, some recent efforts appear to be 
effective over a broader range of system/application choices. 
 
Performance models can be used to improve architecture design, inform procurement, 
and guide application tuning. Unfortunately, the process of producing performance 
models historically has been rather expensive, requiring large amounts of computer 
time and highly expert human effort. This has severely limited the number of high-
end applications that can be modeled and studied.  Someone has observed that, due to 
the difficulty of developing performance models for new applications, as well as the 
increasing complexity of new systems, our supercomputers have become better at 
predicting and explaining natural phenomena (such as the weather) than at predicting 
and explaining the performance of themselves or other computers. 

2   Applications of Performance Modeling 

Performance modeling can be used in numerous ways.  Here is a brief summary of 
these usages, both present-day and future possibilities: 

 
Runtime estimation.  The most common application for a performance model is to 

enable a scientist to estimate the runtime of a job when the input parameters for the 
job are changed, or when a different number of processors is used in a parallel com-
puter system.  One can also estimate the largest size of system that can be used to run 
a given problem before the parallel efficiency drops to an unacceptable area. 

 
System design.  Performance models are frequently employed by computer vendors 

in their design of future systems.  Typically engineers construct a performance model 
for one or two key applications, and then compare future technology options based on 
performance model projections.  Once performance modeling techniques are better 
developed, it may be possible to target many more applications and technology op-
tions in the design process.  As an example of such “what-if” investigations, applica-
tion parameters can be used to predict how performance rates would change with a 
larger or more highly associative cache.  In a similar way, the performance impact of 
various network designs can be explored.  We can even imagine that vendors could 
provide a variety of system customizations, depending on the nature of the user’s 
anticipated applications. 

  



System tuning.  One example of using performance modeling for system tuning is 
given in [4].  Here a performance model was used to diagnose and rectify a mis-
configured MPI channel buffer, which yielded a doubling of network performance for 
programs sending short messages.  Along this line, Adolfy Hoisie of LANL recalls 
that when a recent system was installed, its performance fell below model predictions 
by almost a factor of two.  However, further analysis uncovered some system difficul-
ties, which, when rectified, improved performance to almost the same level the model 
predicted [3].  When observed performance of a system falls short of that predicted 
by a performance model, it may be the system that is wrong not the model!   

 
Application tuning.  If a memory performance model is combined with application 

parameters, one can predict how cache hit-rates would change if a different cache-
blocking factor were used in the application.  Once the optimal cache blocking has 
been identified, then the code can be permanently changed.  Simple performance 
models can even be incorporated into an application code, permitting on-the-fly se-
lection of different program options. 

 
Performance models, by providing performance expectations based on the funda-

mental computational characteristics of algorithms, can also enable algorithmic 
choice before going to the trouble to implement all the possible choices.  For exam-
ple, in some recent work one of the present authors employed a performance model to 
estimate the benefit of employing an “inspector” scheme to reorder data-structures 
before being accessed by a sparse-matrix solver, as part of software being developed 
by the SciDAC Terascale Optimal PDE Simulations (TOPS) project [5].  It turned out 
that the overhead of these “inspector” schemes is more than repaid provided the 
sparse-matrices are large and/or highly randomized. 

 
System procurement.  Arguably the most compelling application of performance 

modeling, but one that heretofore has not been used much, is to simplify the selection 
process of a new computing facility for a university or laboratory.  At the present 
time, most large system procurements involve a comparative test of several systems, 
using a set of application benchmarks chosen to be typical of the expected usage.  In 
one case that the authors are aware of, 25 separate application benchmarks were 
specified, and numerous other system-level benchmark tests were required as well.  
Preparing a set of performance benchmarks for a large laboratory acquisition is a 
labor-intensive process, typically involving several highly skilled staff members.  
Analyzing and comparing the benchmark results also requires additional effort.  
These steps involved are summarized in the recent HECRTF report [6]. 

