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Abstract

Bitmap indices are useful techniques for improving access speed of high-dimensional data
in data warehouses and in large scientific databases. Even though the bitmaps are easy to
compress, compressing them can significantly reduce the query processing efficiency. This is
because the operations on the compressed bitmaps are much slower than the same operations on
the uncompressed ones. To address this problem, we developed a new word-aligned compression
scheme that uses a little more space, but is much faster than earlier methods. Using this
compression technique, we evaluate several bitmap encoding schemes, including the equality
encoding, the range encoding and the interval encoding. In our tests, the compressed bitmap
indices are not only much smaller in size than their uncompressed versions, but are also just
as fast in query processing as their uncompressed counterparts. In these tests, the compressed
bitmap indices using different encoding schemes show different space and time trade-offs. To
search for more useful choices, we also present several two-level schemes.

1 Introduction

The bitmap index is one of the most promising strategy for indexing high-dimensional data arising
in such environments as data warehousing, decision support systems, and some scientific databases.
One of the first database systems to use such a scheme is a system called Model 204 [10]. Most of
the major commercial database systems now support some form of a bitmap index. In the research
community, the earliest forms of the bitmap indices are known by such names as bit transposed files
[15]. Some research results on signature files are also directly useful to enhancing the effectiveness
of bitmap indices. Recently, a number of optimal bitmap schemes have also been proposed [3, 4, 18].
For high dimensional data, various tests have shown that bitmap schemes are faster than commonly
used tree based indices [9, 14].

Our current work was initially motivated by the data management needs of a high-energy
physics project called STAR1 [12, 13]. The high-energy collisions, called ”events”, produce a large
amount of data. The high energy physics experiment produces millions of events and each event
is characterized by hundreds of attributes. In a typical use case, the user may specify some range
criteria on a handful of the attributes and request that the data for the qualified events be retrieved.
The bitmap index is a particularly promising strategy for these types of data accesses. There are
some initial successes in using this strategy [12, 13]. Here we report our recent experience in using
various compressed versions of the bitmap indices.

The main advantage for using a compressed bitmap index is to reduce the space requirement.
The classical bitmap index produces one bitmap for each distinct value of the attribute being
indexed. The size of the indices could be much larger than the size of the dataset. This is especially
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1

LBNL-47807



true for scientific databases where most of the attributes have high cardinality. However, the
bitmaps from the bitmap indices are often very sparse, i.e., they contain mostly zero bits. They are
therefore prime candidates for compression [4, 6]. The common compression schemes, such as gzip
[8] and bzip2 [11], aren’t designed for compressing bitmap indices. If a bitmap index is compressed
using such a scheme, the query processing usually takes much longer than using the uncompressed
index. One solution to this problem is to use specially designed compression schemes.

Recently, a number of studies were performed on compression schemes especially designed for
bitmap indices [5]. One of the most promising compressing scheme is the byte-aligned bitmap
code (BBC) [1, 2]. This scheme permits efficient operations without decompression, thereby re-
ducing both the disk space requirement and the memory requirement for performing operations.
The question we address in this paper is whether a compressed bitmap index can outperform its
uncompressed counterpart.

In this paper we introduce the word-aligned hybrid run-length code (WAH) and show that WAH
is able to outperform other compression schemes by an order of magnitude using only 50% more
space. It is even able to outperform uncompressed scheme in majority of the test cases. Using
this compression scheme, we evaluated a three different encoding schemes, the equality encoding,
the range encoding [15] and the interval encoding [4]. Tests on a set of real data from the STAR
experiment show the the compressed indices not only takes significantly less space but also remains
competitive with the uncompressed versions. When compressed, these encoding schemes exhibit
different space and time trade-offs than in the uncompressed cases. In particular, none of them is
the best in both space and time. To find better compromises in space and time, we also introduce
a set of two-level bitmap index schemes.

The remainder of this paper is organized as follows. In Section 2, we briefly explain the terms
used in this paper and review some of the commonly used bitmap indexing schemes. In Section 3,
we describe the WAH compression scheme and demonstrate its effectiveness. Section 4 contains
performance measures of the three encoding indices, with and without compression. We introduce
the two-level schemes in Section 5 and present performance data for show their space and time
trade-offs. A short summary is provided in Section 6.

