
Faculté des Sciences Appliquées

Laboratoire de Microélectronique

Authenticated Group
Di�e-Hellman Key-Exchange :

Theory and Practice

Olivier Chevassut

Thèse soutenue en vue de l'obtention du grade de
Docteur en Sciences Appliquées

Composition du jury:

Dr. D. A. Agarwal (Lawrence Berkeley National Laboratory, U.S.A)
Prof. J. M. Couveignes (Université de Toulouse, France)

Prof. J. D. Legat (Université Catholique de Louvain, Belgium) - Président
Prof. B. Macq (Université Catholique de Louvain, Belgium)
Prof. A. Magnus (Université Catholique de Louvain, Belgium)

Dr. D. Pointcheval (École Normale Supérieure, France)
Prof. J-J. Quisquater (Université Catholique de Louvain, Belgium) - Promoteur

Prof. J. Stern (École Normale Supérieure, France)

Louvain-la-Neuve, Belgique

Octobre 2002

Abstract

Authenticated two-party Di�e-Hellman key exchange allows two princi-
pals A and B, communicating over a public network, and each holding
a pair of matching public/private keys to agree on a session key. Pro-
tocols designed to deal with this problem ensure A (B resp.) that no
other principals aside from B (A resp.) can learn any information about
this value. These protocols additionally often ensure A and B that their
respective partner has actually computed the shared secret value.

A natural extension to the above cryptographic protocol problem is to
consider a pool of principals agreeing on a session key. Over the years
several papers have extended the two-party Di�e-Hellman key exchange
to the multi-party setting but no formal treatments were carried out
till recently. In light of recent developments in the formalization of the
authenticated two-party Di�e-Hellman key exchange we have in this
thesis laid out the authenticated group Di�e-Hellman key exchange on
�rmer foundations.

Keywords: Group Key-Exchange, Di�e-Hellman, Security Model

iii

Acknowledgments

I could not have written this thesis without the help, input and support of
many others. I would like to thank my advisor, Jean-Jacques Quisquater,
for getting the ball rolling and my commitee members, Deborah Agarwal
and David Pointcheval, for keeping it in play. Much appreciation goes to
David Pointcheval, especially for his help in cryptography, and to Debo-
rah Agarwal for believing in this project and helping make it a success.
Thanks also to Jean-Marc Couveigne for pushing my thinking and lead-
ing my very �rst steps in research; many thanks as well to Jacques Stern
for believing in this project while in its very early stages. Thanks also
to Jean-Didier Legat, Benoit Macq, Alphonse Magnus who served me on
committee thesis.

Of course, I am also very greateful to the members of the Complexity
and Cryptography Research Group at the Ecole Normale Superieure, the
Distributed Systems Department at Lawrence Berkeley National Labo-
ratory, and the Cryptographic Group at the University Catholic of Lou-
vain, who shared their knowledge and experiences with me. Without
them, this thesis would never have came about. They are Emmanuel
Bresson, Karlo Berket, Abdelilah Essiari, Mary Thompson, Sylvie Bau-
dine for her invaluable logistic support, and the many others who for
their own reasons did not wish their names mentionned. I also would
like to thank my family, Alain, Marie-Claude and of course Lydie, for
their understanding and assistance.

This work was supported by the Director, O�ce of Science, O�ce of Ad-
vanced Scienti�c Computing Research, Mathematical Information and
Computing Sciences Division, of the U.S. Department of Energy un-
der Contract No. DE-AC03-76SF00098. This document is Université
Catholique de Louvain report number CG-2002/4 and Lawrence Berke-
ley National Laboratory report number LBNL-51150.

v

Biography and Publications

Olivier received is Diploma in computer science from the University of
Bordeaux, France in 1998 and is working towards the Ph.D. degree in
computer science from the University Catholic of Louvain, Belgium. He
is also a research computer scientist in the Department of Distributed
Systems at Ernest Orlando Lawrence Berkeley National Laboratory and
in the UCL Cryptographic Group at the University Catholic of Louvain.
His interests include theoretical and applied cryptography as well as
secure and reliable multicast systems.

(1) D. A. Agarwal, O. Chevassut, M. R. Thompson and G. Tsudik,
"An Integrated Solution for Secure Group Communication in
Wide-Area Networks", Proceedings of the 6th IEEE Symposium
on Computers and Communications, Hammamet, Tunisia, July
2001, pp 22-28

(2) G. Ateniese, O. Chevassut, D. Hasse, Y. Kim and G. Tsudik,
"The Design of a Group Key Agreement API", Proceedings of
DARPA Information Survivability Conference and Exposition
(DISCEX), IEEE Computer Society Press, 2000.

(3) K. Berket, D. A. Agarwal and O. Chevassut, "A Practical Ap-
proach to the InterGroup Protocols", Journal of Future Gener-
ation Computer Systems, volume 18, number 5, April 2002, pp
709-719.

(4) E. Bresson, O. Chevassut, D. Pointcheval and J. J. Quisquater,
"Provably Authenticated Group Di�e-Hellman Key Exchange",
Proceedings of the 8th ACMConference on Computer and Com-
munications Security, Philadelphia, Pennsylvania, USA, Nov
2001, pp 255-264

(5) E. Bresson, O. Chevassut and D. Pointcheval, "Provably Au-
thenticated Group Di�e-Hellman Key Exchange - The Dynamic
Case", Proceedings of Asiacrypt, Gold Coast, Queensland, Aus-
tralia, Dec 2001, pp 290-309

(6) E. Bresson, O. Chevassut and D. Pointcheval, "Dynamic Group
Di�e-Hellman Key Exchange under Standard Assumptions",

vii

viii BIOGRAPHY AND PUBLICATIONS

Proceedings of Eurocrypt, Amsterdam, Netherlands, April 2002,
pp 321-336.

(7) E. Bresson, O. Chevassut and D. Pointcheval, "The Group
Di�e-Hellman Problems", Workshop on Selected Areas in Cryp-
tography, St. John's, Newfoundland, Canada, August 2002.

(8) E. Bresson, O. Chevassut and D. Pointcheval, "Group Di�e-
Hellman Key Exchange secure against Dictionary Attacks", Pro-
ceedings of Asiacrypt, Queenstown, New Zealand, Dec 2002.

Contents

Abstract iii

Acknowledgments v

Biography and Publications vii

Introduction 1

Chapter 1. Modern Cryptography 7
1. Abstract Groups 7
2. Di�e-Hellman Method 8
3. Digital Signatures 9
4. Message Authentication Code 9
5. Provable Security 10
6. Practical Security 11
7. Intractability Assumptions 12
8. Ideal Objects 15

Chapter 2. Group Di�e-Hellman Key Exchange 17
1. Introduction 17
2. Related Work 18
3. Model 19
4. De�nitions 21
5. An Authenticated Group Di�e-Hellman Scheme 24
6. Adding Authentication 31
7. Conclusion 36

Chapter 3. Dynamic Group Di�e-Hellman Key-Exchange 37
1. Introduction 37
2. Related Work 38
3. Model 39
4. De�nitions 42
5. An Authenticated Dynamic Group Di�e-Hellman Scheme 45
6. Proof of the Theorem 51
7. Mutual Authentication 58

ix

x CONTENTS

8. Conclusion 58

Chapter 4. Group Di�e-Hellman Key-Exchange under Standard
Assumptions 61

1. Introduction 61
2. Related Work 62
3. Model 63
4. An Authenticated Dynamic Group Di�e-Hellman Scheme 66
5. Analysis of Security 73
6. Proof of the Theorem 77
7. Proof of Lemma 6 81
8. Conclusion 83

Chapter 5. Practical Aspects of Group Di�e-Hellman Key
Exchange 85

1. Introduction 85
2. Group Communication 87
3. Related Work 88
4. The Secure Group Layer 89
5. Experimental Results 96
6. Conclusion 100

Conclusion and Further Research 101

Bibliography 103

Introduction

Grid technology o�ers the ability to bring together through the Inter-
net a global network of computers, storage systems and other resources
to access information and tackle complex analysis tasks. Grids enable
large-scale parallel computations and exchange of data among processes
belonging to the same computation [FK98, FKT01]. The Global Grid Fo-
rum, the umbrella organization for the grid projects under development
around the world, has been working to de�ne the architecture required
to ful�ll the security needs of a computational grid [FKTT98] and has
adopted a client/server model for securing tra�c over the grid. Although
the client/server model is tempting, a server can be a performance bot-
tleneck, a single point of failure, and it requires signi�cant administra-
tion. Also, if the network partitions into di�erent components due to
for example a link failure only the component containing the server can
continue.

Security solutions for collaborative environments have also tradition-
ally been developed with the client/server model in mind. The Access
Grid environment, for example, supports human-to-human group inter-
actions [Gri]. It is a collection of virtual rooms, called venues, which
enable large-scale distributed meetings, collaborative work sessions, sem-
inars, lectures, tutorials and training. A participant joins a secure venue
by connecting via the Hypertext Transfer Protocol (HTTP) to the venue
server responsible for all membership and coordination activities of par-
ticipants. This architecture works well for collaborations that run the
server but leaves little room for the less well-healed collaboration. Small
and �eeting collaborations are usually built in an ad-hoc manner and
often there is no site in a position to run the server.

A more natural communication model for grid applications is a an ar-
chitecture where the participants are treated as equals. Recon�guring
the grid aplications to use a peer group structure would allow the var-
ious clients participating in the application to independently organize
and continue to operate in the presence of network failures or attacks.
Peer-to-peer has the potential to provide a new model that will better

1

2 INTRODUCTION

support collaborative self-organizing structures, but a critical issue that
needs to be looked at before this vision can be realized is security.

The challenge with security services is how to best provide them to the
application. The approach taken by the Secure Socket Layer Protocol
(SSL/TLS), the current de facto standard protocol for securing the traf-
�c over the Internet, is to interpose a security layer between the appli-
cation and the transport layer protocol [FKK96, DR02] (see Figure 1).
This protocol is easy to deploy since it only requires minor changes in
the application to convey users' identity information/access privileges
and leverages o� the properties of the Transmission Control Protocol
(TCP) [CK74] in transmitting its own messages.

6?

6?

6?

6?

6?

6?

Reliable Multicast

IP Multicast

Application

SSL/TLS

TCP

Collaborative Application

SGLv1

Protocol

IP

Figure 1. Networking protocol stack.

In the case of the Access Grid, the software operating in the venue (e.g,
videoconferencing (vic, vat, and rat), session directory (sdr), and white-
board (wb)) leverages o� the multicast capabilities of the underlying
network to send messages (see Figure 1). Securing these messages re-
quires a layer similar to SSL but for multicast. In this thesis we describe
such a layer protocol called Secure Group Layer (SGL) which provides
the collaborative application with a security context within which mes-
sages multicast over the wire could be cryptographically protected.

The essential building block for setting up a secure multicast context is
a key exchange protocol that allows the participants to exchange a ses-
sion key as equals and, therefore, treats them as peers. The �rst step in
solving this problem is to design an algorithm that allows a set of par-
ticipants to agree on a session key. We refer to this kind of group genesis
as the initial group Di�e-Hellman key exchange. The algorithm for ini-
tial group Di�e-Hellman key exchange depicted on Figure 2 proceeds
in two stages and it is described in terms of the messages received in

INTRODUCTION 3

each stages [STW96]. In the up-�ow stage, the player raises the received
intermediate values to the power of its private input and forwards the
result to the next player in the ring. The down-�ow takes place when
the last player Un in the multicast group receives the last up-�ow and
computes the session key. The last player Un raises the intermediate
values it has received to the power of its private key and broadcasts the
result (i.e. F ln) to allow the other players to construct the session key.

U 1 U 2 U 3

x1
R
 [1; p� 1]

Fl1 := fg; gx1g
Fl1������������������!

Fl2������������������!

x2
R
 [1; p� 1] x3

R
 [1; p � 1]

Fl2 := fgx1 ; gx2 ; gx1x2g Fl3 := fg
x1x3 ; gx2x3 ; gx1x2g

Fl3 ������������������

Fl3 ������������������ ����� ������

K := (gx2x3)x1 K := (gx1x3)x2 K := (gx1x2)x3

Figure 2. The group Di�e-Hellman protocol in a �nite
cyclic group < g >(Z�p. An example of an honest exe-
cution among 3 players U1; U2; U3. The session key K is
gx1x2x3 .

This algorithm was originally proposed by Steiner et al. [STW96], how-
ever, the attacks found by Pereira and Quisquater [PQ01a, PQ01b]
against this protocol have demonstrated that designing secure group
Di�e-Hellman key exchange algorithms is di�cult and fraught with
many complications. Some security researchers have used formal speci�-
cation tools to analyze their protocol but a logical proof does not imply
a protocol is secure [BAN90, vO93, MY99, Mea00, PQ01a, PQ01b]. Nu-
merous cryptographic researchers have over the years turned out to the
provable-security approach to assess the security of their cryptographic
constructions [BPR00, Sho99].

My �rst contribution in this thesis is to provide protocol designers with
a provable-security framework to assess the security of group Di�e-
Hellman key exchange protocols. I provide three models which cap-
ture the characteristics of the operational environments of group Di�e-
Hellman key protocols. The �rst model captures the capabilities of the
adversary and the security de�nitions for the initial Di�e-Hellman key

4 INTRODUCTION

exchange. In initial group Di�e-Hellman key exchange, the members of
the group come together and agree on a new session key without rely-
ing on any previous agreed session keys. This model is a stepping stone
toward the second model.

In reality the membership for group of participants is not static, instead
it is built incrementally. Participants join and leave the group at any
time and the group may be split into disjoint components due to a net-
work failures or even attacks. The second model is equipped with notions
of dynamicity in the group membership to correctly capture the adver-
sary's capabilities and the security de�nitions for the auxiliary group
Di�e-Hellman key exchange. After the initial group Di�e-Hellman key
exchange, the parties run the auxiliary group Di�e-Hellman key ex-
changes to update the session key after each join, leave, merge and par-
tition events [AST00, ACH+00, STW00]. Our third model captures even
stronger capabilities: access to the internal memory of player and parallel
executions of auxiliary group Di�e-Hellman key exchanges.

My second contribution in this thesis is to provide engineers with a se-
rie of group Di�e-Hellman key exchange algorithms that are practical,
provably-secure and easy to implement. Practiality is reached by modify-
ing the algorithms from [AST00, ACH+00, STW96, STW00]. Provable-
security is reached by constructing reductions showing that in our formal
model the algorithm achieves the security de�nitions under reasonable in-
tractability assumptions. Since reasonable does not have the same mean-
ing for everyone we provide various choices of intractability assumptions
(decisional vs. computational) and session key derivation techniques
(ideal-hash model vs. left-over-hash lemma). Our algorithms can easily
be modi�ed by pairing of a particular assumption/key derivation tech-
nique and a formal model. Easy of implementation is reached by giving
hints on how to put them in practice.

This thesis is organized as follows. The basic principles and techniques
developed by the �eld of modern cryptography for the task of exchanging
a session key are introduced in Chapter 1. The next three chapters
extend those concepts and techniques to tackle the group Di�e-Hellman
key exchange. Chapter 2 addresses the initial group Di�e-Hellman key
exchange problem. Chapter 3 adresses the broader scenario of auxiliary
group Di�e-Hellman key exchange wherein the members join and leave
the group at any time. Chapter 4 adds important security attributes
to our two previous treatments. Alone the group Di�e-Hellman key
exchange is of relatively little practical use. A mechanism to enforce
restrictions on who can participate in the key exchange and, therefore,
the multicast group is needed. Chapter 5 describes our integration of

INTRODUCTION 5

the group Di�e-Hellman key exchange and the access control mechanism
into the security layer SGLv1. Finally, we summarize the contributions
of this thesis.

CHAPTER 1

Modern Cryptography

The theoretical concepts of public-key cryptography go back to Di�e
and Hellman in 1976 [DH76] and the �rst public-key cryptosystem was
proposed two years later by Rivest, Shamir and Adelman [RSA78]. In
their seminal paper New Directions in Cryptography, Di�e and Hellman
provided a method whereby two principals communicating over an inse-
cure network can securely agree on a secret value.

Since the publication of this method, the cryptographic task of exchang-
ing a secret value in presence of an adversary found a rigorous and sys-
tematic treatment in the framework of modern cryptography. The �eld
of modern cryptography provides a theoretical foundation based on which
we may understand what exactly cryptographic problems are, how to eval-
uate protocols that purport to solve them, and how to build protocols in
whose security we can have con�dence [GB01].

With the generalization of the Di�e-Hellman method to the multi-party
setting [STW96], it is completely natural to provide a formal treatment
for the group Di�e-Hellman key exchange problem in the framework of
modern cryptography. In this chapter we introduce the cryptographic
primitives and the modern cryptography notions used throughout the
thesis.

1. Abstract Groups

A �nite cyclic group in this thesis will be seen as an abstract group G

with operation denoted multiplicatively, identity element denoted 1, and
generator denoted g. In their original paper Di�e-Hellman presented a
method that works in a �nite cyclic group Z�p however since their publi-
cation other �nite cyclic groups have been found suitable for application
in the Di�e-Hellman protocol. Examples of such �nite cyclic groups
are the prime subgroups of Z�p [MW00], the (hyper)-elliptic curve based
groups [Jou00, KMV00, Kob98, MW00], the XTR subgroups [SL01] or
even the class group of an imaginary quadratic �elds [BW88].

7

8 1. MODERN CRYPTOGRAPHY

2. Di�e-Hellman Method

The Di�e-Hellman protocol works as follows. As illustrated in Figure 1,
this protocol consists of an up-�ow and a down-�ow. In the up-�ow,
player U1 chooses at random a value x1 in [1; jG j], raises the value g
to the power of x1 and sends on the wire the resulting value to player
U2. The down-�ow takes place when U2 receives the up-�ow. Player U2

then chooses at random a value x2 in [1; jG j], raises the value g to the
power of x2 and sends on the wire the resulting value to player U2. It is
then straightforward to check that both players can compute the shared
secret value.

The motivation for running the Di�e-Hellman protocol is to implement
a secure session over an insecure network connection. A secure session
which provides an authenticated and private network channel between
U1 and U2. More precisely, the value the players agreed on is used
to achieve cryptographic goals like data integrity and/or message con-
�dentiality. The players reach this aim by simply applying a function
mapping elements of G to the space of either a Message Authentication
Code [BCK96] and/or a conventional block cipher [DR00].

U 1 U 2

x1
R
 [1; jG j]

F l1 := fg; g
x1g

F l1�������������!

x2
R
 [1; jG j]

F l2 := fg; g
x2g

K := (gx1)x2

F l2 �������������

K := (gx2)x1

Figure 1. Di�e-Hellman Protocol. An example of an
honest execution between U1 and U2. The shared secret
key K is gx1x2 .

In its original publication the Di�e-Hellman protocol was designed to
protect against a passive adversary that only eavesdrops on messages,
however when it comes to practical uses a much stronger adversary needs
to be considered. In the real-world the adversary has complete control

4. MESSAGE AUTHENTICATION CODE 9

over all the network communications: it may choose to relay, schedule,
inject, alter messages between players; it may also choose to impersonate
a player (i.e. man-in-the-middle); and so on. Hence the real-world net-
work connection is folded into the adversary. One way to prevent these
active attacks is to add authentication services to the Di�e-Hellman key
exchange. We refer to it as authenticated Di�e-Hellman key exchange.

3. Digital Signatures

One way to add authentication services to the Di�e-Hellman key ex-
change is to have each principal sign the messages he sends out over
the wire [GB01]. A signature scheme consists of a triplet of algorithms
(G;�; V).

� The key generation algorithm G. On input 1k with security pa-
rameter k, the algorithm G produces a pair (Kp;Ks) of matching
public and secret keys. Algorithm G is probabilistic.
� The signing algorithm �. Given a message m and (Kp;Ks), �
produces a signature �. Algorithm � might be probabilistic.
� The veri�cation algorithm V . Given a signature �, a message
m and Kp, V tests whether � is a valid signature of m with
respect to Ks. In general, algorithm V is not probabilistic.

The fundamental security notion for a signature scheme is that it is
computationally infeasible for an adversary to produce a valid forgery
�0 with respect to a message m0 under a (adaptively) chosen-message
attack (CMA).

More formally, the signature scheme is (t; �)-CMA-secure if there is no
adversary A which can get a probability greater than � in mounting an
existential forgery under a CMA-attack within time t. We denote this
probability � as Succcma

� (A). An example of signature scheme that both
achieves this security notion and allows for an e�cient implementation
is described in [PS00].

4. Message Authentication Code

Another way to add authentication services to the Di�e-Hellman key
exchange is to compute an authentication tag using a symmetric cryp-
tographic primitive called a Message Authentication Code [GB01]. Such
MAC primitive consists of tuple of algorithms (MAC.Sgn,MAC.Vf).

10 1. MODERN CRYPTOGRAPHY

� The authentication algorithm MAC.Sgn which, on a message
m and a key K as input, outputs a tag �. We write �
MAC.Sgn(K;m). The pair (m;�) is called an authenticated
message.
� The veri�cation algorithmMAC.Vf which, on an authenticated
message (m;�) and a key K as input, checks whether � is a
valid tag on m with respect to K. We write True=False
MAC.Vf(K;m;�).

The fundamental security notion for a MAC is that it is computationally
infeasible for an adversary to produce a valid tag �0 with respect to a
message m0 under a (adaptively) chosen-message attack (CMA).

More formally, a (t; q; L; �)-MAC-forger is a probabilistic Turing machine
F running in time t that requests a MAC.Sgn-oracle up to q messages
each of length at most L, and outputs an authenticated message (m0; �0),
without having queried the MAC.Sgn-oracle on message m0, with prob-
ability at least �. We denote this success probability as Succcma

mac(t; q; L).
The MAC scheme is (t; q; L; �)-CMA-secure if there is no (t; q; L; �)-
MAC-forger. An example of MAC that both achieves this security notion
and allows for an e�cient implementation is the scheme of Bellare et
al. [BCK96].

5. Provable Security

Despite the apparent simplicity of adding authentication services many
proposed protocols for authenticated Di�e-Hellman key exchange have
later found to be �awed [BGH+91, DvOW92, PQ01a] and in some cases
the �aws even took years before being discovered. One way to avoid
many of the �aws is to make use of the provable security methodology.

In the paradigm of �provable� security one �nds a formal model and
security de�nitions for a particular cryptographic task to solve [Poi01b].
For the task of exchanging a session key between players two models
have received the most consideration in the literature.

The �rst model initiated by Bellare and Rogaway modeled the two-party
and three-party key distribution [BR93a, BR95]. In this model, the
instances of a player are modeled via oracles and the capabilities of the
adversary are modeled through queries to these oracles. This model was
extended to the authenticated two-party Di�e-Hellman key-exchange
by Blake-Wilson et al. [BWJM97, BWM98a] and extended further by
Bellare et al. to deal with the password-based authenticated two-party

6. PRACTICAL SECURITY 11

key-exchange [BPR00]. Our formal treatment of the authenticated group
Di�e-Hellman is derived from this later model.

The second formal model is based on the multi-party simulatability tech-
nique and was initiated by Bellare, Canetti and Krawczyk [BCK98]. In
this model the two-party authenticated Di�e-Hellman key-exchange and
the two-party encryption-based key-exchange are considered. Shoup
re�ned this model and showed that under speci�c conditions the two
models are equivalent [Sho99]. Building on the work of Shoup, Steiner
recently proposed a formal treatment for the multi-party key agree-
ment [SPW02].

With a formal model in hand one can then �nd security de�nitions cap-
turing what it means to securely exchange on a session key among play-
ers. The fundamental security goal to achieve is certainly Authenticated
Key Exchange (with �implicit� authentication) identi�ed as AKE. In
AKE, each player is assured that no other player aside from the arbi-
trary pool of players can learn any information about the session key.
Another stronger but also highly desirable goal to achieve is Mutual Au-
thentication identi�ed as MA. In MA, each player is assured that its
partners (or pool thereof) have actually computed the shared session
key.

In the paradigm of �provable� security one then picks a protocol aiming
to exchange a session key among players and analyzes it to see whether it
satis�es the security de�nitions. One exhibits a proof of security to show
that the scheme actually achieves the security goals. In the formalization
of Bellare and Rogaway a proof is a direct reduction from the security of
the scheme to an underlying intractability assumption (see Section 7). A
reduction is a successful algorithm for the intractability assumption that
uses the adversary of the scheme as a subroutine. On the other hand, a
proof of security in the formalization of Bellare, Canetti and Krawczyk
is a simulation argument.

6. Practical Security

In the 80's cryptographers were only looking for the minimal assumptions
to solve cryptographic problems and to reach this aim used asymptotic
notions from complexity theory such as polynomial reduction and neg-
ligeable probability [GGM86, GM84, GMR88]. During this period the
reductions were algorithms for the underlying �hard� problem that takes
several years to succeed however it soon turned out that such proofs

12 1. MODERN CRYPTOGRAPHY

were not meaningful enough to validate cryptographic schemes in prac-
tice. Using security parameters suitable for practice the provably secure
schemes could still be broken within a few hours.

Cryptographers have since begun to quantify their reductions to see how
much security of the underlying �hard� problem was actually injected
into the cryptographic schemes. Reductions carried out in this way pro-
vide an exact measurement of the security of a scheme as a function
of both the probability of breaking the �hard� problem and the num-
ber of queries requested by the adversary [BR96, Poi01b]. Furthermore,
cryptographers reach �practical� security when their reduction is an al-
gorithm for a scheme that succeeds with almost the same probability
as the best algorithm breaking the �hard� problem while running in the
same amout of time [Poi01a]. �Practical� security is particularly relevant
to practice since smaller security parameters can be used for the same
level of security.

Our treatment of the authenticated group Di�e-Hellman is in the frame-
work of exact security, however, we will in the thesis do our best to reach
�practical� security. In order to quantify our reductions we de�ne the ad-
vantage Advake(A) that a (computationally bounded) adversary A will
defeat the AKE goal of a protocol. The advantage is twice the proba-
bility that A defeats the AKE goal minus one. To defeat AKE security
means for A distinguishing the session key from a random value. Hence,
A can trivially defeat AKE with probability 1/2, multiplying by two
and substracting one rescales the probability. In order to quantify our
reductions we will also need the probability Succma(A) that adversary
A will defeat the MA goal of a protocol. To defeat the MA security for
A means impersonating a player.

7. Intractability Assumptions

The security of the Di�e-Hellman protocol was in its original publica-
tion based on the hardness of a certain computational problem, the so-
called Computational Di�e-Hellman assumption (CDH) [DH76]. The in-
tractability assumption derived from this problem states that the Di�e-
Hellman secret gx1x2 can not be computed by an adversary that only
eavesdrops on the �ows gx1 ; gx2 exchanged by the two players during the
Di�e-Hellman protocol.

It later turned out that even if the adversary could not compute the entire
Di�e-Hellman secret he could still be able to compute some valuable
information about it. And therefore that to securely design protocols
for Di�e-Hellman key-exchange one has to rely on either the decisional

7. INTRACTABILITY ASSUMPTIONS 13

Di�e-Hellman problem [BWJM97, BWM98b, Bon98, Sho99] or ideal
objects as we will see in the next section.

The generalized version of the Di�e-Hellman problems was �rst used
by Steiner et al. to design protocols for group Di�e-Hellman key ex-
change [STW96]. The Computational Group Di�e-Hellman problem
(G-CDH) and the Decisional Group Di�e-Hellman problem (G-DDH)
allowed us to prove the security of protocols for authenticated group
Di�e-Hellman key exchange [BCPQ01, BCP01, BCP02b, BCP02c].

