
VisPortal:
Deploying grid-enabled visualization tools through a web-portal

interface

Wes Bethel∗∗

ewbethel@lbl.gov
Cristina Siegerist∗

cesiegerist@lbl.gov
John Shalf∗

jshalf@lbl.gov
Praveenkumar Shetty∗

psshetty@lbl.gov

T.J. Jankun-Kelly†∗†

tjk@acm.org
Oliver Kreylos∗†

kreylos@cs.ucdavis.edu
Kwan Liu Ma†

ma@cs.ucdavis.edu

Abstract

The LBNL/NERSC Visportal effort explores ways
to deliver advanced Remote/Distributed Visualization
(RDV) capabilities through a Grid-enabled web-portal
interface. The effort focuses on latency tolerant dis-
tributed visualization algorithms, GUI designs that are
more appropriate for the capabilities of web inter-
faces, and refactoring parallel-distributed applications
to work in a N-tiered component deployment strategy.
Most importantly, our aim is to leverage commercially-
supported technology as much as possible in order to
create a deployable, supportable, and hence viable plat-
form for delivering grid-based visualization services to
collaboratory users.

1 Introduction

Visualization systems will become an essential part
of the emerging fabric of Grid services. Nascent Sci-
ence Grid and collaboratory development efforts are
pushing a new paradigm of remote HPC resource us-
age where scientists who used to login to the super-
computer of their choice to submit computing jobs are
now presented with a web/portal interface that can
assign their computational workload to a pool of re-
sources anywhere in their Virtual Organization (VO).
This can lead to a very complicated environment in
which to perform data analysis when the data can end
up spread over countless resources in the virtual or-
ganization. The LBNL/NERSC VisPortal effort ex-

∗Visualization Group, Lawrence Berkeley National Labora-
tory, Berkeley, CA 94720

†Visualization and Graphics Research Group, Center for Im-
age Processing and Integrated Computing, Department of Com-
puter Science, University of California, Davis, CA 95616

plores ways we can deliver grid-based advanced visual-
ization and data analysis capabilities through this same
web/portal interface paradigm in order to unify data
analysis with the rest of the portal-based collaboratory
environment. The resulting work should be suitable
for embedding or interoperation with other web/portal
mediated collaboratory efforts.

The grid offers the abstraction of transparent ac-
cess to distributed computing resources, among them
computing cycles, storage, software and licenses, and
special equipment (instruments). However it is still a
complicated task to use grid-enabling software. De-
spite significant recent advances in grid software pack-
aging, installation of grid services on client machines
is still very difficult for novice users. Even a simple
standalone grid-enabled application requires the devel-
opers and users to navigate a minefield of configuration,
application and library dependencies. Hiding the soft-
ware complexity behind a grid-enabled portal alleviates
many of these deployment problems by bringing the
resources together through a much simpler user inter-
face that requires little or no additional installation on
the client side. The portal aggregates the distributed
resources via a single point of presence, allowing the
scientist to access them from an easy to use interface.

In our case we want to provide NERSC (National
Energy Research Scientific Computing Center) users
with a centralized point to access their data, comput-
ing and visualization resources available in our center.
NERSC users are distributed nationwide and access
NERSC computers from a variety of platforms. The
portal paradigm offers a means to deliver customized
visualization and data management services to users
with less of a burden on porting complex software pack-
ages to the heterogeneous machines and software envi-
ronments employed by our user community.



2 VisPortal

The LBNL/NERSC VisPortal effort explores ways
to deliver Grid-based advanced visualization and data
analysis capabilities through a Web portal interface.
Using standard Globus-grid middleware and off-the-
shelf web automation, the VisPortal hides the under-
lying complexity of resource selection and distributed
application management on a sea of heterogeneous dis-
tributed computation and storage resources. The por-
tal automates complex workflows like the distributed
generation of MPEG movies or scheduling of file trans-
fers, mediates access to limited hardware resources like
our visualization server, Escher’s, offscreen hardware
graphics pipes, and controls the launching of complex
multicomponent distributed visualization applications
like Visapult – an application used for remote and dis-
tributed, high performance interactive volume render-
ing of massive remotely-located datasets.