2 Review of bitmap indices

In this section, we briefly review some common schemes of generating bitmap indices. The main
purpose of this section is to introduce the terminology and the three optimal bitmap indexing
schemes to be used later. A bitmap index is built for an individual attribute of a dataset. The
process of generating a bitmap index from the values of the attribute typically involves three steps.
The first step, which we call the binning step, assigns the tuples into bins to produces a list of
integers that are indices to the bins. The second step, which we call the encoding step, encodes
the results of the first into bit sequences or bitmaps. The final step, which we call the compression
step, decides how to store these bit sequences.

For the first step, the classical strategy is to map each distinct value into one bin. This strategy
is simple and effective if the attributes of the dataset have low cardinalities such as is typical in
many attributes of data warehousing systems. However, for attributes with high cardinalities such
as those from some scientific databases, this strategy generates too many bit sequences and requires
too much space. One simple strategy to avoid this is to use only a small number of bins [12, 13, 14].
A number of binning schemes have been published in the literature [7, 14, 16, 18]. In this paper,
we only use the most straightforward binning scheme, see Figure 1.

Now that each bin contains many values, the bitmap index is not able to give precise qualifying
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Figure 1: An illustration of the binning step and encoding step.

hits to some queries. The strategy we have taken to resolve this is to generate a superset and a
subset of the qualifying hits. Those tuples that are in the superset but not in the subset needs to be
resolved by another scheme. We perform comparisons directly on the data values to decide whether
they satisfy the the query criteria. In the following discussions, we call the process of computing
the superset and the subset as the index operation and the comparison step as the final filtering
operation.

For the second step, i.e., the encoding step, one of the most comprehensive discussion is given by
Wong et al [15]. A number of authors have recently proposed new ones that are provably optimal
[3, 4, 18]. For the purpose of describing this step, we view the output from the binning step as a
list of integers. The classical bitmap index maps each of these integers into one bit sequence. This
is called the equality encoding in recent literature. Let A be the name of an attribute, an equality
query is a query of the form A = 2 and a membership query is a query for the form A ∈ {6, 9, 11, 12}.
The equality encoding is efficient for these queries because each bit sequence represents a relation
of the form A = i where i is an integer. The two other optimal schemes we use later are the range
encoding [15] and the interval encoding [4]. Each bit sequence of the range encoding represents a
one-sided range relation of the form A < i and each bit sequence of the interval encoding represents
a two-sided range relation of the form i ≤ A < i + �b/2� where b is the number of bins used in
the binning step and the function �x� computes the ceiling of x. It is easy to see that the range
encoding is optimal for one-side range queries and the interval encoding is optimal for two-sided
range queries [4].

Figure 1 shows three different encoding schemes mentioned here. Given b bins, the equality
encoding generates b bit sequences, the range encoding generates b − 1 bit sequences, and the
interval encoding generates b + 1 − �b/2� bit sequences.

These three schemes are based on simple relations among the integers resulting from the binning
step. Another general strategy for the encoding step is to decompose the integers as described in
[3, 15]. Typically, these schemes generate less bit sequences, but the operations may involve most
of them.
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After generating the bit sequences, some data structures are needed to represent them in com-
puter programs. We refer to these data structures as the bit vectors. The simplest bit vector
stores the bit sequences literally without compression. We call this the literal bit vector. The main
advantage of this approach is that the bitwise logical operations on the bit sequences are fast.
This is an important property because the most common operations on the bit vectors are the
bitwise logical operations. The bitmap indices using literal bit vectors are called the uncompressed
bitmap indices. Those employing compressed bit vectors are called compressed bitmap indices.
Compressed schemes are attractive because they can reduce the space requirement. Since the bit
sequences generated from the bitmap indexing schemes are usually sparse, they are relatively easy
to compress. However, because most of the generic compression algorithms don’t support fast
bitwise logical operations, the compressed bitmap indices are usually slower in processing queries
compared to their uncompressed counterparts. To increase the efficiency of query processing, a
number of specialized compression algorithms have been developed. The byte-aligned bitmap code
(BBC) is an example of such a scheme [1, 2]. In the following section, we describe another spe-
cialized compression scheme called the word-aligned hybrid run-length code (WAH) [17]. It is an
efficient scheme that significantly outperforms BBC. For this reason, it is our preferred method for
compressing bitmap indices.

