Jump to main content.


National Emission Standards for Hazardous Air Pollutants: Integrated Iron and Steel Manufacturing

 [Federal Register: May 20, 2003 (Volume 68, Number 97)]
[Rules and Regulations]
[Page 27645-27677]
From the Federal Register Online via GPO Access [wais.access.gpo.gov]
[DOCID:fr20my03-16]

-----------------------------------------------------------------------

ENVIRONMENTAL PROTECTION AGENCY
40 CFR Part 63
[OAR 2002-0083; FRL-7460-2]
RIN 2060-AE48

National Emission Standards for Hazardous Air Pollutants: 
Integrated Iron and Steel Manufacturing

AGENCY: Environmental Protection Agency (EPA).
ACTION: Final rule.

-----------------------------------------------------------------------

SUMMARY: This action promulgates national emission standards for 
hazardous air pollutants (NESHAP) for integrated iron and steel 
manufacturing facilities. The final standards establish emission 
limitations for hazardous air pollutants (HAP) emitted from new and 
existing sinter plants, blast furnaces, and basic oxygen process 
furnace (BOPF) shops. The final standards will implement section 112(d) 
of the Clean Air Act (CAA) by requiring all major sources to meet HAP 
emission standards reflecting application of the maximum achievable 
control technology (MACT).
    The HAP emitted by integrated iron and steel manufacturing 
facilities include metals (primarily manganese and lead with small 
quantities of other metals) and trace amounts of organic HAP (such as 
polycyclic organic matter, benzene, and carbon disulfide). Exposure to 
these substances has been demonstrated to cause adverse health effects, 
including chronic and acute disorders of the blood, heart, kidneys, 
reproductive system, and central nervous system.

EFFECTIVE DATE: May 20, 2003. The incorporation by reference of certain 
publications listed in the final rule is approved by the Director of 
the Federal Register as of May 20, 2003.

ADDRESSES: Docket. The official public docket is the collection of 
materials used in developing the final rule and is available for public 
viewing at the EPA Docket Center (EPA/DC), EPA West, Room B102, 1301 
Constitution Ave., NW., Washington, DC 20004.

FOR FURTHER INFORMATION CONTACT: Phil Mulrine, Metals Group (C439-02), 
Emission Standards Division, U.S. EPA, Research Triangle Park, NC 
27711, telephone number (919) 541-5289, electronic mail (e-mail) 
address, mulrine.phil@epa.gov.

SUPPLEMENTARY INFORMATION: 
    Regulated Entities. Categories and entities potentially regulated 
by this action include:

------------------------------------------------------------------------
                                    NAICS code    Example of regulated
             Category                   *               entities
------------------------------------------------------------------------
Industry.........................       331111  Integrated iron and
                                                 steel mills, steel
                                                 companies, sinter
                                                 plants, blast furnaces,
                                                 BOPF shops.
Federal government...............  ...........  Not affected.
State/local/tribal government....  ...........  Not affected.
------------------------------------------------------------------------
* North American Industry Classification System.

    This table is not intended to be exhaustive, but rather provides a 
guide for readers regarding entities likely to be regulated by this 
action. To determine whether your facility is regulated by this action, 
you should examine the applicability criteria in Sec.  63.7781 of the 
final rule. If you have any questions regarding the applicability of 
this action to a particular entity, consult the person listed in the 
preceding FOR FURTHER INFORMATION CONTACT section. Docket. The EPA has 
established an official public docket for this action under Docket ID 
No. OAR-2002-0083. The official public docket consists of the documents 
specifically referenced in this action, any public comments received, 
and other information related to this action. Although a part of the 
official docket, the public docket does not include Confidential 
Business Information or other information whose disclosure is 
restricted by statute. The official public docket is the collection of 
materials that is available for public viewing at the Air Docket in the 
EPA Docket Center (EPA/DC), EPA West, Room B102, 1301 Constitution 
Ave., NW., Washington, DC. The EPA Docket Center Public Reading Room is 
open from 8:30 a.m. to 4:30 p.m., Monday through Friday, excluding 
legal holidays. The telephone number for the Reading Room is (202) 566-
1744, and the telephone number for the Air Docket is (202) 566-1742. 
Electronic Docket Access. You may access the final rule electronically 
through the EPA Internet under the ``Federal Register'' listings at 
http://www.epa.gov/fedrgstr/.
    An electronic version of the public docket is available through 
EPA's electronic public docket and comment system, EPA Dockets. You may 
use EPA Dockets at http://www.regulations.gov/ to view public comments, 
access the index listing of the contents of the official public docket, 
and to access those documents in the public docket that are available 
electronically. Although not all docket materials may be available 
electronically, you may still access any of the publicly available 
docket materials through the docket facility in the above paragraph 
entitled ``Docket.'' Once in the system, select ``search,'' then key in 
the appropriate docket identification number. Worldwide Web (WWW). In 
addition to being available in the docket, an electronic copy of the 
final rule will also be available on the WWW through the Technology 
Transfer Network (TTN). Following signature, a copy of the final rule 
will be placed on the TTN's policy and guidance page for newly proposed 
or promulgated rules at http://www.epa.gov/ttn/oarpg. The TTN provides 
information and technology exchange in various areas of air pollution 
control. If more information regarding the TTN is needed, call the TTN 
HELP line at (919) 541-5384.
    Judicial Review. This action constitutes final administrative 
action on the proposed NESHAP for integrated iron and steel 
manufacturing facilities (66 FR 36836, July 13, 2001). Under CAA 
section 307(b)(1), judicial review of the final rule is available only 
by filing a petition for review in the U.S. Court of Appeals for the 
District of Columbia Circuit by July 21, 2003. Under CAA section 
307(b)(2), the requirements that are the subject of this document may 
not be challenged later in civil or criminal proceedings brought by the 
EPA to enforce these requirements.
    Outline. The information presented in this preamble is organized as 
follows:

I. Background
II. Summary of Final Rule
    A. Who must comply with the final rule?
    B. What are the affected sources and emission points?
    C. What are the emission limitations?
    D. What are the operation and maintenance requirements?
    E. What are the general compliance requirements?
    F. What are the initial compliance requirements?
    G. What are the continuous compliance requirements?

[[Page 27647]]

    H. What are the notification, recordkeeping, and reporting 
requirements?
    I. What are the compliance deadlines?
III. Summary of Responses to Major Comments
    A. How did we develop the MACT floors?
    B. What surrogates did we use for HAP?
    C. Is a risk analysis warranted?
    D. How did we revise the emission limitations?
    E. How did we revise the performance test requirements?
    F. How did we revise the cost estimates and economic analysis?
IV. Summary of Environmental, Energy, and Economic Impacts
    A. What are the air emission impacts?
    B. What are the cost impacts?
    C. What are the economic impacts?
    D. What are the non-air health, environmental and energy 
impacts?
V. Statutory and Executive Order Reviews
    A. Executive Order 12866: Regulatory Planning and Review
    B. Paperwork Reduction Act
    C. Regulatory Flexibility Act
    D. Unfunded Mandates Reform Act
    E. Executive Order 13132: Federalism
    F. Executive Order 13175: Consultation and Coordination with 
Indian Tribal Governments
    G. Executive Order 13045: Protection of Children from 
Environmental Health & Safety Risks
    H. Executive Order 13211: Actions that Significantly Affect 
Energy Supply, Distribution, or Use
    I. National Technology Transfer Advancement Act
    J. Congressional Review Act

I. Background

    Section 112(d) of the CAA requires us (the EPA) to establish 
national emission standards for all categories and subcategories of 
major sources of HAP and for area sources listed for regulation under 
section 112(c). Major sources are those that emit or have the potential 
to emit at least 10 tons per year (tpy) of any single HAP or 25 tpy of 
any combination of HAP. Area sources are stationary sources of HAP that 
are not major sources. Additional information on the NESHAP development 
process can be found in the preamble to the proposed rule (66 FR 
36836).
    We received a total of 16 comment letters on the proposed NESHAP 
from industry and trade association representatives, State agencies, 
industry experts, environmental groups, universities, and private 
citizens. We offered to provide interested individuals the opportunity 
for oral presentations of data, views, or arguments concerning the 
proposed rule, but a public hearing was not requested.
    Today's final rule reflects our full consideration of all the 
comments we received. Major public comments on the proposed rule along 
with our responses to these comments are summarized in section III of 
this document. A detailed response to all the comments is included in 
the Background Information Document (BID) for the Promulgated Standards 
(Docket ID No. OAR-2002-0083).

II. Summary of Final Rule

A. Who Must Comply With the Final Rule?

    Each owner or operator of an affected source at an integrated iron 
and steel manufacturing facility that is (or is part of) a major source 
of HAP emissions must comply with the final rule.

B. What Are the Affected Sources and Emission Points?

    The affected sources are each new or existing sinter plant, blast 
furnace, and BOPF shop at an integrated iron and steel manufacturing 
facility that is (or is part of) a major source of HAP emissions. 
Emission limitations apply to the sinter plant windbox exhaust, 
discharge end, and sinter cooler; the blast furnace casthouse; and the 
BOPF shop including each furnace and ancillary operations (hot metal 
transfer, hot metal desulfurization, slag skimming, and ladle 
metallurgy). These processes, as well as their emissions and controls, 
are described in the preamble to the proposed rule (66 FR 36838-36839).

C. What Are the Emission Limitations?

    The final rule includes particulate matter (PM) emission limits and 
opacity limits as well as operating limits for capture systems and 
control devices. An operating limit also applies either to the oil 
content of the sinter plant feedstock or to the volatile organic 
compound (VOC) emissions from the sinter plant windbox exhaust stream. 
Particulate matter and opacity serve as surrogate measures of HAP 
emissions.
1. Sinter Plants
    The PM emission limits for a windbox exhaust stream are 0.4 pounds 
per ton (lb/ton) of product sinter for an existing sinter plant and 0.3 
lb/ton for a new sinter plant. The final rule limits PM emissions from 
a discharge end to 0.02 grains per dry standard cubic foot (gr/dscf) 
for an existing plant and 0.01 gr/dscf for a new plant. The discharge 
end PM limits are a flow-weighted average when multiple control devices 
are operated in parallel. A 20 percent opacity limit applies to 
fugitive emissions from a discharge end at an existing sinter plant; a 
10 percent opacity limit applies to a new sinter plant (both are 6-
minute averages). The PM emission limits for sinter cooler stacks are 
0.03 gr/dscf for an existing plant and 0.01 gr/dscf for a new plant. If 
the sinter cooler is vented to the same control device as the discharge 
end, the PM limit is 0.02 gr/dscf for an existing plant and 0.01 gr/
dscf for a new plant.
2. Blast Furnaces
    The PM emission limits for a control device applied to emissions 
from a casthouse are 0.01 gr/dscf for an existing blast furnace and 
0.003 gr/dscf for a new blast furnace. The opacity limits for fugitive 
emissions from a casthouse are 20 percent for an existing blast furnace 
and 15 percent for a new blast furnace (both are 6-minute averages).
3. BOPF Shops
    For primary emissions from BOPF, different PM emission limits apply 
based on the type of hood system (closed or open). For BOPF with closed 
hood systems at a new or existing BOPF shop, the PM emission limit is 
0.03 gr/dscf, and it only applies during periods of primary oxygen 
blow. The primary oxygen blow is the period in which oxygen is 
initially blown into the furnace and does not include any subsequent 
reblows. For BOPF with open hood systems, the PM emission limits are 
0.02 gr/dscf for an existing BOPF shop and 0.01 gr/dscf for a new BOPF 
shop. These emission limits apply during all periods of the steel 
production cycle. The steel production cycle begins when the furnace is 
first charged with scrap and ends 3 minutes after slag is removed. The 
BOPF limits are a flow-weighted average when multiple control devices 
are operated in parallel.
    The PM emission limits for a control device applied solely to 
secondary emissions from a BOPF are 0.01 gr/dscf for an existing BOPF 
shop and 0.0052 gr/dscf for a new BOPF shop. Secondary emissions are 
those not controlled by the primary emission control system, including 
emissions that escape from open and closed hoods and openings in the 
ductwork to the primary control system.
    For the BOPF shop, the PM emission limit for a control device 
applied to emissions from ancillary operations (hot metal transfer, 
skimming, and desulfurization) is 0.01 gr/dscf for an existing BOPF 
shop and 0.003 for a new BOPF shop. The PM emission limits for ladle 
metallurgy operations are 0.01 gr/dscf for an existing BOPF shop and 
0.004 gr/dscf for a new BOPF shop.
    For the BOPF roof monitor, a 20 percent opacity limit applies to 
fugitive emissions from the BOPF or BOPF shop operations in an existing 
BOPF shop. This opacity limit is based on 3-minute

[[Page 27648]]

averages. For a new BOPF shop housing a bottom-blown furnace, a 10 
percent opacity limit applies (6-minute average) except that one 6-
minute period not to exceed 20 percent may occur once during each steel 
production cycle. For a new BOPF shop housing a top-blown furnace, a 10 
percent opacity limit applies (3-minute average) except that one 3-
minute period greater than 10 percent but less than 20 percent may 
occur once during each steel production cycle.
4. Capture Systems
    We revised the requirements for capture systems to allow plants to 
choose operating parameters appropriate for assessing capture system 
performance, establish the values or settings for the parameters, and 
designate monitoring requirements. At a minimum, the limits must 
indicate the level of the ventilation draft and damper position 
settings. Plants must include information to support their selected 
parameter(s) in their operation and maintenance plan (including other 
process configurations that may be used) and certify in their 
performance test report that during the tests, the capture system 
operated at the limit(s) established in their plan.
5. Operating Limits
    For bag leak detection systems, we require that corrective actions 
be initiated within 1 hour of a bag leak detection system alarm. For a 
venturi scrubber, the hourly average pressure drop and scrubber water 
flow rate must remain at or above the level established during the 
initial performance test. Plants using an electrostatic precipitator 
(ESP) must install and operate a continuous opacity monitoring system 
(COMS) according to Performance Specification 1 in 40 CFR part 60, 
appendix B. The average opacity for each 6-minute period must remain at 
or below the site-specific limit. The final rule uses a statistical 
approach, requiring that the limit be based on the COMS average 
corresponding to the 99 percent upper confidence limit on the mean of a 
normal distribution of average opacity values established during the 
initial performance test. Plants must submit information on monitoring 
parameters if another type of control device is used.
    The final rule requires sinter plants to maintain the oil content 
of the feedstock at or below 0.02 percent. This limit is based on a 30-
day rolling average. We are including an alternative VOC limit of 0.2 
pound of VOC per ton (lb/ton) of sinter produced. This limit is also 
based on a 30-day rolling average.

D. What Are the Operation and Maintenance Requirements?

    All plants subject to the final rule must prepare and implement a 
written startup, shutdown, and malfunction plan according to the 
requirements in 40 CFR 63.6(e). A written operation and maintenance 
plan is also required for capture systems and control devices subject 
to an operating limit. This plan must describe procedures for monthly 
inspections of capture systems, preventative maintenance requirements 
for control devices, and corrective action requirements for baghouses. 
To avoid potential implementation issues, we have added specific 
descriptions of the equipment to be inspected and a requirement to 
correct any deficiency or defect as soon as practicable. In the event 
of a bag leak detection system alarm, the plan must include specific 
requirements for initiating corrective action to determine the cause of 
the problem within 1 hour, initiating corrective action to fix the 
problem within 24 hours, and completing all corrective actions needed 
to fix the problem as soon as practicable. If applicable, the plan also 
must include procedures for determining and recording the sinter plant 
production rate.

E. What Are the General Compliance Requirements?

    The final rule requires compliance with the emission limitations 
and operation and maintenance requirements at all times, except during 
periods of startup, shutdown, and malfunction as defined in 40 CFR 
63.2. The owner or operator must develop and implement a written 
startup, shutdown, and malfunction plan according to the requirements 
in 40 CFR 63.6(e)(3).
    The final rule also requires keeping a log detailing the operation 
and maintenance of the process and emission control equipment. This 
requirement applies during the period between the compliance date and 
the date that continuous monitoring systems are installed and any 
operating limits set.

F. What Are the Initial Compliance Requirements?

    The final rule requires performance tests to demonstrate that each 
affected source meets all applicable emission and opacity limits. The 
final rule allows the owner or operator to conduct representative 
sampling of stacks where there are more than three stacks associated 
with a process (subject to approval by the permitting authority). The 
PM concentration (front-half filterable catch only) is to be measured 
using EPA Method 5, 5D, or 17 in 40 CFR part 60, appendix A. The EPA 
Method 9 in 40 CFR part 60, appendix A, is required for determining the 
opacity of emissions, with instructions for computing 6-minute and 3-
minute block averages.
    The final rule also includes procedures for establishing site-
specific operating limits for control devices during the performance 
test. We have also included procedures to be followed during opacity 
tests to ensure capture systems operate at the limits established in 
the operation and maintenance plan.
    The final rule requires a performance test to demonstrate initial 
compliance with the operating limit for the oil content of the sinter 
plant feedstock using OSW 846 Method 9071B (Revision 2, April 1998). 
Plants must sample for 30 consecutive days and compute the 30-day 
rolling average for each operating day. Plants electing the alternative 
operating limit must conduct a performance test by sampling VOC 
emissions and analyzing the samples according to EPA Method 25 in 40 
CFR part 60, appendix A. Plants may use an alternative method that has 
been previously approved by the permitting authority in lieu of OSW 846 
Method 9071B for oil content or EPA Method 25 for VOC emissions.
    To demonstrate initial compliance with the operation and 
maintenance requirements, owners or operators must prepare the 
operation and maintenance plan, certify in the performance test report 
that capture systems operated at the limits established in the 
operation and maintenance plan, and submit their notification of 
compliance status. In the notification of compliance status, the owner 
or operator must certify that the capture systems will be operated at 
the limits established in the plan.

G. What Are the Continuous Compliance Requirements?

    Plant owners or operators must conduct PM and opacity performance 
tests at least twice during each title V operating permit term (at 
midterm and renewal). Owners or operators also must monitor operating 
parameters for capture systems and control devices subject to operating 
limits, and carry out the procedures in their operation and maintenance 
plan.
    To demonstrate continuous compliance with the operating limit for 
the oil content of sinter plant feedstock, owners or operators must 
determine the oil content every 24 hours (from the composite of at 
least three samples taken at 8-hour intervals) and compute

[[Page 27649]]

and record the 30-day rolling average percent oil content of sinter 
feed for each operating day. Plants electing the alternative limit must 
determine VOC emissions every 24 hours (from at least three samples 
taken at 8-hour intervals) and compute and record the 30-day rolling 
average emissions (in lb/ton of sinter) for each operating day.
    The final rule requires a continuous parameter monitoring system 
(CPMS) to measure and record operating parameters for capture systems 
subject to an operating limit. Dampers that are manually set and remain 
in the same position are exempt from the CPMS requirement. For dampers 
that are not manually set and remain in the same position, the final 
rule requires a daily visual check (every 24 hours) to verify they are 
in the correct positions.
    For baghouses, owners or operators are required to monitor the 
relative change in PM loading using a bag leak detection system and 
make inspections at specified intervals. The bag leak detection system 
must be installed and operated according to the EPA guidance document 
``Fabric Filter Bag Leak Detection Guidance,'' EPA 454/R-98-015, 
September 1997. The document is available on the TTN at http://www.epa.
gov/ttnemc01/cem/tribo.pdf. If the system does not work based 
on the triboelectric effect, it must be installed and operated 
consistent with the manufacturer's written specifications and 
recommendations. The basic inspection requirements include daily, 
weekly, monthly, or quarterly inspections of specified parameters or 
mechanisms with monitoring of bag cleaning cycles by an appropriate 
method. To demonstrate continuous compliance, the final rule requires 
records documenting conformance with the operation and maintenance 
plan, as well as the inspection and maintenance procedures.
    For venturi scrubbers, owners or operators must use CPMS to measure 
and record the hourly average pressure drop and scrubber water flow 
rate. For ESP, owners or operators must use COMS to measure and record 
the average opacity of emissions exiting each stack of the control 
device for each 6-minute period. Owners or operators must operate and 
maintain the COMS according to the requirements in 40 CFR 63.8 and 
Performance Specification 1 in 40 CFR part 60, appendix B. These 
requirements include a quality control program including a daily 
calibration drift assessment, quarterly performance audit, and annual 
zero alignment.
    The final rule requires owners or operators to prepare a site-
specific monitoring plan for CPMS that addresses installation, 
performance, operation and maintenance, quality assurance, and 
recordkeeping and reporting procedures. These requirements replace the 
more detailed performance specifications contained in the proposed 
rule.
    To demonstrate continuous compliance, owners or operators must keep 
records documenting compliance with the monitoring requirements 
(including installation, operation, and maintenance requirements for 
monitoring systems) and the operation and maintenance plan.

H. What Are the Notification, Recordkeeping, and Reporting 
Requirements?

    The notification, recordkeeping, and reporting requirements are 
based on the NESHAP General Provisions in 40 CFR part 63, subpart A. 
Table 4 to subpart FFFFF lists each of the requirements in the General 
Provisions (Sec. Sec.  63.2 through 63.15) with an indication of 
whether they apply.
    The plant owner or operator must submit each initial notification 
required in the NESHAP General Provisions that applies to their 
facility. These include an initial notification of applicability with 
general information about the facility and notifications of performance 
tests, performance evaluations, and compliance status.
    Owners or operators are required to maintain the records required 
by the NESHAP General Provisions that are needed to document 
compliance, such as performance test results; copies of startup, 
shutdown, and malfunction plans and associated corrective action 
records; monitoring data; and inspection records. Except for the 
operation and maintenance plan for capture systems and control devices, 
all records must be kept for a total of 5 years, with the records from 
the most recent 2 years kept onsite. The final rule requires that the 
operation and maintenance plan for capture systems and control devices 
subject to an operating limit be kept onsite and available for 
inspection upon request for the life of the affected source or until 
the affected source is no longer subject to the final rule 
requirements.
    We clarified the recordkeeping requirements required to demonstrate 
compliance with the operating limit for sinter plants. The final rule 
requires records of the sampling date and time, sampling values (oil 
content or VOC measurements), sinter produced (tons/day), and the 30-
day rolling average for each operating day.
    Semiannual reports are required for any deviation from an emission 
limitation (including an operating limit) or operation and maintenance 
requirement. Each report is due no later than 30 days after the end of 
the reporting period. If no deviation occurs, only a summary report is 
required. If a deviation does occur, more detailed information is 
required.
    An immediate report is required if actions taken during a startup, 
shutdown, or malfunction are not consistent with the startup, shutdown, 
and malfunction plan. Deviations that occur during a period of startup, 
shutdown, or malfunction are not violations if the owner or operator 
demonstrates to the authority with delegation for enforcement that the 
source was operating in accordance with the startup, shutdown, and 
malfunction plan.

I. What Are the Compliance Deadlines?

    The owner or operator of an existing affected source must comply by 
May 22, 2006. An existing affected source is one constructed or 
reconstructed before July 13, 2001. We changed the compliance date for 
existing affected sources from 2 years to 3 years after the effective 
date because some plants must install new capture and control systems 
and perform significant upgrades of primary emission control systems.
    In the final rule, we have corrected a printing error that 
incorrectly listed the date defining a new affected source as July 23, 
2001. A new affected source is one constructed or reconstructed on or 
after July 13, 2001. New or reconstructed sources that startup on or 
before the effective date of today's final rule must comply by May 20, 
2003. New or reconstructed sources that startup after the effective 
date of the final rule must comply upon initial startup.