7.1. Di�e-Hellman Assumptions

Let G = hgi be a cyclic group of prime order p and x1; x2; r chosen at
random in Zp. A (T; �)-DDH-distinguisher for G is a probabilistic Turing
machine � running in time T that given any triplet (gx1 ; gx2 ; gr) outputs
�True� or �False� such that:��� Pr [�(gx1 ; gx2 ; gx1x2) = �True�] �

Pr [�(gx1 ; gx2 ; gr) = �True�]
��� � �

We denote this di�erence of probabilities as Advddh
G

(�). The DDH prob-
lem is (T; �)-intractable if there is no (T; �)-DDH-distinguisher for G .

A (T; �)-CDH-attacker for G is a probabilistic Turing machine � running
in time T that given (gx1 ; gx2), outputs gx1x2 with probability at least
� = Succcdh

G
(�). The CDH problem is (T; �)-intractable if there is no

(T; �)-attacker for G .

7.2. Group Di�e-Hellman Assumptions

Let G =< g > be a cyclic group of prime order q and n an integer.
Let In be f1; : : : ; ng, P(In) be the set of all subsets of In and � be a
subset of P(In) such that In =2 �. We de�ne the Group Di�e-Hellman
distribution relative to � as:

G-DH� =
n�

J; g
Q
j2J xj

�
J2�

j x1; : : : ; xn 2R Zq

o
:

If n = 2, this G-DH� distribution is the DDH distribution, and if � =
P(I)nfIng this G-DH� distribution is the generalized Di�e-Hellman dis-
tribution [BCP02d, Bon98, NR97, STW96].

A (T; �)-G-DDH�-distinguisher for G is a probabilistic Turing machine �

running in time T that given an element X from either G-DH$
�, where

14 1. MODERN CRYPTOGRAPHY

the tuple of G-DH� is appended a random element gr, or G-DH?
�, where

the tuple is appended gx1:::xn , outputs 0 or 1 such that:���Pr h�(X) = 1 jX 2 G-DH$
�

i
� Pr [�(X) = 1 jX 2 G-DH?

�]
��� � �:

We denote this di�erence of probabilities by Adv
gddh�
G

(�). The G-DDH�

problem is (T; �)-intractable if there is no (T; �)-G-DDH�-distinguisher
for G .

Lemma 1. The DDH assumption implies the G-DDH assumption. The
proof and the exact security reduction appear in [BCP02d].

A (T; �)-G-CDH�-attacker in G is a probabilistic Turing machine � run-
ning in time T that given G-DH� outputs g

x1���xn with probability at least

�. We denote this probability by Succ
gcdh
G

(�). The G-CDH� problem is
(T; �)-intractable if there is no (T; �)-G-CDH�-attacker in G .

Lemma 2. The CDH and DDH assumptions imply the G-CDH assump-
tion. The proof and the exact security reduction appear in [BCP02d].

7.3. Random Self-Reducibility

In a prime-order group G , the CDH, G-CDH, DDH and G-DDH are all
random self-reducible problems [NR97]. Informally, this property means
that solving the problem on any original instance D can be reduced to
solving the problem on a random instance D0. This requires an e�cient
way to generate the random instances D0 from the original instance D
and an e�cient way to compute the solution to the problem on D0 from
the solution to the problem on D.

Certainly the most common is the additive random self-reducibility of the
CDH and G-CDH problems. We examplify this property for the G-CDH
problem. Given, for example, an instance D = (ga; gb; gc; gab; gbc; gac)
for any a; b; c it is possible to generate a random instance

D0 = (g(a+�); g(b+�); g(c+
); g(a+�):(b+�) ; g(b+�):(c+
); g(a+�):(c+
))

where �, � and
 are random numbers in Zq; however the cost of such a

computation may be high. And given the solution z = g(a+�):(b+�):(c+
)

to the instance D0 it is possible to recover the solution gabc to the random
instance D (i.e. (gabc = z(gab)�
(gac)��(gbc)��(ga)��
(gb)��
(gc)���

g���
). It is, in e�ect, easy to see that such a reduction works only if D is
the generalized DH distribution and that its cost increases exponentially
with the size of D.

8. IDEAL OBJECTS 15

The other one is the multiplicative random self-reducibility of the CDH
and G-CDH problems. The property holds if G is a prime-order cyclic
group. We examplify this property for the G-CDH problem. Given,
for example, an instance D = (ga; gb; gab; gac) for any a; b; c it is easy
to generate a random instance D0 = (ga�; gb� ; gab�� ; gac�
) where �, �
and
 are random numbers in Z�q. And given the solution ga�b�c
 to

the instance D0 it is easy to see that the solution gabc to the random

instance D can be e�ciently computed (i.e. gabc =
�
ga�b�c

�(��
)�1

).
Such a reduction is e�cient and only requires a linear number of modular
exponentiations.

Hash function H

query m
�������������! If m 62 H-list, then r

R
 2 f0; 1g`,

and H-list H-listk(m; r).
H(m)

 ������������� Otherwise, r is taken from H-list.

H-list
List Members Meaning
H-list (m; r) H(m) = r;

Hash query has been made on m

Figure 2. Hash-oracle simulation.

8. Ideal Objects

Provable security is unfortunately achieved at the cost of a loss of e�-
ciency in terms of computation, communication, integration and engi-
neers sometimes face environments where even a slight loss can not be
tolerated. One way to achieve both provable security and e�ciency is
to analyze cryptographic algorithms in an ideal model of computation
wherein concrete objects are identi�ed to real ones. Such an analysis is
useful to avoid attacks independent of the actual implementation of the
ideal object. In the litterature this class of attacks is often referred to as
generic attacks.

16 1. MODERN CRYPTOGRAPHY

8.1. The Ideal-Hash Model

In the ideal hash model, also called the �random oracle model� [BR93b],
cryptographic hash functions are viewed as random functions with the
appropriate range. Security proofs in this model identify the hash func-
tions as oracles which produce a truly random value for each new query
and identical answers if the same query is asked twice (see Figure 2).
Later, in practice, the random functions are instantiated using speci�c
functions derived from standard cryptographic hash functions like SHA
or MD5.

Analyses in this idealized model have been successful in ensuring secu-
rity guarantees of numerous cryptographic algorithms provided that the
hash function has no weaknesses [BR96, Ble98, CGH98, FOPS01, PS00,
Sho01]. Security proofs in this model are superior to those provided by
heuristic protocol designs although they do not provide the same security
guarantees as those in the standard model [CS98, CS99].

8.2. The Ideal-Cipher Model

Security proofs in the ideal-cipher model see a (keyed) cipher as a family
of random permutations which are queried via an oracle to encrypt and
decrypt [BPR00]. The oracle produces a truly random value for each new
query and identical answers if the same query is asked twice; furthermore,
for each key, the injectivity is satis�ed. In practice, the ideal-cipher is
instantiated using deterministic symmetric encryption function such as
AES [NIS00]. Although these encryption functions have been designed
with di�erent criteria from being an ideal-cipher, AES has been designed
with unpredictability in mind.

Security proofs in the ideal-cipher model are superior to those provided
by ad-hoc protocol designs although they do not provide the same secu-
rity guarantees as those in the random oracle and the standard models.
However, the ideal-cipher model allows for �elegant� and more e�cient
protocols. The ideal-cipher model has recently been used by Bellare et
al. to ensure security guarantees of Di�e-Hellman key exchange when
parties authenticated one another using a shared password [BPR00]. We
also recently used it to lay out the problem of password-based authenti-
cated group Di�e-Hellman key exchange on �rmer foundation [BCP02c].

CHAPTER 2

Group Di�e-Hellman Key Exchange

Group Di�e-Hellman protocols for Authenticated Key Exchange (AKE)
are designed to provide a pool of players with a shared secret key which
may later be used, for example, to achieve multicast message integrity.
Over the years, several schemes have been o�ered however no formal
treatment for this cryptographic problem was proposed. In this chapter,
we present a security model for this problem and use it to precisely de�ne
AKE (with �implicit� authentication) as the fundamental goal, and the
entity-authentication goal as well. We then de�ne in this model the
execution of an authenticated group Di�e-Hellman scheme and prove
its security.

1. Introduction

Group Di�e-Hellman schemes for Authenticated Key Exchange are de-
signed to provide a pool of players communicating over an open network
and each holding a pair of matching public/private keys with a shared
secret key which may later be used to achieve some cryptographic goals
like multicast message con�dentiality or multicast data integrity. In this
chapter we consider the scenario where the group membership is static
and known in advance. At startup the participants would like to engage
in a conversation at the end of which they have established a session key.

The fundamental security goal for a scheme designed for such a scenario
to achieve is Authenticated Key Exchange (with �implicit� authentica-
tion) identi�ed as AKE. In AKE, each player is assured that no other
player aside from the arbitrary pool of players can learn any informa-
tion about the session key. Another stronger highly desirable goal for a
group Di�e-Hellman scheme to provide is Mutual Authentication (MA).
In MA, each player is assured that its partners (or pool thereof) actually
have possession of the distributed session key. Pragmatically, MA takes
more rounds; one round of simultaneous broadcasts. With these security
goals in hand, one can then analyze the security of a particular group
Di�e-Hellman scheme to see how it meets the de�nitions.

17

18 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

This chapter provides the �rst tier in the treatment of the group Di�e-
Hellman key exchange problem using public/private key pairs. We �rst
present a formal model to help manage the complexity of de�nitions
and proofs for the authenticated group Di�e-Hellman key exchange. A
model where a process controlled by a player running on some machine
is modeled as an instance of the player, the various types of attacks are
modeled by queries to these instances and the security of the session
key is modeled through semantic security. Moreover, in order to be
correctly formalized, the intuition behind mutual authentication requires
de�nitions of session IDS and partner IDS.

Second, we de�ne in this model the execution of a protocol modi�ed
from [STW96], we refer to it as AKE1, and show that AKE1 can be
proven secure under reasonable and well-de�ned intractability assump-
tions. Third, we present a generic transformation for turning an AKE
protocol into a protocol that provides MA and justify its security under
reasonable and well-de�ned intractability assumptions.

The remainder of this chapter is organized as follows. In the following
section we �rst review the related work. The chapter continues with
a description of our model of a distributed environment in Section 3
and gives the precise security de�nitions that should be satis�ed by a
group Di�e-Hellman scheme in Section 4. Section 5 presents the protocol
AKE1 and justi�es its security in the random oracle model. Section 6
turns AKE1 into a protocol that provides MA and justi�es its security
in the random oracle model.

2. Related Work

Over the years, several papers [AST00, BW98, BD95, SSDW88, ITW82,
JV96, Per99, STW96, Tze00] have attempted to extend the well-known
Di�e-Hellman key exchange [DH76] to the multi-party setting. These
protocols meet a variety of performance attributes but only exhibit an
informal analysis showing that they achieve the desired security goals.
Some of the papers exhibited an ad-hoc analysis for the security of
their schemes and some of these schemes have later been found to be
�awed [JV96, PQ01a]. Other papers only provided heuristic evidence of
security without quantifying it. The remaining schemes assume authen-
ticated links and thus do not consider the authentication as part of the
protocol design.

The work of Ateniese et al. [AST00] is of particular interest since it iden-
ti�es the fundamental and additional desirable security goals of authen-
ticated group Di�e-Hellman key exchange. The authors o�er provably

3. MODEL 19

secure authenticated protocols and sketch informal proofs that their pro-
tocols achieve these goals. Unfortunately these protocols have also since
been found to be �awed [PQ01a].

3. Model

In our model, the adversary A is given enormous capabilities. It controls
all communications between player instances and can at any time ask an
instance to release a session key or a long-lived key. In our formalization,
we consider honest players that do not deviate from the protocol and,
thus, an adversary which is not a player. In the rest of this section we
formalize the protocol and the adversary's capabilities.

3.1. Players

We �x a nonempty set ID of n players that want (and are supposed)
to participate in a group Di�e-Hellman protocol P . The number n of
players is polynomial in the security parameter k.

A player Ui 2 ID can have many instances called oracles, involved in
distinct concurrent executions of P . We denote instance s of player Ui

as �s
i with s 2 N. Also, when we mean a not �xed member of ID we use

U without any index and so denote an instance of U as �s
U with s 2 N.

3.2. Long-Lived Keys

Each player U 2 ID holds a long-lived key LLU which is a pair of
matching public/private keys. LLU is speci�c to U not to one of its
instances. Associated to protocol P is a LL-key generator GLL which at
initialization generates LLU and assigns it to U .

3.3. Session IDS

We de�ne the session IDS (SIDS) for oracle �s
i in an execution of protocol

P as SIDS(�s
i) = fSIDij : j 2 IDg where SIDij is the concatenation

of all �ows that oracle �s
i exchanges with oracle �t

j (possibly via the

intermediary of A) in an execution of P . We emphasize that SIDS is
public � it does not depend on the session key � and, thus, is available
to the adversary A; A can just listen on the wire and construct it. We
will use SIDs to properly de�ne partnering through the notion of partner
IDs (PIDs).

20 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

3.4. Accepting and Terminating

An oracle �s
U accepts when it has enough information to compute a

session key SK. At any time an oracle �s
U can accept and it accepts at

most once. As soon as oracle �s
U accepts, SK and SIDS are de�ned.

Having accepted �s
U does not necessarily terminate immediately. �s

U
may want to get con�rmation that its partners have actually computed
SK or that its partners are really the ones it wants to share a session
key with. As soon as �s

U gets this con�rmation message, it terminates �
it will not send out any more messages.

3.5. Security Model

3.5.1. Oracle Queries

The adversary A has an endless supply of oracles �s
U and makes various

queries to them. Each query models a capability of the adversary. The
four queries and their responses are listed below:

� Send(�s
U ;m): This query models adversary A sending messages

to instances of players. The adversary A gets back from his
query the response which oracle �s

U would have generated in
processing message m. If oracle �s

U has not yet terminated and
the execution of protocol P leads to accepting, variables SIDS
are updated. A query of the form Send(�s

U , �start�) initiates
an execution of P .
� Reveal(�s

U): This query models the attacks resulting in the ses-
sion key being revealed. The Reveal query is only available to
adversary A if oracle �s

U has accepted. The Reveal-query un-
conditionally forces �s

U to release SK which otherwise is hidden
to the adversary.
� Corrupt(U): This query models the attacks resulting in the
player U 's LL-key being revealed. Adversary A gets back LLU
but does not get the internal data of any instances of U execut-
ing P .
� Test(�s

U): This query models the semantic security of the ses-

sion key SK, namely the following game, denoted by Gameake(
A; P), between adversary A and the oracles �s

U involved in the
executions of P . During the game, A can ask any of the above
queries, and once, asks a Test-query. Then, one �ips a coin b
and returns SK if b = 1 or a random string if b = 0. At the end
of the game, adversary A outputs a bit b0 and wins the game if

4. DEFINITIONS 21

b = b0. The Test-query is asked only once and is only available
if �s

U is Fresh (see Section 4).

3.5.2. Executing the Protocol

Choose a protocol P with a session-key space SK, and an adversary A.
The security de�nitions take place in the context of making A play the
above game Gameake(A; P). P determines how �s

U behaves in response
to messages from the environment. A has the following abilities: it con-
trols all communications between instances; it can at any time force an
oracle �s

U to divulge SK or more seriously LLU ; it can initiate simulta-
neous executions of P . This game is initialized by providing coin tosses
to GLL, A, all �

s
U , and running GLL(1

k) to set LLU . Then

(1) Initialize any �s
U to SIDS null, PIDS null, SK

null.
(2) Initialize adversary A with 1k and access to any �s

U ,
(3) Run adversary A and answer oracle queries as de�ned above.

3.5.3. Discussion

The group Di�e-Hellman-like protocols [AST00, BW98, BD95, SSDW88,
ITW82, Per99, STW96] are generally speci�ed using the broadcast com-
munication primitive; the broadcast primitive allows a player to send
messages to an arbitrary pool of players in a single round. However such
a communication convention is irrelevant to our notions of security; for
example, one can always turn a broadcast-based protocol P into a pro-
tocol P 0 which sends only one message in each round and which still
meets our de�nitions of security as long as P does. The group Di�e-
Hellman-like protocols also employ a di�erent connectivity graph (e.g,
ring or tree) to route messages among players. The connectivity graph
allows the protocols to meet speci�c performance attributes. However
the way the messages are routed among players does not impact our se-
curity de�nitions; one can always turn a protocol P into a protocol P 0

that di�ers only in its message routing.

4. De�nitions

In this section we present the de�nitions that should be satis�ed by a
group Di�e-Hellman scheme and describe what breaking a group Di�e-
Hellman scheme means. We uniquely de�ne the partnering from the

22 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

session IDS and, thus, it is publicly available to the adversary1. We
present each de�nition in a systematic way: we give an intuition and
then formalize it.

Let's also recall that a function �(k) is negligible if for every c > 0 there
exists a kc > 0 such that for all k > kc, �(k) < k�c.

4.1. Partnering using SIDS

The partnering de�nition captures the intuitive notion that the players
with which oracle �s

i has exchanged messages are the players with which
�s
i believes it has established a session key. Another simple way to

understand the notion of partnering is that an instance t of a player Uj

is a partner of oracle �s
i if �

t
j and �s

i have directly exchanged messages
or there exists some sequence of oracles that have directly exchanged
messages from �t

j to �s
i .

After many executions of P , or inGameake(A; P), we say that oracles �s
i

and �t
j are directly partnered if both oracles accept and SIDS(�s

i) \

SIDS(�t
j) 6= ; holds. We denote the direct partnering as �s

i $ �t
j .

We also say that oracles �s
i and �t

j are partnered if both oracles accept

and if, in the graph GSIDS = (V;E) where V = f�s
U : U 2 ID; i =

1; : : : ; ng and E = f(�s
i ;�

t
j) : �s

i $ �t
jg the following holds:

9k > 1;� �s1
1 ;�

s2
2 ; : : : ;�

sk
k �

with :

�s1
1 = �s

i ; �
sk
k = �t

j ; �
si�1

i�1 $ �si
i :

We denote this partnering as �s
i ! �t

j .

We complete in polynomial time (in jV j) the graph GSIDS to obtain
the graph of partnering : GPIDS = (V 0; E0), where V 0 = V and E0 =
f(�s

i ;�
t
j) : �s

i ! �t
jg (see [CLR90] for graph algorithms), and then

de�ne the partner IDS for oracle �s
i as:

PIDS(�s
i) = f�

t
j : �s

i ! �t
jg

1In the de�nition of partnering, we do not require that the session key SK com-
puted by partnered oracles be the same since it can easily be proven that the prob-
ability that partnered oracles come up with di�erent SK is negligible (see Section
6.4.1).

4. DEFINITIONS 23

Although the above de�nitions may appear quite arti�cial, we emphasize
that the authentication goals need to be de�ned from essentially public
criteria (in other words, from the partnering notion). Claiming that
�players are mutually authenticated i� they hold the same SK� would
lead to impractical de�nitions. The mutual authentication is essentialy
a public, veri�able notion.

4.2. Security Notions

4.2.1. Forward-Secrecy

The notion of forward-secrecy entails that the loss of a LL-key does not
compromise the semantic security of previously-distributed session keys.
This de�nition captures weak-corruption attacks where the adversary
gets the LL-key and not the random bits (i.e. internal data) used by a
process. We refer to this de�nition of forward-secrecy as weak forward-
secrecy. In Chapter 4, we will de�ne a stronger notion of forward-secrecy.

4.2.2. Freshness

The freshness de�nition captures the intuitive notion that a session key
SK is de�ned Fresh if no oracle is corrupted at that moment, and it
remains Fresh if no Reveal-query is asked later to the oracle or one of its
partners. More precisely, an oracle �s

U is Fresh (or holds a Fresh SK)
if the following four conditions hold: First, �s

U has accepted. Second,
nobody has been asked for a Corrupt-query before �s

U accepts. Third,
�s
U has not been asked for a Reveal-query. Fourth, the partners of �s

U ,
PIDS(�s

U) have not been asked for a Reveal-query.

4.2.3. AKE Security

In an execution of P , we say an adversary A (computationally bounded)
wins if she asks a single Test-query to a Fresh oracle and correctly guesses
the bit b used in the game Gameake(A; P). We denote the ake advan-
tage as AdvakeP (A); the advantage is taken over all bit tosses. Protocol

P is an A-secure AKE if AdvakeP (A) is negligible.

4.2.4. Authentication Security

This de�nition of authentication captures the intuitive notion that it
should be hard for a computationally bounded adversary A to imper-
sonate a player U through one of its instances �s

U .

24 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

In an execution of P , we say adversary A violates player-to-players au-
thentication (PPsA) for oracle �s

U if �s
U terminates holding SIDS(�s

U),
PIDS(�s

U) and jPIDS(�
s
U)j 6= n� 1. We denote the ppsa probability

as SuccppsaP (A) and say protocol P is an A-secure PPsA if SuccppsaP (A)
is negligible.

In an execution of P , we say adversary A violates mutual authentication
(MA) if A violates PPsA authentication for at least one oracle �s

U . We
name the probability of such an event the ma success Succma

P (A) and
say protocol P is an A-secure MA if Succma

P (A) is negligible.

Therefore to deal with mutual authentication (or player-to-players au-
thentication in a similar way), we consider a new game Gamema(A; P)
in which the adversary plays exactly the same way as in the game
Game

ake(A; P) with the same oracle accesses but with a di�erent goal:
to violate the mutual authentication. In this new game, the adversary is
not really interested in the Test-query, in the sense that it can terminate
whenever he wants. However, we leave this query available for simplicity.

4.3. Adversary's Resources

The security is formulated as a function of the amount of resources the
adversary A expends. The resources are:

� t time of computing;
� qse; qre; qco number of Send, Reveal and Corrupt queries adver-
sary A respectively makes.

By notation Adv(t; : : :) or Succ(t; : : :), we mean the maximum values of
Adv(A) or Succ(A) respectively, over all adversaries A that expend at
most the speci�ed amount of resources.

5. An Authenticated Group Di�e-Hellman Scheme

We �rst introduce the protocol AKE1 and then prove it is a secure AKE
scheme in the ideal hash model. Then at the end of this section we
comment on the security theorem and the proof.

5.1. Preliminaries

In the following we assume the ideal hash function model. We use a hash
function H from f0; 1g� to f0; 1g` where ` is a security parameter. The
session-key space SK associated to this protocol is f0; 1g` equipped with
a uniform distribution. In this model, a new query, namely Hash-query

5. AN AUTHENTICATED GROUP DIFFIE-HELLMAN SCHEME 25

U
1

U
2

U
3

U
4

x
1

R

[0
;q
�
1
]

X
1
:=
f
g
;g
x
1
g

F
l 1
:=
f
I
D
;X
1
g

[F
l 1
] U
1

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�!

[F
l 2
] U
2

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�!

[F
l 3
] U
3

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�!

V
(F
l 1
)

? =
1

V
(F
l 2
)

? =
1

V
(F
l 3
)

? =
1

x
2

R

[0
;q
�
1
]

x
3

R

[0
;q
�
1
]

x
4

R

[0
;q
�
1
]

X
2
:=
f
g
x
1

;g
x
2

;g
x
1
x
2
g

X
3
:=
f
g
x
1
x
2
;g
x
1
x
3

;

X
4
:=
f
g
x
1
x
2
x
4

;g
x
1
x
3
x
4

;

g
x
2
x
3
;g
x
1
x
2
x
3
g

g
x
2
x
3
x
4
;g
x
1
x
2
x
3
g

F
l 2
:=
f
I
D
;X
2
g

F
l 3
:=
f
I
D
;X
3
g

F
l 4
:=
f
I
D
;X
4
g

K
:=
(g
x
1
x
2
x
3
)x
4

[F
l 4
] U
4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

[F
l 4
] U
4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�

�
�
�
�
�
�

[F
l 4
] U
4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

V
(F
l 4
)

? =
1

V
(F
l 4
)

? =
1

V
(F
l 4
)

? =
1

K

:=
(g
x
2
x
3
x
4

)x
1

K

:=
(g
x
1
x
3
x
4
)x
2

K

:=
(g
x
1
x
2
x
4
)x
3

Figure 1. Protocol AKE1. An example of a honest exe-
cution with 4 players: ID = fU1; U2; U3; U4g. The shared
session key SK is sk = H(U1; U2; U3; U4; F l4; g

x1x2x3x4).

26 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

is available to adversary A; the adversary can submit an arbitrarily long
bit string and obtain the value of H(m).

Arithmetic is in a �nite cyclic group G =< g > of order a k-bit prime
number q. This group could be a prime subgroup of Z�p, or it could be an
(hyper)-elliptic curve group. We denote the operation multiplicatively.

5.2. Scheme

This is a protocol in which the players ID = fUi : 1 � i � ng are
arranged in a ring, the names of the players are in the protocol �ows,
the �ows are signed using the long-lived key LLU , the session key SK is
sk = H(ID; F ln; g

x1:::xn), where F ln is the down�ow; SIDS and PIDS
are appropriately de�ned.

As illustrated by the example on Figure 1, the protocol consists of two
stages: up-�ow and down-�ow. In the up-�ow the player raises the re-
ceived intermediate values to the power of its private input and forwards
the result to the next player in the ring. The down-�ow takes place when
Un receives the last up-�ow and computes sk. Un raises the intermediate
values it has received to the power of its private key and broadcasts the
result (i.e. F ln) which allows the other players to construct sk.

5.3. Theorem of Security

Let P be the AKE1 protocol, GLL be the associated LL-key generator.
One can state the following security result:

Theorem 1. Let A be an adversary against the AKE security of proto-
col P within a time bound t, after qse interactions with the parties and
qh hash queries. Then we have:

AdvakeP (t; qse; qh) �

2qhq
n
se � Succ

gcdh�
G

(t0) + n � Succcma
� (t00)

where t0 � t+ qsenTexp(k) and t00 � t+ qsenTexp(k); Texp(k) is the time
of computation required for an exponentiation modulo a k-bit number
and � corresponds to the elements adversary A can possibly view:

� =
[

1�j�n

ffi j 1 � i � j; i 6= lg j 1 � l � jg

5. AN AUTHENTICATED GROUP DIFFIE-HELLMAN SCHEME 27

Before describing the details of the proof let us �rst provide the main
ideas. We consider an adversary A attacking the protocol P and then
�breaking� the AKE security. A would have carried out her attack in
di�erent ways: (1) she may have got her advantage by changing the
content of the �ows, hence forging a signature with respect to some
player's long-lived public key (otherwise, the player would have rejected).
We will then use A to build a forger by �guessing� for which player A
will produce her forgery. (2) she may have broken the scheme without
altering the content of the �ows. We will use her to solve an instance of
the G-CDH� problem, by �guessing� the moment at which A will make
the Test-query and by injecting into the game the elements from the
G-CDH� instance received as input.

5.4. Proof of the Theorem

Let A be an adversary that can get an advantage � in breaking the AKE
security of protocol P within time t. We construct from it a (t00; �00)-forger
F and a (t0; �0)-G-CDH�-attacker � .

5.4.1. Forger F

Let's assume that A breaks the protocol P because she forges a signature
with respect to some player's (public) LL-key and she is able to do it
with probability greater than �. We construct from it a (t00; �00)-forger F
which outputs a forgery (�;m) with respect to a given (public) LL-key
Kp (Of course Kp was produced by GLL(1

k)).

F receives as inputKp and access to a (public) signing oracle. F provides
coin tosses to GLL, A and all �s

U . F picks at random i 2 [1; n] and runs

GLL(1
k) to set the players' LL-keys. However for player i, F sets LLi

to Kp. F then starts running A as a subroutine and answers the oracle
queries made by A as explained below. F also uses a variable K, initially
set to ;.