Another form of interaction the portal provides is
a DHTML spreadsheet-like environment. The web-
based DHTML interface provides a ubiquitously acces-
sible UI to the users that encapsulates the visualization
and data exploration process. From a single access
point, the user can browse through the data (prob-
ably where it was generated), launch all components
of a distributed application with all of the complex
commandline arguments and configuration information
necessary to knit them together into a single function-
ing application. This considerably lowers the bar for
client side complexity.

While portals offer considerable advantages over
standalone grid applications in terms of manag-
ing client-side complexity, working within the portal
paradigm has not been an easy task. While it shields
the users from the underlying complexity of the grid,
the same cannot be said for developers who are at-
tempting to use the portal paradigm. We will discuss
the many problems that have yet to be solved before
the portal can become a dependable production re-
source. The excercise of creating a working implemen-
tation with a very controlled set of users is critically im-
portant for identifying the deficiencies in current tech-
nology and driving the direction of future middleware
development.

3 Architecture

This portal builds upon the Grid Portal Develop-
ment Toolkit (GPDK) developed by Jason Novotny
[11]. GPDK makes use of the Tomcat/JSP 3.x web
engine and the Java CoG 1.0a [15] to provide the JSP
engine direct access to Grid services. JSP is extremely

Figure 1. The Visportal Launching the Visa-
pult distributed parallel volume rendering ap-
plication.

popular for e-commerce applications so we have many
opportunities for synergy with commercial web au-
tomation environments. Also, based on the experiences
of several previous portal implementation efforts, JSP
is considerably more readable and maintainable than
Perl-CGI or Python-CGI methods. [3] [16] [2]

4 Services

The visualization portal has been a proving ground
for a number of different delivery paradigms. This in-
cludes thin-clients, slender-clients, and thick clients.
The thin-client interface means the entire GUI is pre-
sented in DHTML backed by the server-side JSP en-
gine. The slender-clients involve very thin GUIs such as
Java applets lauched by the web-browser on the client
machine, that provide a front-end for massively paral-
lel or distributed/multi-tier visualization back-ends like
Visapult or offscreen rendering pipe access. Finally, the
thick clients simply use the portal as a broker for lo-
cating remote data or services that extend the capabili-
ties of a standalone tool like OpenDX or AVS Express.
We are using the portal as a testbed for testing out
these various application deployment design patterns
and compare the relative merits of their implementa-
tions in terms of development complexity, deployment
complexity, and client-side user experience.

These services include:

• File Management Interface: This is a fully
DHTML/thin-client interface for managing imme-



diate mode transfers.

• MPEG Movie Generator: This is perhaps the
most-requested service for many visualization
groups. Albeit, the back-end of this tool can be
operated entirely from the commandline, we are
investigating whether GUI interfaces to commonly
used commandline tools offers some advantages for
our collaboratory/portal users.

• AMR Volume Renderer: This tool explores ways
to expose visualization hardware and software
(hardware graphics accelerators or special-purpose
applications) as grid services. This service is an in-
terface to a hardware-accelerated volume renderer
for hierarchical adaptive meshes that makes use of
SGI Infinite-Reality Engine graphics pipes.[8]

• AMR Websheets: The websheets [6] interface uses
the same back-end as the volume render, but inves-
tigates an alternative visualization spreadsheets
GUI paradigm for drilling down into complex mul-
tidimensional parameter searches.

• Visapult: This multicomponent distributed appli-
cation uses image-based rendering methods em-
ployed by Visapult are able to hide much of the
latency of the intervening network [13]. Manually
launching these distributed components proves to
be very tedious without the VisPortal’s automa-
tion.

