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Summary. In order to obtain insight into a complex vector field, it is often nec-
essary to construct a hierarchical representation of the field. One way to construct
such a hierarchy is based on grouping vectors together using certain similarity cri-
teria. In this paper, we present a study of a 2D vector field clustering technique
that is based on piecewise linear vector field approximations and an extension of
a data clustering method called Normalized Cut (NC). Specifically, two steps are
taken to implement the extended NC method. First, a similarity measurement for
vector data is defined. Second, an eigenproblem solver is used to find the eigenvec-
tor used for partitioning. After the construction of first-level clusters, we can obtain
a finer-level clustering by recursively applying the same procedure to intermediate
clusters. The resulting clusters capture the features around the critical points.

Key words: Normalized Cut, Linearly Approximated Vector Field, Vector Field
Segmentation, Similarity Measurement

1 Introduction

Visualizing vector field data is challenging due to the size and the complexity
of the datasets involved. Our goal is to build a hierarchal representation of the
vector field based on the partitions obtained using data clustering methods.
On the finest level of the hierarchy, each cluster should contain exactly one
feature. To obtain a coarser level of representation, clusters are then combined
together to form a larger cluster. These larger clusters will imply cruder data
approximation, but they will preserve global structure reasonably well.



2 Jiann-Liang Chen et al.

It is often desirable to provide a capability of displaying the global struc-
ture of the underlying vectors. Knowledge about the global structure aids
users in understanding the datasets and finding the features that are of in-
terest for a particular application. Once the interesting features have been
identified, the users can track the evolution of these features over time. In-
teresting features in 2D flow fields are, for example, critical points. For 3D
datasets, features of interest include the vortex cores.

Based on the goal of extracting global structure of the vector field, a
cluster is defined as the region that contains the vectors which are associated
with a certain type of critical point. In the case of linear vector field, the
vectors within a cluster can be expressed and approximated by the coefficient
matrices computed from the cluster.

To achieve the proposed goals, we investigate the use of a graph-based
clustering technique that automatically extracts vector features. One key
aspect of the graph-based clustering technique is the computation of the
connection weights between the vectors. The measurement itself does not
determine the cluster membership directly, but rather it is used by the graph-
based clustering method to partition the vector field.

Many hierarchy construction techniques have been proposed to deal with
the complexity and the size of the vector field datasets. Different criteria
for combining and approximating vectors have been introduced to achieve
the goal of faithfully preserving the topology of the original vector field. In
[9], a top-down approach that iteratively splits a vector filed into clusters
was introduced. Based on the concept of Hardy’s multiquadric method, a
single vector is used to represent all the vectors inside each cluster. The
representative vector is obtained by averaging the coordinates of the points
and the associated vector values. Vectors inside a cluster are approximated by
the computation of the local Hardy interpolant. With the error measurement
defined as the difference between the streamlines generated from the original
vectors and the ones generated from the approximated vectors, a bisecting
plane that minimizes the error is used to split a cluster. This split process is
repeated until the maximum cluster error is less than a predefined value or
until the number of clusters has reached a certain number. Another top-down
approach for vector field clustering is based on the Cahn-Hilard model for
phase separation and particle coarsening [7, 8].

Based on topology analysis [10], the topology of vector fields can be simpli-
fied [2]. The implicit method is essentially an averaging technique that filters
out the critical points with high spatial frequency. The explicit method re-
moves pairs of critical points that are close spatially. A prescribed distance
threshold is used to define the term of “spatially close”. A more elaborate
method was later proposed to ensure preservation of the flow structure, see
[3]. Based on the notation of indexing [6], a collection of critical points is
combined to form a new critical point with the same index. The index of a
critical point is defined as the number of counter-clockwise revolutions made
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by the arrows travelling on a closed curve around the critical point. There
should be no other critical points inside this closed curve, and the arrow is
drawn in the direction of the vector at the position on the curve.