We demonstrate the efficiencies of the compressed bitmap indices through a number of exper-
imental tests. The test results reported here are on the STAR data. We have also conducted
some tests on a large set of synthetic data generated with various distributions. The tests on such
synthetic data show similar relative performances among the various indexing schemes. For this
reason, we present the results on the tests using the STAR data.

3 Word-aligned hybrid run-length code (WAH)

In this section, we briefly review the main characteristics of the compression algorithm used; namely
the word-aligned hybrid run-length code or WAH for short. Because of space limitations we only
give a short description of this coding scheme followed by some performance data. We don’t describe
how the logical operations are performed without decompression. Interested readers can find details
in a technical report [17].

As the name suggests, this scheme is a variation on the run-length code. The essence of the
run-length code is to represent a list of consecutive identical bits by its length and its bit value. As
is common in the literature, we refer to a sequence of identical bits as a fill. The bit value of a fill is
called the fill bit. The number of bits in a fill is called the fill length. To ensure efficient operations,
WAH encodes the fill length and the fill bit in one whole word. Compared to the uncompressed
scheme, this only reduces the space requirement if the fill is longer than a word. For fills that are
shorter, WAH stores them literally. Altogether, there are two types of code words in WAH, those
that contain literal bit values (called literal words) and those that contain fills (called fill words).
In our current 32-bit implementation, we use the Leftmost Bit (LMB) of a word to distinguish
between a literal word and a fill word, where 0 indicates a literal word and 1 indicates a fill word.
The lower 31 bits of a literal word contains literal bit values. The second leftmost bit of a fill word
is the fill bit and the 30 lower bits store the fill length. To achieve fast operation, it is crucial that
we impose the word-alignment requirement on this scheme. The word-alignment requirement in
WAH requires all fill lengths to be integer multiples of 31 bits (i.e., literal word size). Given this
restriction, we represent fill lengths in multiples of literal word size. For example, if a fill contains
62 bits, the fill length will be recorded as two (2), see Figure 2.

To see how well this compression scheme works, we have conducted some tests on a subset of
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124 bits 1,20*0,3*1,79*0,21*1
31-bit groups 1,20*0,3*1,7*0 62*0 10*0,21*1
groups in hex 40000380 00000000 00000000 001FFFFF
WAH (hex) 40000380 80000002 001FFFFF

Figure 2: A WAH bit vector. Each WAH code word (last row) represents a multiple of 31 bits from
the bit sequence (first row).
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(a) logical OR time (b) total time

Figure 3: Time (seconds) to perform bitwise OR on bit vectors of an bitmap index.

the STAR data using the initial data of about 1 million events. We selected the 12 most commonly
queried attributes from the total of over 500 and built an equality encoded bitmap index for each
of the 12 attributes. The resulting bit sequences are stored in four different bit vector schemes, the
literal scheme (LIT for short), the gzip scheme [8], the BBC scheme and the WAH scheme.

Figure 3 shows the timing results of the logical OR operations. The logical OR is selected as
the representative of three different logical operations tested, because all three show similar relative
performances among the various schemes. The horizontal axes of the plots are compression ratios.
The compression ratio is defined as the ratio of the compressed bit vector size to its uncompressed
counterpart. Each symbol displayed in Figure 3 represents the time to perform one logical operation
on two bit vectors. The compression ratios shown in Figure 3 are the average compression ratios
of the two operands of a logical operation.

The timing results reported here are from using a Sun Enterprise 450 machine2 that is based
400 MHz UltraSPARC II CPUs. The test data were stored on a file system consisting of five disks
connected to the internal UltraSCSI controller and managed by a VERITAS Volume Manager3.
The VERITAS software distributes files onto the five disks to maximize the IO performance.