4.1 File Transfer

The interface for 3rd party file transfers is perhaps
the most mundane of the services offered by the por-
tal, aside from the login screen. However, it has the
potential to be the most broadly used of the services.
It provides portal users with full access to GUI for 3rd
party file transfers and remote file browsing without
having to install any Globus/Grid software locally on
their machine. It also makes the file transfers consider-
ably simpler and less error prone than attempting the
same feat using very long file paths in URL syntax on
the commandline.

While based on the original GPDK back-end imple-
mentation, the user interface was completely rewrit-
ten to sport a more-“Windows”-like directory interface
with graphical icons that differentiate directories and
various file types. The GUI is still drawn using lowest-
commond-denominator DHTML so that it works in a
wide variety of web-browsers without any special client-
side considerations.

A more important contribution of this interface is
that it has been embedded in virtually all of the other

VisPortal interfaces as the primary method for brows-
ing remote filesystems to select datasets for the visual-
ization tools that the portal manages. It would be nice
to simply package that graphical element as a ”compo-
nent” that could be dropped in to any of the VisPortal
applications, but the limitations of JSP syntax make it
impossible to treat this graphical element the way one
would a ”widget” in a desktop GUI interface. Web au-
tomation interfaces based on the Portlet/OGSA tech-
nologies promise to make such graphical components
possible – validating some of the key reasons for mov-
ing to that technology.

Another deficiency of the initial FTP interface im-
plementation is that it only supports immediate mode
file transfers. Theoretically, a user would be motivated
to use the portal’s file transfer interface because the
files they are managing are far too large to move to
their own workstation. A user interface that supports
only synchronous file transfers offers little to benefit
in that situation. An updated version of the portal’s
implementation of the FTP interface that supports
queueing of background transfers will be released soon.
We are also working with Shreyas Cholia on his java-
applet-based “Globus File Yanker” [1] that can sched-
ule offline, reliable 3rd-party transfers between HPSS
systems and distributed disk caches.

4.2 MPEG Generator

One of the portal’s potential usage paradigms is
a management interface to existing desktop software
packages or simple forms interface that controls batch-
mode data analysis. For instance, the portal could pro-
vide a remote interface to commonly used scripts for
batch-mode post-processing of datasets. All of the pro-
cessing is initiated by a simple HTML-forms interface
and is performed entirely by back-end hosts that are
controlled by the portal using the Java CoG.

An example of a basic service is an MPEG movie
generator that invokes IDL (Research System Inc’s
Interactive Data Language[5]) on our visualization
server. The user selects a data file in one of his/her
grid-enabled resources and, after selecting MPEG gen-
eration parameters in the portal interface, launches the
IDL job. Third party file transfer is used to transfer
the data file to the visualization server where an IDL
script can run in batch mode – launched by a GRAM.
When the job completes an email tells the user how to
access the MPEG file. The portal simplifies the man-
ual staging of components. Without the portal, this
user would need to transfer the data files from an IBM
SP to the visualization server, log in this machine, run
the IDL script with appropriate parameters, and finally



transfer the MPEG back to his own resources. With
the portal, the entire process is initiated by selecting
the image files and pressing the start button and the
grid middleware enables a single portal host to expand
its computational capability by farming the tasks off to
a pool of remote resources. Any visualization applica-
tion (IDL, Express, VTK) that allows batch processing
could be managed by the portal in this manner.

4.3 AMR Volume Renderer

The AMR volume rendering service takes advan-
tage of graphics hardware to accelerate the offscreen
volume rendering of hierarchical adaptive meshes cre-
ated by Adaptive Mesh Refinement (AMR) [10] sim-
ulation codes.[8] The client component of this appli-
cation presents a simple user interface and an image
window that looks for all practical purposes like the
entire application is running locally. The back-end of
the application, however, can make use of the offscreen
hardware rendering using SGI Onyx IR2 pipes or a par-
allel software implementation that can run in a cluster
environment. The application can adjust dynamically
to changing resource and network conditions by varying
the level of JPEG compression as well as the depth it
descends in the AMR hierarchy for volume rendering.
The user interface remains the same despite entirely
different back-end implementations and deployments.
Other tools in our portal, such as the AMR WebSheet,
share this very same volume rendering service as their
primary back-end computing engine.

