
 Scaling Up Parallel Scientific Applicaitons on
the IBM SP

David Skinner, NERSC HPCF

Table of Contents

• Abstract
• Introduction

o Capability
Computing

o Constraints to
Scaling

• SMP Scaling
o Nighthawk II

node
o Memory

Contention
• MPI Scaling

o Abstract
o Colony Switch
o IBM's MPI

Implementation
o MPI Job Startup
o MPI Memory

Usage
o Synchronization
o Load Balancing
o MPI Collectives
o MPI Point to

Point
o Avoiding

Synchronization
• Parallel I/O Scaling

o Abstract
o File Systems
o GPFS Basics
o Parallel I/O

Goals
o Parallel I/O

Strategies
o Parallel I/O

http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/

Performance
Comparisons

• Conclusions
• References

Abstract

This document provides a technical description of the IBM SP
seaborg.nersc.gov with an emphasis on how the system performs as a
production environment for large scale scientific applications. The
overall goal is to provide developers with the information they need to
write and run such applications. While some of the information
presented here may be applicable in a larger context, the focus is on
experiences and scaling techniques specific to seaborg.nersc.gov.

In the first few sections we seek to determine how well the theoretical
capabilities of this machine may be realized in practice. Most of the
measured performance numbers come from small code microkernels
or test codes rather than from real user codes. In a companion
document several real applications are explored in detail.

The microkernel approach described above has value to the user since
the most widely quoted performance numbers often reflect the
theoretical (peak) performance values rather than those realized in
practice. Likewise anecdotes from full blown applications often involve
mixed algorithms, hidden constraints or other specifics which make the
results hard to generalize. Microkernels and test codes provide a
middle ground which is a reasonable best case scenario for real user
codes and provide the user with a small kernel of code can serve as a
template for the writing or modification of more substantial codes.

In what follows we will present several such examples alongside
performance and scaling information. The next section introduces the
role of concurrency in HPC. The following sections treat parallel scaling
from the machine and application development perspectives.

Suggestions for improving this draft document are welcome. Please
contact the author if you have comments, corrections, or questions.

Introduction

http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/
mailto:dskinner@nersc.gov

Capability Computing

Running large scale scientific computations which can not be
reasonably implemented on clusters of independent or weakly coupled
machines is commonly referred to as capability computing. Managing a
large number of tasks working independent problems is referred to as
Capacity computing. As seaborg is a DOE resource for non-classified
capability computing, this document will focus on the implementation
of high concurrency solutions to large scale scientific problems. Thus,
for the most part, it is in the context of capability, rather that capacity,
that we mean parallel scaling.

Finding the level of parallelism best suited to a given problem can be
challenging. In general it involves careful consideration of the nature
and size of the problem to be solved, the properties of the compute
hardware and interconnect, the algorithm and the time scale on which
a solution is required.

Consider for example dense matrix multiplication, C(n,n) = A(n,n)*B(n,n)
, encountered in LAPACK, ESSL, SCALAPACK and PESSL as a DGEMM
routine. The level of parallelism which provides the fastest solution
depends on the scale of the problem. For small problems the setup
and overhead from parallelism dominates any benefit from the
capabilities that parallel computing brings. Beyond this point is the
regime of capability computing.

Scaling of NxN matrix-matrix multiply

Capability computing means more than providing a faster solution. For
problems of sufficient scale, capability computing is a requirement for
any solution at all. E.g., in most cases there is no practical way to
extend single 32 bit CPU solutions beyond the 2G address space which
constrains N < 10e4 for such an approach. Likewise for extending
shared memory solutions beyond the memory limits of a single SMP
node. This makes certain classes of problems unapproachable on
commodity hardware and ultimately necessitates certain capability
hardware such as high bandwidth low latency interconnects and
parallel filesystems.

Specific properties of the compute hardware are also demonstrated
above. If the nodes had 8 CPUs, instead of 16, the cross over point
between a single node and multiple node solution would be at a
different problem size. On seaborg's 16 way SMP nodes the threaded
and MPI based matrix multiply show asymptotically identical
performance. Both are using shared memory and avoid switch
communication.

Dense matrix multiplication is extremely simple from an algorithmic
perspective and not too much should be inferred from the above
scaling data as it regards other algorithms or computations. As a
rough sketch, however, it does represent how scaling of problem size
and machine capabilities impact optimal solution strategy. Other
algorithms will have different scaling properties, but the overall trends
and transition to capability computing similarly occur.

It's worth mentioning that not all tasks scientific or otherwise need
massive parallelism. Post-processing of data, debug work, and data
workup are important parts of scientific computing and often
achievable on a single node or CPU. As such not every job run on a
machine such as seaborg will be a capability job.

For the class of scientific problems which do require the capabilities
offered by large scale parallel computation seaborg provides
development and production environments for implementing and
solving scientific problems of scale.

This document and the consultancy resources available within the
NERSC User Services Group can provide answers to researchers about
scaling and optimal implementation of scientific codes on NERSC
hardware.

Constraints to Scaling

As a way of setting boundary conditions, it is useful to lay out what
architectural constraints exist on the IBM SP to running parallel at
large scale. These limitations are intrinsic to the machine and are
mentioned (along with some notes on how they are mitigated) only
briefly before moving on to application level issues.

4096 way MPI :

Currently the MPI implementation on seaborg supports up to
4096 tasks or 256 fully packed nodes. Higher concurrency is
achievable only through using mixtures of threads and MPI tasks
(e.g., OpenMP). When approaching this upper bound on MPI
tasks issues involving performance and memory arise.

Process Scheduling:

As with most types of cluster computing there is no fine grained
synchronization between nodes. This means synchronizing

becomes more difficult at higher concurrency. NERSC does its
best to deal with this by enforcing resource uniformity, e.g., not
sharing nodes between user jobs and automatically detecting
and dealing with errant processes on every node.
Synchronization is increasingly important as jobs scale up and is
a common bottleneck when scaling up parallel codes.