When A makes a Send-query, F answers in a straightforward way, using
LL-keys to sign the �ows, except if the query is of the form Send(�s

i ; �)
(8s 2 N). In this latter case the answer goes through the signing oracle,
and F stores in K the request to the signing oracle and the signing oracle
response. When A makes a Reveal-query or a Test-query, F answers in
a straightforward way. When A makes a Corrupt-query, F answers in
a straightforward way except if the query is of the form Corrupt(�s

i)
(8s 2 N). In this latter case, since F does not know the LL-key Ks

for player i, F stops and outputs �Fail�. But anyway, no signature
forgery occurred before, and so, such an execution can be used with the

28 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

other reduction. When A makes a Hash-query, F answers the query as
depicted on Figure 2 in Chapter 1.

IfA has made a query of the form Send(�; (�;m)) where � is a valid signa-
ture on m with respect to Kp and (�;m) =2 K, then F halts and outputs
(�;m) as a forgery. Otherwise the process stops when A terminates and
F outputs �Fail�.

The probability that F outputs a forgery is the probability that A by
itself produces a valid �ow multiplied by the probability of �correctly
guess� the value of i:

Succcma
� (F) �

�

n

The runnning time of F is the running time of A added to the time to
process the Send-queries. This is essentially a constant value. This gives
the formula for t:

t00 � t+ qsenTexp(k)

5.4.2. G-CDH�-attacker �

Let's assume that A gets its advantage without producing a forgery.
(Here with probability greater than � the valid �ows signed with LLU
come from oracle U before U gets corrupted and not from A.) We
construct from A a (t0; �0)-G-CDH�-attacker � which receives as input
an instance of G-CDH� and outputs the group Di�e-Hellman secret
value relative to this instance.

� receives as input an instance D = ((f1g; gx1); (f2g; gx2); : : : ; F ln) of
the G-CDH� problem, where F ln are the terms corresponding to sub-
sets of indices of cardinality n � 1 (with the same structure as in the
broadcast). � provides coin tosses to GLL, A, all �

s
U , and runs GLL(1

k)
to set the players' LL-keys. � picks at random n values u1 through un
in [1; qse]

n. Then � starts running A as a subroutine and answers the
oracle queries made by A as explained below. � uses a set of counters
ci through cn, initially set to zero.

When A makes a Send-query to some instance of player Ui, then � incre-
ments ci and proceeds as in protocol P using a random value. However
if ci = ui and m is the �ow corresponding to the instance D, � answers
using the elements from the instance D. When A makes a Corrupt-query,
� answers in a straightforward way. When A makes a Hash-query, F
answers the query as depicted on Figure 2 in Chapter 1. When A makes

5. AN AUTHENTICATED GROUP DIFFIE-HELLMAN SCHEME 29

a Reveal-query, � answers in straightforward way. However, if the ses-
sion key has to be constructed from the instance D, � halts and outputs
�Fail�. When A makes the Test-query, � answers with a random string.

We emphasize that, since � knows all the keys except for one execution
of P (i.e. the execution involving D in all �ows), this simulation is
perfectly indistinguishable from an execution of the real protocol P .

The probability that � correctly �guesses� on which session key A will
make the Test-query is the probability that � correctly �guesses� the
values u1 through un. That is:

� =
Y
n

1

qse
=

1

qnse

In this case, � is actually able to answer to all Reveal-queries, since
Reveal-query must be asked to a Fresh oracle, holding a key di�erent
from the Test-ed one, and thus, known to �.

Then, when A terminates outputting a bit b0, � looks in the H-list to see
if some queries of the form Hash(U1; : : : ; Un; F ln; �) have been asked. If
so, � chooses at random one of them, halts and outputs the remaining
part ��� of the query.

Let Ask be the event that A makes a Hash-query on (U1; :::; Un; F ln;
gx1���xn). The advantage of A in breaking the AKE security without
forging a signature, conditioned by the fact that we correctly guessed all
ui's, is:

�� �

qnse
� AdvakeP (A) = 2 Pr

�
b = b0

�
� 1

= 2 Pr
�
b = b0j:Ask

�
Pr [:Ask] +

2 Pr
�
b = b0jAsk

�
Pr [Ask] � 1

� 2 Pr
�
b = b0j:Ask

�
� 1 + 2 Pr [Ask] = 2 Pr [Ask]

In the random oracle model, 2 Pr [b = b0j:Ask]� 1 = 0, since A can not

gain any advantage on a random value without asking for it.

The success probability of � is the probability that A asks the correct
value to the hash oracle multiplied by the probability that � correctly
chooses among the possible Hash-queries:

Succ
gcdh�
G

(�) �
Pr [Ask]

qh
�

�� �

2qnse
�

1

qh

30 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

The runnning time of � is the running time of A added to the time to
process the Send-queries. This is essentially n modular exponentiation
computations per Send-query. Then

t0 � t+ qsenTexp(k)

ut

5.5. Practical Security

The quality of the reduction measures how much security of the G-CDH�

and the signature scheme is injected into AKE1. We view qse as an upper
bound on the number of queries we are willing to allow (e.g., qse = 230

and qh = 260) and n as the number of participants involved in the ex-
ecution of AKE1 (e.g., current scienti�c collaborations involve up to 20
participants). Moreover, because of the network latency and computa-
tion cost, the practicability of AKE1 becomes an issue with groups larger
than 40 members operating in a wide-area environment [ACTT01].

We may then ask how the security proof is meaningful in practice. First,
one has to be clear that such a proof of security is much better than no
proof at all and that AKE1 was the �rst AKE scheme to have a proof of
security. Second, several techniques could be used to carry out a proof
which achieves a better (or tighter) security reduction. We use one of
these techniques in the next chapters.

The reduction could be improved using a technique of Shoup [Sho97].
Shoup's technique runs two attackers, similar to the one above, in paral-
lel on two di�erent instances obtained by random self-reducibility, and a
common value will appear in the H-list of the attackers with overwhelm-
ing probability and thus leads to the right solution for G-CDH�.

In the next chapters, we will not use Shoup's technique to carry out our
proofs but a technique similar to the one used by Coron [Cor00]. We
use the random self-reducibility of the group Di�e-Hellman problems
to generate many instances D0 from D such that all the D0 lie in the
same distribution as D. Such instances are randomly used. But then,
the resulting session key will be unknown. Therefore, the reduction will
work if all the Reveal-queries are asked for known session keys, but the
Test-query is asked to one involving an instance D0. By correctly tuning
the probability of using a D0 instance or not, one can slightly improve the
e�ciency of the reduction2. If the session key is simply �xed to gx1���xn

2However, such a proof gets complicated when one adds in the concern of forward-
secrecy. Instead the ideas in the proof of Section 5.4 can easily be extended to show
that AKE1 guarantees forward-secrecy.

6. ADDING AUTHENTICATION 31

the proof could additionaly be carried out in the standard model rather
than the random one as done in Chapter 4.

6. Adding Authentication

In this section we sketch generic transformations for turning an AKE
protocol P into a protocol P 0 that provides player-to-players authenti-
cation (PPsA) and mutual authentication (MA). Then, we prove in the
ideal hash model that the transformation provides a secure MA scheme
and comment on the security theorem.

It may be argued that PPsA and MA are not absolutely necessary, can
be achieved by a variety of means (e.g, encryption could begin on some
carefully chosen known data) or even that MA does give real security
guarantees in practice. However, the task of a cryptographic protocol
designer is to make no assumptions about how system designers will
use the session key and provide application developers with protocols
requiring only a minimal degree of cryptographic awarness.

6.1. Approach

The well-known approach uses the shared session key to construct a sim-
ple �authenticator� for the other parties. However, one has to be careful
in the details and this is a common �error� in the design of authentication
protocols. Actually the protocols o�ered by Ateniese et al. [AST00] are
seen insecure under our de�nitions since the �authenticator� is computed
as the hash of the session key sk and sk is the same as the �nal session
key SK. The adversary learns some information about the session key
sk � the hash of sk � and can use it to distinguish SK from a session key
selected at random from session-key space SK. Therefore these proto-
cols sacri�ce the security goal that a protocol establishes a semantically
secure session key.

6.2. Transformations

The transformation AddPPsA (adding player-to-players authentication)
for player U consists of adding to protocol P one more round in such a
way that the partners of U are convinced they share sk with U . As an
example, on Figure 2 player Un sends out H(sk; n).

More formally the transformation AddPPsA works as follows. Suppose
that in protocol P player Un has accepted holding skUn ; sidUn ; pidUn and
has terminated. In protocol P 0 = AddPPs(P), Un sends out one addi-
tional �ow authUn = H(skUn ; n), accepts holding sk0Un = H(skUn ; 0),

32 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

U
i

U
n

P
ro
to
co
l
P
w
hi
ch
ou
tp
ut
s

SI
D
S=
s
id
s
,
P
ID
S=
p
id
s
,
an
d

co
m
es
up
w
it
h
S
K
=
s
k
U
i

co
m
es
up
w
it
h
S
K
=
s
k
U
n

a
u
th
U
n

H
(s
k
U
n
;n
)

s
k
0 U
n

H
(s
k
U
n
;0
)

a
u
th
U
n

�
�
�
�
�
�
�
�
�
�
�
�
�
�

A
u
th
U
n

? =
H
(s
k
U
i
;n
)

s
k
0 U
i

H
(s
k
U
i
;0
)

Figure 2. Transformation P 0 = AddPPsA(P). The
shared session key SK is sk0 = H(sk; 0), SIDS and PIDS
are unchanged.

6. ADDING AUTHENTICATION 33

sid0Un = sidUn , pid
0
Un

= pidUn , and then terminates. Suppose now that
in P the partner Ui (i 6= n) of Un has accepted holding skUi ; sidUi ; pidUi
and has terminated. In protocol P 0, Ui receives one additional �ow
authUn and checks if authUn = H(skUi ; n). If so, then Ui accepts hold-
ing sk0Ui = H(skUi ; 0); sid

0
Ui

= sidUi ; pid
0
Ui

= pidUi , and then terminates.
Otherwise, Ui rejects.

The transformation AddMA (add mutual authentication) is analogous
to AddPPsA. It consists of adding to protocol P one more round of
simultaneous broadcasts. More precisely, all the players Ui send out
H(sk; i) and they all check the received values.

6.3. Theorem of Security

Let P be an AKE protocol, SK be the session-key space and G be the
associated LL-key generator. One can state the following security result
about P 0=AddMA(P):

Theorem 2. Let A be an adversary against the security of protocol P 0

within a time bound t, after qse interactions with the parties and qh hash
queries. Then we have:

AdvakeP 0 (t; qse; qh) � AdvakeP (t; qse; qh) +
qh
2`

Succma
P 0 (t; qse; qh) � AdvakeP (t0; qse; qh) +

nqh
2`

where t0 � t+ (qse + qh)O(1).

Before describing the details of the proof let us �rst provide the main
ideas. We �rst show that the transformation AddMA preserves the AKE
security (session key indistinguishability) of protocol P . We then show
that impersonating a player in MA rounds implies for A to �fake� the
authentication value Authi. Since this value goes through the hash func-
tion, it implies that A has computed the session key value sk and, thus,
made the Hash-query.

6.4. Proof of the Theorem

Let A be an adversary that can get an advantage AdvakeP 0 (t; qse; qh) in
breaking the AKE security of protocol P 0=AddMA(P) within time t
or can succeed with probability Succma

P 0 (t; qse; qh) in breaking the MA
security of protocol P 0. We construct from it an attacker B that gets an

34 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

advantage AdvakeP (t0; qse; qh) in breaking the AKE security of protocol P
within time t0.

6.4.1. Disrupt Partnering

We are not concerned with partnered oracles coming up with di�erent
session keys, since our de�nition of partnering implies the oracles have
exchanged exactly the same �ows. We also note that the probability that
two instances of a given player come to be partnered is negligible; in fact,
it would mean they have chosen the same random value in the protocols,

which occurs with probability O(q
2
se

2k
).

6.4.2. AKE break

We construct from A an adversary B that gets an advantage �0 in break-
ing the AKE security of P within time t0.

B provides coin tosses to GLL, A, all �
s
U and starts running the game

Game
ake(A; P 0). B answers the queries made by A as follows:

The oracle queries made by A to B are relayed by B and the answers are
subsequently returned to A. However B's answers to Reveal and Test-
queries go through the Hash-oracle to be padded with �0� before being
returned to A. The Hash-queries are answered as depicted in Figure 2
in Chapter 1.

In the ideal hash model, in which H is seen as a random function, A
can not get any advantage in correctly guessing the bit involved in the
Test-query without having made a query of the form H(sk; 0). So

Pr [Aasks(sk; 0)] � AdvakeP (A) � �:

At some point A makes a Test-query to oracle �s
U , B gets value � and

relays H(�; 0) to A. B then looks for � in the H-list: B outputs 1 if
(�; 0) is in the H-list of queries made by A, otherwise B �ips a coin and
outputs the coin value.

The advantage of B to win Gameake(B; P) is the probability that A
made a query of the form H(sk; 0) minus the probability that A made
such query by �pure chance�:

AdvakeP (B) =Pr [Aasks(sk; 0)] �
qh
2`
� AdvakeP 0 (A)�

qh
2`

The runnning time of B is the running time of A added to the time to
process the Send-queries and Hash-queries:

t0 � t+ (qse + qh)O(1)

6. ADDING AUTHENTICATION 35

6.4.3. MA break

We construct from A an adversary B which gets advantage �0 in breaking
the AKE security of P within time t0.

B provides coin tosses to GLL, A, all �
s
U , and starts running the game

Game
ma(A; P 0). B answers to the oracle queries made by A as follows.

The oracle queries made by A to B are relayed by B and the answers
are subsequently returned to A. However B's answers to Reveal and
Test-queries go through the Hash-oracle to be padded with �0� before
being returned to A. The Hash-queries are answered as usual Figure 2
in Chapter 1.

In the ideal hash model, in which H is seen as a random function, A can
not get any advantage in impersonating some oracle �si

i without having
made a query of the form H(sk; i).

At some point B makes a Test-query to oracle �s
U and gets value � . Later

A terminates and B looks for � in H-list: B outputs 1 if (�; �) is in H-list,
otherwise B �ips a coin and outputs the coin value. (�; i) is in H-list if
A violates PPsA for oracle �si

i except with probability qh � n �
1
2`
.

The advantage of B to win Gameake(B; P) is the probability that A
makes a query of the form H(sk; i):

AdvakeP (B) =Pr [A asks (sk; i)] � ��
nqh
2`

The runnning time of B is the running time of A added to the time to
process the Send-queries and Hash-queries:

t0 � t+ (qse + qh)O(1)

ut

6.5. Practical Security

The quality of the reduction measures how much security of the AKE
security strength of protocol P is injected into protocol P 0. We see that
the reduction injects much of the security strength of protocol P into P 0.
In e�ect we can see it since AdvakeP 0 (t; qse; qh) (Succ

ma
P 0 (t; qse; qh) respec-

tively) is inside an additive factor of AdvakeP (t; qse; qh) (Adv
ake
P (t0; qse; qh)

respectively) and this additive factor decreases exponentially with `.

36 2. GROUP DIFFIE-HELLMAN KEY EXCHANGE

7. Conclusion

In this chapter we presented a model for the group Di�e-Hellman key
exchange problem derived from the model of Bellare et al. [BPR00].
Some speci�c features of our approach that were introduced to deal with
the Di�e-Hellman key exchange in the multi-party setting are: de�ning
the notion of session IDS to be a set of session ID, de�ning the notion of
partnering to be a graph of partner ID. Addressed in detail in this chapter
were two security goals of the group Di�e-Hellman key exchange: the
authenticated key exchange and the mutual authentication. For each
we presented a de�nition, a protocol and a security proof in the ideal
hash model that the protocol meets its goals. This chapter provided
the �rst formal treatment of the authenticated group Di�e-Hellman key
exchange problem.

CHAPTER 3

Dynamic Group Di�e-Hellman Key-Exchange

Dynamic group Di�e-Hellman protocols for Authenticated Key Exchange
(AKE) are designed to work in a scenario in which the group member-
ship is not known in advance but where parties may join and may also
leave the multicast group at any given time. While several schemes
was proposed to deal with this scenario no formal treatment for this
cryptographic problem was suggested. In this chapter, we de�ne a secu-
rity model for this problem and use it to precisely de�ne Authenticated
Key Exchange (AKE) with �implicit� authentication as the fundamen-
tal goal, and the entity-authentication goal as well. We then de�ne in
this model the execution of a protocol modi�ed from a dynamic group
Di�e-Hellman scheme o�ered in the literature and prove its security.

1. Introduction

Group Di�e-Hellman schemes for Authenticated Key Exchange are de-
signed to provide a pool of players communicating over a public network
and each holding a pair of matching public/private keys with a session
key to be used to achieve multicast message con�dentiality or multicast
data integrity. In this chapter, we consider the scenario in which the
group membership is not known in advance � dynamic rather than static
� where parties may join and leave the multicast group at any given time.

After the initialization phase, and throughout the lifetime of the multi-
cast group, the parties need to be able to engage in a conversation after
each change in the membership at the end of which the session key is
updated to be sk0. The secret value sk0 is only known to the party in
the multicast group during the period when sk0 is the session key. The
adversary may generate repeated and arbitrarily ordered changes in the
membership for subsets of parties of his choice.

The fundamental security goal for a group Di�e-Hellman scheme to
achieve is Authenticated Key Exchange (with �implicit� authentication)
identi�ed as AKE. In AKE, each player is assured that no other player

37

38 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

aside from the arbitrary pool of players can learn the session key. An-
other stronger highly desirable goal for a group Di�e-Hellman scheme
to provide is Mutual Authentication (MA). In MA, each player is as-
sured that only its partners actually have possession of the distributed
session key. With these security goals in hand, the security of a group
Di�e-Hellman scheme can then be analyzed to see how it meets the
de�nitions.

This chapter provides the second tier in the formal treatment of the
group Di�e-Hellman key exchange problem using public/private keys.
We present the �rst formal model to help manage the complexity of def-
initions and proofs for the authenticated group Di�e-Hellman key ex-
change when the group membership is dynamic. This model is equipped
with some notions of dynamicity in the group membership where the var-
ious types of attacks are modeled by queries to the players. This model
does not yet encompass attacks involving multiple player's instances ac-
tivated concurrently and simultaneously by the adversary. Also, in order
to be correctly formalized, the intuition behind mutual authentication
requires cumbersome de�nitions of session IDS and partner IDS which
may be skipped at the �rst reading.

We start with the model and de�nitions introduced in the previous chap-
ter and extend them to deal with the authenticated dynamic group Di�e-
Hellman key exchange. We de�ne the partnering, freshness of session key
and measures of security for AKE. In this model we de�ne the execu-
tion of a protocol, we refer to it as AKE1, modi�ed from [AST00] and
show that it can be proven secure under reasonable and well-de�ned
intractability assumptions.

The chapter is organized as follows. In the remainder of this section
we summarize the related work. In Section 3 we de�ne our security
model. We use it in Section 4 to de�ne the security de�nitions that
should be satis�ed by a group Di�e-Hellman scheme. We present the
AKE1 protocol in Section 5 and justify its security in the random oracle
model in Section 6. Finally in Section 7 we brie�y deal with MA in the
random oracle model.

2. Related Work

Many group Di�e-Hellman protocols [AST00, BW98, BD95, ITW82,
JV96, SSDW88, STW96, Tze00] aim to distribute a session key among
the multicast group members for a scenario in which the membership
is static and known in advance. However these protocols are not well-
suited for a scenario in which members join and leave the multicast

3. MODEL 39

group at a relatively high rate. Fortunately, several papers have shown
how to extend the protocols [AST00, KPT00, KPT01, STW00] and one
extension is the system o�ered in [ACTT01]. However these protocols,
and this existing system, are based on or use an informal approach and
do not rely on proofs of security. The protocol presented in [AST00]
has been found to be �awed in [PQ01a] and the other papers assume
authenticated links, or more speci�ally do not consider the AKE and
MA goals as part of the protocols. These goals need to be addressed
separately.

3. Model

In this section we formalize the group Di�e-Hellman key exchange and
the adversary's capabilities. In our formalization, the players do not de-
viate from the protocol, the adversary is not a player and the adversary's
capabilities are modeled by various queries. These queries provide the
adversary a capability to initialize a multicast group via Setup-queries,
add players to the multicast group via Join-queries, and remove players
from the multicast group via Remove-queries.

3.1. Players

We �x a nonempty set U of players that can participate in a group
Di�e-Hellman key exchange protocol P . The number n of players is
polynomial in the security parameter k. When we mean a speci�c player
of U we use Ui and when we mean a not �xed member of U we use U
without an index.

We also consider a nonempty subset of U which we call the multicast
group I. And in I a player UGC , the so-called �group controller�, initiates
the addition of players to I or the removal of players from I. UGC is
trusted to do this.

3.2. Long-Lived Keys

Each player U 2 U holds a long-lived key LLU which is either a pair
of matching public/private keys. Associated to protocol P is a LL-key
generator GLL which at initialization generates LLU and assigns it to U .

40 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

3.3. Generic Group Di�e-Hellman Schemes

A group Di�e-Hellman scheme P for U is de�ned by four algorithms: (the
session key SK is known by any player in I but unknown to any player
not in I.)

� the key generation algorithm GLL which has an input of 1k,
where k is the security parameter, provides each player in U
with a long-lived key LLU . GLL is a probabilistic algorithm.
� the setup algorithm which has an input of a set of players J ,
sets variable I to be J and provides each player U in I with a
session key SKU . The setup algorithm is an interactive multi-
party protocol between some players of U .
� the remove algorithm which has an input of a set of players J ,
updates variable I to be InJ (the set of all players in I that
are not in J) and provides each player U in this updated set
with an updated session key SKU . The remove algorithm is an
interactive multi-party protocol between some players of U .
� the join algorithm which has an input of a set of players J ,
updates variable I to be I [J and provides each player U in
this updated set with an updated session key SKU . The join
algorithm is an interactive multi-party protocol between some
players of U .

An execution of P consists of running the key generation algorithm once,
and then many times the setup, remove and join algorithms. We will also
use the term operation to mean one of the algorithms: setup, remove or
join.

3.4. Session IDS

We de�ne the session IDS (SIDS) for player Ui in an execution of protocol
P as SIDS(Ui) = fSIDij : j 2 IDg where SIDij is the concatenation of
all �ows that Ui exchanges with player Uj in executing an operation.
Therefore, Ui sets SKUi to 0 and SIDS(Ui) and ; before executing an
operation. (SIDS is publicly available.)

3.5. Accepting and Terminating

A player U accepts when it has enough information to compute a session
key SKU . At any time a player U who is in �expecting state� can accept
and it accepts at most once in executing an operation. As soon as U
accepts in executing an operation, SK and SIDS are de�ned. Having
accepted, U does not yet terminate this execution. Player U may want

3. MODEL 41

to get con�rmation that its partners in this execution have actually com-
puted SK or that they are really the ones it wants to share a session key
with. As soon as U gets this con�rmation message, it terminates the
execution of this operation - it will not send out any more messages and
remains in a �stand by� state until the next operation.

3.6. Security Model

3.6.1. Queries

The adversary A interacts with the players U by making various queries.
There are seven types of queries. The Setup, Join and Remove queries
may at �rst seem useless since, using Send queries, the adversary already
has the ability to initiate a setup, a remove or a join operation. Yet
these queries are essential for properly dealing with the dynamic case.
To deal with sequential membership changes, these three queries are only
available if all the players in U have terminated. We now explain the
capability that each kind of query captures.

� Setup(J): This query models adversary A initiating the setup
operation. The query is only available to adversary A if all the
players in U have terminated and are thus in a �stand by� state..
A gets back from the �rst player U in J the �ow initiating the
setup execution. Other players are aware of the setup and move
to an �expecting state� but do not reply to any messages.
� Remove(J): This query models adversary A initiating the re-
move operation. The query is only available to adversary A
if all the players in U have terminated. A gets back from the
group controller UGC the �ow initiating the remove execution.
Other players are aware of the remove operation but do not re-
ply. They move from a �stand by� state to an �expecting state�.
� Join(J): This query models adversary A initiating the join op-
eration. The query is only available to adversary A if all the
players in U have terminated. A gets back from the group con-
troller UGC the �ow initiating the join execution. Other players
are aware of the join operation but do not reply. They move
from a �stand by� state to an �expecting state�.
� Send(U;m): This query models adversary A sending a message
to a player. The adversary A gets back from his query the
response which player U would have generated in processing
message m (this could be the empty string if the message is
incorrect or unexpected). If player U has not yet terminated

42 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

and the execution of protocol P leads to accepting, variable
SIDS(U) is updated as explained above.
� Reveal(U): This query models the attacks resulting in the mis-
use of the session key, which may then be revealed. The query is
only available to adversary A if player U has accepted. The Re-
veal-query unconditionally forces player U to release SKU which
is otherwise hidden to the adversary.
� Corrupt(U): This query models the attacks resulting in the
player U 's LL-key been revealed. A gets back LLU but does
not get any internal data of U executing P .
� Test(U): This query models the semantic security of the session
key SK, namely the following game Gameake(A; P) between
adversary A and the players U involved in an execution of the
protocol P . The Test-query is only available if U is Fresh (see
Section 4). In the game A asks any of the above queries, how-
ever, it can only ask a Test-query once. Then, one �ips a coin b
and returns skU if b = 1 or a random string if b = 0. At the end
of the game, adversary A outputs a bit b0 and wins the game if
b = b0.

3.6.2. Executing the Game

Choose a protocol P with a session-key space SK, and an adversary
A. The security de�nitions take place in the context of making A play
Game

ake(A; P). P determines how players behave in response to mes-
sages from the environment. A sends these messages: she controls all
communications between players; she can repeatedly initiate in a non-
concurrent way but in arbitrary order sequential changes in the mem-
bership for subsets of players of her choice; she can at any time force a
player U to divulge SK or more seriously LLU . This game is initialized
by providing coin tosses to GLL, A, all U , and running GLL(1

k) to set
LLU . Then

(1) Initialize any U with SIDS null;PIDS null;SK
null,

(2) Initialize adversary A with 1k and access to all U ,
(3) Run adversary A and answer queries made by A as de�ned

above.

4. De�nitions

In this section we present the de�nitions that should be satis�ed by a
group Di�e-Hellman scheme. We de�ne the partnering from the session

4. DEFINITIONS 43

IDS and use it to de�ne security measurements that an adversary will
defeat the security goals. We also recall that a function "(k) is negligible
if for every c > 0 there exists a kc > 0 such that for all k > kc, "(k) < k�c.

4.1. Partnering using SIDS

The partnering captures the intuitive notion that the players with which
Ui has exchanged messages in executing an operation, are the players
with which Ui believes it has established a session key. Another simple
way to understand the notion of partnering is that Uj is a partner of Ui

in the execution of an operation, if Uj and Ui have directly exchanged
messages or there exists some sequence of players that have directly
exchanged messages from Uj to Ui.

In an execution of P , or in Gameake(A; P), we say that players Ui

and Uj are directly partnered if both players accept and SIDS(Ui) \
SIDS(Uj) 6= ; holds. We denote the direct partnering as Ui $ Uj .

We also say that players Ui and Uj are partnered if both players accept
and if, in the graph GSIDS = (V;E) where V = fUi : i = 1; : : : ; jIjg
and E = f(Ui; Uj) : Ui $ Ujg the following holds:

9k > 1;� U1; U2; : : : ; Uk � with U1 = Ui; Uk = Uj ; Ui�1 $ Ui:

We denote this partnering as Ui! Uj .