The portal’s primary role is to select an appropri-
ate resource to run the back-end, launch the client-side
GUI to the application with appropriate parameters to
automatically connect to the back-end. We envision an
even more integrated role for the portal in mediating
resource conflicts. Currently, the resource scheduler
and access-control mechanisms operate on a very rudi-
mentary first-come-first-serve basis. If the graphic pipe
on the Onyx is already in use, then further attempt to
launch the AMR renderer there simply fail. A more
advanced system will mediate access to such limited
resources by either time-slicing the access or by work-
ing in concert with a scheduling and reservation system
that allows dedicated use of the resource via a calendar
interface.

We also see a possible role for the portal in mediat-
ing shared viewing of the graphics framebuffer contents
for the volume rendering application for collaborative
applications. Currently, only one user is authorized to
connect to the image-delivery channel of the applica-
tion at a time. In a collaborative scenario, the portal
would manage authorization or distribution of the cur-

rent framebuffer contents to multiple viewers in con-
junction with synchronous collaborative services such
as the Access Grid.

4.4 AMR WebSheet

The WebSheet interface [6] uses the same back-
end as the volume render, but investigates an alter-
native “visualization spreadsheet” GUI paradigm for
drilling down into complex multidimensional parame-
ter searches. The interface structures the visualization
process by providing an intuitive display of the visual-
ization parameter space—the spreadsheet is a two di-
mensional window into this space (Figure 2). At any
time, only two parameter types are displayed along the
row and columns—the default values for the other pa-
rameters are displayed along the top. Thus, a user
always has context for where they are in the explo-
ration. In addition, the tabular structure of the in-
terface allows for quick comparison of previous results,
providing context for where a user has been. Interac-
tion with the interface occurs by adding or removing
new rows or columns, changing which parameters are
along the rows or columns, and changing the default
parameter values. When a cell is rendered, the de-
fault parameters values are combined with parameters
from the cell’s row and column in order to generate
a result. The web-interface is implemented entirely in
JavaScript and standard HTML.

The WebSheet makes use of a separate application
server than the main VisPortal. This application server
captures the user’s visualization process. By capturing
the process, the system ensures that the visualization
results generated, and the relationships between those
results, are not lost when the visualization session ends.
To record the visualization process, a formal model of
the visualization process is used [7]. Requests for an
image from the interface passes through the web ap-
plication server; these requests are then forwarded to
the back-end renderer. As each requested image is ren-
dered, the corresponding visualization session result is
stored by the web application server. Thus, at the
end of a session, all the rendered images, the param-
eters used for creating that image, when that image
was generated, and that image’s relation to previous
images are available for later use.

The WebSheet and its application server were de-
signed with collaboration in mind. As mentioned, the
user’s exploration process is stored automatically by
the application server. At a later time, a collaborator
can reload this session into another WebSheet to extend
the exploration. In addition, the application server can
display an HTML overview of the entire session (Figure



Figure 2. The AMRWebSheet interface, an ex-
ample of the web interface to grid-based vi-
sualizations. The interface consists of three
major areas: The default parameter bar that
displays and allows the modification of the
default parameter values; the displayed row
and column parameter drop-down lists; and
the tabular result display. The first two com-
ponents are used to change the location of
the tabular window in visualization parame-
ter space while the last component is used to
request the rendering of new results.

3). This overview serves two purposes. First, scientists
can share this web page with collaborators to easily.
Secondly, the collaborators can gain an understanding
of the process and its results quickly without having to
use the full web interface. It is envisioned that scien-
tists could annotate the HTML overview page in order
to share the knowledge gained using the VisPortal.