III. Summary of Responses to Major Comments

A. How Did We Develop the MACT Floors?

    We stated in the proposal preamble that we may take alternative 
approaches to establish a MACT floor, depending on the type, quality, 
and applicability of available data. The three approaches most commonly 
used involve: (1) Reliance on State regulations or permit limits in 
conjunction with emission test data; (2) use of emissions test data 
alone to estimate actual emissions; and (3) use of control technology 
information in conjunction with emission test data to estimate actual 
emissions performance. In practice, regardless of what approach we 
select, we attempt to ensure that our emissions performance estimates 
reasonably characterize the level of performance that the relevant 
sources

[[Page 27650]]

consistently achieve, considering normal operational variability.
    Comment. One commenter contends that EPA may use State regulations 
or permit limits to set floors only to the extent that such regulations 
and limits provide a demonstrably accurate picture of the relevant best 
source's actual performance. The commenter also states that EPA may 
only use the performance of a chosen floor technology to set floors if 
such technology is the only factor influencing the relevant best 
sources' actual performance. In addition, the floor must reflect actual 
performance, not what EPA thinks is achievable with a particular 
technology. The commenter concludes that all of EPA's floors suffer 
from the same basic defect in that ``. . . they do not represent the 
actual performance of the relevant best sources.''
    Response. While EPA may use any reasonable approach to estimate the 
emissions control achieved in practice by the best-controlled similar 
source and the average emissions limitation achieved by the best-
performing 12 percent of units in a category (or best 5 units for 
categories of less that 30 sources), we generally agree with the 
commenter that it is preferable to use actual performance test data to 
determine the MACT floor when there are adequate such data available to 
reasonably characterize the level of performance of the relevant 
sources. Our approach to identifying the MACT floors and establishing 
emission limits for the various emission points at integrated iron and 
steel facilities is consistent with this preference. Nonetheless, we 
did use State regulations and permit limits in some instances to help 
us estimate the MACT floor level of performance for certain emission 
points for which we have limited emission test data. However, in each 
case where we used such information, we also evaluated the available 
emission test data and other factors (such as type of control 
technology and the design parameters that affect performance) to 
confirm that the State limits reasonably reflect the actual performance 
of the best units.
    In those instances where we had a sufficient quantity of emission 
test data to reasonably estimate the performance of the relevant best 
units, we applied a statistical approach to confirm and refine the 
emission estimates from proposal. This process involved application of 
a statistical approach to determine the average emission limitation 
achieved and account for normal operational variability. As described 
below, this approach ensures that the emissions estimates used to 
identify the MACT floors reasonably reflect the level of control that 
is actually achieved by the relevant units over time, and under the 
most adverse foreseeable circumstances. (The full supplemental analysis 
is documented in the docket.) We had adequate test data to apply this 
approach to the emission limits for the sinter plant windboxes, 
casthouse control devices, primary control systems on open and closed 
hood BOPF, and control devices applied to hot metal transfer, 
desulfurization, and ladle metallurgy.
    For each of these emission points we confirmed and refined our 
earlier estimates of the performance of the relevant best-performing 
units used to identify the MACT floors. At proposal, we estimated the 
performance of the best-controlled sources by identifying the best 
control technology that had been demonstrated for each source. We then 
evaluated the available data for sources using the best control 
technology and established emission limits for new and existing sources 
based on the level of control that sources with the technology had 
achieved.
    Conceptually, our approach to estimating the performance of the 
best-controlled units is relatively straightforward. While we believe 
each emissions source test gives a good indication of the level of 
control achieved by the control device during the time of the emissions 
test, we do not believe a single emissions source test can be used as 
an estimate of the long term emissions performance achieved by that 
source. Normal variations in process and control device performance and 
other factors, such as the inherent imprecision of sampling and 
analysis, which cannot be controlled, will result in variability in the 
performance of every source over time, including the best-performing 
sources. We believe that the MACT floor performance level must 
reasonably account for the ordinary variability in the performance of 
the best-controlled sources over time and under the most adverse 
circumstances which can reasonably be expected to occur. As such, the 
MACT floor performance limit must include a consideration for the 
variability inherent in the process operations and the control device 
performance.
    For today's final rule, when emissions source test data were 
available, we used a statistical method to confirm and refine the 
emission estimates used at proposal to identify the MACT floors for the 
relevant units. For each case where emissions source test data were 
available, we estimated the emissions limitation achieved for each 
source at the 95th percentile using the one-sided z-statistic test 
(i.e., the emission limitation which the emission point is estimated to 
be able to achieve 95 percent of the time). Assuming a normal 
distribution, the 95th percentile is 1.645 standard deviations above 
the mean. We chose the median of the 95th percentiles of the top-
performing sources as the MACT floor. We used the median as the most 
representative estimate of the average emission limitation achieved by 
the best-performing five sources because the median points to the 
performance of an actual unit, with a specific combination of process 
operations and control device performance.
    We evaluated several options to estimate the standard deviation 
that is needed to perform the analysis. We decided not to estimate the 
standard deviation for each source based on the available emissions 
data for just that one source since we have only three data points for 
most sources to use in estimating the standard deviation-one data point 
for each run in a three run emissions source test. Instead, we 
calculated a relative standard deviation (RSD) for each test and then 
averaged the RSD to provide our best estimate of the variability of the 
test data. The RSD is the standard deviation divided by the mean. The 
RSD provides a way to estimate the standard deviation for different 
values of the mean when there are too few data points to calculate the 
standard deviation directly. We believe this method adequately accounts 
for the normal variability in emissions source test data and provides a 
reasonable estimate of the long term emissions limitation achieved.
    For new sources, the MACT floor is the emissions control that is 
achieved in practice by the best-controlled similar source. In order to 
confirm and refine our emissions estimates for new sources, we 
identified the best-controlled source based on test data and applied 
the same statistical techniques to determine the emission limitation 
achieved in practice for new sources. We calculated the upper 95th 
percentile of performance for the best-controlled source, and we chose 
this value as the emission limitation that can be achieved by new 
sources.
    We believe the statistical technique used to account for general 
variability is appropriate and reasonable. However, we also recognize 
that some of the empirical test data may imply a level of accuracy that 
is not present throughout the entire data set. As a result, we have 
some reservations about identifying a MACT floor with a level of 
accuracy that is not warranted by the underlying data. Accordingly, we 
have concluded

[[Page 27651]]

that it is appropriate in some instances to round the results to two 
decimal places. This approach encompasses the specific statistically-
derived numbers, while acknowledging that there is some residual 
uncertainty about the representativeness of the data. Thus, while we 
believe generally that our use of the 95th percentile adequately 
identifies the range of actual performance of individual facilities, 
our rounding approach should alleviate any concerns regarding whether 
the statistics sufficiently capture the full range of ordinary 
performance of the best-performing units over time and under the most 
adverse circumstances that can be reasonably expected to occur.
    Changes resulting from rounding will have no practical effect on 
how industry responds to the emission limitations. That is, the control 
technology needed is exactly the same and the equipment must be 
operated in the same manner regardless of whether the numbers are 
rounded or not. A properly designed and operated control device will 
still be required to meet the rounded emission limit. Today's final 
rule has provisions for operating parameters and operation and 
maintenance plans to ensure proper operation. Thus, other than serving 
to better reflect uncertainties in the underlying data, the rounding 
has no practical impact on the stringency of the requirements.
    Additional information on the statistical analysis used to confirm 
and refine our emissions estimates, including the data used and the 
complete ranking of sources, is available in the docket.
    The objective of both the MACT floor methodology used at proposal, 
and the methodology used here to confirm and refine the proposed 
estimates of performance, is exactly the same. For each relevant 
operation at integrated iron and steel facilities, both approaches 
expressly are intended to provide a quantified estimate of the emission 
performance of the best-controlled similar source, or of the average 
emission limitation achieved by the relevant best-performing sources in 
the category, taking into consideration the ordinary and unavoidable 
variations in process operations and performance of the emissions 
control equipment.
    Moreover, the conclusions growing from the supplemental statistical 
analysis, regarding the levels of performance that reflect the MACT 
floor for both new and existing units, in large measure simply confirm 
that the analysis underlying the proposal provided a reasonable 
estimation of performance.
    Indeed, none of the refinements to our performance estimates will 
have any practical effect on how industry responds to the emission 
limitations. As is the case with our decision to round the emission 
estimates, any changes in the emission limitations in the final rule 
will require the same control technology as would have been needed to 
meet the proposed limits, and the control equipment will need to be 
operated in the same manner as would have been the case with the 
proposed emission limitations.
    For three emission points (sinter cooler, sinter plant discharge 
end, and control devices for BOPF fugitive emissions), we had only one 
or two test results. Consequently, we did not have an adequate set of 
emissions test data to directly estimate the actual performance of the 
top-performing sources. Consequently, we developed the floors for these 
three emission points based on the facilities subject to the most 
stringent State regulations or permit limits, and we used the available 
emissions information (emissions data and a characterization of the 
operational processes and emissions controls) to confirm that the 
identified State limits reasonably reflect the actual performance of 
the relevant best-performing units. That is, the best units are able to 
achieve the required State limits but are not consistently achieving a 
level of emissions performance that is more stringent than the State 
limits. The EPA may use State limits as long as we demonstrate that 
such limits provide a reasonable estimate of the actual performance of 
the best-performing sources.
    For floors based on State opacity regulations that limit fugitive 
emissions, we collected additional data and found that sources are 
achieving a level of performance that is within the current limits, but 
they are not consistently achieving a level of control more stringent 
than the identified State limits. Consequently, we believe these State 
limits provide an accurate picture of the best sources' actual 
performance considering inherent and unavoidable variability. We used 
this approach to develop the MACT floor for opacity from the sinter 
plant discharge end, blast furnace casthouse, and BOPF shop.
    We provide additional rationale in the following sections where we 
discuss in detail the development of the MACT floors for each emission 
point.
1. Sinter Plant Windbox Exhaust
    Comment. One commenter stated that EPA proposed an emission 
limitation of 0.3 lb/ton of PM based on the performance of either a 
baghouse or scrubber. According to the commenter, EPA's floor does not 
reflect the actual performance of the relevant best sources--the 
average emission limitation achieved by the top five sources. As shown 
in the BID, the average emission limitation achieved by the best-
performing five sources is 0.079 pound per ton (lb/ton), not the 
proposed limit of 0.3 lb/ton. Second, floor reflects what EPA believed 
to be achievable with the control technologies and not the actual 
performance of the relevant best sources. Third, EPA admits that 
several factors other than the performance of the technologies 
influence emissions.
    Response. As we documented in appendix B of the BID, the floor for 
sinter plant windboxes was based on actual source test data and the 
five best-performing sources. We collected test data and verified that 
EPA Method 5 (40 CFR part 60, appendix A) was used. We ranked the 
results (in lb/ton of sinter) and calculated the average of the five 
best-performing sources (0.3 lb/ton). Contrary to the commenter's 
assertion, we did not rely on control technology to identify the best-
performing units or to estimate the performance of the best units. In 
this particular case, we had adequate test data to directly estimate 
the average emission limitation achieved by the five best-performing 
sources.
    The calculation performed by the commenter is inappropriate and 
does not provide an accurate estimate of the emission limitation 
achieved by the plants. The commenter misinterpreted the information in 
the BID, which is not source test data, but is simply a best estimate 
of annual average emissions based on approximate emissions factors and 
the assumption that all plants operate continuously at their design 
capacity. Such an estimate cannot be used to represent actual 
performance in a MACT floor calculation.
    After proposal, we reviewed our approach for developing the MACT 
floor and concluded that our original analysis did not sufficiently 
account for the normal and unavoidable variability inherent in the 
process operations and emission control equipment (as demonstrated by 
the emission test data). The average performance of the five best-
performing sinter plants ranged from 0.26 to 0.32 lb/ton of sinter. To 
account for inherent variability, we applied the z-statistic to 
estimate the 95th percentile of a normal distribution for each source. 
The median of the 95th percentiles of the five best-performing sources 
is 0.4 lb/ton, which we chose to represent the MACT floor. This level 
of performance reasonably reflects the

[[Page 27652]]

average emission limitation achieved by the five best-performing 
sources considering inherent variability. The best-controlled source 
averaged 0.26 lb/ton with a 95th percentile of 0.3 lb/ton, which 
represents the MACT floor for new sources.
2. Sinter Plant Limit on Oil Content
    Comment. Two commenters stated that the proposed limit on oil 
content of 0.025 percent was based on the highest oil percentage of any 
of the four plants for which EPA had oil percentage data. They claim 
this is not a valid approach because it does not represent the actual 
performance of the relevant best sources. One commenter recommended 
that EPA consider beyond-the-floor technologies for dioxin emissions, 
such as elimination of rolling mill scale from sinter feed, de-greasing 
of sinter plant feed, quality control of water used in sinter plant 
feed preparation, and use of low-organic waterborne rolling mill 
lubricants.
    Response. Our research indicates that emissions of organic 
compounds from sinter plant windboxes are controlled by limiting the 
amount of oil in the sinter feed. Emission control devices applied to 
sinter plants are designed primarily for the removal of PM and not for 
the various organic compounds that are formed from the oil. We believe 
that oil content is the most significant factor affecting organic 
compound HAP emissions. Consequently, we identified the MACT floor for 
organic HAP emissions from sinter plants based on the level of oil 
content that we observed for the sinter plants with the best programs 
to control oil in the sinter feed.
    We obtained data from four sinter plants that have implemented a 
program to control the oil content of the sinter feed. We then examined 
the data and evaluated the variability to determine the level of 
control that has been achieved. The average results for oil content for 
each plant ranged from 0.014 to 0.025 percent. These are the best-
performing plants because they were the only ones that routinely sample 
for oil content. We applied the z-statistic and estimated the 95th 
percentile for each plant. (The statistical analysis considered that 
the limit is based on a 30-day rolling average, which reduces the 
inherent variability as indicated by a lower standard deviation than 
that associated with a single analysis of oil content.) The median of 
the 95th percentiles for the top-performing plants is 0.022 percent. We 
rounded this value to 0.02 percent, and this level represents the MACT 
floor for existing units. The best-performing source averaged 0.014 
percent oil with a 95th percentile of 0.015 percent. We rounded this 
value to 0.02 percent, and this level represents the MACT floor for new 
units.
    We reviewed opportunities for control beyond the floor. We do not 
believe it is practical or feasible to eliminate rolling mill scale 
from the sinter feed. The sinter plant provides the only opportunity to 
recycle and recover the raw material value. Otherwise, the mill scale 
would be landfilled. De-greasing or de-oiling the sinter feed has been 
investigated by the industry, but there is no demonstrated technology 
in use at any sinter plant that has proven to be successful. There is 
no indication that the water used in preparing the sinter feed 
contributes to the oil content; therefore, water quality control is not 
expected to have an impact on emissions of organic compounds. 
Waterborne lubricants may have some advantages in certain applications. 
However, they are problematic in some applications in the demanding 
environment of steel rolling mills. We could find no indication that 
the practices cited by the commenter have been demonstrated to reduce 
dioxin or other organic compound emissions. Consequently, we selected a 
limit on oil content as the MACT floor. We believe it is more 
appropriate to set a performance standard that limits oil content 
rather than mandating a technology that an owner or operator must use 
to reduce oil content. The performance standard for oil content will 
encourage owners or operators to investigate technologies that reduce 
oil content to find the most effective approach for their specific 
situation.
    Comment. Six commenters object to the proposed limit on oil content 
because EPA has not shown that it is achievable by the best-performing 
sinter plants under the most adverse anticipated circumstances over 
time.
    Response. As we discussed in our previous response, we confirmed 
and refined the MACT floor estimates using a statistical approach to 
account for inherent variability. Based on this approach, we believe 
the MACT floor has been achieved on a continuing basis by the best-
performing units. In addition, the limit is enforced based on a 30-day 
rolling average, which further enhances achievability because it allows 
an occasional high daily value to be averaged with lower values on 
other days to achieve compliance. A 30-day rolling average also 
provides time to take corrective action and lower the oil content 
before the limit is exceeded.
3. PM Standard for Blast Furnace Casthouse Control Device
    Comment. One commenter stated that the technology approach used to 
develop the floor does not reflect the actual performance of the 
relevant best sources. The commenter further states that EPA admits 
that there are factors other than the type of control technology that 
affect the actual emission control performance of blast furnace 
casthouse control devices. Specifically, factors affecting emissions 
include duration of tapping, exposed surface area of metal and slag, 
length of runners, and the presence or absence of runner covers or 
flame suppression. Thus, the performance of a baghouse cannot be 
representative of the best sources's actual performance.
    Response. We proposed a PM standard of 0.009 gr/dscf for blast 
furnace casthouse control devices based on the performance of existing 
units using baghouses. We re-evaluated the emissions test data for 
blast furnace casthouses based on the statistical approach previously 
discussed in order to confirm and refine our emissions estimates for 
the best-performing units. We have test data for fugitive emissions 
from source tests at four casthouses. The available data clearly 
indicate that a baghouse is the best technology for controlling 
emissions from blast furnace casthouses. We reviewed the test data and 
the design features of these baghouses (such as air-to-cloth ratio), 
and we concluded that the baghouses that had been tested were among the 
best-performing units. The test results ranged from 0.002 to 0.0072 gr/
dscf. We calculated the 95th percentile for each plant. The median of 
the 95th percentiles for the top-performing plants is 0.005 gr/dscf. We 
rounded this value to two decimal places and chose 0.01 gr/dscf to 
represent the MACT floor level of control for existing sources.
    The best-controlled source averaged 0.002 gr/dscf with a 95th 
percentile of 0.0034 gr/dscf. We rounded the 95th percentile to 0.003 
gr/dscf to represent the MACT floor for new sources.
4. PM Standard for BOPF Primary Control Devices
    Comment. One commenter stated that the chosen floor technologies do 
not represent the actual performance of the relevant best sources.
    Response. We proposed a PM limit of 0.019 gr/dscf for new and 
existing open hood BOPF primary control systems based on the 
performance of existing units using ESP. We re-evaluated the emissions 
test data for open hood BOPF using the statistical approach previously

[[Page 27653]]

discussed, in order to confirm and refine our emissions estimates for 
the best-performing units. The available data clearly indicate that ESP 
perform better than venturi scrubbers in controlling emissions from 
open hood shops. We have test data for five ESP that are similar in 
design, each of which, based on design and operating data, are among 
the best-performing units at open hood shops. The data include multiple 
tests at some plants, and these data indicate there is variability in 
performance from test to test and from run to run. The plant averages 
ranged from 0.007 to 0.019 gr/dscf, and individual tests (three-run 
averages) ranged from 0.004 to 0.019 gr/dscf. We calculated the 95th 
percentile for each plant. The median of the 95th percentiles for the 
top-performing plants is 0.019 gr/dscf. We rounded this value to two 
decimal places and chose 0.02 gr/dscf to represent the MACT floor for 
existing units.
    The best-controlled open hood shop averaged 0.0066 gr/dscf with a 
95th percentile of 0.01 gr/dscf, which we chose to represent the MACT 
floor for new sources.
    We proposed a limit of 0.024 gr/dscf for new and existing closed 
hood BOPF primary control systems based on the performance of existing 
units using venturi scrubbers. All of the closed hood shops use venturi 
scrubbers as the primary control device. The test data and design 
information indicated that shops having high-energy venturi scrubbers 
with a pressure drop of 50 inches of water or more are the best-
performing sources. We have recent test data for only one closed hood 
shop. However, we have data from 1971 to 1978 for high-energy venturi 
scrubbers on closed hood shops. These data include four BOPF shops that 
are currently operating. The test results range from 0.021 to 0.024 gr/
dscf. For purposes of today's final rule, we did not include Kaiser 
Steel because the plant has been closed for several years. We 
calculated the 95th percentile for each plant. The median of the 95th 
percentiles for the top-performing plants is 0.027 gr/dscf. We rounded 
this value to two decimal places and chose 0.03 gr/dscf to represent 
the MACT floor for existing sources.
    The best-controlled closed hood shop averaged 0.021 gr/dscf with a 
95th percentile of 0.027 gr/dscf. We rounded the 95th percentile to two 
decimal places and chose 0.03 gr/dscf to represent the MACT floor for 
new sources.
    Comment. Six commenters said EPA used test data dating from 1971 
through 1978 to establish the limit for closed hood systems. These 
commenters believe the data do not reflect current configurations or 
actual performance and cannot be used to establish the floor. Many 
systems have been upgraded to increase capture efficiency (including 
some furnaces used to establish the standard). Because there are little 
or no data for these sources, the commenters recommend that EPA use 
existing State implementation plans (SIP) to determine the floor. 
Another commenter agrees, adding that the test data used to support the 
0.024 gr/dscf limit ranged up to 0.031 gr/dscf and represent the 
minimum anticipated variation of emissions from a MACT floor technology 
source. The proposed limit is more stringent than existing SIP and may 
not be achievable by plants using MACT floor controls. The analysis 
does not consider the current PM limit of 0.03 gr/dscf for plants in 
Ohio, which the commenter believes should be the limit.
    Response. The test data for closed hood shops are not just from 
tests in 1971 to 1978--there is a 1992 test for Geneva Steel. The 
commenters did not provide any information on the nature of the 
upgrades or rationale as to their effect on emissions. For closed hood 
systems, testing is performed only during the oxygen blow with the 
capture hood tightly fitted to the furnace. Our understanding is that 
capture system upgrades have been made primarily to improve the capture 
of fugitive emissions from charging and tapping, which are not included 
in the performance testing for closed hood furnaces. In addition, the 
operating conditions of the scrubbers during the tests (e.g., pressure 
drops of 50 inches of water or more) are representative of the way 
these scrubbers are currently operated. Data for venturi scrubbers in 
other similar processes indicate that high-pressure drop scrubbers can 
achieve control levels of 0.03 gr/dscf or less. We believe the 
statistical approach that we used to confirm and refine emissions 
estimates for the floor analysis accounts for inherent variability over 
time. We believe that source test data provide a better picture of 
actual performance than the use of State limits as the commenter 
suggests. Moreover, based on our analysis of the emission tests, we 
have identified as MACT an emissions limit of 0.03 gr/dscf which is 
consistent with the emissions limits that the commenters identified as 
appropriate.
5. PM Standards for Ancillary Operations at BOPF Shops
    Comment. According to eight commenters, the three data points for 
hot metal transfer and desulfurization are not sufficient to define the 
floor, accurately represent current operating conditions, or reflect a 
level that is consistently achievable under the most adverse 
foreseeable circumstances over time. If sufficient data are not 
available, EPA should use existing State limits, if it can show that 
the level of control is realistically achievable under the most adverse 
anticipated circumstances over time. The commenters also question that 
the data used for characterizing performance were collected using the 
same test procedures specified in the proposed rule (average of three 
1-hour tests during actual operation of the processes). Using data from 
a test method other than the required compliance method to set a 
standard does not meet CAA requirements.
    Response. We proposed a PM standard of 0.007 gr/dscf for a control 
device serving BOPF ancillary processes based on the performance of 
existing units using baghouses. We reviewed the emissions data and 
confirmed the tests were conducted using EPA Method 5 (40 CFR part 60, 
appendix A). Every test result was presented as the average of three 
runs, which is consistent with our performance test requirements. 
Several test reports confirmed that sampling was conducted under normal 
operating conditions, and none of the reports indicated conditions were 
not normal. The tests used a sampling time of 1 hour or more to ensure 
an adequate sample volume was collected. As explained earlier, in 
response to another comment, EPA believes that it is preferable to use 
actual performance test data to determine the MACT floor when there are 
adequate such data available to reasonably characterize the level of 
performance of the relevant sources. The commenters did not provide us 
with any additional facts or data to show that any of the data we 
relied upon are invalid. For the reasons described above, we believe 
that these data are adequate to reasonably estimate the performance of 
the best sources for purposes of establishing a MACT floor, and these 
estimates more accurately reflect the actual performance of the best-
performing sources than would estimates based on State permit data. 
Moreover, the approach that we used to confirm and refine the emissions 
estimates for the top-performing sources assures that we have 
adequately accounted for variability over time, and, therefore, 
addresses the concerns of the commenter.
    We re-evaluated the emissions test data for ancillary operations 
based on the statistical approach previously discussed, in order to 
confirm and

