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Objective

• Produce a Probability Distribution 
Function (PDF) from the ensembles.

Challenge
• Calibration
• Account for skill
• Retain information from ensembles

(Or not if no skill)   



Schematic illustration
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Schematic example
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Kernel vs. Mean



Regression
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Step 1.  Standardization

Step 2.  Skill Adjustment

Step 3.  Make the forecast
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Analysis of Ensemble Variance

V = Variance
Total            = Explained  + Unexplained
Variance          Variance Variance
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Analysis of Ensemble Variance
(Continued)

With help of some relationships commonly 
used in linear regression:

<E2 > = (Rm
2 - Ri

2) σc
2

σz
2 = (1-2Rm

2 + Ri
2) σc

2

Rz
2 = 2Rm

2 - Ri
2                        Rz≤ 1.

^



Ensemble Calibration
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Step 1.  Standardization

Step 2.  Ensemble Spread Adjustment

Zi’  =  K(Zi - Zm)  + Zm

Step 3.  Skill Adjustment
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Schematic example
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Rz=.97, Rfm=.94, Ri=.90



Rz=.93, Rfm=.87, Rf=.30



Rz=.85, Rfm=.67, Ri=.41



Rz=.62, Rfm=.46, Rf=.20



Weighting



Wgts: 50% Ens. 1, 17%Ens 2, 3, 4



Real time system

• Time series estimates of Statistics.
– Exponential filter
FT+1 = (1-α)FT +  α fT+1

- Initial guess provided from 1956-1981 CA 
statistics



Continuous Ranked Probability Score



Some Results

• Nino 3.4 SSTs
Operational system
15 CFS ,12 CA,   1 CCA , 1  MKV

• Demeter Data
9 CFS, 12 CA, 1 CCA, 1 MKV
9 UKM, 9 MFR, 9 MPI,
9 ECM, 9  ING, 9 LOD, 9 CER,



Nino 3.4 SSTs



Nino 3.4 SST
5-month lead by initial time 1982-2001
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Reliability Nino 3.4 SST (1990-2001)



U.S. Temperature and Precipitation 
Consolidation

• 15 CFS
• 1 CCA
• 1 SMLR

Trends are removed from models
Statistics and distribution are computed
Trend added to end result.



Trend Problem

• Should a skill mask be applied? How much?
- This technique requires a quantitative estimate of 
the trend.

• Component models sometimes “learn” trends, 
making bias correction difficult. – Doubles trends.

• Errors in estimating high frequency model 
forecasts



U.S. T and P consolidation
Skill Mask on Trends No Skill Mask on Trends
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Reliability U. S. Temperatures
(1995-2003)
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Reliability U.S. Precipitation
(1995-2003)



Conclusions

• Calibrated ensemble and ensemble means 
score very closely (by CRPS) 
Calibrated ensembles seem to have a slight edge.

• No penalty for including many ensembles 
(but not much benefit either)

• Considerable penalty for including less 
skillful ensembles – Weighting is critical.

• Probabilistic predictions are reliable (when 
looked at in terms of a continuous PDF)



Conclusions (Continued)

• Calibrated ensembles tend to be slightly 
overconfident

• Trends are a major problem – and are 
outside the realm of consolidation (but they 
are critically important for seasonal 
temperature forecasting).



6-10 day Forecasts (based on 
Analogs)
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