We complete in polynomial time (in jV j) the graph GSIDS to obtain
the graph of partnering: GPIDS = (V 0; E0), where V 0 = V and E0 =
f(Ui; Uj) : Ui! Ujg, and then de�ne the partner IDS for oracle Ui as:

PIDS(Ui) = fUj : Ui! Ujg

4.2. Security Notions

4.2.1. Freshness

A player U is Fresh, in the current operation execution, (or holds a
Fresh SK) if the following two conditions are satis�ed. First, nobody
in U has ever been asked for a Corrupt-query from the beginning of the
game. Second, in the current operation execution, U has accepted and
neither U nor its partners PIDS(U) have been asked for a Reveal-query.

44 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

4.2.2. Forward-Secrecy

The notion of forward-secrecy entails that the loss of a LL-key does not
compromise the semantic security of previously-distributed session keys.
This de�nition captures weak-corruption attacks where the adversary
gets the LL-key and not the random bits (i.e. internal data) used by a
process. We refer to this de�nition of forward-secrecy as weak forward-
secrecy. In Chapter 4, we will de�ne a stronger notion of forward-secrecy.

4.2.3. AKE Security

In an execution of P , we say an adversary A wins if she asks a single
Test-query to a Fresh player U and correctly guesses the bit b used in
the gameGameake(A; P). We denote the ake advantage as AdvakeP (A);
the advantage is taken over all bit tosses. (The advantage is twice the
probability that A will defeat the AKE security goal of the protocol
minus one1.) Protocol P is an A-secure AKE if AdvakeP (A) is negligible.

4.2.4. MA Security

In an execution of P , we say adversary A violates mutual authentication
(MA) if there exists an operation execution wherein a player U termi-
nates holding SIDS(U), PIDS(U) and jPIDS(U)j 6= jIj � 1. We denote
the ma success as Succma

P (A) and say protocol P is an A-secure MA

if Succma
P (A) is negligible.

Therefore to deal with mutual authentication, we consider a new game,
we denoteGamema(A; P), wherein the adversary exactly plays the same
way as in the game Gameake(A; P) with the same player accesses but
with a di�erent goal: to violate the mutual authentication.

4.3. Adversary's Resources

The security is formulated as a function of the amount of resources the
adversary A expends. The resources are:

� T -time of computing;
� qs; qr; qc; QS ; QR; QJ numbers of Send, Reveal, Corrupt, Setup,
Remove and Join queries the adversary A respectively makes.

By notation Adv(T; : : :) or Succ(T; : : :), we mean the maximum values
of Adv(A) or Succ(A) respectively, over all adversaries A that expend at
most the speci�ed amount of resources.

1A can trivially defeat AKE with probability 1/2, multiplying by two and sub-
tracting one rescales the probability.

5. AN AUTHENTICATED DYNAMIC GROUP DIFFIE-HELLMAN SCHEME 45

5. An Authenticated Dynamic Group Di�e-Hellman Scheme

In the following theorem and proof we assume the random oracle model
[BR93b] and denote H a hash function from f0; 1g� to f0; 1g`, where
` is a security parameter. The session-key space SK associated to this
protocol is f0; 1g` equipped with a uniform distribution. The arithmetic
is in a �nite cyclic group G =< g > of order a k-bit prime number q and
the operation is denoted multiplicatively. This group could be a prime
subgroup of Z�p, or it could be an (hyper)-elliptic curve based group.

5.1. Scheme

The AKE1 protocol consists of the SETUP1, REMOVE1 and JOIN1
algorithms. As illustrated by an AKE1 execution in Figures 1, 2 and 3
(an execution with more steps is depicted in Figure 6), this is a protocol
wherein the players are arranged in a ring, and wherein each player saves
the set of values it receives in the down-�ow of SETUP1, REMOVE1,
JOIN1. In e�ect, in the subsequent removal of players from I any player
U could be selected as UGC and so will need these values to execute
REMOVE1.

Unlike [AST00], this is a protocol wherein the player with the highest-
index in I is the group controller, the �ows are signed using the long-
lived key LLU , the names of the players are in the protocol �ows, and
the session key SK is sk = H(IkF lmax(I)kg

x1:::xmax(I)); F lmax(I) is the
down-�ow, SIDS and PIDS are appropriately de�ned.

The notion of index models �pre-existing� relationships among players:
for example, it may capture di�erent levels of reliability (i.e. the higher
the index is, the more reliable the player). This is also a protocol, un-
like [AST00], where the set of values from the down-�ow is included in
the �ows of REMOVE1 and JOIN1, which avoids replay attacks.

5.1.1. Algorithm SETUP1

The algorithm consists of two stages: up-�ow and down-�ow. The mul-
ticast group I is set to J . As illustrated by the example in Figure 1,
in the up-�ow the player Ui receives a set (Y;Z) of intermediate values,
with

Y =
[

0<m<i

�
Z1=xm

	
and Z, where Z = g

Q
0<t<i xt :

Player Ui chooses at random a private value xi, raises the values in Y to
the power of xi and then concatenates with Z to obtain his intermediate

46 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

U
1

U
2

U
3

U
4

x
1

R

[1
;q
�
1
]

x
2

R

[1
;q
�
1
]

x
3

R

[1
;q
�
1
]

x
4

R

[1
;q
�
1
]

X
1
:=
f
g
;g
x
1
g

F
l 1
:=
f
I
k
X
1
g

[F
l 1
] U
1

��
�
�
�
�
�
�!

V
(F
l 1
)

? =
T
r
u
e

X
2
:=
f
g
x
2

;g
x
1
;g
x
1
x
2
g

F
l 2
:=
f
I
k
X
2
g

[F
l 2
] U
2

��
�
�
�
�
�
�! V

(F
l 2
)

? =
T
r
u
e

X
3
:=
f
g
x
2
x
3
;g
x
1
x
3
;g
x
1
x
2
;g
x
1
x
2
x
3
g

F
l 3
:=
f
I
k
X
3
g

[F
l 3
] U
3

��
�
�
�
�
�
�! V

(F
l 3
)

? =
T
r
u
e

X
4
:=
f
g
x
2
x
3
x
4

;g
x
1
x
3
x
4

;g
x
1
x
2
x
4

;g
x
1
x
2
x
3

g

F
l 4
:=
f
X
k
I
k
X
4
g

[F
l 4
] U
4

�
�
�
�
�
�
��

[F
l 4
] U
4

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

[F
l 4
] U
4

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

V
(F
l 4
)

? =
T
r
u
e

K
:=
(g
x
2
x
3
x
4

)x
1

sk
U
1

:=
H
(I
k
F
l 4
k
K
)

V
(F
l 4
)

? =
T
r
u
e

K

:=
(g
x
1
x
3
x
4

)x
2

sk
U
2

:=
H
(I
k
F
l 4
k
K
)

V
(F
l 4
)

? =
T
r
u
e

K
:=
(g
x
1
x
2
x
4
)x
3

sk
U
3

:=
H
(I
k
F
l 4
k
K
)

K

:=
(g
x
1
x
2
x
3
)x
4

sk
U
4

:=
H
(I
k
F
l 4
k
K
)

Figure 1. Algorithm SETUP1. An example of an hon-
est execution with 4 players: J = fU1; U2; U3; U4g. The
multicast group is I = fU1; U2; U3; U4g and the shared
session key is sk = H(IkF l4kg

x1x2x3x4). The partner
IDS for U1 is pidsU1 = fU2; U3; U4g, for U2 is pidsU2 =
fU1; U3; U4g, for U3 is pidsU3 = fU1; U2; U4g and for U4

is pidsU4 = fU1; U3; U4g.

5. AN AUTHENTICATED DYNAMIC GROUP DIFFIE-HELLMAN SCHEME 47

values

Y 0 =
[

0<m�i

�
Z 0

1=xm
	
, where Z 0 = Zxi = g

Q
0<t�i xt :

Player Ui then forwards the values (Y 0; Z 0) to the next player in the
ring. The down-�ow takes place when Umax(I) receives the last up-�ow.
At that point Umax(I) performs the same steps as a player in the up-

�ow but broadcasts the set of intermediate values Y 0 only. In e�ect,
the value Z 0 computed by Umax(I) will lead to the session key sk, since

Z 0 = g
Q

0<t�n xt. Players in I compute sk and accept.

5.1.2. Algorithm REMOVE1

This algorithm consists of a down-�ow only. The multicast group I is
�rst set to InJ . As illustrated in Figure 2, the group controller UGC (i.e.
player with the highest-index in InJ) generates a random value x0GC and
removes from the saved previous broadcast the values destinated to the
players in J . UGC then raises all the remaining values in which xGC
appeared to the power of (x�1GC :x

0
GC) and broadcasts the result. (xGC

is UGC 's previous secret value.) Players in I compute sk and accept.
Players in J erase any internal data. UGC erases xGC and x�1GC while
internally saving x0GC .

5.1.3. Algorithm JOIN1

This algorithm consists of two stages: up-�ow and down-�ow. As il-
lustrated in Figure 3, the group controller UGC (i.e. player with the
highest-index in I) generates a random value x0GC , raises the values
from the saved previous broadcast in which xGC appears to the power of
(x�1GC :x

0
GC) and obtains a set of values Y 0. (xGC is UGC 's previous secret

exponent.) UGC also computes the value Z 0 by raising the last value in
Y 0 to x0GC . Ui then forwards the values (Y 0; Z 0) to the �rst joining player
in J . From that point JOIN1 will work as the SETUP1 algorithm. Upon
receiving the brodcast �ow players in I [J erase previous session keys,
compute sk and accept. The multicast group I is then set to I [J .

5.2. Theorem of Security

Theorem 3. Let P be the AKE1 protocol, SK be the session-key space
and G be the associated LL-key generator. Let A be an adversary against
the AKE security of P within a time bound T , on a multicast group of
size s among the n players in U , after Q = QS + QJ + QR interactions
with the parties, qs send-queries and qh hash-queries. Then we have:

48 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

U
1

U
2

U
3

U
4

x
1
2
[1
;q
�
1
]

x
2
2
[1
;q
�
1
]

x
3
2
[1
;q
�
1
]

x
4
2
[1
;q
�
1
]

P
re
v
io
u
s
se
t
o
f
v
a
lu
es
is
X
4
=
f
g
x
2
x
3
x
4
;g
x
1
x
3
x
4
;g
x
1
x
2
x
4
;g
x
1
x
2
x
3
g

x
0 3

R

[1
;q
�
1
]

X
0 3
:=
f
g
x
2
x
3
x
4
(x
�

1

3

x
0 3
)
;g
x
1
x
2
x
4
g

F
l 3
:=
(X
4
k
I
k
X
0 3
)

[F
l 3
] U
3

�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�

V
(F
l 3
)

? =
T
r
u
e

K

=
(g
x
2
x
0 3
x
4
)x
1

=
(h
x
0 3

)x
1

sk
U
1

:=
H
(U
1
k
U
3
k
F
l 3
k
K
)

K
=
(g
x
1
x
2
x
3
x
4
)x
3
�

1
x
0 3

=
(h
x
1
)x

0 3

sk
U
3

:=
H
(U
1
k
U
3
k
F
l 3
k
K
)

w
h
er
e
h
=
g
x
2
x
4

Figure 2. Algorithm REMOVE1. An example of an
honest execution with 4 players: I = fU1; U2; U3; U4g,
J = fU2; U4g. The new multicast group is I =
fU1; U3g, UGC = U3 and the shared session key is

sk = H(IkF l3kg
x1x2x03x4), the partner IDS for U1 is

pidsU1 = fU3g, for U3 is pidsU3 = fU1g.

5. AN AUTHENTICATED DYNAMIC GROUP DIFFIE-HELLMAN SCHEME 49

U
1

U
2

U
3

U
4

x
1
2
[1
;q
�
1
]

x
0 3
2
[1
;q
�
1
]

P
re
v
io
u
s
se
t
o
f
v
a
lu
es
is
X
0 3
=
f
h
x
0 3
;h
x
1
g
,
w
h
er
e
h
=
g
x
2
x
4

x
00 3

R

[1
;q
�
1
]

x
0 4

R

[1
;q
�
1
]

X
00 3

:=
f
h
x
0 3
(x
0 3
�

1
x
0
0
3

)
;h
x
1
;h
x
1
(x
0
0
3

)
g

F
l 3
:=
(X
0 3
k
I
k
X
00 3
)

[F
l 3
] U
3

��
�
�
�
�
�
�! V

(F
l 3
)

? =
T
r
u
e

X
0 4
:=
f
h
x
0
0
3

x
0 4
;h
x
1
x
0 4
;h
x
1
x
0
0
3

g

F
l 4
:=
(X
0 3
k
I
k
X
0 4
)

[F
l 4
] U
4

�
�
�
�
�
�
��

[F
l 4
] U
4

�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

V
(F
l 4
)

? =
T
r
u
e

V
(F
l 4
)

? =
T
r
u
e

K
=
(h
x
0
0
3

x
0 4
)x
1

sk
U
1

:=
H
(I
k
F
l 4
k
K
)

K

=
(h
x
1
x
0 4
)x

0
0
3

sk
U
3

:=
H
(I
k
F
l 4
k
K
)

K

=
(h
x
1
x
0
0
3

)x
0 4

sk
U
4

:=
H
(I
k
F
l 4
k
K
)

Figure 3. Algorithm JOIN1. An example of an hon-
est execution with 4 players: I = fU1; U3g, J =
fU4g and UGC = U3. The new multicast group
is I = fU1; U3; U4g and the shared session key is

sk = H(IkF l4kg
x1x2x003 (x4x

0
4)) The partner IDS for U1 is

pidsU1 = fU3; U4g, for U3 is pidsU3 = fU1; U4g and for
U4 is pidsU4 = fU1; U3g.

50 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

AdvakeP (T;Q; qs; qh) �

2Q �
�n
s

�
� s � qh � Succ

gcdh�s
G

(T 0) + 2n � Succcma
� (T 0; Q+ qs)

where T 0 � T +(Q+ qs)nTexp(k); Texp(k) is the time of computation re-
quired for an exponentiation modulo a k-bit number and �s corresponds
to the elements the adversary A can possibly see:

�s =
[

2�j�s�2

ffi j 1 � i � j; i 6= lg j 1 � l � jg

[
ffi j 1 � i � s; i 6= k; lg j 1 � k; l � sg :

Before to get into the details of the proof let us just highlight the main
ideas. We consider an adversary A attacking the protocol P and then
�breaking� the AKE security. A would have carried out her attack in
di�erent ways: (1) she may have gotten her advantage by forging a
signature with respect to some player's long-lived public key. We will
then use A to build a forger by �guessing� for which player A will produce
her forgery, (2) she may have broken the scheme without altering the
content of the �ows. We will use her to solve an instance of the G-CDH�

problem, by �guessing� the moment at which A will make the Test-query
and by injecting into the game the elements from the instance of G-CDH�

received as input.

To work (2) requires two things. We �rst �guess� the moment of the Test-
query which means that we have to �guess�: the number of operations
that will occur before the adversary makes the Test-query and the mem-
bership of the multicast group when the adversary makes the Test-query.
Second, based on this guess we "embed" the instance of G-CDH into the
protocol. We generate many random instances from the original instance
of G-CDH� using the (multiplicative) random self-reducibility property
of the G-CDH� problem2. Indeed, the group Di�e-Hellman secret key
relative to these random instances can e�ciently be computed from the
group Di�e-Hellman secret relative to the original instance.

The speci�c structure of �s (see Figure 4 for �4) makes the simulation
perfectly indistinguishable from the adversary point of view if our guesses
are all correct. But then, because of the random oracle H, to have any
information about the session key the adversary wants to test, she has

2The multiplicative random self-reducibility will lead to a far more e�cient re-
duction than the additive one would do.

6. PROOF OF THE THEOREM 51

j = 0
j = 1 f1g

j = 2 f1g f2g
j = 3 (= s � 1) f1; 2g f1; 3g f2; 3g f1; 4g f2; 4g f3; 4g
j = 4 (= s) f1; 2; 3g f1; 2; 4g f1; 3; 4g f2; 3; 4g

| {z } | {z }

basic trigon extension

Figure 4. Extended Trigon for �4

to have asked for H(IkF llastkK), where K is the value we are looking
for. Therefore, if the adversary has some advantage in breaking the AKE
security, this value K can be found in the list of the queries asked to H.
The details of the simulation can be found in Section 6.

6. Proof of the Theorem

Let A be an adversary that can get an advantage " in breaking the AKE
security of protocol P within time T . We construct from it a (T 00; "00)-
forger F and a (T 0; "0)-G-CDH�s-attacker �.

6.1. Forger F

Let's assume that A breaks the protocol P by forging, with probability
greater than �, a signature with respect to some player's (public) LL-key
(Of course before A corrupts U). We construct from it a (T 00; "00)-forger
F which outputs a forgery (�;m) with respect to a given (public) LL-key
Kp, produced by GLL(1

k).

F receives as input Kp and access to a signing oracle. F provides coin
tosses to GLL, A and all Ui. F picks at random i0 2 [1; n] and runs
GLL(1

k) to set the players' LL-keys. However for player i0, F sets LLi0
to Kp. F then starts running A as a subroutine and answers the oracle
queries made by A as explained below. F also uses a variable K, initially
set to ;.

The Send-queries, Setup-queries, Join-queries and Remove-queries are an-
swered in a straightforward way, except if the query is made to player
Ui0 . In this latter case the answers go through the signing oracle, and F
stores in K the oracle query and the oracle reply. The Reveal-queries and
Test-query are answered in a straightforward way as well. Eventually,
the Corrupt-query is also answered in a straightforward way, except if the
query is made to player Ui0 . In this latter case since F does not know
the LL-key Ks for player i0, F stops and outputs �Fail�. But anyway,

52 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

no signature forgery occurred before, and so, such an execution can be
used with the other reduction. The Hash-query is simulated as depicted
on Figure 2 in Chapter 1.

F succeeds if A has made a query of the form Send(�; (�;m)) where � is
a valid signature on m with respect to Kp and (�;m) =2 K. In this case
F halts and outputs (�;m) as a forgery. Otherwise the process stops
when A terminates and F outputs �Fail�.

The probability that F outputs a forgery is the probability that A pro-
duces a valid �ow by itself multiplied by the probability of �correctly
guessing� the value of i0: Succ

cma
� (F) � �=n.

The running time of F is the running time of A added to the time to
process the Send, Setup, Join and Remove-queries. This is essentially the
time for at most n modular exponentiations. This leads to the given
formula for T .

6.2. G-CDH�s-attacker �

Let's assume that A breaks the protocol P without producing a forgery.
Here, with probability smaller than �; the (valid) �ows signed using LLU
come from player U and not from A (Of course before A corrupts U).
The replay attacks involving the �ows of JOIN1 and REMOVE1 do not
also need to be considered since the values from the previous broadcast
are included in these �ows. One may then worry about replay attacks
against SETUP1, however SETUP1 has already been proved to be secure
for concurrent executions in the previous chapter.

We now construct from A a (T 0; "0)-G-CDH�s-attacker � that receives
as input an instance D of G-CDH�s with random size s and outputs the
Di�e-Hellman secret value (i.e gx1:::xs) relative to this instance. More
precisely, a G-CDH�s with size s 2 [1; n] and �s of the form

�s =
[

2�j�s�2

ffi j 1 � i � j; i 6= lg j 1 � l � jg

[
ffi j 1 � i � s; i 6= k; lg j 1 � k; l � sg :

This in turn leads to an instance D = (S1; S2; : : : ; Ss�2; Ss�1; Ss) wherein:
Sj, for 2 � j � s � 2 and j = s, is the set of all the j � 1-tuples one
can build from f1; : : : ; jg; but Ss�1 is the set of all s� 2 tuples one can
build from f1; : : : ; sg.

The aim of the simulation is to have all the elements of Ss, embedded
into the protocol when the adversary A asks the Test-query. In this

6. PROOF OF THE THEOREM 53

case, A will not be able to get any information about the value sk of the
session key without having previously queried the random hash oracle H
on the Di�e-Hellman secret value gx1:::xs . Thus, to break the security
of P the adversary A would have to have asked a query of the form
H(I; F llast; g

x1:::xs) which as a consequence will be in the list of queries
asked to H.

To reach this aim � has to guess several values: c0, I0 and i0. We now
describe what these values are used for and we will return to the formal
simulation later on.

� �rst picks at random in [1; Q] the number of operations c0 that will
occur before A asks the Test-query and embeds the elements of Ss into
the operation that will occur at c0. However � can not embed all the el-
ements of Ss at c0 since, contrary to SETUP1, in JOIN1 and REMOVE1
the players are not all added to the group at c0. � rather embeds the
elements from S1 to Ss in the order the players are added to the group
but only for the players that will belong to the group at c0. Thus, � also
chooses at random s index-values u1 through us in [1; n] that it hopes
will make up the group membership at c0.

� also needs to cope with protocol executions wherein the players ui,
1 � i � s, are repeatedly added and removed from the group in order to
have several times before reaching c0 the group membership be I0. If, in
e�ect, � embeds all the elements of Ss into the protocol execution the
�rst time the group membership is I0, � is neither able to compute the
Di�e-Hellman secret value involved nor the session key value sk needed
to answer to the Reveal-query.

To be able to answer, � does not in fact embed Ss into the broadcast
�ow of the operation which updates the group membership to be I0 but
embeds truly random values. � guesses the player ui0 from I0 who will
embed Ss into the broadcast �ow of the operation that occurs at c0

3 but
generates a truly random exponent and uses it to embed truly random
values for the operations that occur before c0 and after c0. The index i0
is set as follows. If the c0-th operation is JOIN1 then i0 is the last joining
player's index, otherwise i0 is the group controller's index max(I0).

We now show that the above simulation and the random self-reducibility
of G-CDH allows � to answer all the queries until A asks the Test-query
at c0. Since � embeds elements of Si when a player ui from I0 (except
ui0) is added to the group and � does not remove it when ui leaves,
each protocol �ow consists of a random self-reduction on one line (line

3� may also embed a self-reduced element generated from Ss into the broadcast
�ow.

54 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

0, i.e. S0 down to line s� 1, i.e. s�1) of the basic trigon. The trigon is
illustrated on Figure 4. Thus, � can derivate the value sk of the session
key from one of the values in the line below (line 1, i.e. S1 up to line s,
i.e. Ss).

However, � also needs to be able to answer all queries after c0 and
more speci�cally the Reveal-queries. To this aim, � has to un-embed the
element Ss from the protocol and do it in the operation that occurs at
c0 + 1. However depending on the operation that occurs at c0 + 1, �
may not be able to do it for player ui0 . This is the reason why the line
Ss�1 has to contain all the possible (s� 2)-tuples: extension of the basic
trigon illustrated on Figure 4. For the operations that will occur after
c0+1, � uses truly random exponents for all the players including those
in I0. Thus, after c0 + 1 all the protocol �ows involve elements in Ss�1
and Ss only.

Formally, the simulator works as follows. � provides coin tosses to GLL,
A, all Ui and runs GLL(1

k) to set the player's LL-keys. � sets an op-
eration counter c to 0, and two variable K and T to ;. � will use
variable K to store (all) the random exponents involved in the game
Game

ake(A; P) and variable T to store which exponents of instance D
have been injected in the game so far. Then, � starts running A as a
subroutine and answers the queries as depicted in Figure 7.

When A makes a Send-query to some player Ui, if this player is not in
I0 then � proceeds as in the real protocol P using a random exponent.
Otherwise � proceeds with the (multiplicative) random self-reducibility
property using the elements from the instance D in the order wherein
players join the multicast group, players ui0 excepted since it uses a
random exponent. To properly deal with self-reducibility, � uses variable
T to reconstruct well-formatted (blinded) �ows from D.

When Amakes a query of the form Send(Ui0 ; �), � answers using random
exponents before c0, but for operation c0, injects the last element from
the instance D.

This way, after the joining operation of the j-th player from I0, Ui0

excepted, the broadcast �ow involves a random self-reduction of the j-th
line in the basic trigon (see �gure 4), the up-�ows involve elements in the
j�1-th line, and the session key one element from the j+1-th line. Thus,
before operation c0, � is able to answer the Join and Remove-queries and
knows all the session keys needed to answer the Reveal-queries.

Another technical di�culty may show up if the adversary A does not
output the bit b0 right away after asking the Test-query and keeps playing
the game for more rounds. Indeed, the session key is derived from the

6. PROOF OF THE THEOREM 55

Setup(J) Reset T to 0

Increment c
Update I J
u min(J)
� c < c0 : u 2 I0; u 6= i0) simulate using RSR according to T
� c = c0 : J 6= I0) output �Fail�

J = I0; u = i0) simulate using RSR according to T

Else proceed as in P using ru
R
 Z�q

Join(J) Increment c
u max(I)
Update I I [J
� c < c0 : u 2 I0; u 6= i0 simulate using RSR according to T
� c = c0 : I 6= I0 _max(J) 6= i0) output �Fail�

I = I0) simulate using RSR according to T

Else proceed as in P using ru
R
 Z�q

Remove(J) Increment c
Update I InJ
u max(I)
� c < c0 : u 2 I0; u 6= i0 simulate using RSR according to T
� c = c0 : I 6= I0) output �Fail�

I = I0) simulate using RSR according to T

Else proceed as in P using ru
R
 Z�q

Send(Ui;m) � c < c0 : i 2 I0; i 6= i0) simulate using RSR according to T
� c = c0 : i 2 I0) simulate using RSR according to T

Else proceed as in P using ri
R
 Z�q

Reveal(Ui) If Ui has accepted Then

If c = c0 Then output �Fail�

Else return skUi .

Corrupt(Ui) return LLUi .

Test (Ui) If Ui has accepted Then

If c = c0 Then return a random `-bit string
Else output �Fail�.

Hash(m) H(m) = r; Hash-query has been made and the answer is r.

If m 62 H-list, then r is a chosen random value in the

corresponding range, and H-list H-listk(m; r).
Otherwise, r is taken from H-list.

Figure 5. Gameake(A; P). The multicast group is I.
The Test-query is �guessed� to be made: after c0 oper-
ations, the multicast group is I0, and the last joining
player is Ui0 .

G-CDH one is looking for. And forthcoming session keys would as well.
Therefore, � would be unable to answer Reveal-queries. � has to reduce
the number of exponents taken from the instance D: basically, we go
down in the basic trigon while players join the group. Until having
involved s � 1 exponents from instance D. At the very last broadcast
before the Test-query, we inject the last exponent (xs, s being the size

56 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

of our G-CDH instance). Then, just after the last broadcast (i.e., just
after the Test-query), the group controller removes his own exponent, in
order to come back into the trigon.

Unfortunately, this group controller is not necessarily Ui0 , and thus we do
not go back into the basic trigon, but anyway with only s� 1 exponents
involved. Therefore, the future session keys will be derivated from the s-
th line, but the broadcasts may involve any element in the extended s�1-
th line, and the up-�ows may also involve any element in the extended
(s� 1)-th line.

When A makes a Setup, Join or Remove-query, � increments c and pro-
ceeds in a similar way as for the Send-query. That is, � uses a random
exponent for players that do not belong to I0 and proceeds with the
random self-reducibility for players that belong to I0 but again only at
c0 for Ui0 . Each time a Setup-query occurs, variable T is reset to 0.

� stops and outputs �Fail� if some of his guesses turn out to be wrong.
When A makes a Reveal-query, � proceeds as in the real protocol P
except at c = c0 where � stops and outputs �Fail�: the guess on c0 was
wrong. � answers the Corrupt-queries in a straightforward way, since he
knows the long-term keys. Finally when A makes a Test-query � stops
and outputs �Fail� if c 6= c0. Otherwise � returns a random string of
length `.