The web application servlets that manage vi-
sualization sessions are implemented in Python
using the Webware web application environment
(http://webware.sourceforge.net/). A group of servlets
create, process, and store sessions. When a the Vis-
Portal JSP engine forwards a connection to the Web-
ware server, a new session—identified by a tempo-
rary cookie—is created in addition to servlet-persistent
objects. Whenever a user interacts with the gener-
ated HTML interface—the AMRWebSheet—HTTP re-
quests are communicated to the interface servlet in-
dicating that the behavior fired. This request in

Figure 3. HTML session page for the session
in Figure 2. The page provides a summary
of the visualization session and supports the
annotation of results.

turn modifies the visualization session state. When
the client needs to be updated—e.g., after result
generation—a server-initiated refresh is performed to
display the new information. Finally, when a session
terminates or expires due to inactivity, the session re-
sults are encoded as an XML document on the web
application server for later retrieval as described previ-
ously.

4.5 Visapult

Visapult (Figure 1) is composed of 3-distributed
components, a slender-client viewer that connects to a
massively parallel remotely located volumer-rendering
back-end which in turn connects to a parallel data
source like a running simulation code (like Cactus) or
a distributed disk-cache like DPSS. The image-based
rendering methods employed by Visapult are able to
hide much of the latency of the intervening network
[13]. Visapults highly tuned network implementation
has enabled it to win the annual SC SCinet Bandwidth
Challenge Competition three years in a row.

Visapult was the very first visualization applica-



tion hosted by the VisPortal system. Wes Bethel,
who originally developed Visapult for the NGI Com-
bustion Corridor project, discovered very quickly that
it would be virtually impossible to hand out his new
multicomponent, distributed, parallel volume render-
ing application to a novice user. While the distributed
architecture of Visapult offered huge performance ad-
vantages for scientists who needed to study very large
remotely-located datasets, launching the tool involved
very tedious commandline arguments and a particular
order for starting up each of the distributed compo-
nents that comprised the application. For that matter,
unless the user had already performed an multi-way
exchange of ssh public-keys, they would have to log
in to no less than 3 different machines to prepare the
components for launching. The GSI security model ad-
dresses the problem of impractical ssh key exchanges
needed to securely launch these distributed visualiza-
tion applications. The portal offers considerable ad-
vantages in automating the launching process so that a
user merely selects a file displayed in their web-browser
and presses the start-button to launch all of Visapult’s
distributed components. Such applications would re-
main entirely impractical to use were it not for some
automated launching process that hides the complex-
ity of heterogeneous pipelined distributed applications
that are becoming increasingly important for analysis
of large remotely located datasets.

4.6 Collaboration

Aside the AMR websheet’s ability to share session
state between users, the portal is primarily used as
a platform to explore different paradigms for exposing
distributed visualization methods as grid services. Col-
laboration, however, isn’t itself a service – it is perhaps
better described as a workflow. Web logic, with its hy-
perlinks and seemlingly location-independent access to
distributed resources, offers an excellent platform for
representing workflows. We have observed repeatedly
that people who do not actively collaborate with one
another without the assistance of advanced collabora-
tive interfaces, are unlikely to begin collaborating by
virtue of such an interface. Therefore, we regard the
task of creating a collaborative interface as being inti-
mately tied to creating custom portal application inter-
faces that support existing collaborative workflows es-
tablished by various research communities rather than
a generic service that we offer to the community. The
various pieces of this portal will be used to rapidly im-
plement workflows for specific applications, like auto-
mated creation of movies from completed Global Cli-
mate Modelling jobs that can be posted on the web

and shared among members of the climate modelling
community. Such a service would complement exist-
ing shared data repositories established by the climate
modeling community.[4]

One significant service required to support collab-
oration is the ability to share data with collabora-
tors of your choosing. Another role for the portal is
management of information that a given community
of researchers wants to share in this manner. At a
coarse level, the portal acts as a is a repository man-
agement system or central index for shared data files.
At a finer grained level, the portal can manage annota-
tions that are embedded into collaboratively generated
datasets. This can be a part of the integration with
online/synchronous collaborative systems like the AG,
but we consider persistent management of annotations
that result from offline collaboration to be a critical
requirement. In the case of the AMR WebSheets, the
state of the websheet can be stored on the portal and
shared with other portal users by implementing our
own permissions mechanism within the portal frame-
work. The portal programmer has complete control of
security on the machine that runs the portal automa-
tion software and can implement a wide variety of se-
curity policies. However, larger datasets, that cannot
possibly fit on the portal cannot be shared as easily
due to the lack of support for fine-grained in currently
deployed grid infrastructure.