[[Page 27654]]

refine our earlier analysis. At proposal, we considered the combined 
data for hot metal transfer/desulfurization and ladle metallurgy. 
However, we believe it is necessary to separate the two operations 
because hot metal transfer/desulfurization is performed on molten iron 
before charging to the BOPF. Ladle metallurgy is performed on molten 
steel from the BOPF. Consequently, the two processes have different 
emission characteristics which suggests each should have a separate 
MACT floor determination.
    We have test data from three source tests of desulfurization and 
hot metal transfer. The control device used in these source tests, and 
the only type of control used for these processes, is a baghouse. We 
reviewed the test data and the design features of these baghouses (such 
as air-to-cloth ratio), and we concluded that the baghouses that had 
been tested were among the best-performing units. The three tests 
ranged from 0.0016 to 0.012 gr/dscf. We calculated the 95th percentile 
for each plant. The median of the 95th percentiles for the top-
performing plants is 0.006 gr/dscf. We rounded this value to two 
decimal places and chose 0.01 gr/dscf to represent the MACT floor for 
existing units.
    The best-controlled source averaged 0.0016 gr/dscf with a 95th 
percentile of 0.003 gr/dscf, which we chose to represent the MACT floor 
for new sources.
    We have test results for six source tests of typical ladle 
metallurgy operations. As with desulfurization, the control device used 
in these source tests, and the only type of control used for these 
processes, is a baghouse. We reviewed the test data and the design 
features of these baghouses (such as air-to-cloth ratio), and we 
concluded that the baghouses that had been tested were among the best-
performing units. The five best-performing units ranged from 0.0021 to 
0.0047 gr/dscf. We calculated the 95th percentile for each plant. The 
median of the 95th percentiles for the top-performing plants is 0.006 
gr/dscf. We rounded this value to two decimal places and chose 0.01 gr/
dscf to represent the MACT floor for existing units.
    The best-controlled source with typical ladle metallurgy operations 
(lance injection, electromagnetic stirring, and alloy addition), 
averaged 0.0021 gr/dscf with a 95th percentile of 0.004 gr/dscf, which 
we chose to represent the MACT floor for ladle metallurgy for new 
sources.
6. Opacity Standard for Sinter Plant Discharge End
    Comment. According to one commenter, EPA does not explain how the 
floor determination represents an accurate picture of the relevant best 
sources' actual performance, or how it knows that the best sources are 
not doing better than their permits require.
    Response. We proposed an opacity limit of 20 percent for the sinter 
plant discharge end based on the five sources subject to the most 
stringent existing State regulations or permit limits. One plant has a 
10 percent opacity limit, and four plants have a 20 percent opacity 
limit. We chose the median (20 percent) to represent the MACT floor.
    A total of six of the seven operating plants use a capture and 
control system vented to a baghouse for the discharge end, and 
engineering knowledge of their design features and the nature of 
emissions indicate that these baghouses are the best demonstrated 
control technology for the discharge end. Following the end of the 
comment period, in order to confirm the appropriateness of the proposed 
opacity limit, we surveyed the industry to obtain additional opacity 
data for the discharge end. The only substantive data we obtained was 
from Ispat-Inland, which submitted the results of 1,745 hours of 
observations by EPA Method 9 (40 CFR part 60, appendix A) conducted 
over 4 years (1997 to 2000). Ispat-Inland is among the better-
performing plants because it controls the discharge end, crusher, and 
hot screen by capturing emissions using local hooding and ventilation 
and venting them to a baghouse for collection. Consequently, we believe 
that the control system at Ispat-Inland is representative of the best-
performing sources.
    At Ispat-Inland, approximately one percent of the hourly opacity 
observations had a 6-minute average that exceeded 20 percent opacity, 
and the plant met the proposed limit 99 percent of the time. Although 
many of the observations were below 20 percent opacity, the limit 
accommodates the normal variability in the process operations and 
control equipment. The data clearly show that Ispat-Inland is not 
consistently performing substantially better than what their permit 
requires and that our proposed limit is a reasonable picture of what 
the best-controlled sources can achieve.
    Comment. Seven commenters contend that EPA has not shown that 
existing State limits are consistently achievable under the worst 
foreseeable conditions over time. The commenters claimed that opacity 
data they submitted to EPA demonstrates that the limits are not 
consistently achievable by well-operated and maintained sinter plants. 
The EPA must reevaluate the achievability of the proposed opacity 
standard.
    Response. None of the commenters provided evidence that facilities 
subject to the identified State limits have been unable to meet those 
limits (e.g., in the form of reported violations). Moreover, as 
discussed in the previous response, approximately 99 percent of the 
hourly opacity observations at Ispat-Inland never had a 6-minute 
average in excess of 20 percent opacity. Performance improved to 99.9 
percent compliance for more recent, 1998 to 2000, observations. As 
stated previously, these data show that the opacity limit based on 
existing State limits is achievable because it has been achieved on a 
continuing basis. Our analysis considered all of the data that we could 
obtain, and the only data available was that for Ispat-Inland which we 
discussed in detail.
7. Opacity Standard for Blast Furnace Casthouse
    Comment. One commenter states that we failed to explain how the 
floor we selected reflects the best-performing 12 percent of the blast 
furnace casthouses. The commenter further states that we failed to 
pursue and collect from the affected sources or State and local 
agencies available opacity data, and we undermined the floor-setting 
process of the CAA.
    Response. For blast furnace casthouses, we established the MACT 
floor as a 20 percent opacity limit based on the five sources subject 
to the most stringent existing State regulations or permit limits. Two 
casthouses are subject to a 15 percent opacity limit, and the next most 
stringent limit is 20 percent, which is applied to 22 of the 37 blast 
furnace casthouses.
    Following the end of the comment period, in order to confirm the 
appropriateness of the proposed opacity limit, we obtained additional 
opacity data for operating blast furnace casthouses to supplement the 
limited data we had available at proposal. We now have opacity data for 
25 of the 37 existing blast furnace casthouses, and the data range in 
coverage from a 1-hour test to several years of observations. (Although 
there were 39 blast furnace casthouses at proposal, two have 
subsequently shut down.) We closely examined the data that covered a 
reasonably long period of time (e.g., at least 1 year to capture 
seasonal variations), which included 12 of the 25 casthouses for which 
we had data. We

[[Page 27655]]

believe it is important to account for seasonal variations and examine 
data covering 1 year or more to account for variability due to 
differences in ventilation rates, weather conditions, and changes in 
the process over time. We found that the casthouses with the lowest 
opacities were those with secondary capture and control systems. For 
some casthouses, most of the 6-minute averages were routinely below the 
proposed 20 percent limit with occasional readings that approached or 
exceeded 20 percent. The blast furnace casthouses at U.S. Steel (Gary) 
achieved the 20 percent opacity limit 99 to 100 percent of the time. 
One blast furnace casthouse had a maximum 6-minute average of 21 
percent opacity, and another casthouse had a maximum of 20 percent 
opacity. At Ispat-Inland, the casthouses achieved 20 percent opacity 98 
to 99.6 percent of the time. At LTV Steel, the casthouses achieved 20 
percent opacity 99.5 to 99.8 percent of the time. These blast furnaces 
were achieving the 20 percent limit, but they were not demonstrably 
able to consistently achieve a level of performance more stringent than 
this limit. Consequently, the opacity data confirm that the 20 percent 
opacity limit based on the median value of the sources with the five 
most stringent emission limits is an accurate reflection of the MACT 
floor.
    Comment. Eight commenters contend that the limits are not 
consistently achievable under the worst foreseeable conditions over 
time even by the casthouses used to establish the MACT floor. In 
support, the commenters claimed they had provided opacity data showing 
that the limits have not been consistently achieved by well-operated 
and maintained casthouses. Achievability of the opacity limit for blast 
furnace casthouses is of particular concern because the process is 
subject to infrequent but significant swings in emission rates. The 
commenters recommend that EPA collect and analyze all available opacity 
data from States, Regions, and industry and determine the standard 
based on achievability. They recommend using a statistically-derived 
limit based on a high confidence level (the 99.97th percentile) to 
avoid an unachievable standard that would result in many violations.
    Response. Following proposal, in order to confirm the 
appropriateness of the proposed opacity limit, we collected additional 
opacity data and identified the best-performing sources in terms of low 
opacity. Our analysis considered all of the opacity data submitted by 
the commenters and data obtained from other sources. For the five best-
performing blast furnace casthouses (i.e., lowest opacities) with 
observations over at least 1 year, a 20 percent opacity limit was 
achieved for 99 to 99.8 percent of the time. We believe the data 
clearly show that an opacity limit of 20 percent represents what has 
been achieved by the best-performing sources and that it can be 
achieved on a continuing basis.
8. Opacity Standards for BOPF Shops
    Comment. Eight commenters contend that the limits are not 
consistently achievable under the worst foreseeable conditions over 
time. They claim that opacity data submitted to EPA by the industry 
demonstrate that the limits are not consistently achieved by well-
operated and maintained BOPF shops, and as a result, EPA must 
reevaluate the achievability of the proposed opacity standards.
    Response. Following proposal, in order to confirm the 
appropriateness of the proposed 20 percent opacity limit, we obtained 
additional opacity data for operating BOPF shops to supplement the 
limited data we had available at proposal. We now have opacity data for 
19 of the 23 existing BOPF shops ranging in coverage from a single 2-
hour test to multiple tests covering several years of observations. Our 
analysis considered all of the opacity data submitted by the commenters 
and data obtained from other sources. We examined the data and found 
that the best-controlled BOPF shops were those with secondary capture 
and control systems. In contrast, several BOPF shops without secondary 
controls experienced frequent exceedances of the 20 percent opacity 
limit. A total of eight BOPF shops have capture systems for secondary 
emissions that are vented to baghouses. We re-evaluated the data to 
determine the appropriateness and achievability of the proposed 20 
percent opacity limit. We focused on BOPF shops for which we had a 
reasonable amount of long-term data. Specifically, we examined opacity 
data only from shops for which we had 12 months or more of observations 
(i.e., all seasons of the year), which included observations for 11 of 
the 23 existing shops. The five best-performing shops achieved the 
limit 99.5 to 99.98 percent of the time. These data clearly indicate 
that the best-performing units in the category achieve the proposed 
opacity limit (but do not achieve a more stringent level of control), 
and, therefore, that the State limits are a good proxy for actual best 
performance. Thus, we are confident that the proposed opacity limit of 
20 percent is achievable and that it provides an accurate picture of 
the actual performance achieved by the best-performing sources.
    Our analysis of the opacity data for BOPF shops indicated that 
opacity observations are routinely made over several consecutive steel 
production cycles. In the proposal, we had included a provision that 
the opacity observations during the performance test did not have to be 
consecutive. In today's final rule, we have removed the provision which 
allowed non-consecutive observations. This is consistent with the 
opacity data used to support the opacity limit and with the procedures 
routinely used to make opacity observations for BOPF.
9. Sinter Cooler Stack
    Comment. Six commenters note that one of the plants used to 
calculate the MACT floor is permanently shut down. Consequently, the 
floor analysis does not reflect the SIP requirements for actual 
operating sources. In addition, EPA has not shown that the proposed 
standard is achievable by the best-performing sources under the 
foreseeable range of operating conditions.
    Response. Our investigation into this comment indicates that all 
five of the sinter plants listed in Table B-11 of the BID are operating 
(Ispat-Inland at East Chicago, IN; WCI Steel at Youngstown, OH; 
Bethlehem Steel at Sparrows Point, MD; U.S. Steel at Gary, IN; and AK 
Steel at Middletown, OH). Because we had only limited test data, we 
based the MACT floor on the average of the top five sources subject to 
the most stringent existing State regulations or permit limits. One 
plant has a limit of 0.01 gr/dscf (for one-half of its cooler), three 
of the five best-performing plants are subject to a limit of 0.03 gr/
dscf, and one plant has a lb/hr limit that is equivalent to about 0.05 
gr/dscf. The average and median limit applied to the top five plants is 
0.03 gr/dscf. Although our data are limited, they show that the 
proposed emission limit is achievable and has been achieved based on 
the available test results. Nationwide, baghouses are used at three 
plants, a cyclone at one plant, and three plants are uncontrolled. 
Consequently, the best-performing plants and the median of the top five 
would be a plant with a baghouse. A test at WCI Steel, which controls 
these emissions with a baghouse, ranged from 0.005 to 0.02 gr/dscf and 
averaged 0.009 gr/dscf. The results for WCI show significant 
variability in the run-to-run results, which range up to 0.02 gr/dscf. 
The test results indicate that the better-controlled plants can achieve 
the limit

[[Page 27656]]

of 0.03 gr/dscf; however, considering the high variability from run to 
run, the plant is not substantially overachieving the limit.
    No commenters provided any evidence that the existing State limits 
were not being achieved on a continuing basis (e.g., in the form of 
violation reports), and we have no evidence that any facility has been 
in violation of the existing State limits. Consequently, we believe the 
floor based on State limits represents a reasonably accurate picture of 
what the best-performing sources have and continue to achieve. For new 
sources, we chose a limit of 0.01 gr/dscf based on the most stringent 
State limit. The average test results for WCI Steel (0.009 gr/dscf) 
show that this limit is achievable by a properly-designed and operated 
baghouse.
10. PM Standard for Sinter Discharge End Control Device
    Comment. According to one commenter, EPA claims it has PM test data 
from six plants, but asserts in the preamble that it has credible test 
data for only one plant and never explains why data for only one plant 
is credible. The EPA does not explain how this represents an accurate 
picture of the relevant best sources' actual performance, or how it 
knows that the best sources are not doing better than their permits 
require.
    Response. The reference to test data in the BID is correct; 
however, use of the term ``test data'' in the BID was not correct. We 
had estimates of PM emissions from the discharge end from several 
plants based on emission factors that they supplied in a survey 
questionnaire. However, these estimates were not supported by the use 
of reference methods for sampling and analysis or substantiated by 
emission test reports. For units in this category, it is not feasible 
to use estimates based on typical emission factors to identify the 
level of control that a plant routinely achieves. Therefore, this 
information is of no practical value for purposes of identifying the 
best-performing sinter discharge ends. We found the only test data we 
could validate for the discharge end was for the EPA test conducted at 
WCI Steel. The results of this test support our conclusion that the 
existing State limits reasonably approximate actual emissions and 
performance. However, we have no indication or expectation that the 
best-performing plants are achieving a level of control more stringent 
than the proposed emission limit. Consequently, we based the floor on 
the most stringent State limits.
    Comment. Seven commenters state that three of the nine sinter 
plants in the existing population are now shut down, including one of 
the five plants used to calculate the floor for the discharge end. The 
commenters assert that EPA must recalculate the floor to reflect only 
operating sources. Also, EPA must show that the standard is 
consistently achievable by the best-performing sources under the 
foreseeable range of operating conditions.
    Response. We agree that one of the five best-performing plants 
(Wheeling-Pittsburgh Steel) used to determine the floor was shut down 
at the time of the floor analysis. We elected to re-calculate the floor 
and exclude this plant. We determined that the floor based on the 
average of the five best-performing sources remains the same (0.02 gr/
dscf). One plant is subject to a limit of 0.01 gr/dscf, two plants are 
subject to a limit of 0.02 gr/dscf, one is subject to 0.03 gr/dscf, and 
the fifth plant has a mass rate limit that is equivalent to about 0.04 
gr/dscf. The average and median value associated with the top five 
limits is 0.02 gr/dscf. We have detailed design information for the 
baghouses applied to the discharge end, and our engineering analysis of 
the design information, coupled with test data for baghouses in similar 
applications, indicates that these controls can achieve 0.02 gr/dscf 
under the foreseeable range of operating conditions. Although we have 
test data for only one baghouse, the test averaged 0.006 gr/dscf and 
further supports the achievability of the MACT floor. We based the MACT 
floor for new sources on the most stringent State limit of 0.01 gr/
dscf. Again, the available test data indicate that this limit can be 
achieved by a properly-designed and operated baghouse.
11. PM Standard for BOPF Fugitive Emissions
    Comment. One commenter stated that EPA does not explain how the 
floor determination represents an accurate picture of the relevant best 
sources' actual performance, or how it knows that the best sources are 
not doing better than their permits require.
    Response. We have test data for only one baghouse applied to BOPF 
fugitive emissions, and because of the nature of the test, the results 
are not useful for determining the MACT floor. During the test, 
sampling was performed continuously over a 3-hour period, even when the 
furnace was not operating and when fugitive emissions were not 
occurring. Consequently, the reported concentrations for the baghouse 
outlet are unrepresentative of the concentrations that would be 
measured when fugitive emissions from charging and tapping are 
occurring. Because of the lack of data, we based the floor on existing 
State limits and have made no changes to the proposed emission limits. 
We chose 0.01 gr/dscf as the floor from the median of the five sources 
with the most stringent limits (one at 0.0052, one at 0.006, two at 
0.01, and one at 0.012 gr/dscf). One unit is subject to the most 
stringent State limit of 0.0052 gr/dscf, and we selected this limit as 
the MACT floor for new sources. These limits are achieved by using a 
capture system vented to a baghouse, and these levels are consistent 
with the performance of well-designed and operated baghouses. We have 
no evidence that plants are violating their current limits, and we have 
no indication they are achieving a level of control more stringent than 
the identified State limits. This observation is consistent with an EPA 
design manual for baghouses which states that typical outlet 
concentrations for all applications range from 0.001 to 0.01 gr/dscf 
(depending primarily on the design parameters).

B. What Surrogates Did We Use for HAP?

1. PM for Metal HAP
    Comment. One commenter contends that PM is not a valid surrogate 
for HAP metal compounds and that specific limits for individual metals 
should be established. In support, the commenter points to other rules 
where EPA has recognized that PM is not a valid surrogate for mercury, 
lead, and cadmium because of their volatility and that these emissions 
cannot necessarily be controlled merely by controlling PM emissions. 
Consequently, EPA cannot claim PM is a valid surrogate for metal HAP in 
the final rule or that setting standards for individual metals would 
``. . . achieve little, if any, HAP emission reduction beyond what 
would be achieved using the surrogate pollutant approach based on total 
PM.'' Because EPA has already recognized that PM is not an adequate 
surrogate for mercury, lead, and cadmium, EPA must set individual 
emission standards for such HAP.
    Response. We disagree with the commenter and believe that PM is a 
valid surrogate for the HAP metal compounds emitted from integrated 
iron and steel sources. The rationale in the preamble for the hazardous 
waste combustors (HWC) rule is unique to that source category and does 
not apply to the metal HAP emissions and controls in the integrated 
iron and steel industry.

[[Page 27657]]

The preamble for the final HWC rule makes this point clearly:

    . . . However, for sources not burning hazardous waste and 
without a significant potential for extreme variability in metals 
feed rates, PM is an adequate surrogate for metal HAP (e.g., for 
nonhazardous waste burning cement kilns).\1\
------------------------------------------------------------------------

    \1\ See Footnote 40 in preamble to the final HWC rule (64 FR 
52846, September 30, 1999).

    Hazardous waste combustors are unique and different from integrated 
iron and steel sources in several respects:
    ? They have significant levels of volatile and semi-volatile 
HAP metal compounds in the waste-derived fuels being burned,
    ? The feed rate of these metals can be highly variable, and
    ? The high temperatures in the combustion process can 
volatilize semi-volatile metals and form fine PM, which can be harder 
to control. In contrast, the raw materials used in iron and steel 
processes have relatively low levels of metal HAP, the level of metal 
HAP does not vary significantly as do the HAP metals in waste materials 
fed to HWC, and test data indicate that PM control devices effectively 
control the HAP metals from iron and steel processes.
    A key parameter for the control of both semi-volatile and non-
volatile metal compounds is the operating temperature of the air 
pollution control device that is applied. At temperatures of 200 to 
400[deg]F, the range typical of control devices applied to emissions 
from integrated iron and steel processes, any semi-volatile and non-
volatile HAP metal compounds present would exist in the form of fine 
PM, and, therefore, will be controlled in direct relationship to PM.
    Mercury is an exception because of its high volatility. However, we 
have no data that show any significant emissions of mercury from 
integrated iron and steel plants, and there is no reason to suspect its 
presence in any appreciable quantities in emissions from ironmaking and 
steelmaking. In the two sinter plant tests we conducted, we sampled and 
analyzed for mercury. The results showed only trace levels of mercury 
(7 x 10-\7\ to 2 x 10-\6\ gr/dscf). Thus, we 
believe that mercury emissions from integrated iron and steel sources 
are negligible and that the performance of these units with respect to 
any trace levels of mercury can not be measurably improved. Moreover, 
no iron and steel plants operate an emissions control system that would 
further reduce these trace amounts of mercury emissions, or otherwise 
take any steps that would reduce such emissions. Because no units 
currently reduce mercury emissions from the integrated iron and steel 
industry, the MACT floor for mercury (for both new and existing 
sources) would be no reduction in emissions. Because the mercury 
concentrations are already so low, no technically feasible control 
technologies can be identified that could reduce these trace levels of 
mercury emissions. Therefore, no mercury emissions standards are 
proposed for integrated iron and steel sources.
2. Oil Content for Organic HAP
    Comment. Two commenters urged us to establish emission standards 
for specific organic HAP, including dioxin, in lieu of the oil content 
limit. One commenter contends that the proposed rule should contain 
emission limits for the many organic HAP emitted from iron and steel 
plants, including dioxin, polycyclic organic matter, benzene, and 
toluene. The proposed operating requirement for sinter plants is not an 
emission standard and does not satisfy CAA requirements. Furthermore, 
regulations pursuant to section 112 of the CAA must include emission 
standards for each HAP emitted from an affected source category. The 
commenter adds that EPA provided no data in support of the proposed 
approach for controlling dioxin emissions. This commenter believes the 
proposed rule effectively ignores organic HAP in contradiction of CAA 
requirements because vapor phase organics are not removed by the fabric 
filters or wet scrubbers.
    Several commenters contend that EPA has not met its requirements to 
show a correlation between the surrogate to be controlled and the 
object of control. Two commenters state that EPA has not provided 
sufficient data to demonstrate a correlation. Eight other commenters do 
not believe that there is a correlation to dioxin emissions or that 
control of the oil and grease would reduce HAP organic emissions. In 
support, they claim data from one plant (Bethlehem Steel, Sparrows 
Point) show no VOC increase in windbox emissions as oil content 
increases.
    Response. The only available data regarding organic HAP emissions 
from these units are from two tests we conducted. These tests are 
insufficient to generate a meaningful characterization of emission 
control levels that can be achieved under varying process conditions 
over time, and there is no way to use this emissions test data to 
identify the best-performing plants. Moreover, the add-on emission 
controls used by units in the category (baghouses and venturi 
scrubbers) do not control vapor phase organic compounds. As a result, 
we believe that the best way to assess current levels of VOC emission 
control, and to limit such emissions is to rely upon existing methods 
of pollution prevention. Accordingly, we have established limits on the 
amount of organic HAP precursor material (specifically oil and grease) 
that may be in the sinter feed, in order to control emissions of 
organic compounds. Additionally, section 112(d)(2) of the CAA 
specifically allows EPA to establish MACT standards based on emission 
controls that rely on pollution prevention techniques.
    We have added information to the docket from a European study that 
shows dioxin emissions are related to oil content-emissions increase as 
the oil content increases. We have also added information from two U.S. 
sinter plants that show VOC emissions increase as oil content 
increases, and the VOC contains volatile HAP such as benzene. In fact, 
plants in Indiana control VOC emissions by limiting the amount of oil 
in the sinter feed. Because the two are related, Indiana allows 
monitoring oil content as an alternative to VOC monitoring. In the 
past, sinter plants with baghouses have voluntarily limited oil content 
because the organic compounds that were emitted tend to condense and 
blind the bags as well as pose a fire hazard. We believe these studies 
conclusively show that oil content correlates with organic emissions.
    An emission limit for individual organic compounds is not practical 
because the emission controls that are used do not effectively control 
all organic HAP. Conventional control systems used for organics, such 
as incineration or carbon adsorption, would not be practicable because 
they are ineffective at the very low concentration (parts per million 
levels) in the windbox exhaust stream. On the other hand, a limit on 
oil content effectively limits emissions of organic HAP, and control of 
oil content is a proven emission control measure. Consequently, in this 
instance, we believe that a limit on oil content is the only feasible 
way to ensure that all plants achieve the MACT level of control for 
organic HAP from the sinter plant windbox exhaust.