Job Scheduling:

Scheduling jobs requires waiting for a number of resources
proportional to the concurrency to become available. The lack of
checkpoint/restart or gang scheduling capabilities with
performance sufficient to deal with large scale parallel jobs
means that the scheduling of small long running jobs will be at
crossed purposes to scheduling large scale parallel jobs. NERSC
elevates the priority of larger concurrency jobs to enhance their
throughput and has regular NUG discussions about queue
structure.

Scaling up a parallel application is largely about avoiding constraints
and bottlenecks. Aside from the unavoidable contrasts above, many
parts of code itself may come under algorithmic strain as concurrency
is increased. Knowing the constraints of the chosen algorithms and
their alternatives is of great benefit in avoiding bottlenecks.

Methods of dealing with these constraints and bottlenecks are provided
in the next two sections.

SMP Scaling

Nighthawk II node

Seaborg compute resources consist of 416 compute node each with 16
CPUs per node. Each node is capable for performing at most 24
GFLOP/second. All the nodes are IBM 375 Mhz NightHawk II nodes
with the following overall CPU and memory specification.

Processor

Processor class POWER_630

Clock frequency 374.7 MHz

Floating Point
Units

2 (*,+,FMA)

Peak GFLOP/s 1.5

Real Registers 40

Virtual Registers 64

L1 Inst Cache
Size

32 KB

L1 Data Cache
Size

64 KB

L1 Data Cache
Line Size

128 B

L1 Cache
Associativity

4 way by line

L1 latency /
bandwidth

5 nsec / 3.2
GB/sec

L2 Cache Size 8192 KB

L2 Cache
Associativity

4

L2 latency /
idth bandw

45 nsec / 6.4
GB/sec

Memory

Memory
topology

crossbar

Memory format SDRAM DIMMs

Memory
banking

4 banks / DRAM

Peak Memory
BW

16 GB/sec

Memory bus
speed

187 Mhz (2:1)

Page Size 4 KB

TLB size 128x2 Pages

TLB miss
penalty

25-125 cycles

L2->L1 Prefetch
Registers

10

L2->L1 Prefetch
Streams

4

L1 -> registers
2 Word/cycle
Load

L1 <->
registers

1 Word/cycle
Load/Store

L2 -> L1 1.3 Word/cycle

Memory ->
L1/L2

1 Word/cycle

Each CPU has its own separate caches so there is minimal resource
sharing or cache conflict between CPUs on an SMP power III node.
This separation provides an important simplification to the developer
of parallel codes. Since each CPU's filling and invalidation of cache
impacts only code running on that CPU there is less contention at this
lowest level than on machines where low level resources are highly
shared. Application programmers need not partition memory or cache
access patterns along processor card or multi-chip module (MCM)
boundaries as cache memory affinity is not an issue.

Conversely, for main memory there is no notion of local memory. All
CPUs within a node access main memory over a uniform crossbar
switch. While the possibility of contention over this switch is real (and

will be treated below), there is no need for the application programmer
to keep track of which parts of main memory are local to the CPU.

from: RS/6000 SP 375MHz POWER3 SMP High Node Overview

Memory Contention

As main memory is shared on an SMP, contention may occur. The
peak main memory bandwidth is 15.6 GB/s based on the crossbar
memory subsystem detailed above.

The full bandwidth is not available to a single task. In order to saturate
the main memory bandwidth multiple tasks are required. A more
detailed understanding of memory contention on the nighthawk II
node can be arrived at by considering how the performance of N
memory intensive tasks

Scaling of SMP memory contention.

Source: xtream memory profiling tool (concurrency through MPI).
More results.

http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/xtream
http://hpcf.nersc.gov/computers/SP/scaling/xtream

Two aspects of how memory contention scales with concurrency in
parallel applications are demonstrated above:

• When the data structures being acted on are sufficiently small
that cache reuse is possible, increasing concurrency has minimal
impact. While the tasks in the parallel application are not
contending with one another in this regime, they are contending
with the OS, cron jobs, and other system interruptions. As the
concurrency of the code running on the node increases it
becomes increasingly likely that any such system interruption
will create a resource contention with the code. These
interruptions tend to be very brief and their frequency increases
with SMP concurrency. On seaborg, NERSC, does what it can to
keep these interruptions to a minimum. Intra-node
concurrencies above 16 above obviously not recommended.

• As the memory space required by the application extends into
main memory a clear trend toward resource contention is
observed. Here the contention for memory bandwidth exhibits a
sustained drop in performance of each task. The magnitude of
this contention depends on concurrency and on the operation
being performed on the data. As multiple CPUs draw on the
SDRAM main memory they contend on the memory controller.

As the SMP is loaded with more processes the main memory
bandwidth available to each task individually will decrease. This is
summarized below for the daxpy like Triad microkernel (a(i) = b(i) +
s*c(i)). As the number of tasks on the node increases the main
memory bandwidth per task, shown here as a percentage, decreases.

That tasks in an cache based SMP compete for main memory access is
certainly no surprise and in practice the situation is not as bad as it
may seem. The example above is roughly a worst case scenario for
memory contention, where n memory bandwidth bound processes

http://hpcf.nersc.gov/computers/SP/scaling/triad.f

contend for access to main memory. Applications which are not strictly
memory bound, show more varied memory accesses, or greater
memory reuse should in practice show less contention.

Developers of scientific applications should realize the above issue of
memory contention may also to varying degrees impact their
applications. For applications or algorithms which are particularly
starved for memory bandwidth there may be benefit from decreasing
the number of tasks run per node. This could yield a faster time to
solution trading off of course a smaller maximum FLOP/s and possibly
a decreased percentage of peak performance. Taking this approach
should be done cautiously as in many cases it would lead to less
efficient utilization of the nodes in a batch job.

MPI message sent inside the SMP through shared memory are detailed
here.

MPI Scaling

Abstract

In this section we will present an brief overview of how MPI is
implemented on the IBM SP followed by details on how the
implementation performs at high concurrency alongside information on
how to mitigate several common problems encountered when scaling
up codes.

Colony Switch

The network fabric which joins the compute nodes on seaborg is the
SP Colony switch II . Each NightHawk II node has two switch adapters
(css0 and css1) which connect directly to the memory bus of the
NightHawk II node. These adapters interface to a three level switch.

