

Integrated Water Science Plan (IWSP)

for the Next Decade

Storm near Elko, Nevada. NOAA

October 6, 2005

NWS IWSP Team

IWSP Approach

Assess S&T development activities.

- Observing Systems
- Verification
- Uncertainty

- •Modeling and Testbeds
- External Partnerships
- Other Concepts

Assess whether current NWS activities can support efficient and effective delivery of new water science for operational implementation.

Recommend approaches to maximize the strengths of each NWS water science component and to streamline water science to operations paths in meeting the objectives.

DED

Water Science Objectives

Enhance Existing Hydrologic Products and Services

Provide New Water Resources Products and Services

Enable Rapid Infusion of Science and Technology

Unify the NOAA/NWS Water Science Enterprise

Enhance Partnerships to Leverage Capabilities

Water Science Vision

Emerging Interdisciplinary Water Science Paradigm **Understand and Harness** Predictability of Physical **Processes** Weather Ocean **Dynamics Dynamics** Climate Change and **Hydrologic** Variability Processes Water Water Resources Quality Ecology Freshwater Inflow to Ocean Interdisciplinary **Environmental Prediction** NOAA, Partners, Collaborators

Integrated NWS Water Science Capabilities

Observing Systems and Data Assimilation

Land Surface Hydrology & Water Resources Modeling

> Development & Operations

Science & Technology Infusion Integrated Products and Services

Comprehensive High-Resolution Water Resources Product Suite

Multiple Applications and Customers

National Focus, Global Capability

The WRPS includes a comprehensive suite of high-resolution (1-10 km) gridded hydrologic state variable and flux datasets and derived products to support a wide range of future applications and services. Temporal characteristics of WRPS range from current-hour analyses to forecasts of several months. Datasets include rainfall, snowfall, snow water equivalent, snowpack temperature, snowmelt, soil moisture, soil temperature, evaporation, sublimation, streamflow, and surface storage. Other hydrologic variables such as groundwater, fuel moisture, soil stability (e.g. debris flows potential), water quality, etc. are also possible in this framework.

Major Science Elements Included in Water Science Objectives

Forcings	l					
	Precipitation	Air	Cemperature	Winds R	adiative	Anthropogenic
	Liquid, solid, Extreme Events, Spac	ce-Time Variability	unnuny	s L	Solar .ongwave	Aerosols Irrigation
Infiltration	Soil Hydraulics Soil Het	erogeneity				
Storage SW Cov Sno	Snow Lakes Marshes & Re Wetlands Loca Ver Extent Size Size Swmelt Water Quality Mana Oper	eservoirs tion Moisture Profile agement/ Temperature Pro rations Frozen Soil	re Channel ure Storage Channel geomo ofile Channel loss	Canopy Interception etry	Ground -water Withdrawal Recharge Quality	Geologic Transport Karst Topography Volcanic Regions Fault Zones
Evaporation	Soil Evaporation Water	Snow Sub	limation	potranspiration		
Flow	Water Quality Runoff	River Flow Coa	astal Zones	Debris & Snow Fl	lows	Ungauged Basins
	Sediment Transport Surface Flow Temperature Subsurface Flow Pollutants Salinization	River Ice Fresh Diversions & Estua Return Flows Tidal Extreme Events Channel Geometry	nwater Inflow to aries Influences			
Surface Properties	Land Use/Cover Soil C	haracteristics Topog	graphy Albedo	7	Varying	ı capability in NWS
Vegetation Type, Density Seasonal Phenomenology Forest Burn Areas		Stream Basin B Radiativ	Stream Networks Basin Boundaries Radiative Transfer Modeling		Little or No Current Capability in NWS	

Current Water Science Framework

Water Science Vision: Integrated Observing Systems and Data Assimilation

Water Science Vision: Integrated Hydrologic Land Surface Modeling

Integrated, end-to-end hydrologic land-surface modeling framework is centerpiece of new water science vision. This is necessary to improve monitoring and prediction of water cycle at local, regional, continental and global scales.

Needed Water Science Framework

Principal Recommendation

 Establish a NOAA Water Science Center (WSC) as the world leader in water science and prediction by aligning existing science, development, technology and operations resources into a dynamic, integrated, collaborative center of expertise

Water Science Center

Operational Functions

- Coordinate and advocate observing systems
 - Hydrologic and hydrometeorological remote sensing (satellite, airborne, ground)
- Manage data streams
 - Manage and organize data from in-situ observation networks (e.g. HADS)
- Operate national high-resolution Hydro-LSM, water resources models, and comprehensive hydrologic and hydrometeorological data assimilation system
 - Produce WRPS
 - Populate NDFD
- Provide guidance to RFCs and WFOs
- Support science Infusion to RFCs and WFOs
 - RFC version of Hydro-LSM and water resources models
 - Hydrologic, hydrometeorological, and water resources applications for WFOs

Development Functions

- Integrated development for all operational functions
- Hydro-Testbed Facility
- Interdisciplinary partnership with other agencies and external science partners

Recommended Structure

National/International Customers

NOAA/NWS Water Science Center (WSC)

Why this structure?

- Creates critical mass for integrated, end-to-end, interdisciplinary water science enterprise
 - From observations to product delivery
 - From atmosphere to estuary
 - Comprehensive monitoring and prediction of a broad range of water-related hazards, water resources and water quality
- Improves efficiency, productivity, accountability and transparency in development and implementation of new science, technology, products and services
- Creates a true "center" for NOAA/NWS's water resources enterprise

Expected Benefits of WSC

Current Structure

Recommended Structure

Water Science Center

Flagship of NOAA's Water Resources Enterprise