Figure 3(a) shows the logical operation time and Figure 3(b) shows the total time including
the time to read the two bit vectors from files. If these bit vectors are used in an actual database
system, it is likely that once they are read into computer memory, they will be kept in memory

2Information about the E450 is available at http://www.sun.com/servers/workgroup/450.
3Information about VERITAS Volume Manager is available at http://www.veritas.com/us/products.
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Figure 4: Average compression ratios of all bit vectors from a bitmap index.

for as long as the space is not needed for other tasks. On the average, we expect the cost of a
logical operation to be larger than what is shown in Figure 3(a) but no more than what is shown
in Figure 3(b).

Because the bit sequences are relatively small, in some cases the IO overhead, which is about
2×10−4 seconds, dominates the total time. In these special cases, the total times are about the same
for BBC and WAH. As the STAR experiment continues, the data size will grow significantly, and
the IO overhead will become less significant in the future. Even with small data size, in the majority
of the test cases, the word-aligned scheme is still significantly faster. When the compression ratio is
one, the logical operations on WAH bit vectors are about 80 times faster than the same operations
on BBC bit vectors. Even when the time to read two bit vectors is included, the WAH scheme
is still about 20 times faster than BBC. If we sum up all the total time values from all test cases
(including different logical operations), the sum for BBC is about 12 times that of WAH. In other
words, on the average WAH is about 12 times as fast as BBC. If the IO time is not included, the
differences are even larger. Compared to the literal scheme, the BBC scheme is faster in less than
half of the test cases, WAH is faster in about 60% of the test cases.

Figure 4 shows the relative sizes, i.e., compression ratios, of the four bit vector schemes shown in
Figure 3. On the average, WAH-compressed bit vectors use less than a third of the space required
by the uncompressed scheme (LIT). Compared to BBC, WAH uses only about 50% more space.
We believe it is worthwhile to trade this 50% more space for 12 fold increase in operation speed.
The gzip scheme is based on an asymptotically optimal compress scheme [8]. Even compared again
this optimal scheme, WAH scheme uses no more than twice as much space. For this extra space,
WAH is able to perform logical operations several orders of magnitudes faster than gzip. Overall,
we believe WAH is the most appropriate scheme for compressing bitmap indices.

4 Performance of compressed bitmap indices

In this section, we report the timing results of the three bitmap indexing schemes when compressed
using the WAH scheme. The timing results are compared with their corresponding uncompressed
versions and the sequential scan. The sequential scan refers to the process of sequentially reading
each data value and performing comparisons to determine which tuples qualify a query. As in the
previous section, the test data consists of the 12 most commonly queried attributes from the STAR
data using just over 2 million events.

The test queries are randomly generated two-sided range queries. These are the most common
form of queries on the given dataset. One common measure for these range queries is the query
box size, which is defined to be the ratio of the range covered by a query to the domain size. We
expect that the majority of the queries to have relatively small query boxes. In this test all queries
involves only one attribute, we constructed three quarters of our random queries to have query box
sizes less than a half and the rest have larger query boxes. Let b be the number of bins used in
the binning step. On queries with query boxes less than 1/b, the equality encoded index may be
more efficient than the other two. On queries with larger query boxes, the equality encoded index
is likely to be worse than the other two.
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Figure 5: Data distribution of selected STAR data.
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Figure 6: Size information about bit vectors of one bitmap index.

Figure 5 shows the data distribution of some attributes from the test data set. The domains of
these attributes are divided into 1000 equal-sized bins and the vertical axes shows the number of
events that fall into the bin. It appears that all attributes are distributed highly unevenly in their
corresponding domains. Synthetic datasets are unlikely to have similar data distributions. In the
rest of this section, we first present some performance information on one specific attribute, and
then present some average measurements.