In order to demonstrate scaling bottlenecks in point to point switch
bandwidth, an experiment similar to what was done above for memory
bandwidth can be done. Bandwidth across the switch as a function of
message size is measured between two different nodes in the cluster.
Each measurement involves two processes, one on each node which
act as both sender and receiver (MPI roundtrip bandwidth is reported).
The number of such pairs running concurrently is increased from 1 to

http://hpcf.nersc.gov/computers/SP/scaling/
http://hpcf.nersc.gov/computers/SP/scaling/ref_switch

16 in order to quantitatively demonstrate the scaling properties of
contention and switch bandwidth.

Two such experiments were done; the first on a single adapter css0
and the second on the multi-link adapter csss.

css0 csss

While for a single pair of tasks the two adapters perform roughly the
same, the csss adapter shows better performance (less contention)
when the number of concurrently communicating tasks increases.
Currently the csss or multi-link adapter does not support striping of
individual messages across the physical adapters. For this reason a
single stream sees no additional bandwidth by using the multi-link
adapter, but multiple streams will see a better aggregate bandwidth.

The csss adapter is used by default on seaborg and most application
developers should use it since it is most often the best route to the
switch. At earlier software levels there were some constraints on the
use of csss which have been removed.

Not all MPI communication goes across the switch. For
communications between tasks that reside on the same node it is
much more efficient to route MPI message through shared memory
buffers. The environment variable "MP_SHARED_MEMORY=YES" is set
by default to allow this. An experiment similar to that done above for
css0 and csss is presented below where intra and inter-node
bandwidths for pairs of MPI tasks are compared.

Intra and Inter Node Messaging

source: pingpongn.c , latency samples collected over 33 hour period

Shared memory messages in the range of 1MB in length (10^5
doubles) show optimal bandwidth.

Likewise it can be seen that the latency of messages is much lower on
a node than through the switch. This is to be expected, but it is useful
to keep in mind that rapid exchanges of small messages may benefit
from being kept on node or possibly aggregated before being sent off
node.

That the distribution of latencies is much tighter for shared memory
than switch routed MPI makes sense as well. The number of compute
resources, and in particular shared compute resources, that are
involved in an MPI message sent over the switch is much greater than
shared memory messaging on a dedicated node. For instances GPFS,
which we'll discuss in the next section, uses the same switch for its
data. As a result deviations from optimal latency are expected based
on contention for this resource.

IBM's MPI implementation

The software stack for MPI on the SP is, as of this writing (06/03), as
follows:

API Library Description

MPI libmpi.a
The MPI API itself, implementing MPI1 and MPI2
(except dynamic processes)

MPCI libmpci.a A point to point API in which MPI library is written.

PIPES libmpci.a Low level message buffer system.

HAL libhal Hardware abstraction layer (IP or US)

http://hpcf.nersc.gov/computers/SP/scaling/pingpongn.c

The above library are available in 32 and 64 bit, thread-safe and non-
thread-safe as well as internet protocol (IP) and user space (US)
versions. Threadsafe compilation (via the "_r" compilers) is required
for the 64 bit MPI library. US and IP differ in the paths that messages
traverse between MPI processes.

 seaborg node 1 seaborg node 2

IP
user code -> kernel ->
adapter ->

switch
fabric

-> adapter -> kernel ->
user code

US user code -> adapter ->
switch
fabric

-> adapter -> user code

User space communication allows your program to talk directly to the
switch adapter avoiding kernel interruption. The user space MPI library
is the default as its performance (latency and bandwidth) far exceeds
that of the IP version. In the preceding and following examples user
space MPI is understood unless specifically noted otherwise.

LAPI is also available on the SP, but will not be treated in this work
where we focus on the scaling of MPI codes.

MPI based programs are run via the Parallel Environment (PE) most
often using poe. Programs compiled with the PE compilers, e.g., mpxlf,
mpcc, mpxlf90 have their main entry point replaced with a new entry
point which handles node allocation and process setup on all the nodes
involved in the parallel job. A large number of environment variables
("MP_*") and command line options affect the way that PE starts the
job. A few relevant to scaling which NERSC sets by default for all users
are listed below:

MP_SHARED_MEMORY=YES
Intranode messages through
memory: faster, less switch
traffic

MP_EUIDEVICE=csss
Use both switch adapters: more
switch bandwidth

MP_EUILIB=us
User space MPI: faster MPI
messaging

MP_RETRANSMIT_INTERVAL=50000
How often to retry dropped
packets: empirically best setting

Other environment variable setting that impact application scaling
performance are touched on in the following sections .

http://hpcf.nersc.gov/computers/SP/scaling/ref_lapi

The users program code is then called after all PE startup work is
complete. The time required to complete this startup is examined
below.

Job Startup

Often the first step toward doing production work at a higher level of
parallelism involves trying short running test codes with more tasks.
One of the first things that a seaborg user may notice when examining
scaling this way is a increased sluggishness of program startup and
termination.

Therefore in order to properly gauge the timings from such scaling
tests it is important to take into account the scaling job startup time.
Below results are shown for the time taken to initiate poe and complete
MPI_Init() for a varying number of tasks.

Since this is a one-time cost, its overall impact on user codes is
minimal except for very short running jobs. A parallel application
based on several short running parallel job steps would be impacted in
proportion to its MPI concurrency.

It is however useful to know the time scale for parallel job startup.
Especially for applications running at large concurrency it may be
important to wait a minute or so before concluding that the job is in
trouble. This small time window, while waiting for the first line of
output from the program, is often highly scrutinized by users when
running at a higher concurrency for the first time. Before deciding the
job has failed or is hung make sure to wait for this startup to
complete.

For longer running production jobs this issue is less important.

MPI Memory Usage

Aside from the fixed amount of memory required to build the PIPEs,

PIPE memory per task = 2*MP_PIPE_SIZE*(# of MPI tasks total - 1)

various MPI functions require internal temporary buffers. The size of
these buffers is not documented, but is seen to vary with message
buffer size, MPI_TYPE, and between the various MPI functions
themselves. E.g., MPI collective and reduction operations tend to
require greater internal buffer space than point to point MPI functions.

Characterizing the amount of memory required for a given message
size to each MPI function call while potentially useful would probably
provide too much information to be easily digested. The need for
temporary storage by certain routines can be inferred from the
algorithmic specifics of an MPI call.