We now show that given the group Di�e-Hellman secret value relative
to the instance D0, involved in tested session key, � can easily compute
the group Di�e-Hellman secret value relative to the instance D. We
emphasize that there may be more than s players in the multicast group
before c0. For the players that do not belong to I0, � had chosen random
exponents and so will be able to �unblind� the self-reduced instance D0

even if those exponents still appear in the session key (One may have
already noticed that a leaving player leaves its secret exponent in the
subsequent session keys). For the players in I0, � had used the instance
D with blinding exponents and, thus, � is also able to unblind the G-
CDH�s instance. Assuming that the�'s guesses are correct, the elements
from D involving the s-th exponent are only used in the �nal broadcast
(just before the Test-query). This latter session key thus involves the
solution to a blinded version D0 of D, and � knows how to unblind the
solution, possibly found among the queries asked to the random oracle
H.

Indeed, if one assumes that the adversary A has made a Test-query and
has terminated outputing a bit b0 at some point. � then looks in the
H-list to see if queries of the form Hash(I0kF l0k�) have been asked (F l0

6. PROOF OF THE THEOREM 57

is the �ow broadcast in the execution of the c0-th operation). If so, �
chooses at random one of them and then looks in variable K (thanks to
the �ow F l0) for the corresponding random exponents � had used with
the random self-reducibility to blind. � then unblinds' the remaining
part ��� of the Hash-query and outputs it.

The probability that � correctly �guesses� the moment of the Test-query
is the probability that A makes its Test-query after c0 operations (proba
> 1=Q) multiplied by the probability that at c0 the multicast group is
I0 (proba > 1=

�n
s

�
). The probability � correctly �guesses� the index i0

player is at least 1=s. Also the solution is correctly extracted from the H-
list with probability 1=qh, since one just picks one candidate at random.
Otherwise, one could output all the possible unblinded candidates and
use the by now classical reduction from [Sho97].

Succ
gcdh�
G

(�) �
Pr [AskH]

qh
�

1

Q �
�
n
s

�
� s�

The running time of � is the running time of A added to the time to
process the Send-queries, Setup-queries, Remove-queries and Join-queries.
This is essentially n modular exponentiation computations per Send-
query, Setup-query, Remove-query or Join-query.

Finally, we have:

Pr
�
b = b0

�
= Pr

�
b = b0 ^ Forge

�
+ Pr

�
b = b0 ^ :Forge

�
� �+ Pr

�
b = b0j:Forge ^ AskH

�
Pr [:Forge ^ AskH]

+ Pr
�
b = b0j:Forge ^ :AskH

�
Pr [:Forge ^ :AskH]

� �+ Pr [AskH] +
1

2

The result then follows from the de�nition " = 2 Pr [b = b0]� 1:

" � 2n � Succcma
� (F) + 2Q �

�n
s

�
� s � qh � Succ

gcdh�s
G

(�)

ut

6.3. AKE1 in Practice

We want our results to be practical. This means that when system
designers choose a scheme they will take into account its security but also
its e�ciency in terms of computation, communication, ease of integration

58 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

and so on. However, if provable security is achieved at the cost of a loss
of e�ciency, system designers will often prefer the heuristic schemes.

AKE1 was to date the �rst group Di�e-Hellman scheme to exhibit a
proof that it achieves a strong notion of security. It is secure in the
random oracle model under the G-CDH assumption. It thus provides
stronger security guarantees than other schemes [AST00, BD95, JV96]
while being more e�cient than [AST00]. However security proofs for
existing schemes or slight variants may show up.

On the integration front, the question that may be raised is what happens
when several groups merge to form a larger group. A scenario that
occurs in practice when a network failure partitions the multicast group
into several disjoint sub-groups which will later need to merge when
the network is be repaired [ACTT01]. The most e�cient way in terms
of computation and communication is to add players from the smaller
sub-groups into the largest of the merging sub-groups. That is, UGC is
chosen as the player with the highest-index in the largest merging sub-
group and the players from the smaller sub-groups are added via the
JOIN1 algorithm.

7. Mutual Authentication

The approach for turning an AKE protocol into a protocol that provides
mutual authentication (MA) is to use the shared session key to construct
a simple �authenticator� for the other parties. We have described in the
previous chapter the transformation for turning an AKE group Di�e-
Hellman scheme into a protocol providing MA and justi�ed its security
in the random-oracle model. We turn an AKE dynamic group Di�e-
Hellman scheme into a protocol providing MA by simply applying the
transformation MA described in the previous chapter to the setup, join
and remove algorithms respectively.

8. Conclusion

This chapter provides the �rst formal treatment of the authenticated
group Di�e-Hellman key exchange problem in a scenario in which the
membership is dynamic rather than static. Addressed in this chapter
were two security goals of the group Di�e-Hellman key exchange: the
authenticated key exchange and the mutual authentication. For each we
presented a de�nition, a protocol and a security proof in the random
oracle model that the protocol meets its goals.

8. CONCLUSION 59

U 1 U 2 U 3 U 4

SetupfU1; U2; U3g c = 0; I = f1; 2; 3g;SK = gx1x2x3

g; gx1
������������������!

gx2 , gx1 , gx1x2
������������������!

gx2x3 , gx1x3 , gx1x2
 �������������������������������������

RemovefU2g c = 1;I = f1; 3g;SK = gx1x2x
0

3

gx2x
0

3 , gx1x2
 �������������������������������������

JoinfU4g c = 2;I = f1; 3; 4g;SK = gx1x2x
00

3
x4

gx2x
00

3 , gx1x2 , gx1x2x
00

3

���������������������!

gx2x
00

3
x4 , gx1x2x4 , gx1x2x

00

3

 ��

JoinfU2g c = 3;I = f1; 2; 3; 4g;SK = gx1x2x
0

2
x00
3
x0
4

gx2x
00

3
x0
4 , gx1x2x

0

4

 �����������������
gx1x2x

00

3 , gx1x2x
00

3
x0
4

U4

gx2x
0

2
x00
3
x0
4 ; gx1x2x

00

3
x0
4 ; gx1x2x

0

2
x0
4 ; gx1x2x

0

2
x00
3

��!
broadcast sent by U2

RemovefU1; U2g c = 4;I = f3; 4g;SK = gx1x2x
0

2
x00
3
x00
4

gx1x2x
0

2
x00
4 , gx1x2x

0

2
x00
3

 ���������������������

JoinfU2g c = 5; I = f2; 3; 4g;SK = gx1x2x
0

2
x00
2
x00
3
x000
4

gx1x2x
0

2
x000
4 , gx1x2x

0

2
x00
3 , gx1x2x

0

2
x00
3
x000
4

 ������������������������ U4

gx1x2x
0

2
x00
3
x000
4 gx1x2x

0

2
x00
2
x000
4 gx1x2x

0

2
x00
2
x00
3

��!

Figure 6. An example of an execution of the real pro-
tocol P=AKE1

60 3. DYNAMIC GROUP DIFFIE-HELLMAN KEY-EXCHANGE

U 1 U 2 U 3 U 4

SetupfU1; U2; U3g c = 0;I = f1; 2; 3g;SK = (gab)r2 is known to �

g; ga
������������������!

gr2 , ga , gar2
������������������!

gr2b , gab , gar2
 ����������������������������������

RemovefU2g c = 1; I = f1; 3g;SK = (gab
0

)r2 is known to �

gr2b
0

, gar2
 ����������������������������������

JoinfU4g c = 2;I = f1; 3; 4g;SK = (gab
00c)r2 is known to �

gr2b
00

, gar2 , gar2b
00

�������������������!

gr2b
00c , gar2c , gar2b

00

 ��

JoinfU2g c = 3;I = f1; 2; 3; 4g;SK is the DH secret

gr2b
00c0 , gar2c

0

 ������������������

gar2b
00

, gar2b
00c0

U4 Test-query guessed now

gr2db
00c0 ; gar2b

00c0 ; gadr2c
0

; gadr2b
00

��!
broadcast sent by U2

RemovefU1; U2g c = 4;I = f3; 4g;SK = (gab
00d)r2r4 is known to � again

gadr2r4 , gadr2b
00

 �������������������

JoinfU2g c = 5; I = f2; 3; 4g;SK = (gab
00d)r2r

0

2
r4r

0

4 is known to �

gadr2r4r
0

4 , gadr2b
00

, gadr2b
00r4r

0

4

 ����������������������� U4

gadr2b
00r4r

0

4 gadr2r
0

2
r0
4 gadr2r

0

2
b00

��������������������������������������!

Figure 7. An example of an execution of the protocol
P=AKE1 with the adversary. We represent the simu-
lation by � according to the following �guesses�: c0 =
3; s = 4;I0 = f1; 2; 3; 4g; i0 = 2. We denote by b; b0; b00

etc. some blinding exponents used in the self-reduction
of G-CDH (think of b00 as being b�00, e.g.). Also note that
when rejoining the group at steps c = 3 and c = 5, U2

does not �remove� its random exponent.

CHAPTER 4

Group Di�e-Hellman Key-Exchange under

Standard Assumptions

Authenticated dynamic group Di�e-Hellman key exchange allows a pool
of principals communicating over a public network, and each holding
public/private keys, to agree on a shared secret value. In this chapter we
re�ne our previous study of this problem to incorporate major missing
details (e.g., strong-corruption and concurrent sessions). Within our new
model we de�ne the execution of a protocol for authenticated dynamic
group Di�e-Hellman and show that it is provably secure under the deci-
sional Di�e-Hellman assumption. Our security result here holds in the
standard model and thus provides better security guarantees than our
result in the chapter.

1. Introduction

This chapter is the third tier in the formal treatment of the group Di�e-
Hellman key exchange using public/private key pairs. We start with
the model from the previous chapter and re�ne it to add important
attributes. In the present chapter, we model instances of players via ora-
cles available to the adversary through queries. The queries are available
to use at any time to allow model attacks involving multiple instances
of players activated concurrently and simultaneously by the adversary.
In order to model two modes of corruption, we consider the presence
of two cryptographic devices which are made available to the adver-
sary through queries. Hardware devices are useful to overcome software
limitations however there has thus far been little formal security analy-
sis [CFIJ99, SR96].

The types of crypto-devices and our notion of forward-secrecy leads us
to modi�cations to the protocol AKE1 of the previous chapter to obtain
a protocol, we refer to it as AKE1+, secure against strong corruptions.
Due to the very limited computational power of a smart card chip, the
smart card is used as an authentication token while a secure coprocessor
is used to carry out the key exchange operations. We show that within

61

624. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

our model the protocol AKE1+ is secure assuming the decisional Di�e-
Hellman problem and the existence of a pseudo-random function family.
Our security theorem does not need a random oracle assumption anymore
since it holds in the standard model. A proof in the standard model
provides better security guarantees than one in an idealized model of
computation. Furthermore we exhibit a security reduction with a much
tighter bound than in the previous chapter, namely we suppress the
exponential factor in the size of the group. Therefore the security result is
meaningful even for large groups. However the protocols are not practical
for groups larger than 100 members.

The remainder of this chapter is organized as follows. We �rst review
the related work. In Section 3, we present our formal model and specify
through an abstract interface the standard functionalities a protocol for
authenticated group Di�e-Hellman key exchange needs to implement. In
Section 4, we describe the protocol AKE1+ by dividing it into functions.
This helps us to implement the abstract interface. Finally, in Section 5
we show that the protocol AKE1+ is provably secure in the standard
model.

2. Related Work

Several papers [AST98, BD95, JV96, SSDW88, Tze00] have extended the
2-party Di�e-Hellman key exchange [DH76] to the multi-party setting,
however, a formal analysis has only been proposed recently. In the previ-
ous chapters we de�ned a formal model for the authenticated (dynamic)
group Di�e-Hellman key exchange and proved secure protocols within
this model. In both chapters we use an ideal hash function [BR93b],
without dealing with dynamic group changes or concurrent executions
of the protocol.

However security can sometimes be compromised even when using a
proven secure protocol: the protocol is incorrectly implemented or the
model is insu�cient. Cryptographic protocols assume, and do not usu-
ally explicitly state, that secrets are de�nitively and reliably erased (only
the most recent secrets are kept) [CFIJ99, JQ97]. Recently, formal mod-
els have been re�ned to incorporate the cryptographic action of erasing
a secret, and thus protocols achieving forward-secrecy in the strong-
corruption sense have been proposed [BPR00, Sho99].

Protocols for group Di�e-Hellman key exchange achieve the property
of forward-secrecy [DvOW92, Gun89] in the strong-corruption sense as-
suming that �ephemeral� private keys are erased upon completion of a
protocol run. However protocols for dynamic group Di�e-Hellman key

3. MODEL 63

exchange do not, since they reuse the �ephemeral� keys to update the ses-
sion key. Fortunately, these �ephemeral� keys can be embedded in some
hardware cryptographic devices which are at least as good as erasing a
secret [PSW98, U. 94, VW97].

3. Model

In this section, we model instances of players via oracles available to the
adversary through queries. These oracle queries provide the adversary an
ability to initialize a multicast group via Setup-queries, add players to the
multicast group via Join-queries, and remove players from the multicast
group via Remove-queries. By making these queries available to the
adversary at any time we provide him an ability to generate concurrent
membership changes. We also take into account hardware devices and
model their interaction with the adversary via queries.

3.1. Players

We �x a nonempty set U of N players that can participate in a group
Di�e-Hellman key exchange protocol P . A player Ui 2 U can have many
instances called oracles involved in distinct concurrent executions of P .
We denote instance t of player Ui as �

t
i with t 2 N. Also, when we mean

a not �xed member of U we use U without any index and denote an
instance of U as �t

U with t 2 N.

For each concurrent execution of P , we consider a nonempty subset I
of U called the multicast group. And in I, the group controller GC(I)
initiates the addition of players to the multicast group or the removal of
players from the multicast group. The group controller is trusted to do
this.

In a multicast group I of size n, we denote by Ii, for i = 1; : : : ; n, the
index of the player related to the i-th instance involved in this group.
This i-th instance is furthermore denoted by �(I; i). Therefore, for any
index i 2 f1; : : : ; ng, �(I; i) = �t

Ii
2 I for some t.

Each player U holds a long-lived key LLU which is a pair of matching
public/private keys. LLU is speci�c to U not to one of its instances.

3.2. Abstract Interface

We de�ne the basic structure of a group Di�e-Hellman protocol. A
group Di�e-Hellman scheme GDH consists of four algorithms:

644. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

� The key generation algorithm GDH.KeyGen(1`) is a proba-
bilistic algorithm which on input of a security parameter 1`,
provides each player in U with a long-lived key LLU . The struc-
ture of LLU depends on the particular scheme.

The three other algorithms are interactive multi-party protocols between
players in U , which provide each principal in the new multicast group
with a new session key SK.

� The setup algorithm GDH.Setup(J), on input of a set of in-
stances of players J , creates a new multicast group I, and sets
it to J .
� The remove algorithm GDH.Remove(I;J) creates a new mul-
ticast group I and sets it to InJ .
� The join algorithm GDH.Join(I;J) creates a new multicast
group I, and sets it to I [J .

An execution of P consists of running the GDH.KeyGen algorithm
once, and then many concurrent executions of the three other algo-
rithms. We will also use the term operation to mean one of the algo-
rithms: GDH.Setup, GDH.Remove or GDH.Join.

3.3. Security Model

The security de�nitions for P take place in the following game. In this
gameGameake(A; P), the adversary A plays against the players in order
to defeat the security of P . The game is initialized by providing coin
tosses to GDH.KeyGen(�), A, any oracle �t

U ; and GDH.KeyGen(1
`)

is run to set up players' LL-keys. A bit b is also �ipped to be used later
in the Test-query (see below). The adversary A is then given access to
the oracles and interacts with them via the queries described below. We
now explain the capabilities that each kind of query captures:

3.3.1. Instance Oracle Queries

We de�ne the oracle queries as the interactions between A and the oracles
only. These queries model the attacks an adversary could mount through
the network.

� Send(�t
U ;m): This query models A sending messages to in-

stance oracles. A gets back from his query the response which
�t
U would have generated in processing message m according to

P .

3. MODEL 65

� Setup(J);Remove(I;J); Join(I;J): These queries model ad-
versary A initiating one of the operations GDH.Setup,
GDH.Remove or GDH.Join. Adversary A gets back the �ow
initiating the execution of the corresponding operation.
� Reveal(�t

U): This query models the attacks resulting in the loss
of session key computed by oracle �t

U ; it is only available to
A if oracle �t

U has computed its session key SK�t
U
. A gets

back SK�t
U
which is otherwise hidden. When considering the

strong-corruption model (see Section 5), this query also reveals
the �ows that have been exchanged between the oracle and the
secure coprocessor.
� Test(�t

U): This query models the semantic security of the ses-
sion key SK�t

U
. It is asked only once in the game, and is only

available if oracle �t
U is Fresh (see below). If b = 0, a random

`-bit string is returned; if b = 1, the session key is returned. We
use this query to de�ne A's advantage.

3.3.2. Secure Coprocessor Queries

The adversary A interacts with the secure coprocessors by making the
following two queries.

� Sendc(�
t
U ;m): This query models A directly sending messages

to the secure coprocessor. A gets back from his query the re-
sponse which the secure coprocessor would have generated in
processing message m. The adversary could directly interact
with the secure coprocessor in a variety of ways: for instance,
the adversary may have broken into a computer without being
detected (e.g., bogus softwares, trojan horses and viruses).
� Corruptc(�

t
U): This query models A having access to the pri-

vate memory of the device. A gets back the internal data stored
on the secure coprocessor. This query can be seen as an attack
wherein A gets physical access to a secure coprocessor and by-
passes the tamper detection mechanism [Wei00]. This query
is only available to the adversary when considering the strong-
corruption model (see Section 5). The Corruptc-query also re-
veals the �ows the secure coprocessor and the smart card have
exchanged.

3.3.3. Smart Card Queries

The adversary A interacts with the smart cards by making the following
two queries.

664. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

� Sends(U;m): This query models A sending messages to the
smart card and receiving messages from the smart card.
� Corrupts(U): This query models the attacks in which the ad-
versary gets access to the smart card and gets back the player's
LL-key. This query models attacks like di�erential power analy-
sis or other attacks by which the adversary bypasses the tamper
detection mechanisms of the smart card [Wei00].

When A terminates, it outputs a bit b0. We say that A wins the AKE
game (see in Section 5) if b = b0. Since A can trivially win with proba-
bility 1/2, we de�ne A's advantage by AdvakeP (A) = 2� Pr [b = b0]� 1.

4. An Authenticated Dynamic Group Di�e-Hellman Scheme

In this section, we describe the protocol AKE1+ by splitting it into func-
tions that implement the GDH abstract interface. These functions spec-
ify how certain cryptographic transformations have to be performed and
abstract out the details of the devices (software or hardware) that will
carry out the transformations.

In the following we identify the multicast group to the set of indices of
players (instances of players) in it. We use a security parameter ` and, to
make the description easier see a player Ui not involved in the multicast
group as if his private exponent xi were equal to 1.

4.1. Overview

The protocol AKE1+ consists of the Setup1+, Remove1+ and Join1+ al-
gorithms. As illustrated in Figures 1, 2 and 3, in AKE1+ the players are
arranged in a ring and the instance with the highest-index in the mul-
ticast group I is the group controller GC(I): GC(I) = �(I; n) = �t

In
for some t. This is also a protocol wherein each instance saves the set of
values it receives in the down-�ow of Setup1+, Remove1+ and Join1+1.

The session-key space SK associated with the protocol AKE1+ is f0; 1g`

equipped with a uniform distribution. The arithmetic is in a group
G =< g > of prime order q in which the DDH assumption holds. The
key generation algorithm GDH.KeyGen(1`) outputs ElGamal-like LL-
keys LLi = (si; g

si).

1In the subsequent removal of players from the multicast group any oracle �

could be selected as the group controller GC and so will need these values to execute
Remove1

+.

4. AN AUTHENTICATED DYNAMIC GROUP DIFFIE-HELLMAN SCHEME 67

S
m
a
rt

S
1

S
2

C
a
rd
s

S
3

S
4

h
o
ld
s
s 1

h
o
ld
s
s 2

h
o
ld
s
s 3

h
o
ld
s
s 4

l

l

l

l

S
ec
u
re

C
1

C
2

C
o
p
ro
ce
ss
o
rs

C
3

C
4

x
1

g
d
h
_
p
ic
k
s(
1
)

x
2

g
d
h
_
p
ic
k
s(
2
)

x
3

g
d
h
_
p
ic
k
s(
3
)

x
4

g
d
h
_
p
ic
k
s(
4
)

l

l

l

l

P
la
y
er
s

U
1

U
2

U
3

U
4

g
d
h
_
u
p
(1
;0
;2
;I
k
g
;;
) (F

l 1
;�
1
2
)

�
�
�
�
�
�
�
�
�
!

g
d
h
_
u
p
(2
;1
;3
;F
l 1
;�
1
2
)

(F
l 2
;�
2
3
)

�
�
�
�
�
�
�
�
�
!
g
d
h
_
u
p
(3
;2
;4
;F
l 2
;�
2
3
)

(F
l 3
;�
3
4
)

�
�
�
�
�
�
�
�
�
!

g
d
h
_
d
o
w
n
(4
;3
;F
l 3
;�
3
4
)

U
4
b
ro
a
d
c
a
st
s
(F
l 4
;�
4
1
;�
4
2
;�
4
3
;�
4
4
)

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

g
d
h
_
k
e
y
(1
;F
l 4
;�
4
1
)

g
d
h
_
k
e
y
(2
;F
l 4
;�
4
2
)

g
d
h
_
k
e
y
(3
;F
l 4
;�
4
3
)

g
d
h
_
k
e
y
(4
;F
l 4
;�
4
4
)

Figure 1. Algorithm Setup1+. A practical example with
4 players I = fU1; U2; U3; U4g.

684. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

4.2. Authentication Functions

The authentication mechanism supports the following functions:

� Auth_Key_Derive(i; j). This function derives a secret value
Kij between Ui and Uj. In our protocol, Kij = F1(g

sisj), where
the map F1 is speci�ed in Section 4.4. (Kij is never exposed.)
� Auth_Sig(i; j;m). This function invokes MAC.Sgn(Kij ;m)
to obtain tag �, which is returned.
� Auth_Ver(i; j;m; �). This function invokes MAC.Vf(Kij;
m; �) to check if (m;�) is correct w.r.t. key Kij . The boolean
answer is returned.

The two latter functions should of course be called after initializing Kij

via Auth_Key_Derive(�).

4.3. Key-Exchange Functions

The key-exchange mechanism supports the following functions:

� Gdh_Picks(i). This function generates a new private expo-

nent xi
R
 Z?

q. Recall that xi is never exposed.
� Gdh_Picks?(i). This function invokes Gdh_Picks(i) to gen-
erate xi but do not delete the previous private exponent x0i. x

0
i

is only deleted when explicitly asked for by the instance.
� Gdh_Up(i; j; k;Fl; �). First, if j > 0, the authenticity of tag �
on message Fl is checked with Auth_Ver(j; i;Fl; �). Second,
Fl is decoded as a set of intermediate values (I; Y; Z) where I
is the multicast group and

Y =
[
m6=i

�
Z1=xm

	
with Z = gxt :

The values in Y are raised to the power of xi and then
concatenated with Z to obtain these intermediate values

Y 0 =
[�

Z 0
1=xm	, where Z 0 = Zxi = gxt :

Third, Fl0 = (I; Y 0; Z 0) is authenticated, by invokingAuth_Sig(
i; k; Fl0) to obtain tag �0. The �ow (Fl0; �0) is returned.
� Gdh_Down(i; j;Fl; �). First, the authenticity of (Fl; �) is checked,
by invoking Auth_Ver(j; i;Fl; �). Then the �ow Fl0 is com-
puted as in Gdh_Up, from Fl = (I; Y; Z) but without the
last element Z 0 (i.e. Fl0 = (I; Y 0)). Finally, the �ow Fl0 is ap-
pended tags �1, : : : , �n by invoking Auth_Sig(i; k;Fl

0), where
k ranges in I. The tuple (Fl0; �1; : : : ; �n) is returned.

4. AN AUTHENTICATED DYNAMIC GROUP DIFFIE-HELLMAN SCHEME 69

� Gdh_Up_Again(i; k;Fl = (I; Y 0)). From Y 0 and the previous
random x0i, one can recover the associated Z 0. In this tuple
(Y 0; Z 0), one replaces the occurrences of the old random x0i by
the new one xi (by raising some elements to the power xi=x

0
i)

to obtain Fl0. The latter is authenticated by computing via
Auth_Sig(i; k;Fl0) the tag �. The �ow (Fl0; �0) is returned.
From now the old random x0i is no longer needed and, thus, can
be erased.
� Gdh_Down_Again(i;Fl = (I; Y 0)). In Y 0, one replaces the
occurrences of the old random x0i by the new one xi, to ob-
tain Fl0. This �ow is appended tags �1, : : : , �n by invoking
Auth_Sig(i; k;Fl0), where k ranges in I. The tuple (Fl0; �1;
: : : ; �n) is returned. From now the old random x0i is no longer
needed and, thus, can be erased.
� Gdh_Key(i; j;Fl; �) produces the session key sk. First, the
authenticity of (Fl; �) is checked with Auth_Ver(j; i;Fl; �).

Second, the value � = g
Q
j2I xj is computed from the private

exponent xi, and the corresponding value in Fl. Third, sk is
de�ned to be F2(IkFlk�), where the map F2(�) is de�ned below.

4.4. Key Derivation Functions

The key derivation functions F1 and F2 are implemented via the so-called
�entropy-smoothing� property. We use the left-over-hash lemma to ob-
tain (almost) uniformly distributed values over f0; 1g`.

Lemma 3 (Left-Over-Hash Lemma [HILL99]). Let Ds : f0; 1gs be a
probabilistic space with entropy at least �. Let e be an integer and
` = � � 2e. Let h : f0; 1gk � f0; 1gs ! f0; 1g` be a universal hash
function. Let r 2U f0; 1g

k , x 2Ds f0; 1g
s and y 2U f0; 1g

`. Then the
statistical distance � is:

�(hr(x)kr; ykr) � 2�(e+1):

Any universal hash function can be used in the above lemma, provided
that y is uniformly distributed over f0; 1g`. However, in the security
analysis, we need an additional property from h. This property states
that the distribution fhr(�)g� is computationally undistinguishable from
the uniform one, for any r. Indeed, we need there to be no �bad� param-
eter r, since otherwise such a parameter may be chosen by the adversary.