The first set of performance data in Figure 6 are about the sizes of the bitmap indices on one
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Figure 7: Time to process a single query on a single attribute.

particular attribute. To avoid cluttering the graphs, we have shown only the information about the
equality encoded index and the range encoded index. In general, each bit vector for the interval
encoded index is slightly larger than a bit vector from the range encoded index, but there are only
about half as many bit vectors in the interval encoded index as there are in the range encoded
index.

The domain of this attribute ranges from 0 to 250. This domain is divided into 1000 bins.
Figure 6(a) plots the number of ones in each bit vector for each of the 1000 bins. Figure 6(b)
shows the sizes of the bit vectors. This figure appears to have three lines. The one on the top is
for the range encoded index and the other two are for the equality encoded index. These two lines
are actually formed from 1000 dots. The bottom one is formed from those bit vectors representing
empty bins. They take 32 bytes each. In fact, all bit vectors for the equality encoded index are
much smaller than those bit vectors from the range encoded index. Each bit vector for the range
encoded index is nearly the same size as the uncompressed bit vector storing the same number of
bits. In this case, we say the corresponding bit sequences are incompressible.

We have chosen this particular attribute to demonstrate the size differences between the two
encoding schemes. Though the differences for other attributes may not be as dramatic as this one,
it is generally true that the size of the range encoded index is large than the equality encoded
index. If there are only a few bins and all bit vectors from both schemes are incompressible, then
the range encoded one may take less space because it actually uses one less bit vector than the
equality encoded one. Without compression, because the range encoded index uses one less bit
vector, it always takes less space [3, 4, 18]. Clearly, with compression, the relative differences are
more complicated.

The query processing time can be divided into two parts, the index operation time and the
final filtering time. When the binning step uses the same number of bins, the three indices return
the same results from their index operations and the final filtering time should be same. For this
reason, the first few sets of timing results we present contain only the index operation time.

Figure 7 shows the index operation time of individual queries on one attribute. The index
used to generate Figure 7(a) is based on the equality encoding and the index used to generate
Figure 7(b) is based on the range encoding. Aside from the few outliers, the timing values in
Figure 7(a) generally fall under a pyramid and the timing values in Figure 7(b) show no obvious
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Figure 8: Size of the indices and time (seconds) to operate on them.

relation with the query box size. We didn’t show the results for the interval encoded index because
it is similar to the results for the range encoded index. As predicted in [3, 4, 18], the index operation
times for both the range encoded index and the interval encoded index don’t depend on the query
box size. For the equality encoded index, as query box grows, more bit vectors have to be accessed
during index operation. However, when the query box size is larger than a half, it is more efficient
to process the complement of the query. As a result the time decreases as query box size approaches
one.

This figure only shows query processing time on one attribute. Different set of queries are
generated for the other 11 attributes as well. To simplify the comparisons among the different
indexing schemes, we use average time of different queries and different attributes in the following
discussions.

Figure 8 shows some information about the overall space and time efficiencies of the three
encoding schemes. Figure 8(a) shows the total sizes of all 12 bitmap indices built for the 12
selected attributes. The compression scheme reduces the space requirement significantly in all test
cases. The compressed indices are less than a half of the size of the uncompressed ones. The indices
based on equality encoding are smaller than the other two. Without compression, it is the one that
use the largest amount of space and the index size for the interval encoding is about half of the size
of the other two. However, with compression, the index for the equality encoding is the smallest
and the one based on the interval encoding is about 20% smaller than the one based on the range
encoding. In addition, as the number of bins increases, the growth in total size of the equality
encoded index decreases and the difference between the equality encoded index and the other two
increases. At 100 bins, the compressed equality encoded index is less than one seventh the size
of the uncompressed one. The total sizes of the range encoded indices and the interval encoded
indices all increase nearly linearly as number of bins.

Figure 8(b) shows the average index processing time for the three bitmap indices. The com-
pressed versions and the uncompressed versions for all three encoding schemes are shown here.
Overall, the time spent by the compressed versions and the uncompressed version are fairly close.
This is particularly true for the indices based on the range encoding and the interval encoding.
This defies the typical expectation that reducing size leads to more processing time.
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Figure 9: Average final filtering time and total query processing time when different number of
bins are used.