From the perspective of someone writing MPI applications, the
important question here is "How much memory can I use in my code
and how much do I have to set aside for MPI?"

In a somewhat reduced approach to answering this question a
microkernel code mpimem.c was written which exercises some of the
most often used MPI functions (MPI_Barrier, MPI_Bcast, MPI_Alltoall,
MPI_Allreduce, MPI_Reduce) and measures by way of system calls
(e.g. ps, sbrk, getrusage) the memory used by the process as a function
of problem/message size. Memory used by the process which is not
allocated by the user code is considered part of the memory used
internally by MPI.

The following plot shows the measurement described above for a 1024
way job:

MPI Memory Usage

http://hpcf.nersc.gov/computers/SP/scaling/mpimem.c

source: mpimem.c

For large concurrency jobs, internal memory usage by MPI can become
a significant issue leading unexpected to job failures.

IBM's MPI implementation allows throttling down the size of the PIPEs
via the PE environment variable MP_PIPE_SIZE. The default setting of
64 KB per PIPE can be decreased to either 32 KB or 16 KB. The
memory savings by decreasing MP_PIPE_SIZE is shown in the
following graphs:

tasks MP_PIPE_SIZE

256

512

http://hpcf.nersc.gov/computers/SP/scaling/mpimem.c

1024

Since there are potential performance penalties when using smaller
MPI buffers it is recommended that the use of MP_PIPE_SIZE=32 or
16 should be viewed as a workaround for codes running out of
memory rather than a standard programming practice for large
concurrency jobs.

Synchronization

One of the major impediments to scaling up the concurrency of
scientific codes is latency in synchronization. This is a well understood
aspect of coordinating parallel operation of several resources when
each may or may not be ready for work at a given time. As the
number of resources increases the frequency and/or duration of
interruptions must decrease in order to maintain the same efficiency.

Unfortunately for clusters of independently scheduled PEs the
frequency and duration of interruptions are roughly fixed, being
intensive properties of the cluster's building blocks. The cumulative
time required to schedule and complete collective work across the
cluster is extensive and scales with the concurrency of the parallel job.
It is largely for this reason that we focus on mitigating the impacts of
synchronization at high concurrency.

The graph below shows the time required to complete a synchronizing
MPI_Barrier call for a varying number of tasks. Four jobs were run on
8, 32, 64, and 128 nodes respectively. Within each job the timings of
MPI_Barrier were measured for MPI communicators of varying size.

MPI_Barrier Scaling

source code comm.c

The impact of concurrency on synchronization times is dramatic,
spanning four orders of magnitude. The IBM SP is a cluster of
independently scheduled instances of AIX, for this reason it grows
increasingly unlikely that at a given moment all the nodes involved will
be ready to complete a synchronizing operation.

Advice on mitigating the impact of high concurrency global
synchronization.

• Identify from a high level algorithmic point of view the places in
your code which certainly require full synchronization. Try to
aggregate these together in so far as possible in order to
accomplish as much of the synchronized work in chunks.

• Where possible use less synchrozing MPI calls.
• Use subcommunicators to restrict synchronization into atomic

regions.
• Before inserting an MPI_Barrier first determine if the code is

already reliably synchronized at that point in the execution
stream or if synchronization is really required by the
computation.

• NERSC does what it can to provide quiet, dedicated nodes. If you
notice otherwise or have ideas on how to improve this at NERSC,
please to contact NERSC staff.

Load Balancing

Aside from the intrinsic delays (due to kernel, OS background activity,
etc.) in scheduling a large number of tasks, additional delays can be
introduced through unequal partition of work which will further
increase the delay when a synchronizing section of the code is
reached.

http://hpcf.nersc.gov/computers/SP/scaling/comm.c
mailto:consult@nersc.gov

To illustrate the impact of load imbalance on parallel execution
consider a hypothetical code running on 4 tasks. The code proceeds
through iterations composed of synchronizing, doing work and doing
I/O. The time to solution is negatively impacted if the time spent doing
work shows wide variance. For such an application the impact of load
imbalance scales dramatically with concurrency, as it introduces more
serial time into an Amdahl like model for parallel efficiency.

Wallclock Impact of Load Balance

Imbalanced FLOP work

Balanced FLOP work

Key

Yellow region shows time lost to load imbalance.

In practice the MPI portion of the code could be in in either or both of
the I/O or Sync parts of the code. While load imbalance can occur in
these parts of a code (particularly if the I/O involves disk activity), the
most important path to enforcing load balance is in evenly partitioning
the problem space across the PEs.

Equally distributing problem domains across a processor topology can
be made easier through libraries such as Metis which can produce
optimal partitions. Scalapack and other parallel libraries have
functionality to decompose problems across PEs. It is generally a good
idea to check for load imbalance by, e.g., looking at the distribution of
HPM statistics when preparing production runs for a new problem or at
a new oncurrency.

One may also choose to adopt a partitioning scheme which may be
suboptimal in some sense if it makes load balance easier. E.g., a
hyperslab decomposition might be chosen over a block cyclic one if it
leads to more manageable and predictable load balance. The tradeoff

http://hpcf.nersc.gov/computers/SP/scaling/Metis

here is between time lost to the load balance versus time lost to the
algorithm itself.

MPI Collectives

It's difficult to provide a taxonomy which describes the level of
synchronization required by MPI library calls. This is due to the
multitude of ways they can be called and the fact that the
implementation may choose certain synchronization rules at run time
(e.g., eager vs. rendevous protocols). However, generally speaking it
is possible to categorize certain commonly used MPI calls on their
overall level of synchronization based on when tasks are allowed to
leave an MPI function call.

By MPI collectives we mean MPI routines which all tasks in a
communicator call and either

• no task leaves before all tasks (MPI_AllReduce, MPI_Alltoall)

or

• tasks may leave before all tasks enter (MPI_Bcast, MPI_Reduce
)

MPI calls which are know to suffer from scaling performance problems
are certain MPI collective calls (e.g., MPI_Alltoall and MPI_Allreduce
operations). The reasons for this are more complicated than in a
simple MPI_Barrier, since not only synchronization, but switch
bandwidth and the algorithmic specifics of the MPI calls come into
play. Aside from the some degree of synchronization collective MPI
calls involve some amount of work in relation to the size of messages
being communicated or reduced.