The map F1(�) is implemented as follows through public certi�ed random
strings. In a Public-Key Infrastructure (PKI), each player Ui is given
N � 1 random strings frijgj 6=i each of length k when registering his

704. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

S
m
a
rt

S
1

S
2

C
a
rd
s

S
3

S
4

h
o
ld
s
s 1

h
o
ld
s
s 2

h
o
ld
s
s 3

h
o
ld
s
s 4

l

l

l

l

S
ec
u
re

C
1

C
2

C
o
p
ro
ce
ss
o
rs

C
3

C
4

h
o
ld
s
x
1
2
Z
? q

h
o
ld
s
x
2
2
Z
? q

h
o
ld
s
x
3
2
Z
? q

h
o
ld
s
x
4
2
Z
? q

x
0 3

g
d
h
_
p
ic
k
s?
(3
)

l

l

l

l

P
la
y
er
s

U
1

U
2

U
3

U
4

P
re
v
io
u
s
se
t
o
f
v
a
lu
es
is
F
l 4
=
f
I
;g
x
2
x
3
x
4
;g
x
1
x
3
x
4
;g
x
1
x
2
x
4
;g
x
1
x
2
x
3
g

g
d
h
_
d
o
w
n
_
a
g
a
in
(3
;F
l 4
)

(F
l0 3
;�
3
1
;�
3
3
)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

N
ew
se
t
o
f
v
a
lu
es
is
F
l0 3
=
f
I
n
J
;g

x
0 3

2
4
;g
x
1

2
4
g
;
w
h
er
e
g
2
4
=
g
x
2
x
4

g
d
h
_
k
e
y
(1
;F
l0 3
;�
3
1
)

g
d
h
_
k
e
y
(3
;F
l0 3
;�
3
3
)

Figure 2. Algorithm Remove1+. A practical example
with 4 players: I = fU1; U2; U3; U4g and J = fU2; U4g.
The new multicast group is I = fU1; U3g and GC = U3.

4. AN AUTHENTICATED DYNAMIC GROUP DIFFIE-HELLMAN SCHEME 71

identity with a Certi�cation Authority (CA). Recall that N = jUj. The
random string rij = rji is used by Ui and Uj to derivate from input value
x a symmetric-key Kij = F1(x) = hrij (x).

The map F2(�) is implemented as follows. First, Gdh_Down(�) is en-
hanced in such a way that it also generates a random value r� 2 f0; 1g

k ,
which is included in the subsequent broadcast. Then, player Ui derives
from input value x a session key sk = F2(x) = hr�(x).

One may note that in both cases, the random values are used only once,
which gives almost uniformly and independently distributed values, ac-
cording to the lemma 3.

4.5. Scheme

We correctly deal with concurrent sessions running in an adversary-
controlled network by creating a new instance for each player in a multi-
cast group. We in e�ect create an instance of a player via the algorithm
Setup1+ and then create new instances of this player through the algo-
rithms Join1+ and Remove1+.

4.5.1. Setup1+(I)

This algorithm consists of two stages, up-�ow and down-�ow (see Fig-
ure 1). On the up-�ow oracle �(I; i) invokes Gdh_Picks(Ii) to gener-
ate its private exponent xIi and then invokes Gdh_Up(Ii; Ii�1; Ii+1;
Fli�1; �i�1;i) to obtain both �ow Fli and tag �i;i+1 (by convention, I0 = 0,
Fl0 = Ikg and �0;i = ;). Then, �(I; i) forwards (Fli; �i;i+1) to the next
oracle in the ring. The down-�ow takes place when GC(I) receives the
last up-�ow. Upon receiving this �ow, GC(I) invokes Gdh_Picks(In)
and Gdh_Down(In;In�1;Fln�1; �n�1;n) to compute both Fln and the
tags �1; : : : ; �n. GC(I) broadcasts (Fln; �1; : : : ; �n). Finally, each oracle
�(I; i) invokes Gdh_Key(Ii;In;Fln; �i) and gets back the session key
SK�(I;i).

4.5.2. Remove1+(I;J)

This algorithm consists of a down-�ow only (see Figure 2). The group
controller GC(I) of the new set I = InJ invokes Gdh_Picks?(In)
to get a new private exponent and then Gdh_Down_Again(In;Fl

0)
where Fl0 is the saved previous broadcast. GC(I) obtains a new set of
intermediate values from which it deletes the elements related to the
removed players (in the set J) and updates the multicast group. This
produces the new broadcast �ow Fln. Upon receiving the down-�ow,
�(I; i) invokes Gdh_Key(Ii;In;Fln; �i) and gets back the session key

724. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

S
m
a
rt

S
1

S
2

C
a
rd
s

S
3

S
4

h
o
ld
s
s 1

h
o
ld
s
s 2

h
o
ld
s
s 3

h
o
ld
s
s 4

l

l

l

l

S
ec
u
re

C
1

C
2

C
o
p
ro
ce
ss
o
rs

C
3

C
4

h
o
ld
s
x
1
2
Z
? q

h
o
ld
s
x
2
2
Z
? q

h
o
ld
s
x
3
2
Z
? q

x
00 3

g
d
h
_
p
ic
k
s?
(3
)

x
0 4

g
d
h
_
p
ic
k
s(
4
)

l

l

l

l

P
la
y
er
s

U
1

U
2

U
3

U
4

P
re
v
io
u
s
se
t
o
f
v
a
lu
es
is
F
l0 3
=
f
I
;g
x
2
x
0 3
x
4
;g
x
1
x
2
x
4
g

g
d
h
_
u
p
_
a
g
a
in
(3
;4
;F
l0 3
;�
0 3
3
)

(F
l0
0
3

;�
0
0
3
4
)

�
�
�
�
�
�
�
�
�
!

g
d
h
_
d
o
w
n
(4
;3
;F
l0
0 3
;�
00 3
4
)

U
4
b
ro
a
d
c
a
st
s
(F
l0 4
;�
0 4
1
;�
4
3
;�
4
4
)

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

N
ew
se
t
o
f
v
a
lu
es
is
F
l0 4
=
f
I
[
J
;g

x
0
0
3

x
0 4

2
4

;g
x
1
x
0 4

2
4

;g
x
1
x
0
0
3

2
4

g
;
w
h
er
e
g
2
4
=
g
x
2
x
4

g
d
h
_
k
e
y
(1
;F
l0 4
;�
4
1
)

g
d
h
_
k
e
y
(3
;F
l0 4
;�
4
3
)

g
d
h
_
k
e
y
(4
;F
l0 4
;�
4
4
)

Figure 3. Algorithm Join1+. A practical example with
4 players: I = fU1; U3g, J = fU4g and GC = U3. The
new multicast group is I = fU1; U3; U4g.

5. ANALYSIS OF SECURITY 73

SK�(I;i). Here, is the reason why an oracle must store its private expo-
nent and only erase its internal data when it leaves the group.

4.5.3. Join1+(I;J)

This algorithm consists of two stages, up-�ow and down-�ow (see Fig-
ure 3). On the up-�ow the group controller GC(I) invokes Gdh_Picks?

(In), and then Gdh_Up_Again(In; j;Fl
0) where Fl0; j are respectively

the saved previous broadcast and the index of the �rst joining player.
One updates I, and forwards the result to the �rst joining player. From
that point in the execution, the protocol works as the algorithm Setup1+,
where the group controller is the highest index player in J .

4.6. Practical Considerations

When implementors choose a protocol, they take into account its security
but also its ease of integration. For a minimal disruption to a current
security infrastructure, it is possible to modify AKE1+ so that it does not
use public certi�ed random strings. In this variant, the key derivation
functions are both seen as ideal functions (i.e. the output of F1(�) and
F2(�) are uniformly distributed over f0; 1g`) and are instantiated using
speci�c functions derivated from cryptographic hash functions like SHA-
1 or MD5. The analogue of Theorem 6 in the random oracle model can
then easily be proven from the security proof of AKE1+.

5. Analysis of Security

In this section, we assert that the protocol AKE1+ securely distributes a
session key. We re�ne the notion of forward-secrecy to take into account
two modes of corruption and use it to de�ne two notions of security. We
exhibit a security reduction for AKE1+ that holds in the standard model.

5.1. Security Notions

5.1.1. Forward-Secrecy

The notion of forward-secrecy entails that the corruption of a (static) LL-
key used for authentication does not compromise the semantic security
of previously established session keys. However while a corruption may
have exposed the static key of a player it may have also exposed the
player's internal data. That is either the LL-key or the ephemeral key
(private exponent) used for session key establishment is exposed, or both.
This in turn leads us to de�ne two modes of corruption: the weak-
corruption model and the strong-corruption model.

744. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

In the weak-corruption model, a corruption only reveals the LL-key of
player U . That is, the adversary has the ability to make Corrupts queries.
We then talk about weak-forward secrecy and refer to it as wfs. In the
strong-corruption model, a corruption will reveal the LL-key of U and
additionally all internal data that his instances did not explicitly erase.
That is, the adversary has the ability to make Corrupts and Corruptc
queries. We then talk about strong-forward secrecy and refer to it as fs.

5.1.2. Freshness

As it turns out from the de�nition of forward-secrecy two �avors of fresh-
ness show up. An oracle �t

U is wfs-Fresh, in the current execution, (or
holds a wfs-Fresh SK) if the following conditions hold. First, no Corrupts
query has been made by the adversary since the beginning of the game.
Second, in the execution of the current operation, U has accepted and
neither U nor his partners has been asked for a Reveal-query.

An oracle �t
U is fs-Fresh, in the current execution, (or holds a fs-Fresh

SK) if the following conditions hold. First, neither a Corrupts-query nor a
Corruptc-query has been made by the adversary since the beginning of the
game. Second, in the execution of the current operation, U has accepted
and neither U nor his partners have been asked for a Reveal-query.

5.1.3. AKE Security

In an execution of P , we say an adversary A wins if she asks a single
Test-query to a Fresh player U and correctly guesses the bit b used in
the game Gameake(A; P). We denote the AKE advantage as AdvakeP (A).
Protocol P is an A-secure AKE if AdvakeP (A) is negligible.

By notation Adv(t; : : :), we mean the maximum values of Adv(A), over
all adversaries A that expend at most the speci�ed amount of resources
(namely time t).

5.1.4. Multi Decisional Di�e-Hellman Assumption (M-DDH)

We introduce a new decisional intractability assumption which is based
on the Di�e-Hellman assumption. Let us de�ne theMulti Di�e-Hellman
M-DH and the Random Multi Di�e-Hellman M-DH$ distributions of size
n as:

M-DHn = f
�
fgxig1�i�n; fg

xixjg1�i<j�n
�
jx1; : : : ; xn 2R Zqg

M-DH$
n = f

�
fgxig1�i�n; fg

rj;kg1�j<k�n
�
jxi; rj;k 2R Zq;

8i; 1 � j < k � ng:

5. ANALYSIS OF SECURITY 75

A (T; ")-M-DDHn-distinguisher for G is a probabilistic Turing machine
� running in time T that given an element X of either M-DHn or M-DH$

n

outputs 0 or 1 such that:���Pr [�(X) = 1 jX 2 M-DHn]� Pr
h
�(X) = 1 jX 2 M-DH$

n

i��� � ":

We denote this di�erence of probabilities by Advmddhn
G

(�). The M-DDHn

problem is (T; ")-intractable if there is no (T; ")-M-DDHn-distinguisher
for G .

Lemma 4. For any group G and any integer n, the M-DDHn prob-
lem can be reduced to the DDH problem and we have: Advmddhn

G
(T) �

n2Advddh
G

(T).

The proof of this lemma follows from an easy hybrid argument [NR97].
ut

5.2. Theorem of Security

A theorem asserting the security of some protocol measures how much
computation and interactions helps the adversary. One sees that AKE1+

is a secure AKE protocol provided that the adversary does not solve
the group decisional Di�e-Hellman problem G-DDH, does not solve the
multi-decisional Di�e-Hellman problemM-DDH, or forges a Message Au-
thentication Code MAC. These terms can be made negligible by appro-
priate choice of parameters for the group G . The other terms can also be
made �negligible� by an appropriate instantiation of the key derivation
functions.

Theorem 4. Let A be an adversary against protocol P , running in time
T , allowed to make at most Q queries, to any instance oracle. Let n be
the number of players involved in the operations which lead to the group
on which A makes the Test-query. Then we have:

AdvakeP (A; qse) � 2nQ � Adv
gddh�n
G

(T 0) + 2Advmddhn
G

(T)

+n(n� 1) � Succcma
mac(T) + n(n� 1) � �1 + 2nQ � �2

where �i denotes the distance between the output of Fi(�) and the uniform
distribution over f0; 1g`, T 0 � T +QnTexp(k), where Texp(k) is the time

764. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

of computation required for an exponentiation modulo a k-bit number,
and �n corresponds to the elements adversary A can possibly view:

�n =
[

2�j�n�2

ffi j 1 � i � j; i 6= lg j 1 � l � jg

[
ffi j 1 � i � n; i 6= k; lg j 1 � k; l � ng :

Before to get into the details of the proof in we provide the main ideas.
Let the notation G0 refer to Game

ake(A; P). Let b and b0 be de�ned as
in Section 3 and S0 be the event that b = b0. We incrementally de�ne a
sequence of games starting at G0 and ending up at G5. We de�ne in the
execution of Gi�1 and Gi a certain �bad� event Ei and show that as long
as Ei does not occur the two games are identical [Sho01]. The di�culty
is in choosing the �bad� event. We then show that the advantage of A in
breaking the AKE security of P can be bounded by the probability that
the �bad� events happen. We now de�ne the games G1;G2;G3;G4;G5.
Let Si be the event b = b0 in game Gi.

Game G1. is the same as game G0 except we abort if a MAC forgery
occurs before any Corrupt-query. We de�ne the MAC forgery event by

Forge. We then show:
���Pr [S0]� Pr [S1]

��� �Pr [Forge].
Lemma 5. Let �1 be the distance between the output of the map F1 and
the uniform distribution. Then, we have):

Pr [Forge] � Advmddhn
G

(T) +
n(n� 1)

2
Succcma

mac(T) +
n(n� 1)

2
�1:

Game G2. is the same as game G1 except that we add the following
rule: we choose at random an index i0 in [1; n] and an integer c0 in
[1; Q]. If the Test-query does not occur at the c0-th operation, or if
the very last broadcast �ow before the Test-query is not operated by
player i0, the simulator outputs �Fail� and sets b0 randomly. Let E2
be the event that these guesses are not correct. We show: Pr [S2] =Pr

[E2] =2+ Pr [S1] (1� Pr [E2]), where Pr [E2] = 1� 1=nQ.

Game G3. is the same as game G2 except that we modify the way the
queries made by A are answered; the simulator's input is D, a G-DH?

�n
element, with gx1:::xn . During the attack, based on the two values i0 and
c0, the simulator injects terms from the instance such that the Test-ed
key is derived from the G-DH-secret value relative to that instance. The
simulator is responsible for embedding (by random self-reducibility) in
the protocol the elements of the instance D so that the Test-ed key is
derived from gx1:::xn . We then show that: Pr [S2] =Pr [S3].

6. PROOF OF THE THEOREM 77

Game G4. is the same as game G3 except that the simulator is given
as input an element D from G-DH$

�n
, with gr. And in case b = 1, the

value random value gr is used to answer the Test-query. The, di�erence
betweenG3 andG4 is the upper-bound of the computational distance be-

tween the two distributions G-DH?
�n

and G-DH$
�n
:
���Pr [S3]� Pr [S4]

��� �
Adv

gddh�n
G

(T 0); where T 0 takes into account the running time of the
adversary, and the random self-reducibility operations, and thus T 0 �
T +QnTexp(k).

Game G5. is the same as G4, except that the Test-query is answered
with a completely random value, independent of b. It is then straight-
forward that Pr [S5] = 1=2. Let �2 be the distance between the output

of F2(�) and the uniform distribution, we have:
���Pr [S5]� Pr [S4]

��� � �2.

The theorem then follows from the above equations. They indeed lead
to

Pr [S0] �Pr [Forge] + Pr [S1] �Pr [Forge] + nQ
�
Adv

gddh�n
G

(T 0) + �2

�
+

1

2
:

ut

Remark. When considering strong-corruptions we have to answer to
all the Corruptc-queries made by the adversary along the games but we
can only do so if we know the private exponents involved in the games.
To reach this aim, we can no longer bene�t from the self-random re-
ducibility property of G-DDH and have to �guess� the moment at which
the adversary will ask the Test-query. Unfortunately, reductions carried
out in such a way add an exponential factor in the size of the multicast
group [BCPQ01, BCP01].

6. Proof of the Theorem

Let A be an adversary that can get an advantage " in breaking the
AKE security of protocol P within time t, assuming n players have been
involved in the protocol. By player involved in a group, we mean a player
who has joined the group at least once since its setup.

In the following we de�ne a sequence of gamesG0; : : :G5 and also several
events. We denote the event b = b0 in the game Gi by Si and also de�ne
a �bad� event Ei. We will then show that as long as Ei does not occur
then the two games Gi�1 and Gi are identical.

784. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

The queries made by A are answered by a simulator �. � maintains for
each concurrent execution of P two variables T and L0. In L0 it keeps
the set of the �rst n players which have been involved in the group so far.
In T it keeps the order of arrival of the players in L0: i.e. to know which
elements of the GDH-trigon have to be used for each player in Game G3

(see Figure 4). These variables are reset whenever a Setup1+ occurs.

Game G0. This game G0 is the real attack Game
ake(A; P). We set At

the beginning of this game we set the bit b to be a random value.

Game G1. The game G1 is identical to G0 except that we abort if a
MAC forgery occurs before any Corrupt-query. We de�ne such an event
by Forge. Using a well-know lemma we get:���Pr [S0]� Pr [S1]

��� �Pr [Forge] :(6.1)

Lemma 6. Let �1 be the distance between the output of the map F1 and
the uniform distribution. Then, we have:

Pr [Forge] � Advmddhn
G

(T) +
n(n� 1)

2
Succcma

mac(T) +
n(n� 1)

2
�1:(6.2)

The proof of this lemma appears later on in section 7.

Game G2. Game G2 is the same as game G1 except that we add the
following rule: we choose at random two values i0 in [1; n] and c0 in
[1; Q]. c0 is a guess of the number of operations that will occur before
A asks the Test-query and i0 is a guess of the player who will send the
very last broadcast �ow before the Test-query. If the c0-th operation is
Join1+ or Setup1+, then i0 is the last joining player's index, otherwise i0
is the group controller's index (hoped to be max(L0)). If the Test-query
does not occur at the c0-th operation, or if the very last broadcast �ow
before the Test-query is not operated by player i0, the simulator outputs
�Fail� and sets b0 randomly. Let E2 be the event that these guesses are
not correct. Then we have:

Pr [S2] = Pr [S2 ^ E2] + Pr [S2 ^ :E2](6.3)

= Pr [S2 jE2] Pr [E2] + Pr [S2 j :E2] Pr [:E2]

=
1

2
Pr [E2] + Pr [S1]

�
1� Pr [E2]

�
;(6.4)

where Pr [E2] = 1� 1=nQ. Note that we use the fact that E2 and S1 are

independent.

Game G3. Game G3 is the same as game G2 except that we modify
slightly the way queries made by A are answered. � receives as input

6. PROOF OF THE THEOREM 79

j = 1 fg
j = 2 f1g f2g
j = 3 (= n� 1) f1; 2g f1; 3g f2; 3g f1; 4g f2; 4g f3; 4g
j = 4 (= n) f1; 2; 3g f1; 2; 4g f1; 3; 4g f2; 3; 4g

| {z } | {z }

basic trigon extension

Figure 4. Extended Trigon for �4

an instance D of size n from G-DH?
�n
, with its solution gx1:::xn :

�n =
[

2�j�n�2

ffi j 1 � i � j; i 6= lg j 1 � l � jg

[
ffi j 1 � i � n; i 6= k; lg j 1 � k; l � ng :

This in turn leads to an instance D = (S1; : : : ; Sn�2; Sn�1; Sn)[fg
x
1 : : : xng

wherein: Sj , for 2 � j � n�2 and j = n, is the set of all the j�1-tuples
one can build from f1; : : : ; jg; but Sn�1 is the set of all n� 2 tuples one
can build from f1; : : : ; ng (see Figure 4).

Based on the two values i0 and c0, the simulator injects in the game many
random instances, generated by (multiplicative) random self-reduction,
from G-DH?

�n
such that the Test-ed key is the G-DH secret value gx1:::xn

relative to D. That is all the elements of Sn will be embedded into the
protocol at c0 when the adversary A asks the Test-query.

� cannot embed all the elements of Sn at c0 since the players are not
all added to the group at c0. The strategy of � is as follows: embed
the successive elements of instance D in the protocol �ows in the order
wherein the players join the group, until n�1 players have been involved
and except for player i0; just before the Test-query, embed the last ele-
ments of instance D via the broadcast operated (hopefully) by i0; and
after the Test-query, returns to line Sn�1 with session keys in Sn.

This strategy allows � to deal with situations where n players are in-
volved in the group before c0, and are added and removed repeatedly. If,
in e�ect, � embeds all the elements of Sn into the protocol execution the
�rst time the size of L0 is n, � is not able to compute the session key
value sk needed to answer to the Reveal-query. Before c0, � uses truly
random values instead of instance D for player Ui0 or if there are already
n � 1 players involved in the group. Note that � embeds elements of
Si when a new player Ui (except Ui0) is added to the group I for the
�rst time and � does not remove it when Ui leaves. This way, after the
joining operation of the j-th player from L0, Ui0 excepted, the broadcast
�ow involves a random self-reduction of the j-th line in the basic trigon
(see �gure 4), the up-�ows involve elements in the j � 1-th line, and the

804. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

session key one element from the j + 1-th line. Thus, before operation
c0, � is able to answer the Join and Remove-queries and knows all the
session keys needed to answer the Reveal-queries. To correctly deal with
self-reducibility, � make use of variable T to reconstruct well-formatted
(blinded) �ows from D.

When the c0-th operation occurs, the last broadcast �ow is operated by
Ui0 who embeds line Sn of the trigon. If follows that the corresponding
session key (which is the Test-ed key) is the G-CDH�n value gx1:::xn rela-
tive to D, blinded by self-reducibility. � then answers the Test-query as
in the real protocol, according to the value of bit b.

However, � also needs to be able to answer all queries after c0 and more
speci�cally the Reveal-queries (if the adversary A does not output the
bit b0 right away after asking the Test-query and keeps playing the game
for more rounds). To this aim, � has to un-embed the element Sn from
the protocol (in order to reduce the number of exponents taken from
the instance D) and it does this in the operation at c0 + 1. However,
depending on which player performs that later operation, � may not be
able to do it without going �out� of the basic trigon (but anyway with
only n�1 exponents involved). This is the reason why the line Sn�1 has
to contain all the possible (n � 2)-tuples: extension of the basic trigon
illustrated on Figure 4. For the operations that will occur after c0+1, �
uses (random) blinding exponents for all the players including those in
L0, keeping all the xi but one in the �ows2. Therefore, the future session
keys will be derivated from the n-th line, but the broadcasts may involve
any element in the extended n� 1-th line.

The simulation is therefore indistinguishable from the game G2:

Pr [S2] =Pr [S3] :(6.5)

Game G4. Game G4 is the same as game G3 except that the simulator
is given as input an instance D from G-DH$

�n
, with gr as the �candidate�

solution. And in case b = 1, the value gr is used to answer the Test-
query. Then, the di�erence between G3 and G4 is upperbounded by
the computational distance between the two distributions G-DH?

�n
and

G-DH$
�n
, with gx1:::xn and gr respectively:���Pr [S3]� Pr [S4]

��� � Adv
gddh�n
G

(T 0):(6.6)

2Another solution would have been to guess which player performs the operation
at c0+1. With this second guess j0, the extension of the trigon would have contained
all the n� 2 tuples but those containing both i0 and j0.

7. PROOF OF LEMMA ?? 81

The running time of the simulator in games G2 and G3 is essentially
the same as in the previous game, except that each query may imply
computation of up to n exponentiation operations for self-reducibility:
T 0 � T + nQTexp(k), where Texp(k) is the time needed to perform an
exponentiation modulo a k-bit number.

Game G5. Game G5 is the same as G4, except that the Test-query is
answered with a completely random value, independent of b. It is then
straightforward that Pr [S5] = 1=2. Let �2 be the distance between the

output of F2(:) and the uniform distribution, we have:���Pr [S5]� Pr [S4]
��� � �2:(6.7)

Putting together Equations (6.1), (6.2), (6.4), (6.5), (6.6), (6.7), we get

Pr [S0] = Pr [S0 ^ Forge] + Pr [S0 ^ :Forge]

� Pr [Forge] + Pr [S1] =Pr [Forge]

+nQ

�
Pr [S2]�

1

2
(1� 1=nQ)

�

� Pr [Forge] + nQ

�
Pr [S2]�

1

2

�
+

1

2

� Pr [Forge] + nQ

�
Pr [S5] + Adv

gddh�n
G

(T) + �2 �
1

2

�
+

1

2

� Pr [Forge] + nQ
�
Adv

gddh�n
G

(T) + �2

�
+

1

2
:

The theorem then follows from lemma 6. ut

7. Proof of Lemma 6

Our goal here is to de�ne an upper bound on the probability of the �bad�
event Forge. Forge is the event the adversary A outputs during the attack
a MAC forgery before corrupting a player. To reach this aim we evaluate
the probability of Forge in a sequence of games G00; : : : ;G

0
4. We formally

refer to Forge0i as the event Forge in game G0i.

Game G00. The game G00 is de�ned as being the real attack against our
protocol: G00 =G0.

Game G01. The game G01 is identical to G00, except that each MAC
key Kij is computed as F1(g

rij), where rij is a random value, instead

824. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

of F1(g
xixj). It follows that the di�erence between the two games is

upper-bounded by the computational distance Advmddhn
G

(T):���Pr �Forge00�� Pr
�
Forge01

���� � Advmddhn
G

(T):

Game G02. Game G02 is identical to G01 except that instead of choos-
ing each MAC key Kij as the output of the key derivation map F1 we
choose them at random according to the uniform distribution. Thus, the
di�erence between the two games is upperbounded by a function in the
distance �1 of the output of F1 from the uniform distribution.

More precisely, we use a classical �hybrid distribution� technique and
de�ne an (ordered) sequence of auxiliary games G02

ij (1 � i < j � n).

Given 1 � i < j � n, game G02
ij is identical to G01 except that all

MAC keys Kkl for (k < i) or (k = i; l � j) are replaced by a uniformly

chosen random key. Then G02
11 = G01 whereas G02

n�1;n = G02. There
are n(n� 1)=2 such games and the di�erence between two �consecutive�
auxiliary games is upperbounded by �1. It then follows that:���Pr �Forge01�� Pr

�
Forge02

���� � n(n� 1)

2
�1:

If the map F1 were a random oracle, the distance �1 would have been
equal to 0. If the map F1 is based on a universal hash function and the
left-over hash lemma (see lemma 3), we would have �1 � 2�(e+1). Recall
that the latter hash functions use as input ofrandom value and this value
is either certi�ed or sent as part of the protocol �ows.

Game G03. The game G03 is identical to G02, except that the simulator
chooses at random two indices a and b, a < b, in [1; n] and aborts if no
MAC forgery w.r.t. Kab occurs before a Corrupt-query. The probability
of correctly guessing a and b is 2

n(n�1) . It follows that:

Pr
�
Forge03

�
=

2

n(n� 1)
Pr

�
Forge02

�
:

Game G04. The game G04 is identical to G03, except that the simulator
is given access to a MAC.Sgn-oracle and will use it to authenticate the
�ows between players a and b. All other MAC keys are known, uniformly
distributed values. If the MAC scheme uses uniformly distributed keys,
the two games are identical and Pr [Forge04] =Pr [Forge

0
3]. By construc-

tion the probability of Forge04 is exactly the probability of breaking the
security of the MAC scheme:

Pr
�
Forge04

�
= Succcma

mac(T):

8. CONCLUSION 83

Finally, we easily get:

Pr [Forge] = Pr
�
Forge00

�

� Advmddhn
G

(T) +
n(n� 1)

2
�1 +

n(n� 1)

2
Succcma

mac(T):

ut

8. Conclusion

This chapter represents the third tier in the treatment of the group Di�e-
Hellman key exchange using public/private keys. The �rst tier was pro-
vided for a scenario wherein the group membership is static and the
second, by extension of the latter to support membership changes. This
chapter adds important attributes (strong-corruption, concurrent execu-
tions of the protocol, tighter reduction, standard model) to the group
Di�e-Hellman key exchange.