A bottom-up approach was proposed to obtain a simplified representa-
tion of vector fields [21]. Initially, each cluster contains exactly one vector
from the original dataset. Similar clusters are then merged to form a larger
cluster with the new representative vector computed as the average of the
original representative ones. This merging process is continued until one large
cluster is formed that represents the entire dataset. The similarity measure-
ment for the clusters is split into two parts. One part of the measurement
deals with direction and magnitude comparisons, while the other part deals
with position comparison. The final measuring function is defined as a linear
combination of these two measurements. The coefficient used in the linear
combination is then used to control clustering preference. Clusters based on
either directional-and-quantitative similarity or positional similarity can be
produced during the merging process.

Vector field simplification based on higher-order critical points was also
proposed [23]. Critical points within a prescribed radius are combined to
form a higher-order critical point. As the result of this combining process,
each cluster contains exactly one such critical point. A hierarchy of the vector
field is obtained by using different radii to form clusters with different sizes.
The study of the higher-order critical points could be useful for our proposed
method when dealing with the effect of combining first-order critical points.

The rest of this paper is organized as follows. In section 2, we introduce the
concept of clustering, summarize the classification of the 2D critical points,
and define the similarity measurement for vectors. In section 3, we review
the normalized cut (NC) method, one of emerging graph-based clustering
techniques. We introduce an extension of the NC method to vector field data
partitioning and discuss related computational issues. Preliminary results of
applying the proposed similarity measurement and the extension of the NC
method are presented in section 4. Concluding remarks and further work are
presented in section 5.

2 Similarity Measurement and Clustering for Vector
Data

The premise of our proposed clustering technique is the fact that in a vec-
tor field every vector is associated with a certain type of critical point. Our
idea is to group the vectors that are associated with the same critical point
together, therefore forming a nature cluster. On the finest level of hierar-
chical representation of the vector field, a cluster is the set of all vectors
that can be expressed or approximated with the same critical point. The size
of the cluster, in a geometrical sense, represents the “influence region” of
the underlying critical point. To obtain a coarser level of representation on
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the hierarchy, adjacent clusters can be combined together, subject to certain
combination criteria such as the sizes and types of critical points.

There are several advantages of grouping vectors together according to

the proposed concept of cluster:

1.

All the interesting features in a vector field can be identified, along with
their influence regions. No averaging method is used on the vectors. The
importance of the critical points is based only on their range of influence.
Unlike [2, 3], the distance between them would not be used as the only
criterion for combining clusters.

. The global and the dominant structures of the vector field can be ex-

tracted by the types and the sizes of the clusters.

. It depends on the hierarchy construction method used, the global and the

dominant structure can be preserved at different level of representation.

. The vectors within a cluster can be computed fairly accurate once the

associated linear approximation matrices have been obtained. Compared
to the method introduced in [9], we could actually obtain a truly repre-
sentative vector for each cluster. This property of accurate approximation
leads to the reduction of storage space and the ease of construction for
multi-level representation.

. The vectors within a cluster could be very different in terms of direction

and magnitude. For example, vectors influenced by a focus-type critical
point can point to completely opposite directions, but they would still be
grouped together by our method. Unlike [21], our definition of “similar
vectors” is more consistent with the underlying structure of the vector
field.

The interesting features of a 2D vector field are the critical points, or fea-

tures closely related to critical points. Critical points are the locations where
the velocity vector is zero. They can be classified according to the behavior
of nearby vectors, subject to a certain local polynomial approximation, see,
for example, [10]. Several techniques have been proposed and widely used to
understand the nature of the 2D critical points and to classify them. These
techniques are summarized in this section.