Below the time to complete an MPI_Alltoall and MPI_ALlreduce for
varying message sizes is shown:

tasks

MPI_Alltoall MPI_Allreduce Sync

256

512

1024

2048

MPI_Bcast which is not fully synchronizing does not show as large or
as varied timings. Though a broadcast and a all-reduce are quite

different, there are cases where not all tasks need the reduced data or
do not need at the same time and set of broadcasts can replace a
more highly synchronizing collective.

MPI_Bcast

source: mpimem.c

One aspect of the scaling of MPI collectives which is not depicted
above is the variability in timings. Highly synchronizing calls of any
sort not only show greater average delays at higher concurrency, but
also show greater relative variability in the length of delays.

Some of the performance shortcomings of the MPI implementation on
the SP arise from (or are exacerbated by) certain generalities in the
MPI standard. In the interest of standards compliance certain general
cases must be taken into account which lead to worse performance
than one might expect from a rough estimate. In general, use the
most contiguous representation possible when creating MPI_Types.

If the user code/application in question does not make use of
MPI_Types or other higher level MPI constructs, e.g., the message
data are all vectors of atomic types (double, int, real*8, etc.) it has
been demonstrated that better performing (non standards compliant)
variants of MPI collectives may written.

IBM's ACTC provides such an MPI variant, Turbo MP. Likewise users
have presented their own hand coded MPI collective routines at
various conferences . It is important to realize that this version of the
MPI library is neither standards compliant nor a supported IBM
software product. In evaluating such approaches the user must
evaluate the tradeoffs between standards compliance, portability, and
performance. As of this writing, this library requires both MPI and LAPI

http://hpcf.nersc.gov/computers/SP/scaling/mpimem.c
http://actc.turbomp/
http://hpcf.nersc.gov/computers/SP/scaling/scicomp4.worley

so in general codes will be limited to 8 tasks per node in order to
accomodate 2 switch windows per task.

Example : Reducing MPI_Allreduce

Crucial to the scaling efficiency of most codes is reducing the
frequency and duration of synchronizing MPI collectives. Global
reductions are often unavoidable from an algorithmic perspective, but
the impact on the code performance may often be mitigated by
consolidating the global reduction to the smallest set of exchanges.

More Synchronizing Less Synchronizing
 sump=0.0
 do i=1,np
 sum=zero
 do j=1,nz
 jj=j+rank*nz

sum=sum+phi(i,j,ip)*psi(jj,n,il2)
 continue
 sumr=real(sum)
 sumi=aimag(sum)
 call
mpi_allreduce(sumr,sumrt,1,mpi_real8,
 1 mpi_sum,mpi_comm_world,ierr)
 sumr=sumrt
 call
mpi_allreduce(sumi,sumit,1,mpi_real8,
 1 mpi_sum,mpi_comm_world,ierr)
 sumi=sumit

sump=sump+hzz*(sumr**2+sumi**2)
 continue

 do i=1,np
 sum = zero
 sumpit(i) = zero
 sumpi(i) = zero
 do j=1,nz
 jj=j+rank*nz

sum=sum+phi(i,j,ip)*chi(jj,n,il2)
 continue
 sumpi(i) = sum
 continue

 call
MPI_Reduce(sumpi,sumpit,np,mpi_complex16,
 1
MPI_SUM,0,mpi_comm_word,ierr)
 if(rank .eq. 0) then
 sump=0.0
 do i=1,np
 sump = sump +
 1 (real(sumpit(i))**2 +
aimag(sumpit(i))**2)*hzz
 enddo
 endif
 call
MPI_Bcast(sump,1,mpi_complex16,
 1 0,mpi_comm_world,ierr)

MPI Point to Point

Comparing timings and usage of globally called collectives is much
simpler than surveying the space of possible pairwise communications.
The pattern of messages in a code using point to point messages will
depend closely on the problem being solved and the best we can do
here is provide some general information and a few specific examples.

Here we focus on nearest neighbor exchanges which are common to
solving PDE's on regular grids. An examination based on
dimensionality of the grid (and therefore number of neighbors) along
with message size is presented. The information below along with
information about the switch should be suffcient to answer most
questions about point to point communication on seaborg. If you have
further questions feel free to contact NERSC Consultants.

Halo Communication I - Synchronous

A common communication pattern in scientific codes is halo or N-
nearest neighbor communication. While the ordering and number of
steps will depend on the calculation at hand, there are certain worst
case patterns that applicaiton programmers will most always want to
avoid.

The following cartoons and fragments from a real code contain two
nearest neighbor exchanges that show very different levels of
synchronization. The second approach outperforms the second by 40%
on 128 tasks.

 if(rank.ne.size-1) then
 call mpi send(mesh(1,ny),nx,mpi re

 rank+1,1,mpi_comm_world,ier
 call mpi_recv(back,nx,mpi_real8,
 mpi any source,2,mpi comm w
 end if
 if(rank.ne.0) then
 call mpi_recv(front,nx,mpi_real8,
 mpi any source,1,mpi comm w
 call mpi send(mesh(1,1),nx,mpi rea

 rank-1,2,mpi_comm_world,ier
 end if

 rankf = rank+1
 rankb = rank-1
 if(rank.eq.nproc-1) rankf = MPI PRO
if(rank.eq.0) rankb = MPI PROC NULL
call mpi sendrecv(mesh(1,ny),nx,mp

 rankf,1,front,nx,mpi_real8,
 rankb,1,mpi comm world,ista
call mpi sendrecv(mesh(1,1),nx,mpi

 rankb,2,back,nx,mpi_real8,
 rankf,2,mpi comm world,ista

Choose messaging strategies that wait as long as required (but not
longer) to initiate the communucation needed for the computation. The
above example includes more delays (though blocking MPI) than are
required for each node to exchange boundary data with it's neighbors.

http://hpcf.nersc.gov/computers/SP/scaling/
mailto:dskinner@nersc.gov

Halo Communication II - Asynchronous

Another common approach to domain decomposed exchanges is to
post MPI_Irecvs, MPI_Isends, and then wait for the communication to
complete. This asynchronous approach imposes a minimal amount of
blocking and exposes opportunity for overlap of communication and
computation. In practice on seaborg, the benefit from the former is
greater than for the latter.