C. Is a Risk Analysis Warranted?

    Comment. Seven commenters urge EPA to perform a risk assessment 
under section 112(d)(4) of the CAA for manganese to determine if HAP 
controls are necessary. Manganese is a health threshold pollutant, and 
there is little likelihood of chronic or widespread

[[Page 27658]]

exposure at concentrations above the threshold at iron and steel 
plants. The EPA conducted this analysis for the pulp and paper 
standards and decided not to regulate hydrogen chloride emissions. 
According to the commenters, risk-based standards under section 
112(d)(4) would result in no standards, or less stringent and more cost 
effective standards.
    Response. Section 112(d)(4) of the CAA provides EPA with authority, 
at its discretion, to develop risk-based standards for HAP ``. . . for 
which a health threshold has been established,'' provided that the 
standard achieves an ``ample margin of safety.'' Section 112(d)(4) 
says:

[w]ith respect to pollutants for which a health threshold has been 
established, the Administrator may consider such threshold level, 
with an ample margin of safety, when establishing emission standards 
under this subsection.

    As EPA has indicated in the past (see 63 FR 18754 and 67 FR 44713), 
we generally apply section 112(d)(4) of the CAA only to HAP that are 
not carcinogens because Congress clearly expected that carcinogens 
would be non-threshold pollutants. The legislative history further 
indicates that if EPA invokes this provision, it must assure that any 
emission standard results in ambient concentrations less than the 
health threshold, with an ample margin of safety, and that the 
standards must also be sufficient to protect against adverse 
environmental effects. (See S. Rep. No. 228, 101st Cong. at 171.) The 
EPA is not to consider cost in establishing a standard pursuant to 
section 112(d)(4).
    Therefore, EPA believes it has the discretion under section 
112(d)(4) of the CAA to develop risk-based standards for some 
categories emitting threshold pollutants, which may be less stringent 
than the corresponding floor-based MACT standard would be. Where EPA 
develops standards under this provision, we seek to ensure that 
emissions from every source in the category or subcategory are less 
than the threshold level to an individual exposed at the upper end of 
the exposure distribution. We believe that assuring protection to 
persons at the upper end of the exposure distribution is consistent 
with the ample margin of safety requirement in section 112(d)(4). (See 
63 FR 18754 at 18768.)
    However, the EPA emphasizes that use of section 112(d)(4) of the 
CAA authority is wholly discretionary. As the legislative history 
described above indicates, cases may arise in which other 
considerations dictate that the Agency should not invoke this authority 
to establish less stringent standards, despite the existence of a 
health effects threshold that is not jeopardized. For instance, EPA 
does not anticipate that it would set less stringent standards where 
evidence indicates a threat of significant or widespread environmental 
effects, although it may be shown that emissions from a particular 
source category do not approach or exceed a level requisite to protect 
public health with an ample margin of safety. The EPA may also elect 
not to set less stringent standards where the estimated health 
threshold for a contaminant is subject to large uncertainty. Thus, in 
considering appropriate uses of its discretionary authority under 
section 112(d)(4), EPA considers other factors in addition to health 
thresholds, including uncertainty and potential adverse environmental 
effects, as that phrase is defined in section 112(a)(7) of the CAA.
    For several reasons, in this case, we have decided not to exercise 
our discretion to consider existing threshold levels for manganese in 
setting the emission standards for metal HAP compounds from integrated 
iron and steel facilities. This decision is appropriate because we have 
insufficient data about the nature and degree of public exposures to 
these emissions, including background exposure levels and other 
relevant factors, to meaningfully consider whether maximum exposures to 
manganese emissions from integrated iron and steel facilities would 
remain below the relevant threshold. In fact, it is clear that 
facilities in this source category emit significant quantities of 
manganese, totaling about 250 tpy. Because the commenters did not 
provide us with any of the detailed site-specific information that we 
would need to perform an adequate assessment of emissions and 
exposures, we have concluded that it would be inappropriate to consider 
the threshold nature of manganese in establishing MACT standards for 
the integrated iron and steel source category. Additionally, the 
commenters have supplied no information about the environmental impact 
of metal emissions from integrated iron and steel plants, and we have 
no data upon which we can rely for such an environmental assessment.
    Moreover, even if we had access to more detailed data regarding 
emissions, exposures, and environmental impact, it is not clear whether 
consideration of the manganese health threshold would have any 
practical effect on the MACT standards established in today's final 
rule. In particular, emissions from integrated iron and steel plants 
include metal HAP besides manganese that are not threshold pollutants 
(including lead, nickel, and chromium compounds), and these pollutants 
are controlled using the same control technologies that reduce 
emissions of manganese. As with manganese, we have no data regarding 
maximum exposures or environmental impacts from such emissions at 
integrated iron and steel facilities, and we have no data specifically 
characterizing these metal emissions. These plants emit about 360 tpy 
of HAP metal compounds--including about 111 tpy of lead, nickel and 
chromium compounds. Certain lead, nickel and chromium compounds are 
listed as carcinogens and have no applicable human health threshold. 
For additional information, see our guidance document entitled 
``Guidance on the Major Source Determination for Certain Hazardous Air 
Pollutants'' available on our Web site at http://www.epa.gov/ttn/oarpg/t3/
memoranda/agghapmem.pdf.
    Today's final rule controls all metal HAP emissions (including 
lead, nickel, and chromium) by using PM as a surrogate. Because we use 
PM as a surrogate, eliminating only one or some of the metal HAP from 
consideration would have little if any practical impact on the MACT 
standards. Consequently, we believe the MACT standards finalized today 
are appropriate and will reduce emissions of all HAP at integrated iron 
and steel plants to the levels currently being achieved by the best-
performing facilities.

D. How Did We Revise the Emission Limitations?

1. Sinter Cooler Emissions
    Comment. Seven commenters explain that some exhaust systems on the 
sinter plant discharge end are designed to capture emissions at the 
point where sinter is loaded onto the sinter cooler and portions of the 
sinter cooler itself. In situations where cooler emissions are 
exhausted in part or in whole to the discharge end control system, the 
commenters request that the cooler stack emissions standard of 0.03 gr/
dscf (for existing facilities) apply to the discharge end baghouse.
    Response. We disagree and have written the final rule to clarify 
that the limit of 0.02 gr/dscf for the discharge end applies even when 
other emissions are ducted to the control device. The most effective 
technology for controlling emissions from the discharge end is a 
baghouse, and a properly-designed and operated baghouse can achieve 
0.02 gr/dscf on a continuing basis. An emission limit of 0.03 gr/dscf 
is too high to be representative of the MACT floor, and

[[Page 27659]]

does not reflect what is currently achieved by the five best-performing 
sources.

2. Sinter Plant Oil Content Requirement

    Comment. Sinter plants in Maryland and Indiana already must comply 
with rules that regulate the oil and grease content for the sinter 
plant raw material blend. The rules limit VOC emissions to no more than 
0.25 lb/ton of sinter (except Indiana allows 0.36 lb/ton during non-
ozone season). Maryland requires VOC testing and Indiana provides the 
option of VOC testing or sampling for oil content. Seven commenters 
recommend VOC testing as an option in the final rule because most 
plants in these states already use them; some comments also suggest a 
30-day rolling average for VOC.
    Response. We reviewed data submitted by two plants that showed VOC 
emissions correlated with oil content. LTV Steel (now owned by 
International Steel Group) performed simultaneous testing of oil 
content and VOC emissions, correlated the results, and showed that an 
oil content of 0.024 percent was equivalent to the State VOC limit of 
0.25 lb/ton of sinter. As a result, the State allowed them to use 
alternative monitoring procedures. Based on our review of the data, we 
believe that maintaining the VOC at a level of 0.2 lb/ton or lower will 
ensure that the operating limit of 0.02 percent oil is maintained. 
Consequently, we have written the final rule to include an alternative 
emission limitation for VOC of 0.2 lb/ton of sinter. A plant electing 
the alternative limit is required to measure VOC emissions (total 
gaseous nonmethane organics as carbon) in source emissions using EPA 
Method 25 in 40 CFR part 60, appendix A (or a previously approved 
method). As with the oil content, the VOC limit is based on a 30-day 
rolling average. The 30-day average provides additional flexibility 
because it allows an occasional high daily value to be averaged with 
lower values on other days to achieve compliance. We believe the 30-day 
average accounts for day-to-day variability and enhances the 
achievability of the limit.
3. ESP Operating Limit
    Comment. For plants required to use COMS to monitor ESP, the 
proposed rule establishes an enforceable operating limit based on the 
opacity observed during the initial performance test. Eight commenters 
argue that COMS data should not be used for compliance determinations 
because of measurement uncertainties and unreliability. They point to 
the recognized limitation for measuring opacity below 10 percent and 
provide supporting data comparing COMS measurements in ESP stacks to 
EPA Method 9 data. Like the steel pickling MACT standard, COMS data 
should be used only to indicate if the ESP is operating properly and to 
institute corrective action as appropriate; subsequent EPA Method 9 
observations may be appropriate in the event of a high number of 
measured excursions. These commenters also object to the operating 
limit for ESP equipped with COMS because EPA has not demonstrated a 
correlation between opacity and PM emissions from BOPF controlled by 
ESP to support using opacity as a surrogate for PM. A COMS opacity 
reading that is above that observed during a performance test does not 
necessarily indicate an exceedance because the high reading could have 
been caused by water vapor or another interference. The commenters 
believe EPA has not demonstrated that the tiny amount of data collected 
during the initial performance test would be representative of the 
opacity performance of ESP over the full range of foreseeable operating 
conditions. Thirty 6-minute averages taken over a 3-hour period will 
not adequately characterize the range of 87,600 6-minute averages 
generated over an entire year. Thus, EPA has not demonstrated that a 
limit set in this manner would be consistently achievable by well-
operated and maintained equipment under the most adverse operating 
conditions over time.
    Response. We believe that opacity is well established as a 
surrogate for PM. However, we understand the concerns of the commenters 
with respect to variability and have written the procedures in the 
final rule for determining the COMS operating limit to account for 
variability. The opacity operating limit is based on measurement of 6-
minute averages during the performance test, and then calculating the 
99 percent upper confidence limit on the mean of a normal distribution 
of the average opacity values. This statistical approach will account 
for normal variability and still provide assurance that the ESP is 
operating properly.
4. Operating Limits for Capture Systems
    Comment. Nine commenters believe that an enforceable range of 
operating limits applicable under all operating conditions cannot be 
determined from the initial performance test for damper systems. Fixed 
damper positions for one set of operating conditions are not 
appropriate due to varying simultaneous operations, normal process 
variations, and seasonable variations. The final rule should allow 
sources to specify multiple operating scenarios or ranges of operation 
in the operation and maintenance plan and require plants to meet the 
values in the plan rather than those set in the initial performance 
test. Eight of these commenters also recommend that the final rule 
include an alternative allowing continuous monitoring of fan amperage, 
like the provisions included in the proposed standards for coke plants.
    Response. We investigated this issue further, and based on the 
additional information we received, we agree that fixed damper settings 
are not practicable or desirable in many cases. For example, damper 
settings may need to be changed in the BOPF shop depending on the 
operations underway at the time, such as hot metal transfer, 
desulfurization, charging, oxygen blowing, and tapping. We have written 
the final rule to provide flexibility and have modeled it after the 
MACT standard for primary copper smelters. The owner or operator must 
specify in the operation and maintenance plan the damper settings that 
will be used under different operating scenarios and for seasonal 
variations. These damper settings must be checked once per day. We have 
also added fan amperage as an acceptable alternative, consistent with 
the MACT standards for coke ovens and for primary copper smelters.

E. How Did We Revise the Performance Test Requirements?

1. Overlapping Cycles
    Comment. Some plants have the capability of overlapping cycles of 
two separate furnaces (e.g., they may blow one furnace while another is 
being tapped). It appears that EPA's database is comprised of tests 
conducted on single furnaces. For this reason, seven commenters ask EPA 
to clarify that testing of primary emissions from BOPF is to be 
conducted during the steel production cycle of a single furnace. Other 
shop operations may be suspended during the testing. This approach is 
consistent with the manner in which the data were collected.
    Response. We specify in the final rule exactly when owners or 
operators must test primary emissions from BOPF. For closed hood BOPF, 
plants must sample only during the primary oxygen blow. For open hood 
BOPF, plants must sample during the steel production cycle. We 
clarified that the steel production cycle begins when scrap is charged 
to the furnace and ends 3 minutes after the slag is emptied from the 
vessel. These requirements are

[[Page 27660]]

consistent with the way the emission test data were collected. We do 
not agree that testing should be performed under conditions that do not 
represent normal operations, such as suspending certain shop 
operations. The provisions in 40 CFR 63.7(e) apply and require that 
sampling be conducted under conditions that are based on representative 
performance (i.e., performance based on normal operating conditions of 
the affected source).
2. Testing Multiple Stacks
    Comment. Eight commenters believe it is impractical and burdensome 
to require simultaneous tests of multiple stacks or vents for a control 
device (e.g., baghouse with eight modules, each with its own fan and 
stack). Successive testing of each stack or vent could be more 
manageable, but still has excessive costs. One commenter estimates 42 
days of testing could be needed at one plant if each stack and vent 
must be tested. For these reasons, the proposed rule should be revised 
to allow for performance tests of a representative exhaust flow where 
control devices with multiple stacks are used.
    Response. We agree and believe that because of the site-specific 
nature of this problem, decisions should be made on a case-by-case 
basis by the applicable permitting authority. We have written the final 
rule such that a source may conduct a representative sampling of stacks 
subject to the approval of the permitting authority when there are more 
than three stacks associated with a process.

F. How Did We Revise the Cost Estimates and Economic Impact Analysis?

    Comment. Several commenters stated that we significantly 
underestimated the cost of the proposed rule. At proposal, we estimated 
a capital cost of $34 million. The commenters said that the total 
capital cost was in the range of $270 to $320 million. Their estimate 
includes the cost of controls for plants not included in EPA's estimate 
as well as higher estimates of the cost for controls and monitoring in 
general.
    Response. Following proposal and the receipt of comments, we 
contacted facilities to discuss the details of their cost estimates. 
Some facilities provided the details and basis of their estimates, and 
we incorporated them into our revised estimates. Other plants did not 
provide details or documentation; consequently, we developed our best 
estimate of potential costs for these facilities. In addition, we 
collected opacity data for most of the operating plants. We used these 
data to identify plants that may need to install capture and control 
systems in the blast furnace casthouse or BOPF shop to meet the 20 
percent opacity limit. Our revised capital cost estimate increased to 
$93 million.
    Comment: Eight commenters urge EPA to update it's economic impact 
analysis to represent current economic conditions of the steel industry 
and the cumulative effect of all other pending environmental regulatory 
requirements facing the industry during the same time period.
    Response: We agree with the commenters and have performed a revised 
economic impact analysis. The revised analysis attempts to account for 
the factors mentioned in the comment. At proposal, we estimated 
domestic production from integrated steel mills would decline by 3,100 
tons, and operating profits were expected to decrease by $5.2 million 
annually. With our revised analysis, we estimate domestic production 
from integrated mills will decline by 73,000 tons, and operating 
profits will decrease by $13 million per year. A complete copy of the 
economic impact analysis is available in the docket.

IV. Summary of Environmental, Energy, and Economic Impacts

A. What Are the Air Emission Impacts?

    The installation of new controls and upgrades will result in 
reductions in emissions of metal HAP and PM. We estimate that five new 
capture and control systems for the blast furnace casthouses will 
reduce these emissions by 90 percent, a reduction of 14 tpy of HAP and 
2,100 tpy of PM. The new BOPF scrubbers at one plant and upgrades at 
two others will result in a 50 percent reduction in emissions, 5 tpy of 
HAP and 350 tpy of PM. Six new capture and control systems for fugitive 
emissions from BOPF shops will result in a 90 percent reduction in 
emissions, 48 tpy of HAP and 3,300 tpy of PM.
    Most plants currently operate air pollution control equipment 
sufficient to meet the final rule requirements. We expect the standard 
to reduce metal HAP emissions from plants that will need to install or 
upgrade controls by 67 tpy and PM emissions by 5,800 tpy. Nationwide 
emissions of metal HAP and PM from integrated iron and steel plants 
will be reduced by nearly 20 percent from current levels.

B. What Are the Cost Impacts?

    The nationwide capital and annual costs of new and upgraded capture 
and control systems are estimated at $93 million and $15 million/yr, 
respectively. The total nationwide annual costs (including monitoring 
and recordkeeping) are about $16 million/yr. These costs are based on a 
new primary control system (high-pressure drop venturi scrubbers) for 
one BOPF shop, upgraded primary controls at two others, six new capture 
and control systems for fugitive BOPF emissions, and five new capture 
and control systems for blast furnace casthouses. In addition, the 
estimate includes a capital cost of $0.9 million and a total annual 
cost of $1 million for monitoring, reporting, and recordkeeping.

C. What Are the Economic Impacts?

    We conducted a detailed economic impact analysis to determine the 
impacts of the final rule on both the industry and the U.S. market for 
steel mill products. We estimate the economic impacts in both areas to 
be negligible. We project the price of steel mill products, in 
aggregate, to increase by less than 0.1 percent with domestic 
production from integrated mills declining by 73,100 short tons. This 
decline in production at affected integrated mills is somewhat offset 
by increases at nonintegrated domestic steel producers (15,800 short 
tons) and foreign imports (49,500 short tons). In terms of industry 
impacts, the integrated steel producers are projected to experience a 
slight decrease in operating profits of $13 million annually, which 
reflects increased costs of compliance and associated reductions in 
revenues from producing final steel mill products. In addition, we 
don't foresee any individual integrated facility being in jeopardy of 
closure as a result of implementing the rule.
    Based on the market analysis, the annual costs to society of 
today's final rule are projected to be $15.4 million. As a result of 
slightly higher prices for steel mill products, the final consumers of 
these products will incur an additional $6.2 million annually. Profits 
at integrated steel mills are expected to decline by $13 million 
annually because of directly incurred control costs and reduced product 
revenues, while nonintegrated steel mills that compete in these markets 
and are unaffected by today's rule will experience an increase in 
profits of $2.2 million. Similarly, foreign steel producers will also 
experience an increase in profits of $1.7 million due to the slightly 
higher prices and increases in imports to the U.S. market. For more 
information, consult the economic impact analysis supporting the 
proposed rule.

[[Page 27661]]

D. What Are the Non-Air Health, Environmental, and Energy Impacts?

    Implementation of the rule will result in a small increase in solid 
waste-3,200 tpy of sludge and 5,500 tpy of dust. The energy increase is 
estimated at 24,000 megawatt-hours per year, primarily due to the 
energy requirements of new venturi scrubbers.

V. Statutory and Executive Order Reviews

A. Executive Order 12866: Regulatory Planning and Review

    Under Executive Order 12866 (58 FR 51735, October 4, 1993), the EPA 
must determine whether the regulatory action is ``significant'' and, 
therefore, subject to review by the Office of Management and Budget 
(OMB) and the requirements of the Executive Order. The Executive Order 
defines a ``significant regulatory action'' as one that is likely to 
result in a rule that may:
    (1) Have an annual effect on the economy of $100 million or more or 
adversely affect in a material way the economy, a sector of the 
economy, productivity, competition, jobs, the environment, public 
health or safety, or State, local, or tribal governments or 
communities;
    (2) Create a serious inconsistency or otherwise interfere with an 
action taken or planned by another agency;
    (3) Materially alter the budgetary impact of entitlement, grants, 
user fees, or loan programs or the rights and obligations of recipients 
thereof; or
    (4) Raise novel legal or policy issues arising out of legal 
mandates, the President's priorities, or the principles set forth in 
the Executive Order.
    It has been determined that the final rule is not a ``significant 
regulatory action'' under the terms of Executive Order 12866, and is, 
therefore, not subject to OMB review.

B. Paperwork Reduction Act

    The information collection requirements in the final rule have been 
submitted for approval to OMB under the Paperwork Reduction Act, 44 
U.S.C. 3501 et seq. An information collection request (ICR) document 
has been prepared by EPA (ICR No. 2003.02), and a copy may be obtained 
from Susan Auby by mail at U.S. EPA, Office of Environmental 
Information, Collection Strategies Division (2822T), 1200 Pennsylvania 
Avenue, NW., Washington, DC 20460, by e-mail at auby.susan@epa.gov, or 
by calling (202) 566-1672. A copy also may be downloaded off the 
Internet at http://www.epa.gov/icr. The information requirements are 
not enforceable until OMB approves them.
    The information requirements are based on notification, 
recordkeeping, and reporting requirements in the NESHAP General 
Provisions (40 CFR part 63, subpart A), which are mandatory for all 
operators subject to NESHAP. These recordkeeping and reporting 
requirements are specifically authorized by section 112 of the CAA (42 
U.S.C. 7414). All information submitted to the EPA pursuant to the 
recordkeeping and reporting requirements for which a claim of 
confidentiality is made is safeguarded according to Agency policies in 
40 CFR part 2, subpart B.
    The final rule requires applicable one-time notifications required 
by the General Provisions for each affected source. As required by the 
NESHAP General Provisions, all plants must prepare and operate by a 
startup, shutdown, and malfunction plan. Plants also are required to 
prepare an operation and maintenance plan for capture systems and 
control devices subject to operating limits. Records are required to 
demonstrate continuous compliance with the monitoring, operation, and 
maintenance requirements for capture systems, control devices, and 
monitoring systems. Semiannual compliance reports also are required. 
These reports must describe any deviation from the standards, any 
period a continuous monitoring system was out-of-control, or any 
startup, shutdown, or malfunction event where actions taken to respond 
were inconsistent with startup, shutdown, and malfunction plan. If no 
deviation or other event occurred, only a summary report is required. 
Consistent with the General Provisions, if actions taken in response to 
a startup, shutdown, or malfunction event are not consistent with the 
plan, an immediate report must be submitted within 2 days of the event 
with a letter report 7 days later.
    The annual public reporting and recordkeeping burden for this 
collection of information averaged over the first 3 years after May 20, 
2003 is estimated to total 4,772 labor hours per year at a total annual 
cost of $347,115, including labor, capital, and operation and 
maintenance. Total capital costs associated with the monitoring 
equipment is estimated at $885,000. The total annualized cost of the 
monitoring equipment is estimated at $126,000. This estimate includes 
the capital, operating, and maintenance costs associated with the 
installation and operation of the monitoring equipment.
    Burden means the total time, effort, or financial resources 
expended by persons to generate, maintain, retain, or disclose or 
provide information to or for a Federal agency. This includes the time 
needed to review instructions; develop, acquire, install, and utilize 
technology and systems for the purpose of collecting, validating, and 
verifying information; adjust the existing ways to comply with any 
previously applicable instructions and requirements; train personnel to 
respond to a collection of information; search existing data sources; 
complete and review the collection of information; and transmit or 
otherwise disclose the information.
    An Agency may not conduct or sponsor, and a person is not required 
to respond to, a collection of information unless it displays a 
currently valid OMB control number. The OMB control numbers for EPA's 
regulations are listed in 40 CFR part 9 and 48 CFR chapter 15.