Figure 9(b) shows the total query processing time including both the index operation time and
the final filtering time. The timing results shown here are simply the sum of the index operation
times in Figure 8(b) and the final filtering times shown in Figure 9(a). On the average, the final
filtering time is nearly inversely proportional to the number of bins used, see Figure 9(a). This
is because as more bins are used, the bitmap index is able to provide more accurate answers. In
other words, the difference between the superset and the subset produced by the index operation
is smaller. The final filtering step has less entries to compare and it takes less time.

For reference, Figure 9(b) also contains a line indicating the average time needed to perform
the sequential scan to process the same queries. In other studies, simple scan the whole dataset
was found to be among the fastest strategies for processing high-dimensional queries [9, 14]. In a
typical relational database, all values of a tuple are stored together. In this case, comparing the
value of one attribute requires one to read the entire tuple from disk. Our sequential scan is able to
only access the needed values since we have vertically partitioned the database and stored values
for each attribute separately.

The average time to scan the 2 million entries is 0.557 seconds. Given that most of the attribute
values are 4 bytes each. This is equivalent to a reading speed of about 17 MB/s. The peak speed
of the SCSI controller on the test system is about 80 MB/s. Considering the sequential scan also
needs to perform comparisons and store the results in a compressed bit vector. This sequential
scan is indeed quite efficient. Compared to this sequential scan, all versions of the bitmap indexing
schemes can complete the same queries a number of times faster. It indicates that we have a high
quality implementation of the indexing schemes.

Queries used in this test only involves one attribute. If the user queries typically involve more
than one attribute, the final filtering step should take less time [13]. In this case, using a bitmap
index can be even faster compared to such schemes as the sequential scan.
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5 Two-level schemes

In the previous section, we see that the equality encoded index is more space efficient than the
range encoded index, but the latter is more time efficient than the former. To find a compromise
between the two, we present a set of two-level schemes in this section.

The range encoding doesn’t need many operations because each bit vector contains information
about a large portion of the attribute’s domain. We view this as global information. This global
information also causes the bit vectors to be larger. In contrast, each bit vector from equality
encoded index contains only information about one bin and for this reason the bit vectors are
smaller. The two-level schemes allow one to control how much of the global information to retain.
This allows one to possibly find a median between the range encoded scheme and the equality
encoded scheme.

Overall, the two-level schemes can be viewed as generating two sets of overlapping bins for the
binning step from the index construction process. The example shown in Figure 10 demonstrates
how we generate a two-level index based on equality encoding. In this example, we first divide the
attribute’s domain into two coarse bins and build an index as before. Each of the two coarse bins
is then divided into two fine bins. An index is then built for each coarse bin separately. We refer
to the index built on top of the coarse bins as the coarse index and the ones built on top of fine
bins as the fine indices. The fine indices for each coarse bin can be encoded differently, but for
simplicity we encode all of them the same way. This limits us to four different two-level indices
depending on how we encode the two sets of indices. Let E denote the equality encoding and R
denote the range encoding. Then the four schemes can be written as RR, RE, ER, and EE. In this
short-hand notation, the first letter indicates the encoding type of the coarse index and the second
letter indicates the encoding type of the fine index.

In the one-level cases, the total number of bins is the only parameter to consider when generating
bitmap index on equal-sized bins. In the two-level cases, the total number of bins has a similar role
as the total number of fine bins as they both control the accuracies of the answers generated from
the index operations. There is an additional parameter, which is the number of coarse bins. If there
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Figure 11: Comparison among the four two-level schemes.

are more coarse bins, it is more likely that during the index operation only the coarse index will be
needed. In the two-level RR index, this reduces the average index operation time. The bit vectors
of the coarse indices are typically larger than the bit vectors of the fine indices. This suggests
that we should have only a few coarse bins. For the two-level EE index, if we assume every logical
operation takes the same amount of time, the worst-case index operation time is proportional to
nc + 2nf/nc, where nc is the number of coarse bins and nf is the total number of fine bins. Given
nf , the above expression is minimized when nc =

√
2nf . We use this formula to choose the number

of coarse bins in the following tests.
Figure 11 compares the two-level schemes. Figure 11(a) shows the sizes of the different indices.