Below we will compare five strategies that differ in their degree of
snychronization. The meshes are set up such that each node has a
neighboring rank, neigh[dim][{0,1}], where dim is 0,1,2 (for one, to
and three dimensioanl meshes) and {0,1} indiciates the directiona
long each dimension.

The message exchange stratgies and a simple mnemonic tag for each
are:

tag MPI Calls code

BSBR
MPI_Send,
MPI_Recv

 if(rank%2) {
 MPI_Send(obuf+0*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm);
 MPI_Recv(ibuf+0*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm, s+0);
 MPI_Send(obuf+1*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm);
 MPI_Recv(ibuf+1*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm, s+0);
 } else {
 MPI_Recv(ibuf+0*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm, s+0);
 MPI_Send(obuf+0*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm);
 MPI_Recv(ibuf+1*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm, s+0);
 MPI_Send(obuf+1*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm);
 }

SERE MPI_Sendrecv

MPI_Sendrecv(obuf+0*bytes,bytes,MPI_BYTE,neigh[0][0],0,

ibuf+0*bytes,bytes,MPI_BYTE,neigh[0][1],0,comm,s+0);

MPI_Sendrecv(obuf+1*bytes,bytes,MPI_BYTE,neigh[0][1],0,

ibuf+1*bytes,bytes,MPI_BYTE,neigh[0][0],0,comm,s+1);

ISBR
MPI_Isend,
MPI_Recv

 MPI_Isend(obuf+0*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm,r+0);
 MPI_Isend(obuf+1*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm,r+1);
 MPI Recv(ibuf+0*bytes, bytes, MPI BYTE, neigh[0][1],
0, comm, s+0);

MPI Recv(ibuf+1*bytes, bytes, MPI BYTE, neigh[0][0],

0, comm, s+1);

ISIR
MPI_Isend,
MPI_Irecv

 MPI_Isend(obuf+0*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm, r+0);
 MPI_Isend(obuf+1*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm, r+1);
 MPI_Irecv(ibuf+0*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm, r+2);
 MPI_Irecv(ibuf+1*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm, r+3);
 MPI_Waitall(4,r,s);

IRIS
MPI_Isend,
MPI_Irecv

 MPI_Irecv(ibuf+0*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm, r+0);
 MPI_Irecv(ibuf+1*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm, r+1);
 MPI_Isend(obuf+0*bytes, bytes, MPI_BYTE,
neigh[0][0], 0, comm, r+2);
 MPI_Isend(obuf+1*bytes, bytes, MPI_BYTE,
neigh[0][1], 0, comm, r+3);
 MPI_Waitall(4,r,s);

The ibuf and obuf are non overlapping receive and send buffers. The
boundary conditions are periodic.

The time to complete an exchange as a funciton of message size is
shown below.

pology Low Concurrency High Concurrency Asynchronous Speedup

Ring

Mesh

Mesh

This experiment shows the benefit from asynchonous point to point
becomes significant at large scale concurrencies. Even more so when
the topolgy of the problem include many point to point pairs. For
seaborg the timings generally follow the trend:

Isend/Irecv < Isend/Recv < Sendrecv < Send/Recv

Avoiding Synchronization

Avoiding synchronization in so far as possible can be of great benefit
to the scaling performance of a parallel code. The way in which a
problem is coded has direct impact on the amount and degree of
synchronization that happens between tasks. Some amount of
synchronization, either partial or global, is intrinsic to most algorithms,
other uneccessary synchronization is often the result of a mismatch
between the order in which events are specified (in the code) to occur
and the order in which they must occcur algorithmically. The structure
of MPI makes is easy to unintentionally introduce extraneous points of
synchronization which if removed may benefit the scaling performance
of the code.

Parallel I/O Scaling

Abstract

Here we will address performance and scaling concerns when moving
data from memory to disk.

An important first step in examining a slow running or poorly scaling
IO code section is to consider the amount of metadata movement
versus user data movement. Similarly to the guiding principle for MPI
above, fewer large IO transactions are generally preferable. Frequently
writing small temporary scratch files from each task may not
noticeably impede a code running 128 way and yet may have
significant impact at 1024 way.

Concurrency, data size and data topology are typically the determining
factors in deciding how to accomplish I/O from a parallel code. In what
follows the first two will be treated as free variables. Spaning the
space of all data topologies is not possible here so the test below are
restricted to the following rough sketches; largeblock contiguous,
interleaved blocks, and scattered.

File Systems

NERSC's SP relies on GPFS for most user file I/O. Both home ($HOME)
and scratch ($SCRATCH) filesystems on mounted globally on all nodes
via GPFS.

Users have two main choices for parallel filesystems. All $HOME
directories and each of the users $SCRATCH directory are in
/usr/common/homefs and /usr/common/scratchfs. The resources
mentioned in the hardware section (spindles, adapters, etc GETINFO)
are allocated between these filesystems in an asymmetric way. While
both filesystem are robust and global across the machine, $SCRATCH
has greater bandwidth to disk.

Seaborg File I/O Resources

A small local disk filesystem (/tmp) exists on each node, but this space
is tiny and to be used only for AIX and system temporary files. Fortran

and other software which use the TMPDIR variable will write their
scratch files to $SCRATCH, a large fast parallel file system in GPFS. In
this paper, all considerations of how user file I/O scales are based on
GPFS rather than local disk.

The overall parallel strategy of GPFS is to load balance I/O requests
across the machine by distributing ownership of data blocks widely
across a large number of servers. These participants in the GPFS
filesystem are connected via the colony switch which provides
considerable bandwidth for data transfers. Modern versions of GPFS (>
1.3) support memory mapped files and most other POSIX I/O
functions.

Likewise it can be important to keep in mind that due to the
distributed nature of GPFS nodes other that the GPFS server nodes,
e.g. batch nodes acting as GPFS clients, can also fulfill requests for
disk data. Each client node has a "buddy buffer" of up to 256 MB from
which it may serve blocks requested by other clients if such a request
permitted based on file system locks.