C. Regulatory Flexibility Act

    The EPA has determined that it is not necessary to prepare a 
regulatory flexibility analysis in connection with the final rule. The 
EPA has also determined that the final rule will not have a significant 
economic impact on a substantial number of small entities. For purposes 
of assessing the impacts of today's final rule on small entities, small 
entity is defined as: (1) A small business according to the U.S. Small 
Business Administration (SBA) size standards for NAICS code 33111 (Iron 
and Steel Mills) of 1,000 or fewer employees; (2) a small governmental 
jurisdiction that is a government of a city, county, town, school 
district or special district with a population of less than 50,000; and 
(3) a small organization that is any not-for-profit enterprise which is 
independently owned and operated and is not dominant in its field.
    After considering the economic impacts of today's final rule on 
small entities, EPA has concluded that this action will not have a 
significant economic impact on a substantial number of small entities. 
Based on the SBA size category for this source category, no small 
businesses are subject to the final rule and its requirements.

D. Unfunded Mandates Reform Act

    Title II of the Unfunded Mandates Reform Act of 1995 (UMRA), Pub. 
L. 104-4, establishes requirements for Federal agencies to assess the 
effects of their regulatory actions on State, local, and tribal 
governments and the private sector. Under section 202 of the UMRA, the 
EPA generally must prepare a written statement, including a cost-
benefit analysis, for proposed and final rules with ``Federal 
mandates'' that may

[[Page 27662]]

result in expenditures by State, local, and tribal governments, in the 
aggregate, or by the private sector, of $100 million or more in any one 
year. Before promulgating an EPA rule for which a written statement is 
needed, section 205 of the UMRA generally requires the EPA to identify 
and consider a reasonable number of regulatory alternatives and adopt 
the least costly, most cost-effective, or least-burdensome alternative 
that achieves the objectives of the rule. The provisions of section 205 
do not apply when they are inconsistent with applicable law. Moreover, 
section 205 allows the EPA to adopt an alternative other than the 
least-costly, most cost-effective, or least-burdensome alternative if 
the Administrator publishes with the final rule an explanation why that 
alternative was not adopted. Before the EPA establishes any regulatory 
requirements that may significantly or uniquely affect small 
governments, including tribal governments, it must have developed under 
section 203 of the UMRA a small government agency plan. The plan must 
provide for notifying potentially affected small governments, enabling 
officials of affected small governments to have meaningful and timely 
input in the development of EPA regulatory proposals with significant 
Federal intergovernmental mandates, and informing, educating, and 
advising small governments on compliance with the regulatory 
requirements.
    Today's final rule contains no Federal mandate (under the 
regulatory provisions of the UMRA) for State, local, or tribal 
governments. The EPA has determined that the final rule does not 
contain a Federal mandate that may result in expenditures of $100 
million or more for State, local, and tribal governments, in the 
aggregate, or the private sector of $100 million or more in any one 
year. Thus, the final rule is not subject to the requirements of 
sections 202 and 205 of the UMRA. The EPA has also determined that the 
final rule contains no regulatory requirements that might significantly 
or uniquely affect small governments. Thus, today's final rule is not 
subject to the requirements of section 203 of the UMRA.

E. Executive Order 13132: Federalism

    Executive Order 13132 (64 FR 43255, August 10, 1999) requires EPA 
to develop an accountable process to ensure ``meaningful and timely 
input by State and local officials in the development of regulatory 
policies that have federalism implications.'' ``Policies that have 
federalism implications'' is defined in the Executive Order to include 
regulations that have ``substantial direct effects on the States, on 
the relationship between the national government and the States, or on 
the distribution of power and responsibilities among the various levels 
of government.''
    The final rule does not have federalism implications. It will not 
have substantial direct effects on the States, on the relationship 
between the national government and the States, or on the distribution 
of power and responsibilities among the various levels of government, 
as specified in Executive Order 13132. None of the affected facilities 
are owned or operated by State governments. Thus, Executive Order 13132 
does not apply to the final rule.

F. Executive Order 13175: Consultation and Coordination With Indian 
Tribal Governments

    Executive Order 13175 (59 FR 22951, November 9, 2000) requires EPA 
to develop an accountable process to ensure ``meaningful and timely 
input by tribal officials in the development of regulatory policies 
that have tribal implications.''
    The final rule does not have tribal implications, as specified in 
Executive Order 13175. It will not have substantial direct effects on 
tribal governments, on the relationship between the Federal government 
and Indian tribes, or on the distribution of power and responsibilities 
between the Federal government and Indian tribes. No tribal governments 
own facilities subject to the NESHAP. Thus, Executive Order 13175 does 
not apply to the final rule.

G. Executive Order 13045: Protection of Children From Environmental 
Health & Safety Risks

    Executive Order 13045 (62 FR 19885, April 23, 1997) applies to any 
rule that: (1) Is determined to be ``economically significant,'' as 
defined under Executive Order 12866, and (2) concerns an environmental 
health or safety risk that EPA has reason to believe may have a 
disproportionate effect on children. If the regulatory action meets 
both criteria, the EPA must evaluate the environmental health or safety 
effects of the planned rule on children and explain why the planned 
regulation is preferable to other potentially effective and reasonably 
feasible alternatives considered by the Agency.
    The EPA interprets Executive Order 13045 as applying only to those 
regulatory actions that are based on health or safety risks, such that 
the analysis required under section 5-501 of the Executive Order has 
the potential to influence the regulation. The final rule is not 
subject to Executive Order 13045 because it is based on control 
technology and not on health or safety risks.

H. Executive Order 13211: Actions That Significantly Affect Energy 
Supply, Distribution, or Use

    The final rule is not subject to Executive Order 13211 
(66 FR 28355, May 22, 2001) because it is not a significant regulatory 
action under Executive Order 12866.

I. National Technology Transfer Advancement Act

    Section 12(d) of the National Technology Transfer and Advancement 
Act (NTTAA) of 1995 (Pub. L. 104-113; 15 U.S.C. 272 note) directs the 
EPA to use voluntary consensus standards in their regulatory and 
procurement activities unless to do so would be inconsistent with 
applicable law or otherwise impractical. Voluntary consensus standards 
are technical standards (e.g., materials specifications, test methods, 
sampling procedures, business practices) developed or adopted by one or 
more voluntary consensus bodies. The NTTAA directs EPA to provide 
Congress, through annual reports to OMB, with explanations when an 
agency does not use available and applicable voluntary consensus 
standards.
    The final rule involves technical standards. Therefore, the EPA 
conducted a search to identify potentially applicable voluntary 
consensus standards. However, we identified no such standards as 
alternatives to EPA Methods 2F, 2G, 5D, 9 and OSW 846 Method 9071B, and 
none were brought to our attention in comments.
    The Agency identified ASTM D4536-96, ``Test Method for High Volume 
Sampling for Solid Particulate Matter and Determination of Particle 
Emissions,'' as being potentially applicable and proposed it as an 
alternative to Method 5 or 17 for testing positive pressure fabric 
filters. However, this standard has been replaced by ASTM D6331-98, 
``Standard Test Method for Determination of Mass Concentration of 
Particulate Matter from Stationary Sources at Low Concentrations 
(Manual Gravimetric Method).'' We have decided not to use ASTM D6331 in 
the final rule. The use of this voluntary consensus standard would be 
impractical or inconsistent with applicable law because it is not 
similar enough to replace ASTM D4536-96.

[[Page 27663]]

    The search for emissions measurement procedures identified 16 other 
voluntary consensus standards. The EPA has not adopted these standards 
as alternatives in the final rule because they are impractical or still 
under development. Our search and review results are available in the 
docket.

J. Congressional Review Act

    The Congressional Review Act, 5 U.S.C. 801 et seq., as added by the 
Small Business Regulatory Enforcement Act of 1996, generally provides 
that before a rule may take effect, the agency promulgating the rule 
must submit a rule report, which includes a copy of the rule, to each 
House of the Congress and to the Comptroller General of the United 
States. The EPA will submit a report containing the final rule and 
other required information to the U.S. Senate, the U.S. House of 
Representatives, and the Comptroller General of the United States prior 
to publication of the final rule in the Federal Register. The final 
rule is not a ``major rule'' as defined by 5 U.S.C. 804(2).

List of Subjects in 40 CFR Part 63

    Environmental protection, Air pollution control, Hazardous 
substances, Incorporation by reference, Reporting and recordkeeping 
requirements.

    Dated: February 28, 2003.
Christine Todd Whitman,
Administrator.

? For the reasons stated in the preamble, title 40, chapter I, part 63 of 
the Code of Federal Regulations is amended as follows:

PART 63--[AMENDED]

? 1. The authority citation for part 63 continues to read as follows:

    Authority: 42 U.S.C. 7401, et seq.

Subpart A--[Amended]

? 2. Section 63.14 is amended by adding a new paragraph (k) to read as 
follows:

Sec.  63.14  Incorporation by reference.

* * * * *
    (k) The following material may be obtained from U.S. EPA, Office of 
Solid Waste (5305W), 1200 Pennsylvania Avenue, NW., Washington, DC 
20460:
    (1) Method 9071B, ``n-Hexane Extractable Material(HEM) for Sludge, 
Sediment, and Solid Samples,'' (Revision 2, April 1998) as published in 
EPA Publication SW-846: ``Test Methods for Evaluating Solid Waste, 
Physical/Chemical Methods.'' The incorporation by reference of Method 
9071B is approved for Section 63.7824(e) of Subpart FFFFF of this part.

? 3. Part 63 is amended by adding subpart FFFFF to read as follows:

Subpart FFFFF--National Emission Standards for Hazardous Air 
Pollutants for Integrated Iron and Steel Manufacturing Facilities

Sec.

What This Subpart Covers

63.7780 What is the purpose of this subpart?
63.7781 Am I subject to this subpart?
63.7782 What parts of my plant does this subpart cover?
63.7783 When do I have to comply with this subpart?

Emission Limitations

63.7790 What emission limitations must I meet?

Operation and Maintenance Requirements

63.7800 What are my operation and maintenance requirements?

General Compliance Requirements

63.7810 What are my general requirements for complying with this 
subpart?

Initial Compliance Requirements

63.7820 By what date must I conduct performance tests or other 
initial compliance demonstrations?
63.7821 When must I conduct subsequent performance tests?
63.7822 What test methods and other procedures must I use to 
demonstrate initial compliance with the emission limits for 
particulate matter?
63.7823 What test methods and other procedures must I use to 
demonstrate initial compliance with the opacity limits?
63.7824 What test methods and other procedures must I use to 
establish and demonstrate initial compliance with the operating 
limits?
63.7825 How do I demonstrate initial compliance with the emission 
limitations that apply to me?
63.7826 How do I demonstrate initial compliance with the operation 
and maintenance requirements that apply to me?

Continuous Compliance Requirements

63.7830 What are my monitoring requirements?
63.7831 What are the installation, operation, and maintenance 
requirements for my monitors?
63.7832 How do I monitor and collect data to demonstrate continuous 
compliance?
63.7833 How do I demonstrate continuous compliance with the emission 
limitations that apply to me?
63.7834 How do I demonstrate continuous compliance with the 
operation and maintenance requirements that apply to me?
63.7835 What other requirements must I meet to demonstrate 
continuous compliance?

Notifications, Reports, and Records

63.7840 What notifications must I submit and when?
63.7841 What reports must I submit and when?
63.7842 What records must I keep?
63.7843 In what form and how long must I keep my records?

Other Requirements and Information

63.7850 What parts of the General Provisions apply to me?
63.7851 Who implements and enforces this subpart?
63.7852 What definitions apply to this subpart?

Tables to Subpart FFFFF of Part 63

Table 1 to Subpart FFFFF of Part 63--Emission and Opacity Limits
Table 2 to Subpart FFFFF of Part 63--Initial Compliance with 
Emission and Opacity Limits
Table 3 to Subpart FFFFF of Part 63--Continuous Compliance with 
Emission and Opacity Limits
Table 4 to Subpart FFFFF of Part 63--Applicability of General 
Provisions to Subpart FFFFF

Subpart FFFFF--National Emission Standards for Hazardous Air 
Pollutants for Integrated Iron and Steel Manufacturing Facilities

What This Subpart Covers

Sec.  63.7780  What is the purpose of this subpart?

    This subpart establishes national emission standards for hazardous 
air pollutants (NESHAP) for integrated iron and steel manufacturing 
facilities. This subpart also establishes requirements to demonstrate 
initial and continuous compliance with all applicable emission 
limitations and operation and maintenance requirements in this subpart.


Sec.  63.7781  Am I subject to this subpart?

    You are subject to this subpart if you own or operate an integrated 
iron and steel manufacturing facility that is (or is part of) a major 
source of hazardous air pollutants (HAP) emissions. Your integrated 
iron and steel manufacturing facility is a major source of HAP if it 
emits or has the potential to emit any single HAP at a rate of 10 tons 
or more per year or any combination of HAP at a rate of 25 tons or more 
per year.

Sec.  63.7782  What parts of my plant does this subpart cover?

    (a) This subpart applies to each new and existing affected source 
at your integrated iron and steel manufacturing facility.

[[Page 27664]]

    (b) The affected sources are each new or existing sinter plant, 
blast furnace, and basic oxygen process furnace (BOPF) shop at your 
integrated iron and steel manufacturing facility.
    (c) This subpart covers emissions from the sinter plant windbox 
exhaust, discharge end, and sinter cooler; the blast furnace casthouse; 
and the BOPF shop including each individual BOPF and shop ancillary 
operations (hot metal transfer, hot metal desulfurization, slag 
skimming, and ladle metallurgy).
    (d) A sinter plant, blast furnace, or BOPF shop at your integrated 
iron and steel manufacturing facility is existing if you commenced 
construction or reconstruction of the affected source before July 13, 
2001.
    (e) A sinter plant, blast furnace, or BOPF shop at your integrated 
iron and steel manufacturing facility is new if you commence 
construction or reconstruction of the affected source on or after July 
13, 2001. An affected source is reconstructed if it meets the 
definition of reconstruction in Sec.  63.2.

Sec.  63.7783  When do I have to comply with this subpart?

    (a) If you have an existing affected source, you must comply with 
each emission limitation and operation and maintenance requirement in 
this subpart that applies to you no later than May 22, 2006.
    (b) If you have a new affected source and its initial startup date 
is on or before May 20, 2003, then you must comply with each emission 
limitation and operation and maintenance requirement in this subpart 
that applies to you by May 20, 2003.
    (c) If you have a new affected source and its initial startup date 
is after May 20, 2003, you must comply with each emission limitation 
and operation and maintenance requirement in this subpart that applies 
to you upon initial startup.
    (d) If your integrated iron and steel manufacturing facility is not 
a major source and becomes a major source of HAP, the following 
compliance dates apply to you.
    (1) Any portion of the existing integrated iron and steel 
manufacturing facility that becomes a new affected source or a new 
reconstructed source must be in compliance with this subpart upon 
startup.
    (2) All other parts of the integrated iron and steel manufacturing 
facility must be in compliance with this subpart no later than 2 years 
after it becomes a major source.
    (e) You must meet the notification and schedule requirements in 
Sec.  63.7840. Several of these notifications must be submitted before 
the compliance date for your affected source.

Emission Limitations

Sec.  63.7790  What emission limitations must I meet?

    (a) You must meet each emission limit and opacity limit in Table 1 
to this subpart that applies to you.
    (b) You must meet each operating limit for capture systems and 
control devices in paragraphs (b)(1) through (3) of this section that 
applies to you.
    (1) You must operate each capture system applied to emissions from 
a sinter plant discharge end or blast furnace casthouse or to secondary 
emissions from a BOPF at or above the lowest value or settings 
established for the operating limits in your operation and maintenance 
plan;
    (2) For each venturi scrubber applied to meet any particulate 
emission limit in Table 1 to this subpart, you must maintain the hourly 
average pressure drop and scrubber water flow rate at or above the 
minimum levels established during the initial performance test.
    (3) For each electrostatic precipitator applied to emissions from a 
BOPF, you must maintain the average opacity of emissions for each 6-
minute period at or below the site-specific opacity value corresponding 
to the 99 percent upper confidence limit on the mean of a normal 
distribution of average opacity values established during the initial 
performance test.
    (c) An owner or operator who uses an air pollution control device 
other than a baghouse, venturi scrubber, or electrostatic precipitator 
must submit a description of the device; test results collected in 
accordance with Sec.  63.7822 verifying the performance of the device 
for reducing emissions of particulate matter to the atmosphere to the 
levels required by this subpart; a copy of the operation and 
maintenance plan required in Sec.  63.7800(b); and appropriate 
operating parameters that will be monitored to maintain continuous 
compliance with the applicable emission limitation(s). The monitoring 
plan identifying the operating parameters to be monitored is subject to 
approval by the Administrator.
    (d) For each sinter plant, you must either:
    (1) Maintain the 30-day rolling average oil content of the 
feedstock at or below 0.02 percent; or
    (2) Maintain the 30-day rolling average of volatile organic 
compound emissions from the windbox exhaust stream at or below 0.2 lb/
ton of sinter.

Operation and Maintenance Requirements

Sec.  63.7800  What are my operation and maintenance requirements?

    (a) As required by Sec.  63.6(e)(1)(i), you must always operate and 
maintain your affected source, including air pollution control and 
monitoring equipment, in a manner consistent with good air pollution 
control practices for minimizing emissions at least to the levels 
required by this subpart.
    (b) You must prepare and operate at all times according to a 
written operation and maintenance plan for each capture system or 
control device subject to an operating limit in Sec.  63.7790(b). Each 
plan must address the elements in paragraphs (b)(1) through (5) of this 
section.
    (1) Monthly inspections of the equipment that is important to the 
performance of the total capture system (e.g., pressure sensors, 
dampers, and damper switches). This inspection must include 
observations of the physical appearance of the equipment (e.g., 
presence of holes in ductwork or hoods, flow constrictions caused by 
dents or accumulated dust in the ductwork, and fan erosion). The 
operation and maintenance plan also must include requirements to repair 
any defect or deficiency in the capture system before the next 
scheduled inspection.
    (2) Preventative maintenance for each control device, including a 
preventative maintenance schedule that is consistent with the 
manufacturer's instructions for routine and long-term maintenance.
    (3) Operating limits for each capture system applied to emissions 
from a sinter plant discharge end or blast furnace casthouse, or to 
secondary emissions from a BOPF. You must establish the operating 
limits according to the requirements in paragraphs (b)(3)(i) through 
(iii) of this section.
    (i) Select operating limit parameters appropriate for the capture 
system design that are representative and reliable indicators of the 
performance of the capture system. At a minimum, you must use 
appropriate operating limit parameters that indicate the level of the 
ventilation draft and the damper position settings for the capture 
system when operating to collect emissions, including revised settings 
for seasonal variations. Appropriate operating limit parameters for 
ventilation draft include, but are not limited to, volumetric flow rate 
through each separately ducted hood, total volumetric flow rate at the 
inlet to the control device to which the capture system is vented, fan 
motor amperage, or static pressure.

[[Page 27665]]

    (ii) For each operating limit parameter selected in paragraph 
(b)(3)(i) of this section, designate the value or setting for the 
parameter at which the capture system operates during the process 
operation. If your operation allows for more than one process to be 
operating simultaneously, designate the value or setting for the 
parameter at which the capture system operates during each possible 
configuration that you may operate.
    (iii) Include documentation in your plan to support your selection 
of the operating limits established for the capture system. This 
documentation must include a description of the capture system design, 
a description of the capture system operating during production, a 
description of each selected operating limit parameter, a rationale for 
why you chose the parameter, a description of the method used to 
monitor the parameter according to the requirements of Sec.  
63.7830(a), and the data used to set the value or setting for the 
parameter for each of your process configurations.
    (4) Corrective action procedures for bag leak detection systems. In 
the event a bag leak detection system alarm is triggered, you must 
initiate corrective action to determine the cause of the alarm within 1 
hour of the alarm, initiate corrective action to correct the cause of 
the problem within 24 hours of the alarm, and complete the corrective 
action as soon as practicable. Corrective actions may include, but are 
not limited to:
    (i) Inspecting the baghouse for air leaks, torn or broken bags or 
filter media, or any other condition that may cause an increase in 
emissions.
    (ii) Sealing off defective bags or filter media.
    (iii) Replacing defective bags or filter media or otherwise 
repairing the control device.
    (iv) Sealing off a defective baghouse compartment.
    (v) Cleaning the bag leak detection system probe, or otherwise 
repair the bag leak detection system.
    (vi) Shutting down the process producing the particulate emissions; 
and
    (5) Procedures for determining and recording the daily sinter plant 
production rate in tons per hour.

General Compliance Requirements

Sec.  63.7810  What are my general requirements for complying with this 
subpart?

    (a) You must be in compliance with the emission limitations and 
operation and maintenance requirements in this subpart at all times, 
except during periods of startup, shutdown, and malfunction as defined 
in Sec.  63.2.
    (b) During the period between the compliance date specified for 
your affected source in Sec.  63.7783 and the date upon which 
continuous monitoring systems have been installed and certified and any 
applicable operating limits have been set, you must maintain a log 
detailing the operation and maintenance of the process and emissions 
control equipment.
    (c) You must develop and implement a written startup, shutdown, and 
malfunction plan according to the provisions in Sec.  63.6(e)(3).

Initial Compliance Requirements

Sec.  63.7820  By what date must I conduct performance tests or other 
initial compliance demonstrations?

    (a) You must conduct a performance test to demonstrate initial 
compliance with each emission and opacity limit in Table 1 to this 
subpart that applies to you. You must also conduct a performance test 
to demonstrate initial compliance with the 30-day rolling average 
operating limit for the oil content of the sinter plant feedstock in 
Sec.  63.7790(d)(1) or alternative limit for volatile organic compound 
emissions from the sinter plant windbox exhaust stream in Sec.  
63.7790(d)(2). You must conduct the performance tests within 180 
calendar days after the compliance date that is specified in Sec.  
63.7783 for your affected source and report the results in your 
notification of compliance status.
    (b) For each operation and maintenance requirement that applies to 
you where initial compliance is not demonstrated using a performance 
test or opacity observation, you must demonstrate initial compliance 
within 30 calendar days after the compliance date that is specified for 
your affected source in Sec.  63.7783.
    (c) If you commenced construction or reconstruction between July 
13, 2001 and May 20, 2003, you must demonstrate initial compliance with 
either the proposed emission limit or the promulgated emission limit no 
later than November 17, 2003 or no later than 180 days after startup of 
the source, whichever is later, according to Sec.  63.7(a)(2)(ix).
    (d) If you commenced construction or reconstruction between July 
13, 2001 and May 20, 2003, and you chose to comply with the proposed 
emission limit when demonstrating initial compliance, you must conduct 
a second performance test to demonstrate compliance with the 
promulgated emission limit by November 17, 2006, or no later than 180 
days after startup of the source, whichever is later, according to 
Sec.  63.7(a)(2)(ix).

Sec.  63.7821  When must I conduct subsequent performance tests?

    You must conduct subsequent performance tests to demonstrate 
compliance with all applicable PM and opacity limits in Table 1 to this 
subpart no less frequently than twice (at mid-term and renewal) during 
each term of your title V operating permit. For sources without a title 
V operating permit, you must conduct subsequent performance tests every 
2.5 years.

Sec.  63.7822  What test methods and other procedures must I use to 
demonstrate initial compliance with the emission limits for particulate 
matter?