A linear 2D vector field can be expressed as:

_[w (l-,y) _|la11xt+ a2y + b1
v(z,y) = [W(ﬂf,y)} - {amx +az,2y + bJ

el ]+ 2]
21 A2,2 Yy by

=Ax+b (1)

A critical point (z.,y.) is defined by

ol = [ 2008 ] = 0]
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The eigenvalues of the Jacobian matrix of v (which is A in the case of linear
vector fields) evaluated at the critical point (z.,y.) define the types of the
critical points, see [4, 10, 14]. The Jacobian matrix is defined as

ovl(z,y) Ovl(z,y)
ooy ][22 2
’ Bw,ay ooy Bv%(amy) 81)28(;:,1/)

cyrYe xr Te,Ye

In particular, the Jacobian matrix for linear vector fields (1) is

o] @)

a1 a2,2
If A; and A2 denote the eigenvalues of the Jacobian matrix (2),
M =Ry +il; and M\ =Rs+1il

then the signs of the real parts (R;, R2) and imaginary parts (1, Iz) of the
eigenvalues A\; and A can be used to identify six different types of 2D critical
points. These critical points are repelling focus, attracting focus, saddle point,
center, repelling node (called stable node in [15]), and attracting node (called
unstable node in [15]).

Another usage of the Jacobian matrix to identify critical points was pro-
posed in [15], which is called p-¢ method. Let p and g be defined by

p = —trace(A) = —(a11 + as,2)

and
g=det(A) =a11-a22+ai2-az1,

then the sign as well as the values of them can be used to classify the critical
points. In addition to the critical points identified by the signs of the eigenval-
ues, the p-¢ method identifies three more types of degenerated critical points,
namely node-saddle, star node, and pure shear.

Furthermore, based on the concept of Earth Movers Distance (EMD) [16]
and Clifford algebra [17], the star node can be further classified into attracting
star and repelling star [12]. This approach computes the variables « and 3
of a so-called normalized («, 3)-space as follows:

_a 3
a—i\/m 7\/573,

a¢=p and J =sign(p® —4d)-/|p®> — 4d|.

The d and p components of & and B are defined by

and B =

where

d = div(v) = 31)16(35:, y) + 81)28(?3;,3/)
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and
p = det(J).

The normalized («, 8)-space was further extended to the so-called (7, \)-space
by converting « and /3 into an angle v € [0,27] and a radius A € [0,1]. As
the result of this extension, even more 2D critical points are identified [22].
The additional first-order 2D critical points recognized by this method are:

1. Repelling saddle (RSa): a saddle with more outflow than inflow

2. Attracting saddle (ASa): a saddle with more inflow than outflow

3. Center, attracting focus, repelling focus, attracting star, and repelling
star are each divided into subclass 1 and 2. (Critical points in the subclass
1 have non-negative curvatures, while critical points in subclass 2 have
non-positive curvatures.)

As a summary, we put all discussed classification methods in Table 1.

We now turn to define similarity between vectors. The definition should
consider the fact that a vector quantity conveys both direction and mag-
nitude. Other desirable features of the similarity definition would include a
smoothly varying similarity measure that ranges from 0 to 1. With these re-
quirements in mind, for vectors v; = [Uz’,w vi,y] located at position (z;,y;),
and v; = [vj,m vj,y] located at position (zj,y;), we propose the following
definition of similarity measurement:

w(vi,vj) - - e—diSt(vi,v]-) + (1 _ Oé) . e—diﬁ(vi7vj) (3)
where
dist(vi,v;) = /(2 — ) + (y: — ;) (4)
and
diff(vi, vj) = (viz = 0j2)? + (viy — vjy)%. (5)

To ensure that the similarity measure varies between 0 and 1, the following
condition is imposed on the parameter @ : 0 < a < 1. The parameter a can be
used to control the emphasis of the measurement. A small o will emphasize
the measurement difference in direction and magnitude of the vectors; while
a large a will put more weight on the distance between the vector locations.
Equation (4) is simply a Euclidean distance function, and equation (5) is a
measurement, for both direction and magnitude. Of course, other equations
could also be used as long as they have the desired characteristics.