Currently, access control policy is enforced by map-
ping a user’s distinguished name to a particular user
account. This makes the groups of users subject to the
file access permissions and access control policies of a
particular host or operating system – making ad-hoc
sharing of data very difficult. The CAS (Community
Authorization Service) circumvents this issue by offer-
ing access to shared/group credentials, but runs afoul
of organizational policies that do not permit group ac-
counts (ie. the DOE). There are many fine-grained
access-control frameworks being discussed in the grid
community[14] [9], but the lack of pervasive deploy-
ment of such technologies leaves the portal developer’s
saddled with this difficult issue.

5 Other Caveats

The VisPortal is still primarily used as a research
vehicle for exploring various ways that we could de-
ploy a production service using this paradigm. Some
aspects of the portal will be used to implement services
for specific NERSC users, but there are still significant
impediments to this method leading to a production
service. Chief among them are;



• Difficult GUI Implementation: JSP offers con-
siderable advantages over CGI in terms of sep-
arating the presentation of the GUI from the
web-logic, but HTML offers a very difficult and
unnatural medium for designing new user inter-
faces. A programmer must navigate a minefield
of browser quirks and incompatibilities. In addi-
tion, the HTML presentation method is entirely
contrary to traditional GUI design patterns. In-
terfaces that try too hard to mimic their stan-
dalone/desktop counterparts are generally frus-
trating to use. The high latency of the stateless
request/response HTML paradigm requires con-
sideration of an entirely new approach to GUI pre-
sentation, like AMR WebSheets.

• Debugging: Untrapped errors in the JSP code can
easily propagate deeply into the Tomcat/JSP en-
gine or CoG kit before generating a fatal excep-
tion. Even with a good debugger, errors can be
very arcane and difficult to track, thereby slowing
progress on assembling new applications that have
complex JSP implementations.

• Support: While the portal offers us a way to lever-
age on industry-tested web-automation platforms
like JSP and Apache/SSL, and well-supported
low-level middleware like Java CoG, the JSP
framework that connects CoG to the JSP engine
has no support mechanism. Anyone who wants to
build a portal, must then take on the task of sup-
porting the infrastructure used to implement the
portal as well.

• Middleware in Flux: Each time the Grid mid-
dleware gets updated, numerous incompatibilities
with the existing code base emerge. This limits
progress as we must effectively ”port” the portal
to successive revision of the infrastructure. We
hope that the middleware layer will stabilize in
the near future.

• Resource Management: The portal simplifies ac-
cess to large pools of remote resources, but it does
not magically solve issues of resource management.
In particular, how does one mediate access to very
limited/shared resources like a hardware graphics
pipe on an Onyx? There is also no widely avail-
able mechanism for managing fine-grained file ac-
cess control for ad-hoc collaborations. Solutions
are being discussed in the Global Grid Forum, but
until such technology is adopted pervasively, por-
tal developers are left with a handful of ad-hoc
solutions.

6 Future and Conclusions

Over time the most successful methods explored on
the VisPortal prototype will be hardened and grad-
uated to a production portal located at the NERSC
center. Eventually the portal framework will migrate
to a portlet/OGSA model offered by GridSphere [12].
Whereas the current portal stores its state by serial-
izing Java Beans to disk, GridSphere builds on more
sophisticated mechanisms pioneered by the ASC por-
tal that employ a SQL database for state management.
The Open Grid Services Architecture (OGSA) offers a
cleaner way to separate the form of the GUI presenta-
tion on the front-end from the function of the service
implementation on the back-end of the portal. Finally,
the portlet paradigm will make it easier to share GUI
elements, such as a DHTML file browser, in multiple
portal application contexts. We will be following the
progress of GridSphere closely, but we still expect to
get plenty of useful work out of the current implemen-
tation.