    (a) You must conduct each performance test that applies to your 
affected source according to the requirements in Sec.  63.7(e)(1) and 
the conditions detailed in paragraphs (b) through (i) of this section.
    (b) To determine compliance with the applicable emission limit for 
particulate matter in Table 1 to this subpart, follow the test methods 
and procedures in paragraphs (b)(1) and (2) of this section.
    (1) Determine the concentration of particulate matter according to 
the following test methods in appendix A to part 60 of this chapter:
    (i) Method 1 to select sampling port locations and the number of 
traverse points. Sampling ports must be located at the outlet of the 
control device and prior to any releases to the atmosphere.
    (ii) Method 2, 2F, or 2G to determine the volumetric flow rate of 
the stack gas.
    (iii) Method 3, 3A, or 3B to determine the dry molecular weight of 
the stack gas.
    (iv) Method 4 to determine the moisture content of the stack gas.
    (v) Method 5, 5D, or 17, as applicable, to determine the 
concentration of particulate matter (front half filterable catch only).
    (2) Collect a minimum sample volume of 60 dry standard cubic feet 
(dscf) of gas during each particulate matter test run. Three valid test 
runs are needed to comprise a performance test.
    (c) For each sinter plant windbox exhaust stream, you must complete 
the requirements of paragraphs (c)(1) and (2) of this section:
    (1) Follow the procedures in your operation and maintenance plan 
for measuring and recording the sinter production rate for each test 
run in tons per hour; and
    (2) Compute the process-weighted mass emissions (Ep) for 
each test run using Equation 1 of this section as follows:

[[Page 27666]]
[GRAPHIC]
[TIFF OMITTED]
TR20MY03.000

Where:

Ep = Process-weighted mass emissions of particulate matter, 
lb/ton;
C = Concentration of particulate matter, grains per dry standard cubic 
foot (gr/dscf);
Q = Volumetric flow rate of stack gas, dry standard cubic foot per hour 
(dscf/hr);
P = Production rate of sinter during the test run, tons/hr; and
K = Conversion factor, 7,000 grains per pound (gr/lb).

    (d) If you apply two or more control devices in parallel to 
emissions from a sinter plant discharge end or a BOPF, compute the 
average flow-weighted concentration for each test run using Equation 2 
of this section as follows:
[GRAPHIC]
[TIFF OMITTED]
TR20MY03.001

Where:

Cw = Flow-weighted concentration, gr/dscf;
Ci = Concentration of particulate matter from exhaust stream 
``i'', gr/dscf; and
Qi = Volumetric flow rate of effluent gas from exhaust 
stream ``i'', dry standard cubic foot per minute (dscfm).

    (e) For a control device applied to emissions from a blast furnace 
casthouse, sample for an integral number of furnace tapping operations 
sufficient to obtain at least 1 hour of sampling for each test run.
    (f) For a primary emission control device applied to emissions from 
a BOPF with a closed hood system, sample only during the primary oxygen 
blow and do not sample during any subsequent reblows. Continue sampling 
for each run for an integral number of primary oxygen blows.
    (g) For a primary emission control system applied to emissions from 
a BOPF with an open hood system and for a control device applied solely 
to secondary emissions from a BOPF, you must complete the requirements 
of paragraphs (g)(1) and (2) of this section:
    (1) Sample only during the steel production cycle. Conduct sampling 
under conditions that are representative of normal operation. Record 
the start and end time of each steel production cycle and each period 
of abnormal operation; and
    (2) Sample for an integral number of steel production cycles. The 
steel production cycle begins when the scrap is charged to the furnace 
and ends 3 minutes after the slag is emptied from the vessel into the 
slag pot.
    (h) For a control device applied to emissions from BOPF shop 
ancillary operations (hot metal transfer, skimming, desulfurization, or 
ladle metallurgy), sample only when the operation(s) is being 
conducted.
    (i) Subject to approval by the permitting authority, you may 
conduct representative sampling of stacks when there are more than 
three stacks associated with a process.

Sec.  63.7823  What test methods and other procedures must I use to 
demonstrate initial compliance with the opacity limits?

    (a) You must conduct each performance test that applies to your 
affected source according to the requirements in Sec.  63.7(h)(5) and 
the conditions detailed in paragraphs (b) through (d) of this section.
    (b) You must conduct each visible emissions performance test such 
that the opacity observations overlap with the performance test for 
particulate matter.
    (c) To determine compliance with the applicable opacity limit in 
Table 1 to this subpart for a sinter plant discharge end or a blast 
furnace casthouse:
    (1) Using a certified observer, determine the opacity of emissions 
according to Method 9 in appendix A to part 60 of this chapter.
    (2) Obtain a minimum of 30 6-minute block averages. For a blast 
furnace casthouse, make observations during tapping of the furnace. 
Tapping begins when the furnace is opened, usually by creating a hole 
near the bottom of the furnace, and ends when the hole is plugged.
    (d) To determine compliance with the applicable opacity limit in 
Table 1 to this subpart for BOPF shops:
    (1) For an existing BOPF shop:
    (i) Using a certified observer, determine the opacity of emissions 
according to Method 9 in appendix A to part 60 of this chapter except 
as specified in paragraphs (d)(1)(ii) and (iii) of this section.
    (ii) Instead of procedures in section 2.4 of Method 9 in appendix A 
to part 60 of this chapter, record observations to the nearest 5 
percent at 15-second intervals for at least three steel production 
cycles.
    (iii) Instead of procedures in section 2.5 of Method 9 in appendix 
A to part 60 of this chapter, determine the 3-minute block average 
opacity from the average of 12 consecutive observations recorded at 15-
second intervals.
    (2) For a new BOPF shop housing a bottom-blown BOPF:
    (i) Using a certified observer, determine the opacity of emissions 
according to Method 9 in appendix A to part 60 of this chapter.
    (ii) Determine the highest and second highest sets of 6-minute 
block average opacities for each steel production cycle.
    (3) For a new BOPF shop housing a top-blown BOPF:
    (i) Determine the opacity of emissions according to the 
requirements for an existing BOPF shop in paragraphs (d)(1)(i) through 
(iii) of this section.
    (ii) Determine the highest and second highest sets of 3-minute 
block average opacities for each steel production cycle.
    (4) Opacity observations must cover the entire steel production 
cycle and must be made for at least three cycles. The steel production 
cycle begins when the scrap is charged to the furnace and ends 3 
minutes after the slag is emptied from the vessel into the slag pot.
    (5) Determine and record the starting and stopping times of the 
steel production cycle.

Sec.  63.7824  What test methods and other procedures must I use to 
establish and demonstrate initial compliance with operating limits?

    (a) For each capture system subject to an operating limit in Sec.  
63.7790(b)(1), you must certify that the system operated during the 
performance test at the site-specific operating limits established in 
your operation and maintenance plan using the procedures in paragraphs 
(a)(1) through (4) of this section.
    (1) Concurrent with all opacity observations, measure and record 
values for each of the operating limit parameters in your capture 
system operation and maintenance plan according to the monitoring 
requirements specified in Sec.  63.7830(a).
    (2) For any dampers that are manually set and remain at the same 
position at all times the capture system is operating, the damper 
position must be visually checked and recorded at the beginning and end 
of each opacity observation period segment.
    (3) Review and record the monitoring data. Identify and explain any 
times the capture system operated outside the applicable operating 
limits.
    (4) Certify in your performance test report that during all 
observation period segments, the capture system was operating at the 
values or settings established in your capture system operation and 
maintenance plan.
    (b) For a venturi scrubber subject to operating limits for pressure 
drop and scrubber water flow rate in

[[Page 27667]]

Sec.  63.7790(b)(2), you must establish site-specific operating limits 
according to the procedures in paragraphs (b)(1) and (2) of this 
section.
    (1) Using the continuous parameter monitoring system (CPMS) 
required in Sec.  63.7830(c), measure and record the pressure drop and 
scrubber water flow rate during each run of the particulate matter 
performance test.
    (2) Compute and record the hourly average pressure drop and 
scrubber water flow rate for each individual test run. Your operating 
limits are the lowest average pressure drop and scrubber water flow 
rate value in any of the three runs that meet the applicable emission 
limit.
    (c) For an electrostatic precipitator subject to the operating 
limit in Sec.  63.7790(b)(3) for opacity, you must establish a site-
specific operating limit according to the procedures in paragraphs 
(c)(1) through (3) of this section.
    (1) Using the continuous opacity monitoring system (COMS) required 
in Sec.  63.7830(d), measure and record the opacity of emissions from 
each control device stack during each run of the particulate matter 
performance test.
    (2) Compute and record the 6-minute block average opacity from 36 
or more data points equally spaced over each 6-minute period during the 
test runs.
    (3) Determine, based on the 6-minute block averages, the opacity 
value corresponding to the 99 percent upper confidence limit on the 
mean of a normal distribution of average opacity values.
    (d) You may change the operating limits for a capture system, 
venturi scrubber, or electrostatic precipitator if you meet the 
requirements in paragraphs (d)(1) through (3) of this section.
    (1) Submit a written notification to the Administrator of your 
request to conduct a new performance test to revise the operating 
limit.
    (2) Conduct a performance test to demonstrate compliance with the 
applicable emission limitation in Table 1 to this subpart.
    (3) Establish revised operating limits according to the applicable 
procedures in paragraphs (a) through (c) of this section for a control 
device or capture system.
    (e) For each sinter plant subject to the operating limit for the 
oil content of the sinter plant feedstock in Sec.  63.7790(d)(1), you 
must demonstrate initial compliance according to the procedures in 
paragraphs (e)(1) through (3) of this section.
    (1) Sample the feedstock at least three times a day (once every 8 
hours), composite the three samples each day, and analyze the 
composited samples using Method 9071B, ``n-Hexane Extractable 
Material(HEM) for Sludge, Sediment, and Solid Samples,'' (Revision 2, 
April 1998). Method 9071B is incorporated by reference (see Sec.  
63.14) and is published in EPA Publication SW-846 ``Test Methods for 
Evaluating Solid Waste, Physical/Chemical Methods.'' Record the 
sampling date and time, oil content values, and sinter produced (tons/
day).
    (2) Continue the sampling and analysis procedure for 30 consecutive 
days.
    (3) Each day, compute and record the 30-day rolling average using 
that day's value and the 29 previous daily values.
    (f) To demonstrate initial compliance with the alternative 
operating limit for volatile organic compound emissions from the sinter 
plant windbox exhaust stream in Sec.  63.7790(d)(2), follow the test 
methods and procedures in paragraphs (f)(1) through (5) of this 
section.
    (1) Determine the volatile organic compound emissions according to 
the following test methods in appendix A to part 60 of this chapter:
    (i) Method 1 to select sampling port locations and the number of 
traverse points. Sampling ports must be located at the outlet of the 
control device and prior to any releases to the atmosphere.
    (ii) Method 2, 2F, or 2G to determine the volumetric flow rate of 
the stack gas.
    (iii) Method 3, 3A, or 3B to determine the dry molecular weight of 
the stack gas.
    (iv) Method 4 to determine the moisture content of the stack gas.
    (v) Method 25 to determine the mass concentration of volatile 
organic compound emissions (total gaseous nonmethane organics as 
carbon) from the sinter plant windbox exhaust stream stack.
    (2) Determine volatile organic compound (VOC) emissions every 24 
hours (from at least three samples taken at 8-hour intervals) using 
Method 25 in 40 CFR part 60, appendix A. Record the sampling date and 
time, sampling results, and sinter produced (tons/day).
    (3) Compute the process-weighted mass emissions (Ev) 
each day using Equation 1 of this section as follows:
[GRAPHIC]
[TIFF OMITTED]
TR20MY03.002

Where:

Ev = Process-weighted mass emissions of volatile organic 
compounds, lb/ton;
Mc = Average concentration of total gaseous nonmethane 
organics as carbon by Method 25 (40 CFR part 60, appendix A), 
milligrams per dry standard cubic meters (mg/dscm) for each day;
Q = Volumetric flow rate of stack gas, dscf/hr;
35.31 = Conversion factor (dscf/dscm);
454,000 = Conversion factor (mg/lb); and
K = Daily production rate of sinter, tons/hr.

    (4) Continue the sampling and analysis procedure in paragraphs 
(f)(1) through (3) of this section for 30 consecutive days.
    (5) Compute and record the 30-day rolling average of VOC emissions 
for each operating day.
    (g) You may use an alternative test method to determine the oil 
content of the sinter plant feedstock or the volatile organic compound 
emissions from the sinter plant windbox exhaust stack if you have 
already demonstrated the equivalency of the alternative method for a 
specific plant and have received previous approval from the applicable 
permitting authority.

Sec.  63.7825  How do I demonstrate initial compliance with the 
emission limitations that apply to me?

    (a) For each affected source subject to an emission or opacity 
limit in Table 1 to this subpart, you have demonstrated initial 
compliance if:
    (1) You meet the conditions in Table 2 to this subpart; and
    (2) For each capture system subject to the operating limit in Sec.  
63.7790(b)(1), you have established appropriate site-specific operating 
limit(s) and have a record of the operating parameter data measured 
during the performance test in accordance with Sec.  63.7824(a)(1).
    (3) For each venturi scrubber subject to the operating limits for 
pressure drop and scrubber water flow rate in Sec.  63.7790(b)(2), you 
have established appropriate site-specific operating limits and have a 
record of the pressure drop and scrubber water flow rate measured 
during the performance test in accordance with Sec.  63.7824(b); and
    (4) For each electrostatic precipitator subject to the opacity 
operating limit in Sec.  63.7790(b)(3), you have established an 
appropriate site-specific operating limit and have a record of the 
opacity measurements made during the performance test in accordance 
with Sec.  63.7824(c).
    (b) For each existing or new sinter plant subject to the operating 
limit in Sec.  63.7790(d)(1), you have demonstrated initial compliance 
if the 30-day rolling average of the oil content of the feedstock, 
measured during the initial performance test in accordance with Sec.  
63.7824(e) is no more than 0.02

[[Page 27668]]

percent or the volatile organic compound emissions from the sinter 
plant windbox exhaust stream, measured during the initial performance 
test in accordance with Sec.  63.7824(f), is no more than 0.2 lb/ton of 
sinter produced.
    (c) For each emission limitation that applies to you, you must 
submit a notification of compliance status according to Sec.  
63.7840(e).

Sec.  63.7826  How do I demonstrate initial compliance with the 
operation and maintenance requirements that apply to me?

    (a) For a capture system applied to emissions from a sinter plant 
discharge end or blast furnace casthouse or to secondary emissions from 
a BOPF, you have demonstrated initial compliance if you meet all of the 
conditions in paragraphs (a)(1) through (4) of this section.
    (1) Prepared the capture system operation and maintenance plan 
according to the requirements of Sec.  63.7800(b), including monthly 
inspection procedures and detailed descriptions of the operating 
parameter(s) selected to monitor the capture system;
    (2) Certified in your performance test report that the system 
operated during the test at the operating limits established in your 
operation and maintenance plan;
    (3) Submitted a notification of compliance status according to the 
requirements in Sec.  63.7840(e), including a copy of the capture 
system operation and maintenance plan and your certification that you 
will operate the capture system at the values or settings established 
for the operating limits in that plan; and
    (4) Prepared a site-specific monitoring plan according to the 
requirements in Sec.  63.7831(a).
    (b) For each control device subject to operating limits in Sec.  
63.7790(b)(2) or (3), you have demonstrated initial compliance if you 
meet all the conditions in paragraphs (b)(1) through (3) of this 
section.
    (1) Prepared the control device operation and maintenance plan 
according to the requirements of Sec.  63.7800(b), including a 
preventative maintenance schedule and, if applicable, detailed 
descriptions of the procedures you use for corrective action for 
baghouses;
    (2) Submitted a notification of compliance status according to the 
requirements in Sec.  63.7840(e), including a copy of the operation and 
maintenance plan; and
    (3) Prepared a site-specific monitoring plan according to the 
requirements in Sec.  63.7831(a).

Continuous Compliance Requirements

Sec.  63.7830  What are my monitoring requirements?

    (a) For each capture system subject to an operating limit in Sec.  
63.7790(b)(1) established in your capture system operation and 
maintenance plan, you must install, operate, and maintain a CPMS 
according to the requirements in Sec.  63.7831(e) and the requirements 
in paragraphs (a)(1) through (3) of this section.
    (1) Dampers that are manually set and remain in the same position 
are exempt from the requirement to install and operate a CPMS. If 
dampers are not manually set and remain in the same position, you must 
make a visual check at least once every 24 hours to verify that each 
damper for the capture system is in the same position as during the 
initial performance test.
    (2) If you use a flow measurement device to monitor the operating 
limit parameter for a sinter plant discharge end or blast furnace 
casthouse, you must monitor the hourly average rate (e.g., the hourly 
average actual volumetric flow rate through each separately ducted 
hood, the average hourly total volumetric flow rate at the inlet to the 
control device) according to the requirements in Sec.  63.7832.
    (3) If you use a flow measurement device to monitor the operating 
limit parameter for a capture system applied to secondary emissions 
from a BOPF, you must monitor the average rate for each steel 
production cycle (e.g., the average actual volumetric flow rate through 
each separately ducted hood for each steel production cycle, the 
average total volumetric flow rate at the inlet to the control device 
for each steel production cycle) according to the requirements in Sec.  
63.7832.
    (b) For each baghouse applied to meet any particulate emission 
limit in Table 1 of this subpart, you must install, operate, and 
maintain a bag leak detection system according to Sec.  63.7831(f), 
monitor the relative change in particulate matter loadings according to 
the requirements in Sec.  63.7832, and conduct inspections at their 
specified frequencies according to the requirements in paragraphs 
(b)(1) through (8) of this section.
    (1) Monitor the pressure drop across each baghouse cell each day to 
ensure pressure drop is within the normal operating range identified in 
the manual.
    (2) Confirm that dust is being removed from hoppers through weekly 
visual inspections or other means of ensuring the proper functioning of 
removal mechanisms.
    (3) Check the compressed air supply for pulse-jet baghouses each 
day.
    (4) Monitor cleaning cycles to ensure proper operation using an 
appropriate methodology.
    (5) Check bag cleaning mechanisms for proper functioning through 
monthly visual inspection or equivalent means.
    (6) Make monthly visual checks of bag tension on reverse air and 
shaker-type baghouses to ensure that bags are not kinked (kneed or 
bent) or laying on their sides. You do not have to make this check for 
shaker-type baghouses using self-tensioning (spring-loaded) devices.
    (7) Confirm the physical integrity of the baghouse through 
quarterly visual inspections of the baghouse interior for air leaks.
    (8) Inspect fans for wear, material buildup, and corrosion through 
quarterly visual inspections, vibration detectors, or equivalent means.
    (c) For each venturi scrubber subject to the operating limits for 
pressure drop and scrubber water flow rate in Sec.  63.7790(b)(2), you 
must install, operate, and maintain CPMS according to the requirements 
in Sec.  63.7831(g) and monitor the hourly average pressure drop and 
water flow rate according to the requirements in Sec.  63.7832.
    (d) For each electrostatic precipitator subject to the opacity 
operating limit in Sec.  63.7790(b)(3), you must install, operate, and 
maintain a COMS according to the requirements in Sec.  63.7831(h) and 
monitor the 6-minute average opacity of emissions exiting each control 
device stack according to the requirements in Sec.  63.7832.
    (e) For each sinter plant subject to the operating limit in Sec.  
63.7790(d), you must either:
    (1) Compute and record the 30-day rolling average of the oil 
content of the feedstock for each operating day using the procedures in 
Sec.  63.7824(e); or
    (2) Compute and record the 30-day rolling average of volatile 
organic compound emissions (lbs/ton of sinter) for each operating day 
using the procedures in Sec.  63.7824(f).

Sec.  63.7831  What are the installation, operation, and maintenance 
requirements for my monitors?

    (a) For each CPMS required in Sec.  63.7830, you must develop and 
make available for inspection upon request by the permitting authority 
a site-specific monitoring plan that addresses the requirements in 
paragraphs (a)(1) through (6) of this section.
    (1) Installation of the CPMS sampling probe or other interface at a

[[Page 27669]]

measurement location relative to each affected process unit such that 
the measurement is representative of control of the exhaust emissions 
(e.g., on or downstream of the last control device);
    (2) Performance and equipment specifications for the sample 
interface, the parametric signal analyzer, and the data collection and 
reduction system;
    (3) Performance evaluation procedures and acceptance criteria 
(e.g., calibrations);
    (4) Ongoing operation and maintenance procedures in accordance with 
the general requirements of Sec. Sec.  63.8(c)(1), (c)(3), (c)(4)(ii), 
(c)(7), and (c)(8);
    (5) Ongoing data quality assurance procedures in accordance with 
the general requirements of Sec.  63.8(d); and
    (6) Ongoing recordkeeping and reporting procedures in accordance 
the general requirements of Sec. Sec.  63.10(c), (e)(1), and (e)(2)(i).
    (b) Unless otherwise specified, each CPMS must:
    (1) Complete a minimum of one cycle of operation for each 
successive 15-minute period and collect a minimum of three of the 
required four data points to constitute a valid hour of data;
    (2) Provide valid hourly data for at least 95 percent of every 
averaging period; and
    (3) Determine and record the hourly average of all recorded 
readings.
    (c) You must conduct a performance evaluation of each CPMS in 
accordance with your site-specific monitoring plan.
    (d) You must operate and maintain the CPMS in continuous operation 
according to the site-specific monitoring plan.
    (e) For each capture system subject to an operating limit in Sec.  
63.7790(b)(1), you must install, operate, and maintain each CPMS 
according to the requirements in paragraphs (a) through (d) of this 
section.
    (f) For each baghouse applied to meet any particulate emission 
limit in Table 1 of this subpart, you must install, operate, and 
maintain a bag leak detection system according to the requirements in 
paragraphs (f)(1) through (7) of this section.
    (1) The system must be certified by the manufacturer to be capable 
of detecting emissions of particulate matter at concentrations of 10 
milligrams per actual cubic meter (0.0044 grains per actual cubic foot) 
or less.
    (2) The system must provide output of relative changes in 
particulate matter loadings.
    (3) The system must be equipped with an alarm that will sound when 
an increase in relative particulate loadings is detected over a preset 
level. The alarm must be located such that it can be heard by the 
appropriate plant personnel.
    (4) Each system that works based on the triboelectric effect must 
be installed, operated, and maintained in a manner consistent with the 
guidance document, ``Fabric Filter Bag Leak Detection Guidance,'' EPA-
454/R-98-015, September 1997. You may install, operate, and maintain 
other types of bag leak detection systems in a manner consistent with 
the manufacturer's written specifications and recommendations.
    (5) To make the initial adjustment of the system, establish the 
baseline output by adjusting the sensitivity (range) and the averaging 
period of the device. Then, establish the alarm set points and the 
alarm delay time.
    (6) Following the initial adjustment, do not adjust the sensitivity 
or range, averaging period, alarm set points, or alarm delay time, 
except as detailed in your operation and maintenance plan. Do not 
increase the sensitivity by more than 100 percent or decrease the 
sensitivity by more than 50 percent over a 365-day period unless a 
responsible official certifies, in writing, that the baghouse has been 
inspected and found to be in good operating condition.
    (7) Where multiple detectors are required, the system's 
instrumentation and alarm may be shared among detectors.
    (g) For each venturi scrubber subject to operating limits in Sec.  
63.7790(b)(2) for pressure drop and scrubber water flow rate, you must 
install, operate, and maintain each CPMS according to the requirements 
in paragraphs (a) through (d) of this section.
    (h) For each electrostatic precipitator subject to the opacity 
operating limit in Sec.  63.7790(b)(3), you must install, operate, and 
maintain each COMS according to the requirements in paragraphs (h)(1) 
through (4) of this section.
    (1) You must install, operate, and maintain each COMS according to 
Performance Specification 1 in 40 CFR part 60, appendix B.
    (2) You must conduct a performance evaluation of each COMS 
according to Sec.  63.8 and Performance Specification 1 in appendix B 
to 40 CFR part 60.
    (3) Each COMS must complete a minimum of one cycle of sampling and 
analyzing for each successive 10-second period and one cycle of data 
recording for each successive 6-minute period.
    (4) COMS data must be reduced as specified in Sec.  63.8(g)(2).