 
What is often overlooked in this regard is that each of the prospective vendors 

must also expend a comparable (or even greater) effort to implement and tune the 
benchmarks on their systems.  Partly due to the high personnel costs of benchmark 
work, computer vendors often can afford only a minimal effort to implement the 
benchmarks, leaving little or no resources to tune or customize the implementations 
for a given system, even though such tuning and/or customization would greatly 
benefit the customer.  In any event, vendors must factor the cost of implementing 



and/or tuning benchmarks into the price that they must charge to the customer if suc-
cessful.  These costs are further multiplied because for every successful proposal, 
they must prepare several unsuccessful proposals. 

 
Once a reasonably easy-to-use performance modeling facility is available, it may 

be possible to greatly reduce, if not eliminate, the benchmark tests that are specified 
in a procurement, replacing them by a measurement of certain performance model 
parameters for the target systems and applications.  These parameters can then be 
used by the computer center staff to project performance rates for numerous system 
options.  It may well be that a given center will decide not to rely completely on per-
formance model results.  But if even part of the normal application suite can be re-
placed, this will save considerable resources on both sides. 

3   Basic Methodology 

Our framework is based upon application signatures, machine profiles and convolu-
tions.  An application signature is a detailed but compact representation of the fun-
damental operations performed an application, independent of the target system.  A 
machine profile is a representation of the capability of a system to carry out funda-
mental operations, independent of the particular application.  A convolution is a 
means to rapidly combine application signatures with machine profiles in order to 
predict performance.  In a nutshell, our methodology is to 

 

• Summarize the requirements of applications in ways that are not too expen-
sive in terms of time/space required to gather them but still contain sufficient 
detail to enable modeling. 

• Obtain the application signatures automatically. 
• Generalize the signatures to represent how the application would stress arbi-

trary (including future) machines. 
• Extrapolate the signatures to larger problem sizes than what can be actually 

run at the present time. 
 

With regards to application signatures, note that the source code of an application 
can be considered a high-level description, or application signature, of its computa-
tional resource requirements. However, depending on the language it may not be very 
compact (Matlab is compact, while Fortran is not).  Also, determining the resource 
requirements the application from the source code may not be very easy (especially if 
the target machine does not exist!).  Hence we need cheaper, faster, more flexible 
ways to obtain representations suitable for performance modeling work.  A minimal 
goal is to combine the results of several compilation, execution, performance data 
analysis cycles into a signature, so these steps do not have to be repeated each time a 
new performance question is asked. 

 



A dynamic instruction trace, such as a record of each memory address accessed 
(using a tool such as Dynist [7], of the Alpha processor tool ATOM) can also be 
considered to be an application signature. But it is not compact—address traces alone 
can run to several Gbytes even for short-running applications—and it is not machine 
independent. 

 
A general approach that we have developed to analyze applications, which has re-

sulted in considerable space reduction and a measure of machine independence, is the 
following: (1) statically analyze, then instrument and trace an application on some set 
of existing machines; (2) summarize, on-the-fly, the operations performed by the 
application; (3) tally operations indexed to the source code structures that generated 
them; and (4) perform a merge operation on the summaries from each machine [4,8-
10].  From this data, one can obtain information on memory access patterns (namely, 
summaries of the stride and range of memory accesses generated by individual mem-
ory operations) and communications patterns (namely, summaries of sizes and type of 
communications performed). 

 
The specific scheme to acquire an application signature is as follows: (1) conduct a 

series of experiments tracing a program, using the techniques described above; (2) 
analyze the trace by pattern detection to identify recurring sequences of messages and 
loads/store operations; and (3) select the most important sequences of patterns.  With 
regards to (3), infrequent paths through the program are ignored, and sequences that 
map to insignificant performance contributions are dropped. 