3 Spectral Methods for Vector Data Segmentation

Spectral partition method for data clustering and segmentation is based on
the utilization of the second eigenvector of the discrete Laplacian matrix of
the graph representation of the underlying data. For overview of spectral
partition methods, see [1, 13, 18].
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Table 1. Classification of 2D critical points

Type RI,R2 117[2 D,q 047,3 77)‘
Center (C) |Ri=Rx=0 Ii=-I#0|p=0,| a=0, Y=3
¢g>0| B<0 1<a<t
C1
Y=F
C2 ;<A<1
Attracting Ri=R:2<0 I =—-I#0|p>0,| a<0, ) %<7<7}
Focus (AF) q> 02; B<0 |3 <A< ey
AF1 q > pT
) T<y< %’1“,
AF2 2 < )\ < 14sin2y
Repelling Ri=Ry>0 I1=—L#0|p<0,| a>0, 10<v<51,
Focus (RF) q> 05 B<0 |3 <A< s
RF2 2 <)\< 14+sin2y
>0,
Attracting Ri#R<0 I1 =L =0 P el > 181, I <y<¥,
Node (AN) 4<0| a<0, L <a<1
q< pT 13>0 1+sin2'y —
Attracting Ri=R:2<0 I1=I=0 |[p>0,| a<0, 3 <vy<m,
Star (AS) q>0, /3:0 A= 1+sin2'y
AS1 g=12
<y < 3?”,
_ 1
AS2 A= 1+sin2y
<0, —x
Repelling Ri#Ry>0 I1 =L =0 P ol > 161, =5 <7<73
Node (RN) 4> 0,1 a>0, L <a<1
q< pT 13>0 1+sin2'y —
Repelling . o p<0,| a>0, 0<y<3,
Star (RS) Bi=R:>0 h=L=0 q> 02’ B=0 A= 1+sin2’)’
RS1 g="=
- <7 <0,
_ 1
R52 ~ 14sin2y
v = %,)\ < % or
Saddle Ri<O0,Ry>0 I=I=0{¢<0,|la|<|8],| v=F =3
Point (SA) B8>0 or A=
SA
- <7<3,
RSa 0<)\<%
T 3m
RSH 3 <’Y<T’
0<A<i

Node-Saddle 1

R1>0,R2=0 L =1,=0

Node-Saddle 2

Ri<0,R2=0 I, =1=0

Pure Shear

Ri=Rs=0 I1=1=0
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3.1 Normalized cut method for scalar data segmentation

The normalized cut (NC) method was developed for scalar data clustering,
such as image segmentation [19]. Based on graph theory, the NC method
models a given scalar dataset as a weighted undirected graph G = (V, E).
The nodes in 'V represent the data points, while the weighted edges in E
denote similarities. The goal of this method is to minimize the disassociation
between the two disjoint subsets A and B, where AUB =V and ANB = ).
Following [19], the disassociation is defined as

cut(A, B) cut(A, B)
assoc(A4,V) = assoc(A,V)’

Ncut(A4, B) =

where cut(4, B) = >, 4 ,ep w(u,v), assoc(A, V) =37 4 1o w(u,t), and
assoc(B,V) = ), cp ey w(u,t). The segmentation problem is then formu-
lated as a generalized eigenvalues problem with the signs of eigenvector com-
ponents used as partition indicators. The NC method, described on a high
level, works as follows:

1. Define a weight function w(v;,v;) that measures the similarity between
nodes v; and v;. Weights should reflect the likelihood of two data points
belonging to the same group. For image data, the criteria considered for
the weight function definition are usually color or intensity values and
locations. Place the measured results into the weight matrix W (v;, v;).

2. Calculate the weights between all nodes. Usually, this step can be sim-
plified to only calculate the weights between a node and its neighboring
nodes that are within a prescribed radius r.

3. Construct a vector d as follows:

N

d(i) = 3 Wi,v)),

Jj=1

where N = |V|, the total number of nodes.

4. Construct an N x N diagonal matrix D, having d as its diagonal.

5. Compute the eigenvector associated with the second-smallest eigenvalue
of the matrix

D :.(D-W)-D*

6. The eigenvector would have N components, where each component cor-
responds to a data point. The signs of these components are then used as
partition indicators. The data points with corresponding positive compo-
nent signs are clustered into one group, while the ones with non-positive
signs are placed into another group.