Sec.  63.7832  How do I monitor and collect data to demonstrate 
continuous compliance?

    (a) Except for monitoring malfunctions, out-of-control periods as 
specified in Sec.  63.8(c)(7), associated repairs, and required quality 
assurance or control activities (including as applicable, calibration 
checks and required zero and span adjustments), you must monitor 
continuously (or collect data at all required intervals) at all times 
an affected source is operating.
    (b) You may not use data recorded during monitoring malfunctions, 
associated repairs, and required quality assurance or control 
activities in data averages and calculations used to report emission or 
operating levels or to fulfill a minimum data availability requirement, 
if applicable. You must use all the data collected during all other 
periods in assessing compliance.
    (c) A monitoring malfunction is any sudden, infrequent, not 
reasonably preventable failure of the monitoring to provide valid data. 
Monitoring failures that are caused in part by poor maintenance or 
careless operation are not malfunctions.

Sec.  63.7833  How do I demonstrate continuous compliance with the 
emission limitations that apply to me?

    (a) You must demonstrate continuous compliance for each affected 
source subject to an emission or opacity limit in Sec.  63.7790(a) by 
meeting the requirements in Table 3 to this subpart.
    (b) You must demonstrate continuous compliance for each capture 
system subject to an operating limit in Sec.  63.7790(b)(1) by meeting 
the requirements in paragraphs (b)(1) and (2) of this section.
    (1) Operate the capture system at or above the lowest values or 
settings established for the operating limits in your operation and 
maintenance plan; and
    (2) Monitor the capture system according to the requirements in 
Sec.  63.7830(a) and collect, reduce, and record the monitoring data 
for each of the operating limit parameters according to the applicable 
requirements of this subpart;
    (c) For each baghouse applied to meet any particulate emission 
limit in Table 1 to this subpart, you must demonstrate continuous 
compliance by completing the requirements in paragraphs (c)(1) and (2) 
of this section:
    (1) Maintaining records of the time you initiated corrective action 
in the event of a bag leak detection system alarm, the corrective 
action(s) taken, and the date on which corrective action was completed.

[[Page 27670]]

    (2) Inspecting and maintaining each baghouse according to the 
requirements in Sec.  63.7831(f) and recording all information needed 
to document conformance with these requirements. If you increase or 
decrease the sensitivity of the bag leak detection system beyond the 
limits specified in Sec.  63.7831(f)(6), you must include a copy of the 
required written certification by a responsible official in the next 
semiannual compliance report.
    (d) For each venturi scrubber subject to the operating limits for 
pressure drop and scrubber water flow rate in Sec.  63.7790(b)(2), you 
must demonstrate continuous compliance by completing the requirements 
of paragraphs (d)(1) through (3) of this section:
    (1) Maintaining the hourly average pressure drop and scrubber water 
flow rate at levels no lower than those established during the initial 
or subsequent performance test;
    (2) Operating and maintaining each venturi scrubber CPMS according 
to Sec.  63.7831(g) and recording all information needed to document 
conformance with these requirements; and
    (3) Collecting and reducing monitoring data for pressure drop and 
scrubber water flow rate according to Sec.  63.7831(b) and recording 
all information needed to document conformance with these requirements.
    (e) For each electrostatic precipitator subject to the site-
specific opacity operating limit in Sec.  63.7790(b)(3), you must 
demonstrate continuous compliance by completing the requirements of 
paragraphs (e)(1) and (2) of this section:
    (1) Maintaining the average opacity of emissions for each 6-minute 
period no higher than the site-specific limit established during the 
initial or subsequent performance test; and
    (2) Operating and maintaining each COMS and reducing the COMS data 
according to Sec.  63.7831(h).
    (f) For each new or existing sinter plant subject to the operating 
limit in Sec.  63.7790(d), you must demonstrate continuous compliance 
by either:
    (1) For the sinter plant feedstock oil content operating limit in 
Sec.  63.7790(d)(1),
    (i) Computing and recording the 30-day rolling average of the 
percent oil content for each operating day according to the performance 
test procedures in Sec.  63.7824(e);
    (ii) Recording the sampling date and time, oil content values, and 
sinter produced (tons/day); and
    (iii) Maintaining the 30-day rolling average oil content of the 
feedstock no higher than 0.02 percent.
    (2) For the volatile organic compound operating limit in Sec.  
63.7790(d)(2),
    (i) Computing and recording the 30-day rolling average of volatile 
organic compound emissions for each operating day according to the 
performance test procedures in Sec.  63.7824(f);
    (ii) Recording the sampling date and time, sampling values, and 
sinter produced (tons/day); and
    (iii) Maintaining the 30-day rolling average of volatile organic 
compound emissions no higher than 0.2 lb/ton of sinter produced.

Sec.  63.7834  How do I demonstrate continuous compliance with the 
operation and maintenance requirements that apply to me?

    (a) For each capture system and control device subject to an 
operating limit in Sec.  63.7790(b), you must demonstrate continuous 
compliance with the operation and maintenance requirements in Sec.  
63.7800(b) by meeting the requirements of paragraphs (a)(1) through (3) 
of this section:
    (1) Making monthly inspections of capture systems and initiating 
corrective action according to Sec.  63.7800(b)(1) and recording all 
information needed to document conformance with these requirements;
    (2) Performing preventative maintenance according to Sec.  
63.7800(b)(2) and recording all information needed to document 
conformance with these requirements; and
    (3) Initiating and completing corrective action for a bag leak 
detection system alarm according to Sec.  63.7800(b)(4) and recording 
all information needed to document conformance with these requirements.
    (b) You must maintain a current copy of the operation and 
maintenance plan required in Sec.  63.7800(b) onsite and available for 
inspection upon request. You must keep the plans for the life of the 
affected source or until the affected source is no longer subject to 
the requirements of this subpart.

Sec.  63.7835  What other requirements must I meet to demonstrate 
continuous compliance?

    (a) Deviations. You must report each instance in which you did not 
meet each emission limitation in Sec.  63.7790 that applies to you. 
This includes periods of startup, shutdown, and malfunction. You also 
must report each instance in which you did not meet each operation and 
maintenance requirement in Sec.  63.7800 that applies to you. These 
instances are deviations from the emission limitations and operation 
and maintenance requirements in this subpart. These deviations must be 
reported according to the requirements in Sec.  63.7841.
    (b) Startups, shutdowns, and malfunctions. During periods of 
startup, shutdown, and malfunction, you must operate in accordance with 
your startup, shutdown, and malfunction plan.
    (1) Consistent with Sec. Sec.  63.6(e) and 63.7(e)(1), deviations 
that occur during a period of startup, shutdown, or malfunction are not 
violations if you demonstrate to the Administrator's satisfaction that 
you were operating in accordance with the startup, shutdown, and 
malfunction plan.
    (2) The Administrator will determine whether deviations that occur 
during a period of startup, shutdown, or malfunction are violations, 
according to the provisions in Sec.  63.6(e).

Notifications, Reports, and Records

Sec.  63.7840  What notifications must I submit and when?

    (a) You must submit all of the notifications in Sec. Sec.  
63.6(h)(4) and (5), 63.7(b) and (c), 63.8(e) and (f)(4), and 63.9(b) 
through (h) that apply to you by the specified dates.
    (b) As specified in Sec.  63.9(b)(2), if you startup your affected 
source before May 20, 2003, you must submit your initial notification 
no later than September 17, 2003.
    (c) As specified in Sec.  63.9(b)(3), if you start your new 
affected source on or after May 20, 2003, you must submit your initial 
notification no later than 120 calendar days after you become subject 
to this subpart.
    (d) If you are required to conduct a performance test, you must 
submit a notification of intent to conduct a performance test at least 
60 calendar days before the performance test is scheduled to begin as 
required in Sec.  63.7(b)(1).
    (e) If you are required to conduct a performance test, opacity 
observation, or other initial compliance demonstration, you must submit 
a notification of compliance status according to Sec.  63.9(h)(2)(ii).
    (1) For each initial compliance demonstration that does not include 
a performance test, you must submit the notification of compliance 
status before the close of business on the 30th calendar day following 
completion of the initial compliance demonstration.
    (2) For each initial compliance demonstration that does include a 
performance test, you must submit the notification of compliance 
status, including the performance test results, before the close of 
business on the 60th calendar day following the completion of the 
performance test according to Sec.  63.10(d)(2).

[[Page 27671]]

Sec.  63.7841  What reports must I submit and when?

    (a) Compliance report due dates. Unless the Administrator has 
approved a different schedule, you must submit a semiannual compliance 
report to your permitting authority according to the requirements in 
paragraphs (a)(1) through (5) of this section.
    (1) The first compliance report must cover the period beginning on 
the compliance date that is specified for your affected source in Sec.  
63.7783 and ending on June 30 or December 31, whichever date comes 
first after the compliance date that is specified for your source in 
Sec.  63.7783.
    (2) The first compliance report must be postmarked or delivered no 
later than July 31 or January 31, whichever date comes first after your 
first compliance report is due.
    (3) Each subsequent compliance report must cover the semiannual 
reporting period from January 1 through June 30 or the semiannual 
reporting period from July 1 through December 31.
    (4) Each subsequent compliance report must be postmarked or 
delivered no later than July 31 or January 31, whichever date comes 
first after the end of the semiannual reporting period.
    (5) For each affected source that is subject to permitting 
regulations pursuant to 40 CFR part 70 or 71, and if the permitting 
authority has established dates for submitting semiannual reports 
pursuant to 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 71.6(a)(3)(iii)(A), you 
may submit the first and subsequent compliance reports according to the 
dates the permitting authority has established instead of according to 
the dates in paragraphs (a)(1) through (4) of this section.
    (b) Compliance report contents. Each compliance report must include 
the information in paragraphs (b)(1) through (3) of this section and, 
as applicable, paragraphs (b)(4) through (8) of this section.
    (1) Company name and address.
    (2) Statement by a responsible official, with that official's name, 
title, and signature, certifying the truth, accuracy, and completeness 
of the content of the report.
    (3) Date of report and beginning and ending dates of the reporting 
period.
    (4) If you had a startup, shutdown, or malfunction during the 
reporting period and you took actions consistent with your startup, 
shutdown, and malfunction plan, the compliance report must include the 
information in Sec.  63.10(d)(5)(i).
    (5) If there were no deviations from the continuous compliance 
requirements in Sec. Sec.  63.7833 and 63.7834 that apply to you, a 
statement that there were no deviations from the emission limitations 
or operation and maintenance requirements during the reporting period.
    (6) If there were no periods during which a continuous monitoring 
system (including a CPMS, COMS, or continuous emission monitoring 
system (CEMS) was out-of-control as specified in Sec.  63.8(c)(7), a 
statement that there were no periods during which the CPMS was out-of-
control during the reporting period.
    (7) For each deviation from an emission limitation in Sec.  63.7790 
that occurs at an affected source where you are not using a continuous 
monitoring system (including a CPMS, COMS, or CEMS) to comply with an 
emission limitation in this subpart, the compliance report must contain 
the information in paragraphs (b)(1) through (4) of this section and 
the information in paragraphs (b)(7)(i) and (ii) of this section. This 
includes periods of startup, shutdown, and malfunction.
    (i) The total operating time of each affected source during the 
reporting period.
    (ii) Information on the number, duration, and cause of deviations 
(including unknown cause, if applicable) as applicable and the 
corrective action taken.
    (8) For each deviation from an emission limitation occurring at an 
affected source where you are using a continuous monitoring system 
(including a CPMS or COMS) to comply with the emission limitation in 
this subpart, you must include the information in paragraphs (b)(1) 
through (4) of this section and the information in paragraphs (b)(8)(i) 
through (xi) of this section. This includes periods of startup, 
shutdown, and malfunction.
    (i) The date and time that each malfunction started and stopped.
    (ii) The date and time that each continuous monitoring was 
inoperative, except for zero (low-level) and high-level checks.
    (iii) The date, time, and duration that each continuous monitoring 
system was out-of-control as specified in Sec.  63.8(c)(7), including 
the information in Sec.  63.8(c)(8).
    (iv) The date and time that each deviation started and stopped, and 
whether each deviation occurred during a period of startup, shutdown, 
or malfunction or during another period.
    (v) A summary of the total duration of the deviation during the 
reporting period and the total duration as a percent of the total 
source operating time during that reporting period.
    (vi) A breakdown of the total duration of the deviations during the 
reporting period including those that are due to startup, shutdown, 
control equipment problems, process problems, other known causes, and 
other unknown causes.
    (vii) A summary of the total duration of continuous monitoring 
system downtime during the reporting period and the total duration of 
continuous monitoring system downtime as a percent of the total source 
operating time during the reporting period.
    (viii) A brief description of the process units.
    (ix) A brief description of the continuous monitoring system.
    (x) The date of the latest continuous monitoring system 
certification or audit.
    (xi) A description of any changes in continuous monitoring systems, 
processes, or controls since the last reporting period.
    (c) Immediate startup, shutdown, and malfunction report. If you had 
a startup, shutdown, or malfunction during the semiannual reporting 
period that was not consistent with your startup, shutdown, and 
malfunction plan, you must submit an immediate startup, shutdown, and 
malfunction report according to the requirements in Sec.  
63.10(d)(5)(ii).
    (d) Part 70 monitoring report. If you have obtained a title V 
operating permit for an affected source pursuant to 40 CFR part 70 or 
71, you must report all deviations as defined in this subpart in the 
semiannual monitoring report required by 40 CFR 70.6(a)(3)(iii)(A) or 
40 CFR 71.6(a)(3)(iii)(A). If you submit a compliance report for an 
affected source along with, or as part of, the semiannual monitoring 
report required by 40 CFR 70.6(a)(3)(iii)(A) or 40 CFR 
71.6(a)(3)(iii)(A), and the compliance report includes all the required 
information concerning deviations from any emission limitation or 
operation and maintenance requirement in this subpart, submission of 
the compliance report satisfies any obligation to report the same 
deviations in the semiannual monitoring report. However, submission of 
a compliance report does not otherwise affect any obligation you may 
have to report deviations from permit requirements for an affected 
source to your permitting authority.

Sec.  63.7842  What records must I keep?

    (a) You must keep the following records:
    (1) A copy of each notification and report that you submitted to 
comply with this subpart, including all documentation supporting any 
initial notification or notification of

[[Page 27672]]

compliance status that you submitted, according to the requirements in 
Sec.  63.10(b)(2)(xiv).
    (2) The records in Sec.  63.6(e)(3)(iii) through (v) related to 
startup, shutdown, and malfunction.
    (3) Records of performance tests, performance evaluations, and 
opacity observations as required in Sec.  63.10(b)(2)(viii).
    (b) For each COMS, you must keep the records specified in 
paragraphs (b)(1) through (4) of this section.
    (1) Records described in Sec.  63.10(b)(2)(vi) through (xi).
    (2) Monitoring data for a performance evaluation as required in 
Sec.  63.6(h)(7)(i) and (ii).
    (3) Previous (that is, superceded) versions of the performance 
evaluation plan as required in Sec.  63.8(d)(3).
    (4) Records of the date and time that each deviation started and 
stopped, and whether the deviation occurred during a period of startup, 
shutdown, or malfunction or during another period.
    (c) You must keep the records required in Sec.  63.6(h)(6) for 
visual observations.
    (d) You must keep the records required in Sec. Sec.  63.7833 and 
63.7834 to show continuous compliance with each emission limitation and 
operation and maintenance requirement that applies to you.

Sec.  63.7843  In what form and how long must I keep my records?

    (a) Your records must be in a form suitable and readily available 
for expeditious review, according to Sec.  63.10(b)(1).
    (b) As specified in Sec.  63.10(b)(1), you must keep each record 
for 5 years following the date of each occurrence, measurement, 
maintenance, corrective action, report, or record.
    (c) You must keep each record on site for at least 2 years after 
the date of each occurrence, measurement, maintenance, corrective 
action, report, or record according to Sec.  63.10(b)(1). You can keep 
the records offsite for the remaining 3 years.

Other Requirements and Information

Sec.  63.7850  What parts of the General Provisions apply to me?

    Table 4 to this subpart shows which parts of the General Provisions 
in Sec. Sec.  63.1 through 63.15 apply to you.

Sec.  63.7851  Who implements and enforces this subpart?

    (a) This subpart can be implemented and enforced by us, the United 
States Environmental Protection Agency (U.S. EPA), or a delegated 
authority such as your State, local, or tribal agency. If the U.S. EPA 
Administrator has delegated authority to your State, local, or tribal 
agency, then that agency has the authority to implement and enforce 
this subpart. You should contact your U.S. EPA Regional Office to find 
out if this subpart is delegated to your State, local, or tribal 
agency.
    (b) In delegating implementation and enforcement authority of this 
subpart to a State, local, or tribal agency under subpart E of this 
part, the authorities contained in paragraph (c) of this section are 
retained by the Administrator of the U.S. EPA and are not transferred 
to the State, local, or tribal agency.
    (c) The authorities that will not be delegated to State, local, or 
tribal agencies are specified in paragraphs (c)(1) through (4) of this 
section.
    (1) Approval of alternative opacity emission limits in Table 1 to 
this subpart under Sec.  63.6(h)(9).
    (2) Approval of major alternatives to test methods under Sec.  
63.7(e)(2)(ii) and (f) and as defined in Sec.  63.90, except for 
approval of an alternative method for the oil content of the sinter 
plant feedstock or volatile organic compound measurements for the 
sinter plant windbox exhaust stream stack as provided in Sec.  
63.7824(g).
    (3) Approval of major alternatives to monitoring under Sec.  
63.8(f) and as defined in Sec.  63.90.
    (4) Approval of major alternatives to recordkeeping and reporting 
under Sec.  63.10(f) and as defined in Sec.  63.90.

Sec.  63.7852  What definitions apply to this subpart?

    Terms used in this subpart are defined in the Clean Air Act, in 
Sec.  63.2, and in this section as follows.
    Bag leak detection system means a system that is capable of 
continuously monitoring relative particulate matter (dust) loadings in 
the exhaust of a baghouse to detect bag leaks and other upset 
conditions. A bag leak detection system includes, but is not limited 
to, an instrument that operates on tribroelectric, light scattering, 
light transmittance, or other effect to continuously monitor relative 
particulate matter loadings.
    Basic oxygen process furnace means any refractory-lined vessel in 
which high-purity oxygen is blown under pressure through a bath of 
molten iron, scrap metal, and fluxes to produce steel. This definition 
includes both top and bottom blown furnaces, but does not include argon 
oxygen decarburization furnaces.
    Basic oxygen process furnace shop means the place where steelmaking 
operations that begin with the transfer of molten iron (hot metal) from 
the torpedo car and end prior to casting the molten steel, including 
hot metal transfer, desulfurization, slag skimming, refining in a basic 
oxygen process furnace, and ladle metallurgy occur.
    Basic oxygen process furnace shop ancillary operations means the 
processes where hot metal transfer, hot metal desulfurization, slag 
skimming, and ladle metallurgy occur.
    Blast furnace means a furnace used for the production of molten 
iron from iron ore and other iron bearing materials.
    Bottom-blown furnace means any basic oxygen process furnace in 
which oxygen and other combustion gases are introduced into the bath of 
molten iron through tuyeres in the bottom of the vessel or through 
tuyeres in the bottom and sides of the vessel.
    Casthouse means the building or structure that encloses the bottom 
portion of a blast furnace where the hot metal and slag are tapped from 
the furnace.
    Certified observer means a visible emission observer certified to 
perform EPA Method 9 opacity observations.
    Desulfurization means the process in which reagents such as 
magnesium, soda ash, and lime are injected into the hot metal, usually 
with dry air or nitrogen, to remove sulfur.
    Deviation means any instance in which an affected source subject to 
this subpart, or an owner or operator of such a source:
    (1) Fails to meet any requirement or obligation established by this 
subpart, including but not limited to any emission limitation 
(including operating limits) or operation and maintenance requirement;
    (2) Fails to meet any term or condition that is adopted to 
implement an applicable requirement in this subpart and that is 
included in the operating permit for any affected source required to 
obtain such a permit; or
    (3) Fails to meet any emission limitation in this subpart during 
startup, shutdown, or malfunction, regardless of whether or not such 
failure is permitted by this subpart.
    Discharge end means the place where those operations conducted 
within the sinter plant starting at the discharge of the sintering 
machine's traveling grate including (but not limited to) hot sinter 
crushing, screening, and transfer operations occur.
    Emission limitation means any emission limit, opacity limit, or 
operating limit.
    Hot metal transfer station means the location in a basic oxygen 
process furnace shop where molten iron (hot

[[Page 27673]]

metal) is transferred from a torpedo car or hot metal car used to 
transport hot metal from the blast furnace casthouse to a holding 
vessel or ladle in the basic oxygen process furnace shop. This location 
also is known as the reladling station or ladle transfer station.
    Integrated iron and steel manufacturing facility means an 
establishment engaged in the production of steel from iron ore.
    Ladle metallurgy means a secondary steelmaking process that is 
performed typically in a ladle after initial refining in a basic oxygen 
process furnace to adjust or amend the chemical and/or mechanical 
properties of steel.
    Primary emissions means particulate matter emissions from the basic 
oxygen process furnace generated during the steel production cycle 
which are captured and treated in the furnace's primary emission 
control system.
    Primary emission control system means the combination of equipment 
used for the capture and collection of primary emissions (e.g., an open 
hood capture system used in conjunction with an electrostatic 
precipitator or a closed hood system used in conjunction with a 
scrubber).
    Primary oxygen blow means the period in the steel production cycle 
of a basic oxygen process furnace during which oxygen is blown through 
the molten iron bath by means of a lance inserted from the top of the 
vessel (top-blown) or through tuyeres in the bottom and/or sides of the 
vessel (bottom-blown).
    Responsible official means responsible official as defined in Sec.  
63.2.
    Secondary emissions means particulate matter emissions that are not 
controlled by a primary emission control system, including emissions 
that escape from open and closed hoods, lance hole openings, and gaps 
or tears in ductwork to the primary emission control system.
    Secondary emission control system means the combination of 
equipment used for the capture and collection of secondary emissions 
from a basic oxygen process furnace.
    Sinter cooler means the apparatus used to cool the hot sinter 
product that is transferred from the discharge end through contact with 
large volumes of induced or forced draft air.
    Sinter plant means the machine used to produce a fused clinker-like 
aggregate or sinter of fine iron-bearing materials suited for use in a 
blast furnace. The machine is composed of a continuous traveling grate 
that conveys a bed of ore fines and other finely divided iron-bearing 
material and fuel (typically coke breeze), a burner at the feed end of 
the grate for ignition, and a series of downdraft windboxes along the 
length of the strand to support downdraft combustion and heat 
sufficient to produce a fused sinter product.
    Skimming station means the locations inside a basic oxygen process 
furnace shop where slag is removed from the top of the molten metal 
bath.
    Steel production cycle means the operations conducted within the 
basic oxygen process furnace shop that are required to produce each 
batch of steel. The following operations are included: scrap charging, 
preheating (when done), hot metal charging, primary oxygen blowing, 
sampling, (vessel turndown and turnup), additional oxygen blowing (when 
done), tapping, and deslagging. The steel production cycle begins when 
the scrap is charged to the furnace and ends after the slag is emptied 
from the vessel into the slag pot.
    Top-blown furnace means any basic oxygen process furnace in which 
oxygen is introduced into the bath of molten iron by means of an oxygen 
lance inserted from the top of the vessel.
    Windboxes means the compartments that provide for a controlled 
distribution of downdraft combustion air as it is drawn through the 
sinter bed of a sinter plant to make the fused sinter product.