 
As a simple example, the performance behavior of CG (the Conjugate Gradient 

benchmark from the NAS Parallel Benchmarks [11]), which is more 1000 lines long, 
can be represented from a performance standpoint by one random memory access 
pattern. This is because 99% of execution is spent in the following loop: 

 
do k = rowstr(j), rowstr(j+1)-1 

sum = sum + a(k)*p(colidx(k)) 

enddo 

This loop has two floating-point operations, two stride-1 memory access patterns, 
and one random memory access pattern (the indirect index of p).  On almost all of 
today’s deep memory hierarchy machines the performance cost of the random mem-
ory access pattern dominates the other patterns and the floating-point work. As a 
practical matter, all that is required to predict the performance of CG on a machine is 
the size of the problem (which level of the memory hierarchy it fits in) and the rate at 
which the machine can do random loads from that level of the memory.  Thus a ran-
dom memory access pattern succinctly represents the most important demand that CG 
puts on any machine. 

 
Obviously, many full applications spend a significant amount of time in more than 

one loop or function, and so the several patterns must be combined and weighted.  
Simple addition is often not the right combining operator for these patterns, because 



different types of work may be involved (say memory accesses and communication).  
Also, our framework considers the impact of different compilers or different compiler 
flags in producing better code (so trace results are not machine independent).  Finally, 
we develop models that include scaling and not just ones that work with a single 
problem size.  For this, we use statistical methods applied to series of traces of differ-
ent input sizes and/or CPU counts to derive a scaling model. 

 
The second component of this performance modeling approach is to represent the 

resource capabilities of current and proposed machines, with emphasis on memory 
and communications capabilities, in an application-independent form suitable for 
parameterized modeling.  In particular, we use low-level benchmarks to gather ma-
chine profiles, which are high-level representations of the rates at which machines 
can carry out basic operations (such as memory loads and stores and message pass-
ing), including the capabilities of memory units at each level of the memory hierarchy 
and the ability of machines to overlap memory operations with other kinds of opera-
tions (e.g., floating-point or communications operations).  We then extend machine 
profiles to account for reduction in capability due to sharing (for example, to express 
how much the memory subsystem’s or communication fabric’s capability is dimin-
ished by sharing these with competing processors).  Finally, we extrapolate to larger 
systems from validated machine profiles of similar but smaller systems. 

 
To enable time tractable modeling we employ a range of simulation techniques [4; 

12] to combine applications signatures with machine profiles: 
 

• Convolution methods for mapping application signatures to machine pro-
files to enable time tractable statistical simulation. 

• Techniques for modeling interactions between different memory access 
patterns within the same loop. For example, if a loop is 50% stride-1 and 
50% random stride, we determine whether the performance is some com-
posable function of the these two separate performance rates. 

• Techniques for modeling the effect of competition between different ap-
plications (or task parallel programs) for shared resources.  For example, 
if program A is thrashing L3 cache with a large working set and a random 
memory access pattern, we determine how that impacts the performance 
of program B with a stride-1 access pattern and a small working set that 
would otherwise fits in L3. 

• Techniques for defining “performance similarity” in a meaningful way.  
For example, we determine whether loops that “look” the same in terms 
of application signatures and memory access patterns actually perform the 
same.  If so, we define a set of loops that span the performance space. 

 
In one sense, cycle-accurate simulation is the performance modeling baseline. 

Given enough time, and enough details about a machine, we can always explain and 
predict performance by stepping through the code instruction by instruction.  How-
ever, simulation at this detail is exceedingly expensive.  So we have developed fast-



to-evaluate machine models for current and proposed machines, which closely ap-
proximate cycle-accurate predictions by accounting for fewer details. 

 
Our convolution method allows for relatively rapid development of performance 

models (full application models take 1 or 2 months now).  Performance predictions 
are very fast to evaluate once the models are constructed (few minutes per predic-
tion).  The results are fairly accurate.  Figure 1 show qualitatively the accuracy results 
across a set of machines and problem sizes and CPU counts for POP, the Parallel 
Ocean Program. 
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Fig. 1. Results for Parallel Ocean Program (POP). (R) is real runtime (M) is mod-
eled (predicted) runtime 

 
We have carried out similar exercise for several sizes and inputs of POP problems. 