The GPFS filesystems on seaborg are built from 44 TB of SSA disks,
served from 16 GPFS server nodes. A large amount of memory, 32 GB
on each server node is available as a cache buffer.

GPFS Basics

Scalability results from the distribution of file data across a large
number of nodes. The distribution is at the block level. Blocks are
512Kbytes. Switch data movement is through KLAPI.

Each node participating as a GPFS client can obtain a write lock for a
range of blocks within a file and all or some portion of that data may
reside in the client ndoes memory (rather than on disk). If a read
request is made for that data the client node may provide the data
directly or the transaction may be completed

GPFS supports byte range locking, which means that several tasks
may read or write disjoint areas of a file without competing for
exclusive locks to the file. No special coding, other than making sure
the accesses do not overlap is required.

In order to implement parallel I/O well on seaborg it is useful to
understand what parallel performance the GPFS filesystems are
capable of, but also what types of file activitiy to avoid.

Despite it's distributed nature, GPFS must still use exclusive locks to
maintain data coherence and the management of these locks is
handled in a more centralized way than the way that the data itself is
distributed. While not delving into a detailed description of GPFS
metadata, mind that there is a metadata workload associated with
each

Scaling of Directory Operations

Calling libc(2) functions from each MPI task (not shell/system calls).

From the above it should be obvious that directory creation or removal
from each task of a parallel job is a severe impediment to scaling.
Certain I/O operations do not scale well with concurrency as they
involve large metadata workloads (inode creation or destruction ~
concurrency) or tax GPFS's token management. Knowing which
operations these are is useful when choosing the building blocks of a
parallel I/O strategy.

As a rough sketch, this is demonstrated by using a neglibly small data
size and testing the impact on concrrency alone on file operations.

pseudocode timings

mkdir(fname,S_IRWXU);
rmdir(fname);
fd = open(fname,O_TRUNC,S_IRWXU);
write(fd,byte,1);
close(fd);
fd = open(fname,O_RDONLY,S_IRWXU);
read(fd,byte,1);
close(fd);
unlink(fname);

code

The performance considerations arising from the above analysis have
to do with near zero (1B) data size per task. While it is useful to
understand the impact of concurrency itself, in all real applications
tradeoffs between concurency and data size will dominate the
decisions made about I/O strategies.

GPFS Performance Contiguous Writes

Parallel I/O Goals

Before turning to the identification of optimal strategies for parallel I/O
it's worth clarifying that the important goals are. Typically the primary
goal of a parallel I/O strategy is to increase the read/write bandwidths
from memory to disk. Other considerations include minimizing on disk
storage size, conserving inodes, overlapping I/O with computation,
and preserving a particular organization of data within a file.

• Maximize Performance
• Conserve disk resources (blocks and/or inodes)
• Maintain file organization or data structure

Realistically, many applications will benefit from a balance of these
goals. Many applications and existing codes may have built in
constraints or rely heavily on certain I/O strategies which impede
performance under GPFS on the SP. By using the quantitative
comparisons provided in the next section, researchers may determine
at what point the burdens of modifying their code are overtaken by
sufficient increases in performance.

Parallel I/O access patterns come in many types, e.g.,

http://hpcf.nersc.gov/computers/SP/scaling/comm.c

• Structured / Unstructured
• Synchronized / Asynchronous
• Transactional and database access patterns.

Applications also vary greatly in their built in assumptions about I/O
patterns. In the comparisons that follow we will first focus on the
simple block I/O pattern in which n tasks each move a block of double
precision numbers to and from disk.

Memory address space

The assumption that the the data is contiguous in the memory address
space may not be valid for all applications, but the access times for
discontiguous memory organization will typically be orders of
magnitude smaller than the I/O times involved. For this reason the
primary concern is the structure of the data in the file offset space.

Parallel I/O Strategies

There are many ways to organize the movement of data between
memory and disk. Below are diagrams showing four strategies which
will be compared in the following sections. Movement of data through
MPI is shown in blue and disk I/O is shown in black.

1) serial 2) multiple file

3) POSIX I/O 4) MPI I/O

Which strategy is optimal in terms of performance depends largely on
the organization of the data on disk and on the total concurrency of
the parallel code. Treating a large number of I/O patterns is not
feasible so in this writing we will stick to the three identified
previously, treating them in turn.

Contiguous File Structure

Hyperslab decomposition of grids is a common type of partitioning
which leads to logically contiguous and typically large regions of data
in memory and disk.

E.g. task i owns the data in a multidimensional tensor from some
lower_index(i) to some upper_index(i) of the slowest running index.

Contiguous memory spaces

Fortran grid(..., lower_index(i)) through grid(..., upper index(i))

C grid[lower_index(i)] through grid[upper_index(i)]

Contiguous file spaces

multiple files POSIX I/O

In this case each task does its nbytes of I/O to a separate file or a
unique region of a common file.

Multiple Files POSIX I/O

 t0 = MPI_Wtime();

MPI_Barrier(MPI_COMM_WORLD);
 fp=fopen(fname_rank,"w");
 fwrite(data,nbyte,1,fp);
 fclose(fp);

MPI_Barrier(MPI_COMM_WORLD);
 t1 = MPI_Wtime();

 t0 = MPI_Wtime();
 MPI_Barrier(MPI_COMM_WORLD);
 fd=open(fname_global,O_CREAT|O_RDWR,
S_IRUSR|S_IWUSR);
 lseek(fd,(off_t)(rank*nbyte)-1,SEEK_SET);
 write(fd,data,1);
 close(fd);
 MPI_Barrier(MPI_COMM_WORLD);
 t1 = MPI_Wtime();

The performance of these strategies are depicted below.

Optimal I/O strategies for contiguous data

In summary for contiguous I/O patterns the performance have little to
do with the topology of data on disk but rather controlling the number
of tasks writing concurrently.

Noncontiguous Parallel I/O

This section examines the case of multiple contiguous sections of data.
Here both the total size and number of sections are relevant to how to
best perform I/O. That is both the concurrency and problem size
determine the best I/O algorithm. Block cyclic decompositions common
in distributed linear algebra lead to this sort of blocked file structure.