7. Additional portioning of the generated groups can be accomplished by
either executing the described procedure again on each partition, or by us-
ing the eigenvectors associated with the third- and fourth-smallest eigen-
values as indicator vectors.
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3.2 Extension of the NC method to vector field data

To extend the NC method to vector field data, under the context of the pro-
posed cluster concept, we will not apply equations (3), (4) and (5) directly
on any given pair of vectors. Instead, we will consider how well they can
be approximated by the linear squares approximation and use these equa-
tions on a vector and its approximated neighboring vectors. Therefore, the
similarity between vectors v; and v; is measured by first computing ¥;, the
approximated v;, then apply the weight function (3) on the vectors v; and
Vj.

We now proceed to present a modified NC method to vector datasets.
The process of measuring similarity and constructing a partition of vector
field data is described by the following procedure:

1. Construct the weight (or association) matrix:

a) For each vector v; = [Uz}x vi,y] at location (z;,y;), randomly pick m
neighboring vector data within a circle of radius r centered at (x;,y;).
The neighboring vectors can be represented as v, = [vn,m vn,y],
where n = 1,2,3,...,m. The locations of these neighboring vectors
are X, = (Tn, Yn)-

b) Use the vector components and the coordinates of the vectors v,, and
v; to define the following linear least squares equation:

[ ZT; 0 Yi 01 0 Ui,z
0O =z 0 gy, 0 1 ai,1 Viy
1 0 y1 0 1 O az,1 V1,2
0 z1 0 yy O 1 a2 — | v1,y (6)
. . P a2 .2 .
Tm 0 ym 0 1 0 by U,z
L 0 2;m 0 ym O 1 | | Um,y |

c) Solve the linear least squares equation (6) to obtain the coefficient
matrix A and the vector b of the vector field (1).

d) Evaluate the linear least squares approximation v,, = A -x,, + b at
the locations of the chosen neighboring vectors. The resulting approx-
imating vectors are

Vp = [ﬁn,z ﬁn,y]

e) The similarity between v; and v, are then computed by applying
equation (3) to v; and Vv,,. The computed similarity is then used to
build the weight matrix W.

2. Compute the eigenvector associated with the second-smallest eigenvalue

of the matrix D~ 2 - (D — W) - D" 3.

3. Partition the vector field:
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a) Use the signs of the eigenvector components as indicators to partition
the vector dataset. Vectors corresponding the same signs are placed
in one group. The resulting partition is the first-level partition.

b) Finer partitioning is achieved by either executing the described proce-
dure again on each partition, or by using the eigenvectors associated
with the third- and fourth-smallest eigenvalues as indicator vectors
[19].

4 Experimental Results

Several 2D synthetic vector fields are used to test the validity of the proposed
method. All datasets used in our tests contain two or more critical points.
Vector data are sampled on a grid. Different parameter combinations are
applied to the test datasets. The parameters are the radius r, the number of
neighboring vectors m, and the « used in the similarity measurement equation
(3). The goal of our experiment is to test the validity of the proposed method.

The first test case is a two-center vector field with one center rotating
counter-clockwise and the other one rotating clockwise. Figure 1 shows the
resulting one-level partition, with parameter values r = 5,m = 20, and a =
0.1. By comparing the resulting partitions with the original vector field, we
observe that the NC method segments the dataset into two clusters. Each
cluster contains almost all the vectors that one would associate with the
corresponding center.
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Fig. 1. (a) A two-center vector field. (b) The partition with parameters r = 5,
m =20 and a = 0.1.

The second dataset is a two-focus vector field with an attracting and a
repelling focus. Figure 2 shows the resulting one-level partition, using param-
eter values r = 5, m = 16, and a = 0.1. The resulting partition is almost
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perfect with each cluster containing the majority of the vectors that should

be associated with each focus.
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Fig. 2. (a) A two-focus vector field. (b) The partitions with parameter values

r=>5,m=16, and a = 0.1.