And we have also modeled several applications from the DOD HPCMO [13] work-
load, including AVUS a CFD code, GAMESS a computational chemistry code, 
HYCOM a weather code, and OOCORE an out-of-core solver.  In a stern test of the 
methods we were allowed access to DOD machines only to gather machine profiles 
via low-level benchmarks.  We then modeled these large parallel applications at sev-
eral CPU counts ranging from 16 to 384, on Power3, Power4 in two different flavors, 
Alpha, Xeon, and R16000 processor based supercomputers. We then predicated ap-
plication performance on these machines; an d only after the predictions were issued 
were the application true runtimes independently ascertained by DOD personnel. 
 

Table 1. Results of ‘blind’ predictions of DoD HPCMO Workload 

Category Average Absolute Error Standard Devia-
tion  



Overall 20.5% 18.2% 
AVUS std. input 15.0% 14.2% 
AVUS large input 16.5% 16.2% 
GAMESS std. input 45.1%  24.2% 
HYCOM std. input 21.8% 16.7% 
HYCOM large input 21.4% 16.9% 
OOCORE std. input 32.1% 27.5% 
Power3 17.4% 17.0% 
Power4 p690 12.9% 9.6% 
Power4 p655 15.7% 19.9% 
Alpha 29% 17.6% 
R16000 41.0% 18.5% 
Xeon 28.2% 12.3% 

 
Table 1 above gives the overall average absolute error and standard deviation of 

absolute average error as well as breakdowns by application/input and architecture.  
We conducted this ‘blind’ test (without knowing the performance of the applications 
in advance) in order to subject our modeling methods to the sternest possible test and 
because we think it is important to report successes and failures in modeling in order 
to advance the science.  The conditions of independent application runtime assess-
ment led to some of the error above.  For example, we modeled the MPI version of 
GAMESS but in several cases it was the shmem version that was run (a case of pre-
dicting an apple and getting an orange).  In the case of the Power 3, the predictions 
were consistently too high which was later traced to a mis-configured system parame-
ter that allowed paging (another case of the machine being broken rather than the 
model).  However some weaknesses in the models were also identified; the models do 
not do a good job of modeling I/O at present, which contributed to high application 
error for OOCORE (an I/O intensive code) and high machine error in the case of the 
Alpha system (which has a weak I/O subsystem).  Xeons were consistently over pre-
dicted for reasons that appear to have to do with weak architectural support for float-
ing-point (few, shallow, pipelines).  Augmentation of the models to address system-
atic errors and add additional terms for I/O and enhanced accuracy of floating-point 
scheduling is work in progress. 

4   Performance Sensitivity Studies 

Reporting the accuracy of performance models in terms of model-predicted time 
vs. observed time (as in the previous section) is mostly just a validating step for ob-
taining confidence in the model.  A more interesting and useful exercise is to explain 
and quantify performance differences and to play “what if” using the model.  For 
example, it is clear from Figure 1 above that Lemeiux, the Alpha-based system, is 
faster across-the-board on POP x1 than is Blue Horizon, the Power3 system.  The 
question is why?  Lemeuix has faster processors (1GHz vs. 375 MHz), and a lower-
latency network (a measured ping-pong latency of about 5 ms vs. about 19 ms), but 
Blue Horizon’s network has the higher bandwidth (a measured ping-pong bandwidth 



of about 350 MB/s vs. 269 MB/s). Without a model, one is left to conjecture “I guess 
POP performance is more sensitive to processor performance and network latency 
than network bandwidth,” but without solid evidence. 

 
With a model that can accurately predict application performance based on proper-

ties of the code and the machine, we can carry out precise modeling experiments such 
as that represented in Figure 2.  Here we model perturbing the Blue Horizon (BH) 
system (withPower3 processors and a Colony switch) into the TCS system (with 
Alpha ES640 processors and the Quadrics switch) by replacing components one by 
one.  Figure 2 represents a series of cases modeling the perturbing from BH to TCS, 
going from left to right.  The four bars for each case represent the performance of 
POP x1 on 16 processors, the processor and memory subsystem performance, the 
network bandwidth, and the network latency, all normalized to that of BH. 