Noncontiguous file structure

decreasing block size ------>

For suffciently small block size the metadata and file locking tasks
required from GPFS are expected to impede performance. Each of the
I/O operations, taken individually is more complicated for the
filesystem than if coordianted at a global level by MPI-I/O. For this
reason MPI-I/O should be able to provide the benefit when the block
size is small enough.

POSIX-I/O MPI-I/O

 t0 = MPI_Wtime();
 fp=fopen(fname,"w");
 MPI_Barrier(MPI_COMM_WORLD);
 for(i=0;i<n/bn;i++) {
 fseek(fp,
 (off_t)((i*size +
rank)*bn*sizeof(DATA_T)),
 SEEK_SET);

fwrite(data+i*bn,bn*sizeof(DATA_T),1,fp);
 }
 fclose(fp);
 MPI_Barrier(MPI_COMM_WORLD);
 t1= MPI_Wtime();

 t0 = MPI_Wtime();
 MPI_Type_vector(n/bn, bn,
size*bn, MPI_DOUBLE, &vectype);
 MPI_Type_commit(&vectype);
 MPI_Type_size(vectype,&bvect);
bvect/=sizeof(int);
 MPI_File_open(MPI_COMM_WORLD,
fname,
 MPI MODE CREATE | MPI MODE RDWR,

MPI_INFO_NULL, &fh);
 MPI_File_set_view(fh,
rank*bn*sizeof(double), MPI_BYTE,
 vectype, "native",
MPI_INFO_NULL);
/*
MPI File preallocate(fh,nbyte*size);
*/
 MPI_File_write_all(fh, data,
bvect, MPI_INT, &s);
 MPI_File_sync(fh);
 MPI_File_close(&fh);
 MPI_Type_free(&vectype);
 MPI_Barrier(MPI_COMM_WORLD);
 t1 = MPI_Wtime();

Testing the above strategies on seaborg's $SCRATCH filesystem shows
the following results.

MPI_Size Parallel Write Strategies and Rates

16

32

64

128

256

In each graph: x axis is the block size, y axis is total data size. First graph shows
winning I/O strategy.

Aspects of parallel I/O are demonstrated above:

• I/O performance increases as the block size increases. When
possible use large/contiguous transfers to disk. An IBM specific
file hint exists which when used helps recover the performance
difference between the two strategies for very large block sizes.
It's notable that the relation between block size and performance
is not however monotonic.

• The important role played by MPI-I/O in aggregating small I/O
requests together is seen in the the write performance of MPI-
I/O extends further into regions of smaller block size than POSIX
I/O.

• Even in regions of reasonable I/O performance, the average
performance for a fixed problem size decreases with

http://hpcf.nersc.gov/computers/SP/scaling/

concurrency. This is a commonly encountered isoefficeincy issue
when scaling up parallel applications. If the increase in
parallelism is not matched by an increase in the total data
involved then the I/O requests will necessarily be smaller and as
a result less efficient.

Conclusions

Implementing parallel scientific codes that scale well can be
challenging. This document has tried to address some of the
impediments to concurrency faced by researchers deploying HPC codes
on NERSC hardware. The goal of such an endeavor is not scaling itself
but rather the advancement of scientific research through
computation. The choices in the level of parallelism that most
effectively drives that advancement can be hopefully be expanded by
such an examination.

If you have questions about parallel code scaling on seaborg not
answered in this document, feel free to contact the author.

References

Useful Documents

• Scientific Applications in RS/6000 SP Environments
• RS/6000 Scientific and Technical Computing: POWER3

Introduction and Tuning Guide
• RS/6000 SP: Practical MPI Programming
• Understanding and Using the SP Switch
• NERSC IBM SP Memory Page
• NERSC MPI-I/O Page
• RS/6000 SP 375MHz POWER3 SMP High Node Overview , August

29, 2000
• On seaborg see, /usr/lpp/LoadL/READMES/LoadL.README and

/usr/lpp/LoadL//READMES/poe.README

Microkernels and Test Codes

• triad.f

mailto:dskinner@nersc.gov
http://www-1.ibm.com/support/docview.wss?uid=rdb1ba01622e3a54623f852567530058c71d
http://www-1.ibm.com/support/docview.wss?uid=rdb11b5cba4cacd10bcb8525667f0081e79b
http://www-1.ibm.com/support/docview.wss?uid=rdb11b5cba4cacd10bcb8525667f0081e79b
http://www-1.ibm.com/support/docview.wss?uid=rdb1b458a1620bf895cb852566b800578000
http://www.redbooks.ibm.com/redbooks/pdfs/sg245161.pdf
http://hpcf.nersc.gov/sp/memory
http://hpcf.nersc.gov/software/libs/io/mpiio.html
http://hpcf.nersc.gov/computers/SP/scaling/pwr3_nighthawk.pdf
http://hpcf.nersc.gov/computers/SP/scaling/triad.f

• mpimem.c
• p2p.c
• comm.c

http://hpcf.nersc.gov/computers/SP/scaling/mpimem.c
http://hpcf.nersc.gov/computers/SP/scaling/p2p.c
http://hpcf.nersc.gov/computers/SP/scaling/comm.c

	Scaling Up Parallel Scientific Applicaitons on the IBM SP
	
	David Skinner, NERSC HPCF

	Table of Contents
	Abstract
	Introduction
	Capability Computing
	Constraints to Scaling

	SMP Scaling
	Nighthawk II node
	Memory Contention

	MPI Scaling
	Abstract
	Colony Switch
	IBM's MPI implementation
	Job Startup
	MPI Memory Usage
	Synchronization
	Load Balancing
	MPI Collectives
	Example : Reducing MPI_Allreduce

	MPI Point to Point
	Halo Communication I - Synchronous
	Halo Communication II - Asynchronous

	Avoiding Synchronization

	Parallel I/O Scaling
	Abstract
	File Systems
	GPFS Basics
	Parallel I/O Goals
	Parallel I/O Strategies
	Contiguous File Structure
	Noncontiguous Parallel I/O

	Conclusions
	References
	Useful Documents
	Microkernels and Test Codes