The third dataset is a two-saddle vector field. Figure 3 shows the resulting
one-level partition using r = 5, m = 16 and « = 0.1. Again, the resulting

partitioning contains almost all the vectors that should be associated with

the respective saddles.
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saddle vector field. (b)shows the partitions with parameter values

Fig. 3. (a) A two-

r=>5,m=16, and a =0.1.

The fourth dataset is a vector field with a saddle and a repelling focus.
Figure 4 shows the results after a one-level partition using parameter values

0.0. The resulting partitioning contains almost

5m = 14, and «
all the vectors that should be associated with the critical points. Another

r
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Fig. 4. (a) A saddle-focus vector field. (b)

The partitions with parameter values
r=>5,m =14, and a = 0.0.
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Fig. 5. A different partitioning of the saddle-focus vector field with parameter
values r = 5,m = 14, and o = 0.1.

partitioning, using parameter values r = 5,m = 14, and o« = 0.1, is shown in
Figure 5. Although the partitions obtained by these two tests are different,
both results are acceptable since the vectors in the lower middle section can
be associated with either critical point.

Datasets with more than two critical points were also used to test the
extended NC method. Furthermore, we consider and evaluate the results of
clustering based on the eigenvector associated with the third-smallest eigen-
value. A synthetic dataset with three critical points is used to carry out this
test. Figures 6 and 7 show the results of different parameter settings and
scaling the length and locations of the vectors. It is interesting to observe
that the first two levels of partitioning do not cut through any critical point.
This is a desirable feature for vector field clustering.

The next experiment is carried out on the first two-center vector field but
with two different settings:
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Fig. 6. (a) A two-saddle and one-focus vector field. (b) The partitions with param-
eter values r = 3,m = 6, and a = 0.1. Solid line indicates the 1st-level partitions
while the dashed line shows the 2nd-level partitions.
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Fig. 7. Partitions of the two-saddle and one-focus vector field with different coor-
dinates and same parameters values (r =3, m = 6, and @ = 0.1.).

1. Eight immediate neighboring vectors are always used in the computation
of similarity.

2. If the similarity between any pair of vectors v; and v; has been measured
twice from each vector’s perspective, then the similarity between them is
averaged.

The resulting partition of using parameter values r = 5,m = 20, and a = 0.1
is shown in Figure 8.

5 Conclusions and Future Work

In preparation of achieving the goal of constructing a hierarchical representa-
tion for vector fields, we have presented the concept and definition of clusters
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Fig. 8. Partitions of the two-center vector field with immediate neighbors, averaged
similarity measurement and parameters values r = 5, m = 20, and = 0.1.

and similarity. The utilization of the normalized cut method along with the
proposed similarity measurement was shown to be plausible from the prelim-
inary experimental results. But many issues are still need to be resolved in
order to realize the goal of applying the proposed method on realistic vector
datasets, and to extend the approach to 3D time-varying vector fields. Some
of these issues are:

1. Cluster refinement: two issues arise as a consequence of the preliminary
results produced by the proposed method. First, the extracted clusters do
not contain every vector that should be included. Second, the terminating
condition of the clustering process must be defined. A suitable cluster
refinement scheme would be needed. One possible solution is the Linkage
Refinement scheme introduced in [5]. A prescribed error margin between
the original and the approximated vectors within the cluster could be
used to stop the partitioning process.

2. Constructing the hierarchy: with the extended NC method, data hier-
archies can be built iteratively as the vector field is being partitioned.
The representative vectors could be obtained by evaluating the local lin-
ear least squares approximant at the center of each cluster. One issue
is the preservation of flow topology. More investigation will be done to
derive good approaches for constructing the hierarchies and to obtain the
representative vectors.

3. Computational issue: since using the NC method on a M x N vector field
will require solving a M N x M N eigenproblem. Efficient techniques are
needed for practical purpose.

4. Handling 3D datasets: the first step is to obtain the capability to identify
vortex cores [11, 20]. The next step is to incorporate the vortex core
identification technique into the similarity measurement. Alternatively,
one can also perform the extraction of the vortex cores prior the clustering
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process, then use the extracted volumes as the building blocks in the
hierarchy construction process.
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