 

 
Fig. 2. Performance Sensitivity study of POP applied to proposed Lemieux up-

grade 
 
In Case 1, we model the effect of reducing the bandwidth of BH’s network to that 

of a single rail of the Quadrics switch.  There is no observable performance effect, as 
the POP x1 problem at this size is not sensitive to a change in peak network band-
width from 350MB/s to 269MB/s.  In Case 2, we model the effect of replacing the 
Colony switch with the Quadrics switch.  Here there is a significant performance 
improvement, due to the 5 ms latency of the Quadrics switch versus the 20 ms latency 
of the Colony switch. This is evidence that the barotropic calculations in POP x1 at 
this size are latency sensitive.  In Case 3, we use Quadrics latency but the Colony 
bandwidth just for completeness.  In Case 4, we model keeping the Colony switch 
latency and bandwidth figures, but replacing the Power3 processors and local mem-
ory subsystem with Alpha ES640 processors and their memory subsystem.  There is a 
substantial improvement in performance, due mainly to the faster memory subsystem 



of the Alpha.  The Alpha can load stride-1 data from its L2 cache at about twice the 
rate of the Power3, and this benefits POP x1 significantly.  The last set of bars show 
the TCS values of performance, processor and memory subsystem speed, network 
bandwidth and latency, as a ratio of the BH values.   

 
The principal observation from the above exercise is that the model can quantify the 
performance impact of each machine hardware component.   
 

 In these studies we find that larger CPU count POP x1 problems become more 
network latency sensitive and remain not-very bandwidth sensitive. 

 

 
Fig. 3. A generalized performance sensitivity study 
 
We can generalize a specific architecture comparison study such as the above, by 

using the model to generate a machine-independent performance sensitivity study.  
As an example, Figure 3 indicates the performance impact on the 128-CPU POP x1 
program of quadrupling the speed of the CPU-memory subsystem (lumped together 
we call this the processor), quadrupling the network bandwidth, reducing network 
latency by four, and various combinations of these four-fold hardware improvements.  
The data values are plotted in a logarithmic scale and normalized to one, so that the 
solid black quadrilateral represents the execution time, network bandwidth, network 
latency, CPU and memory subsystem speed of Blue Horizon.  At this size, POP x1 is 
quite sensitive to processor speed (a faster CPU and memory subsystem), somewhat 
sensitive to latency (because of the barotropic portion of the code is communications-
bound, with small-messages), and fairly insensitive to bandwidth.  In a similar way 
we can “zoom in” on the processor performance factor.  In the above results for POP, 



the processor axis shows modeled execution time decreasing from a four-times faster 
CPU with respect to clock rate (implying a 4X floating-point issue rate), but also 
quadruple bandwidth and one-quarter latency to all levels of the memory hierarchy 
(unfortunately this may be hard or expensive to achieve architecturally!).   

Conclusion 

We have seen that performance models enable “what-if” analyses of the implica-
tions of improving the target machine in various dimensions.  Such analyses obvi-
ously are useful to system designers, helping them optimize system architectures for 
the highest sustained performance on a target set of applications.  They are potentially 
quite useful in helping computing centers select the best system in an acquisition.  
But these methods can also be used by application scientists to improve performance 
in their codes, by better understanding which tuning measures yield the most im-
provement in sustained performance. 

 
With further improvements in this methodology, we can envision a future wherein 

these techniques are embedded in application code, or even in system software, thus 
enabling self-tuning applications for user codes.  For example, we can conceive of an 
application that performs the first of many iterations using numerous cache blocking 
parameters, a separate combination on each processor, and then uses a simple per-
formance model to select the most favorable combination.  This combination would 
then be used for all remaining iterations. 

 
Our methods have reduced the time required for performance modeling, but much 

work needs to be done here.  Also, running an application to obtain the necessary 
trace information multiplies the run time by a large factor (roughly 1000).  The future 
work in this arena will need to focus on further reducing the both the human and 
computer costs. 
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