844. GROUP DIFFIE-HELLMAN KEY-EXCHANGE UNDER STANDARD ASSUMPTIONS

Setup(J) Initialize new variables T and L0 to ;
Increment c
Initialize new multicast group I0 J
u min(J)
� c < c0 : Update L0 to cardinality n� 1 with J , except i0

u 6= i0) simulate using RSR according to T

u = i0) proceed as in P using ru
R
 Z�q

� c = c0 : #(L0) 6= n) output �Fail�
#(J) = n) L0 J then simulate the

simulate using RSR according to T []

� c > c0 : proceed as in P using ru
R
 Z�q

Join(I;J) Increment c
u max(I)
Initialize a new multicast group I0 I [J
Update L0 to cardinality n� 1 with J , except i0
� c < c0 : u 2 L0) simulate using RSR according to T

u =2 L0) proceed as in P using ru
R
 Z�q

� c = c0 : L0 L0 [fi0g
(max(J) 6= i0) _ (I

0 * L0) _ (#(L0) 6= n)) output �Fail�
simulate using RSR according to T

� c = c0 + 1 : L0 L0nfug
� c > c0 : u 2 L0)simulate using RSR according to T

u =2 L0)proceed as in P using ru
R
 Z�q

Remove(I;J) Increment c
Initialize a new multicast group I0 InJ
u max(I0)
� c < c0 : u 2 L0 simulate using RSR according to T

u =2 L0) proceed as in P using ru
R
 Z�q

� c = c0 : L0 L0 [fi0g
(u 6= i0) _ (I * L0) _ (#(L0) 6= n)) output �Fail�
simulate using RSR according to T

� c = c0 + 1 : L0 L0nfug
� c > c0 : u 2 L0)simulate using RSR according to T

u =2 L0)proceed as in P using ru
R
 Z�q

Send(�t
i;m) � c 6= c0 : i 2 L0) simulate using RSR according to T

i =2 L0)proceed as in P using ru
R
 Z�q

� c = c0 : simulate using RSR according to T

Reveal(�t
i) If Ui has accepted Then

If c = c0 Then output �Fail�
Else return sk

�t
i
.

Corrupt(Ui) return LLUi .

Test (Ui) If Ui has accepted Then

If c = c0 Then return F2(g
r�), where � is an adequate blinding exponent.

Else output �Fail�.

Figure 5. Game G4. The multicast group is I. The
Test-query is �guessed� to be made: after c0 operations,
the multicast group is L0, and the last joining player is
Ui0 . In the variable T , � store which exponents of in-
stance D have been injected in the game so far. RSR
holds for random self-reducibility.

CHAPTER 5

Practical Aspects of Group Di�e-Hellman Key

Exchange

A group communication system provides a platform upon which dis-
tributed applications can rely on to achieve reliable coordination among
their components, however when operating over public wires security
becomes an issue to address. The problem that immediatly emerges is
how to integrate cryptographic mechanisms, such as an authenticated
group Di�e-Hellman key exchange algorithm, with a group communica-
tion system.

In this chapter we provide a security framework to put cryptographic al-
gorithms to practical use. Our framework is a security layer that bundles
an authenticated dynamic group Di�e-Hellman algorithm, a distributed
authorization/access control mechanism, and a reliable group commu-
nication system to provide a comprehensive and practical secure group
communication platform. This layer also encapsulates the standard mul-
ticast security services (i.e multicast message con�dentiality, and multi-
cast data integrity). A number of challenging issues encountered in the
design of the layer are brought to light and experimental results obtained
with a prototype implementation are discussed in this chapter.

1. Introduction

Many current applications are implemented as distributed systems. Some
are distributed by nature (e.g., collaboratory and conferencing software)
while others are distributed to meet load-balancing and fault-tolerance
requirements (e.g., content servers and fault-tolerant CORBA). Such ap-
plications often rely on reliable group communication to provide coordi-
nation between processes.

One example of an application class that can bene�t from, and make
extensive use of, a reliable group communication platform is scienti�c
collaboration software. Applications such as distributed white boards,
remote instrument control, messaging systems, electronic notebooks, and
data sharing are natural users of group communication. Applications of

85

86 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

this type normally involve users spread across a wide-area network and
may utilize multiple groups. Unfortunately, few group communication
systems can operate over a wide-area network and even fewer incorporate
the access control and other security services that these applications
require.

Although acceptable solutions (e.g., SSL [DR02] and Kerberos [SNS98])
are available for securing unicast connections, they do not extend to
securing group communication. One of the main reasons is key manage-
ment. Unicast communication involves only two parties and consensus
on a shared key is relatively easy to reach. Each time a new unicast
connection is created the consensus process starts from scratch and, if
either party in a unicast communication session quits, fails, or drops the
connection, the other party also quits. In group communication, consen-
sus on a shared key is more complex since group membership is dynamic.
Once a group is formed, members may join or leave the group due to
failures, network partitions and voluntary membership changes.

Controlling access to a group requires authentication of users and de�ni-
tion of group access policy. Authentication and authorization for groups
present a more complicated set of problems than the typical client-server
access control. Authentication is more di�cult because each group mem-
ber must be able to authenticate all the other members. In a server-based
access control model the policy normally only controls access and is only
enforced by the server1.

Another challenge in introducing group security services is how best to
provide them to the application. One approach is to integrate them
into the underlying group communication system. This approach makes
the security services invisible to the applications but makes providing
authenticity, authorization/access control based on user credentials very
di�cult. This solution also would not be portable across di�erent group
communication systems.

An alternate approach is to interpose a security layer between the appli-
cation and the group communication system. This approach introduces
minor changes in the application to convey a user's credentials (access
privileges and user identity information) to the security layer and has
the advantage of being largely independent of the group communication
system implementation. This approach also allows the security layer to
leverage o� the properties of the group communication system in trans-
mitting its own messages.

1The scope of group security policy is still a research topic as are the methods
of group policy enforcement.

2. GROUP COMMUNICATION 87

The contribution of this chapter is in the design of a Secure Group Layer
aimed at wide-area environments. This layer, we refer to it as SGLv1,
protects against attacks like eavesdropping and spoo�ng2 by integrat-
ing a reliable group communication system, a group authorization and
access control mechanism to determine who knows the key, and an au-
thenticated dynamic group Di�e-Hellman key exchange algorithm which
facilitates the standard message security services (i.e. con�dentiality,
authenticity and integrity). However, denial of service attacks through
corruption of the underlying group communication system can still be a
problem.

The remainder of this paper is organized as follow. Section 2 de�nes the
group communication terminology. Section 3 summarizes the related
work. Section 4 describes the SGLv1 architecture. Finally Section 5
presents some experimental results obtained with the prototype imple-
mentation.

2. Group Communication

Group communication systems are designed to support communication
between processes cooperating in groups. The group communication
system provides an underlying layer that does the work of maintaining
membership of the process group and reliably delivering messages sent
to the group in an asynchronous distributed system. Example group
communication systems which provide these properties include Totem
[MMSA+96], Spread [ADS00], and InterGroup [BAC02, BAMSM01].

There are several message ordering properties that group communica-
tion systems provide to the application. A very basic property is causal
ordering of messages. Messages sent by the same application process are
received by the application in the order they were sent and messages
received by an application process before sending a new message (m1)
are ordered before m1 at all the members of the group. Many systems
also provide a total order on messages within the group so that messages
are received by the application in a single linear total order that is the
same at all the members of the group.

Group membership maintenance is a critical component of the group
communication system since the membership of the group is the basis
for the determination of reliable delivery of messages and message order.
A particular instance of the group membership is referred to as a view.
Each application receives messages within the context of a view. It

2Spoo�ng is an integral part of many network attacks. In a group communication
setting, spoo�ng attacks refer to the impersonation of a group member.

88 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

is important that the delivery order of messages and view changes are
consistent across the members of a particular view.

There are several consistency de�nitions that are in use by group com-
munication systems. Some common consistency de�nitions are send-
ing view delivery, view synchrony, and extended virtual synchrony (see
[VKCD99]). Sending view delivery means that messages are received in
the view in which they were sent. Virtual synchrony [BJ87] and extended
virtual synchrony [MAMSA94] (EVS) de�ne message order, message de-
livery and view change consistency constraints. In the case of EVS these
consistency constraints are system wide.

3. Related Work

Research on protocols for secure reliable multicast communication could
be classi�ed according to their threat model. One approach shares the
same security model as the protocol SSL/TLS which assumes that the
end-points will not get corrupted. Ensemble security [RBH+98] relies on
a static group leader to generate session keys and distribute them via ex-
tensions of two-party cryptographic tools such as SSL/TLS, PGP [Zim95]
or Kerberos. The group leader is static and changes only when the cur-
rent group leader leaves or becomes unreachable. The drawback of such
an approach is two fold. The trusted server is a single point of failure
in the overall system and using secure unicast communication leads to
ine�cient secure group communication.

Secure Spread [AAH+00] di�ers from Ensemble since it uses an authen-
ticated group Di�e-Hellman algorithm [AST00, ACH+00]. This algo-
rithm does not achieve provable security and �aws have been discovered
in it [BCP+02a, PQ01a]. Secure Spread is placed above the Spread group
communication system and relies on the property commonly known as
view synchrony. View synchrony is a stronger property than the sending
view delivery we require for SGLv1. Secure Spread also does not provide
any authentication/access control mechanisms, and focuses primarily on
LAN and interconnected LAN environments.

Another approach assumes that the group members can be corrupted,
i.e. the so-called Byzantine failure model. Rampart [Rei94] was the
�rst to demonstrate the feasibility of reliable and atomic group multi-
cast for asynchronous distributed systems in the presence of Byzantine
failures. It uses public key cryptography to establish authenticated com-
munication between a pair of processors and implements the reliable and
atomic group multicast protocols over a secure group membership proto-
col [Rei96]. Immune [KMMS98] uses public key cryptography to secure

4. THE SECURE GROUP LAYER 89

the Totem daemon. Immune secures the low-level ring protocol against
Byzantine failure and hence maintains the reliable ordered message deliv-
ery and group membership services despite the corruption of some group
communication servers by an adversary. The extension of Rampart and
Immune to wide-area environments has been done in [MMR97].

Another important aspect of securing group communication is the group
policy issues such as requirements for group rekeying and levels of mes-
sage security. The Antigone framework [MPH99] provides interfaces for
the de�nition and implementation of policies for secure groups. Policies
are implemented by composition and con�guration of mechanisms which
provide basic services for secure groups. For the purpose of this paper we
will assume that a simple policy exists but we will still need to identify
the repository for group policies.

4. The Secure Group Layer

The design of our secure group layer SGLv1 uses the properties provided
by the underlying group communication system. These properties, which
are usually refered as extended virtual synchrony, ensure that messages
are consistently ordered and delivered within the group. The view change
events emanating from the group communication system notify SGLv1 of
membership changes due to a join, leave, fail, partition, or merge events.

In addition to the existing properties of the group communication sys-
tem, SGLv1 provides applications with the property of sending view de-
livery [CKV01]. This property is useful for implementing group security
services since it guarantees the application that messages are delivered in
the same view as they were sent. By using sending view delivery, SGLv1
can use one session key at a time and thus bind a session key to each
new view.

6

? 6 6

?
6

Application

send recv view_chng

Flush

Protocol

Access Control

Protocol

Key Agreement

Record Layer

send recv view_chng

Reliable Multicast Protocol

Protocol

Figure 1. The architecture of SGLv1.

90 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

The SGLv1 architecture consists of four main components each imple-
menting a separate protocol (see Fig. 1). The record layer provides
standard message security services (i.e., con�dentiality, integrity and au-
thenticity). The access control protocol enforces restrictions on group
membership. The �ush protocol provides a mechanism for delineating
membership views where each view corresponds to the lifetime of a
speci�c session key and any keys derived from it. The key agreement
protocol creates a session key which is then used to derive a key for a
symmetric-encryption algorithm and a key for a message authentication
code (MAC). These two keys are subsequently made available to the
record layer.3

4.1. Record Layer

The record layer supports message transmission with con�dentiality, in-
tegrity and authenticity. It takes an application message, applies an
integrity algorithm using the MAC group key, encrypts it using the sym-
metric group encryption key and sends it out using the group communi-
cation system.

On receipt, a message is decrypted with the symmetric group decryption
key, veri�ed using the MAC group key and delivered to the application.
The current SGLv1 implementation uses the Rijndael cipher [DR00] for
encryption and the HMAC method [KBC97] for MAC computation.

4.2. Flush Protocol

As mentioned above, the �ush protocol implements sending view delivery
for SGLv1 and applications. It de�nes the end of a membership view
and thus guarantees that no further messages encrypted with a particular
session key will be received. Coordination is attained with special �ush
messages marking the end of a view.

The �ush protocol is invoked by a view change event. Recall that sending
view delivery means that all messages that the application has sent in
a given view are received in that same view. To accomplish this, the
�ush protocol sends any pending messages (which have been accepted
from the application) and blocks any new messages from the application
before it sends a �ush message.

The protocol waits until a �ush message from every process in the new
view has been received and veri�ed. Since the �ush marks the end of

3The �ush, access control, and key agreement protocols are invoked by each view
change event.

4. THE SECURE GROUP LAYER 91

messages in a view receipt of a �ush message represents for the recipient
a �promise� by the sender not to send any more messages encrypted with
the group key corresponding to the old view. When all �ush messages are
received, the process can conclude that no further messages protected by
the old group key will be received. View change events reset and restart
the �ush protocol.

It is important to note that, if SGLv1 were be built on an underlying
group communication system that provided sending view delivery, the
�ush layer would still be needed. Otherwise, the group communication
system would need to accept, for sending in the old view, application
messages bu�ered (e.g., during encryption) in SGLv1 and not yet passed
to the group communication system.

4.3. Access Control Protocol

A group access control mechanism enforces restrictions on group mem-
bership. Without it, other security services (including key agreement
and data integrity/privacy) are basically ine�ective. Our access control
approach uses membership certi�cates that authorize entry into the key
agreement protocol and, hence, the group itself.

The Authorization Authority is responsible for collecting group policies
and using them to determine who is allowed to join a group. The Akenti
server is such an authority [TJM+99]. Akenti determines if a user is
allowed to join a group and issues membership certi�cates containing
that information.

A membership certi�cate (see Figure 2) associates a public key with the
X.509 identity of a user and contains the access privilege granted to the
user with respect to the group, the validity period for the certi�cate
as determined from the policy, the identi�cation of the Authorization
Authority that issued the certi�cate and additional information for the
Authorization Authority's use, such as a serial number.

Subject: Distinguished Name, Public Key
Access Privilege: Group, Authorized or Denied Access
Issuer: Distinguished Name, Signature
Administrative Information: Version, Serial Number.
Period of Validity: Start and Expire Dates/Times

Figure 2. Membership certi�cate format.

The Akenti server not only issues membership certi�cates, it also man-
ages them. It keeps a list of all non-expired certi�cates that have been

92 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

issued for a group. Akenti also keeps a list of all the revoked certi�cates
called the Certi�cate Revocation List (CRL). When examining mem-
bership certi�cates for validity, therefore, it is necessary to contact the
issuing Akenti server to check the Certi�cate Revocation List. At this
time this is not an automated part of the group access control protocol.

In order to begin, a user needs to �rst obtain a membership certi�cate
from the Akenti server or needs to request a new certi�cate if its certi�-
cate has expired or has been revoked. When a user wants to join the
secure group, he will start by joining the reliable group. This join causes
a view change and intitates the �ush protocol.

During the �ush protocol each member, including the new joinee, broad-
casts its membership certicate. Each member will verify every other
members' certi�cate by checking that the message is signed by the sub-
ject of the certi�cate, that the certi�cate is signed by Akenti, the certi�-
cate is within its validity period and the certi�cate grants joining access.

Once the group controller has veri�ed all the members, it will start a
new key agreement protocol. The group controller is a group member
who enforces group access control policy by creating and disseminating
the group keying material to authorized members. The group controller
role is determined by the group key agreement as we will see in the next
section. If any member sees key agreement messages from a user that it
does not trust, it can refuse to participate.

4.4. Group Key Agreement Protocol

A group key agreement mechanism establishes a session key between
members of a group. It allows the members to agree upon and begin
computing a session key without relying on any centralized trusted third
party (TTP) which could be a single point of vulnerability for the overall
system. Authenticated group Di�e Hellman key exchange are such a
mechanism.

In a preliminary work we implemented two group Di�e-Hellman key
algorithms [ACH+00]. Using the terminology from [ACH+00] these al-
gorithm are respectively referred as IKA.1 and IKA.2. The IKA.1 algo-
rithm, depicted in Figure 2 in the introduction, trades o� minimal round
(and number of messages) complexity in return for higher computational
cost. In contrast, IKA.2 minimizes computational cost at the expense of
more protocol rounds (and more messages).

These two Initial Key Agreement protocols can be extended into algo-
rithms for authenticated dynamic group Di�e-Hellman key exchange but
IKA.1 is the only algorithm that was formally analyzed and modi�ed to

4. THE SECURE GROUP LAYER 93

achieve provable security. Such a formal treatment was carried out in
the previous chapters and IKA.1 was renamed AKE1. We emphasize
that IKA.1 and AKE1 have the same computational cost and the same
number of rounds.

These protocols dynamically determine one of the members to serve as
the group controller whose main task is to coordinate the generation of
partial keys and to disseminate them to other group members. The group
controller is always the newest (or most recent) group member. This se-
lection criterion has an important bene�t as it can be performed without
any message exchange. Note that the concept of newest is not meaning-
ful in an execution model where di�erent processes observe group views
in di�erents orders or with gaps. We postpone further discussion of this
issue until Section 4.4.2.

4.4.1. Performance Analysis

The overall time-to-completion for IKA.1 and IKA.2 is dominated by two
factors: network communications and cryptographic processing times;
primarily, exponentiation with large numbers which is quite costly. In
order to compare the costs of the two protocols we need to consider the
steps of each protocol.

IKA.1 (Fig 2) operates in k rounds and requires k � 1 unicast messages
followed by a single broadcast. Each round i (1 � i < k) involves each
member Mi performing i exponentiations. This is followed by Mi uni-
casting a set of (i+1) partial keys on to Mi+1, except for the last (k-th)
round when Mn+k broadcasts the partial keys. Finally, each Mi per-
forms a single exponentiation upon receipt of the broadcast. Assuming
that all members exponentiate in approximately the same time, the to-
tal protocol delay is thus COST (IKA:1). Similarly for IKA.2, the total
protocol delay is COST (IKA:2).

COST (IKA:1) =
E

2
k2 + (En+

E

2
+D) k + D

COST (IKA:2) = (2E +D) k + (En�E + 3D)

where D is the network delay, E the cost of a single exponentiation, n the
number of members in the group and k the number of joining members.

94 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

We are now ready to compare the relationship between the cost of IKA.1
and the cost of IKA.2. We assume a 2ms exponentiation delay4 and a
100ms wide-area network delay5 and thus obtain the relation represented
in Figure 3. The curve represents the values for which IKA.1 and IKA.2
have the same cost.

In the typical underlying group communication systemmost view changes
require consensus among the new views. For this reason, the time to com-
plete a membership change becomes prohibitive as the group size grows.
This is particularly true when group members are spread across a wide-
area network (WAN) since a WAN involves an increased round-trip time
between group members and a greater likelihood of lost and thus resent
messages due to the number of hops and sheer distances traversed.

We postulate that a practical limit for process group membership size
in a wide-area network is likely to be around 40. In our experience,
current scienti�c collaborations typically involve even smaller groups for
example less than 20 members. Thus, most membership increases in
a 20 member group are likely to involve a relatively small number of
members merging into an existing group (either new members or heals
of prior network partitions). Figure 3 clearly demonstrates that, under
these assumptions, IKA.1 o�ers better performance than IKA.2.

4

6

8

10

14

16

18

20

0 5 10 15 20 25 30 35 40 45 50

k (Joiners)

n (Group size)

IKA.1

IKA.2

Figure 3. Tradeo� between group size and number of
joining members. In the area below the curve, IKA.1 is
faster than IKA.2.

4The performance for the 512-bit moduli exponentiation was obtained using the
big number library in OpenSSL on a 450MHZ Pentium II PC.

5The average point-to-point delay for a US coast-to-coast round-trip at the ap-
plication level.

4. THE SECURE GROUP LAYER 95

As shown in Figure 3, on one extreme all 20 members join the collabora-
tive session as soon as it starts. At n = 0 and k = 20, IKA.1 is as fast as
IKA.2. Later, members may leave and join the group or the group may
become partitioned and such a partioned group may merge. Suppose a
5 member group and a 15 member group were to merge. As shown in
Figure 3 at n = 5, k = 15 and n=15, k = 5, IKA.1 is faster than IKA.2.

Figure 3 above is based on our current measurements for exponentia-
tion and wide-area network delay. The curve in �gure 3 will move up
as the time for exponentiation goes down. In the future, due to faster
computers, the exponentiation delay is more likely to decrease than the
wide-area network delay. Moreover faster exponentiation algorithms ex-
ist; Hankerson et al. [HHM00] obtained an exponentiation delay of 1.5
ms6 with a level of security equivalent to twice (i.e. 1024-bit security)
the 512-bit security that we require for scienti�c collaboration software.

4.4.2. Group Controller

In the event of a network failure, a group may become partitioned into
several disjoint components. These components may subsequently need
to merge when the failure is repaired (i.e., a partition heals). However,
this brings up the question of how to select the group controller following
a merge event.

In our framework, the new group controller is selected as the prior con-
troller of the largest merging sub-group (largest in terms of number
of authorized members). Adding members from the smaller group into
the larger one has some obvious advantages. As an example, consider
the merge of a 5-member group and a 15-member group. Assuming
all 20 members are previously authorized, a 2ms single exponentiation
delay and a 100ms WAN round-trip delay, merging 5 members into a
15-member group costs 0.780 sec, while merging 15 members into a 5-
member group costs 1.900 sec. More generally, COST (IKA:1) grows
linearly with n and is quadratic in k, thus, merging a smaller group into
a larger one is always faster.

The problem now is how to agree on which group has the larger number of
authorized members. Since the underlying group communication system
is acting independently of SGLv1 its membership may be a superset of
the secure group membership. Consequently, relative sizes of the merging

6Hankerson et al. [HHM00] obtain a 1.5ms exponentiation delay on NIST-
recommended elliptic curves K-163 using the big number library in OpenSSL on
a 400MHZ Pentium II PC.

96 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

secure groups cannot be determined from the information provided by
the underlying group communication system. Additionally, there may
even be view changes where one of the merging groups has no authorized
members.

With a small modi�cation, our �ush protocol can provide the informa-
tion about sizes of merging groups. Each member adds to the �ush
(�ush.view) a list of the processes in its secure group communication
session that are also in the new unsecure group view. Thus, on receipt
of a �ush message from each member in the new view, all members can
determine the largest secure group and hence dynamically determine a
member to serve as the merged group controller (using the process iden-
ti�er to break ties).

5. Experimental Results

5.1. Prototype

A prototype implementation of the SGLv1 in the "C" programming
language has been completed. It currently runs on Sun UltraSparc
workstations with the Solaris 5.7 operating system. The Totem sys-
tem [MMSA+96] is utilized as the underlying group communication sys-
tem, the Akenti server [TJM+99] serves as the authorization server and
the IKA.1 protocol has been implemented using the functions provided
by the toolkit [ACH+00]. We also use the implementation of DSA pro-
vided by OpenSSL [Res01].

The Totem system [MMSA+96] provides all the properties required by
SGLv1 and some additional properties such as totally ordered messages.
The Totem system runs as a daemon and a light-weight user interface
layer. The remote users connect via the light-weight layer to the Totem
daemon using a TCP/IP connection - or through an SSL connection -
across the high latency link since the Totem daemons were not designed
to operate over a high latency link. One advantage of the Totem sys-
tem is that it can be replaced, if needed, by its secure version called
Immune [KMMS98] which is designed to protect against Byzantine fail-
ures.

The Akenti server issues the membership certi�cates used for group ad-
mission. For the sake of fault tolerance, it can be run as a set of mirrored
servers. Note that Akenti can be administered independently. Akenti
provides an interface to allow stakeholders to create digitally signed pol-
icy certi�cates.

5. EXPERIMENTAL RESULTS 97

5.2. Experiment

Initial performance tests with our prototype implementation were per-
formed between sites in Berkeley, California (LBNL) and Argonne, Illi-
nois (ANL). In these tests we measured the performance of the SGLv1
when one member joins the group (Fig 4), leaves the group, and group
merge operation with various component sizes (Fig 6). In each case the
graphs show the results from the worst case scenario (e.g. the joining
member is separated from the group by a high-latency link).

We now describe our experiments. At Lawrence Berkeley Laboratory
(Berkeley), one Sun UltraSparc 5s is running a Totem daemon and one
group member. The second Sun UltraSparc 5 is running a Totem dae-
mon and the rest of the Berkeley group members. At Argonne, a Sun
UltraSparc 2 is running one user who connects to a Totem daemon at
Berkeley. On a Sun UltraSparc 5, a 512-bit moduli exponentiation, DSA
signature and DSA veri�cation 7 provided by OpenSSL [Res01] costs
respectively 0.010 seconds, 0.010 seconds and 0.030 seconds.

5.3. Measurements

0
0.2
0.4
0.6
0.8
1

1.2
1.4

2 4 6 8 10 12 14 16 18 20

t(sec)

n (Group size)

Secure Layer

ush

Figure 4. Performance of SGLv1 when one member lo-
cated at Argonne joins the group.

Figure 4 shows the performance of SGLv1 when the member in Argonne
joins an existing group in Berkeley. As an example, adding one member
to a group of 19 members takes 1.4 seconds. Examining the steps after
the �ush protocol is �nished, the group controller in Berkeley computes
19 exponentiations, signs the message and sends the values to the joining

7It is worth noting that DSA operations (i.e. signing and veri�cation) are more
symmetric than the RSA operations. RSA veri�cation is roughly an order of magni-
tude faster than RSA signing and RSA signing is roughly as fast as DSA signing. For
SGLv1, DSA is clearly a bottleneck.

98 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

member in Argonne; 0.200 seconds. Upon reception of the message,
the joining member veri�es the signature, computes 19 exponentiations,
signs the message, and sends the values to the daemon in Berkeley, 0.303
seconds. At this point, the total is 0.503 seconds.

As soon as the daemon receives the message, it forwards it to the users.
The user in Argonne gets the message after 0.070 seconds, veri�es the
signature, and computes one exponentiation; 0.110 seconds. The user
in Argonne computes the group secret in a total time of 0.613 seconds.
Adding the �ush protocol we get 0.993 seconds. Each of the 18 users on
the Sun UltraSparc 5 have to get the message, verify the signature and
compute one exponentiation; 0:035 + 18 � 0:04 = 0:755 seconds. Adding
the cost of the �ush protocol, the 1st member computes the group key in
0.958 seconds while the 18th member computes the group key in 1.638
seconds.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

2 4 6 8 10 12 14 16 18 20

t(sec)

n (Group size)

Secure Layer

Figure 5. Performance of SGLv1 when one member
leaves the group and the group controller is located at
Argonne.