Tables to Subpart FFFFF of Part 63

                        Table 1 to Subpart FFFFF of Part 63.--Emission and Opacity Limits
    [As required in Sec.   63.7790(a), you must comply with each applicable emission and opacity limit in the
                                                following table]
----------------------------------------------------------------------------------------------------------------
                                                                               You must comply with each of the
                                 For . . .                                             following . . .
----------------------------------------------------------------------------------------------------------------
1. Each windbox exhaust stream at an existing sinter plant.................  You must not cause to be discharged
                                                                              to the atmosphere any gases that
                                                                              contain particulate matter in
                                                                              excess of 0.4 lb/ton of product
                                                                              sinter.
2. Each windbox exhaust stream at a new sinter plant.......................  You must not cause to be discharged
                                                                              to the atmosphere any gases that
                                                                              contain particulate matter in
                                                                              excess of 0.3 lb/ton of product
                                                                              sinter.
3. Each discharge end at an existing sinter plant..........................  a. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from one or more
                                                                              control devices that contain, on a
                                                                              flow-weighted basis, particulate
                                                                              matter in excess of 0.02 gr/dscf
                                                                              \1\; and
                                                                             b. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              secondary emissions that exit any
                                                                              opening in the building or
                                                                              structure housing the discharge
                                                                              end that exhibit opacity greater
                                                                              than 20 percent (6-minute
                                                                              average).
4. Each discharge end at a new sinter plant................................  a. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from one or more
                                                                              control devices that contain, on a
                                                                              flow weighted basis, particulate
                                                                              matter in excess of 0.01 gr/dscf;
                                                                              and
                                                                             b. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              secondary emissions that exit any
                                                                              opening in the building or
                                                                              structure housing the discharge
                                                                              end that exhibit opacity greater
                                                                              than 10 percent (6-minute
                                                                              average).
5. Each sinter cooler stack at an existing sinter plant....................  You must not cause to be discharged
                                                                              to the atmosphere any gases that
                                                                              contain particulate matter in
                                                                              excess of 0.03 gr/dscf.
6. Each sinter cooler stack at a new sinter plant..........................  You must not cause to be discharged
                                                                              to the atmosphere any gases that
                                                                              contain particulate matter in
                                                                              excess of 0.01 gr/dscf.
7. Each casthouse at an existing blast furnace.............................  a. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from a control
                                                                              device that contain particulate
                                                                              matter in excess of 0.01 gr/dscf;
                                                                              and
                                                                             b. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              secondary emissions that exit any
                                                                              opening in the casthouse or
                                                                              structure housing the blast
                                                                              furnace that exhibit opacity
                                                                              greater than 20 percent (6-minute
                                                                              average).
8. Each casthouse at a new blast furnace...................................  a. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from a control
                                                                              device that contain particulate
                                                                              matter in excess of 0.003 gr/dscf;
                                                                              and
                                                                             b. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              secondary emissions that exit any
                                                                              opening in the casthouse or
                                                                              structure housing the blast
                                                                              furnace that exhibit opacity
                                                                              greater than 15 percent (6-minute
                                                                              average).

[[Page 27674]]

9. Each BOPF at a new or existing shop.....................................  a. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from a primary
                                                                              emission control system for a BOPF
                                                                              with a closed hood system at a new
                                                                              or existing BOPF shop that
                                                                              contain, on a flow-weighted basis,
                                                                              particulate matter in excess of
                                                                              0.03 gr/dscf during the primary
                                                                              oxygen blow \2\;
                                                                             b. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from a primary
                                                                              emission control system for a BOPF
                                                                              with an open hood system that
                                                                              contain, on a flow-weighted basis,
                                                                              particulate matter in excess of
                                                                              0.02 gr/dscf during the steel
                                                                              production cycle for an existing
                                                                              BOPF shop or 0.01 gr/dscf during
                                                                              the steel production cycle for a
                                                                              new BOPF shop \2\; and
                                                                             c. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              gases that exit from a control
                                                                              device used solely for the
                                                                              collection of secondary emissions
                                                                              from the BOPF that contain
                                                                              particulate matter in excess of
                                                                              0.01 gr/dscf for an existing BOPF
                                                                              shop or 0.0052 gr/dscf for a new
                                                                              BOPF shop.
10. Each hot metal transfer, skimming, and desulfurization operation at a    You must not cause to be discharged
 new or existing BOPF shop.                                                   to the atmosphere any gases that
                                                                              exit from a control device that
                                                                              contain particulate matter in
                                                                              excess of 0.01 gr/dscf for an
                                                                              existing BOPF shop or 0.003 gr/
                                                                              dscf for a new BOPF shop.
11. Each ladle metallurgy operation at a new or existing BOPF shop.........  You must not cause to be discharged
                                                                              to the atmosphere any gases that
                                                                              exit from a control device that
                                                                              contain particulate matter in
                                                                              excess of 0.01 gr/dscf for an
                                                                              existing BOPF shop or 0.004 gr/
                                                                              dscf for a new BOPF shop.
12. Each roof monitoring at an existing BOPF shop..........................  You must not cause to be discharged
                                                                              to the atmosphere any secondary
                                                                              emissions that exit any opening in
                                                                              the BOPF shop or any other
                                                                              building housing the BOPF or BOPF
                                                                              shop operation that exhibit
                                                                              opacity greater than 20 percent (3-
                                                                              minute average).
13. Each roof monitor at a new BOPF shop...................................  a. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              secondary emissions that exit any
                                                                              opening in the BOPF shop or other
                                                                              building housing a bottom-blown
                                                                              BOPF or BOPF shop operations that
                                                                              exhibit opacity (for any set of 6-
                                                                              minute averages) greater than 10
                                                                              percent, except that one 6-minute
                                                                              period not to exceed 20 percent
                                                                              may occur once per steel
                                                                              production cycle; or
                                                                             b. You must not cause to be
                                                                              discharged to the atmosphere any
                                                                              secondary emissions that exit any
                                                                              opening in the BOPF shop or other
                                                                              building housing a top-blown BOPF
                                                                              or BOPF shop operations that
                                                                              exhibit opacity (for any set of 3-
                                                                              minute averages) greater than 10
                                                                              percent, except that one 3-minute
                                                                              period greater than 10 percent but
                                                                              less than 20 percent may occur
                                                                              once per steel production cycle.
----------------------------------------------------------------------------------------------------------------
\1\ This limit applies if the cooler is vented to the same control device as the discharge end.
\2\ This limit applies to control devices operated in parallel for a single BOPF during the oxygen blow.


            Table 2 to Subpart FFFFF of Part 63.--Initial Compliance with Emission and Opacity Limits
   [As required in Sec.   63.7825(a)(1), you must demonstrate initial compliance with the emission and opacity
                                    limits according to the following table]
----------------------------------------------------------------------------------------------------------------
                                                                                You have demonstrated initial
                                 For . . .                                           compliance if . . .
----------------------------------------------------------------------------------------------------------------
1. Each windbox exhaust stream at an existing sinter plant.................  The process-weighted mass rate of
                                                                              particulate matter from a windbox
                                                                              exhaust stream, measured according
                                                                              to the performance test procedures
                                                                              in Sec.   63.7822(c), did not
                                                                              exceed 0.4 lb/ton of product
                                                                              sinter.
2. Each windbox exhaust stream at a new sinter plant.......................  The process-weighted mass rate of
                                                                              particulate matter from a windbox
                                                                              exhaust stream, measured according
                                                                              to the performance test procedures
                                                                              in Sec.   63.7822(c), did not
                                                                              exceed 0.3 lb/ton of product
                                                                              sinter.
3. Each discharge end at an existing sinter plant..........................  a. The flow-weighted average
                                                                              concentration of particulate
                                                                              matter from one or more control
                                                                              devices applied to emissions from
                                                                              a discharge end, measured
                                                                              according to the performance test
                                                                              procedures in Sec.   63.7822(d),
                                                                              did not exceed 0.02 gr/dscf; and
                                                                             b. The opacity of secondary
                                                                              emissions from each discharge end,
                                                                              determined according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7823(c), did not exceed
                                                                              20 percent (6-minute average).
4. Each discharge end at a new sinter plant................................  a. The flow-weighted average
                                                                              concentration of particulate
                                                                              matter from one or more control
                                                                              devices applied to emissions from
                                                                              a discharge end, measured
                                                                              according to the performance test
                                                                              procedures in Sec.   63.7822(d),
                                                                              did not exceed 0.01 gr/dscf; and
                                                                             b. The opacity of secondary
                                                                              emissions from each discharge end,
                                                                              determined according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7823(c), did not exceed
                                                                              10 percent (6-minute average).
5. Each sinter cooler stack at an existing sinter plant....................  The average concentration of
                                                                              particulate matter from a sinter
                                                                              cooler stack, measured according
                                                                              to the performance test procedures
                                                                              in Sec.   63.7822(b), did not
                                                                              exceed 0.03 gr/dscf.
6. Each sinter cooler stack at a new sinter plant..........................  The average concentration of
                                                                              particulate matter from a sinter
                                                                              cooler stack, measured according
                                                                              to the performance test procedures
                                                                              in Sec.   63.7822(b), did not
                                                                              exceed 0.01 gr/dscf.
7. Each casthouse at an existing blast furnace.............................  a. The average concentration of
                                                                              particulate matter from a control
                                                                              device applied to emissions from a
                                                                              casthouse, measured according to
                                                                              the performance test procedures in
                                                                              Sec.   63.7822(e), did not exceed
                                                                              0.01 gr/dscf; and
                                                                             b. The opacity of secondary
                                                                              emissions from each casthouse,
                                                                              determined according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7823(c), did not exceed
                                                                              20 percent (6-minute average).

[[Page 27675]]

8. Each casthouse at a new blast furnace...................................  a. The average concentration of
                                                                              particulate matter from a control
                                                                              device applied to emissions from a
                                                                              casthouse, measured according to
                                                                              the performance test procedures in
                                                                              Sec.   63.7822(e), did not exceed
                                                                              0.003 gr/dscf; and
                                                                             b. The opacity of secondary
                                                                              emissions from each casthouse,
                                                                              determined according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7823(c), did not exceed
                                                                              15 percent (6-minute average).
9. Each BOPF at a new or existing BOPF shop................................  a. The average concentration of
                                                                              particulate matter from a primary
                                                                              emission control system applied to
                                                                              emissions from a BOPF with a
                                                                              closed hood system, measured
                                                                              according to the performance test
                                                                              procedures in Sec.   63.7822(f),
                                                                              did not exceed 0.03 gr/dscf for a
                                                                              new or existing BOPF shop;
                                                                             b. The average concentration of
                                                                              particulate matter from a primary
                                                                              emission control system applied to
                                                                              emissions from a BOPF with an open
                                                                              hood system, measured according to
                                                                              the performance test procedures in
                                                                              Sec.   63.7822(g), did not exceed
                                                                              0.02 gr/dscf for an existing BOPF
                                                                              shop or 0.01 gr/dscf for a new
                                                                              BOPF shop; and
                                                                             c. The average concentration of
                                                                              particulate matter from a control
                                                                              device applied solely to secondary
                                                                              emissions from a BOPF, measured
                                                                              according to the performance test
                                                                              procedures in Sec.   63.7822(g),
                                                                              did not exceed 0.01 gr/dscf for an
                                                                              existing BOPF shop or 0.0052 gr/
                                                                              dscf for a new BOPF shop.
10. Each hot metal transfer skimming, and desulfurization at a new or        The average concentration of
 existing BOPF shop.                                                          particulate matter from a control
                                                                              device applied to emissions from
                                                                              hot metal transfer, skimming, or
                                                                              desulfurization, measured
                                                                              according to the performance test
                                                                              procedures in Sec.   63.7822(h),
                                                                              did not exceed 0.01 gr/dscf for an
                                                                              existing BOPF shop or 0.003 gr/
                                                                              dscf for a new BOPF shop.
11. Each ladle metallurgy operation at a new or existing BOPF shop.........  The average concentration of
                                                                              particulate matter from a control
                                                                              device applied to emissions from a
                                                                              ladle metallurgy operation,
                                                                              measured according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7822(h), did not exceed
                                                                              0.01 gr/dscf for an existing BOPF
                                                                              shop or 0.004 gr/dscf for a new
                                                                              BOPF shop.
12. Each roof monitor at an existing BOPF shop.............................  The opacity of secondary emissions
                                                                              from each BOPF shop, determined
                                                                              according to the performance test
                                                                              procedures in Sec.   63.7823(d),
                                                                              did not exceed 20 percent (3-
                                                                              minute average).
13. Each roof monitor at a new BOPF shop...................................  a. The opacity of the highest set
                                                                              of 6-minute averages from each
                                                                              BOPF shop housing a bottom-blown
                                                                              BOPF, determined according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7823(d), did not exceed
                                                                              20 percent and the second highest
                                                                              set of 6-minute averages did not
                                                                              exceed 10 percent; or
                                                                             b. The opacity of the highest set
                                                                              of 3-minute averages from each
                                                                              BOPF shop housing a top-blown
                                                                              BOPF, determined according to the
                                                                              performance test procedures in
                                                                              Sec.   63.7823(d), did not exceed
                                                                              20 percent and the second highest
                                                                              set of 3-minute averages did not
                                                                              exceed 10 percent.
----------------------------------------------------------------------------------------------------------------

          Table 3 to Subpart FFFFF of Part 63.--Continuous Compliance with Emission and Opacity Limits
   [As required in Sec.   63.7833(a), you must demonstrate continuous compliance with the emission and opacity
                                    limits according to the following table]
----------------------------------------------------------------------------------------------------------------
                                                                               You must demonstrate continuous
                                 For . . .                                           compliance by . . .
----------------------------------------------------------------------------------------------------------------
1. Each windbox exhaust stream at an existing sinter plant.................  a. Maintaining emissions of
                                                                              particulate matter at or below 0.4
                                                                              lb/ton of product sinter; and
                                                                             b. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
2. Each windbox exhaust stream at a new sinter plant.......................  a. Maintaining emissions of
                                                                              particulate matter at or below 0.3
                                                                              lb/ton of product sinter; and
                                                                             b. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
3. Each discharge end at an existing sinter plant..........................  a. Maintaining emissions of
                                                                              particulate matter from one or
                                                                              more control devices at or below
                                                                              0.02 gr/dscf; and
                                                                             b. Maintaining the opacity of
                                                                              secondary emissions that exit any
                                                                              opening in the building or
                                                                              structure housing the discharge
                                                                              end at or below 20 percent (6-
                                                                              minute average); and
                                                                              c. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
4. Each discharge end at a new sinter plant................................  a. Maintaining emissions of
                                                                              particulate matter from one or
                                                                              more control devices at or below
                                                                              0.01 gr/dscf;
                                                                             b. Maintaining the opacity of
                                                                              secondary emissions that exit any
                                                                              opening in the building or
                                                                              structure housing the discharge
                                                                              end at or below 10 percent (6-
                                                                              minute average); and
                                                                             c. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
5. Each sinter cooler stack at an existing sinter plant....................  a. Maintaining emissions of
                                                                              particulate matter at or below
                                                                              0.03 gr/dscf; and
                                                                             b. Conducting subsequent
                                                                              performance sinter plant tests at
                                                                              least twice during each term of
                                                                              your title V operating permit (at
                                                                              midterm and renewal).
6. Each sinter cooler stack at a new sinter plant..........................  a. Maintaining emissions of
                                                                              particulate matter at or below
                                                                              0.01 gr/dscf; and
                                                                             b. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
7. Each casthouse at an existing blast furnace.............................  a. Maintaining emissions of
                                                                              particulate matter from a control
                                                                              device at or below 0.01 gr/dscf;

[[Page 27676]]

                                                                             b. Maintaining the opacity of
                                                                              secondary emissions that exit any
                                                                              opening in the casthouse or
                                                                              structure housing the blast
                                                                              furnace at or below 20 percent (6-
                                                                              minute average); and
                                                                             c. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
8. Each casthouse at a new blast furnace...................................  a. Maintaining emissions of
                                                                              particulate matter from a control
                                                                              device at or below 0.003 gr/dscf;
                                                                             b. Maintaining the opacity of
                                                                              secondary emissions that exit any
                                                                              opening in the casthouse or
                                                                              building housing the casthouse at
                                                                              or below 15 percent (6-minute
                                                                              average); and
                                                                             c. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
9. Each BOPF at a new or existing BOPF shop................................  a. Maintaining emissions of
                                                                              particulate matter from the
                                                                              primary emission control system
                                                                              for a BOPF with a closed hood
                                                                              system at or below 0.03 gr/dscf;
                                                                             b. Maintaining emissions of
                                                                              particulate matter from the
                                                                              primary emission control system
                                                                              for a BOPF with an open hood
                                                                              system at or below 0.02 gr/dscf
                                                                              for an existing BOPF shop or 0.01
                                                                              gr/dscf for a new BOPF shop;
                                                                             c. Maintaining emissions of
                                                                              particulate matter from a control
                                                                              device applied solely to secondary
                                                                              emissions from a BOPF at or below
                                                                              0.01 gr/dscf for an existing BOPF
                                                                              shop or 0.0052 gr/dscf for a new
                                                                              BOPF shop; and
                                                                             d. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
10. Each hot metal transfer, skimming, and desulfurization operation at a    a. Maintaining emissions of
 new or existing BOPF shop.                                                   particulate matter from a control
                                                                              device at or below 0.01 gr/dscf at
                                                                              an existing BOPF or 0.003 gr/dscf
                                                                              for a new BOPF; and
                                                                             b. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
11. Each ladle metallurgy operation at a new or existing BOPF shop.........  a. Maintaining emissions of
                                                                              particulate matter from a control
                                                                              device at or below 0.01 gr/dscf at
                                                                              an existing BOPF shop or 0.004 gr/
                                                                              dscf for a new BOPF shop; and
                                                                             b. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
12. Each roof monitor at an existing BOPF shop.............................  a. Maintaining the opacity of
                                                                              secondary emissions that exit any
                                                                              opening in the BOPF shop or other
                                                                              building housing the BOPF or shop
                                                                              operation at or below 20 percent
                                                                              (3-minute average); and
                                                                             b. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
13. Each roof monitor at a new BOPF shop...................................  a. Maintaining the opacity (for any
                                                                              set of 6-minute averages) of
                                                                              secondary emissions that exit any
                                                                              opening in the BOPF shop or other
                                                                              building housing a bottom-blown
                                                                              BOPF or shop operation at or below
                                                                              10 percent, except that one 6-
                                                                              minute period greater than 10
                                                                              percent but no more than 20
                                                                              percent may occur once per steel
                                                                              production cycle;
                                                                             b. Maintaining the opacity (for any
                                                                              set of 3-minute averages) of
                                                                              secondary emissions that exit any
                                                                              opening in the BOPF shop or other
                                                                              building housing a top-blown BOPF
                                                                              or shop operation at or below 10
                                                                              percent, except that one 3-minute
                                                                              period greater than 10 percent but
                                                                              less than 20 percent may occur
                                                                              once per steel production cycle;
                                                                              and
                                                                             c. Conducting subsequent
                                                                              performance tests at least twice
                                                                              during each term of your title V
                                                                              operating permit (at midterm and
                                                                              renewal).
----------------------------------------------------------------------------------------------------------------

           Table 4 to Subpart FFFFF of Part 63.--Applicability of General Provisions to Subpart FFFFF
 [As required in Sec.   63.7850, you must comply with the requirements of the NESHAP General Provisions (40 CFR
                                part 63, subpart A) shown in the following table]
----------------------------------------------------------------------------------------------------------------
             Citation                       Subject           Applies to Subpart FFFFF         Explanation
----------------------------------------------------------------------------------------------------------------
Sec.   63.1......................  Applicability...........  Yes.
Sec.   63.2......................  Definitions.............  Yes.
Sec.   63.3......................  Units and Abbreviations.  Yes.
Sec.   63.4......................  Prohibited Activities...  Yes.
Sec.   63.5......................  Construction/             Yes.
                                    Reconstruction.
Sec.   63.6(a), (b), (c), (d),     Compliance with           Yes.
 (e), (f), (g), (h)(2)(ii)-(h)(9).  Standards and
                                    Maintenance
                                    Requirements.
Sec.   63.6(h)(2)(i).............  Determining Compliance    No.......................  Subpart FFFFF specifies
                                    with Opacity and VE                                  Method 9 in appendix A
                                    Standards.                                           to part 60 of this
                                                                                         chapter to comply with
                                                                                         roof monitor opacity
                                                                                         limits.
Sec.   63.7(a)(1)-(2)............  Applicability and         No.......................  Subpart FFFFF and
                                    Performance Test Dates.                              specifies performance
                                                                                         test applicability and
                                                                                         dates.
Sec.   63.7(a)(3), (b), (c)-(h)..  Performance Testing       Yes......................
                                    Requirements.
Sec.   63.8(a)(1)-(a)(3), (b),     Monitoring Requirements.  Yes......................  CMS requirements in Sec.
 (c)(1)-(3), (c)(4)(i)-(e),                                                                63.8(c)(4) (i)-(ii),
 (c)(7)-(8), (f)(1)-(5), (g)(1)-                                                         (c)(5) and (6), (d),
 (4).                                                                                    and (e) apply only to
                                                                                         COMS for electrostatic
                                                                                         precipitators.

[[Page 27677]]

Sec.   63.8(a)(4)................  Additional Monitoring     No.......................  Subpart FFFFF does not
                                    Requirements for                                     require flares.
                                    Control Devices in Sec.
                                      63.11.
Sec.   63.8(c)(4)................  Continuous Monitoring     No.......................  Subpart FFFFF specifies
                                    System Requirements.                                 requirements for
                                                                                         operation of CMS.
Sec.   63.8(f)(6)................  RATA Alternative........  No.
Sec.   63.9......................  Notification              Yes......................  Additional notifications
                                    Requirements.                                        for CMS in Sec.
                                                                                         63.9(g) apply to COMS
                                                                                         for electrostatic
                                                                                         precipitators.
Sec.   63.9(g)(5)................  DATA Reduction..........  No.......................  Subpart FFFFF specifies
                                                                                         data reduction
                                                                                         requirements.
Sec.   63.10(a), (b)(1)-(2)(xii),  Recordkeeping and         Yes......................  Additional records for
 (b)(2)(xiv), (b)(3), (c)(1)-(6),   Reporting Requirements.                              CMS in Sec.   63.10(c)
 (c)(9)-(15), (d), (e)(1)-(2),                                                           (1)-(6), (9)-(15), and
 (e)(4), (f).                                                                            reports in Sec.
                                                                                         63.10(d)(1)-(2) apply
                                                                                         only to COMS for
                                                                                         electrostatic
                                                                                         precipitators.
Sec.   63.10(b)(2)(xiii).........  CMS Records for RATA      No.
                                    Alternative.
Sec.   63.10(c)(7)-(8)...........  Records of Excess         No.......................  Subpart FFFFF specifies
                                    Emissions and Parameter                              record requirements.
                                    Monitoring Exceedances
                                    for CMS.
Sec.   63.11.....................  Control Device            No.......................  Subpart FFFFF does not
                                    Requirements.                                        require flares.
Sec.   63.12.....................  State Authority and       Yes.
                                    Delegations.
Sec.   63.13-Sec.   63.15........  Addresses, Incorporation  Yes.
                                    by Reference,
                                    Availability of
                                    Information.
----------------------------------------------------------------------------------------------------------------

[FR Doc. 03-5518 Filed 5-19-03; 8:45 am]
BILLING CODE 6560-50-P 

 
 


Local Navigation


Jump to main content.