In the coming year, the development effort will fo-
cus on using components of the current portal to imple-
ment workflows requested by specific groups of NERSC
user and their collaborators. The incorporation of
workflow management is essential for the robustness of
the system. Users will only adopt the portal paradigm
if it simplifies their interaction with the computing re-
sources.

Overall, we feel that web-embedded visualization re-
ally has significant potential for delivering custom re-
mote visualization applications to supercomputing cen-
ter users. It really does simplify grid software deploy-
ment when the bulk of the complex grid automation is
handled by a stable centrally-controlled server. Like-
wise, the central point-of-presence offered by portal
technology opens up many possibilities for an increased
role for such technology as a nexus for integrating data
management services, like replica catalogs, and data
sharing mechanisms that support collaborative appli-
cations. There are still many rough edges to smooth in
the technology, but we feel that current development
activities in the grid portal frameworks community are
targeting many of the fundamental deficiencies in the
current architecture. We look forward to improving the
robustness of the current architecture and using the
services we have assembled so far as components that
can be used for more complex workflows and applica-
tions that serve scientific collaboration in the NERSC
user community.



References

[1] http://hpcf.nersc.gov/storage/hpss/probe/gfy/gfy.pdf.
[2] http://sca.ncsa.uiuc.edu.
[3] http://www.ascportal.org.
[4] http://www.nersc.gov/projects/gcm data.
[5] http://www.rsinc.com.
[6] T. J. Jankun-Kelly, O. Kreylos, J. M. Shalf, K.-L. Ma,

B. Hamann, K. I. Joy, and E. W. Bethel. Deploying
web-based visual exploration tools on the grid. IEEE
Computer Graphics and Applications, pages 40–50, 3
2003.

[7] T. J. Jankun-Kelly, K.-L. Ma, and M. Gertz. A model
for the visualization exploration process. In R. J.
Moorhead, M. Gross, and K. I. Joy, editors, Proceed-
ings of the IEEE Conference on Visualization 2002,
pages 323–330, Los Alamitos, CA, 2002. IEEE Com-
puter Science Press.

[8] O. Kreylos, G. Weber, W. Bethel, J. Shalf,
B. Hamann, and K. Joy. Remote interactive direct
volume rendering of amr data (lbnl-49954). Technical
report, LBNL, 2002.

[9] M. Lorch and D. Kafura. Symphony - a java-based
composition and manipulation framework for compu-
tational grids. In Proceedings of the 2nd IEEE/ACM
International Symposium on Cluster Computing and
the Grid, May 2002.

[10] M. L. Norman, J. Shalf, S. Levy, and G. Daues. Div-
ing deep: Data management and visualization strate-
gies for adaptive mesh refinement simulations. j-
COMPUT-SCI-ENG, 1(4):36–47, July/Aug. 1999.

[11] J. Novotny. The grid portal development kit. Concur-
rencyPractice and Experience, 00:1–7, 2000.

[12] J. Novotny, M. Russell, and O. Wehrens. Gridsphere:
A portal framework for building collaborations. In
1st International Workshop on Middleware for Grid
Computing, Rio de Janeiro, June 15 2003.

[13] J. Shalf and E. W. Bethel. Cactus and visa-
pult – an ultra-high performance grid-distributed vi-
sualization architecture using connectionless proto-
cols. IEEE Computer Graphics and Applications,
Mar/April 2003.

[14] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo,
and K. Jackson. Certificate-based access control for
widely distributed resources. In Proceedings of the
Eighth Usenix Security Symposium, August 1999.

[15] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A
java commodity grid kit. Concurrency and Computa-
tion – Practice and Experience, 13:643–662, 2001.

[16] G. von Laszewski, M. Russell, I. Foster, J. Shalf,
G. Allen, G. Daues, J. Novotny, and E. Seidel. Com-
munity software development with the astrophysics
simulation collaboratory. Concurrency and Compu-
tation: Practice and Experience, 14, december 2002.