Figure 5 shows the performance of SGLv1 when one member leaves the
group communication and the group controller is in Argonne. As an
example, a member leaving an existing group with 20 members costs 0.8
seconds. Once the �ush protocol completes, the group controller located
in Argonne computes 19 exponentiations, signs the message and sends
it to the daemon at Berkeley; 0.238 seconds. The user in Argonne gets
the message after 0.070 seconds, veri�es the signature, and computes
one exponentiation; 0.110 seconds. By adding the �ush protocol we
get 0.728 seconds. For each of the 18 users that the Sun UltraSparc 5
contains, it has to get the message, verify the signature and compute
one exponentiation; 0.035+18*0.04 = 0.755 seconds. By adding the cost
of the �ush protocol, the 1st member computes the group key in 0.693
seconds while the 18th member computes the group key in 1.373 seconds.

5. EXPERIMENTAL RESULTS 99

1

1.1

1.2

1.3

1.4

(8,7) (10,5) (12,3) (14,1)

t(sec)

(n,k) (Group size, Joiners)

Secure Layer

Figure 6. Performance of SGLv1 on a group merge with
variable-size merging components. The main group size
is constant at 15 members. The cost of the �ush is not
included.

Figure 6 shows the performance of the group merge operation with var-
ious partition sizes. As an example a group with k=3 members is added
to an existing group with n=12 members. The 12 members in the exist-
ing group are on one computer and the other group has one member at
Argonne and the other two on a computer in Berkeley. Once the �ush
protocol completes, the group controller of the larger group computes
12 exponentiations, signs the message and sends the value to the 1st
member in the group with 3 members; 0.13 seconds. The 1st member re-
ceives the message, veri�es the signature, computes 13 exponentiations,
signs the message and sends it to the member located at Argonne; 0.17
seconds. The member located at Argonne receives the message, veri-
�es the signature, computes 14 exponentiations, signs the message and
sends it to the 3rd member; 0.215 seconds. The 3rd member receives
the message, veri�es the signature, computes 14 exponentiations, signs
the message and sends it to the group; 0.215 seconds. At this point the
total is 0.73 seconds. The member located in Argonne, computes the
group secret in a total time of 0.805 seconds. Each of the �rst group's
12 members need to get the message, verify the signature and compute
one exponentiation; 0.48 seconds. So, the 1st member computes the
group key in 0.77 seconds while the 12th member computes the group
key in 1.21 seconds. The other two members of the second group get the
message, verify the signature and compute an exponentiation; 0.81 ms.
The graph shows the average experimental value obtained for this group
merge operation.

100 5. PRACTICAL ASPECTS OF GROUP DIFFIE-HELLMAN KEY EXCHANGE

6. Conclusion

This paper presented the design of a secure group layer aimed at wide-
area environments. The security layer o�ers protection against attacks
like eavesdropping by integrating an access control mechanism, authen-
ticated dynamic group Di�e-Hellman key exchange algorithm, and a
reliable multicast transport protocol. The application information is
passed securely inside the group since the group key agreement protocol
is proved to securely distribute a session key among the legitimate group
members only and the application messages are all encrypted. Even the
lack of reliable and ordered delivery of messages will not disclose the
application information.

If the reliable group communication system is corrupted, however, our
secure group layer can no longer count on the reliable delivery of mes-
sages, which may cause the communication to be useless in some settings.
These are denial of services attacks. To reduce the chances of the com-
munication failing, our security layer could be used in conjunction with
a group communication system resistant to Byzantine failures such as
Immune [KMMS98].

Although the emphasis in building the �rst prototype SGLv1 was not
on performance, this prototype has served as a good platform for un-
derstanding the issues involved in providing a secure group layer. These
are robustness features, security issues, e�ciency improvements and in-
terface de�nitions. Signi�cant performances improvement could for ex-
ample be realized by exploiting faster platforms to speed-up the cryp-
tographic operations and by using elliptic curve cryptography to imple-
ment the authenticated group Di�e-Hellman algorithm [HHM00]. More
e�cient support of groups spread across wide-area networks would also
result from using recent group communication system intended for wide-
area networks [BAMSM01].

Conclusion and Further Research

In this thesis we carried out a complete treatment of the authenticated
group Di�e-Hellman key exchange using public/private keys. Through a
number of incremental steps we extended the work of Bellare et al. [BPR00]
on the two-party Di�e-Hellman key exchange to the multi-party set-
ting. We �rst provided a formal treatment for the scenario wherein the
group membership is static and then addressed the scenario wherein the
group membership is dynamic. Our formal treatment consists of de�n-
ing models to manage the complexity of security de�nitions in this area,
and showing that the protocols for authenticated group Di�e-Hellman
are secure within these models. We also enhanced our formal treatment
with important missing security attributes. Finally, we put our protocols
for authenticated group Di�e-Hellman to practical use within a security
framework designed to be similar to the well-know SSL protocol.

As parties communicate according to a common set of protocols, many
standards have been developed to provide a basis for interoperability
of the di�erent systems. For security/cryptographic protocols the stan-
dards serve as assurance of some level of safety and have an impact
on their deployment. The IEEE P1363, IETF multicast security work-
ing group, IRTF secure multicast research group, ISO/IEC JTC1 SC27
and NIST organizations have developed comprehensible classi�cations
of types of cryptosystems but have not yet developed a classi�cation for
multi-party cryptographic algorithms. A logical follow-on to the work
carried out in this thesis is to extend our formal treatment to other group
Di�e-Hellman-like protocols and to develop standards for multi-party
cryptography to get them standardized.

101

Bibliography

[AAH+00] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossna-
gle, J. Schultz, J. Stanton, and G. Tsudik. Secure Group Communication
in Asynchronous Networks with Failures: Integration and Experiments.
In Proc of the 20th IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pages 330�343, April 2000.

[ACH+00] G. Ateniese, O. Chevassut, D. Hasse, Y. Kim, and G. Tsudik. The De-
sign of a Group Key Agreement API. In DARPA Information Surviv-
ability Conference and Exposition (DISCEX). IEEE Computer Society,
Jan 2000.

[ACTT01] D. A. Agarwal, O. Chevassut, M.R. Thompson, and G. Tsudik. An In-
tegrated Solution for Secure Group Communication in Wide-Area Net-
works. In Proc. of the 6th IEEE Symposium on Computers and Com-
munications (ISCC), pages 22�28, July 2001.

[ADS00] Y. Amir, C. Danilov, and J. Stanton. A Low Latency, Loss Tolerant Ar-
chitecture and Protocol For Wide Area group Communication. In Proc
of the International Conference on Dependable Systems and Networks
(FTCS), June 2000.

[AST98] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key
Agreement and Friends. In Proc of the 5th ACM Conference on Com-
puter and Communications Security (ACM CCS), pages 17�26. ACM
Press, November 1998.

[AST00] G. Ateniese, M. Steiner, and G. Tsudik. New Multiparty Authentication
Services and Key Agreement Protocols. IEEE Journal of Selected Areas
in Communications (JSAC), 18(4), April 2000.

[BAC02] K. Berket, D. A. Agarwal, and O. Chevassut. A Practical Approach to
the Intergroup Protocols. In J.of Future Generation Computer Systems,
volume 18, pages 709�719, April 2002.

[BAMSM01] K. Berket, D. A. Agarwal, P. M. Melliar-Smith, and L. E. Moser.
Overview of the InterGroup Protocols. In Prof of the International Con-
ference on Computational Science (ICCS), volume 2073 of Lecture Notes
in Computer Science, pages 316�325. Springer-Verlag, May 2001.

[BAN90] M. Burrows, M. Abadi, and R. Needham. A Logic of Authentication.
ACM Transactions on Computer Systems, 8(1):18�36, 1990.

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for
Message Authentication. In Proc. of Crypto, volume 1109 of Lecture
Notes in Computer Science, pages 1�15. Springer-Verlag, 1996.

[BCK98] M. Bellare, R. Canetti, and H. Krawczyk. A Modular Approach to the
Design and Analysis of Authentication and Key Exchange Protocols.

103

104 BIBLIOGRAPHY

In Proc. of the 30th Annual Symposium on the Theory of Computing
(STOC). ACM Press, 1998.

[BCP01] E. Bresson, O. Chevassut, and D. Pointcheval. Provably Group Di�e-
Hellman Key Exchange � The Dynamic Case. In Proc. of Asiacrypt,
volume 2248 of Lecture Notes in Computer Science, pages 290�309.
Springer-Verlag, Dec 2001.

[BCP+02a] E. Bresson, O. Chevassut, O. Pereira, D. Pointcheval, and J.J.
Quisquater. Two Views of Authenticated Group Di�e-Hellman Key Ex-
change. In Proc of the Workshop on Cryptographic Protocols in Complex
Environments. DIMACS Center, Rutgers University, May 15 - 17 2002.

[BCP02b] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic Group Di�e-
Hellman Key Exchange under Standard Assumptions. In Proc. of Eu-
rocrypt, volume 2332 of Lecture Notes in Computer Science, pages 321�
336. Springer-Verlag, May 2002.

[BCP02c] E. Bresson, O. Chevassut, and D. Pointcheval. Goup Di�e-Hellman Key
Exchange Secure Against Dictionary Attacks. In Asiacrypt, Dec 2002.

[BCP02d] E. Bresson, O. Chevassut, and D. Pointcheval. The Group Di�e-
Hellman Problems. In Selected Areas in Cryptography (SAC), August
2002.

[BCPQ01] E. Bresson, O. Chevassut, D. Pointcheval, and J. J. Quisquater. Prov-
ably Group Di�e-Hellman Key Exchange. In Proc. of the 8th ACM
Conference on Computer and Communications Security (ACM CCS),
pages 255�264. ACM Press, Nov 2001.

[BD95] M. Burmester and Y. Desmedt. A Secure and E�cient Conference Key
Distribution System. In Proc of Eurocrypt, volume 950 of Lecture Notes
in Computer Science, pages 275�286. Springer-Verlag, 1995.

[BGH+91] R. Bird, I. Gopal, A. Hertzberg, P. Janson, S. Kutten, R. Molva, and
M. Yung. Systematic Design of Two-Party Authentication Protocols.
In Proc. of Crypto, volume 576 of Lecture Notes in Computer Science,
pages 44�61. Springer-Verlag, 1991.

[BJ87] K. Birman and T. Joseph. Reliable Communication in the Presence
of Failures. In ACM Transactions on Computer Systems, volume 5(1),
pages 47�76, February 1987.

[Ble98] D. Bleichenbacher. Chosen Ciphertext Attacks against Protocols Based
on RSA Encryption Standard PKCS #1. In Proc of Crypto, volume
1462 of Lecture Notes in Computer Science, pages 1�12. Springer-Verlag,
August 1998.

[Bon98] D. Boneh. The Decision Di�e-Hellman Problem. In Proc of Third Al-
gorithmic Number Theory Symposium (ANST), volume 1423 of Lecture
Notes in Computer Science, pages 48�63. Springer-Verlag, 1998.

[BPR00] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Ex-
change Secure Against Dictionary Attacks. In Proc. of Eurocrypt,
volume 1807 of Lecture Notes in Computer Science, pages 139�155.
Springer-Verlag, 2000.

[BR93a] M. Bellare and P. Rogaway. Entity Authenti�cation and Key Distri-
bution. In Proc. of Crypto, volume 773 of Lecture Notes in Computer
Science. Springer-Verlag, August 1993.

[BR93b] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm
for Designing E�cient Protocols. In Proc of the 1st ACM Conference

BIBLIOGRAPHY 105

on Computer and Communications Security, pages 62�73. ACM Press,
1993.

[BR95] M. Bellare and P. Rogaway. Provably Secure Session Key Distribution:
The Three Party Case. In Proc of the 27th ACM Symposium on the
Theory of Computing (STOC), pages 57�66, 1995.

[BR96] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures:
How to Sign with RSA and Rabin. In Proc of Eurocrypt, volume 1070
of Lecure Notes in Computer Science, pages 399�416. Springer-Verlag,
1996.

[BW88] J. A. Buchmann and H. C. Williams. A Key-Exchange System Based on
Imaginary Quadratic Fields. Journal of Cryptology, 2(2):107�118, 1988.

[BW98] K. Becker and U. Wille. Communication Complexity of Group Key Dis-
tribution (acm ccs). In Proc of the 5th ACM Conference on Computer
and Communications Security, pages 1�6. ACM Press, November 1998.

[BWJM97] S. Blake-Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols
and their Security Analysis. In Proc. of 6th IMA International Confer-
ence on Crypotography and Coding, volume 1355 of Lecture Notes in
Computer Science, pages 30�45. Springer-Verlag, 1997.

[BWM98a] S. Blake-Wilson and A. Menezes. Authenticated Di�e-Hellman Key
Agreement Protocols. In Proc. of the 5th Annual Workshop on Selected
Areas in Cryptography (SAC), volume 1556 of Lecure Notes in Computer
Science, pages 339�361. Springer-Verlag, 1998.

[BWM98b] S. Blake-Wilson and A. Menezes. Entity Authentication and Authenti-
cated Key Transport Protocols Employing Asymmetric Techniques. In
Proc. of the 5th International Workshop on Security Protocols, volume
1361 of Lecture Notes in Computer Science, pages 137�158. Springer-
Verlag, 1998.

[CFIJ99] G. Di Crescenzo, N. Ferguson, R. Impagliazzo, and M. Jakobsson. How
to Forget a Secret. In Symposium on Theoretical Computer Science
(STACS), volume 1563 of Lecture Notes in Computer Science, pages
500�509. Springer-Verlag, 1999.

[CGH98] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Method-
ology, Revisited. In Proc of the 30th Symposium on the Theory of Com-
puting (STOC), pages 209�218, 1998.

[CK74] V. G. Cerf and R. E. Kahn. A Protocol for Packet Network Intercommu-
nication. IEEE Transactions on Communications, 22(5):647�648, 1974.

[CKV01] G. V. Chockler, I. Keidar, and R. Vitenberg. Group Communica-
tion Speci�cations: A Comprehensive Study. ACM Computing Surveys,
33(4):pages 1�43, Dec 2001.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Electrical Engineering and Computer Science, 1990.

[Cor00] J.-S. Coron. On the Exact Security of Full-Domain-Hash. In Proc. of
Crypto, volume 1880 of Lecture Notes in Computer Science, pages 229�
235. Springer-Verlag, 2000.

[CS98] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Prov-
ably Secure against Adaptative Chosen Ciphertext Attack. In Proc of
Crypto, volume 1462 of Lecure Notes in Computer Science, pages 13�25.
Springer-Verlag, 1998.

106 BIBLIOGRAPHY

[CS99] R. Cramer and V. Shoup. Signature Scheme based on the Strong RSA
Assumption. In Proc. of the 6th ACM Conference on Computer and
Communications Security (ACM CCS), pages 46�51. ACM Press, 1999.

[DH76] W. Di�e and M. Hellman. New Directions In Cryptography. In IEEE
Transactions on Information Theory, volume IT-22(6), pages 644�654,
November 1976.

[DR00] J. Daemen and V. Rijmen. The Rijndael Block Cipher. In AES Proposal,
NIST, 2000.

[DR02] T. Dierks and E. Rescorla. The TLS Protocol Version 1.0. Internet Draft,
September 2002.

[DvOW92] W. Di�e, P. van Oorschot, and M. Wiener. Authentication and Authen-
ticated Key Exchange. In Designs, Codes and Cryptography, volume 2,
pages 107�125, 1992.

[FK98] I. Foster and C. Kesselman. The Grid : Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, November 1998.

[FKK96] A. Freier, P. Karlton, and P. Kocher. The SSL Protocol Version 3.0,
November 1996.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: En-
abling Scalable Virtual Organizations. International J. Supercomputer
Applications, 15(3), 2001.

[FKTT98] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A Security Archi-
tecture for Computational Grids. In Proc of the 5th ACM Conference
on Computer and Communications Security (ACM CCS), pages 83�92.
ACM Press, 1998.

[FOPS01] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
Secure under the RSA Assumption. In Proc of Crypto, volume 2139
of Lecture Notes in Computer Science, pages 260�274. Springer-Verlag,
August 2001.

[GB01] S. Goldwasser and M. Bellare. Lecture Notes on Cryptogra-
phy. Summer Course on Cryptography, Massachusetts Institute
of Technology (MIT), August 2001. Available at http://www-
cse.ucsd.edu/users/mihir/papers/gb.html.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions. Journal of the ACM, 33(4):pages 792�807, October 1986.

[GM84] S. Goldwasser and S. Micali. Probabilisitic Encryption. Journal of Com-
puter and System Sciences, 28(2):pages 270�299, April 1984.

[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Se-
cure against Adaptive Chosen-message Attacks. SIAM Journal of Com-
puting, 17(2):pages 281�308, April 1988.

[Gri] Access Grid. Available at http://www-fp.mcs.anl.gov/�/accessgrid.
[Gun89] C. G. Gunter. An Identity-Based Key Exchange Protocol. In Proc. of

Eurocrypt, volume 434 of Lecture Notes in Computer Science, pages
29�37. Springer-Verlag, 1989.

[HHM00] D. Hankerson, J. Hernandez, and A. Menezes. Software Implementation
of Elliptic Curve Cryptography over Binary Fields. In Proc of Crypto-
graphic Hardware and Embedded Systems (CHES), volume 1965 of Lec-
ture Notes in Computer Science, pages 1�24. Springer-Verlag, August
2000.

BIBLIOGRAPHY 107

[HILL99] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. A Pseudorandom
Generator from any One-Way Function. SIAM J. Comput., 28(4):1364�
1396, 1999.

[ITW82] I. Ingemarsson, D. Tang, and C. Wong. A Conference Key Distribution
System. In IEEE Transactions on Information Theory, volume 28(5),
pages 714�720, September 1982.

[Jou00] A. Joux. A One Round Protocol for Tripartite Di�e-Hellman. In Proc
of the Algorithmic Number Theory Symposium (ANTS), volume 1838
of Lecture Notes in Computer Science, pages 385�394. Springer-Verlag,
2000.

[JQ97] M. Joye and J.J. Quisquater. On the Importance of Securing your Bins:
The Garbage-Man-in-the-Middle Attack. In Proc of the 4th ACM Con-
ference on Computer and Communications Security (ACM CCS), pages
135�141. ACM Press, 1997.

[JV96] M. Just and S. Vaudenay. Authenticated Multi-Party Key Agreement.
In Proc. of Asiacrypt, volume 1163 of Lecture Notes in Computer Sci-
ence, pages 36�49. Springer-Verlag, 1996.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. Internet RFC 2104, Feburary 1997.

[KMMS98] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing
Protocols for Securing Group Communication. In Proc of the IEEE 31st
Hawaii International Conference on System Sciences (HICSS), pages
317�326, Jan 1998.

[KMV00] N. Koblitz, A. Menezes, and S. Vanstone. The State of Elliptic Curve
Cryptography. In A Special Issue of Designs, Codes, and Cryptogra-
phy: Towards a Quater-Century of Public-Key Cryptography, volume 19,
pages 103�193. Kluwer Academic Publishers, March 2000.

[Kob98] N. Koblitz. Algebraic Aspects of Cryptography, volume 3 of Algorithms
and Computation in Mathematics, chapter 6, pages 117�154. Springer-
Verlag, July 1998.

[KPT00] Y. Kim, A. Perrig, and G. Tsudik. Simple and Fault-Tolerant Key
Agreement for Dynamic Collaborative Group. In Proc. of the 7th ACM
Conference on Computer and Communications Security (ACM CCS),
November 2000.

[KPT01] Y. Kim, A. Perrig, and G. Tsudik. Communication-E�cient Group Key
Agreement. In Proc. of International Federation for Information Pro-
cessing (IFIP SEC), June 2001.

[MAMSA94] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Ex-
tended Virtual Synchrony. In Proc of the 14th IEEE International Con-
ference on Distributed Computing Systems (ICDS), pages 56�65, June
1994.

[Mea00] C. Meadows. Extending Formal Cryptographic Protocol Analysis Tech-
niques for Group Protocols and Low-Level Cryptographic Primitives. In
Workshop on Issues in the Theory of Security (WITS), July 2000.

[MMR97] D. Malkhi, M. Merritt, and O. Rodeh. Secure Reliable Multicast Proto-
cols in a WAN. In Proc of the International Conference on Distributed
Computing Systems (ICDCS), pages 87�94, May 1997.

108 BIBLIOGRAPHY

[MMSA+96] L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia, and C. Lingley-
Papadopoulos. Totem: A Fault-Tolerant Multicast Group Communica-
tion System. Communications of the ACM, pages 54�63, April 1996.

[MPH99] P. D. McDaniel, A. Prakash, and P. Honeyman. Antigone: A Flexi-
ble Framework for Secure Group Communication. In USENIX Security
Symposium, pages 99�114, August 1999.

[MW00] U. Maurer and S. Wolf. The Di�e-Hellman Protocol. In A Special Issue
of Designs, Codes, and Cryptography: Towards a Quater-Century of
Public-Key Cryptography, volume 19, pages 77�171. Kluwer Academic
Publishers, March 2000.

[MY99] A. Mayer and M. Yung. Secure Protocol Transformation via "Expan-
sion" from Two-Party to Multi-Party. In Proc of the ACM Conference
on Computer and Communications Security (ACM CCS), pages 83�92.
ACM Press, November 1999.

[NIS00] NIST. Advanced encryption standard, December 2000.
http://www.nist.gov/aes.

[NR97] M. Naor and O. Reingold. Number-Theoretic Constructions of E�cient
Pseudo-Random Functions. In Proc. of the 38th IEEE Symp. on Foun-
dations of Computer Science (FOCS), pages 458�467, 1997.

[Per99] A. Perrig. Simple and Fault-Tolerant Key Agreement for Dynamic Col-
laborative Groups. In International Workshop on Cryptographic Tech-
niques and E-Commerce (CrypTEC), July 1999.

[Poi01a] D. Pointcheval. Practical Security in Public-Key Cryptography. In Proc
of the 4th International Conference on Information Security and Cryp-
tology (ICISC), volume 2288 of Lecture Notes in Computer Science,
pages 1�17. Springer-Verlag, Dec 2001.

[Poi01b] D. Pointcheval. Secure Designs for Public-Key Cryptography based on
the Discrete Logarithm. To appear in Discrete Applied Mathematics,
Elsevier Science, 2001.

[PQ01a] O. Pereira and J. J. Quisquater. A Security Analysis of the Cliques Pro-
tocols Suites. In Proc of the 14-th IEEE Computer Security Foundations
Workshop, pages 73�81. IEEE Computer Society Press, June 2001.

[PQ01b] O. Pereira and J. J. Quisquater. A Security Analysis of the Cliques
Protocols Suites: 1st. In Proc of the International Federation for Infor-
mation Processing (IFIP Sec), pages 151�166. Kluwer Publishers, June
2001.

[PS00] D. Pointcheval and J. Stern. Security Arguments for Digital Signatures
and Blind Signatures. J. of Cryptology, 13(3):361�396, 2000.

[PSW98] E. R. Palmer, S. W. Smith, and S. Weingart. Using a Hight-
Performance, Programmable Secure Coprocessor. In Proc of Financial
Cryptography, volume 1465 of Lecture Notes in Computer Science, pages
73�89. Springer-Verlag, 1998.

[RBH+98] O. Rodeh, K. Birman, M. Hayden, Z. Xiao, and D. Dolev. Ensemble
security. Technical Report TR98-1703, Cornell, Sept 1998.

[Rei94] M. K. Reiter. Secure Agreement Protocols: Reliable and Atomic Group
Multicast in Rampart. In Proc of the 1st ACM Conference on Computer
and Commmunications Security (ACM CCS). ACM Press, Nov 1994.

[Rei96] M. K. Reiter. Secure Group Membership Protocol. IEEE Transactions
on Software Engineering, 22(1):31�42, January 1996.

BIBLIOGRAPHY 109

[Res01] E. Rescorla. SSL and TLS: Designing and Building Secure Sys-
tems. Addison-Wesley, 2001. See also the OpenSSL Project at
http://www.openssl.org.

[RSA78] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digi-
tal Signatures and Public Key Cryptosystems. Communications of the
ACM, 21(2):120�126, February 1978.

[Sho97] V. Shoup. Lower Bounds for Discrete Logarithms and Related Prob-
lems. In Proc. of Eurocrypt, volume 1233 of Lecture Notes in Computer
Science, pages 256�266. Springer-Verlag, 1997.

[Sho99] V. Shoup. On Formal Models for Secure Key Exchange. Technical re-
port, IBM Research Report RZ3120, 1999.

[Sho01] V. Shoup. OAEP Reconsidered. In Proc of Crypto, volume 2139 of Lec-
ture Notes in Computer Science, pages 239�259. Springer-Verlag, Au-
gust 2001.

[SL01] M. Stam and A. K. Lenstra. Speeding-up XTR. In Proc of Asiacrypt,
volume 2248, pages 125�143. Lecture Notes in Computer Science,
Springer-Verlag, Dec 2001.

[SNS98] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An authentication
service for open networks systems. In Usenix Winter Conference, pages
191�202, Jan 1998.

[SPW02] M. Steiner, Birgit P�tzmann, and Michael Waidner. A formal model for
multi-party group key agreement. Technical report, Research Report RZ
3383 IBM Research, 2002.

[SR96] V. Shoup and A. Rubin. Session-Key Distribution using Smart Cards.
In Eurocrypt '96, Lecture Notes in Computer Science, pages 321�331.
Springer-Verlag, 1996.

[SSDW88] D. Steer, L. Strawczynski, W. Di�e, and M. Wiener. A Secure Audio
Teleconference System. In Proc. of Crypto, volume 403 of Lectures Notes
in Computer Science, pages 520�528. Springer-Verlag, 1988.

[STW96] M. Steiner, G. Tsudik, and M. Waidner. Di�e-Hellman Key Distribution
Extended to Groups. In Proc of the 3rd ACM Conference on Computer
and Communications Security (ACM CCS), pages 31�37. ACM Press,
March 1996.

[STW00] M. Steiner, G. Tsudik, and W. Waidner. Key Agreement in Dynamic
Peer Groups. IEEE Transactions on Parallel and Distributed Systems,
11(8):769�780, August 2000.

[TJM+99] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and
A. Essiari. Certi�cate-based Access Control for Widely Distributed Re-
sources. In Usenix Security Symposium, pages 215�227, August 1999.

[Tze00] Wen-Guey Tzeng. A Practical and Secure Fault-Tolerant Conference-
Key Agreement Protocol. In Proc. of Public-Key Cryptography (PKC),
volume 1751 of Lecture Notes in Computer Science, pages 1�13.
Springer-Verlag, January 2000.

[U. 94] U. S. National Institute of Standards and Technology. Federal Informa-
tion Processing Standards Publication 140-1: Security Requirements for
Cryptographic Modules, Jan 1994.

[VKCD99] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communi-
cation speci�cations: A comprehensive study. Technical Report MIT-
LCS-TR-790, MIT, Sep 1999.

110 BIBLIOGRAPHY

[vO93] P. C. van Oorschot. Extending Cryptographic Logics of Belief to Key
Agreement. In Proc. of the 1st ACM Conference on Computer and Com-
munications Security (ACM CCS), pages 232�243. ACM Press, 1993.

[VW97] K. Vedder and F. Weikmann. Smart Cards Requirements, Properties,
and Applications. In State of the Art in Applied Cryptography, volume
1528 of Lecture Notes in Computer Science, pages 307�331. Springer-
Verlag, 1997.

[Wei00] S. H. Weingart. Physical Security Devices for Computer Subsystems: A
Survey of Attacks and Defenses. In Proc of Cryptographic Hardware and
Embedded Systems (CHES), volume 1965 of Lecture Notes in Computer
Science, pages 302�317. Springer-Verlag, 2000.

[Zim95] P. Zimmerman. The O�cial PGP User's Guide. The MIT Press, 95.