The horizontal axis in this case is the number of fine bins. When there are only 10 fine bins, the
EE scheme uses the largest amount of space among the four and RR uses the least. With 20 or 30
fine bins, the four schemes use about the same amount of space. As more fine bins are used, the
encoding scheme of the fine bins appears to determine the space requirement. The two that use the
equality encoding for the fine bins take about the same amount of space and the two that use the
range encoding for the fine bins take about the same amount of space. With 100 fine bin, schemes
EE and RE take about 40% less space compared to RR and ER.

Figure 11(b) shows the time to perform the index operation during query processing. In general,
the two with range encoding for the fine indices take less time. The differences increase as the
number of bins increase. This is similar to what was observed for the one-level schemes.

We take RR and EE as representatives of the two-level schemes and show them together with
the one-level schemes in Figure 12. In terms of space, see Figure 12(a), the scheme RR always uses
slightly less space than the one-level range encoded bitmap index. The scheme EE always uses more
space than the one-level equality encoded bitmap index. It uses about half the space of the one-
level range encoded scheme when there are 100 fine bins. The differences in time, see Figure 12(b),
are relatively small when there are only few bins. This is because the total query processing time
is dominated by time in the final filtering step. If there are more bins, the differences among the
various schemes are larger. With 100 fine bins, the two-level EE scheme uses about 10% more space
than the one-level equality encoded scheme and it takes less than half of the time to process the
same queries.
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Figure 12: Comparing two-level schemes against the one-level ones.
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Figure 13: Average query processing time versus index sizes (relative to data size) for various
schemes tested.

Overall, the equality encoding is still the most space efficient among the encoding schemes
tested, and the range encoding and the interval encoding are the most time efficient. However, this
comparison is based on fixing the number of bins. To a user of a database system, this parameter
isn’t as crucial as space usage or operation speed. For this reason, we directly plot the average
query processing time and the index size in Figure 13.

Figure 13 contains the same data as in Figure 12. The difference is that we have removed the
number of bins out of the picture. The horizontal axis is the relative sizes of the indices. This
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figure contains information from five compressed bitmap indices and an uncompressed one. The
uncompressed one labeled “U I” is the uncompressed version of the interval encoded bitmap index.
The compressed ones are the one-level equality encoded index (E), the one-level range encoded
index (R), the one-level interval encoded index (I), the two-level schemes EE and RR. From this
figure, we see that the the one-level interval encoded index (I) is the best among the schemes tested.
Given the same space for indices, the one-level range encoded scheme uses less time to process an
average query even though it has to use less bins to accommodate the space restriction.

6 Summary

Without compression, the relative strengths of the various bitmap indexing schemes are well un-
derstood [3, 4, 18]. However, the same is not true when compression is used. In this paper, we
studied how to use one specific scheme, namely the word-aligned hybrid run-length code (WAH),
to compress various bitmap indexing schemes. Our main conclusion is that the compressed indices
are much smaller than the uncompressed ones and the average query processing times are about
the same. This suggests WAH can be used to reduce the size of bitmap indices without decreasing
the performance of the database systems. In many cases, the database administrator may want to
limit the space used by the index when designing a database. Tests conducted in this paper can
serve as references for this type of decision. Based on our experience, the following are reasonable
initial choices.

allowed index size / data size 1/8 1/4 1/2
bins for range encoded index 10 20 40
bins for interval encoded index 10 25 60
bins for equality encoded index 10 30 100

Under the same space restriction, which encoding scheme produces the best bitmap index is
likely to depend on the type of query it handles. For two-sided range queries, the most important
fact is the query box size on individual attributes since the bitmap indices process each attribute
separately. In this paper, we tested on a set of queries that have medium size query boxes. In this
case, the compressed bitmap index based on interval encoding is the best. If the query boxes on each
attribute is very small, or queries are equality queries or one-sided range queries, other encoding
schemes might be better. We plan conduct further tests to determine the most appropriate choices
for these queries in the future.
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